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Abstract. Recent works have achieved near or over human performance
in traditional face recognition under PIE (pose, illumination and expres-
sion) variation. However, few works focus on the cross-age face recog-
nition task, which means identifying the faces from same person at dif-
ferent ages. Taking human-aging into consideration broadens the appli-
cation area of face recognition. It comes at the cost of making existing
algorithms hard to maintain effectiveness. This paper presents a new ref-
erence based approach to address cross-age problem, called Eigen-Aging
Reference Coding (EARC). Different from other existing reference based
methods, our reference traces eigen faces instead of specific individuals.
The proposed reference has smaller size and contains more useful infor-
mation. To the best of our knowledge, we achieve state-of-the-art per-
formance and speed on CACD dataset, the largest public face dataset
containing significant aging information.

1 Introduction

Growing number of corporations and organizations use face recognition algo-
rithms to realize interaction and verification applications in recent years. In
spite of the high recognition accuracy for well-captured images, it’s still a tough
task to maintain the effectiveness under various real-world deformation factors.
Among all the factors that may cause the reduction of accuracy, PIE (pose,
illumination, expression) and facial aging overwhelmed others. Compared with
PIE, the facial aging is more complicated. Even for human beings, to identify
the same person under different ages is not an easy job (see Fig. 1). Meanwhile,
cross-age face recognition is so crucial for a real-world face recognition system,
for example, it can be used to find escaped prisoners or missing people. Without
cross-age face recognition ability, face information has to be updated frequently
to keep the recognition system effective. Most of the previous researches achieve
near or over human performance only under PIE variation [2,3,12,13]. Facial
aging researches still have a lot to improve.
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(a) Examples of face pairs with PIE variation.

(b) Examples of face pairs with facial aging variation.

Fig. 1. These image pairs show the difference between traditional PIE variation and
facial aging variation. Facial aging variation is much more complicated. (a) The above
image pairs come from LFW [21] dataset, a commonly used human face dataset, which
doesn’t contain aging information. (b) The bottom image pairs come from the largest
public facial aging dataset CACD [1].

Among all the age related researches, age estimation [4,14,15] and aging sim-
ulation [5,16,17] researches have narrow application area, so we mainly inves-
tigate cross-age face recognition. As far as we know, the existing works can be
roughly divided into three categories: the modeling approaches [6,7], the discrim-
inative approaches [8,9,18,19] and the reference-based approaches [1]. Modeling
approaches use aging simulation model to change query faces into the same age
as gallery ones. Discriminative approaches try to separate or eliminate the age-
sensitive features to increase the recognition ability. Reference-based approaches
achieve age-invariance by comparing the face features with reference individuals
in different ages. Figure 2 provides an example of how reference-based approaches
achieve age-invariance.

The reference-based cross-age face recognition is first proposed by Bor-Chun
Chen et al. [1], which is called Cross-Age Reference Coding (CARC). It achieves
remarkable improvement compared to previous researches. But it still has some
drawbacks. First, the reference set is extremely large, since it has to cover the
diversity among race, gender and so on. Second, due to the expensive computa-
tional cost, it can’t make full use of all training individuals. At last, in sparse
coding, CARC only adds locality constraint to ensure the smoothness, but the
global distribution may be changed.

To tackle these drawbacks, this paper introduces a new reference-based
method called Eigen-Aging Reference Coding (EARC). Although eigen face isn’t
the first choice of recent face recognition researches, we find that it’s effective in
building eigen face reference in our task. Actually, it’s the first time that eigen
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Fig. 2. After a pair of faces are encoded by a reference individual, they pool out their
absolute maximums. If two faces come from the same person, the activated values are
supposed to be similar.

face is used to build reference set. We use PCA to select some eigen components
of face features just like how we calculate eigen faces [22]. Instead of tracing the
aging process for specific individuals, the proposed reference set traces the aging
process of these eigen face components as eigen-aging reference. We also add dis-
tribution constraint in our sparse coding to guarantee the encoded results follow
good distributions. Contributions of this paper can be concluded into following
four parts:

– Using PCA to remove the redundancy and cover the diversity among training
individuals, which makes each of our eigen-aging reference contain more useful
information.

– The number of reference and result dimension of our method are dramatically
reduced compared with previous reference-based methods. EARC can make
full use of all training individuals without increasing the computational cost.

– The proposed distribution constraint ensures that our encoded result is of
good distributions. It improves the performance of sparse coding.

– The proposed method achieves state-of-the-art performance in both retrieval
and verification, which is better than human average performance and very
close to human voting result.

The rest of this paper is organized as follows. In Sect. 2, we introduce some
related works. In Sects. 3 and 4, we separate our Eigen-Aging Reference Coding
into reference construction part and encoding part. In Sect. 5, we provide some
experiment results running on CACD. This paper will be concluded in Sect. 6.

2 Related Work

2.1 Cross-Age Face Recognition

Most of the highly qualified researches in cross-age face recognition start after
MORPH [20] dataset is published. It keeps being the largest facial aging dataset
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until CACD [1] occurs. Except these two, the other facial aging datasets either
contain small data size or have low quality. Limited by the rareness of datasets,
there are still few researchers focusing on this field. To the best of our knowl-
edge, we divide existing cross-age face recognition methods into three categories:
the modeling approaches, the discriminative approaches and the reference-based
approaches. The modeling approaches [6,7] change the query faces into the same
age as gallery one. Although it removes some variations caused by facial aging,
the main problem is that the diversity of aging process between different race or
gender can’t be covered, which makes most of the modeling approaches hard to
be general. The discriminative approaches have become popular in recent years.
Most of them seem to be very effective in improving the recognition ability by
eliminating age-sensitive features. Zhifeng Li et al. [8] build Local Patterns Selec-
tion feature descriptor to achieve age-invariance. It applies clustering encoding
tree on feature space and removes facial aging variation by minimizing intra-
user dissimilarity among different ages. Dihong Gong et al. [9] use hidden factor
analysis to separate the features into age-sensitive factors and age-invariant fac-
tors. However, aging process is not just a process in chaos. Age-sensitive features
can also be used for cross-age face recognition, if we take advantage of their inner
regularity: similar faces are supposed to have similar aging process. That’s why
two twins look alike all through their life. Reference-based cross-age approaches
make use of this regularity. They trace aging processes of some standard refer-
ence individuals.

Before reference set is used in cross-age face recognition, it has already been
applied by lots of methods to improve traditional face recognition systems [10,11]
and achieves quite good results. Kumar et al. [11] present attribute classifier and
simile classifier, the simile classifier uses reference people to do classification.
Qin Yin et al. [10] propose an associate-predict model based on a 200 identities
reference set. However, their reference sets don’t contain aging variation. Bor-
Chun Chen et al. [1] further find the value of reference in solving facial aging
problem and use it to achieve age-invariance. They build a reference based on
600 individuals to deal with cross-age face recognition, which is called cross-age
reference coding (CARC). CARC assumes that similar faces should still look
alike when they both get older. It’s an obvious phenomenon if we think about the
above twins example. Its reference traces aging processes of reference individuals,
then it encodes the faces by pooling out the maximum similarity between input
face and reference individuals at different ages. Both younger faces or elder
faces are supposed to activate their own corresponding age at reference and
have similar activated values (see Fig. 2), so the age-invariant encoded feature
can be obtained. Compared with other approaches, CARC shows much better
performance and robustness.

However, all the existing reference methods mentioned above [1,10,11] use
specific individuals as reference. Inspired by eigen face [22], the proposed eigen-
aging reference first uses eigen faces as reference. It achieves much better per-
formance and less computational consumption.
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2.2 High-Dimensional LBP

Among all the feature descriptors applied in face recognition applications, we
select high-dimensional LBP (HD-LBP) [2] to extract face features. It has been
proved to have near human performance in traditional face recognition.

High-dimensional LBP features will be extracted on multi-scale patches
around each landmark. Landmarks are some fixed points on human face like
centers of eyes, corners of the mouth, tip of the nose and so on. Each land-
mark will have an independent high-dimensional feature vector. Because the
multi-scale sampling extracts too much redundant information, we further use
PCA to reduce its dimension. It will maintain the performance and reduce the
computational consumption for further processing.

3 Eigen-Aging Reference

3.1 Form Training Individual Sets

Before calculating aging processes of eigen components, we have to obtain the
training individual representations using Eq. (1). Average HD-LBP features of
those images from same person at same age are used by:

Rk
i,j = 1

Nij

∑

individual(xk)=i,year(xk)=j

xk,

∀i = 1 , 2 , ...,n; ∀j = 1 , 2 , ...,m; ∀k = 1 , 2 , ..., q ;
(1)

where xk ∈ Rd is the HD-LBP feature at landmark k, Rk
i,j means the average

face feature of individual i in year j at landmark k, n is the number of training
individuals, m is range of ages, and q is the number of landmarks. In our experi-
ments, n=1200, m=10, q= 16. Nij is the number of all images from individual
i in year j. In CACD dataset, Nij is nonzero for any i and j.

3.2 Train Eigen-Aging Reference

The Eigen-Aging Reference will be trained according to eigen face algorithm
[22]. We make use of the above Rk

i,j as training representations and calculate
eigen components of them. For the convenience of formulization, we concatenate
training representations into vectors by year as:

R̂k
i = [(Rk

i,1)
T , (Rk

i,2)
T , ..., (Rk

i,m)T ]T ∈ Rmd. (2)

After that, PCA is applied to obtain eigen components of n training feature
vectors R̂k

i , then we can get the average vector Mk and difference vectors Φk
i in

the following:

Mk =
1
n

n∑

i=1

R̂k
i , Φk

i = R̂k
i − Mk. (3)
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(a) The examples of Cross-Age Reference.

(b) The examples of proposed Eigen-Aging Reference.

Fig. 3. The above illustrations use raw images to make reference set easier to under-
stand. (a) Cross-Age Reference is based on specific individuals. (b) Eigen-Aging Ref-
erence is based on eigen faces. The number on the left of each row is the rank of the
corresponding eigen face.

Next we construct matrixes Φk = [Φk
1 , Φ

k
2 , ..., Φ

k
n] ∈ Rmd×n, and calculate

eigenvalues λk
l and eigenvectors uk

l of (Φk)T Φk. Top-p λk
l and uk

l are used, where
l = 1, 2, ..., p. According to Sect. 5, the best performance can be achieved when
p = 50 and n = 1200, so we come up with eigen-aging vector Êk

l for each eigen
face component l by:

Êk
l =

1
sqrt(λk

l )
Φkuk

l , l = 1, 2, ..., p. (4)
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We further separate Êk
l ∈ Rmd into sub-vectors Ek

l,j ∈ Rd by year as follows:

Êk
l = [(Ek

l,1)
T , (Ek

l,2)
T , ..., (Ek

l,m)T ]T . (5)

Ek
l,j is our proposed reference set representation, which is smaller and contain

more useful information.
Figure 3 shows the difference between EARC and CARC. We use raw images

to make reference set easier to understand. As we can see, specific individual
based reference contains too much noise and has redundancy among different
individuals while the proposed eigen component based reference is more repre-
sentative and clear. With the above advantage, EARC only use tens of eigen
face references but achieve better performance than CARC, the method based
on hundreds of specific individuals. In the example of eigen aging reference, we
display 1st, 3rd, 5th, 20th and 100th eigen face references. They are ranked
according to their eigenvalues. We also find that the higher ranked components
contain more structure information while the lower ranked ones may have more
noise, so if we use too much eigen faces, the result could become worse. In Sect. 5,
we will discuss how many eigen faces we should use.

4 Coding and Pooling

4.1 Sparse Coding

Before we apply sparse coding, We need to define relationship values αk
l,j between

input feature and l th eigen face reference in year j at landmark k (we denote
matrix Ěk

j = [Ek
1,j , E

k
2,j , ..., E

k
p,j ] ∈ Rd×p and vector α̌k

j = [αk
1,j , α

k
2,j , ..., α

k
p,j ] ∈

Rp). Our reference set is used as dictionary, so it can be considered as solving a
Tikhonov regularization problem:

minimize
αk

i,j

||xk − Ěk
j α̌k

j ||2 + λ||α̌k
j ||2,∀j, k. (6)

An additional locality constraint [1] will also be used to improve perfor-
mance. It will guarantee the smoothness of encoded results, which means that
similar high dimensional points in original feature space still have similar value
in encoded results. In other word, the relationship values between input face and
eigen face reference l in year j should be similar to the values between input face
and the same reference face in year j + 1 and j − 1 , so for any k and l, αk

l,j will
always be similar to αk

l,j+1 and αk
l,j−1.

This locality smoothness constraint is defined as λ||LAk||2. We let Ak =
[(α̌k

1)
T , (α̌k

2)
T , ..., (α̌k

m)T ]T ∈ Rmp and matrix L:

L =

⎡

⎢
⎢
⎢
⎣

I −2I I 0 · · · 0 0 0
0 I −2I I · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · I −2I I

⎤

⎥
⎥
⎥
⎦

∈ R(m−2)p×(mp). (7)



396 K. Tang et al.

4.2 Distribution Constraint

In spite of that locality constraint λ||LAk||2 ensures the smoothness of encoded
results and improves the coding performance, it can’t keep the distribution still
being similar to original features. Mathematically, the statement that near points
maintain closer is not equal to that far points keep far away. Only when both
of these two statements are satisfied, the global distribution can be maintained
after changing feature spaces. So we propose a new constraint to guarantee the
encoded features follow the distributions we need.

With smoothness constraint, we may have four possible distributions of
encoded αk

l,j sequences (see Fig. 4). Based on common sense, if we compare a face
with a series of faces from identical individual in different ages, there should be
only one most similar face. It can locate either at the boundary of age sequence
or at one certain age inside the sequence, so there is supposed to be one and only
one extreme point. The locality smoothness constraint may lead to distribution
4 in Fig. 4, which is not a good distribution in our work, So we propose two
kinds of constraint terms that may force the encoded features follow the first
three distributions.

Maximize boundary difference: We assume that the extreme point will occur
at the boundary in most of the cases. It’s quite rare for the extreme point located
at exact center of the reference age. So we can simply try to maximize the
difference of two boundary ages. The new constraint will be −β||DAk||2. The
minus transfers the maximize problem to minimization by:

D =
[
I 0 · · · 0 −I

] ∈ Rp×(mp). (8)

Additional cost for extreme point: We also can force the encoded results into
first three distributions by giving additional cost for extreme point. The good
distributions should have only one extreme point while the bad distribution may
have several ones. So we give the extreme point additional cost for occurrence.
This constraint can also be written as −β||DAk||2 with new D:

(a) Distribution 1 (b) Distribution 2 (c) Distribution 3 (d) Distribution 4

Fig. 4. With smoothness constraint, we may get above 4 distributions, but only the
first three are good distributions in our work. Distribution 4 means all the possible
distributions with more than one extreme point.
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D =

⎡

⎢
⎢
⎢
⎣

I 0 −I 0 · · · 0 0 0
0 I 0 −I · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · I 0 −I

⎤

⎥
⎥
⎥
⎦

∈ R(m−2)p×(mp). (9)

We should also notice that the locality constraint and distribution constraint
both represent the distance relationship between original feature space and
encoded feature space. For the convenience of learning parameters, they are sup-
posed to be learned together. The combined constraint is λ(||LAk||2−β||DAk||2).

4.3 Optimization

To combine all the constraints, we denote Xk = [(xk)T , ..., (xk)T ]T ∈ Rmp and
matrix F :

F k =

⎡

⎢
⎢
⎢
⎣

Ěk
1 0 · · · 0

0 Ěk
2 · · · 0

...
...

...
...

0 0 · · · Ěk
m

⎤

⎥
⎥
⎥
⎦

∈ R(md)×(mp), (10)

so the final optimization function is:

minimize
Ak

||Xk − F kAk||2 + λ1||Ak||2 + λ2(||LAk||2 − β||DAk||2),∀k. (11)

It’s easy to obtain Ak = ((F k)T F k + λ1I + λ2L
T L − λ2βDT D)−1(F k)T Xk,∀k.

We define P k to be a projection matrix, P k = ((F k)T F k + λ1I + λ2L
T L −

λ2βDT D)−1(F k)T . HD-LBP face features can be easily transferred into reference
space by multiplying with P k.

4.4 Max Pooling

After sparse coding is applied, we use maximum pooling to achieve age-
invariance. If a face is young, it should be more similar to the younger part
of each eigen face reference, which means that the corresponding younger age
has a little bit larger αk

l,j than elder one. The maximum pooling will pool out
this value. Two faces from same person at different age will pool out different
ages but their maximum values are similar compared with the faces from dif-
ferent people. This is the reason why we can use maximum pooling to achieve
age-invariance.

Ak ∈ Rmp is a vector containing αk
l,j as elements. We calculate the absolute

maximum of each eigen face l on different ages, max(|αk
l,1|, |αk

l,2|, ..., |αk
l,m|),∀l, k.

The final age-invariant face feature is a p dimensional vector, p is the number of
eigen faces we use in constructing eigen-aging reference.
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5 Experiments

5.1 Cross-Age Face Dataset

Compared with traditional human face datasets, the cross-age datasets are
extremely rare because it needs to track individuals over decades. The most
popular datasets in this field are FG-NET, MORPH [20] and CACD [1]. CACD
is published in recent years but its quality has already been proved. All the
images of CACD are celebrity images captured in various unconstrained envi-
ronments, compared with other cross-age datasets, images in CACD are more
close to the complicated real-world environment.

The difference among FG-NET, MORPH and CACD is shown in Table 1.
FG-NET is an early dataset. It contains only one thousand images from no
more than one hundred individuals. Because of its limitation of data size, it’s
hard to support a general method. MORPH contains 55,134 images of 13,618
people with age range from 16–77, but they are in clear background environment.
Another demerit of MORPH is that there are about 4 images in average for each
individual and only one image in each certain age. It’s hard to cover different
PIE conditions. The CACD contains 163,446 images of 2,000 celebrities with age
ranging from 16 to 62. All the collected images are from 2004 to 2013, and each
individual has 80 images in average, which means about 8 images in every certain
age per individual. It ensures that face information of each single individual in
each age can be fully extracted, so CACD is the best choice for us to build a
robust and effective reference. In our experiment, all the training and testing
images come from CACD.

Table 1. The difference among FG-NET, MORPH and CACD.

Dataset # of images # of individuals # images/individual Age gap

FG-NET 1,002 82 12.2 0–45

MORPH [20] 55,134 13,618 4.1 0–5

CACD [1] 163,446 2,000 81.7 0–10

5.2 Similarity Measurement

We use cosine similarity to measure the difference between two age-invariant face
features in our experiment. Because the feature from each landmark is calculate
independently, we add up these similarities from all the landmarks, and use the
sum to represent the total similarity between two faces.

5.3 Training Data and Parameters Selection

To compare our experiment results to the previous state-of-the-art methods in
CACD, we organize our training data and test data in the same way. There are
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Table 2. The coding parameters of EARC in three cases.

Case λ1 λ2 β

EARC 100 101 -

EARC-maximize boundary difference 10−2 104 10−1

EARC-additional extreme point cost 10−1 104 103

2,000 celebrities in total. 1,800 of them come from internet without annotation.
(1) 1,200 of these 1,800 individuals are used to calculate reference represen-
tations; (2) 600 are used to calculate PCA subspace in High-Dimensional LBP.
The rest images of 200 individuals have already been manually annotated, which
means that their quality can be guaranteed. (3) We use 80 of them to learn para-
meters. (4) 120 of them test our experiment results.

To learn our parameters, we use 80 qualified celebrities. The parameters
include the dimension of PCA subspace in high-dimensional LBP, the regular-
ization parameters λ1, λ2, β, and the number of eigen faces we use. The images
captured in 2004–2006 are collected as gallery set while those captured in 2013
are query set. The reason why we don’t use images from 2007–2012 as gallery
set to learn parameters is that a larger gap of age between gallery and query set
is more meaningful for a cross-age face recognition system.

– In high-dimensional LBP, we use PCA to reduce the dimension while remove
some variations. The original landmark dimension is 4,720. We try to reduce
it to the range from 100 to 1,500. According to their performance and com-
putational cost, we choose 800 dimension in our experiment. 900 and 1,000
dimension can increase a little bit performance, but the required computer
memory and computational cost are extremely expensive.

– To learn regularization parameters λ1, λ2 and β, we greedily train them one
by one from value 10−6 to 106. We record the parameters in three cases (see
Table 2): EARC without distribution constraint, EARC with maximize bound-
ary difference constraint, EARC with additional cost for extreme point con-
straint.

– In order to find a proper number of eigen faces, We first use 600 training indi-
viduals to train and select eigen face components from 10 to 100. It shows that
the best performance is achieved at 70 eigen face components, since the lower
ranked eigen components may have more noise and less structure information.
Then we change the number of training individuals from 600 to 1200. The best
performance achieves at 70, 60, 60, 50 when training individuals are 600, 800,
1000, 1200 (see Fig. 5(a)). It seems like the larger training data we use, the
less eigen components we will need. So we make use of all the 1200 training
individuals and choose top 50 eigen components as reference. Under this con-
dition, it will have the best performance and the lowest computational expense
of projection. CARC can’t make full use of all 1200 training individuals due
to its expensive projection cost.
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(a) (b)

Fig. 5. (a) How does the retrieval performance change with the number of training
individuals and number of eigen components. (b) The retrieval results of the proposed
methods and previous state-of-the-art approaches. It shows that EARC-D achieves best
performance at all the three age gaps.

5.4 Retrieval Experiments

In order to test retrieval performance of our proposed method, the rest annotated
120 celebrities are used. Because all the images are labelled the captured year
from 2004–2013, we organize the gallery sets and query set by year. The images
captured in 2013 will be gathered as query set while images captured in 2004–
2006, 2007–2009 and 2010–2012 will be collected into 3 gallery sets.

The Mean Average Precision (MAP) is used to evaluate retrieval perfor-
mance. It is widely used in information and image retrieval. If there is a query
set contains Q query images, for each query image, it will compute its averaged
precision (AP) of retrieval results at every recall level. MAP is the final average
of these APs.

We compare our retrieval results (with and without distribution constraint)
with the state-of-the-art methods CARC [1] and HFA [9]. They are proved to be
very effective in CACD dataset. The results are shown in Fig. 5(b). We find that
both maximize boundary difference constraint and additional cost for extreme
point constraint have similar results, so we only use one EARC-D to repre-
sent distribution constraint. And it indeed improves the performance of original
EARC.

5.5 Verification Experiments

Verification experiments are conducted under a verification subset of CACD called
CACD-VS. It contains 4,000 image pairs, which have been manually checked to
guarantee the quality. Half of these 4,000 image pairs are positive (come from the
same person), the rest are negative (come from different people).

The CACD-VS contains two human performance benchmarks: average
human performance and human voting performance. The former is the aver-
age of human accuracy, which is 85.7%. The human voting has a much better
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result, which is 94.2% accuracy. It uses decisions from 9 human beings to do
each verification. The majority decision will be considered as final decision. For
now, human voting result still shows the best accuracy over all the published
methods.

In the proposed method, we separate data into 10 folds, 200 positive pairs
and 200 negative pairs for each. 9 of them are used to learn PCA subspace and 1
to test. It will run 10 times and compute average results. After calculating cosine
similarities, a simple threshold is used to classify. Both two kinds of distribution
constraints have similar results, so we use EARC-D and EARC to represent the
result with or without distribution constraint. We compare our methods with
CARC [1], HFA [9] and HD-LBP [2] (see Table 3). It achieves the best accuracy,
91.2%, which is very close to human voting result.

Table 3. The verification results.

Method Verification accuracy

High-dimensional LBP [2] 81.6%

Hidden factor analysis [9] 84.4%

Average human 85.7%

Cross-age reference coding [1] 87.6%

Eigen-aging reference coding 90.6%

Eigen-aging reference coding-D 91.2%

Human voting 94.2%

5.6 Computational Cost

Beside of good performance EARC and EARC-D achieve, they also significantly
speed up the computation by reducing the encoded dimension. For a real-world
face recognition system, it always contains huge amount of face information in
the dataset. A computational expensive method has less practical application
value. Compared with CARC, we only use 1/12 of the dimension to represent
an age-invariant face and significantly improve the efficiency. The comparison
of encoded dimension and computation time between CARC and EARC will be
shown in Table 4. To measure the retrieval efficiency, we retrieve 100 face images
in a gallery set with 10,000 images. The retrieval speed shows the computation

Table 4. The encoded dimension and computation time of CARC, EARC and EARC-D.

Method Dimension of landmark Dimension of face Retrieval speed (ms)

CARC [1] 600 9600 9237

EARC 50 800 1352

EARC-D 50 800 1347
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time of each method. This experiment is running under a computer with Intel(R)
Core(TM) i7-4720HQ CPU @ 2.60 GHz 2.60 GHz, 16.0 GB RAM and MATLAB
R2013a.

6 Conclusions

In this paper, we mainly propose an eigen face component based reference to
encode the faces into an age-invariant space. It performs better than specific indi-
vidual based reference and requires less computation time. We also present the
distribution constraint to improve sparse coding. It further optimizes our method
without costing additional computational consumption. Although the proposed
two kinds of distribution constraint terms are based on different assumption,
their mathematical similarity results in similar results.

In spite of the state-of-the-art result we achieve in CACD, it’s still not as good
as the human voting result. We suppose cross-dataset voting could improve our
performance, because it might increase the stability of our system. We assume
cross-dataset voting can lead to higher accuracy, because human voting is better
than human average. Limited by the rareness of public cross-age dataset, we only
try separating CACD into several small datasets. Although it improves a little
bit, it doesn’t make a mentionable difference. This is because the same dataset
doesn’t have enough appearance difference. If there are several large facial aging
datasets with good quality and different appearance distributions, a more robust
cross-dataset voting method may exceed human voting result.
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