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Abstract. Identifying subjects with pose variations is still considered
as one of the most challenging problems in face recognition, despite
the great progress achieved in unconstrained face recognition in recent
years. Pose problem is essentially a misalignment problem together with
self-occlusion (information loss). In this paper, we propose a continuous
identity-preserving face pose normalization method and produce natural
results in terms of preserving the illumination condition of the query
face, based on only five fiducial landmarks. “Raw” frontalization is per-
formed by aligning a generic 3D face model into the query face and
rendering it at frontal pose, with an accurate self-occlusion part estima-
tion based on face borderline detection. Then we apply Quotient Image
as a face symmetrical feature which is robust to illumination to fill the
self-occlusion part. Natural normalization result is obtained where the
self-occlusion part keeps the illumination conditions of the query face.
Large scale face recognition experiments on LFW and MultiPIE achieve
comparative results with state-of-the-art methods, verifying effectiveness
of proposed method, with advantage of being database-independent and
suitable both for face identification and face verification.

1 Introduction

Face recognition has been an active research area for its huge potential in real
world applications, such as access control or video surveillance. The focus of
face recognition study has shifted from constrained settings to unconstrained
settings, as evidenced by the development of face databases, from lab databases,
such as FERET [1], MultiPIE [2], to databases in the wild, such as LFW [3].
In unconstrained environment, the irregular conditions of pose, illumination,
expression and resolution significantly affects the performance of face recognition
system. Among these factors, pose is considered the most challenging one. An
excellent solution towards pose variations brings benefit to other tasks such as
feature extraction or facial attributes analysis.

Pose problem is essentially a misalignment problem caused by the rigid
motion of 3D face structure, resulting in self-occlusion (loss of information) and
loss of semantic correspondence [4]. Directly comparing two faces in different
poses is difficult. The basic idea is to match pixels in 2D face images to the same
semantic 3D facial points by face synthesis.
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Existing pose-invariant face recognition methods can be broadly categorized
into two families: 2D-based and 3D-based. In the first class, Li et al. in [5]
represents a test image using some bases or exemplars and the coefficients can
be regarded as one kind of pose-invariant features. Local linear regression (LLR)
[6] learned appearance transformation between different poses. However, the
performance is limited for the incapability of capturing 3D rotations as well
as solving self-occlusion problem with using 2D warping. Recent years, deep
learning models, such as FIP [7], SPAE [8], MVP [9], CPF [10] have been designed
to learn non-linear transformation to convert a non-frontal face to a canonical
(frontal) face or several target poses faces and get high recognition rates. But
large and well-arranged data has to be prepared and the distribution of test data
is usually different from the training data in real world application.

3D-based methods are usually based on a reference 3D face model or
a deformable model with shape and illumination parameters, to handle 3D
pose variations intuitively. 3D methods are divided into several categories as
followed [11].

Recognition by fitting: 3DMM [12] is a powerful 3D representation for human
face which fits parameters of 3D shape, pose and illumination and use them for
recognition. But it is hard to implement it in practical system for high compu-
tational burden.

Pose synthesis: virtual face images under arbitrary poses can be generated
using 3D models constructed from gallery images. Probe face is matched to the
virtual images with similar pose to the probe. GEM [13] is an efficient 3D face
modeling method, which estimates 3D shape by assigning generic face depth
information directly to probe 2D images. However, GEM only deals with frontal
face, requiring frontal faces for each identity, which is not always satisfied in
unconstrained setting.

Pose normalization: 2D probe image is normalized to a canonical (frontal)
view based on a 3D model to simplify unconstrained setting to constrained one
in terms of pose variations. Asthana et al. [14] synthesized a frontal view of the
input face by aligning an averaged 3D face model to it, using view-based AAM.
But the self-occlusion part is unfilled. HPEN [15] fit the shape parameters of
3DMM and get a complete identity-preserving normalization results by filling
the invisible region naturally. But it is based on 68 landmarks detection, where
performance may drop due to unprecise localization. LFW3D [16] employed a
generic 3D face model to “frontalize” non-frontal images and synthesized the
occlusion part based on face symmetry with occlusion degree estimation. But
the lighting conditions of output is not consistent with input face when lighting
on both sides of face are different and unnatural results will be produced.

In this paper, we propose a continuous face pose normalization method which
is identity-preserving and produces natural results in terms of illumination con-
dition, based on only five fiducial landmarks. First, a generic 3D face model is
aligned to the input face image based on the detected five landmarks. Then the
face contour is detected for purpose of accurately estimating the self-occlusion
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Fig. 1. Visual illustration of proposed pose normalization method. (Color figure online)

part. We can get a “raw” frontalization result by rendering the appearance-
assigned 3D mesh at frontal pose with self-occlusion part unfilled (Sect. 2). In
order to fill the invisible part naturally, we apply Quotient Image [17] as a face
symmetrical feature which is robust to illumination. After estimating lighting
parameters and making use of Quotient Image, natural normalization result
is obtained where the self-occlusion part is filled with keeping the illumina-
tion conditions of input face (Sect. 3). Large scale face recognition experiments
on LFW [3] and MultiPIE [2] achieve comparative results with state-of-the-art
methods, verifying the effectiveness of proposed method (Sect. 4). The overall
procedure of proposed method is shown in Fig. 1.

The advantage of proposed method is that the whole procedure does not
depend on any specific training data and can be generalized well in unconstrained
setting. Based on only five fiducial landmarks, proposed method is very suitable
for practical applications.

2 “Raw” Frontalization

In this part, we will describe the “raw” frontalization process in detail. Inspired
by the previous work [14,16] of using single 3D reference model to make pose
normalization, we emphasize on keeping the appearance of input face rather
than keeping its shape because the shapes produced from different pose images
of the same identity are not guaranteed to be similar. Our target is to obtain
highly aligned normalization results for better comparison between different face
images.

Given a query image, five stable facial landmarks are located automatically
or manually (see the blue ‘+’ in Fig. 1(b)). The five fiducial landmarks in the
3D generic reference model (see Fig. 1(c)) have full correspondence with the
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landmarks of the query image. A 3D-to-2D projection matrix T is fitted using
generalized least squares solution to the linear system for least square residual:

VQ−2d ∼ VR−3dT (1)

where VQ−2d is a 5 × 2 matrix with each row representing the (x, y) coordinates
of Query-2d landmarks. VR−3d is a 5 × 4 matrix with each row representing the
(x, y, z, 1) coordinates of Reference-3d landmarks where the fourth component 1
is for translation.

The underlying assumption is that sparse correspondence (five points corre-
spondence) is able to represent dense correspondence of face vertices for the rea-
son that human face can be roughly considered as a rigid structure. Although this
assumption can not be strictly satisfied, highly aligned results can be obtained by
this way. With projection matrix T , all vertices of reference model are projected
onto the query image (see Fig. 1(d)) and the intensities of projected positions are
assigned to the corresponding vertices by bi-linear interpolation. By rendering
the appearance-assigned reference model at frontal pose, we can obtain an initial
frontalization result.

When the landmarks do not include face contour, e.g., the five landmarks
we used, the problem that the semantic positions of face contour landmarks
changes from pose to pose can be avoided. In addition, some previous works,
e.g., [14,15], are based on dozens of landmarks and detecting them accurately
for profile faces will be difficult because of severe self-occlusion. With using that
five stable landmarks, the ranges that face recognition system can handle with
will be extended largely.

2.1 Face Borderline Detection for Self-occlusion Region Estimation

As face deviates from frontal to profile, some regions become invisible due to self-
occlusion and it is considered as kind of information loss. Inaccurately estimation
of invisible region position will lead to unnatural results because unwanted tex-
ture, such as background texture may be introduced to face region. In [14,18],
Z-Buffer [19] is applied to estimate the visibility of each vertex. The idea is that
the visibility condition of aligned 3D model approximates the visibility condi-
tion of the query face. But when the facial shape of query face differs from
the generic face shape largely, the estimation will be inaccurate and introduce
unwanted texture.

Face borderline is the boundary that separates visible texture and invisible
texture. So face borderline detection facilitate accurate estimation of invisible
region. Example comparison of results from Z-Buffer and borderline detection is
shown in Fig. 2.

In [14], face borderline detection is formulated as finding a curve running from
the top row to the bottom row of a certain rectangle with target of maximize
edge strength and smoothness. The smoothness is constrained that the difference
between adjacent row is within one pixel. But the objection function with only
edge strength is too simple and it would fail with complex background texture
in unconstrained environment.
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Fig. 2. Comparison of visibility detection from Z-Buffer and borderline detection.
(a) Example input image from MultiPIE. (b) Aligned 3D model on input image. The
texture on the left side of true borderline (green line) in Z-Buffer method is consid-
ered to be visible while actually not. (c) Results of visibility estimation of Z-Buffer.
Black pixels indicates invisible. Red ellipse marks the unwanted background texture.
(d) Results of visibility estimation using borderline detection which is more accurate.
(Color figure online)

We use the information of borderline of projected 3D model and extend the
object function in [14] to conduct a robust detection. After aligning the generic
reference model into the query image, we can easily detect the borderline of
aligned 3D model, which can constrain a certain borderline search region (see
the red box in Fig. 3). The gradient magnitude is defined as

g(I) = | ∂

∂x
I| + | ∂

∂y
I| (2)

I is the search region of the query image. This magnitude is subtracted and
divided by the mean and variance of itself for normalization. Since the direction
of borderline are close to vertical, in order to reduce imposters, those pixels with
large ratio of vertical gradient to horizontal gradient will not be saved.

Fig. 3. Similarity of found curve and projected borderline. (Color figure online)

With the borderline of projected 3D model, we introduce the term of sim-
ilarity between found curve and projected borderline. For each pixel in search
region, we calculate its tangential direction through its vertical and horizontal
gradient (the blue arrow in Fig. 3), represented as Ti(x, y). For the projected
3D model borderline, the tangential direction of row y can also be calculated
(the purple arrow in Fig. 3), represented as Tr(y). The similarity of direction
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Ti(x, y) at pixel (x, y) to projected 3D model borderline is calculated as cosine
similarity,

s(x, y) =
Ti(x, y) · Tr(y)

‖ Ti(x, y) ‖‖ Tr(y) ‖ (3)

The basic idea is that the found curve should share a similar curve shape to
the projected 3D borderline. The total optimization problem can be defined as

max
{xi}

∑

i

g(xi, yi) + λ
∑

i

s(xi, yi) (4)

with constraint that xi−1 and xi has to be within one pixel. λ is a parameter
that balances the importance of gradient magnitude and the importance of curve
shape similarity, which is set to 5 in our implementation. This optimization can
be solved by dynamic programming and examples of found curves are shown in
Fig. 4. The found face contour is back-transformed to the frontal 3D reference
model through matrix T−1 and we can get a rather accurate visible region mask
as our “raw” frontalization result (see Figs. 1(e) and 2(d)). It is noted that the
visibility of nose region is estimated using Z-Buffer method [19].

Fig. 4. Examples of face borderline detection from LFW database.

3 Self-occlusion Region Filling

If the yaw angle of face is too large, some face regions become invisible due to
self-occlusion. In order to obtain consistent frontalization result for completely
texture comparison, the self-occlusion region should be filled naturally. Asthana
et al. [14] leaves the invisible region unfilled and can not produce a consistent
result. Ding et al. [18] use mirrored pixels which would produce incoherent face
texture especially when the illumination conditions on both sides of face are
largely different. The recent work, LFW3D [16] combines mirrored pixels with
occlusion degree estimation but still suffers the illumination inconsistence prob-
lem. The self-occlusion problem is kind of information loss and the basic idea is
to use face symmetry. In order to keep the illumination condition of input image,
we are driven to find a feature that is not sensitive to illumination and satisfy
face symmetry condition.
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Quotient Image [17] is essentially the ratio of surface reflectance (gray-level)
of an object against another object. For example, Caucasian face commonly has
higher surface reflectance than Black people face and so has higher value of
Quotient Image. Quotient Image feature is only relative to surface reflectance
and is insensitive to illumination. It also satisfy face symmetry condition which
is suitable for filling the self-occlusion region. We first briefly review the Quotient
Image.

3.1 Quotient Image

Face, as a class of object, can be considered as Lambertian Surface with a reflec-
tion function: ρ(u, v)n(u, v)T s, where 0 ≤ ρ(u, v) ≤ 1 is the surface reflectance
(gray-level) associated with point u, v in the image, n(u, v) is the surface normal
direction associated with point u, v in the image, and s is the (white) light source
direction (point light source) and whose magnitude is the light source intensity.

In [17], the concept Ideal Class of Object, i.e., objects that have same shape
but differ in surface albedo is defined. Under this assumption, the Quotient Image
Qy(u, v) of face y against face a is defined:

Qy(u, v) =
ρy(u, v)
ρa(u, v)

(5)

where u, v range over the image. Thus, Qy depends only on the relative surface
texture information and is independent of illumination.

A bootstrap set containing N (N is small) identities under M unknown
independent illumination (totally M × N images) is adopted. Qy of a input
image Y (u, v) can be calculated as

Qy(u, v) =
Y (u, v)

∑M
j=1 Āj(u, v)xj

(6)

where Āj(u, v) is the average of images under illumination j in the bootstrap
set and xj is linear combination coefficient which can be determined by the
bootstrap set images and the input image Y (u, v).

Fig. 5. Example bootstrap images from one identity. The illumination ids are marked
as 00−09 in the first row, 10−19 in the second row.
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3.2 Illumination Consistence Filling for Self-occlusion Region

We use YUV color space instead of RGB because Y is gray-level and it is inde-
pendent of the other two channels. We fill the invisible region in Y channels
using Quotient Image and combine directly symmetrical UV channels texture to
get the final RGB result.

Our bootstrap set is formed by the frontal images from 12 identities under
20 lighting conditions from session one in MultiPIE [2] database. The selection
of identities hardly affects final result [17]. Example bootstrap set images (gray
level) from one identity is shown in Fig. 5.

For the “raw” frontalization result, we have the visible region mask, repre-
senting the valid texture, which can be used to estimate Quotient Image and
lighting condition. We mask all the images in the bootstrap set using the visible
mask of the query image and estimate Quotient Image on valid texture as well
as lighting coefficient xj , which can be represented as:

Qy−mask(u, v) =
Ymask(u, v)

∑M
j=1 Āj−mask(u, v)xj

(7)

Qy−mask denotes Quotient Image of incomplete frontalization result. Ymask

denotes “raw” frontalization result. We make symmetry of the visible side and
get Qy−sym, which is blended with Qy−mask smoothly using poisson editing [20]
mentioned in [15] and finally we get Qy−full. Since we have estimating lighting
coefficient xj to represent lighting conditions, we combine Āj−full and xj to get
Yfull, represented as:

Yfull(u, v) = Qy−full(u, v) ·
M∑

j=1

Āj−full(u, v)xj (8)

The basic idea of our filling is that we estimate lighting conditions from
incomplete valid texture and use it as global representation. As we mentioned
before, UV channels of invisible region is filled by directly mirrored pixels and
we can get colored frontalization result by back transforming YUV space into
RGB space. The ability of keeping illumination consistence is better viewed in

Algorithm 1. Invisible Region Filling
Input: “Raw” frontalization result, bootstrap set images
Output: Full frontalization result
1: Mask bootstrap set images with same mask of “Raw” frontalization result.
2: Solve Qy−mask and light coefficient xj(1 ≤ j ≤ 20) according to Eq. 7.
3: Mirror Qy−mask and get Qy−sym. Blend Qy−sym into Qy−mask smoothly using

poisson editing and get Qy−full.
4: Compute Yfull by Qy−full, xj and full bootstrap set images according to Eq. 8.
5: Mirror UV channels and back transform to RGB space. Adding background texture

using affine transformation and get full frontalization result.
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Fig. 6. Process of self-occlusion part filling. The images from 3 identities of 6 lightings
in the bootstrap set are shown for convenience. There are actually 12 identities and 20
lightings.

Fig. 7. Example frontalization results from (a) LFW and (b) MultiPIE (pose variation
from −45◦ to +45◦ in step of 15◦). First Row: Input images. Second Row: Results of
LFW3D [16]. Third Row: Results of Proposed Method. Our results keep illumination
consistence and produce less artifacts for accurate borderline detection and smooth
filling.
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gray result. With adding background texture using affine transformation in [15],
a complete frontalization is generated. Figure 6 demonstrates process of self-
occlusion part filling, which is also summarized in the following algorithm block.
Example frontalization results from LFW and MultiPIE are shown in Fig. 7.

4 Experiments and Results

In this section, we evaluate the performance of proposed method on LFW
and MultiPIE databases for face verification and face identification settings
respectively.

4.1 Face Verification on LFW

Labeled Faces in the Wild (LFW) [3] is the most commonly used database
for unconstrained face recognition this years. LFW contains 13233 face images
of 5749 persons collected from Internet with large variations including pose,
age, illumination, expression, resolution, etc. We report our results following
the “View 2” setting which defines 10 disjoint subsets of image pairs for cross
validation. Each subset contains 300 matched pairs and 300 mismatched pairs.
We follow the “Image-Restricted, Label-Free Outside Data” protocol and outside
data includes BFM [21] as 3D reference model and frontal, multiple illumination
facial images from MultiPIE [2] as bootstrap set images in Quotient Image.

For an input image, we frontalized it with invisible region filling when the
estimated yaw angle is larger than 13◦. We compare our method with two state-
of-the-art method in terms of 3D face frontalization, HPEN [15] and LFW3D
[16]. High dimensional LBP (HD-LBP) [22] is extracted on HPEN and proposed
method for comparison. The images released by LFW3D are 90 ∗ 90 pixels only
containing face region, which are not suitable for HD-LBP extraction. So we
just extract LBP features on LFW3D and proposed method for comparison.
Similarity metric learning (Sub-SML) [23] is adopted to boost face verification
performance.

In order to discover how much the face verification performance could be
improved by using proposed face frontalization method, we extract LBP on
LFW-a [24] and HD-LBP on original LFW images and apply Sub-SML for
comparison.

Results and Analysis. Table 1 shows the verification performance on LFW
of different methods and Fig. 8(a) shows corresponding ROC curves. We first
show the result of directly extracting LBP or HD-LBP with using Sub-SML,
which achieves 83.92% and 88.78% respectively. With adding proposed method,
we boost the performance to 88.82% and 91.50%, an improvement of 4.90% and
2.72% respectively. The improvement on feature HD-LBP is smaller because HD-
LBP is already an excellent and expressive feature. These improvements come
from our explicitly frontalization with natural, consistent results generated for
directly texture comparison.
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Table 1. Verification performance on LFW give by mean accuracy and standard error
under image restricted, label-free outside data protocol.

Methods Accuracy (µ̄ ± SE)

LBP+Sub-SML [23] 0.8392 ± 0.0065

HD-LBP+Sub-SML 0.8878 ± 0.0046

LFW3D [16]+LBP+Sub-SML 0.8818 ± 0.0047

OURS+LBP+Sub-SML 0.8882 ± 0.0041

HPEN [15]+HD-LBP+Sub-SML 0.9152 ± 0.0037

OURS+HD-LBP+Sub-SML 0.9150 ± 0.0058
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Ours+LBP+Sub−SML
LFW3D+LBP+Sub−SML

(a) (b)

Fig. 8. (a) ROC curves on LFW under image restricted, label-free outside data proto-
col. (b) Mean faces by averaging corresponding multiple images of four subjects from
LFW. First Row: Deep-Funneled [25], Second Row: LFW3D [16], Third Row: Proposed
Method.

With same condition of using LBP with Sub-SML, proposed method outper-
forms LFW3D by 0.64% since we accurately estimate the self-occlusion region
and fill it smoothly with keeping illumination consistence, resulting in less arti-
facts than LFW3D. Under the setting of using HD-LBP with Sub-SML, we
achieve 91.50%, nearly the same performance as HPEN. It is noticed that HPEN
utilizes 68 facial landmarks for shape fitting along with expression normalization.
Bad face normalization result may occur due to un-precise 68 landmarks local-
ization under large pose. Our method adopts five stable landmarks which are
easier to detect even under large pose, indicating the simpleness and superiority
of proposed method.

Qualitative Result. LFW3D [16] shows how well the frontalization method
have preserved the texture of input identity by showing mean faces of several
subjects. We follow this qualitative experiment and results are shown in Fig. 8(b).
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It can be seen that the details around the eyes and mouth are better preserved
and more consistent in our method, compared with the other two methods.

4.2 Face Identification Across Pose on MultiPIE

MultiPIE contains 754,204 images of 337 identities, where each identity has
images captured under controlled environment with 15 poses and 20 illumination
in four sessions during different periods, supporting development of algorithms
for face recognition across pose, illumination and expression. A common setting
for face recognition across pose, proposed in [5,14], is used for evaluation. This
setting adopts images with different poses with neutral illumination marked as
ID 07. The first 200 identities in all the four sessions are used for training and
remaining 137 identities for test. During test, one frontal image of each identity
from the earliest session in the test set is selected as gallery. The remaining
images from −45◦ to +45◦ except 0◦ are selected as probes. This setting evaluates
recognition robustness affected by pose, as well as other real-world factors, such
as appearance changes by glasses or mustache.

For all gallery images and each probe image, we make frontalization and
invisible region filling is used when estimated yaw angle is larger than 13◦, the
same as operation on LFW. HD-LBP is adopted as feature extractor. For better
comparison, we apply several classifiers, including PCA, LDA and LRA [26].
PCA and LDA are trained on frontalized images from the first 200 identities.
LRA is directly trained on frontalized gallery images by mapping gallery faces
to equidistant space targets which could enhance the discrimination between
similar faces.

We compare our method with several pose normalization methods, includ-
ing two 3D methods, Asthana11 [14] and HPEN [15], and three 2D methods,
MDF [27], FIP [7] and MVP [9], the latter two are representative deep learning
methods. Rank-1 identification rates are reported as results.

Table 2. Rank-1 identification rates (Percentage) on MultiPIE across pose. The first
and the second highest performance are in Bold.

Methods −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ Avg.

Asthana11 [14] 74.1 91 95.7 95.7 89.5 74.8 86.9

HPEN+PCA [15] 88.5 95.4 97.2 98.0 95.7 89.0 94.0

HPEN+LDA [15] 97.4 99.5 99.5 99.7 99.0 96.7 98.6

MDF [27] 93 98.7 99.7 99.7 98.3 93.6 97.2

FIP [7]+LDA 95.6 98.5 100 99.3 98.5 97.8 98.3

MVP [9] 93.4 100 100 100 99.3 95.6 98.1

OURS+PCA 89.3 97.3 97.3 97.7 94.7 86.0 93.7

OURS+LDA 98.0 99.3 99.3 99.0 99.3 96.3 98.5

OURS+LRA [26] 98.7 99.7 100 99.7 100 98.7 99.5
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Results and Analysis. Table 2 presents recognition results on MultiPIE across
pose. Asthana11 exploited 3D information learnt from 200 subjects of training
set and achieved mean accuracy of about 87%. The shortage is that self-occlusion
part and background were not filled. MDF [27] transformed a non-frontal face to
a frontal one by face pixels rearrangement, using morphable displacement field
learnt from 3D face models and achieved competitive result. Proposed method
with LDA outperform above two methods possibly for the natural filling of self-
occlusion region and background. Similar to the experiment on LFW, proposed
method with PCA as well as LDA achieve very close results to HPEN, indicating
the effectiveness of our accurate invisible region estimation and natural filling, by
using just five stable landmarks. With applying LRA classifier, we further boost
our performance to 99.5% and outperform other methods, especially in large
angles (±45◦). As we can see, FIP and MVP are two representative deep learning
methods. They achieve competitive results with taking advantage of same pose
distribution of training data and test data. In contrast, proposed method does
not utilize any database-dependent information and would generalize well across
continuous pose.

4.3 Further Discussion on Illumination Normalization

We apply light coefficients estimated from incomplete texture as global light
representation to preserve lighting condition of input face, which inspires an
idea of illumination normalization, by applying light coefficients of canonical
lighting condition. Concretely, 20 lighting conditions exists in the bootstrap set
marked as id 00−19 (shown in Fig. 5), among which id 07 represents canonical
lighting condition. We set xj = 1 (j = 8) and xj = 0 (j = 1 : 7, 9 : 19) in Eq. 8
and get illumination normalization result. Previous illumination normalization
methods, such as WA [28] and DCT [29] mainly focus on frontal face while our
idea provide a simple, unify framework for illumination normalization after pose
normalization.

We perform face identification experiments across pose and illumination
variations on MultiPIE. Images of 249 ids from session one, covering 7 poses
(−45◦ to + 45◦) and 20 illumination are used. The first 100 ids are for train-
ing, and the remaining 149 ids for test. The frontal image under illumination
marked as ID 07 of each identity in the test set is chosen as the gallery. The
remaining images from −45◦ to + 45◦ except 0◦ (illumination ID 07 excluded)
are selected as probes. We examine the performance of just Pose Normalization
(briefly denoted as PN) and both Pose and Illumination Normalization (briefly
denoted as PIN). Feature extractor is LBP and classifiers PCA, LDA and LRA
[26] are tested as previous experiments in Sect. 4.2.

Results and Analysis. From Table 3 we can see that, explicitly illumina-
tion normalization largely improve total performance towards all classifiers, from
45.4% to 67.8% in PCA, from 63.1% to 75.5% in LDA, from 77.0% to 86.5%
in LRA, verifying the effectiveness of proposed idea in solving both pose and
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Table 3. Rank-1 Identification Rates (Percentage) on MultiPIE Across Illumination.
Recognition rate under one illumination condition is the averaged result of 6 possible
poses. Pose Normalization is briefly denoted as PN. Pose and Illumination Normaliza-
tion is briefly denoted as PIN.

Methods 00 01 02 03 04 05 06 08 09 10

PN+PCA 30.2 20.1 24.6 32.3 48.8 67.8 79.4 79.2 71.0 50.8

PIN+PCA 48.1 35.1 45.3 55.8 68.7 81.3 89.0 88.5 84.3 71.3

PN+LDA 58.7 37.9 46.9 57.3 71.0 84.9 91.7 93.5 87.4 78.3

PIN+LDA 65.1 47.4 58.7 71.4 82.0 92.4 96.9 96.4 92.6 82.0

PN+LRA 64.9 44.1 51.9 67.3 87.3 96.3 99.5 99.7 97.1 88.8

PIN+LRA 79.6 59.3 73.2 85.0 94.9 97.7 99.3 99.0 98.3 94.5

11 12 13 14 15 16 17 18 19 Avg.

PN+PCA 34.1 26.5 20.3 43.4 51.1 57.5 51.2 43.4 31.4 45.4

PIN+PCA 57.7 44.0 32.0 64.3 70.9 80.8 71.0 63.1 46.9 67.8

PN+LDA 63.5 47.6 39.0 70.0 74.6 81.3 74.7 71.6 58.4 63.1

PIN+LDA 69.0 56.0 47.5 80.3 84.9 89.5 82.1 76.0 64.4 75.5

PN+LRA 67.8 51.7 46.4 81.1 88.3 94.2 89.8 82.9 64.4 77.0

PIN+LRA 83.3 70.4 59.5 91.2 95.1 97.8 95.0 90.8 80.5 86.5

illumination problem in such a simple way. We can observe that performance
of some lighting condition are relatively low, e.g., 01, 02, 12, 13 and also the
improvement from PN to PIN under these conditions are relatively large. We
have selected −45◦ for demonstration. The 5 lowest performance light condi-
tions and 5 highest performance ones in PN+LRA are shown in Fig. 9. In pose
normalization results (third row), large illumination variance (strong specular
light or dark ambient light) exists in the former group and leads to uneven,
unsmooth face texture, resulting in low performance. From another perspective,
under former group, our illumination normalization can largely reduce the light-
ing difference between probes and galleries and thus boost the performance with
large proportion. The illumination conditions of latter group are close to gallery
and thus achieve higher performance.

4.4 Discussion and Limitations

The normalization process takes about 1.5 s, running on a 2.8 Ghz CPU with
matlab code. The bottleneck part is face and background rendering, which takes
about 0.8 s and can be accelerated by C++.

In the process of invisible region filling, we use Quotient Image as a feature
insensitive to illumination, satisfying face symmetry. The assumption of Quotient
Image is Lambertian reflectance surface. When strong specular light occur, it can
not model very well and would generate unnatural results. Also, it is hard to
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(a) 5 lowest performance light conditions (b) 5 highest performance light conditions

Fig. 9. Example results from various lighting of −45◦ from MultiPIE. First Row: Input
images. Second Row: “Raw” frontalization results. Third Row: Pose normalization
result. Fourth Row: Pose and Illumination Normalization results. (Color figure online)

eliminate the presence of cast shadow which leads to obvious artifacts when
applying face symmetry (see the group in red box in Fig. 9(b)).

5 Conclusion

In this paper, considering the pose factor in unconstrained face recognition, we
propose a continuous identity-preserving face normalization method which pro-
duces natural results in terms of illumination condition. With face borderline
detection, the self-occlusion part is accurately detected and natural result is
obtained by applying Quotient Image as a face symmetrical feature which is
robust to illumination. We also provide a simple idea for illumination normal-
ization in our framework. Our method achieve very competitive performance on
LFW and MultiPIE datasets. With using only five stable landmarks and advan-
tage of being database independent, our work is suitable for practical applica-
tions. In the future, we will focus on more sophisticated illumination modeling
method to handle with strong specular light and cast shadow problem.
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