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Abstract. We present a novel variational model for intrinsic light field
decomposition, which is performed on four-dimensional ray space instead
of a traditional 2D image. As most existing intrinsic image algorithms are
designed for Lambertian objects, their performance suffers when consid-
ering scenes which exhibit glossy surfaces. In contrast, the rich structure
of the light field with many densely sampled views allows us to cope with
non-Lambertian objects by introducing an additional decomposition term
that models specularity. Regularization along the epipolar plane images
further encourages albedo and shading consistency across views. In evalu-
ations of our method on real-world data sets captured with a Lytro Illum
plenoptic camera, we demonstrate the advantages of our approach with
respect to intrinsic image decomposition and specular removal.

1 Introduction

Intrinsic image decomposition aims at separating an illumination invariant
reflectance image from an input color image. Such a decomposition has numer-
ous applications in color enhancement, image segmentation, pattern recognition,
and object tracking [1–3]. The separation of the shading component is used in
BRDF estimation and shadow removal methods [4–6]. However, while intrinsic
images have many applications, recovering them remains a substantial challenge
for researchers. Estimation of intrinsic components is an ill-conditioned problem:
a single image can be decomposed into infinitely many different combinations of
reflectance and illumination. Thus, additional constraints or priors are needed
to select an appropriate solution. Priors on reflectance (albedo) and shading are
usually based on physical principles of light and object interaction, scene geom-
etry, and material properties, as well as on expert knowledge of how intrinsic
images should look like. Finally, decomposition into reflectance and illumination
components is suitable only for diffuse (Lambertian) objects. According to the
dichromatic model introduced by Shafer [7], if glossy (non-Lambertian) objects
are present in a scene, a specular term should be taken into account. Many
classical approaches fail when the target scene has non-Lambertian objects;
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Fig. 1. The top-left image shows the center view of a light field parametrized by image
coordinates x and y. On the bottom and right, the epipolar plane images (EPIs) for the
white lines in the center view are shown, where s and t describe view point coordinates.
As the camera moves, 3D scene points trace straight lines on the EPIs, whose slope
corresponds to disparity. Any assignment of a property of a scene point to rays should
be constant along these lines, which can be leveraged for consistent regularization [12].

as specularity depends on view point, it is hardly possible to estimate it from a
single image.

To improve accuracy of intrinsic images, researchers use additional informa-
tion, for instance, a video sequence instead of a single image, RGB-D imaging
sensors, or manual labeling. This information may be incomplete, suffer from
sensor noise, calibration errors, and be dependent on a human factor. Comput-
ing this information may be time consuming, require complex experiments, and
special equipment. Thus, it is hardly possible to use it in for example industrial
applications.

In this work, we leverage light fields for intrinsic image decomposition. 4D
light fields are widely used in image analysis and computer graphics. The key idea
of light field is to represent a scene not as a traditional 2D image, which contains
information about accumulated intensity at each image point, but as a collection
of images of the same scene from slightly different view points, see Fig. 1. The
specific structure of the light field allows a wide range of applications. It is used
for efficient depth estimation, virtual refocusing, automatic glare reduction as
well as object insertion and removal [8–10]. Recently, the inherent structure of
the light field was leveraged for shape and BRDF estimation [4,11].

Contributions. In this paper, we formulate and solve intrinsic light field decom-
position by means of an optimization problem for albedo, shading, and specu-
larity. As far as we are aware, this is the first time this problem is addressed
for 4D light fields. Based on a detailed review of the state-of-the-art in intrin-
sic image decomposition, we propose priors for modeling all unknowns based
on additional data available in the light field. Epipolar plane image constraints
encourage albedo and shading to be constant for projections of the same scene
point. By means of a novel term which is specific to light fields, we can also
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estimate specularity and highlights, and separate them from shading and albedo
components. In experiments, we demonstrate that we outperform state-of-the-
art intrinsic image decompostion based on RGB plus depth data [13], as well as
an alternative approach to detect and remove light field specularity [10,14].

2 Related Work

Intrinsic images have been a challenging research topic for many years. First
introduced by Barrow and Tenenbaum [15], they divide an observed image into
the product of a reflectance and illumination image. According to Land and
McCann [1], large discontinuities in pixel intensities correspond to changes in
reflectance, and the remaining variation corresponds to shading. They proposed
a Retinex theory that was successfully extended and implemented for intrinsic
image decomposition by Tappen et al. [16], Chung et al. [17], Grosse et al. [18],
Finalayson et al. [5,6], and many others.

Besides the Retinex approach, it is common to include additional regular-
ization terms that describe certain physical properties of intrinsic components.
Barron and Malik [19–21] introduce priors on reflectance, shape, and illumina-
tion to recover intrinsic images. Shen et al. [22] employ texture information.
Finalyson et al. [23] search for an invariant image which is independent of light-
ing and shading. Gehler and Rother [24] model reflectance values drawn from
a sparse set of basis colors. Bell et al. [25] also assume that reflectance values
come from a predefined set which is unique for every image, then they iteratively
adjust reflectance values in this set.

Recently, a significant improvement in intrinsic image decomposition was
achieved by using richer types of input data. Having a sequence of images with
depth information available allows to penalize albedo and shading consistency
between different views, Lee et al. [26]. Depth or disparity information allows to
incorporate spatial dependencies between pixels to construct shading prior, Jeon
et al. [27]. Chen and Koltun [13] develop a model based on RGB-D information.
They separate shading into two components: direct and indirect irradiance that
significantly improved decomposition results. Barron and Malik [21] use depth
to extend their SIRFS model [20] such that it is applicable for natural scenes.

Although decomposition algorithms nowadays achieve spectacular results for
Lambertian scenes, their performance is suffering in the non-Lambertian case
in the presence of highlights or specularity. In our paper, we will make use of
the rich structure in the light field to estimate specularity for non-Lambertian
objects. According to the dichromatic model introduced by Shafer [7], diffuse
and specular reflections behave differently. Diffuse objects reflect incident light
in multiple directions equally, thus, their color is independent of viewpoint. Spec-
ular objects reflect light in a certain direction that depends on orientation, and
thus their color depends on viewpoint, light source color, and physical mater-
ial properties. Blake and Bülthoff [28] made an extensive analysis of specular
reflections, and propose a strategy for recovering 3D structure using specular-
ity. Swaminathan et al. [29] study photometric properties of specular pixels,
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and model their motion depending on the surface geometry. Adato et al. [30]
model specular flow with non-linear partial differential equations. Tao et al.
[10,14] introduced depth estimation for glossy surfaces. They leverage the light
field structure to cluster pixels in specular and specular-free groups, then they
remove specular components from the input light field.

3 Intrinsic Light Field Model

Light Field Structure. We briefly describe the light field structure and review
notation. For more detailed information, we refer to [12,31]. A light field is
defined on 4D ray space R = Π × Ω, which parametrizes rays r = (x, y, s, t) by
their intersection coordinates with two planes Π and Ω. Intersection with the
focal plane Π gives view point coordinates (s, t), while the image plane Ω denotes
image coordinates (x, y), see Fig. 1. A 4D light field is now a map L : R → R

n

on ray space. It can be scalar or vector-valued for grey scale or color images,
respectively.

Light Field Decomposition. We model an intrinsic light field as a function

L(r) = A(r)S(r) + H(r), (1)

where the radiance L of every ray r is decomposed into albedo A, shading S,
and specular component H. The functions L,A, S,H : R → R

3 map ray space to
RGB values. Albedo represents the color of an object independent of illumination
and camera position. Shading describes intensity changes due to illumination,
inter-reflections, and object geometry. Finally, specularity represents highlights
that occur in case of non-Lambertian objects. They depend on illumination,
object geometry, and camera position.

The common assumption in the literature related to intrinsic image decom-
position is to model the shading component as mono-chromatic [16,18,24]. How-
ever, in case of multiple light sources or non-Planckian light, this modeling
assumption is not sufficient. Thus, we further decompose shading into mono-
chromatic shading s and trichromatic light source color C,

S(r) = s(r)C(r). (2)

We directly compute the illumination component C in a pre-processing step
with the illuminant estimation algorithm developed by Yang et al. [32] applied to
the center view, assuming that it will be similar across views. After illumination
color is computed, we exclude it from the original light field by switching to the
new decomposition model

L(r)
C(r)

= A(r)s(r) +
H(r)
C(r)

(3)

which is illumination color free. Vector division is to be understood component-
wise. As a further simplification, we obtain System (3) in linear form

Llog(r) = Alog(r) + 1slog(r) + H log(r, A, s,H) (4)
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by applying the logarithm. We now want to solve (4) with respect to albedo,
shading, and specularity.

System (4) is ill-posed, since its number of variables is three times larger
than the number of equations. To select a solution that agrees with physical
meaning of intrinsic components, we pose it as an inverse problem and intro-
duce a number of constraints or regularization terms for albedo, shading, and
specularity. As usual, dependence of H log on all arguments except r is ignored
during optimization, and it is estimated as another independent component. We
thus solve a global energy minimization problem where we weight the residual
of (4) with different priors and regularization terms,

arg min
(Alog,slog,Hlog)

{
‖Llog(r) − Alog(r) − 1slog(r) − H log(r)‖22 + . . .

· · · + Palbedo(Alog) + Pshading(slog) + Pspec(H log) + J(Alog, slog)
}

.

(5)

The priors Palbedo and Pshading for albedo and shading essentially apply the
key ideas in intrinsic image decomposition to every subaperture image. They
are defined in Sect. 4. The specularity prior Pspec is specific to light fields, and
a main contribution of our work. It is described in detail in Sect. 5. Finally,
the smoothing prior J across ray space encourages spatial smoothness and in
particular consistency across different subaperture images. It relies on disparity,
and is described together with the optimization framework in Sect. 6.

4 Albedo and Shading Priors

We start with describing the priors, which are the key for obtaining an accurate
solution for intrisic light field decomposition from the variational model (5). In
this section, we introduce the priors Palbedo and Pshading for albedo and shading,
respectively.

Albedo. To model albedo, we combine ideas of Retinex theory, which is widely
used to decompose an image into shading and reflectance components [16,17,33],
with the idea that pixels with equal chromaticity are likely to have simi-
lar albedo [13,26,34]. Thus, the prior for albedo is the sum of two ener-
gies, Palbedo(Alog) = Eretinex(Alog) + Echroma(Alog), corresponding to these two
models.

Under the simplifying assumption that image derivatives in the log-domain
are caused either by shading or reflectance, we classify the derivative at every
ray as caused by shading or albedo. The idea is to compute a modified gradient
field ĝ which assigns a zero value to all derivatives that are caused by shading.
The derivative classification is done with approach similar to Color Retinex used
in [17,18]. A partial spatial derivative Lx of the light field is classified as albedo
if neighbouring RGB vectors into the direction of differentiation are not parallel,
or if it is above a certain magnitude. Thus, the modified derivative is

ĝx =

{
Lx if cx+1,y · cx,y < τcol or |Lx| > τgrad,

0 otherwise.
(6)



A Variational Model for Intrinsic Light Field Decomposition 71

Above, c = (r, g, b)T , the constant τcol > 0 is a threshold above which two vectors
are assumed to be parallel, and τgrad > 0 is another user-defined constant. In a
similar way, we estimate the modified partial derivative ĝy in the second spatial
direction.

The gradient of the albedo should be equal to the gradient field modified by
retinex, thus we finally obtain the retinex energy

Eretinex(Alog) = λretinex

∫

R
‖∂xAlog(r) − ĝx(r)‖2 + ‖∂yAlogr − ĝy(r)‖2dr.

(7)
The second regularization term is based on chromaticity similarities between

adjacent rays. The basic idea is that if two neighboring rays of the same view have
close chromaticity values, they have the same albedo. We use the chromaticity
measure described by Chen and Koltun [13], which gives a weight αr,q for how
likely it is that two rays r and q have the same albedo,

αr,q =
(
1 − ‖Lch(r) − Lch(q)‖

max
r′∈Ω, q′∈NA(r′)

‖Lch(r′) − Lch(q′)‖
)√

Llum(r)Llum(q), (8)

where NA(r) is a neighborhood of r, and Lch and Llum are chromaticity and
luminance. The chromaticity energy

Echroma(Alog) = λchroma

∫

R

∑
NA(r)

αr,q ‖Alog(r) − Alog(q)‖2 dr (9)

now penalizes dissimilarity of albedos that have chromaticity measure αr,q close
to one. Note that we use a mixed continuous/discrete notation for r and q, as
our choice of neighbourhood is inherently discrete, while we require a variational
rayspace model in the optimization framework, see Sect. 6.

To construct the neighborhoods NA(r) for every ray r ∈ R, we impose the
assumption that spatially close points in R

3 probably have similar albedo. We
select kA nearest neighbors in R

3 for the point P on the scene surface inter-
sected by r, and choose mA out of kA neighbors randomly. We believe that this
connectivity strategy has several advantages over fully random connectivity: by
defining neighbors we increase the chance to meet points with similar chromatic-
ity, and by random connectivity within neighboring points we avoid disconnected
chromaticity clusters.

Shading. The shading prior is also the sum of two components, Pshading =
Enormal + Espatial. To model the first component, we adopt the well-known
assumption [13,26,35] that scene points which are spatially close to each other
and share the same orientation are likely to have similar shading. To facilitate
this, we construct the six-dimensional set

Γ :=
{(

P (r), n(P (r))
)

: r ∈ R}
,

where P (r) is again the point of the scene surface intersected by r, and n(P (r))
the corresponding outer normal. The set of neighbours NS(r) now consists of
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Fig. 2. The left image shows the center view of a light field captured with a Lytro
Illum camera. The right image shows the specular mask obtained by our method.

the kN -nearest neighbours of r ∈ R in the six-dimensional space Γ . The regu-
larization term

Enormal(slog) = λnormal

∫

R

∑
q∈NS(r)

(slog(r) − slog(q))2 dr (10)

thus penalizes shading components to be the same if corresponding 3D points are
spatially close to each other and their outer normals have similar orientations.

To account for indirect shading, which is caused by inter-reflections between
objects in a scene, we also include a purely spatial regularization term

Espatial(slog) = λspace

∫

R

∑
q∈ND(r)

(slog(r) − slog(q))2 dr, (11)

where the neighborhood ND(r) denotes the kD nearest neighbors of the 3D scene
point first intersected by r.

5 Prior for the Specular Component

In this section, we describe the specular prior in the variational energy (5). We
first discuss the modeling assumptions, then show how to compute a mask for
candidate specular pixels based on these assumptions, and finally construct the
prior Pspec.

Modeling Assumptions. We combine several approaches to model specularity
[2,10,14,28–30,36]. According to the specular motion model [28,29], specularity
changes depend on surface geometry. For instance, regions of low curvature on
a specular object create color intensity changes within different views. Specu-
lar regions of high curvature result in high pixel intensities in all subaperture
views. Thus, curvature information can be useful while estimating specularity. In
practice, however, it turns out that curvature estimation is very sensitive to inac-
curacies of the 3D model of a scene. Imperfect disparity maps lead to a certain
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amount of noise in the estimated spatial coordinates, thus curvature information
becomes highly unreliable. Instead of using curvature information directly, we
therefore propose a heuristic approach that estimates candidate regions where
specularity or highlights can occur. Our main modeling assumptions are thus:

S1. Specularity is view dependent.
S2. If a projected 3D point has high pixel intensities and its color is constant

across all subaperture views, then the point may be part of a specular sur-
face.

S3. If a projected 3D point has high variation in pixel intensities, and the color
of the corresponding rays changes across subaperture views, then the point
may belong to a specular surface.

S4. If a point is classified as specular, then it is a part of specular surface, and
its local neighborhood in R

3 may result in specular pixels from a certain
viewing angle.

S5. The distribution of specularity is sparse.

Potential specular objects are identified based on magnitude and variation
of pixel values over different views. We compute a specular mask for the center
view, and propagate it to the remaining views according to disparity.

Computing the Specular Mask. Our proposed algorithm proceeds in 4 steps:

1. Let Ωc be the image plane for the center view, and V = {(s1, t1), ..., (sN , tN )}
the set of remaining N view points.
For every p ∈ Ωc, we compute the vector ωp of color intensity changes with
respect to V according to

wi
p = Li(p + vid(p)), i = 1, . . . , N. (12)

where vi = (sc − si, tc − ti) is the view point displacement and d(p) the
estimated scalar disparity of p.

2. Identify pixels where color and intensity vary within subaperture views in
three steps according to assumptions (S1) and (S3):

– Filter out a percentage %nvar of pixels that have low luminance variation
σ(ωp), where by Ω∗

c we define a set of remaining pixels.
– Exclude occlusion boundaries from Ω∗

c . To find occlusion boundaries, we
compute the k-nearest neighbors in the image domain, and corresponding
spatial coordinates in R

3. If neighboring pixels in Ω∗
c are far away in R

3,
with distances larger than docc, then we classify those pixels as occlusion
boundaries.

– From the remaining pixels, finally exclude the percentage %nconf with
the lowest confidence scores similar to the approach proposed by Tao
et al. [14].
To compute confidence, we cluster the corresponding values of ωp in two
groups using K-means. Let m(p) be the cluster centroid with the larger
mean μ(m). The confidence is computed as

c(p) = exp
(

− 1
σ2

spec

(
β0

μ(m)
+

β1

ξ(m)

))
, (13)
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Fig. 3. Estimated disparity maps for scenes captured with a Lytro Illum camera. From
left to right: an outdoor scene with the ceramic owl, a tinfoil swan, an indoor scene
with the same owl and a candle. Disparities range between −1.5 and 1.5.

where ξ(m) denotes the sum of all distances within the cluster.
The confidence score grows with mean intensity and variation within the
brightest cluster. Thus, we obtain pixels with varying values within sub-
aperture views. Above, β0 and β1 are user-defined parameters that control
exponential decay of brightness and distance terms, σspec scales the con-
fidence function. We fix β0 = 0.5, β1 = 10−3, σspec = 2.

3. Identify pixels where intensity is high and color not changing within all
subaperture views according to assumption (S2). According to Tian and
Clark [36], regions with high unnormalized Wiener entropy, which is defined
as the product of RGB values over all pixels, are likely to be specular. We
adopt their approach and also identify those regions.

4. Combine pixels found in steps 2 and 3 into the specular mask

hmask =

{
1, specular
0, non-specular,

(14)

which is then grown according to assumption (S4) to include all kspec-nearest
neighbors for each specular pixel in the initial mask.

An example specular mask for a Lytro dataset is shown in Fig. 2.

Final Prior on Specularity. The specular component should be non-zero only
within the candidate specular region given by the mask hmask defined above. We
therefore strongly penalize non-zero values outside this region by defining the
final sparsity prior as

Pspec(H log) = λspec

∫

R
γw(1 − hmask)||H log(r)||2 dr + λsparse||H log||1. (15)

where γw � 0 is a constant. We include an additional sparsity norm on H log to
account for assumption (S5).
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Table 1. Main parameters for intrinsic image decomposition used in implementation.

Priors weights Retinex Optimization Neighborhood Specularity

λchroma = 0.25 τcol = 0.99 Global iterations = 10 kA = 100 %nvar = 75%

λretinex = 0.5 τgrad = 0.2 Local iterations = 10 mA = 10 docc = 0.1

λnormal = 0.5 μ = 0.01 kN = 20 %nconf = 85%

λspace = 0.5 λ = 0.25 kD = 20 Wiener entropy = 99%

λspec = 0.5 kspec = 60

λspec sparse = 0.1 γw = 10

6 Ray Space Regularization and Optimization

We summarize the previously defined terms in the variational energy (5) as a
functional F , so that to obtain the light field decomposition we have to solve

arg min
(Alog,slog,Hlog)

{
F (Alog, slog,H log) + J(Alog, slog)

}
. (16)

As typical in intrinsic image decomposition, the overall optimization problem
is rather complex. However, taking a detailed look at the individual terms, it
turns out that we have a convex objective F . Furthermore, our intention is to
define the global smoothness term J on ray space in a way that it enforces
spatial smoothness within the views, as well as consistency with the disparity-
induced structure on the epipolar plane images. Thus, the complete objective
function exactly fits the light field optimization framework for inverse problems
on ray space proposed by Goldluecke and Wanner [12]. The key advantage of
this framework is that it is computationally efficient since it allows to solve
subproblems for each epipolar plane image and view independently. Also, it is
generic in the sense that we just need to provide a way to compute F and related
proximity operators. We thus adopt their method to solve our problem.

In [12], the light field regularizer J in (16) is a sum of several contributions.
First, there are individual regularizers Jxs and Jyt for each epipolar plane image,
which depend on the disparity map and employ an anisotropic total variation
to enforce consistency of the fields in the arguments with the linear patterns on
the epipolar plane images, see Fig. 1. Second, for each view, there is a regularizer
Jst, and as in the basic framework in [12], we use a simple total variation term
for efficiency. In future work, we intend to move to something more sophisticated
here.

Albedo and shading are independent of view point, thus their values should
not vary between views. We want Alog and slog to be constant in the direction
of d, except at disparity discontinuities. We also regularize both components
within each individual view as noted above. The complete regularizer can thus
be written as

J(Alog, slog) = μJxs(Alog, slog) + μJyt(Alog, slog) + λJst(Alog, slog), (17)

where λ, μ > 0 are user-defined constants which correspond to the amount of
smoothing on the separate views and EPIs, respectively. The objective is convex,
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Fig. 4. Center view images showing the light field decomposition. The first row depicts
a decomposition with our approach into: albedo, shading, and specularity. The sec-
ond row illustrates Chen and Koltun’s algorithm [13], where the center view image is
decomposed into albedo and shading with the additional input of our generated depth
map. The third row illustrates original image, diffuse, and specular images obtained by
Tao et al.’s method [10]. Due to EPI constraints and the specularity term, our shading
component does not include specular highlights as Chen and Koltun’s result. Also, we
removed most cast shadows from albedo image, while smoothness priors prevent albedo
and shading discontinuities. Tao et al. detects less of the specular regions compared
to ours. Their algorithm identifies mostly boundaries of specular regions, and removes
those boundaries from the diffuse image. Disparity errors create variation of intensity
values in subaperture views, which erroneously are classified as specularity on occlu-
sion boundaries. Our algorithm detects the complete specular regions, since it is more
robust to inaccurate disparity estimation.

so that we achieve global optimality. For details and the actual optimization
algorithm we refer to [12].
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Fig. 5. Center view of the outdoor scene with an origami swan made from aluminum
foil. Comparing shading and albedo images, we conclude that our algorithm detects
more cast shadows than Chen and Koltun’s algorithm. Our specular component con-
tains more correctly classified glossy regions than the one produced by algorithm of
Tao et al. We observe that their approach predominantly detects boundaries of specular
regions, thus only these are removed in the generated specular free image.

7 Results

We validate our decomposition method on light fields captured with a Lytro
Illum plenoptic camera, as well as on synthetic and gantry data sets provided by
Wanner et al. [37]. In the paper, we present selected results for real world indoor
and outdoor scenes, the rest we show in the supplementary material. While
benchmark datasets for evaluating intrinsic image decomposition are presented
in [18,25,38], those data sets are designed for algorithm evaluation on single
RGB, RGB+D images, or on optic flow; they are not applicable to our light field
based method. Since there are thus no ground truth intrinsic light fields available
so far, we evaluate our method visually and with qualitive comparisons, deferring
rendering of a novel benchmark to future work.
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Fig. 6. Center view of an indoor scene with several light sources and non trivial chro-
maticity. We observe a difference in lighting of albedo images. In our approach, the
albedo image is illumination free, compared to albedo images produced with Chen
and Koltun’s algorithm. A reason can be that we first compute illumination color and
exclude it from the optimization model, while in Chen and Koltun’s approach illumina-
tion color is included in the optimization. Both shading components are specular-free,
while the albedo component of Chen and Koltun algorithm contains specularity. There
is a near to zero specular component detected with Tao et al.’s algorithm. This can be
explained by the bad initial disparity estimation which causes erroneous pixel classifi-
cation. Our approach outperforms Tao et al., since our specular detection algorithm is
occlusion aware and also analyses regions where pixels have high intensities.

To recover a 3D model and estimate normals, we perform disparity esti-
mation with the multi-view stereo method described in [9], with an improved
more occlusion-aware data term and refined with further smoothing using a
generalized total variation regularizer, see estimated disparity labels in Fig. 3.
The main algorithm parameters and their values are presented in Table 1. Our
method is implemented in Matlab, version R2015b, with run-times on a PC with
Intel(R) Core i7-4790 CPU 3.60 GHz and an NVIDIA GeForce GTX 980.
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Fig. 7. Potential locations for specularity that were detected with our algorithm. The
left image shows candidate specular regions for the origami swan, the right image
depicts the specular mask for the owl and candle scene.

Evaluation Results. Since there are no intrinsic image decomposition algo-
rithms that consider specularity, to compare results of our specular term we
select a recent algorithm for depth estimation and specular removal developed
for light field cameras by Tao et al. [10]. To compare albedo and shading terms,
we investigated recently published algorithms that employ 3D information. There
are several papers where depth information is used for intrinsic image decomposi-
tion [13,21,26,27]. We selected the algorithm developed by Chen and Koltun [13]
to compare against, since it outperforms other algorithms that use 3D informa-
tion. For both comparisons, we use the authors implementations with default
parameter setting. Figures 4, 5 and 6 illustrate original image, our proposed
decomposition method, Chen and Koltun [13], and Tao et al. [10]. For all images,
contrast was enhanced using the Matlab function imadjust for better visualiza-
tion. Figure 7 illustrates specular masks for origami swan and owl with candle
light fields.

We also compared runtime of the algorithms. The Chen and Koltun algorithm
converges in 20–30 min for a single image, the method by Tao et al. (including
depth estimation) takes 60 min. Our approach evaluated on a light field with a
cross-hair shaped subset of 17 views from a light field with 9 × 9 views in total
converges in 30–40 min, which amounts to 1.7–2.4 min per frame.

8 Conclusions

In this work, we propose the first approach towards solving the intrinsic 4D light
field decomposition problem while leveraging the disparity-induced structure on
the epipolar plane images. In contrast to existing intrinsic image algorithms,
the dense collection of views in a light field allows us to define an additional
specular term in the decomposition model, so that we can optimize over the
specular component as well as albedo and shading by minimizing a single varia-
tional functional. As the inverse decomposition problem is embedded in a recent
framework for light field labeling [12], we can ensure that albedo and shading
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estimates are consistent across and use information from all views. Experiments
demonstrate that we outperform both a state-of-the-art intrinsic image decom-
position method employing additional depth information [13], as well as a light
field based method for specular removal [10,14] on challenging non-Lambertian
scenes.
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