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Preface

Welcome to the 2016 edition of the Asian Conference on Computer Vision in Taipei.
ACCV 2016 received a total number of 590 submissions, of which 479 papers went
through a review process after excluding papers rejected without review because of
violation of the ACCV submission guidelines or being withdrawn before review. The
papers were submitted from diverse regions with 69% from Asia, 19% from Europe,
and 12% from North America.

The program chairs assembled a geographically diverse team of 39 area chairs who
handled nine to 15 papers each. Area chairs were selected to provide a broad range of
expertise, to balance junior and senior members, and to represent a variety of geographical
locations. Area chairs recommended reviewers for papers, and each paper received at least
three reviews from the 631 reviewers who participated in the process. Paper decisions
were finalized at an area chair meeting held in Taipei during August 13–14, 2016. At this
meeting, the area chairs worked in threes to reach collective decisions about acceptance,
and in panels of nine or 12 to decide on the oral/poster distinction. The total number of
papers accepted was 143 (an overall acceptance rate of 24%). Of these, 33 were selected
for oral presentations and 110 were selected for poster presentations.

We wish to thank all members of the local arrangements team for helping us run the
area chair meeting smoothly. We also wish to extend our immense gratitude to the area
chairs and reviewers for their generous participation in the process. The conference
would not have been possible without this huge voluntary investment of time and
effort. We acknowledge particularly the contribution of 29 reviewers designated as
“Outstanding Reviewers” who were nominated by the area chairs and program chairs
for having provided a large number of helpful, high-quality reviews. Last but not the
least, we would like to show our deepest gratitude to all of the emergency reviewers
who kindly responded to our last-minute request and provided thorough reviews for
papers with missing reviews. Finally, we wish all the attendees a highly simulating,
informative, and enjoyable conference.

January 2017 Shang-Hong Lai
Vincent Lepetit

Ko Nishino
Yoichi Sato
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Sparse Code Filtering for Action Pattern Mining

Wei Wang1(B), Yan Yan1, Liqiang Nie2, Luming Zhang4, Stefan Winkler3,
and Nicu Sebe1

1 University of Trento, Trento, Italy
wei.wang@unitn.it

2 National University of Singapore, Singapore, Singapore
3 Advanced Digital Sciences Center, Singapore, Singapore

4 Hefei University of Technology, Hefei, China

Abstract. Action recognition has received increasing attention during
the last decade. Various approaches have been proposed to encode the
videos that contain actions, among which self-similarity matrices (SSMs)
have shown very good performance by encoding the dynamics of the
video. However, SSMs become sensitive when there is a very large view
change. In this paper, we tackle the multi-view action recognition prob-
lem by proposing a sparse code filtering (SCF) framework which can mine
the action patterns. First, a class-wise sparse coding method is proposed
to make the sparse codes of the between-class data lie close by. Then we
integrate the classifiers and the class-wise sparse coding process into a
collaborative filtering (CF) framework to mine the discriminative sparse
codes and classifiers jointly. The experimental results on several public
multi-view action recognition datasets demonstrate that the presented
SCF framework outperforms other state-of-the-art methods.

1 Introduction

Action recognition has wide applications, such as human-computer interactive
games, search engines, and online video surveillance systems. Videos can be
summarized by labels if the actions can be annotated automatically. Then a
search engine can make better recommendations (e.g., finding dunks in basket-
ball games). Usually, the same action observed from different viewpoints has
considerable differences. Therefore, an efficient method to extract robust view-
invariant features is essential for multi-view action recognition. The features can
be roughly grouped into two types, the 2D features [1] and 3D features [2].

Many works employed 3D models to tackle the multi-view action recogni-
tion problem. First, the geometric transitions are utilized to obtain projections
across different viewpoints. Then the observations are compared with the pro-
jections to find the viewpoint that best matches the observations [3]. However,
how to accurately find body joints to build the 3D model remains an open
problem. Besides, the built model has too many degree-of-freedom parameters,
which must be carefully calibrated. Moreover, the model requires high resolu-
tion videos to locate body joints and sometimes may require mocap data [4]. An
alternative solution for multi-view action recognition is to design view-invariant

c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-54184-6 1



4 W. Wang et al.

2D features. Farhadi et al. [5] proposed split-based representations by cluster-
ing the similar video frames into splits. The split-based representations can be
transferred among different viewpoints as the change dynamics of the multi-view
videos are the same. Similarly, Junejo et al. [6] employed SSMs to encode the
frame-to-frame relative changes. However, the SSMs are robust to view changes
only to a certain extent.

In this paper, to tackle the multi-view problem, we propose a class-wise
sparse coding approach to maintain label consistency. We employ SSM feature
to represent each video. The sparse coding learns a dictionary from SSM rep-
resentations of the video collections. The dictionary consists of typical action
patterns, and each video is encoded to a code as a linear combination of action
patterns. The label consistency is achieved by penalizing the within class vari-
ance of the codes. Thus, the codes of the within-class videos will lie close by,
and accordingly, only the view-invariant action patterns will be learned while

Fig. 1. Overview of sparse code filtering: (top) Class-wise sparse coding. (middle) Col-
laborative filtering. (bottom right) Sparse code filtering framework. (bottom left) Label
prediction.
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the view-dependent information will be suppressed. Then we rely on the codes
as video features to do action classification.

To further improve the discriminative power of the codes, we integrate the
class-wise sparse coding and classifiers training process into a unified CF frame-
work as shown in Fig. 1. This is because CF can link the dictionary and classifiers
together which can optimize them jointly. The dictionary can be adjusted for the
classifiers while the classifiers can be adjusted for the dictionary collaboratively.
In this way, the learned action patterns in the dictionary can be more discrimina-
tive with respect to different actions. Thus, we derive a novel sparse code filtering
framework. In the sparse code filtering scheme, each action class is regarded as
an user. For the classical collaborative filtering, the entry in the rating matrix
(e.g., ranges from 0 to 5) describes how much a user likes the product. In our
scheme, however, the entry in the rating matrix, ranging from 0 to 1, represents
the probability that a video belongs to an action class. The sparse code filtering
framework provides a trade-off between the dictionary reconstruction error and
the classification error which derive from the class-wise sparse coding and the
logistic classifiers respectively.

To summarize, our work makes the following contributions: (i) We propose a
class-wise sparse coding approach to maintain the label consistency by encour-
aging the sparse codes of the multi-view videos within the same action class to
lie close by. (ii) We propose a novel sparse code filtering framework in which
the classifiers and dictionary can be optimized collaboratively. Thus, the view-
invariant and class-discriminant sparse codes can be learned. (iii) The proposed
sparse code filtering framework has a good generalization property and can be
applied to other pattern recognition tasks.

2 Related Work

2.1 Action Recognition

Many 3D and 2D based approaches are proposed for action recognition. Through
reconstructing 3D human bodies, features can be adapted across different view-
points through geometric transformation. Weinland et al. [7] projected 3D poses
into 2D to obtain arbitrary views and employed an exemplar-based HMM to
model view transformations. A similar idea is proposed in [8] which employed
CRF instead of HMM. Except for designing the 3D models, some works focus on
designing view-invariant classifiers, such as linear discriminant analysis [9] and
latent multi-task learning [10]. Matikainen et al. [11] suggested training models
for all the views and then utilizing recommender system to find the suitable
model. But the approach in [11] requires huge amount of training samples from
different viewpoints. Recently, the recurrent neural network is also applied for
the action recognition task [12] as it is good at dealing with signal sequences with
various lengths [13,14]. However, these methods can only tackle the single-view
action recognition task.
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Fig. 2. SSM features extracted from different views.

To achieve view invariance in 2D models, many works try to extract view-
invariant features. Farhadi and Tabrizi [5] proposed a split-based representa-
tion by clustering video frames into splits. Then videos can be represented by
the statistics of the splits, and the split transfer mapping across views can be
learned. Based on 2D features, the transfer learning model requires no 3D human
reconstructions. Recently, a more robust view-invariant descriptor, self-similarity
matrix (SSM) [6] has been proposed. It is relatively stable over the viewpoint
changes compared with other features [15]. Similarly to [5], this descriptor
encodes the relative changes between pairs of frames, and completely discards
the absolute features of each single frame. SSMs can be calculated using different
low-level features which have similar properties.

Figure 2 shows the examples from the action videos and their corresponding
SSM features. From Fig. 2, we can observe that the SSM features from the 4 side
cameras are visually similar, while the feature from camera 5 (on the ceiling)
is quite different. Yan et al. [9] revealed that SSMs became less reliable when
there was a very large view change. Based on SSMs, Joint Self-Similarity Volume
(SSV) was introduced by [16] which utilized Joint Recurrence Plot (JRP) theory
to extend SSM. But different from [15], the SSM defined in [16] is the recurrence-
plot matrix of the vector representation of each single frame.

2.2 Sparse Coding

Sparse coding, also known as dictionary learning, aims to construct efficient
representations of data as a combination of a few typical patterns (dictionary
bases). Wang et al. [17,18] used the sparse coding for attribute detection. Raina
et al. [19] showed that sparse coding significantly improved classification per-
formance. [20] employed sparse coding for action recognition from depth maps.
However, their approach is restricted to the videos which can provide depth
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information. Qiu et al. [21] selected a set of more compact and discriminative
bases from the dictionary using Gaussian Process. Guha and Ward [22] investi-
gated different sparse coding strategies, namely, an overall dictionary for all the
classes, different dictionaries for each class, and their concatenation. But view
changes were not considered. Zheng and Jiang [23] proposed view-specific sparse
coding. But sufficient training data from each viewpoint are required. Besides,
the label information is discarded. Thus, it can not preserve label consistency.
In our work, we add within-class variance into the loss function to preserve the
label-consistency. The learned class-wise dictionary can be considered as a more
label-smooth feature space compared with the original video feature space.

2.3 Collaborative Filtering

Collaborative filtering is widely used in recommendation systems of commercial
websites, such as Amazon and eBay, to recommend products to their consumers.
The most attractive characteristic of CF is that it can learn a good set of features
automatically [24], which does not require hand-designed features. Taking the
movie recommendation system for example, each movie has its own features and
each user has its own specific feature preference weights. Given the movie-user
rating matrix, CF learn a good set of features for each movie and feature prefer-
ence weights for each user jointly. During the CF learning process, the features
will be adjusted for the feature preference weights for each user, and feature pref-
erence weights will also be adjusted for the features iteratively. Inspired by the
movie recommendation system, we employ a CF framework to learn class-wise
dictionary and classifiers jointly. Thus, the codes and classifiers can be adjusted
to better fit each other. The experimental results demonstrate the effectiveness
of our framework.

The rest of the paper is organized as follows. We propose the class-wise
dictionary learning approach in the Sect. 3. Section 4 presents our sparse code
filtering scheme. The experiments are described in Sect. 5. We conclude our paper
in Sect. 6.

3 Class-Wise Sparse Coding

The input of the sparse model is the descriptors for nv videos, where each video
is represented by a d-dimension vector xd. Let Xd×nv

be the matrix by stacking
the all the training video descriptors. In our model, xd is the SSM feature. The
outputs are the dictionary D and sparse codes C. The loss of the classical sparse
coding model, which considers reconstruction error and sparsity, is defined as:

L(X;D,C)=‖X − DC‖2F + α

nv∑

i=1

‖c(i)‖1 (1)

In Eq. 1, Dd×n represents the learned dictionary and each column vector in
the dictionary represents a typical action pattern, n is the number of typical
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patterns, Cn×nv
is the sparse code matrix, whose i-th column, c(i), is the sparse

code of sample i. l1-norm is a lasso constraint which encourages sparsity, and α
balances the reconstruction error and the sparsity penalty.

In order to mine the view-invariant patterns of the SSM feature, we propose a
class-wise sparse coding method to encourage the sparse codes of the multi-view
within-class videos to lie close by. The closeness is measured by the within-class
variance. Given the class labels of the training data, we try to reduce the within-
class variance during the learning process. The within-class variance is measured
by the Euclidean distance between the videos and their class center. The loss of
the class-wise sparse coding model is defined as follows,

L(X;D,C) + β

K∑

s=1

‖C(s)−C̄s‖2F (2)

The second term in Eq. 2 measures the within-class variance. This term
enforces the multi-view within-class videos to have similar sparse codes. K is
the number of action classes. C(s) represents a video collection. s is the class
index. Each column vector in C(s) is the sparse code of the video which belong
to action class s. Each column vector in C̄s is the mean of all the column vectors
in C(s). C̄s has the same size as C(s). β is the weight of within-class variance
penalty.

4 Sparse Code Filtering

4.1 Joint Action Learning

The input to our learning scheme is (1) the learned sparse codes for nv videos,
each represented as a n-dimension vector c(i)∈Rn, i = 1, 2, ..., nv. (2) the binary
action label matrix for all the videos, which is represented as Ynv×na

, na is the
number of actions. The item y(i,j), is either 1 or 0, which denotes whether or
not video i belongs to action class j.

We learn all action classifiers simultaneously in a multi-task learning setting,
where each task represents one action. The output is the parameter matrix
Θn×na

whose column vector θ(j) denotes the parameters of the classifier of
action j. In our model, we employ logistic regression classifiers. Given the sparse
code matrix and binary action label matrix (Cn×nv

,Ynv×na
), the loss function

is defined as:

L(C,Y;Θ)=
∑

i,j

log(1+exp((1−2y(i,j))(θ(j))T c(i))) (3)

Each action classifier has an tuple θ(j) whose element θ
(j)
k corresponds to

the weight of the sparse code which is tied to the k-th typical pattern in the
dictionary.
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4.2 Formulation of Sparse Code Filtering

Usually, the dictionary and classifiers are trained separately. Thus, there is no
guarantee that the learned patterns in the dictionary can serve the classification
task well. In order to mine the class-discriminative action patterns, we propose
a sparse code filtering (SCF) scheme. In our scheme, the prediction function is
logistic function whose output denotes the probability that a video belongs to an
action. Besides, the parameters are learned by minimizing both the dictionary
reconstruction error and classification error. Thus, the dictionary and classifiers
are optimized jointly. The learned sparse codes are expected to be view-invariant
and class-discriminative. By integrating all the tasks, we can obtain the following
loss function:

L(X,Y;D,C,Θ)=L(X;D,C)+γL(C,Y;Θ)+β

K∑

s=1

‖C(s)−C̄(s)‖2F+λ‖Θ‖2F (4)

In Eq. 4, γ balances the dictionary reconstruction error and the classification
error, the Frobenius norm of Θ is employed to prevent overfitting. By minimizing
the loss function, Eq. 4, a view-invariant and class-discriminative dictionary D,
and an action classification parameter matrix Θ are learned jointly.

Optimization. The input of the SCF framework is video descriptor matrix and
binary action label matrix: [X,Y]. The outputs are the dictionary, sparse codes,
and parameter matrix for the classifiers: [D,C,Θ]. We propose the following
algorithm (Algorithm 1) to solve the framework. When only one variable is left to
optimize and the rest are fixed, the problem becomes convex. Thus, we optimize
the variables alternatively by fixing the rest.

Initialization in Algorithm 1: we employ k-means clustering to find k centroids
as the bases in dictionary D0. Θ0 and C0 are set to 0.

The loop in Algorithm 1 consists of three parts:

1. Fix C, Θ, Optimize D. In Eq. (4), only the first term is related to D, and
it is a least square problem when the other parameters are fixed. By setting
the derivative of Eq. (4) equal to 0 with respect to D, we can obtain:

(DC − X)CT=0 ⇒ D=XCT (CCT )−1 (5)

Then we employ the following equation to update D:

D = XCT (CCT + λI)−1 (6)

λ is a small constant and it guarantees that the matrix CCT+λI is invertible
in case CCT is singular.



10 W. Wang et al.

Algorithm 1. Solution Structure
1: Initialization: D ← D0 , C ← C0 , Θ ← Θ0

2: repeat
3: fix D,Θ, update C:
4: for C(s) ∈ C do
5: ratio ← 1
6: while ratio > threshold do
7: run FISTA(modified)
8: update ratio
9: end while

10: end for
11: fix D,C, update Θ:
12: parallelgradientdescent
13: fix C,Θ, update D:
14: least − squaressolution
15: until converges

2. Fix D, C, Optimize Θ. When D & C are fixed, we employ the parallel
gradient descent method to tackle the problem. Since θ(j) are independent
from each other, we optimize them in parallel. The updating formula is as
follows:

θ(j) = θ(j) − δ
∂

∂θ(j)
L(X,Y;D,C,Θ) (7)

3. Fix D, Θ, Optimize C. Beck and Teboulle [25] proposed the Fast Iterative
Soft-Thresholding Algorithm (FISTA) to solve the classical dictionary learn-
ing problem. A soft-threshold step is incorporated into FISTA to guarantee
the sparseness of the solution. The complexity for the classical ISTA method
is O(1/k), in which k denotes the iteration times. FISTA converges in function
values as O(1/k2), which is much faster. FISTA optimizes c(i)∈C indepen-
dently. However, in our model, c(i) and c(j) within the same action class
depend on each other. Thus, c(i), c(j) must be updated jointly until all of
them converge. Thus, we decompose our objective function and modify the
original FISTA algorithm to tackle the decomposed sub-objectives.
In Eq. (4), the sparse code matrices with respect to different action classes
are independent. Thus, when updating C = [C(1), ...,C(K)], we decompose
the objective function into K sub-objectives, shown as follows:

min
C

K∑

s=1

L(C(s)) =
K∑

s=1

min
C(s)

L(C(s)) (8)

Thus, the original objective function is decomposed into K sub-objective func-
tions with respect to each action class. The following shows the details of the
deduction of decomposition of Eq. 4. The first two terms in Eq. 4 can be
reformulated as follows:
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{
L(X;D,C) =

∑K
s=1

(‖DC(s)−X(s)‖2+α‖C(s)‖1
)

L(C,Y;Θ) =
∑K

s=1

∑na

j=1 log(1+exp(1−2y(i,j))(θ(j))TC(s))
(9)

Putting the transformed terms from Eq. (9) back into the loss function Eq. (4),
we can obtain a new form of the objective function. Because D and Θ are
fixed, the term λ‖Θ‖2F becomes a constant. By removing the constant term,
we can obtain the loss function as Eq. (8) where

L(C(s)) = ‖DC(s)−X(s)‖2F+α‖C(s)‖1+β‖C(s)−C̄s‖2F

+ γ

na∑

j=1

log(1+exp(1 − 2y(i,j))(θ(j))TC(s))
(10)

The modified FISTA algorithm is applied to solve the sub-objective functions.
The details of the modified FISTA algorithm is as follows:
In the classical dictionary learning model, the sparse codes of training data are
independent from each other. Thus, each c can be optimized independently.
However, our new sub-objective needs to optimize a group of training data
jointly because these data have dependencies among each other as shown in
Eq. (10). For training data x(i)∈X(s) in the equation above, its sparse code
c(i) (c(i)∈C(s)) dependents on other c(k) (c(k)∈C(s)). We modify the classical
FISTA algorithm to optimize the sub-objectives jointly.
When update C(s), instead of updating c(i) independently, all c(i) ∈ C(s) are
updated simultaneously using the following form,

c(i) := c(i) − δ
∂L

∂c(i)
(11)

This updating procedure of C(s) will repeat until it converges. Then we apply
a soft-threshold step to set the entries in C(s) whose absolute value is less than
the threshold to 0. We repeat the process above until the whole algorithm
converges.

Label Prediction. As shown in Fig. 1, in the classical CF framework, when the
features of a new movie are given, its ratings by different users can be predicted
based on the movie features and the learned feature preference weights. The
basic underlying assumption of CF is that users will rate movies which share the
similar features with similar scores [26] as we assume that the preferences of the
users remain the same. Similarly, each action class can be regarded as one user,
and the action videos can be regarded as the movies. The label prediction for a
new video x consists of two steps: sparse coding and probability calculation.

c∗ = argc minL(x,D; c) (12)

label = argj max 1/
(
1 + exp((−θ(j))T · c∗)

)
(13)
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First, given the dictionary D, and video descriptor x which is the SSM fea-
ture, the sparse code c∗ of the new video is calculated by solving the classical
sparse coding model as shown in Eq. (12). Then the probability that the new
video belongs to action class j can be calculated. The action label is the one
which maximizes the probability as shown in Eq. (13).

5 Experiments and Results

5.1 Datasets

We evaluate our framework on three largest public multi-view action recogni-
tion datasets, as shown in Fig. 3, which are the IXMAS dataset [27], the NIX-
MAS dataset, and the OIXMAS dataset [28] in which the actions are partially
occluded. IXMAS dataset consists of 12 action classes, (e.g., check watch, cross
arms, scratch head, sit down, get up, turn around, walk, wave, punch, kick, point
and pick up). Each action is performed 3 times by 11 actors and is recorded by
5 cameras which observe the actions from 5 different viewpoints. The NIXMAS
dataset is recorded with different actors, cameras, and viewpoints, and about
2/3 of the videos have objects which partially occlude the actors. Overall, it
contains 1148 sequences.

5.2 Implementation Details

The sparse code filtering is based on SSM descriptors using HOG/HOF features
to describe each individual frame. Each video is represented by a 500-dimension
vector. Figure 2 shows an example from IXMAS dataset and the correspond-
ing extracted SSM feature. In our experiments, the dictionary size is set to

OIXMAS

NIXMAS

IXMAS

Fig. 3. Multi-view action recognition datasets.
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[600, 700, ..., 1000], and all regularization parameters α, β, γ, λ are tuned from
[10−3, 10−2, ..., 103].

We employ two settings for the experiment, which are multi-view setting
and cross-view setting. For the multi-view setting, we have access to the videos
from all the viewpoints for training, and use the standard experimental protocol
described in [29]: two-thirds and one-third split for training and testing. This
experimental protocol is widely used for action recognition. For the cross-view
setting, one camera view is missing in the training data and we train the model
using the data from other four camera views. Then we perform prediction on
the missing view.

5.3 Baselines

To evaluate the contribution of the class-wise sparse coding (CWSC), we put the
raw features and the codes into two classification scheme: (1) standard radial
basis kernel SVM [6] which learns each action classifiers separately, and (2) the
multi-task learning approach [9] which learns the action classifiers jointly. The
codes and the classifiers are learned separately. We name the two baselines which
take the codes as input as (3) CWSC+SVM, and (4) CWSC+MTL, and they are
employed as baselines. Then through the comparison between (CWSC+MTL)
and our SCF framework, we can observe the extra gain we obtained by training
the class-wise dictionary and classifiers jointly. (5) We also choose some other
action recognition baselines, such as [9,29,30].

5.4 Results

Multi-view Action Recognition. For the multi-view setting, we use the stan-
dard two-thirds and one-third split for training and testing. Table 1 shows the
mean action recognition accuracy of all the cameras using different approaches.

We observe that the baselines CWSC+SVM and CWSC+MTL outperform
SVM and MTL with raw features respectively. This indicates that the class-wise
sparse coding can help encode the view-invariant action patterns which preserve
the label consistency. From Table 1, we can also observe that our method has
the best performance. This is because our sparse code filtering scheme opti-
mizes the classifiers and dictionary jointly, and it helps learn a class-wise label-
discriminative dictionary. Figure 4 shows some qualitative results on IXMAS
dataset for our proposed SCF framework and multi-task learning approach for
multi-view action recognition.

Cross-View Action Recognition. Tables 2, 3 and 4 show the performances
of different approaches on IXMAS, OIXMAS, and NIXMAS dataset.

From Tables 2, 3 and 4, we can observe that our framework achieves better
performance compared with other baselines which shows the effectiveness of our
learned dictionary. It is also interesting to notice that the fifth camera always
has low action recognition accuracy regardless of the classification methods.



14 W. Wang et al.

Table 1. Multi-view action recognition accuracy of different approaches for 3 datasets.

Methods IXMAS OIXASM NIXMAS

SVM [6] 0.6425 0.4809 0.5680

CWSC+SVM 0.6537 0.5235 0.6026

MTL [9] 0.6883 0.5608 0.6163

CWSC+MTL 0.6889 0.6082 0.6228

Farhadi et al. [5] 0.5810 - -

Huang et al. [29] 0.5730 - -

Liu et al. [31] 0.7380 - -

Reddy et al. [32] 0.7260 - -

Li and Shah [30] 0.8120 - -

Baumann et al. [33] 0.8055 - -

Ashraf et al. [34] 0.8140 - -

SCF 0.8594 0.7803 0.8083

Sit
Down

Check 
Watch

Sparse Code Filtering Multi-task LearningAction

Fig. 4. Qualitative results on IXMAS dataset.

Table 2. Cross-view action recognition performance on the IXMAS dataset

Missing viewpoints

Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et al. [6] 0.6663 0.6554 0.6500 0.6243 0.4963 0.6185

CWSC+SVM 0.6880 0.6577 0.6701 0.6187 0.5110 0.6291

Yan et al. [9] 0.7554 0.7462 0.7710 0.6973 0.6332 0.7206

CWSC+MTL 0.7559 0.8257 0.8003 0.7759 0.6417 0.7599

SCF 0.8285 0.8322 0.8053 0.7941 0.7384 0.7997

One reasonable explanation is that the fifth camera is placed on the ceiling,
and the motion dynamics of different actions observed from this camera are
visually similar with each other.
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Table 3. Cross-view action recognition performance on the OIXMAS dataset

Missing viewpoints

Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et al. [6] 0.5639 0.6250 0.5472 0.4677 0.4423 0.5292

CWSC+SVM 0.5688 0.6477 0.6001 0.5087 0.4511 0.5553

Yan et al. [9] 0.5422 0.6540 0.5070 0.5171 0.4730 0.5387

CWSC+MTL 0.5535 0.6826 0.5366 0.5401 0.4867 0.5599

SCF 0.6080 0.6980 0.6573 0.6957 0.5850 0.6512

Table 4. Cross-view action recognition performance on the NIXMAS dataset

Missing viewpoints

Methods Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Avg

Junejo et al. [6] 0.6410 0.6532 0.5912 0.5924 0.5322 0.6020

CWSC+SVM 0.6759 0.6951 0.6226 0.6387 0.5560 0.6377

Yan et al. [9] 0.7170 0.6993 0.7542 0.6911 0.6792 0.7082

CWSC+MTL 0.7198 0.7391 0.7559 0.7176 0.6879 0.7240

SCF 0.8080 0.7980 0.7573 0.7357 0.7050 0.7608

5.5 Parameter Tuning

Figure 5 shows the sensitivity study of regularization parameters γ, α, β and
λ. In our model, γ balances the dictionary learning loss and the classification
loss, α balances the reconstruction error and the sparsity penalty, β provides
the trade-off between the dictionary reconstruction loss and intra-class variance
penalty, and λ is employed to prevent overfitting of the classifiers. The optimal
classification performance can be obtained when dictionary size is set to 800.
We observe that the performance changes little (within 0.0015) when we set
λ to the different values. So we focus on the other 3 parameter. As shown in
Fig. 5(a), when γ is fixed, the mean accuracy varies subtly along the axis of β.

Fig. 5. Sensitivity study of different regularization parameters on IXMAS dataset.
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Fig. 6. Convergence of the sparse code filtering algorithm on IXMAS dataset.

However, when β is fixed, the mean accuracy changes dramatically along the
axis of β. Thus, γ is more sensitive than β. Similarly, Fig. 5(b) shows that α is
more sensitive than β, and Fig. 5(c) shows that γ is more sensitive than α. Thus,
we obtain the importance of these parameters γ>α>β>λ.

We also analyzes the convergence of our algorithm. Figure 6 plots the con-
vergence curves of the objectives. Figure 6(b) shows that Algorithm 1 converges
in 30 iterations. Figure 6(a) plots the convergence curves when updating C(s)

for action classes. It shows that the class-wise dictionary learning converges very
fast.

6 Conclusion

In this paper, we propose a novel sparse code filtering framework for multi-
view action recognition. First, a class-wise dictionary is learned by encoding
label information into the sparse coding process. We integrate class-wise sparse
coding and classifier learning into a CF framework. Thus, the classifiers and
dictionary are optimized jointly, and they can be adapted for each other. The
extensive experimental results illustrate that our proposed method outperforms
other important baselines for multi-view action recognition. In the future work,
we will take the correlation between the classifiers into consideration. For exam-
ple, we can suppress the urge of feature sharing between classifiers by adding a
l1 norm penalty to the classifier parameters.
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Abstract. Action classification in still images has been a popular
research topic in computer vision. Labelling large scale datasets for action
classification requires tremendous manual work, which is hard to scale up.
Besides, the action categories in such datasets are pre-defined and vocab-
ularies are fixed. However humans may describe the same action with
different phrases, which leads to the difficulty of vocabulary expansion
for traditional fully-supervised methods. We observe that large amounts
of images with sentence descriptions are readily available on the Inter-
net. The sentence descriptions can be regarded as weak labels for the
images, which contain rich information and could be used to learn flexible
expressions of action categories. We propose a method to learn an Action
Concept Tree (ACT) and an Action Semantic Alignment (ASA) model
for classification from image-description data via a two-stage learning
process. A new dataset for the task of learning actions from descriptions
is built. Experimental results show that our method outperforms several
baseline methods significantly.

1 Introduction

Action classification in still images has been a popular research topic in com-
puter vision. Traditional fully-supervised learning methods for action classifi-
cation rely on large amount of fully-labelled data (i.e. each image is labelled
with one or more action categories) to learn action classifiers. However, labelling
image data with action categories requires tremendous manual work, which is
time-consuming and hard to scale-up. Another drawback of traditional super-
vised learning framework is that the action categories are pre-defined and limited,
while humans may describe the same action with different phrases, for example,
take out the chopping board and fetch out the wooden board. This drawback
leads to the difficulty of vocabulary expansion, as CNN [1,2] models or SVM
classifiers just assign a label to the test image. Hence, CNN or SVM models
would fail to classify the categories that are not in the training set.

We observe that large amounts of images with sentence descriptions are read-
ily available on the Internet, such as videos with captions and social media,
such as Flickr and Instagram. Such sentence descriptions can be regarded as
weak labels of the images. Sentence descriptions are generated by humans and
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 19–34, 2017.
DOI: 10.1007/978-3-319-54184-6 2
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Fig. 1. Descriptions, as weak labels to images, contain rich information about actions.
Images and corresponding descriptions are from Visual Genome [3]

contain rich information about actions, which could be used to learn an expand-
ing vocabulary of actions. Some example are shown in Fig. 1. Another observa-
tion we make is that action concepts are naturally represented as a hierarchy; for
example, “play guitar” and “play violin” are subcategories of “play instrument”.
If such hierarchical structure of action categories is available, classification meth-
ods can choose to use detailed knowledge if necessary or generalized knowledge
when details are unavailable or irrelevant.

In this paper, we propose a method to tackle the problem of learning actions
from descriptions: Given a set of image-description data (assuming descriptions
containing human action information), learning to recognize human actions.
Our method supports hierarchical clustering of action concepts and vocabu-
lary expansion for action classification. Specifically, our method learns an Action
Concept Tree (ACT) and an Action Semantic Alignment (ASA) model for classi-
fication via a two-stage learning process. ASA model contains a CNN to extract
image-level features, an LSTM to extract text embeddings and a multi-layer
neural network to align these two modalities. In the first stage, (a) we design a
Hierarchical Action Concept Discovery (H-ACD) method to automatically dis-
cover action concepts from image-description data and cluster them into a hier-
archical structure (i.e. ACT); (b) ASA is initialized by the image-description
mapping task in stage-1. In the second stage, the target action categories are
matched to the nodes in ACT and the associated image data are used to fine-
tune ASA for this action classification task to improve the performance. Note
that no image data from test domain are used for training.
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To facilitate research on this task, we constructed a dataset based on Visual
Genome [3], called Visual Genome Action (VGA). Although Visual Genome
contains well-annotated region descriptions, we do not use the region information
and treat the descriptions as image-level. There are 52931 image-description pairs
in the training set and 4689 images of 45 categories in test set. More details of
this dataset are given in Sect. 4.1 later.

In summary, our main contributions are:

(1) A Hierarchical Action Concept Discovery (H-ACD) algorithm to automati-
cally discover an Action Concept Tree (ACT) from image-description data
and gather samples for each action node in ACT.

(2) An end-to-end CNN-LSTM Action Semantic Alignment (ASA) network
which aligns semantic and visual representation to classify actions with
expanding vocabulary.

(3) A dataset for the problem of learning actions from descriptions, which is
built on Visual Genome, containing 52931 image-description pairs for train-
ing and 45 action categories for testing.

The paper is organized as follows. Section 2 discusses the related works. In
Sect. 3, we will introduce our two-stage framework to learn actions from image-
description data. We evaluate our model in Sect. 4 and give our conclusions in
Sect. 5.

2 Related Work

Action Classification in Still Images: The use of convolutional neural net-
work (CNN) has brought huge improvement in action classification [4]. [5] fine-
tunes the CNN pre-trained on ImageNet and shows improvement over traditional
methods. [6] designs a multi-task (person-detection, pose-estimation and action
classification) model based on R-CNN. [7] develops an end-to-end deep convolu-
tional neural network that utilizes contextual information of actions. HICO [8]
introduces a new benchmark for recognizing human-object interactions, which
contains a diverse set of interactions with common object categories, such as
“hold banana” and “eat pizza”. Ramanathan et al. [9] proposes a neural network
framework to jointly extract the relationship between actions and uses them for
training better action retrieval models. These methods all rely on fully-labelled
data.

Weakly Supervised Action Concept Learning: Weakly supervised action
concept learning relies on weakly-labelled data, such as video-caption stream
data [10,11] and focuses on automatically discovering and learning action con-
cepts. [12] designs a method to automatically discover the main steps for spe-
cific tasks, such as “make coffee” and “change tire”, from narrated instructional
videos. Their method solves two clustering problems, one in text and one in video,
applied one after each other and linked by joint constraints to obtain a single
coherent sequence of steps in both modalities. Ramanathan et al. [13] propose a
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method to learn action and role recognition models based on natural language
descriptions of the training videos. Yu et al. [14] discover Verb-Object (VO) pairs
from the captions of the instructional videos and use the associated video clips
as training samples. The learned classifiers are evaluated in event classification,
compared with well defined action categories in HMDB51 [15] and UCF50 [16].
[17] proposes a general concept discovery method from image-sentence corpora
and apply the concepts on image-sentence retrieval tasks.

ACD [18] solves a similar problem to ours. It automatically discovers action
concepts from image-sentence corpora [19,20], clusters them and trains classifier
for each action concept cluster. However, there are two main drawbacks in this
method: (1) no hierarchical clustering: once the action concepts are clustered,
the detailed information are lost; (2) no vocabulary expansion: if the target
test action categories are missed in the training set, ACD would fail to perform
classification.

Language & Vision: Image captioning methods take an input image and gen-
erate a text description of the image content. Recently, methods based on con-
volutional neural networks and recurrent neural networks [21,22] have shown
to be an effective way on this task. VSA [23] is one of the recent successful
models. It uses bidirectional recurrent neural networks over sentences, convolu-
tional neural networks over image regions and a structured objective that aligns
the two modalities through a multimodal embedding. Besides image captioning,
other relevant work includes natural language object retrieval [24] or segmen-
tation [25], which takes an input image and a query description and outputs a
corresponding object bounding box or a segmentation mask.

3 Actions from Descriptions

In this section, we introduce the learning framework, which is a two-stage
method. In the first stage, our target is to learn a general knowledge base of
actions, which contains two parts: a hierarchical structure for action concepts
and a general visual-semantic alignment model. In the second stage, the frame-
work learns to classify specific action categories (i.e. target categories for test).
The classifiers are fine-tuned from the visual-semantic alignment model learned
in stage 1. The overall system is shown in Fig. 1.

3.1 Stage 1: Learning General Action Knowledge

As for general action knowledge, we refers to two concepts. The first one is a
hierarchical structure of actions, which we call Action Concept Tree (ACT): each
node in ACT contains an action concept, such as play frisbee and play basketball,
and the related images; the action concepts are extracted from descriptions and
the images come from the original image-description dataset. The second one is
a general visual-semantic alignment model: the input of the model is an image
and a description, and the output is a confidence score of the similarity of the
image and the description. The framework of Stage 1 is shown in Fig. 2.
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Fig. 2. Stage-1: model initialization via image-description matching and hierarchy
action discovery

Hierarchical Action Concept Discovery (H-ACD): ACD [18] proposed
an action concept discovery method working with image-sentence corpora. How-
ever, the discovered action clusters are not organized in a hierarchical struc-
ture, which may lose the detailed information after clustering. Hence, based on
ACD, we propose a Hierarchical Action Concept Discovery (H-ACD) method,
which automatically discovers action concepts from image-description data and
organizes them in a hierarchical structure using WordNet [26]. The process of
action concept discovery and clustering are similar to ACD. First we extract
Verb-Object (VO) pairs from sentence descriptions and the visualness of these
VO pairs are verified by two fold cross-validation. After visualness verification,
we generate a multi-modal representation for each action concept and calculate
similarity score for each pair of action concepts.

After computing the similarity, we use the H-ACD algorithm to generate
a hierarchical structure for action concepts. Note that nearest neighbor (NN)
clustering algorithm is proposed in ACD [18]; we use it as a part of our H-ACD
algorithm. We first apply NN-clustering algorithm (we fix the parameter C of
NN-clustering as 4.) [18] on all the action concepts to get a list of action clusters.
Then, inside each cluster, we continuously apply NN-clustering algorithm to get
more smaller clusters; we do this recursively util no new cluster is generated.
Each cluster is regarded as a node in the hierarchical structure and the node
names are generated following a similar naming strategy of HAN [27] described
in the following. For the object part, we find the lowest common hypernym in
WordNet. For the verb part, we follow a simple strategy: if the verbs are the
same, then the father node keeps the same verb; if the verbs are different, the
father node is named as “interact with”. For example, for a node containing



24 J. Gao and R. Nevatia

{hold dish, hold pan}, the least shared parent of dish and pan is container and
for the verb part, “hold” itself is the least shared parent. So the name of this
action node is “hold container”. The H-ACD algorithm is shown in Algorithm1.

Data: Concept similarity matrix M of size l × l and concept list L of size l
Result: Action Concept Tree (ACT)
Queue q ← NN-Clustering(M , L);
TreeNode root;
root.addChild(q.all());
while q not empty do

Lcluster ← q.pop();
node=ACT.getNode(Lcluster);
Mcluster ← getSimMat(Lcluster);
tinyclusters=NN-Clustering(Mcluster, Lcluster);
q.push(tinyclusters);
node.addChild(tinyclusters);

end
Generate node names following the naming strategy.

Algorithm 1. Hierarchical Action Concept Discovery (H-ACD) algorithm

ASA Model Initialization via Image-Description Mapping: Our final
target is to classify action categories. Rather than training classifiers for each
category, we want to build a connection between the semantic meaning and
visual meaning of actions. Therefore, we formulate the action classification as
a visual-semantic alignment problem between the image and action categories.
The Action Semantic Alignment (ASA) model contains three parts: a CNN net-
work to extract feature vector of the input image, an LSTM network to extract
text embedding and an alignment network to compute the alignment score of
the visual and semantic representations. Image-description mapping serves as a
parameter initialization method for ASA model, which helps the model to learn
a connection between semantic and visual spaces.

The input of ASA is an image Ii and the corresponding sentence descrip-
tion Di. The image is processed by VGG-16, which outputs a dimg dimensional
feature vi. For a text sequence S = (w1, ..., wT ) with T words, each word is
transformed to a dw2v dimensional vector by the word embedding matrix and
then processed by an LSTM module sequentially. The word embedding matrix is
trained by skip-gram model on English Wiki data. At the final time step t = T ,
LSTM outputs the final hidden state and we use it as the sentence-level embed-
ding si, which is a dtext dimensional vector. vi and si are concatenated to vsii
with a length of dvs = dtext + dimg, which is visual-semantic representation of
the image and description. Then we train a two-layer alignment network, with
a dalg dimensional hidden layer. The alignment network take dvs dimensional
input and output a confidence score csii, which indicates whether the image and
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the description is aligned. The alignment network is implemented in a fully con-
volutional way as two 1 ∗ 1 convolutional layers (with ReLU function between
them).

During the training time, we optimize the model inside each mini-batch. The
loss function is as follows.

loss1 =
N∑

i=0

[αclog(1 + exp(−csi,i)) +
N∑

j=0,j �=i

αwlog(1 + exp(csi,j))] (1)

where N is the batch size, αc and αw are the loss weights for correct and wrong
image-description. The loss function encourages the network to output high score
of correct image-description pairs and low score of incorrect image-description
pairs. In practice, we find that training converges faster using higher loss weights
for correct pairs and we use αc = 1 and αw = 0.01.

3.2 Stage 2: Action Classification on Target Categories

Given a set of action categories for classification (without training samples), we
adjust the ASA model to the specific action classification task. The first step
is to match the given action categories to some existing action nodes in ACT.
Then we use the matched action nodes and the associated images to fine-tune
our ASA model. The framework of Stage 2 is shown in Fig. 3.

Target Action Categories Matching: We first match the actions via keyword
searching. Suppose the target action category is ci and the action node in ACT
is represented by nj . We extract the verb and object from the target action
category ci and search for them in the discovered action hierarchy to see if there
is an exact match. For example, a target action category is “play instrument”
and there is a node in action hierarchy named “play instrument”, then we match
them and use the similarity score (calculated by ASA, see below) between them
as a baseline score θ. If there is no exact match via keyword searching, we assign

Fig. 3. Stage-2: adjust the model to a specific action classification task.
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θ with a constant value. In the second step, we use the ASA model to compute
a similarity score between the target action category ci and all action nodes nj

in ACT. The associated images of nj are Pj = {Ijk}, which has size m. The
similarity score between ci and nj is

S(ci, nj) =
1
m

m∑

k=0

ASA(Ijk, ci) (2)

For a specific action category ci, we select the action node nj that has the highest
similarity score and if the score is larger than or equal to θ, we match < ci, nj >.
Note that some categories may still not be matched after the second step. After
matching, we obtain a list of training samples {ci, Pj}. The labels are ci and the
training images are the associated images of the corresponding matched node
nj . We don’t assign any training data for the target categories with no matched
node in ACT. The matching algorithm is detailed in Algorithm2 below.

Data: ASA model, ACT and Target action categories C = {ci}
Result: Matched pairs < ci, nj >
for ci in C do

for nj in ACT do
if ci.name=nj .name: match < ci, nj >;
break;

end
if ci is matched:

ExactMatch, θ ← nj , S(ci, nj);
match < ci, ExactMatch >;

else:
ExactMatch, θ=None, InitializationValue;

MaxScore=0;
for nj in ACT and nj �= ExactMatch do

if S(ci, nj) >MaxScore:
Node, MaxScore ← nj , S(ci, nj)

end
if MaxScore >= θ: match < ci, Node >;

end

Algorithm 2. Target action categories matching algorithm

ASA Fine-Tuning for Specific Action Classification Task: We use the
training samples obtained in last step to fine-tune the network. In stage 1, the
loss function tends to match the correct image-description pair and it works as
a parameter initialization method. In stage 2, our goal is to optimize the model
to some specific classification task. We formulate the classification problem as a
image-description matching problem. The name of the category is regarded as a
text sequence, just like the sentence description. Suppose there are M categories,
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leading to M corresponding category descriptions {CDj , j = 0, 1, 2...,M − 1}.
Suppose the label of the input image Ii is ti, then the loss function of stage 2 is
as follows.

loss2 =
N∑

i=0

[αclog(1 + exp(−csi,ti)) +
M∑

j=0,j �=ti

αwlog(1 + exp(csi,j))] (3)

where csi,j is the matching score between Ii and CDj , N is the batch size. We
use αc = 1 and αw = 0.01. The loss function encourages the correct image-action
pairs to output high positive score and other wrong pairs output low negative
score.

Action Category Prediction: At test time, the prediction of an input image
Ii is the argmax of the matching scores csi,j between Ii and CDj .

prediction(Ii) = argmax(csi,j), j = 0, 1, 2...M − 1 (4)

4 Evaluation

4.1 Experiments on VGA

Dataset: Visual Genome Action (VGA). There are many image-
description datasets, which are suitable for learning actions from descriptions.
However, none of them contain pre-defined action categories and category anno-
tations for each image. Therefore, we construct a dataset from Visual Genome
for this problem, called Visual Genome Action (VGA). We split Visual Genome
into two parts: 75% for training and validation and 25% for testing. The training
set and test set are carefully checked to ensure that there is no overlap of images
between these two sets.

For the training split, since we only focus on human action learning, we filter
out the descriptions which don’t have verbs or human subjects; for example, “a
dog is running on the grass” and “a man with a white shirt” are filtered out.
52931 image-description pairs remain after such filtering. The descriptions in
Visual Genome are region based, but we treat them as image-level descriptions.
For the test split, we extract Verb-Object (VO) pairs and filter out the ones
with very few image samples. After that, we manually filter out the VOs with
no visual meaning, such as “do things”. Finally, there are 45 categories and
4689 images for testing. The 45 test action categories are listed in Table 1. Some
categories overlap; for example, “hold racket” and “play tennis”, “hit ball” and
“play soccer”. We manually checked each image of these categories and added
additional labels if necessary. For example, if an image of the category “hold
racket” also represents the action of “play tennis”, then we also add this image
to the category of “play tennis”. In other cases, people may be just holding a
tennis racket but not playing, then we don’t add additional labels to such images.
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Table 1. Action categories in VGA test set

boat brush tooth color hair do trick drink wine

eat fruit eat pizza enjoy outdoors fly kite hit ball

hold bag hold banana hold bat hold camera hold controller

hold dog hold fork hold kite hold knife hold pole

hold racket hold sandwich hold umbrella jump play baseball

play basketball play frisbee play soccer play tennis read book

ride elephant ride horse ride wave run sit

ride skateboard ski smile stand surf

swim use phone walk watch game wear necklace

Metric. We tested our model on action classification task on VGA. As for
evaluation metric, we report the mean Average Precision (mAP), Recall@1 and
Recall@5.

Network Implementation. We implemented ASA network in Tensorflow [28],
including CNN network, LSTM network and the multi-layer alignment net-
work. For the CNN part, We use VGG-16 architecture and the parameters are
initialized by ImageNet [29] image classification dataset. We use a standard
LSTM architecture with 1000-dimensional hidden state. The descriptions input
to LSTM have maximum length of 6 for both stage-1 and stage-2. The hidden
layer of the visual-semantic alignment network is 500-dimensional. We train a
skip-gram [30] model for the word embedding matrix using the English Dump
of Wikipedia. The dimension of the word vector is 500. The whole network is
trained end-to-end in two stages. We use three Adam optimizers [31] to optimize
CNN, LSTM and the visual-semantic alignment network. The learning rates are
0.0001, 0.001 and 0.001 respectively. The model is trained on a Tesla K40 GPU;
the batch size is 96. It takes about 1 day to train the whole model for both
stage-1 and stage-2.

System Variants. We experimented with variants of our system to test the
effectiveness of our method. ASA (Stage 1): we only trained the ASA model for
stage-1 using the image-description pairs. ASA (Stage 2): we only trained the
ASA model for stage-2 using the matched action nodes in ACT. ASA (Stage
1+2, w/o ACT): ASA model is trained for stage-1 and stage-2, but we only
use flat action concepts (i.e. only the leaf action nodes in ACT) to match the
target action categories. ASA (Stage 1+2, w/ ACT): this is our full model;
ASA model is trained for stage-1 and stage-2, and full ACT is used to match
the target action categories.
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Baseline Methods. We introduce the baseline methods we implemented.
ACD [18]+SVM+AdaBoost: In this baseline method, we use ACD [18] to

discover a list of action concepts from the training set and train SVM classifiers
[32] for each action concept. Then we match the test action categories with the
discovered action concepts by keyword searching. Multiple action concepts may
matched to the same test categories and each of them can be regarded as weak
classifier to the test category. To make use of all the related training data, we
further use AdaBoost to build a stronger classifier.

ACD [18]+DeViSE [33]: In this baseline method, we first use ACD to discover
a list of action concepts. Instead of training SVM classifiers for each of them, we
apply DeViSE [33] methodology. The verb and the object of a action category
are transformed to vectors using a word embedding matrix and are concatenated
together. The word embedding matrix is trained by wiki dump data and the
dimension of the word vector is 500. All the discovered action concepts and the
associated images are used to train DeViSE model. At test time, the action
categories are transformed to vectors using the same word embedding matrix.
The prediction of an input image is the argmax of the matching scores between
the image and the test categories.

Visual-semantic alignment [23]: This baseline method is similar to the model
in VSA [23]. However, we use regular LSTM instead of BRNN to encode the input
description. The image is processed by VGG-16 and 4096 dimensional fc7 vector
is extracted as image-level feature. The training data are image-description pairs.
The output of the model is a confidence score which indicates whether the image
and description are matched. The test image is matched with all action categories
and the prediction is the category with the highest score.

Action Concept Tree (ACT). There are totally over 100 action concepts
(i.e. leaf action nodes) discovered in the training set of VGA. These action
concepts are clustered into a 4-layer action concept tree (ACT). Due to the
limited space, we can’t illustrate the whole ACT. Some nodes in ACT are shown

Fig. 4. Example nodes in ACT.
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in Fig. 4. Under the node “ride entity”, we can see that “ride motorcycle”, “ride
bicycle” and “ride bike” are clustered together and the automatically generated
node name is “ride wheeled vehicle”, as “wheeled vehicle” is the lowest common
hypernym of “bike”, “bicycle” and “motorcycle” in WordNet. Under the node
“interact with frisbee”, there are four leaf nodes: “catch frisbee”, “hold frisbee”,
“play frisbee” and “throw frisbee”. They have common object “frisbee” but
different verb actions, so we generate the father node name as “interact with
frisbee”. The node “interact with physical entity” is illustrated as a poor case
of our naming strategy. The child nodes have no common verb and the lowest
common hypernym of the objects in WordNet is “physical entity”, therefore the
father node is named as “interact with physical object”, which is a very vague
action name. Although, the naming strategy is not ideal in this case, the cluster
itself still represents one meaningful action category: “interact with food”.

Action Classification Results. The experimental results on VGA are shown
in Table 2. From the results, we can see that our 2-stage learning method out-
performs several baseline methods. Training models with only stage-1 or stage-
2 would lower the performance. Stage-1 only learns general image-description
matching knowledge and it does not optimize the model to a specific action clas-
sification task; on the other hand, without stage-1, stage-2 optimizes the model
from random parameters and it may overfit on such a small dataset of language.
Using the hierarchical structure of action concepts ( i.e. ASA (Stage1+2, w/
ACT)) brings a 1.7% improvement, compared with the flat structure of action
concepts ( i.e. ASA (Stage1+2, w/o ACT)). We believe the reason is that ACT
and the node matching algorithm together provide a better way to organize and
search for the generalized and detailed knowledge of actions. For example, com-
pared with the flat action concept structure, the test category “brush tooth” is
matched not only with the node of “brush tooth”, but also with the parent node
of “hold toothbrush” and “brush tooth” in ACT, which allows ASA to use the
additional data provided by“hold toothbrush”.

In Fig. 5, some example predictions are shown. We can see that failure could
happen when subtle human-object interaction differences are involved; for exam-
ple, “hold sandwich” and “hold banana” have the same verb action (i.e. hold)
and visually similar objects.

Table 2. Comparison of different methods on the VGA action classification test set

Method mAP(%) R@1(%) R@5(%)

ACD+SVM+AdaBoost 20.2 24.5 56.3

ACD+DeViSE 22.1 25.1 54.2

VSA 15.9 18.1 47.3

ASA (Stage 1) 20.1 25.3 56.5

ASA (Stage 2) 18.5 24.6 50.4

ASA (Stage 1+2, w/o ACT) 26.8 29.6 60.4

ASA (Stage 1+2, w/ ACT) 28.5 31.3 63.2
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Fig. 5. Prediction examples of the top 3 results on VSA test set. The first four rows
are positive examples and green represents the condition when the prediction matches
the ground truth. The last row shows some failure cases. (Color figure online)
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Table 3. Transfer learning from Flickr30k to PASCAL VOC 2012 action classification
test set (AP%).

method jump phone instr. read bike horse run photo comp. walk mAP

ACD [18] 62.2 15.4 78.8 29.6 84.5 85.9 60.8 24.0 69.2 32.4 54.3

ASA+ACT 63.5 15.5 80.9 28.9 86.7 92.0 60.7 24.1 69.3 30.9 55.2

4.2 Experiments on Flickr30k and PASCAL VOC

We use the same experiment setup as ACD [18]: using Flickr30k [20] as source
image-description dataset and PASCAL VOC 2012 action classification as tar-
get test dataset. Flickr30k contains 30000 images and each image is captioned
by 5 sentences. PASCAL VOC 2012 action classification dataset has 10 action
categories. We train our full model (ASA + ACT) on Flickr30k and apply the
action concepts on PASCAL VOC.

As shown in Table 3, our method outperforms ACD [18] in most categories
and by 0.9% in mAP. For example, “ride bike” and “ride horse” are two separate
subcategories in our ACT and provide more precise data for training, while ACD
[18] may cluster these two with other categories such as “ride skateboard”.

5 Conclusion

We presented a two-stage learning framework to learn an Action Concept Tree
(ACT) and an Action Semantic Alignment (ASA) model from image-description
data. Stage-1 has two steps: (a) ACT is discovered and built by H-ACD algo-
rithm, each node in the tree contains an action name and the relevant images; (b)
ASA model is trained by image-description mapping task for parameter initial-
ization. In stage two, we adjust the ASA model to a specific action classification
task. The first step is to match the target action categories to the action nodes in
ACT discovered in stage-1. After matching, we use the associated data to fine-
tune ASA model to this action classification task. Experimental results show
that our model outperforms several baseline methods significantly.
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Abstract. Color serves as an important cue for many computer vision
tasks. Nevertheless, obtaining accurate color description from images
is non-trivial due to varying illumination conditions, view angles, and
surface reflectance. This is especially true for the challenging problem
of pedestrian description in public spaces. We made two contributions
in this study: (1) We contribute a large-scale pedestrian color naming
dataset with 14,213 hand-labeled images. (2) We address the problem
of assigning consistent color name to regions of single object’s surface.
We propose an end-to-end, pixel-to-pixel convolutional neural network
(CNN) for pedestrian color naming. We demonstrate that our Pedestrian
Color Naming CNN (PCN-CNN) is superior over existing approaches
in providing consistent color names on real-world pedestrian images. In
addition, we show the effectiveness of color descriptor extracted from
PCN-CNN in complementing existing descriptors for the task of per-
son re-identification. Moreover, we discuss a novel application to retrieve
outfit matching and fashion (which could be difficult to be described by
keywords) with just a user-provided color sketch.

1 Introduction

Color naming aims at mapping image pixels’ RGB values to a pre-defined set of
basic color terms1, e.g., 11 basic color terms defined by Berlin and Kay [5] -
black, blue, brown, grey, green, orange, pink, purple, red, white, and yel-
low. Color names have been widely used as a type of color descriptor for a
variety of applications such as image retrieval and image classification [37].
Recent studies [18,25,40] have applied color naming for the task of person re-
identification [11,13,17,21,22,42,44] to achieve robust person matching under
varying illuminations. Automatic color naming has also been exploited for cloth
retrieval and fashion parsing [24].

In this study, we focus on the task of assigning consistent color names to
pedestrian images captured from public spaces (see Fig. 1). This task is non-
trivial since the observed color of different parts of a pedestrian’s body surface

1 A basic color term is defined as being not subsumable to other basic color terms and
extensively used in different languages.
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Image Ground-truth PLSA PFS SVM DCLP PCN-CNN

(a) Pedestrian color naming

(b) Color sketch-based fashion retrieval

Fig. 1. (a) State-of-the-art non-learning based color naming method, DCLP [26] and
learning-based approaches based on hand-crafted features, including SVM [24] and
PLSA [37] fail to extract accurate color names for different regions. In contrast, the
proposed Pedestrian Color Naming Convolutional Neural Network (PCN-CNN) gen-
erates color labels consistent with the ground truth (PCN-CNN generates color labels
over its own predicted foreground region while other methods use ground-truth fore-
ground mask). (b) A meaningful application of our method is the retrieval of outfit
matching based on a simple user-provided color sketch (from left to right: sketch,
retrieved image, and the corresponding estimated color names map). The application
is demonstrated in Sect. 5.3. (Color figure online)

can look totally different under disparate illuminant conditions and view angles.
In addition, strong highlights and shadows can make the RGB values of the same
surface span from light to dark. Creases and folds in clothing surface can also
lead to drastically different predictions of color. Some examples are shown in
Fig. 1. Existing methods are not effective for this kind of challenging scenarios.
Specifically, some of these approaches are non-learning-based methods [26], they
thus cannot effectively capture the uncontrollable variations for specific scenar-
ios. Some other methods rely on hand-crafted features and color histograms,
e.g., LAB color space [37], SIFT and HOG features [24], which may have limited
expressive power to represent the image content (more details in Sect. 2).

We believe that the key to address the aforementioned problem is a model
that is capable of extracting meaningful representation to achieve color con-
stancy [2,6,10], i.e. the capability of inferring the true color distribution intrin-
sic to the surface. Such a representation needs to be learned from a large-scale
training set to ensure robustness for real-world scenes. To this end, we make two
main contributions:
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– A large-scale dataset - Existing color naming datasets either lack of sufficient
training samples or do not come with pixel-level annotation (see Sect. 3). To
facilitate the learning and evaluation of pedestrian color naming, we introduce
a large-scale dataset with careful manual segmentation and region-wise color
annotation. The dataset contains 14,213 images in total, which is the largest
color naming dataset that we aware to our knowledge. All the images are
collected under challenging surveillance scenarios (Market-1501 dataset [43]),
with large variations in illumination, highlights, shadow changes, different
pedestrian poses and view angles. We show that the dataset is essential for
pre-training a color naming deep network for a number of pedestrian-related
applications, including person re-identification and cloth retrieval.

– End-to-end color naming - We propose a Pedestrian Color Naming Convo-
lutional Neural Network (PCN-CNN) to learn pixel-level color naming. In
contrast to existing studies [24,37] that require independent components for
feature extraction and color mapping, our CNN-based model is capable of
extracting strong features and regressing for color label for each pixel in an
end-to-end framework. Conditional random field (CRF) is further adopted to
smooth the pixel-wise color predictions. Our network is specially designed to
handle images with low resolution, and hence it is well-suited for processing
pedestrian images captured from low-resolution surveillance cameras.

Extensive results on the Market-1501 [43] and Colorful-Fashion [24] datasets
show the superiority of our approach over existing color naming methods [4,
24,26,37]. We further show the applicability of PCN-CNN in complementing
existing visual descriptors for the task of person re-identification (Re-ID). In
particular, we demonstrate consistent improvement using the PCN-CNN features
in conjunction with different existing Re-ID approaches. In addition, we also
highlight an interesting application for outfit matching retrieval. In particular,
in the absence of imagery or keyword query, we show that it is possible to retrieve
desired fashion images from a gallery through just a simple and convenient ‘color
sketch’. An example is depicted in Fig. 1(b). Such a color-driven query provides
rich region-wise color description and can be used in conjunction with visual
attribute-driven query [21,28] for ‘zero-shot’ retrieval.

2 Related Work

Color Naming. Benavente et al. [4] proposed a pixel-wise color naming model
based on lightness and chromaticity distribution, which did not consider cross-
pixel relations and intrinsic consistency. Serra et al. [34] and Liu et al. [26] improve
the region consistency of color names based on this pixel-wise color naming results.
In particular, Serra et al. [34] applied CRF to infer the color intrinsic components
from images. They extracted the intrinsic information according to the segmen-
tation results of Ridge Analysis of color Distribution (RAD) [38], and assigned
the same color label to pixels connected by a ridge. However, the RAD method
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only described the RGB histogram distribution and may fail to handle the com-
plicated color distribution. Besides, only with ridge information, the method can-
not reliably predict the correct color label from a region if a big portion of the
surface’s pixels are affected by shadows or highlights. Liu et al. [26] applied the
similar CRF model and built a label propagation model where the color labels
of pixels in normal region will be propagated to those shadowed and highlighted
regions in the same objects’ surface. However, their model relied on the detection
results of highlights and shadows [16,20,31,36,38] with mainly the intensive and
reflectance information, which do not suit for complicated color distribution cases,
especially for the challenging pedestrians under real-world settings.

Van de Weijer et al. [37] used LAB histogram features as ‘words’ and applied
them into a Probabilistic Latent Semantic Analysis (PLSA) model to learn for
‘topic’ color naming. Liu et al. [24] designed a concatenated feature by RGB, LAB
color spaces and SIFT, HOG features. Mojsilovic [32] built a multi-level color
description model and estimated color naming combined with segmentation. How-
ever, this work did not address the issues of shadowed and highlighted regions. All
of these hand-crafted features lack robustness to dramatic illumination changes.

Pedestrian Descriptors. Person re-identification [13] aims at recognizing the
same individual under different camera views. To tackle the challenging appear-
ance changes by varying viewpoints, illumination and poses, many researchers
have proposed different pedestrian descriptors. Gray et al. [15] introduced an
ensemble of localized features (ELF) consisting of colors and textures for view-
point robustness. Layne et al. [21] proposed to use mid-level semantic attributes,
fused with low-level features in ELF to obtain improved results. Bazzani et al. [3]
exploited three complementary aspects of the human appearance: the overall chro-
matic content, the spatial arrangement of colors into stable regions, and the pres-
ence of recurrent local motifs with high entropy. More recently, a ‘mirror repre-
sentation’ [9] is proposed to explicitly model the relation between different view-
specific transformations. Chen et al. [7] proposed a Spatially Constrained Sim-
ilarity function on polynomial feature map and achieved a new state of the art
results. Recent studies have explored the illuminant-invariant color distribution
descriptors for Re-ID. Kviatkovsky et al. [19] introduced log-chromaticity color
space to identify persons under varying scenes. To complement the traditional
color information, color naming has been applied to recent studies [18,25,40] and
achieved improvements over the state-of-the-art models. Kuo et al. [18] employed
the semantic color names learned by [37]. Yang et al. [40] employed the salient color
names according to RGB values. However, these applied color naming models did
not show region consistency and had limited robustness to dramatic illumination
changes.

3 Pedestrian Color Naming Dataset

A well-segmented region-level color naming dataset is essential for both model
training and evaluation. A dataset collected from realistic scenes, with diverse illu-
mination, highlights and shadows, and varying view angles, counts heavily to the
success of pedestrian color naming.
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Table 1. The train/test distribution of 11 basic colors at region level (arranged in alpha-
betical order) of the Pedestrian Color Naming (PCN) dataset

Black Blue Brown Grey Green Orange Pink Purple Red White Yellow

Train 8040 2192 722 3256 1576 318 1138 669 1972 5013 1651

Test 1264 275 113 491 234 37 139 109 249 710 202

There is no public large-scale color naming dataset with pixel-level labels.
The Google Color Name [37] and Google-512 datasets [33] contain 1100 and 5632
images, respectively, but both of them are weakly labeled with only image-level
color annotations. The Object dataset [26] and Ebay dataset [37] include 350 and
528 images with region-level color annotation. These datasets are far from enough
for learning and testing a CNN-based color naming model.

To facilitate the learning of evaluation of pedestrian color naming, we build a
new large-scale dataset, named Pedestrian Color Naming (PCN) dataset, which
contains 14,213 images, each of which hand-labeled with color label for each pixel.
The dataset and the annotations can be downloaded at http://mmlab.ie.cuhk.
edu.hk/projects/PCN.html.

ImageCollection. All images in the PCN dataset are obtained from the Market-
1501 dataset [43]. The original Market-1501 dataset consists of pedestrian images
of 1,501 identities, captured from a total of six surveillance cameras. Each identity
has multiple images with varying scene settings and poses under multiple camera
views. These images contain strong highlights and shadows with various illumi-
nation conditions and view angles. We carefully select a subset of 14,213 images
which have good visibility of the full body and diverse color distribution. We con-
sequently divide the dataset into a training set of 10,913 images, a validation set
of 1,500 images and the remaining 1,800 images for testing. Table 1 summarizes
the distribution of the different color labels in both the training and test subsets.
Note that there may be multiple colors co-exist in the same image. Some colors,
namely purple and orange, are relatively lower in numbers since pedestrians tend
to wear clothes with more common colors such as black and white.

Super-Pixel-Driven Annotation. Pixel-by-pixel labeling of color labels is a
tedious task. We attempted this possibility but found it not scalable. To overcome
this problem, we first oversegment each image into 100 super-pixels through the
popular SLIC superpixel segmentation method [1]. We found that the super-pixels
align well with the object contours most of the time. We then carefully identify the
color label for each super-pixel following the 11 color names defined by Berlin and
Kay [5], excluding the background, human skin, and hair areas. Note that some
super-pixels are originated from the same region (e.g. different regions of a pair
of jeans). We manually group these super-pixels together to form a single region.
Eventually, each coherent region shares the same color label, and the labels for all
regions collectively form a label map with the same resolution as of the associated
image. Figure 2 depicts some example images and their corresponding pixel-level
color label maps.

http://mmlab.ie.cuhk.edu.hk/projects/PCN.html
http://mmlab.ie.cuhk.edu.hk/projects/PCN.html
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Fig. 2. Some examples of labeled images in the Pedestrian Color Naming dataset. The
images in the first row are the original images and those in the second row are the color
label maps where each region is visualized using the corresponding basic colors (black,
blue, brown, grey, green, orange, pink, purple, red, white, and yellow). The background
region is shown in dark cyan. (Color figure online)

4 Pedestrian Color Naming Convolutional Network

Problem Formulation. Given a pedestrian image I, our goal is to assign each
pixel of I with a specific color name. Specifically, we define a binary latent variable
yi
c ∈ {0, 1}, indicating whether an i-th pixel should be named with a color name

c, where ∀c ∈ C = {1, 2, . . . , 11}, representing the 11 basic color names [5].
We approach this problem in a general CRF [12] framework with the unary

potentials generated by a deep convolutional network. The energy function of CRF
is written as

E(y) =
∑

∀i∈V
U(yi

c) +
∑

∀i,j∈E
π(yi

c, y
j
d), (1)

where y, V, and E , represent a set of latent variables, nodes, and edges in an undi-
rected graph. Here, each node represents a pixel in image I and each edge cap-
tures the relation between pixels. The U(yi

c) measures the unary cost of assigning
a label c to the i-th pixel, and π(yi

c, y
j
d) is the pairwise term that quantifies the

penalty of assigning labels c, d to pixels i, j respectively. We define the unary term
in Eq. (1) as

U(yi
c) = − ln p(yi

c = 1|I), (2)
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where p(yi
c = 1|I) represents the probability of assigning label c to i-th pixel. In

this study, we model the probability using PCN-CNN, which will be described
next.

For the pairwise term, we let π(yi
c, y

j
d) = μ(u, v)D(i, j), where μ(u, v) repre-

sents a prior color co-occurrence. Although this prior can be learned from data,
to simplify the problem we make a mild assumption that μ(u, v) = 1 for any arbi-
trary pair of color labels. The D(i, j) measures the distances between pixels,

D(i, j) = w1||f(Ii) − f(Ij)||2 + w2||(xi, yi), (xi, yj)||2, (3)

where f is a function that extracts features from the i-th pixel, e.g., RGB values,
while (x, y) denote the coordinates of a pixel, and w1, w2 are constant weights.
The pairwise term encourages pixels that are close and similar to each other to
share the same color label.

Network Architecture. Deep convolutional network has shown immense suc-
cess for various image recognition tasks. Different from existing problems, we need
to cope with a few unique challenges. Firstly, we need to deal with the background
clutter, which is detrimental to the foreground color prediction. Secondly, our
problem requires special care in designing the architecture since pedestrian images
are typically low in resolution, e.g. 128 × 64 in the Market-1501 dataset [43].
This challenge is especially crippling since most off-the-shelf deep networks con-
tain pooling layers that could significantly reduce the effective size of the input
images. We cannot afford this information loss.

Consequently, we based our solution on the V GG16 network [35] but with the
following modifications. To handle the background clutter, we additionally con-
sider background as a label and train the network to jointly estimate for both
foreground-background segmentation and color naming, resulting in 12-category
output. That is, the network output has 11 color names and a background indi-
cator b ∈ {0, 1} to indicate the presence of background at a pixel.

To handle the small input resolution issue, we need to modify the V GG16 net-
work. We still initialize the filters in our network with all the learned parameters
to make full use of V GG16 pre-trained by ImageNet. Nevertheless, for the pixel-
to-pixel prediction of low-resolution input, more information should be preserved.
Table 2 compares the hyper-parameters of the V GG16 network and our network.
We use ai and bi to denote the i-th group in Table 2(a) and (b). Our network con-
tains 13 convolutional layers, two max-pooling layers, and the last three layers
act as the fully convolutional layers and de-convolutional layers, which generates
the final labeling results. As summarized in Table 2, we increase the resolution of
convolved data by removing three max-pooling layers from V GG16. As a result,
the smallest size of feature map in our model is 32 × 16 (based on input-size of
128 × 64), keeping more information compared with V GG16.

Filters of b6 are initialized with the filers of a7, where each filter in a7 should
be convolved with a5 on a stride (the stride length is 2). Since the max-pooling
layer a6 has been removed, the 3 × 3 receptive filed is padded into 5× 5 with zeros
every other parameter in the filter, to keep the resolution identical to one-stride
convolution. The following convolutional layers are padded in the similar way. For
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the fully convolutional layer b8, if all the 7× 7 parameters are to be applied for
initialization, a padded 49× 49 receptive filed is needed in the similar way, which
needs more padding to the input feature map to keep the output size after up-
sampling. Since large zero padding can affect the performance, we down-sample
the parameters of receptive field [8] from 7 × 7 to 3×3 before applying them for
initialization. In this way, the padded 17× 17 with zeros from 3 × 3 is applied in b8
as the fully convolutional layer. Finally, the b10 layer up-samples the feature maps
to 128 × 64 by bilinear interpolation, and generates the 12-dimensional prediction
for each pixel (11 color + background labels).

Table 2. The comparisons between V GG16 and our PCN-CNN, as shown in (a) and (b)
respectively. The ‘fs’, ‘#cha’, ‘act’ and ‘size’ represent the filter stride size, number of
output feature maps, activation function, and size of output feature maps, respectively.
And ‘conv’, ‘max’, ‘dconv’, and ‘fc’ represent the convolution layer, max-pooling layer,
deconvolution layer, and fully-connected layer, respectively. The ‘relu’, ‘idn’ and ‘soft’
represent the rectified linear unit, identity and softmax activation functions.

(a) V GG16: 224×224×3 input image; 1×1000 output labels.

1 2 3 4 5 6 7 8 9 10 11 12

layer 2×conv max 2×conv max 3×conv max 3×conv max 3×conv max 2×fc fc
fs 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 - -

#cha 64 64 128 128 256 256 512 512 512 512 1 1
act relu idn relu idn relu idn relu idn relu idn relu soft
size 224 112 112 56 56 28 28 14 14 7 4096 1000

(b) Our PCN-CNN: 128×64×3 input image; 128×64×12 output label maps.

1 2 3 4 5 6 7 8 9 10

layer 2×conv max 2×conv max 3×conv 3×conv 3×conv conv conv dconv
fs 3-1 2-2 3-1 2-2 3-1 5-1 9-1 17-1 1-1 1-1

#cha 64 64 128 128 256 512 512 4096 4096 12
act relu idn relu idn relu relu relu relu relu soft
size 128×64 64×32 64×32 32×16 32×16 32×16 32×16 32×16 32×16 128×64

It is worth pointing out that deep convolutional network has been widely used
for image segmentation [8,27,29]. Differs from these prior studies, our work is the
first attempt to use CNN for color naming. In terms of network architecture, our
network shares some similarity to the Deep Parsing Network (DPN) [27]. Unlike
DPN that accepts input image of resolution 512 × 512, we design our network
to accommodate for small pedestrian images and remove pooling layers to avoid
information loss. We attempted to enlarge pedestrian images to fit DPN’s require-
ment but the performance of this alternative is inferior to that achieved by our
final design.

Training details are given as follows. We start with an initial learning rate of
0.001, and reduce it by a factor of 10 at every 5K iterations. We use a momentum
of 0.9, and mini-batches of 12 images.



Pedestrian Color Naming via Convolutional Neural Network 43

5 Experiments

In this section, we first evaluate PCN-CNN’s performance for color naming. We
also examine the effectiveness of color names descriptor extracted from PCN-CNN
for the task of person re-identification. Furthermore, we show an interesting appli-
cation with PCN-CNN, using only simple sketches as probe to retrieve desired
outfit matching of fashion images from a real-world image gallery.

5.1 Pedestrian Color Naming

In this experiment, we analyze PCN-CNN’s performance for pedestrian color
naming.

Datasets. We perform evaluations on the proposed PCN dataset (relabelled Mar-
ket 1501 dataset [43]) and a cloth dataset, Colorful-Fashion [24], both of which
have a test subset of 1,800 and 2,682 images, respectively. The PCN dataset is chal-
lenging due to its low image resolution (128 × 64) and large variations in terms of
illumination and pedestrian pose. The Colorful-Fashion dataset contains images
with a higher resolution (600× 400), but the cloth patterns are more complex
and colorful. Images in the Colorful-Fashion dataset comes with region-wise color
labels. Note that the dataset also annotates hair pixels with color names, we there-
fore include the hair region estimation in our evaluation. For the PCN dataset, we
label the color names based on the procedure described in Sect. 3.

Evaluation Metrics. To measure the performance of both the pixel-wise and
region-wise accuracies, we apply two metrics for model evaluation:
(1) Pixel Annotation Score (PNS) - this score [37] measures the percentage of cor-
rectly predicted color names at pixel level. We average the PNS for all regions as
the final score to measure the consistency of color naming.
(2) Region Annotation Score (RNS) - each region’s color label is specified by its
dominant color names prediction of pixels. We then calculate the averaged accu-
racy of prediction at the region level.

Results. We compare our PCN-CNN against with state-of-the-art methods,
including PLSA [37], PFS [4], SVM-based color classifier [24] and DCLP [26].
Besides, we also adopt CRF to smooth PCN-CNN color names prediction and
evaluate the performance. For a better foreground estimation on pedestrian
images, the PCN-CNN is first pre-trained on the large-scale pedestrian parsing
dataset PPSS [30], which encourages the network to generate binary map com-
posed of pedestrian region and the background. The pre-trained parameters of
PCN-CNN are then fine-tuned on the training partition of the PCN dataset and
Colorful-Fashion dataset, respectively, for the respective tests on the two datasets.
Likewise, all learning based methods, e.g. PLSA and SVM, are retrained using the
same training partition employed by PCN-CNN to ensure a fair comparison. It is
worth pointing out that during the evaluation of PCN-CNN, we employ the fore-
ground masks generated by itself before applying the evaluation metrics. For other
baselines (PLSA, PFS, SVM, and DCLP), we use the ground-truth masks for this
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Table 3.Performance over PCN and Colorful-Fashion test set. PNS and RNS denote the
averaged pixel annotation score and region annotation score respectively. The smoothed
color names prediction is denoted by PCN-CNN+ CRF.

Method PCN Colorful-Fashion

PNS RNS PNS RNS

PLSA [37] 63.1 68.4 57.4 71.4

PFS [4] 61.1 68.5 48.6 60.5

SVM [24] 62.8 62.2 43.5 45.4

DCLP [26] 56.8 62.0 47.8 54.8

PCN-CNN 74.1 80.3 70.2 81.8

PCN-CNN+ CRF 74.3 80.8 71.1 81.9

purpose. Given the more accurate masks compared to PCN-CNN generated ones,
these baselines therefore gain additional advantages than PCN-CNN.

Table 3 and Fig. 3 show the performance comparison and confusion matrix
(based on RNS), respectively, among different methods. Qualitative results are
provided in Fig. 4. As shown in the experimental results, our model achieves supe-
rior performance in both PNS and RNS metrics, with outstanding robustness to
shadows and highlights, creases and folds. Adding CRF to PCN-CNN further
boosts its performance.

5.2 Color Naming for Person Re-identification

Pedestrian color naming provides a powerful feature for person re-identification,
even in low-resolution images, due to its robustness to varying illumination and
view angles. A robust color naming model with good consistency helps to describe
people more accurately by ignoring the minor change in RGB values. In this
section, we combine the region-level color names generated by PCN-CNN with
several existing visual descriptors for the task of person re-identification, and test
the performance on the widely used VIPeR dataset [14].

Feature Representation. Similar to [23], we first partition a pedestrian image
into six equal-size horizontal stripes, represented as H = [h1, . . . , h6]T. For the i-th
part hi, we use a histogram of color names as the feature representation, resulting
into a 66-dimensional descriptor for all the parts. The c-th bin of a histogram hi

denotes the probability of all pixels in the corresponding part being assigned to
color name c. To minimize the influence of background clutter, we only extract
the color distribution of the foreground region. The estimated feature is called
pedestrian color naming (PCN) descriptor in the following session. We concate-
nate the PCN descriptor with several representative visual descriptors for per-
son re-identification. These include one of the most widely used features called
ensemble of localized features (ELF) [15,21]; a pure color-based features, named
salient color names based color descriptor (SCNCD) [40]; a recent advanced fea-
tures known as mirror representation [9]. The original ELF, SCNCD and ‘mirror
representation’ descriptors and those concatenated with PCN descriptor are fed
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Fig. 3. Confusion matrix of color naming (regional level) on the Pedestrian Color Nam-
ing dataset.

into the KMFA metric learning method [39] for matching. Moreover, the PCN fea-
ture is also fed into a recent outperforming similarity learning method with spatial
constraints (SCSP) [7], fused with other originally used visual cues.

Experiment Settings. The VIPeR dataset contain 632 pedestrian image pairs,
with varying illumination conditions and view angles. Each pedestrian has two
images per camera view. All the images are normalized to 128 × 48 pixels. We ran-
domly choose half of the image pairs for training and the others for testing. This
procedure is repeated for 10 evaluation trials. Averaged performance is measured
over the trials by using the typical cumulative matching characteristic (CMC)
curve. In particular, we report the rank k matching rate, which refers to the per-
centage of probe images that are correctly matched with the true positives in the
gallery set in the top k rank.

Results. As can be observed from Table 4, the PCN descriptor is capable of
improving the performance of a wide range of existing Re-ID visual descrip-
tors, from ensemble of color/texture features (ELF), pure color based features
(SCNCD), as well as the more elaborated mirror representation. Moreover, a
new state-of-the-art accuracy can be achieved by SCSP learning method, when
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Fig. 4. Qualitative results on the PCN and Colorful-Fashion datasets. The background
is indicated by dark cyan. PCN-CNN generates color labels over its own learned fore-
ground region while other methods use ground-truth foreground mask. (Color figure
online)

concatenating with the PCN descriptor. It is interesting to see that PCN descrip-
tors yields large improvement to the SCNCD method, which is also based on color
names. The results suggest the robustness of our approach in complementing exist-
ing pedestrian descriptors.
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Table 4. Comparative results between original person re-identification descriptors vs.
descriptors enhanced with PCN descriptor. Results are reported on the VIPeR dataset.

Rank k 1 5 10 20

ELF [15] 23.77 51.17 64.62 78.89

ELF [15] + PCN 36.36 68.92 82.69 92.63

SCNCD [40] 21.33 38.86 49.02 59.91

SCNCD [40] + PCN 28.45 52.09 64.11 75.03

Mirror-KMFA [9] 42.97 75.82 87.28 94.84

Mirror-KMFA [9] + PCN 45.03 77.56 89.05 96.04

SCSP [7] 53.54 82.59 91.49 96.65

SCSP [7] + PCN 54.24 82.78 91.36 99.08

5.3 Color Naming for Zero-Shot Cloth Retrieval

One may relatively often has to do with combining different colors of shirts, pants,
and shoes together. Or one might want to purchase a particular piece of garment
in mind but do not know how to describe its combination of colors and patterns.
Instead of elucidating a long textual description of it, one could just draw a sketch!
A recent paper [41] has applied this idea for fine-grained shoe retrieval using mono-
chrome sketches. In this section, we show the possibility to ‘retrieve with colors’.

Specifically, one simply needs to paint with a few strokes the desired color on
a sketch with specific combinations and patterns. The sketch can then serve as a
query for cloth/fashion retrieval. This is possible through the following steps: we
process a color sketch using PCN-CNN to transform it into a map with 11 color
names, and further convert it into a PCN histogram (see Sect. 5.2). We assume all
the gallery images have been processed in the same way. We then apply histogram
intersection to measure the similarity of features for retrieval.

Experiment Settings. A total of 80 images with rich color and complex pat-
terns are selected from the Colorful-Fashion dataset [24], and we ask volunteers to
draw for the corresponding color sketches. The task is to use the sketch as query
and correctly retrieve the true image among the 2,682 test images of Colorful-
Fashion dataset. The top-k retrieval accuracy is adopted as the metric.

Results. Table 5 shows the cloth retrieval results with different color naming
models. Thanks to the robustness of PCN-CNN, our method achieves an impres-
sive top-1 retrieval rate of 42.86%, surpassing other baselines. Some qualitative
results are shown in Fig. 5, in which we compare the retrieved results and gener-
ated color map of our PCN-CNN and PLSA. With poorer region-level consistency
compared to PCN-CNN, which is critical for the cloth retrieval task, PLSA can
easily fail to retrieve the ground-truth matching clothes with strong highlights and
shadows.
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Table 5. Top-k retrieval accuracy on Colorful-Fashion dataset (a subset is selected, see
text for details) using color sketch as query.

Rank k 1 5 10 20

PLSA [37] 6.49 12.99 16.99 23.38

PFS [4] 6.48 12.98 18.18 20.78

PCN-CNN 42.86 68.83 72.73 83.12

Fig. 5. We show the top-5 retrieval results with sketches as probes, using PCN-CNN
and PLSA, respectively. The retrieved images highlighted with red boundary represent
the ground-truth matching cloth images. (Color figure online)

6 Conclusion

We have presented an end-to-end, pixel-to-pixel convolutional neural network for
pedestrian color naming, named PCN-CNN. To facilitate model training and eval-
uation, we have introduced a large-scale pedestrian color naming dataset, contain-
ing 14,213 images with carefully labeled pixel-level color names. Extensive exper-
iments show that the PCN-CNN is capable of generating consistent color name to
clothing surfaces regardless of large variations in clothing material and illumina-
tion. The PCN descriptor extracted from the model is not only useful for comple-
menting existing pedestrian descriptors, but also generalizable for sketch-to-image
retrieval.

Acknowledgement. We would like to show our gratitude to the authors of [9], for
sharing their features and codes of matching procedure for the person re-identification
experiments.
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Abstract. Gait recognition has recently attracted much attention since
it can identify person at a distance without subject cooperation. Walk-
ing speed changes, however, cause gait changes in appearance, which
significantly drops performance of gait recognition. Considering a speed-
invariant property at single-support phases where stride change due to
speed changes are mitigated, and a stability against phase estimation
error and segmentation noise by aggregating multiple phases inspired by
gait energy image (GEI), we propose a speed-invariant gait represen-
tation called single-support GEI (SSGEI), which realizes a good trade-
off between the speed invariance and the stability by combining single-
support phases and GEI concept. For this purpose, we firstly find out
the optimal duration around single support phases using a training set
so as to well balance the speed invariance and the stability. We then
extract SSGEI by aggregating multiple single-support frames. Finally,
we combine the proposed SSGEI with subsequent Gabor filters and met-
ric learning for better performance. Experiments on the publicly available
OU-ISIR Treadmill Dataset A composed of the largest speed variations
demonstrated that the proposed method yielded 99.33% rank-1 identifi-
cation rate on average for cross-speed gait recognition, which outperforms
the other state-of-the-arts, and realized a low computational cost as well.

1 Introduction

Biometric person authentication has recently gained a growing demand in many
applications, such as border control at an airport, access control to an amuse-
ment park, owner authentication for a bank card. Compared with physiological
biometric cues such as DNA, fingerprint, iris, and face, gait has advantages in
terms that it is difficult to be obscured and imitated. Moreover, it is possible to
identifying a person from his/her gait at a large distance from a camera (e.g.,
CCTV installed in the street) without subject cooperation, since gait recognition
works even with relatively low-resolution images [1]. Gait recognition has there-
fore attracted considerable attention as a unique cue to authenticate a person
from CCTV footage for surveillance and forensics [2–4].
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 52–67, 2017.
DOI: 10.1007/978-3-319-54184-6 4
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Gallery: 2 km/h

Probe: 7 km/h

Single-support Single-support Keyframe GEI SSGEI

- - -

= = =

Subtraction

Fig. 1. Comparison of Keyframe, GEI and SSGEI. We choose 9 frames from a period
evenly in both gallery (2 km/h) and probe (7 km/h) sequence. The corresponding single
Keyframe, GEI and SSGEI features are shown in the right. The subtraction image for
each feature are shown in the bottom. They illustrate that SSGEI can reduce such
appearance differences caused by posture change, phase difference and speed change in
the same time.

Involving uncooperative subjects in gait recognition, means that gait may be
affected by various covariates, including but not limited to views, shoes, surfaces,
clothing, carriages, and walking speed [5,6]. Among these covariates, walking
speed is one of the most common challenging factors and also often observed in
real scenes (e.g., a perpetrator running out of a criminal scene). Since the change
of walking speed causes the change of gait features in particular in dynamic ones
like gait period, arm swing, and stride length, which may significantly drop the
performance of gait recognition. In fact, many of popular gait descriptors such as
gait energy image (GEI) [7], frequency-domain feature [8], chrono-gait image [9],
gait flow image [10], does not work for cross-speed gait recognition if they are
directly applied.

Hence, cross-speed gait recognition enjoy a rich body of literatures [11–20].
While they successfully mitigate the speed effect to some extent, yet most of them
do not work well for larger speed changes, or suffer from high computational cost,
which is an important problem in real-world scenarios.

Among them, use of single support phase [16] worth investigating more
details. This is because the change of walking speed mainly affects the dynamic
parts such as arm swing and stride length, which are the most outstanding at
double support phases, and hence such effects are considerably mitigated at the
single support phases where the limbs are the most closed as shown in Fig. 1.
In other words, the single-support phases provide promising keyframes for speed
invariance. A single keyframe at a single support phase itself may, however, be
easily affected by phase (gait stance) estimation error, silhouette segmentation
noises, and temporary posture changes, which also drops the gait recognition
performance.

To overcome these defects, we propose a speed-invariant as well as stable gait
representation called single-support GEI (SSGEI) for cross-speed gait recogni-
tion. Inspired by an idea of aggregating multiple frames for silhouette noise
reduction in GEI [7], we also aggregate multiple frames of a certain duration
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around the support phase. Since longer duration leads to more stability but less
speed invariance, while shorter duration leads to less stability but more speed
invariance, we find out the optimal duration so as to well balance the speed
invariance and the stability using a training set. The contribution of this work
are three-folded.

1. A speed invariant as well as stable gait representation. The proposed
SSGEI realizes a good trade-off between speed invariance and stability, which is
intuitively understandable with an example in Fig. 1. In this example, a subject
in a gallery sequence (2 km/h) looks down in several frames, while he keeps on
walking normally in a probe sequence (7 km/h). In addition, selected keyframe
of single support phase have a slight phase difference. Affected by such tempo-
rary posture change and phase difference, the difference of keyframes becomes
large. On the other hand, GEI can mitigate such temporary posture change and
phase difference, although it directly affected by speed variation in particular in
dynamic parts in stride and arm swings. Compared these two, we observe that
the cross-speed difference of the proposed SSGEI is well suppressed by balancing
the speed invariance and stability, which are derived from concepts of keyframes
at single support phase and aggregation in GEI, respectively.

2. State-of-the-art accuracy for cross-speed gait recognition. The pro-
posed SSGEI in conjunction with Gabor filters and a standard metric learning
technique yielded the best accuracy both in terms of verification and identifica-
tion scenarios, compared with other state-of-the-arts approaches to cross-speed
gait recognition, through experiments on publicly available OU-ISIR Treadmill
Dataset A containing the largest speed variations.

3. Low computational cost. The proposed method is also executable with a
low computational cost due to its simplicity, which is more applicable in real-
world surveillance applications, while the state-of-the-art requires relatively high
computational cost.

2 Gait Recognition Using SSGEI

2.1 Representation

As a preprocess, given input images, gait silhouettes have been extracted by
background subtraction-based graph-cut segmentation [21], and then normalized
by the height and registered by the region center to obtain size-normalized and
registered silhouette sequences [8].

We then detect a gait period from lower body parts of the size-normalized
silhouette sequence. Given a body height H, the vertical position of knee was
suggested to be set to 0.285H1 in [22] based on statistics of anatomical data. We
then compute a temporal series of the width of lower body from the foot bottom
to the knee and then find the local maxima and minima as double support
1 The vertical positions of the foot bottom and the head top are represented as 0 and
H, respectively, in this coordinate system.
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Single-support Single-support

7 km/h

4 km/h

2 km/h

t/T0 1

Double-support Double-support Double-support

Fig. 2. Gait period setting and duration for SSGEI along with the size-normalized and
registered silhouette sequence from three different walking speeds. The horizontal axis
t/T means non-dimensional time normalized by the gait period T . Note that frame
intervals are different among the walking speeds due to gait period difference. The
non-dimensional time of two keyframes at single-support phases are represented by
pss,k(k = 1, 2). Two parts of multiple single-support phases within the range [pss,k −
p, pss,k + p](k = 1, 2) are selected to compose subsequences for constructing SSGEI,
where p is a hyper parameter for duration selection.

phases and single support phases, respectively. Thus, we can set a gait period T
[frames] so at that it starts from a double support phase (t = tds,1 = 0), then
goes through two single-support phases (t = tss,1 and t = tss,2) and another
in-between double-support phase (t = tds,2), and finally ends with the third
double-support phase (t = tds,3 = T ), as shown in Fig. 2.

In addition, we convert a time t ∈ Z [frames] into a non-dimensional time
p = t/T ∈ R normalized with the period T so as that the duration around single
support phases can be defined in a rate-invariant way against walking speeds.
Assume that we take 2p duration around the single support phases pss,k(k = 1, 2)
in the non-dimensional time domain, the duration around the k-th single support
phase is defined as [pss,k − p, pss,k + p]. Note that the duration parameter p is
subject to 0 < p � 1/4 (the duration will cover the whole period in case of
p = 1/4).

Once we define the durations, we can convert them back to the original
time domain and obtain the starting and ending frames for the k-th duration
as tsss,k(p) = �(pss,k − p)T � and tess,k(p) = �(pss,k + p)T �, respectively, where �·�
and �·� are ceiling and floor functions.

Now, we can define SSGEI based on the durations. Let a binary silhouette
value at the position (x, y) at the t-th frame in the size-normalized and regis-
tered silhouette sequence, be I(x, y, t), where 0 and 1 indicate background and
foreground, respectively. We then compute SSGEI S(x, y; p) with the duration
parameter p as

S(x, y; p) =
1
2

2∑

k=1

1
tess,k(p) − tsss,k(p) + 1

te
ss,k(p)∑

t=ts
ss,k(p)

I(x, y, t). (1)
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Examples of SSGEI can be found in Fig. 1 and we can see that SSGEI shows
its effectiveness clearly when compared with a single keyframe at single support
phase and GEI.

2.2 The Optimal Duration Estimation

Because a core of the proposed method is to find a good trade-off between
the speed invariance and the stability, we need to carefully select the optimal
duration parameter p. For this purpose, we introduce a well-know criterion for
discrimination capability, i.e., Fisher ratio of between-class distance and within-
class distance using a training set including speed variations.

Suppose that the training set is composed of a set of SSGEIs {S(p)i,j ∈
R

HS×WS }(i = 1, . . . , Nc, j = 1, . . . , ni), where Nc and ni are the number of
training subjects and the number of training samples for the i-th training subject,
and WS and HS are the width and the height of the SSGEI. We then compute
summations of within-class distances and between-class distances as

DW (p) =
Nc∑

i=1

ni∑

j=1

‖Si,j(p) − S̄i(p)‖2F (2)

DB(p) =
Nc∑

i=1

ni‖S̄i(p) − S̄(p)‖2F , (3)

where ‖ · ‖F is Frobenius norm for a matrix, S̄i(p) and S̄(p) are the i-th class
mean and total mean which are given as

S̄i(p) =
1
ni

ni∑

j=1

Si,j(p) (4)

S̄(p) =
∑Nc

i=1 niS̄i(p)
∑Nc

i=1 nc

. (5)

Consequently, the optimal duration parameter p∗ is obtained so as to make
Fisher ratio of the between-class distances and the within-class distances be
maximized as

p∗ = arg max
p

DB(p)
DW (p)

. (6)

2.3 Filtering as Postprocess

Recently, the Gabor-based feature has been demonstrated to be very effective
for gait recognition [20,23,24], since Gabor-functions-based image decomposition
is biologically relevant to image understanding and recognition as reported in
[23,25]. We therefore also introduce the Gabor filtering as a postprocess for the
proposed SSGEI (referred to as Gabor-SSGEI later).
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SSGEI

Gabor Functions

Directions

Scales

Gabor-SSGEI

Fig. 3. Example of Gabor-SSGEI. Here we choose Gabor kernel functions of 8 directions
and 5 scales.

The Gabor wavelets can be defined as [23]

ψs,d(z) =
|k̄s,d|2

δ2
e− |k̄s,d|2‖z‖2

2δ2 [ek(ik̄s,d)·z − e− δ2
2 ], (7)

where z = [x, y]T is a vector representing the spatial location in Gabor kernel
window, i is an imaginary unit. k(·) is a function to transform a complex number
to a two-dimensional real vector. Moreover, k̄s,d = kse

iφd determines the scale
and direction of Gabor functions, where ks = kmax/fs, with kmax = π/2, and
kmax is the maximum frequency, and f is the spacing factor between kernels
in the frequency domain [26]. Consequently, the Gabor kernels in Eq. (7) are
self-similar and each kernel is a product of a Gaussian envelope and a complex
plane wave.

After acquiring Gabor kernel functions of s scales and d directions, we con-
volve the SSGEI with Gabor functions. Similar to [24], we downsample each
Gabor-filtered image from M × N to �M/2 × N/2� for lower computational
cost. Afterwards, all the Gabor-filtered images are aligned to represent the final
feature Gabor-SSGEI, with rows show different scales and the columns show
different directions. The example can be found in Fig. 3.

2.4 Metric Learning

Because direct matching in the original high dimensional feature space often
leads to accuracy degradation as well as high computational cost, we employ
two-dimensional principle component analysis (2DPCA) to reduce the feature
dimension in the column direction.
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Similarly to Subsect. 2.2, suppose that the training set is composed of a set
of Gabor-SSGEIs {Gi,j ∈ R

HG×WG}(i = 1, . . . , Nc, j = 1, . . . , ni), where Nc and
ni are the number of training subjects and the number of training samples for
the i-th training subject, and WG and HG are the width and the height of the
Gabor-SSGEI.

A covariance matrix ST ∈ RWG×WG can be calculated by [27]

ST =
1
N

Nc∑

i=1

ni∑

j=1

(Gi,j − Ḡ)T (Gi,j − Ḡ), (8)

where N is the total number of training samples, and Ḡ is the total mean of all
training samples.

The orthogonal eigenvectors of ST corresponding to the first W ′ largest eigen-
values constitute the optimal projection matrix P ∈ R

WG×W ′
. In our applica-

tions, we make 2DPCA retain 99% of the variance. Once we obtain the projection
matrix P , a dimension reduced feature matrix Yi,j ∈ R

H×W is computed as

Yi,j = (Gi,j − Ḡ)P. (9)

We then try finding a discriminative projection using two-dimensional lin-
ear discriminant analysis (2DLDA) in the row direction after the projection
by 2DPCA. For this purpose, we consider a within-class scatter matrix SW ∈
R

HG×HG and a between-class scatter matrix SB ∈ R
HG×HG [28], which are

computed as

SW =
Nc∑

i=1

ni∑

j=1

(Yi,j − Ȳi)(Yi,j − Ȳi)T (10)

SB =
Nc∑

i=1

ni(Ȳi − Ȳ )(Ȳi − Ȳ )T , (11)

where Ȳi and Ȳ are the i-th class means and total mean in the 2DPCA space.
Finally, a projection q for 2DLDA is obtained so as to maximize the following

criterion defined as a ratio of between-class scatter and within-class scatter as

J(q) =
qT SBq

qT SWq
. (12)

The optimal projection is chosen when the J(q) is maximized, and this problem
can be solved by the generalized eigenvalue problem [28]. Similar to 2DPCA,
the eigenvectors corresponding to the first H ′ largest eigenvalues make up the
optimal projection matrix Q ∈ R

HG×H′
.

Consequently, a dimension reduced matrix Yi,j ∈ R
HG×W ′

in the 2DPCA
space is further transformed to Zi,j ∈ R

H′×W ′
in the 2DLDA space as

Zi,j = QT Yi,j . (13)
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3 Experiments

In this section, we first describe the datasets and parameter settings in Sub-
sect. 3.1, then we design three experiments in Subsects. 3.2, 3.3 and 3.4 respec-
tively, as follows:

1. Analyse the duration parameter p.
2. Compare five features (Keyframe, GEI, SSGEI, Gabor-GEI, Gabor-SSGEI)

w/ and w/o metric learning in both verification (one-to-one matching) and
identification (one-to-many matching) scenarios under speed variations, in
order to confirm the proposed method realizes a good tradeoff between the
speed invariance and the stability as well as confirming the contributions
of individual components. Here, Keyframe is encoded as an average of two
single support phases. In verification scenarios, we adopt an receiver operating
characteristics (ROC) curve which shows a relation between false rejection
rate (FRR) and false acceptance rate (FAR) when an acceptance threshold
changes. In identification scenarios, as a performance evaluation measure, a
cumulative matching characteristics (CMC) curve is used, which indicates
rates that the genuine subjects are included within each of rank [29].

3. Compare the proposed method with the state-of-the-arts by rank-1 identifi-
cation rate.

Finally, we evaluate the computational cost in Subsect. 3.5.

3.1 Datasets and Parameter Settings

For this experiments, we adopted the OU-ISIR Treadmill Dataset A [30], which
contains image sequences of 34 subjects and speed variation ranging from 2 km/h
to 10 km/h at 1 km/h interval to evaluate our method. In this paper, we focus
on speed changes while walking (from 2 km/h to 7 km/h). Nice subjects were
used for training the parameter p as well as 2DPCA and 2DLDA, and the other
disjoint 25 subjects were used for testing.

As for parameter setting in Gabor functions, we set f =
√

2, and used five
scale parameters (i.e., s = 0, 1, 2, 3, 4), and eight orientation parameters φd =
πd/8 for d = 0, 1 . . . 7, following [23,24,26], which summed up to 40 Gabor
functions in total. The number of oscillations under the Gaussian envelope is
determined by δ = 2π. The window size of Gabor filter is 45 × 45 pixels in our
applications.

We empirically set the dimensions of 2DLDA to 90 for the feature whose
dimension is 128 × 88 (Keyframe, GEI, SSGEI) and 110 for the feature whose
dimension is 320 × 352 (Gabor-GEI, Gabor-SSGEI), respectively.

3.2 Analysis on the Optimal Duration Parameter

As described in Subsect. 2.1, we select the optimal duration parameter p within
0 < p � 1/4. Concretely speaking, we empirically prepared a discrete set of
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(a) Fisher ratio using training set (b) Rank-1 identification on testing
set

Fig. 4. Duration parameter analysis.

parameter candidates as p ∈ {i/40}(i = 1, 2, . . . , 10) at 1/40 interval (when
p = 10/40, the whole period is included in the duration). We report the Fisher
ratio (Eq. (6)) corresponding to each parameter candidate p in Fig. 4(a). As a
result, Fisher ratio is the largest for p = 3/40, and hence we adopted p∗ = 3/40
in our experiments.

As for reference, we made sensitivity analysis of the duration parameter p on
rank-1 identification rate for the testing set in order to investigate the generaliza-
tion capability. Although the rank-1 identification rates over duration parameter
p is not so smooth due to limited number of testing subjects (i.e., 25 subjects), it
is still worth mentioning to that the best rank-1 identification rate is obtained at
the same optimal duration p∗ = 3/40, which shows the generality of the duration
parameter p.

3.3 Feature Comparison

In this section, five features (Keyframe, GEI, SSGEI, Gabor-GEI, Gabor-SSGEI)
were tested w/o and w/ metric learning. For this purpose, we choose a pair of
galleries at 4 km/h and probes at each speed from 2 km/h to 7 km/h as examples.

Firstly, the accuracy in verification scenarios was evaluated with ROC curves
in Fig. 5. When the differences of walking speeds between gallery and probe are
small (see Fig. 5(b) for example), all the features get relatively good results.
However, since Keyframe aggregates only two frames at single support phases in
a period, it performs the worst when gallery and probe are the same speed (see
Fig. 5(c)), where the stability is more meaningful than the speed invariance.

On the other hand, when the differences of walking speeds between gallery
and probe becomes larger (see Fig. 5(f) for example), it is clearly seen that the
result of GEI becomes worse as it is very sensitive to the walking speed change.
In contrast, the proposed SSGEI yielded the better results in both cases of small
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Fig. 5. ROC curves for five features in two stages (w/o and with metric learning).
Gallery speed is 4 km/h and probe speed is from 2 km/h to 7 km/h.

and large speed change. What is more, when combined with Gabor filtering and
2DPCA, 2DLDA, the propose SSGEI achieved the best accuracy as a whole, and
successfully suppress EER to 4.0% even at the worst case.

Next, we evaluate the accuracy in identification scenarios. Similarly, CMCs
show performance of each feature w/o and with metric learning for each probe
in Fig. 6. The results were basically consistent with those in the verification
scenarios. Obviously, the proposed method (Gabor-SSGEI + 2DPCA + 2DLDA)
yielded the highest accuracy, with 100% rank-1 identification rates in all the six
pairs.

For a clearer and more intuitive explanation, we give examples of five fea-
tures in Fig. 7 with a pair of true and false matches and also their corresponding
subtraction and Euclidean distance. The subtraction images and Euclidean dis-
tances illustrate that, Keyframe, GEI, SSGEI, and Gabor-GEI all result in a
false match since Euclidean distances for the false match is smaller than the
true match. On the other hand, the proposed Gabor-SSGEI results in the true
matches due to the good tradeoff between speed invariance and stability, as well
as effectiveness of Gabor filtering.
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Fig. 6. CMC curves for five features in two stages (w/o and with metric learning).
Gallery speed is 4 km/h and probe speed is from 2 km/h to 7 km/h.

Finally, for a comprehensive evaluation, we also give rank-1 identification
rates of the five features averaged over all of the 36 (= 6 × 6) combinations of
walking speeds in probe and gallery in Table 1.

As a result, the performance of SSGEI w/o and w/ metric learning are both
better than Keyframe and GEI, which shows that the proposed SSGEI realizes a
good tradeoff between the speed invariance and the stability as feature represen-
tation, and it is consistent with the results in Figs. 5, 6 and 7. In addition, if we
exclude one of individual components SSGEI, Gabor filtering, and metric learn-
ing, from the full proposed method, the rank-1 identification rates drop from
the best one, 99.33% for the full proposed method, i.e., Gabor-SSGEI w/ metric
learning, to 96.89% for Gabor-GEI w/ metric learning, 87.67% for SSGEI w/
metric learning, and 95.11% for Gabor-SSGEI w/o metric learning, respectively,
which indicates individual components substantially contribute to the proposed
method.

3.4 Comparison with State-of-the-arts

In this section, the proposed method is compared with the state-of-the-
arts of cross-speed gait recognition, i.e., hidden Markov model (HMM)-based
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Gabor-GEI
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Directions

Fig. 7. Comparison examples of five features. Gallery speed is 4 km/h and probe speed
is 2 km/h. (a) Probe. (b) False match in gallery (imposter). (c) True match in gallery
(genuine). (d) Subtraction and corresponding Euclidean distance for false match. (e)
Subtraction and corresponding Euclidean distance for true match.

Table 1. Rank-1 identification rates [%] of the five features w/o and w/ metric leaning
averaged over all the 36 combinations of walking speeds in probe and gallery.

Keyframe GEI SSGEI Gabor-GEI Gabor-SSGEI

w/o metric learning 74.89 62.56 80.33 84.00 95.11

w/ metric learning 84.44 85.89 87.67 96.89 99.33

approach [17], stride normalization (SN) [16], speed transformation model
(STM) [15], differential composition model (DCM) [19], random subspace
method (RSM) [20]. Following these works, we also report rank-1 identifica-
tion rates to measure accuracy on cross-speed gait recognition. Although it is
naturally preferable to evaluate the benchmarks using the same database under
the same protocol, some of the benchmarks employed different databases (the
number of subjects is almost consistent across the database used) and hence we
set up similar experimental setup as much as possible as also doing the same
thing in [15,20].
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Table 2. Rank-1 identification rate [%] of different algorithms in case of small and
large speed changes.

Speed change HMM SN STM DCM RSM Proposed method

Small (3 km/h and 4 km/h) 84 - 90 98 100 100

Large (2 km/h and 6 km/h) - 35 58 82 95 98

Table 3. Averaged rank-1 identification rates [%] of DCM, RSM, and the proposed
method.

Algorithms Rank-1 identification rate

DCM 92.44

RSM 98.07

Proposed method 99.33

Table 4. Rank-1 identification rate (%) of the proposed method in all the 36 combi-
nations of walking speeds.

Probe Gallery

2 km/h 3 km/h 4 km/h 5 km/h 6 km/h 7 km/h

2 km/h 100 100 100 100 96 96

3 km/h 100 100 100 100 100 92

4 km/h 100 100 100 100 100 92

5 km/h 100 100 100 100 100 100

6 km/h 100 100 100 100 100 100

7 km/h 100 100 100 100 100 100

For example, SN [16] was evaluated with a different gait database whose
walking speed differences were 2.5 km/h and 5.8 km/h, and hence we compared
it with the matching results between 2 km/h and 6 km/h by the other methods.
Moreover, HMM [17] also employed a different gait database whose walking
speed difference is 3.3 km/h and 4.5 km/h, and hence we compared it with the
matching results between 3 km/h and 4 km/h by the other methods.

Results are shown in Table 2. In addition, the rank-1 identification rates aver-
aged over all the 36 combinations of walking speeds for the best three methods
in Table 2, i.e., DCM [19], RSM [20], and the proposed method, are listed in
Table 3. Moreover, rank-1 identification rates of 36 individual combinations of
walking speeds for the proposed method are reported in Table 4.

From Tables 2, 3 and 4, the proposed method clearly outperforms the other
algorithms, in particular in case of large speed changes.
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Table 5. Running time [s] of the proposed method.

Running stage Time cost

Training time in optimizing duration parameter 0.009

Training time in 2DPCA and 2DLDA 0.115

Query time of each sequence 0.003

3.5 Evaluation of Running Time

To test the computational cost, Matlab code of the proposed method wad run
on a PC with Intel Core i7 4.00 GHz processor and 32 GB RAM. The training
time of parameter for optimizing duration and metric learning method, as well
as the query time of each sequence are listed in Table 5. The result demonstrates
the computational cost of the proposed method is very low and suitable for
real applications, while some of the benchmarks requires high computational
cost such as model fitting in [15] and substantial number of random projections
in [20].

4 Conclusion

This paper presents a speed invariant as well as stable gait representation called
SSGEI to cope with cross-speed gait recognition. In order to realize a good
trade-off between the speed-invariance and the stability, we choose the optimal
duration around single support phases so as to maximize Fisher ratio using a
training set. SSGEI is then computed by aggregating multiple frames for the
optimal duration and is further combined with Gabor filters and metric learning
for better performance. Comprehensive experiments illustrated the effectiveness
of the proposed method, which outperformed other state-of-the-art methods,
with a low time consuming as well.

Since we focused on the cross-speed gait recognition within walking style
in this work, a future research avenue is speed-invariant gait recognition across
different modes, i.e., walking and running, which may often the case with real-
world scenes.
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Abstract. The figure-ground segmentation of humans in images cap-
tured in natural environments is an outstanding open problem due to
the presence of complex backgrounds, articulation, varying body pro-
portions, partial views and viewpoint changes. In this work we propose
class-specific segmentation models that leverage parametric max-flow
image segmentation and a large dataset of human shapes. Our contri-
butions are as follows: (1) formulation of a sub-modular energy model
that combines class-specific structural constraints and data-driven shape
priors, within a parametric max-flow optimization methodology that sys-
tematically computes all breakpoints of the model in polynomial time;
(2) design of a data-driven class-specific fusion methodology, based on
matching against a large training set of exemplar human shapes (100,000
in our experiments), that allows the shape prior to be constructed on-the-
fly, for arbitrary viewpoints and partial views.

1 Introduction

Detecting and segmenting people in real-world environments are central prob-
lems with applications in indexing, surveillance, 3D reconstruction and action
recognition. Prior work in 3D human pose reconstruction from monocular images
[1–3], as well as more recent, successful RGB-D sensing systems based on Kinect
[4] have shown that the availability of a figure-ground segmentation opens paths
towards robust and scalable systems for human sensing. Despite substantial
progress, the figure-ground segmentation in RGB images remains extremely chal-
lenging, because people are observed from a variety of viewpoints, have complex
articulated skeletal structure, varying body proportions and clothing, and are
often partially occluded by other people or objects in the scene. The complexity
of the background further complicates matters, particularly as any limb decom-
position of the human body leads to parts that are relatively regular but not
sufficiently distinctive even when spatial connectivity constraints are enforced
[5]. Set aside appearance inhomogeneity and color variability due to clothing,
which can overlap the background distribution significantly, it is well known that
c© Springer International Publishing AG 2017
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many of the generic, parallel line (ribbon) detectors designed to detect human
limbs, fire at high false positive rates in the background. This has motivated
work towards detecting more distinctive part configurations, without restrictive
assumptions on part visibility (e.g. full or upper view of the person), for which
poselets [6] have been a successful example. However, besides relatively high
false positive rates typical in detection, the transition from a bounding box of
the person to a full segmentation of the human body is not straightforward. The
challenge is to balance, on one hand, sufficient flexibility towards representing
variability due to viewpoint, partial views and articulation, and, on the other
hand, sufficient constraints in order to obtain segmentations that correspond to
meaningful human shapes, all relying on region or structural human body part
detectors that may only be partial or not always spatially accurate.

In this work we attempt to connect two relevant, recent lines of work, for the
segmentation of people in real images. We rely on bottom-up figure-ground gen-
eration methods and region-level person classifiers in order to identify promising
hypotheses for further processing. In a second pass, we set up informed con-
straints towards (human) class-specific figure-ground segmentation by leverag-
ing skeletal information and data-driven shape priors computed on-the-fly by
matching region candidates against exemplars of a large, recently introduced
human motion capture dataset containing 3D and 2D semantic skeleton infor-
mation of people, as well images and figure-ground masks from background sub-
traction (Human3.6M [7]). By exploiting globally optimal parametric max-flow
energy minimization solvers, this time, based on a class dependent (as opposed
to generic and regular) foreground seeding process [8–10], we show that we can
considerably improve the quality of competitive object proposal generators. To
our knowledge, this is one of the first formulations for class-specific segmenta-
tion that in principle can handle multiple viewpoints and any partial view of the
person. It is also one of the first to leverage a large dataset of human shapes,
together with semantic structural information, which until recently, have not
been available. We show that such constraints are critical for accuracy, robust-
ness, and computational efficiency.

1.1 Related Work

The literature on segmentation is huge, even when considering only sub-
categories like top-down (class-specific) and bottom-up segmentation. Humans
are of significant interest to be devoted special methodology, and that proves to
be effective [5,6,11–18]. One approach is to consider shape as category-specific
property and integrate it within models that are driven by bottom-up process-
ing [19–24]. Pishchulin et al. [23] develop pictorial structure formulations con-
strained by poselets, focusing on improving the response quality of an articulated
part-based human model. The use of priors based on exemplars has also been
explored, in a data-driven process. Both [25,26] focus on a matching process
in order to identify exemplars that correspond to similar scene or object lay-
outs, then used in a graph cut process that enforces spatial smoothness and
provides a global solution. Our approach is related to such methods, but we use
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a novel data-driven prior construction, enforce structural constraints adapted
to humans, and search the state space exhaustively by means of parametric
max-flow. In contrast to priors used in [25,26], which require a more repeatable
scene layout, we focus on a prior generation process that can handle a diverse
set of viewpoints and arbitrary partial views, not known a-priori, and different
across the detected instances. Recently, there has been a rapid development of
deep learning techniques towards the scene understanding task with focus on
semantic segmentation [27–29], including humans.

Methods like [30] resemble ours in their reliance on a detection stage and the
principle of matching that window representation against a training set where
figure-ground segmentations are available, then optimizing an energy function
via graph-cuts. Our window representation contains additional detail and this
makes it possible to match exemplars based on the identified semantic content.
Our matching and shape prior construction are optimized for humans, in con-
trast to the generic ones used in [30] (which can however segment any object,
not just people, as is our focus here1). We use a large prior set of structurally
annotated human shapes, and search the state space using a different, para-
metric multiple hypotheses scheme. Our prior construction uses, among other
elements, a Procrustes alignment similar to [31] but differently: (1) we use it for
shape prior construction (input dependent, on-the-fly) within the energy opti-
mizer as opposed to object detection (classification, construction per class) as
in [31], (2) we only use instances that align well with the query, thus reflecting
accurate shape models, as opposed to fusing top-k instances to capture class
variability in [31]. An alternative, interesting formulation for object segmenta-
tion with shape priors is branch-and-mincut [32], who propose a branch and
bound procedure in the compound space of binary segmentations and hierarchi-
cally organized shapes. However, the bounding process used for efficient search
in shape space would rely on knowledge of the type of shapes expected and
their full visibility. We focus on a different optimization and modeling approach
that can handle arbitrary occlusion patterns of shape. Our prior constraint for
optimization is generated on-the-fly by fusing the visible exemplar components,
following a structural alignment scheme.

Recently, there has been a resurrection of bottom-up segmentation methods
based on multiple proposal generation, with surprisingly good results consider-
ing the low-level processing involved. Some of these methods generate segment
hypotheses either by combining the superpixels [33] of a hierarchical clustering
method [34–37], by varying the segmentation parameters [38] or by searching
an energy model, parametrically, using graph cuts [10,38–42]. Most of the latter
techniques use mid-level shape priors for selection, either following hypotheses

1 Notice, however, that the methodology we propose is also applicable to other cate-
gories than people. Here we focus on humans because for now, large training sets of
segmented shapes with structural annotations are available only for them, through
Human3.6M [7]. But, as large datasets for other object categories emerge, we expect
our methodology to generalize well. In this respect, our results on a challenging
visual category, humans, are indicative of the performance bounds one can expect.
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generation [10,38,40] or during the process. Some methods provide a ranking,
diversification and compression of hypotheses, using e.g. Maximal Marginal Rel-
evance (MMR) diversification [10,38], whereas others report an unordered set
[39,40]. Hypotheses pool sizes in the order of 1,000–10,000 range in the expan-
sionary phase, and compressed models of 100–1,000 hypotheses following the
application of trained rankers (operating on mid-level features extracted from
segments) with diversification, are typical, with variance due to image com-
plexity and edge structure. While prior work has shown that such hypotheses
pools can contain remarkably good quality segments (60−80% intersection over
union, IoU, scores are not uncommon) this leaves sufficient space for improve-
ment particularly since sooner or later, one is inevitably facing the burden of
decision making: selecting one hypothesis to report. It is then not uncommon
for performance to sharply drop to 40%. This indicates that constraints and
prior selection methods towards more compact, better quality hypotheses sets
are necessary. Such issues are confronted in the current work.

2 Methodology

We consider an image as I : V → R3, where V represents the set of nodes, each
associated with a pixel in the image, and the range is the associated intensity
(RGB) vector. The image is modeled as a graph G = (V, E). We partition the set
of nodes V into two disjoint sets, corresponding to foreground and background,
represented by labels 1 and 0, respectively. Seed pixels Vf and Vb are subsets of
V and they are constrained to foreground and background, respectively. E is the
subset of edges of the graph G which reflect the connections between adjacent
pixels. The formulation we propose will rely on object (or foreground) struc-
tural skeleton constraints obtained from person detection and 2D localization
(in particular the identification of keypoints associated with the joints of the
human body, and the resulting set of nodes corresponding to the human skele-
ton, obtained by connecting keypoints, T ⊆ V), as well as a data-driven, human
shape fusion prior S : V → [0, 1], constructed ad-hoc by fusing similar configu-
rations with the one detected, based on a large dataset of human shapes with
associated 2D skeleton semantics (see Sect. 2.1 for details). The energy function
defined over the graph G, with X = ∪{xu} being the set of all image pixels, is:

Eλ(X) =
∑

u∈V
Uλ(xu) +

∑

(u,v)∈E
Vuv(xu, xv) (1)

where

Uλ(xu) = Dλ(xu) + S(xu)

with λ ∈ R, and unary potentials given by semantic foreground constraints
Vf ← T :
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Dλ(xu) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xu = 1, u /∈ Vb

∞ if xu = 1, u ∈ Vb

∞ if xu = 0, u ∈ Vf

f(xu) + λ if xu = 0, u /∈ Vf

(2)

The foreground bias is implemented as a cost incurred by the assignment of
non-seed pixels to background, and consists of a pixel-dependent value f(xu)
and an uniform offset λ. Two different functions f(xu) are used alternatively.
The first is constant and equal to 0, resulting in a uniform (variable) foreground
bias. The second function uses color. Specifically, RGB color distributions pf (xu)
on seed Vf and pb(xu) on seed Vb are estimated and derive f(xu) = ln pf (xu)

pb(xu)
.

The probability distribution of pixel j belonging to the foreground is defined as
pf (i) = exp(−γ · minj(||I(i) − I(j)||)), with γ a scaling factor, and j indexes
representative pixels in the seed region, selected as centers resulting from a
k -means algorithm (k is set to 5 in all of our experiments). The background
probability is defined similarly.

The pairwise term Vuv penalizes the assignment of different labels to similar
neighboring pixels:

Vuv(xu, xv) =
{

0 if xu = xv

g(u, v) if xu �= xv
(3)

with similarity between adjacent pixels given by g(u, v) = exp[
−max(Gb(u),Gb(v))

σ2

]
. Gb returns the output of the multi-cue contour detector

[43,44] at a pixel location. The boundary sharpness parameter σ controls the
smoothness of the pairwise term.

The function f(xu) is the same as in the CPMC [10] algorithm. It takes two
forms, the first is constant and acts as a foreground bias and the second uses
color information, particularly the color distribution of the seed pixels computed
with k-means algorithm. The energy function defined by (1) is submodular and
can be optimized using parametric max-flow, in order to obtain all breakpoints
of Eλ(X) as a function of (λ,X) in polynomial time. The advantage of our
approach is that it can be used with any object proposal generator based on
graph-cut energy minimization.

Given the general formulation in (1) and (2), the key problems to address
are: (a) the identification of a putative set of person regions and structural
constraints hypotheses T ; (b) the construction of an effective, yet flexible data-
driven human shape prior S, based on a sufficiently diverse dataset of people
shapes and skeletal structure, given estimates for T . (c) minimization of the
resulting energy model (1). We address (a) without loss of generality, using a
human region classifier (any other set of structural, problem dependent detectors
can be used, here e.g. face and hand detectors based on skin color models or
poselets). We address (b) using methodology that combines a large dataset of
human pose shapes and body skeletons, collected from Human3.6M [7] with
shape matching, alignment and fusion analysis, in order to construct the prior
on-the-fly, for the instance being analyzed. We refer to a model that leverages
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both problem-dependent structural constraints T and a data-driven shape prior
S, in a single joint optimization problem, as Constraint Parametric Problem
Dependent Cuts with Shape Matching. Alignment and Fusion (CPDC-MAF).
The integration of bottom-up region detection constraints with a shape prior
construction is described in Sect. 2.1. The CPDC-MAF model can be optimized
in polynomial time using parametric max-flow, in order to obtain all breakpoints
of the associated energy model (addressing c).

2.1 Data-Driven Shape Matching, Alignment and Fusion (MAF)

We aim to obtain an improved figure-ground segmentation for persons by com-
bining bottom-up and top-down, class specific information. We initialize our pro-
posal set using CPMC. While any figure-ground segmentation proposal method
can be employed in principle, we choose CPMC due to its performance and
because our method can be viewed as a generalization with problem depen-
dent seeds and shape priors. We filter the top N segment candidates using an
O2P-region classifier [45] trained to respond to humans, using examples from
Human3.6M, to obtain D = {di = {z,b}, |i = 1, . . . N}. Each candidate segment
is represented by a binary mask z, where 1 stands for foreground and 0 stands
for background, and a bounding box b ∈ R

4 where b = (m,n,w, h); m and n
represent the image coordinates of the bottom left corner of the bounding box,
w and h represents its width and its height.

We use the set of human region candidates in order to match against a set
of human shapes and construct a shape prior. There are challenges however,
particularly being able to: (1) access a sufficiently representative set of human
shapes to construct the prior, (2) be sufficiently flexible so that human shapes
from the dataset, which are very different from the shape being analyzed, would
not negatively impact estimates, (3) handle partial views—while we rely on
bottom-up proposals that can handle partial views, the use, in contrast, of a
shape prior that can only represent, e.g. full or upper-body views, would not be
effective.

We address (1) by employing a dataset of 100,000 human shapes together
with the corresponding skeleton structure, sub-sampled from the recently created
Human3.6M dataset [7]; (2) by employing a matching, alignment and fusion
technique between the current segment and the individual exemplar shapes in the
dataset. Shapes and structures which cannot be matched and aligned properly
are discarded. (3) is adressed by leveraging the implicit correspondences available
across training shapes, at the level of local shape matches, by only aligning and
warping those components of the exemplar shapes that can be matched to the
query. A sample flow of our entire method can be visualized in Figs. 1 and 2.

Boundary Point Sampling: Given a bottom-up figure-ground proposal repre-
sented as a binary mask z ∈ D, we sample through the image coordinates of the
boundary points of the foreground segment. Thus we obtain a set of 2D points
pj , j = 1, . . . , K with pj ∈ R

2 where pj = (xj , yj). We loop through the shapes
of our human shape dataset Human3.6M and, for each shape, we rotate and
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Fig. 1. Our Shape Matching Alignment Fusion (MAF) construction based on semantic
matching, structural alignment and clipping, followed by fusion, to reflect the partial
view. Notice that the prior construction allows us to match partial views of a putative
human detected segment to fully visible exemplars in Human3.6M. This allows us to
handle arbitrary patterns of occlusion. We can thus create a well adapted prior, on-
the-fly, given a candidate segment.

Fig. 2. Processing steps of our segmentation methods based on Constrained Paramet-
ric Problem Dependent Cuts (CPDC) with shape Matching, Alignment and Fusion
(MAF).

scale it so that it has the same orientation and scale as the foreground candidate
segment and sample through its boundary points. Thus we obtain a set of 2D
points qjl, j = 1, . . . , K, with l = 1, . . . , L, where L represents the number of
poses in the shape-pose dataset, in our case L = 100, 000.

Shape Matching and Transform Matrix: We employ the shape context
descriptor [46] at each position pj from the candidate segment and at each posi-
tion qjl. We evaluate a χ2 distance [47] on the resulting descriptors to select the
indexes l with sufficient good matches, such that we estimate an affine transfor-
mation.

We apply a 2D Procrustes transform with 5 degrees of freedom (rotation,
anisotropic scaling including reflections, and translation) on each qjl in order
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to align each shape in the dataset with the corresponding boundary point. This
results in a 3 × 3 transformation matrix Wl and an error for the transform, el

(average over ejl, j = 1, . . . , K) which represents the Euclidean distance between
the boundary points pj and the Procrustes transformed ones, Wl · qjl, in the
image plane.

Prior Shape Selection and Warping: In order to determine which prior
shapes are relevant for the current detected query, we identify the subset of
indexes in the dataset T which correspond to transformation errors that are
smaller than a given threshold ε. Thus, we obtain the corresponding figure-
ground masks mt, t ∈ T . For each mask mt, we select the coordinates of fore-
ground pixels and warp them using the transform matrix computed using the 2D
joint coordinates transformation. We apply the same procedure to the attached
skeleton configuration of the corresponding mask. Thus, we obtain the coordi-
nates of the foreground pixels for the transformed mask, Φt and the transformed
skeleton coordinates Ψt.

Prior Shape Fusion: We compute the mean of the entire set of transformed
masks, Φt, obtaining a MAF prior, S, corresponding to the detection d as seen
in Fig. 1. The values of the shape prior mask range from 0 to 1, background and
foreground probabilities, respectively. Also, we compute the mean of the entire
set of transformed skeletons Ψt, obtaining a configuration of keypoints B ∈ R

3×15

with Bj = (x, y, 1) where x and y represent the image coordinates of the warped
joint from Human3.6M. This can be used to obtain a problem dependent mask
m as follows. Initially we set the mask to have the same dimension as the entire
image, filled with 0. We use Bresenham’s algorithm to draw a line between
the semantically adjacent joints, for example: left elbow - left wrist, right hip -
right knee, and so on. We assign the set of skeleton nodes to the foreground
as T = {i ∈ V|m(i) = 1}. This entire procedure of obtaining the shape prior
information (mask and skeleton) is illustrated in Algorithm1.

3 Experiments

We test our methodology on two challenging datasets: H3D [48] which contains
107 images and MPII [49] with 3799 images. We have figure-ground segmentation
annotations available for all datasets. For the MPII dataset, we generate figure-
ground human segment annotations ourselves. Both the H3D and the MPII
datasets contain both full and partial views of persons with self-occlusion which
makes them extremely challenging.

We run several segmentation algorithms including CPMC [10] as well as our
proposed CPDC-MAF, where we use bottom-up person region detectors trained
on Human3.6M, and region descriptors based on O2P [45]. We also constructed
a model referred to as CPDC-MAF-POSELETS, built using problem dependent
seeds based on a 2D pose detector instead of the proposed segments of a figure-
ground segmentation algorithm. While any methodology that provides body
keypoints (parts or articulations) is applicable, we choose the poselet detector
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Algorithm 1. Calculate S and B (Shape Matching, Alignment and Fusion,
MAF)
Require:

di = {z,b}
dl, l = 1, . . . , L - 2D joint positions (Human3.6M)
ml, l = 1, . . . , L - figure-ground masks (Human3.6M)
L - number of poses (Human3.6M, use L = 100, 000)
ε - threshold value for transform error
f(·) - shape context descriptor
μ - threshold value for χ2 for shape context descriptors

Ensure: S, B
Sample boundary points pj , j = 1, . . . , K on z
for l ∈ L do

Sample K boundary points qjl, j = 1, . . . , K on ml

J = {(x, y) ∈ N
2|χ2(f(qxl), f(py)) < μ}

if |J | > 2 then
ajl(W) = pj − W · qjl

Wl = argmin
W

1
|K|
∑

j∈K ajl(W)�ajl(W)

el = 1
|K|
∑

j∈K ajl(Wl)
�ajl(Wl)

else
el = ∞

end if
end for
T = {l ∈ L|el < ε}
for t ∈ T do

Vf - foreground pixels of mt; Vb - background pixels of mt

V = Vb ∪ Vf

for u ∈ V do
if u ∈ Vf then

Φt(Wt · u) = 1
else

Φt(Wt · u) = 0
end if

end for
Ψt = Wt · dl

end for
S = 1

|T |
∑

t∈T Φt; B = 1
|T |
∑

t∈T Ψt

because it provides results under partial views of the body, or self occlusions of
certain joints together with joint position estimates. Conditioned on a detection,
we apply the same idea as in our CPDC-MAF, except that we use the detected
skeletal keypoints to match against the exemplars in the Human3.6M dataset.
A matching process based on semantic keywords (the body joints) is explicit,
immediate (since joints are available both for the putative poselet detector and
for the exemplar shapes in Human3.6M) and arguably simpler than matching
shapes in the absence of skeletal information. The downside is that when the
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poselet detection is incorrect, the matching will also be (notice that alignments
with high score following matching are nevertheless discarded within the MAF
process).

We initialize CPDC-MAF, bottom-up, by using candidate segments from
CPMC pool, selected based on their person ranking score after applying the
O2P classifier. This is followed by a non-maximum suppression step were we
remove the pair of segments with an overlap above 0.25. We use the MAF
process to reject irrelevant candidates and to build shape prior masks and skele-
ton configuration seeds for the segments with good matching produced by shape
context descriptors. On each resulting shape prior and skeleton seeds, we run
the CPDC-MAF model with the resulting pools from each candidate segment
merged to obtain the human region proposals for an entire image.

Table 1. Accuracy and pool size statistics for different methods, on data from H3D
and MPII. We report average IoU over test set for the first segment of the ranked pool
and the ground-truth figure-ground segmentation (First), the average IoU over test set
of the segment with the highest IoU with the ground-truth figure-ground segmentation
(Best) and average pool size (Pool Size).

Method H3D test set [48] MPII test set [49]

First Best Pool size First Best Pool size

CPMC [10] 0.54 0.72 783 0.29 0.73 686

CPDC - MAF 0.60 0.72 77 0.55 0.71 102

CPDC - MAF - POSELETS 0.53 0.6 98 0.43 0.58 116

Fig. 3. Dimension of segmentation pool for MPII and various methods along with
average pool size (in legend). Notice significant difference between the pool size values
of CPDC-MAF-POSELETS and CPDC-MAF compared to the ones of CPMC. CPMC
pool size values maintain an average of 700 units, whereas the pool sizes of CPDC-MAF
and CPDC-MAF-POSELETS are considerably smaller, around 100 units.

For each testing setup, we report the mean values (computed over the entire
testing dataset) of the intersection over union (IoU) scores for the first segment
in the ranked pool and the ground-truth figure-ground segmentation for each
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Fig. 4. IoU for the first segment from the ranked pool in MPII. The values for CPMC
and CPDC-MAF-POSELETS have higher variance compared to CPDC-MAF resulting
in the performance drop illustrated by their average.

Fig. 5. Sample of generated segments for images from MPII. From left to right, original
image, top 5 first ranked segments of the CPDC-MAF generated pool of segments.

image. We also report the mean values of the IoU scores for the pool segment
with the best IoU score with the ground-truth figure ground segmentation.

Results for different datasets can be visualized in Table 1. In turn, Figs. 3, 4
show plots for the size of the segment pools and IoU scores for highest ranked
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Fig. 6. Segmentation examples for various methods. From left to right, original image,
CPMC with default settings on person’s bounding box, CPDC-MAF-POSELETS and
CPDC-MAF. See also Table 1 for quantitative results.
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Fig. 7. Segmentation examples for difficult cases including partial views and occlusions.
From left to right, original image, CPMC with default settings on person’s bounding
box, CPDC-MAF-POSELETS and CPDC-MAF.
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segments generated by different methods, with image indexes sorted according
to the best performing method (CPDP-MAF). Qualitative segmentation results
for the various methods tested are given in Figs. 6 and 7. Also, we illustrate
sample results with top ranked pool of segments in Fig. 5.

4 Conclusions

We have presented class-specific image segmentation models that leverage human
body part detectors based on bottom-up figure-ground proposals, parametric
max-flow solvers, and a large dataset of human shapes. Our formulation leads
to a sub-modular energy model that combines class-specific structural con-
straints and data-driven shape priors, within a parametric max-flow optimization
methodology that systematically computes all breakpoints of the model in poly-
nomial time. We also propose a data-driven class-specific prior fusion method-
ology, based on shape matching, alignment and fusion, that allows the shape
prior to be constructed on-the-fly, for arbitrary viewpoints and partial views. We
demonstrate competitive results in two challenging datasets: H3D [48] and MPII
[49], where we improve the first ranked hypothesis estimates of mid-level seg-
mentation methods by 20%, with pool sizes that are up to one order of magnitude
smaller. In future work we will explore additional class-dependent seed gener-
ation mechanisms and plan to study the extension of the proposed framework
to video.
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Abstract. Our aim is to recognise the words being spoken by a talking
face, given only the video but not the audio. Existing works in this area
have focussed on trying to recognise a small number of utterances in
controlled environments (e.g. digits and alphabets), partially due to the
shortage of suitable datasets.

We make two novel contributions: first, we develop a pipeline for fully
automated large-scale data collection from TV broadcasts. With this we
have generated a dataset with over a million word instances, spoken by
over a thousand different people; second, we develop CNN architectures
that are able to effectively learn and recognize hundreds of words from
this large-scale dataset.

We also demonstrate a recognition performance that exceeds the state
of the art on a standard public benchmark dataset.

1 Introduction

Lip-reading, the ability to understand speech using only visual information, is
a very attractive skill. It has clear applications in speech transcription for cases
where audio is not available, such as for archival silent films or (less ethically)
off-mike exchanges between politicians and celebrities (the visual equivalent of
open-mike mistakes). It is also complementary to the audio understanding of
speech, and indeed can adversely affect perception if audio and lip motion are
not consistent (as evidenced by the McGurk [23] effect). For such reasons, lip-
reading has been the subject of a vast research effort over the last few decades.
It has also been the subject of excellent comedy sketches, e.g. Seinfeld “The Lip
Reader”, and its ambiguity and challenge can be exploited to replace/overdub
actual speech, e.g. in the YouTube channel “Bad Lip Reading”.

Our objective in this work is a scalable approach to large lexicon speaker
independent lip-reading. Furthermore, we aim to recognize words from continu-
ous speech, where words are not segmented, and there may be co-articulation of
the lips from preceding and subsequent words.

In lip-reading there is a fundamental limitation on performance due to
homophemes. These are sets of words that sound different, but involve identical
movements of the speaker’s lips. Thus they cannot be distinguished using visual
information alone. For example, in English the phonemes ‘p’ ‘b’ and ‘m’ are visually
identical, and consequently the words mark, park and bark, are homophemes (as
c© Springer International Publishing AG 2017
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are pat, bat and mat) and so cannot be distinguished by lip-reading. This problem
has been well studied and there are lists of ambiguous phonemes and words avail-
able [8,21]. It is worth noting that the converse problem also applies: for example
‘m’ and ‘n’ are easily confused as audio, but are visually distinct. We take account
of such homopheme ambiguity in assessing the performance of our methods.

Apart from this limitation, lip-reading is a challenging problem in any case
due to intra-class variations (such as accents, speed of speaking, mumbling), and
adversarial imaging conditions (such as poor lighting, strong shadows, motion,
resolution, foreshortening, etc.).

The usual approach to inference for temporal sequences is to employ sequence
models such as Hidden Markov Models or Recurrent Neural Networks (e.g.
LSTMs). For lip-reading such models can be employed for predicting individual
characters or phonemes. In contrast, we investigate using Convolutional Neural
Networks (CNNs) for directly recognizing individual words from a sequence of
lip movements.

Clearly, visual registration is an important element to consider in the design
of the networks. Typically, the imaged head will move in the video, either due
to actual movement of the head or due to camera motion. One approach would
be to tightly register the mouth region (including lips, teeth and tongue, that
all contribute to word recognition), but another is to develop networks that are
tolerant to some degree of motion jitter. We take the latter approach, and do
not enforce tight registration.

We make contributions in two areas: first, we develop a pipeline for auto-
mated large scale data collection, including visual and temporal alignment. With
this we are able to obtain training data for hundreds of distinct words, thou-
sands of instances for each word, and over a thousand speakers (Sect. 2); second,
we develop CNN architectures for classifying multi-frame time series of lips. In
particular we propose and compare different input and temporal fusion archi-
tectures, and discuss their pros and cons (Sect. 3). We analyse the performance
and ambiguity of the resulting classifications in Sect. 4.

As discussed in the related work below, in these three aspects: speaker inde-
pendence, learning from continuous speech, and lexicon (vocabulary) size, we go
far beyond the current state of the art. We also exceed the state of the art in
terms of performance, as is also shown in Sect. 4 by comparisons on the standard
OuluVS benchmark dataset [1,43].

1.1 Related Work

Research on lip reading (a.k.a. visual speech recognition) has a long history.
A thorough survey of shallow (i.e. not deep learning) methods is given in the
recent review [45], and will not repeated in detail here. Many of the existing
works in this field have followed similar pipelines which first extract spatio-
temporal features around the lips (either motion-based, geometric-feature based
or both), and then align these features with respect to a canonical template. For
example, Pei et al. [28], which holds state-of-the-art on many datasets, extracts
the patch trajectory as a spatiao-temporal feature, and then aligns these features
to reference motion patterns.
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A number of recent papers have used deep learning methods to tackle prob-
lems related to lip reading. Koller et al. [16] train an image classifier CNN to
discriminate visemes (mouth shapes, visual equivalent of phonemes) on a sign
language dataset where the signers mouth words. Similar CNN methods have
been performed by [25] to predict phonemes in spoken Japanese. In the context
of word recognition, [33] has used deep bottleneck features (DBF) to encode
shallow input features such as LDA and GIF [36]. Similarly [29] uses DBF to
encode the image for every frame, and trains a LSTM classifier to generate a
word-level classification.

One of the major obstacle to progress in this field has been the lack of suit-
able datasets [45]. Table 1 gives a summary of existing datasets. The amount of
available data is far from sufficient to train scalable and representative models
that will be able to generalise beyond the controlled environments and the very
limited domains (e.g. digits and the alphabet).

Table 1. Existing lip reading datasets. I for Isolated (one word, letter or digit per
recording); C for Continuous recording. The reported performance is on speaker-
independent experiments. (∗ For GRID [4], there are 51 classes in total, but the first
word in a phrase is restricted to 4, the second word 4, etc. 8.5 is the average number
of possible classes at each position in the phrase.)

Name Env. Output I/C # class # subj. Best perf.

AVICAR [19] In-car Digits C 10 100 37.9% [7]

AVLetter [22] Lab Alphabet I 26 10 43.5% [43]

CUAVE [27] Lab Digits I 10 36 83.0% [26]

GRID [4] Lab Words C 8.5∗ 34 79.6% [39]

OuluVS1 [43] Lab Phrases I 10 20 89.7% [28]

OuluVS2 [1] Lab Phrases I 10 52 73.5% [44]

OuluVS2 [1] Lab Digits C 10 52 -

BBC TV TV Words C 333/500 1000+ -

Word classification with large lexicons has not been attempted in lip reading,
but [11] has tackled a similar problem in the context of text spotting. Their work
shows that it is feasible to train a general and scalable word recognition model
for a large pre-defined dictionary, as a multi-class classification problem. We take
a similar approach.

Of relevance to the architectures and methods developed in this paper are
ConvNets for action recognition that learn from multiple-frame image sequences
such as [12,13,35], particularly the ways in which they capture spatio-temporal
information in the image sequence using temporal pooling layers and 3D convo-
lutional filters.

2 Building the Dataset

This section describes our multi-stage pipeline for automatically collecting and
processing a very large-scale visual speech recognition dataset, starting from



90 J.S. Chung and A. Zisserman

British television programs. Using this pipeline we have been able to extract
1000s of hours of spoken text covering an extensive vocabulary of 1000s of dif-
ferent words, with over 1M word instances, and over 1000 different speakers.

Fig. 1. A sample of speakers in our dataset.

The key ideas are to: (i) obtain a temporal alignment of the spoken audio
with a text transcription (broadcast as subtitles with the program). This in turn
provides the time alignment between the visual face sequence and the words
spoken; (ii) obtain a spatio-temporal alignment of the lower face for the frames
corresponding to the word sequence; and, (iii) determine that the face is speaking
the words (i.e. that the words are not being spoken by another person in the
shot). The pipeline is summarised in Fig. 2 and the individual stages are discussed
in detail in the following paragraphs.

Fig. 2. Pipeline to generate the text and visually aligned dataset. Timings are for a
one-hour video.

Stage 1. Selecting Program Types. We require programs that have a chang-
ing set of talking heads, so choose news and current affairs, rather than dramas
with a fixed cast. Table 2 lists the programs. There is a significant variation of
format across the programs – from the regular news where a single speaker is
talking directly at the camera, to panel debate where the speakers look at each
other and often shifts their attention. There are a few people who appear repeat-
edly in the videos (e.g. news presenter in BBC News or the host in the others),
but the large majority of participants change every episode (Fig. 1).
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Table 2. Video statistics. The yield is the proportion of useful face appearance relative
to the total length of video. A useful face appearance is one that appears continuously
for at least 5 s, with the face being that of the speaker.

Channel Series name Description # vid. Length Yield

BBC 1 HD News at 1 Regular news 1242 30 mins 39.9%

BBC 1 HD News at 6 Regular news 1254 30 mins 33.9%

BBC 1 HD News at 10 Regular news 1301 30 mins 32.9%

BBC 1 HD Breakfast Regular news 395 Varied 39.2%

BBC 1 HD Newsnight Current affairs debate 734 35 mins 40.0%

BBC 2 HD World news Regular news 376 30 mins 31.9%

BBC 2 HD Question time Current affairs debate 353 60 mins 48.8%

Fig. 3. Subtitles on BBC TV. Left: ‘Question Time’, Right: ‘BBC News at One’.

Stage 2. Subtitle Processing and Alignment. We require the alignment
between the audio and the subtitle in order to get a timestamp for every word that
is being spoken in the videos. The BBC transmits subtitles as bitmaps rather than
text, therefore subtitle text is extracted from the broadcast video using standard
OCR methods [2,6]. The subtitles are not time-aligned, and also not verbatim as
they are generated live. The Penn Phonetics Lab Forced Aligner [9,41] (based on
the open-source HTK toolbox [40]) is used to force-align the subtitle to the audio
signal. The aligner uses the Viterbi algorithm to compute the maximum likeli-
hood alignment between the audio (modelled by PLP features [30]) and the text.
This method of obtaining the alignment has significant performance benefits over
regular speech recognition methods that do not use prior knowledge of what is
being said. The alignment result, however, is not perfect due to: (1) the method
often misses words that are spoken too quickly; (2) the subtitles are not verbatim;
(3) the acoustic model is only trained to recognise American English. The noisy
labels are filtered by double-checking against the commercial IBM Watson Speech
to Text service. In this case, the only remaining label noise is where an interview
is dubbed in the news, which is rare.

Stage 3. Shot Boundary Detection, Face Detection, and Tracking. The
shot boundaries are determined to find the within-shot frames for which face
tracking is to be run. This is done by comparing color histograms across consec-
utive frames [20]. The HOG-based face detection method of [15] is performed on
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every frame of the video (Fig. 4 left). As with most face detection methods, this
results in many false positives and some missed detections. In a similar manner
to [6], all face detections of the same person are grouped across frames using a
KLT tracker [34] (Fig. 4 middle). If the track overlaps with face detections on
the majority of frames, it is assumed to be correctly tracking the face.

Fig. 4. Left: face detections; Middle: KLT features and the tracked bounding box
(in yellow); Right: facial landmarks. (Color figure online)

Stage 4. Facial Landmark Detection and Speaker Identification. Facial
landmarks are needed to (1) determine the mouth position for cropping; and
(2) for speaker/non-speaker classification. Facial landmarks are determined in
every frame of the face track using the method of [14] (Fig. 4 right). To identify
who is speaking, we assume that a person speaking will have lip movements that
fall within a particular frequency range that is different to that arising from
tracking noise. The ‘openness’ of the mouth is measured on every frame using
the distance between the top and the bottom lip, normalised with respect to the
size of the face in the video. For a speaking face, the openness signal contains
the actual lip motion as well as the tracking noise, whereas for a non-speaking
face (e.g. reaction shot, etc.), the only observed movement is the noise. A simple
method of taking the Fourier transform of the mouth ‘openness’ temporal signal
is performed to separate the lip movements that fall into different frequencies
bins. A linear SVM classifier is trained on the frequency spectrum to make the
distinction between a face that is speaker from a face that is not.

Stage 5. Compiling the Training and Test Data. The training, validation
and test sets are disjoint in time. The dates of videos corresponding to each
set is shown in Table 3. Note that we leave a week’s gap between the test set
and the rest in case any news footage is repeated. The lexicon is obtained by
selecting the 500 most frequently occurring words between 5 and 10 characters
in length (Fig. 6 gives the word duration statistics). This word length is chosen
such that the speech duration does not exceed the fixed one-second bracket that
is used in the recognition architecture, whilst shorter words are not included
because there are too many ambiguities due to homophemes (e.g. ‘bad’, ‘bat’,
‘pat’, ‘mat’, etc. are all visually identical), and sentence-level context would be
needed to disambiguate these.
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Fig. 5. One-second clips that contain the word ‘about ’. Top: male speaker, bottom:
female speaker.
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Fig. 6. Word statistics. Regardless of the actual duration of the word, we take a 1-
second clip for training and test.

These 500 words occur at least 800 times in the training set, and at least
40 times in each of the validation and test sets. For each of the occurrences,
the one-second clip is taken, and the face is cropped with the mouth centered
using the registration found in Stage 4. The words are not isolated, as is the
case in other lip-reading datasets; as a result, there may be co-articulation of
the lips from preceding and subsequent words. The test set is manually checked
for errors.

Table 3. Dataset statistics.

Set Dates # class #/class

Train 01/01/2010–28/02/2015 500 800+

Val 01/03/2015–25/07/2015 500 50

Test 01/08/2015–31/03/2016 500 50

3 Network Architecture and Training

The task for the network is to predict which words are being spoken, given a
video of a talking face. The input format to the network is a sequence of mouth
regions, as shown in Fig. 5. Previous attempts at visual speech recognition have
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relied on very precise localisation of the facial landmarks (the mouth in particu-
lar); our aim is learn from from more noisy data, and tolerate some localisation
irregularities both in position and in time.

3.1 Architecture

We cast the problem as one of multi-way classification, and so base our architec-
ture on ones designed for image classification [3,18,32]. In particular, we build
on the VGG-M model [3] since this has a good classification performance, but
is much faster to train and experiment on than deeper models, such as VGG-
16 [32]. We develop and compare four models that differ principally in how they
‘ingest’ the T input frames (where here T = 25 for a 1 s interval). These variations
take inspiration from previous work on human action classification [12,13,35,42].
Apart from these differences, the architectures share the configuration of VGG-
M, and this allows us to directly compare the performance across different input
designs.

We next describe the four architectures, summarized in Fig. 7, followed by a
discussion of their differences. Their performance is compared in Sect. 4.

Fig. 7. CNN architectures. Left: VGG-M architecture that is used as a base. Right:
EF-3: 3D convolution with early fusion; MT-3: 3D convolution with multiple towers;
EF: early fusion; MT: multiple towers.
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3D Convolution with Early Fusion (EF-3). This architecture is inspired by
the work of [12] on human action recognition using 3D ConvNets. The general
structure resembles that of an ordinary CNN used for image classification, but
instead of taking H×W×3 input, it takes H×W×T×3 input. The convolutional
and pooling filters operate and move along all three dimensions.

3D Convolution with Multiple Towers (MT-3). The model shares its basic
design principles with the architecture of EF-3, however there is no explicit time-
domain connectivity between frames before conv2. There are T = 25 towers with
common conv1 layers (with shared weights), each of which takes an input frame.
Here, the activations at pool1 are concatenated along a new dimension, and the
3D convolutions from conv2 are performed in the same manner as [12] and EF-3.

Early Fusion (EF). The network ingests a T-channel image, where each of
the channels encode an individual frame in greyscale. The layer structure for
the subsequent layers is identical to that of the regular VGG-M network. This
method is related to the Early Fusion model in [13], which takes colour images
and uses a T × 3-channel convolutional filter at conv1. We did experiment with
25× 3-channel colour input, but found that the increased number of parame-
ters at conv1 made training difficult due to overfitting (resulting in validation
performance that is around 5% weaker; not quoted in Sect. 4).

Multiple Towers (MT). There are T = 25 towers with common conv1 lay-
ers (with shared weights), each of which takes an input frame. The activations
from the towers are concatenated channel-wise after pool1, producing an output
activation with 1200 channels. The subsequent 1 × 1 convolution is performed
to reduce this dimension, to keep the number of parameters at conv2 at a man-
agable level. The rest of the network is the same as the regular VGG-M.

Discussion. There are two basic divisions of the architectures: between early
fusion and multiple towers, and between 2D and 3D convolutions. We will discuss
these in turn. The early fusion architectures, EF-3 and EF, share similarities
with previous work on human action recognition using ConvNets [12,13,42] in
the way that they assume registration between frames. The models perform time-
domain operations beginning from the first layer to precisely capture local motion
direction and speed [13]. For these methods to capture useful information, good
registration of details between frames is critical. However, we are not imposing
strict registration, and in any case it goes slightly against the signal (lip motion
and mouth region deformation) that we are trying to capture.

In contrast, the multiple towers architectures, MT-3 and MT, both delay
all time-domain registrations (and operations) until after the first set of con-
volutional and pooling layers. This gives tolerance against minor registration
errors (the receptive field size at conv2 is 11 pixels). Note, the common conv1
layers of the multiple towers ensures that the same filter weights are used for all
frames, whereas in the early fusion architecture EF it is possible to learn different
weights for each frame. The experimental results show that these registration-
tolerant models gives a modest improvement over their counterparts, and the
performance improvement is likely to be more significant where the tracking
quality is less ideal.



96 J.S. Chung and A. Zisserman

The reason for including 3D convolutions (the architectures EF-3 and MT-
3) is that intuitively a 3D convolution (that can have small spatial and temporal
kernel size) should be able to match well a spatio-temporal feature, such as a
particular lip shape over a particular sub-sequence. In contrast the 2D convo-
lutions extend over the entire temporal range, and thus might be thought to
waste parameters or require redundancy when trying to respond to such spatio-
temporal features. Despite this intuition, the experimental results show that the
2D convolutions are superior to their 3D counterparts.

One other design choice is the size of the input images. This was chosen as
112× 112 pixels, which is smaller than that typically used in image classification
networks. The reason is that the size of the cropped mouth images are rarely
larger than 112× 112 pixels, and this smaller choice means that smaller filters
can be used at conv1 (than those used in VGG-M) without sacrificing receptive
fields, but at a gain in avoiding unnecessary parameters being learnt.

3.2 Training

Data Augmentation. Data augmentation often helps to improve validation
performance by reducing overfitting in ConvNet image classification tasks [18].
We apply the augmentation techniques used on the ImageNet classification task
by [18,32] (e.g. random cropping, flipping, colour shift), with a consistent trans-
formation applied to all frames of a single clip. To further augment the training
data, we make random shifts in time by up to 0.2 s, which improves the top-
1 validation error by 3.5% compared to the standard ImageNet augmentation
methods. It was not feasible to scale in the time-domain as this results in artifacts
being shown due to the relatively low video refresh rate of 25 fps.

Details. Our implementation is based on the MATLAB toolbox MatCon-
vNet [37] and trained on a NVIDIA Titan X GPU with 12GB memory. The
network is trained using SGD with momentum 0.9 and batch normalisation [10],
but without dropout. The training was stopped after 20 epochs, or when the
validation error did not improve for 3 epochs, whichever is sooner. The learning
rate of 10−2 to 10−4 was used, decreasing on log scale.

4 Experiments

In this section we evaluate and compare the several proposed architectures, and
discuss the challenges arising from the visual ambiguities between words. We
then compare to the state of the art on a public benchmark.

4.1 Comparison of Architectures

Evaluation Protocol. The models are evaluated on the independent test set
(Sect. 2). We report top-1 and top-10 accuracies, as well as recall against rank
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curves. Here, the ‘Recall@K’ is the proportion of times that the correct class is
found in the top-K predictions for the word. We also report the character-level
edit distance [17], which is the minimum number of character-level operations
required to convert the predicted string to the ground truth. This metric imposes
smaller penalties where the predicted string is similar to the ground truth (e.g.
‘concerned’ and ‘concerns’ have an edit distance of 2) and larger penalties where
the words are very different (e.g. ‘concerned’ and ‘company’ have an edit distance
of 6).

Results. As discussed in Sect. 3.1, the MT-3 and MT variants have the advan-
tage of being more tolerant to registration errors compared to their early fusion
counterparts. The results in Table 4 and Fig. 8 confirm this, where we see a
modest (3.2% on average for top-1 ) but consistent improvement in performance
across the experiments. The performance of 3D ConvNets fall short of the 2D
architectures by an average of around 14%.

The recall curves in Fig. 8 rise sharply for all models at low-K; the top-10
figure for the EF and MT models being over 85%, despite the modest top-1
figure of around 60%. This is a result of ambiguities in lip reading, which we will
discuss next.

Table 4. Word classification results. Left: on the BBC data for the four different archi-
tectures. ED is the edit distance. Right: on OuluVS1 and OuluVS2 (short phrases,
frontal view).

Net 500-class 333-class

Top-1 Top-10 ED Top-1 Top-10

EF-3 43.9% 81.0% 3.13 55.7% 87.9%

MT-3 46.2% 82.4% 2.97 56.8% 88.7%

EF 57.0% 88.8% 2.32 63.2% 91.8%

MT 61.1% 90.4% 2.06 65.4% 92.3%

OuluVS1 OuluVS2

Top-1 Top-1

[29] 81.8% -

[44] 85.6% 73.5%

[28] 89.7% -

MT 91.4% 93.2%

4.2 Analysis of Confusions

Here, we examine the classification results, in particular, the scenarios in which
the network fails to correctly classify the spoken word. Table 5 shows the most
common confusions between words in the test set. This is generated by taking
the largest off-diagonal values in the word confusion matrix. This result confirms
our prior knowledge about the challenges in visual speech recognition – almost
all of the top confusions are either (i) a plural of the original word (e.g. ‘report’
and ‘reports’) which is ambiguous because one word is a subset of the other, and
the words are not isolated in our dataset so this can be due to co-articulation;
or (ii) a known homopheme visual ambiguity (explained in Sect. 1) where the
words cannot be distinguished using visual information alone (e.g. ‘billion’ and
‘million’, ‘worse’ and ‘worst’).
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Fig. 8. Recall vs rank curves for the word classification.

Table 5. Most frequently confused word pairs.

500-class

0.32 BENEFITS BENEFIT
0.31 QUESTIONS QUESTION
0.31 REPORT REPORTS
0.31 BORDER IMPORTANT
0.31 AMERICA AMERICAN
0.29 GROUND AROUND
0.28 RUSSIAN RUSSIA
0.28 FIGHT FIGHTING
0.26 FAMILY FAMILIES
0.26 AMERICAN AMERICA
0.26 BENEFIT BENEFITS
0.25 ELECTIONS ELECTION
0.24 WANTS WANTED
0.24 HAPPEN HAPPENED
0.24 FORCE FORCES
0.23 HAPPENED HAPPEN
0.23 SERIOUS SERIES
0.23 TROOPS GROUPS
0.22 QUESTION QUESTIONS
0.21 PROBLEM PROBABLY

333-class

0.30 BORDER IMPORTANT
0.29 PROBABLY PROBLEM
0.27 TAKING TAKEN
0.25 PERSONAL PERSON
0.23 CLAIMS GAMES
0.22 AROUND GROUND
0.21 TONIGHT NIGHT
0.21 PROBLEM PROBABLY
0.19 SEVERAL SEVEN
0.19 CHALLENGE CHANGE
0.18 PRICES PERSON
0.18 WARNING MORNING
0.18 CAPITAL HAPPENED
0.18 OTHER ANOTHER
0.17 AHEAD AGAIN
0.16 WORKERS WORDS
0.16 MEDIA MEETING
0.16 UNITED NIGHT
0.16 NEVER SEVEN
0.15 WORLD WORDS

Therefore, we generate a second test set where we eliminate these two types
of known ambiguities. We first group the words according to the aforementioned
criteria (e.g. ‘billion’, ‘million’ and ‘millions’ would form a single group), and
keep only the most frequently occuring word in the training set for each group,
eliminating the ambiguous words for that group. This process produces a new
balanced test set containing a lexicon of 333 word-classes.

The network is finetuned on this new vocabulary for 1 epoch, before being re-
evaluated. The results reported in Table 4 and Fig. 8 that are labelled ‘333-word’
are evaluated on this vocabulary. The top-10 performance increases from 90.4%
(for the 500 word-class test set) to 92.3% (for the 333 word-class test set). This
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is an improvement, but still not perfect. The reason is that even excluding the
known homopheme and plural ambiguities does not remove all confusion. Table 5
shows the common errors remaining, and these are phonetically understandable.
For example, some of the most common confusions, e.g. ‘claims’ which is pho-
netically (K L EY M Z) and ‘games’ (G EY M Z), ‘probably’ (P R AA B AH B L IY) and
‘problem’ (P R AA B L AH M), actually share most of the phonemes.

Apart from these difficulties, the failure cases are typically for extreme sam-
ples. For example, due to strong international accents, or poor quality/low band-
width location reports and Skype interviews, where there are motion compression
artifacts or frames dropped from the transmission.

4.3 Visualisation of Salient Mouth Shapes

Our aim here is to visualize the frames of the temporal sequence that are most
discriminative for the word. Simonyan et al. [31] have shown that it is possible
to infer the localization of visual objects in an image as a saliency map for a
network trained to classify images. We adapt this method to find the salient
temporal information in a time-sequence.

Fig. 9. Salient visual features of sequences ‘office’ and ‘water’ are highlighted in red.
(Color figure online)

The method approximates the relation between the class score S and the
input image I (represented as a vector) as S(I) = wT I + b. The vector w is
the same size as the input image, and the magnitude of its elements signify the
influence of the corresponding elements of the image on the class score. Hence
the magnitude of w determines a saliency map on the image. The vector w can
be obtained as w = ∂Sc

∂I

∣
∣
I0

and this derivative is obtained by back-prop from the
class score S0(I0) to the image.

The resulting salient regions are shown in Fig. 9. For example, the most
distinctive mouth shape for ‘office’ (AO F AH S) is the ‘AH’ with the mouth open
and ‘F’ with the top teeth biting the bottom lip.
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4.4 Comparison to State of the Art

It is worth noting that the top-1 classification accuracy of 65%, shown in Table 4,
is comparable to that of many of the recent works [7,24,29] performed on lexicon
sizes that are orders of magnitude smaller (Table 1).

Fig. 10. Original video frames for ‘hello’ on OuluVS. Compare this to the our original
input frames in Fig. 3.

OuluVS. We evaluate our method on the OuluVS datasets. OuluVS1 [43] con-
sists of 20 subjects uttering 10 phrases (e.g. ‘thank you’, ‘hello’, etc.), and has
been widely used in previous works. OuluVS2 [1] (short phrases) consists of
52 subjects uttering the same phrases as [43]. Here, we assess on a speaker-
independent experiment, where some of the subjects are reserved for testing.

To apply our method on this dataset, we pre-train the model on the BBC
data, and fine-tune the fully-connected layers. Training from scratch on OuluVS
underperforms as the size of this dataset is insufficient to train a deep network.
If the phrase is shorter than 25 frames, we simply repeat the first and the last
frames to fill the 1-second clip. If the clip is longer, we take a random crop.

As can be seen in Table 4 our method achieves a strong performance, and sets
the new state-of-the-art. Note that, without retraining the convolutional part of
the network, we achieve these strong results on videos that are very different to
ours in terms of lighting, background, camera perspective, etc. (Fig. 10), which
shows that our model generalises well across different formats.

5 Summary and Extensions

We have shown that CNN architectures can be used to classify temporal
sequences with excellent results. On the 333-word test set, we achieve top-1 accu-
racy of 65.4%, which exceeds state-of-the-art [7,43] on multiple datasets [19,22]
that have lexicon sizes that are orders of magnitude smaller, and a top-10 accu-
racy of 92.3%. We also demonstrate a recognition performance that exceeds the
state of the art on a standard public benchmark dataset, OuluVS.

Next steps include extending to lip reading of profile views, and combining
the CNNs pre-trained using this approach with LSTMs trained with a language
model [5,38], in order to recognize sentences rather than individual words. Of
course, the visual only speech recognition method developed here can also be
combined with audio only speech recognition to both their benefits.
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Abstract. Mainstream direction in face alignment is now dominated by
cascaded regression methods. These methods start from an image with
an initial shape and build a set of shape increments by computing fea-
tures with respect to the current shape estimate. These shape increments
move the initial shape to the desired location. Despite the advantages
of the cascaded methods, they all share two major limitations: (i) shape
increments are learned separately from each other in a cascaded man-
ner, (ii) the use of standard generic computer vision features such SIFT,
HOG, does not allow these methods to learn problem-specific features.
In this work, we propose a novel Recurrent Convolutional Face Align-
ment method that overcomes these limitations. We frame the standard
cascaded alignment problem as a recurrent process and learn all shape
increments jointly, by using a recurrent neural network with the gated
recurrent unit. Importantly, by combining a convolutional neural network
with a recurrent one we alleviate hand-crafted features, widely adopted in
the literature and thus allowing the model to learn task-specific features.
Moreover, both the convolutional and the recurrent neural networks are
learned jointly. Experimental evaluation shows that the proposed method
has better performance than the state-of-the-art methods, and further
support the importance of learning a single end-to-end model for face
alignment.

1 Introduction

Face alignment methods trace their lineage from Active Shape Models [1,2] and
Active Appearance Models (AAM) [3], developed a couple of decades ago. These
works first build a statistical shape and appearance models of the face, and dur-
ing testing use numerical optimization techniques to find a set of parameters of
the statistical model that could have generated the query face. Todays main-
stream face alignment methods belong to Cascaded Regression Methods (CRM)
group [4–9]. These methods operate in a cascaded fashion, i.e. starting from
an initial shape and producing several shape increments that move the initial
shape closer to the desired location. Shape increments are learned in a supervised
manner during training stage. Formally CRMs operate in the following fashion:

ΔSt+1 = Rt(Ft(I, Ŝt)), (1)

Ŝt+1 = Ŝt + ΔSt+1, (2)

c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 104–120, 2017.
DOI: 10.1007/978-3-319-54184-6 7
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where I denotes a 2D image, Ft(I, Ŝt) represents the feature values extracted
using the previous shape estimate Ŝt, ΔSt+1 is a shape update produced by the
t-th regressor Rt in the cascade. To initialize the pipeline the average face shape
over all images in the training set S̄ is taken. The feature extraction function
(Ft(·, ·)) and a set of regressors (Rt(·)) constitute the main ingredients of a CRM
framework. The final outcome of the CRMs writes as:

Ŝ(T ) = S̄ +
T∑

t=1

ΔSt, (3)

where T is the total number of layers in the cascade. In order to frame a task
at hand as a cascaded regression problem, one has to decide upon the feature
extraction function (Ft(·, ·)), as well as to select a proper regression function
(Rt(·)). Various features have been explored by the community e.g. HoG [9],
SIFT [5,7], pixel differences [10–12], local binary features [13], as well as different
regression functions have been tried: linear regression [5,12], random ferns [14],
regression trees [10,11]. This brings to light two major limitations of the CRMs,
that we are going to remove in this work: (i) manually designed features and (ii)
relative independence of the regressors at the different layers in the cascade.

Hand-crafted computer vision features, such as HoG features for pedes-
trian detection [15], SIFT features for object recognition [16], attribute detec-
tion [17,18] have played an important role in many application domains for a
long time since they offer illumination, rotation and scaling invariance. These fea-
tures, however, represent a generic image transformation that lacks any domain
specific knowledge. Many works, have tackled this problem by selecting best fea-
tures out of an overcomplete set [10,11,13]. However, this feature selection is
suboptimal, since it is still performed on a generated set. Recently, it has been
shown for object detection [19], tracking [20], image labeling [21] and other fields
that features learned for a specific problem using deep convolutional neural net-
works show much better performance. Moreover, features learned for image clas-
sification often generalize well for different tasks, showing the ability of CNNs,
such as AlexNet [19], VGGNet [22] and GoogleNet [23], to learn a generic image
representation.

The second limitation of the CRMs is the independence of the regressors at
every level of the cascade. One can argue the regressor at time t is learned by
using the output of the previous regressor at time t−1, with the final prediction
given by Eq. 3. This however, affects only the feature computation (see Eq. 1),
while the regressors themselves are learned independently. It has been shown
in [5] that a single regressor is not capable of arriving at the desired location
in a single step. As shown in Eq. 3 the final prediction of the cascade Ŝ(T ) is a
function of the number of layers in the cascade T . One can think of Ŝ(T ) as a
sequence of measurements of some stochastic process. It has been recently shown
that Recurrent Neural Network are extremely powerful in modeling the sequen-
tial inputs and outputs [24]. In order to model long time-varying sequences,
various RNN units have been proposed. In particular, long-short term memory
cells and later Gated Recurrent Units have proven to be efficient in modeling
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time-varying processes and sequence-to-sequence learning [25]. Additionally, it
has been shown that using a CNN for feature extraction and an RNN for clas-
sification brings extra advantages [26–28].

This discussion naturally brings us to the main contribution of this work.
We present a unified face alignment framework that features end-to-end learn-
ing starting from raw pixel values. We replace the manually hand-crafted fea-
tures Ft(·, ·) by learning a patch-based CNN. In contrast with boosted regression
methods, where one has a sequence of regressors {R1(·),R2(·), . . . ,RT (·)}, our
method learns a single recurrent module trained jointly with the CNN which
can generate the regressor R(·) recursively based on the input data and the
memory of the recurrent module. We would like to highlight for the reader,
that the parameters of both the CNN module and the RNN module are learned
jointly. Additionally, we show that our model is capable of generalizing beyond
the learned number of recurrent iterations, being able to automatically decide
when to stop iterating. The experimental evaluation we detail in Sect. 4 proves
that learning a task-specific end-to-end model brings higher accuracy than that
of the available state-of-the-art.

2 Related Work

In this section we review relevant works in face alignment as well as discuss recent
advances in the neural-network learning important to formulate our Recurrent
Convolutional Face Alignment (RFCA) method.

2.1 Face Alignment

According to the widely accepted classification, methods for face alignment can
be grouped into three broad categories [29]: Active Appearance Models (AAM),
Constrained Local Models (CLM) [30–32], and Cascaded Regression Methods
(CRM). Initial works on face alignment such as ASMs [1,2] and AAMs [3,33],
build a parametric statistical shape and appearance models from a set of training
faces. These methods show reasonable accuracy when the testing image is close
to the training distribution. However, they fail to generalize to an unseen sub-
ject [34]. Although such methods still attract the attention of researchers [35,36],
the more recent Cascaded Regression Methods have shown higher accuracy at
impressive frame rates [11,13]. In the following we will mostly detail this latter
group of works.

Initially CRMs were introduced in the medical image processing community
for anatomic structure prediction [37]. Since then they have been extensively
exploited by the computer vision community with many seminal works proposed
in the literature. Currently this avenue of research represents the mainstream
direction of the deformable shape fitting. In [14] a method for cascaded pose
regression was introduced. The authors used a pose-indexed features and learned
a sequence of weak-regressors (random ferns in their case) to regress a deformable
shape from an image. In order to compute pose-indexed features one has to
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provide the current belief regarding the shape. This naturally brings some form
of pose invariance to the framework. Later, these ideas were extended to regress
the whole face shape [38]. Importantly, it was shown that regressing the whole
shape imposes the result to lie in the space constructed by all the training images.

The supervised descent method (SDM) [5] further extends the cascaded frame-
work to generic non-linear optimization problems: face alignment, template track-
ing and camera calibration. SDM learns a sequence of descent directions that
applied sequentially solve the optimization problem. The authors replace the fea-
ture extraction part with SIFT [39] and achieve impressive results by using lin-
ear regressors in the layers of the cascade. A downside of SDM, is its inability to
generalize well to non-frontal poses, requiring to train separate regressors depend-
ing on the detected head pose. This constraint is relaxed in [9] by introducing a
global SDM to automatically learn several descent maps at every level of the cas-
cade to handle complex cost-functions. These ideas were extended in [7], where the
authors learn both the Jacobian and the Hessian matrices, in a manner inspired
by the Gauss-Newton optimization method. Similarly to the original SDM, the
authors use hand-crafted SIFT features extracted around the keypoints locations.
SDM-based methods have become popular in various applications of face analy-
sis [40] and are used in several commercially available face alignment systems1.
A different strategy for feature extraction is presented in [10,11,13]. Instead of
employing hand-crafted features (e.g., HoG, SIFT), they perform feature selec-
tion using a framework of regression trees. Alleviating the need to compute hand-
crafted features, these works reach impressive processing speed.

Multiple CRM-based 3D methods have been proposed. In [41], an extension
of [38] is introduced to fit a 2D-3D parametric shape model. Similar ideas were
explored in [42], where a cascaded coupled regressor is introduced to obtain the
camera projection matrix and the 3D landmarks of the face. The work in [10]
proposes to include the third dimension directly into the learning pipeline. They
used a large generated set of training faces and showed that considering a face
shape as a 3D object gives better results. An interesting work in [12] uses binary
features to track a large number of points on the face, with subsequent 3D
deformable model fitting to obtain a 3D mesh of the face. Notably, this work
shows impressive frame rates for the whole pipeline as well as the tracking accu-
racy comparable to purely 3D methods [43].

From a higher perspective the aforementioned methods have two independent
steps: (i) feature extraction and (ii) applying a sequence of regressors. Typically
the first step is performed by using some hand-crafted features such as SIFT [5,7],
HOG [9]. Some form of feature learning is employed in [10,11,13], while the
levels of the cascade in the second step still remain independent. This requires a
researcher to use a trial-and-fail approach in selecting which features and which
regressors work the best.

In contrast, the method presented in our study is end-to-end. By learn-
ing convolutional filters, RCFA does not require manual supervision in defining

1 http://www.humansensing.cs.cmu.edu/intraface/index.php
http://www.zface.org/

http://www.humansensing.cs.cmu.edu/intraface/index.php
http://www.zface.org/
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feature extraction functions. Additionally, our method replaces a cascade of inde-
pendent regressors by a single recurrent model, where all iterations are leaned
jointly. This formulation merges the two steps of the typical CRM pipeline into
a single unified framework, simultaneously trained using the available data.

2.2 Recurrent and Convolutional Neural Networks

Recurrent Neural Networks (RNN) have become increasingly popular to learn
complex dynamic systems, because of their impressive capability to recur-
rently operate with sequential input. During each recurrence of the traditional
RNN [44], an input signal is mapped to the hidden state, which is passed for-
ward to the next recurrence. This way, the information of the previous states is
memorized and persists during the whole process. Therefore, RNNs have proven
to have an advantage in modeling sequences with long-term dependencies. Dur-
ing the last decade, we have seen a lot of success in applying RNNs to various
application domains, such as generating text description of videos [45], image
caption generation [46], face aging [47], machine translation [24] and speech
recognition [48].

Given the success of RNNs, a lot of RNN variants have been explored, such
as the Long Short Term Memory (LSTM) [49] networks, Gated Recurrent Unit
(GRU) [25], and Clockwork RNN [50]. All these architectures consist of a chain
of repeated modules, where each module contains several gates, controlling the
information flow in the network and states, memorizing necessary information for
future recurrences. Although the combination of gates/states varies depending
on the selected architectures, each subsequent iteration is performed similarly,
by processing a new input using the memory of the current state. These architec-
tures show varying performances for different tasks. In [51] it was shown that, in
general, GRU-based models feature superior performance compared with other
architectures.

Convolutional Neural Networks (CNN) have recently demonstrated notable
success in multiple tasks, such as image classification [19], super-resolution [52],
as well as image segmentation [53]. One of the main advantages of CNNs, is that
they do not require human supervision to design feature transformation. Their
feature representations have shown to provide significantly higher performance,
compared to commonly adopted hard-crafted features, in numerous application
domains. Thus, it is very promising to combine the RNN architecture together
with the CNN architecture into a hybrid architecture. This hybrid architecture
has been successfully applied to many tasks, such as scene labeling [26], object
recognition [27], and text classification [28].

3 Method

The overview of the proposed Recurrent Convolutional Face Alignment method is
given in Fig. 1. The framework mainly consists of two parts, the recurrent module
and the convolutional module. During each recurrent iteration t the current shape
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Fig. 1. The overview of the proposed approach. Top: the RNN with gated recurrent
units unrolled in time. Bottom: the CNN architecture used for feature extraction. Note
that feature extraction is performed at every recurrent iteration.

estimate ht is imposed onto the image and the convolutional neural network is
applied to the patches extracted around the points of the shape. The output of the
last layer of the CNN is passed to the RNN as an input. During the first iteration,
the average shape of all the images in the training set is set to the initial shape
estimate: ĥ0 = S̄.

3.1 Recurrent Module

In the current study we use an RNN with GRU module for its simplicity and
superior performance as compared to other RNN types [51]. The structure of two
recurrent iterations is given in the top row of Fig. 1. A GRU contains two gates
and one state. The gates are the reset gate and the update gate. The hidden state
ht represents the relative movement or increment of the landmark positions after
the adjustment in t-th iteration. Then the predicted position after t iterations is
ĥt = ĥ0 + ht.

The feature extraction function f(t) = F(I, ĥt) is performed using a super
resolution convolutional neural network (SRCNN), described in Sect. 3.

The reset gate rt controls whether the adjustment from the previous recur-
rence should be ignored, i.e. if rt is close to 0, the information of the previous
adjustment operation will be forced to be discarded. Then the unit will focus on
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its current features without referring to the previous operation. To sum up, the
reset gate allows the unit to remember or drop the adjustment operation from
the previous operation.

The update gate zt has two functions. The first one is to control what to
forget from the previous operation which is implemented by the term zt, and
the second one is to control the acceptance of the new input operation which is
implemented by the term 1−zt. If zt is set to 0, 1−zt will be 1. This means that
all the information from the previous operation will be kept and the new input
will be totally discarded. Thus, the new adjustment operation will be exactly
the same as the previous operation. However, if zt is set to 1, 1 − zt will be 0,
and the next operation will be based only on the new input operation without
referring to the previous adjustment operation.

The described process is schematically presented in Fig. 1, where a single
recurrent iteration is governed by the following equations:

zt = σ(Wzhht−1 + Wzfft + bz)
rt = σ(Wrhht−1 + Wrfft + br)
ct = tanh(Wchrt � ht−1 + Wcfft + bc)
ht = (1 − zt) � ht−1 + zt � ct

(4)

where � represents element-wise multiplication, and ct is the new increment
candidate created by the tanh layer that could be added to the current shape
increment using the following rule:

ht = (1−zt)�ht−1+zt�ct. (5)

If the reset gate is always activated, the system will have only the short-term
memory, since the calculation of the new increment candidate ignores the previ-
ous increments and focuses on the current input only. If the update gate is not
activated, the system can have the long-term memory and the previous incre-
ments will be memorized.

Within this framework, the RNN acts as a refinement process which tries to
find the optimal shape increment by gradually changing the previous shape. We
use T recurrent steps to train RCFA. In order for the RNN to focus on the later
iterations we define a series of weights w = [w1, w2, . . . wT ] each one for a single
recurrent iteration. These weights increase monotonically, therefore forcing the
recurrent network to adjust the shape slowly and penalizing the model more for
the error during the later recurrent steps. Formally, the loss writes as:

J =
n∑

i=1

T∑

t=1

wt‖(ĥ0 + hi
t) − hi

∗‖2F , (6)

where ĥ0 is the initial shape estimate, i.e. the average shape, hi
t is the predicted

shape increment after t iterations, hi
∗ is the target shape, the superscript i defines

the ith image in the mini-batch of n images. The final shape after t steps is
obtained as ĥ0 +hi

t. During training, for each face image Ii, the initial shape ĥ0

is sampled several times by adding noise to the mean shape.
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3.2 Convolutional Module

We employ the super resolution convolutional neural network (SRCNN) for fea-
ture extraction [52]. We apply the SRCNN to the pixel values around the land-
marks position Fig. 1. We denote the patch around a landmark location as Y,
and use it as an input for the SRCNN. The SRCNN consists of three convolution
layers, formulated as the following operations:

F1(Y) = max(0,W1 ∗ Y + B1)
F2(Y) = max(0,W2 ∗ F1(Y) + B2)
F3(Y) = W3 ∗ F2(Y) + B3

(7)

where W1, W2, W3 and b1, b2, b3 represent the filters and biases respectively.
The Rectified Linear Unit (ReLU) is employed as the activation function for the
first two convolution layers. The dimensions of W1 are set to c × f1 × f1 × n1 =
[1 × 9 × 9 × 64], where c is the number of channels of the input image, f1 is the
filter size, and n1 is the number of filters which also corresponds to the number
of feature maps. W2 is of the size n1 × 1 × 1 × n2 = [64 × 1 × 1 × 32] and
W3 has the size of n2 × f3 × f3 × c = [32 × 5 × 5 × 3]. The first layer can be
regarded as PCA where each filter works as a basis and projects the input Y to
a high-dimension vector. The second layer has the filter size of 1 × 1, and this
layer can be understood as a non-linear mapping operation which maps an n−1
dimensional vector to a n2 dimensional vector. Originally, the last layer in the
SRCNN works as an averaging filter which projects the n2 dimensional vector to
a high-resolution patch, and take the average of the overlapping high-resolution
patches. However, instead of projecting the n2 dimensional vector to a high-
resolution patch, the last layer in our network will project the n2 dimensional
vector to a feature space which can is then passed to the recurrent module.

3.3 Supervised Descent Method as GRU

In this section we show that the proposed RCFA method is a generalization
of the widely adopted Supervised Descent Method [5]. Given a set of images
[I1, I2, . . . Ii, . . . , In], hi denotes the positions of the landmarks in image Ii. F
is a feature extraction function, and F(hi) represent the extracted features. Let
yi

∗ = F(hi
∗) be the ground-truth features extracted at the manually labeled

landmark positions hi
∗. Then we have the following objective function for face

alignment with respect to image Ii,

min ‖F(hi) − yi
∗‖22. (8)

SDM applies the gradient descent rule to Eq. 8, and yields the following discrete
update equation:

hi
t = hi

t−1 − Rt−1(F(hi
t−1) − yi

∗)

= hi
t−1 − Rt−1F(hi

t−1) + Rt−1yi
∗,

(9)
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where Rt−1 = αF′(xi
t−1), and Rt−1 is regarded as a regressor. Thus, instead of

calculating the derivatives, the SDM learns a descend direction from the available
training data.

However, Eq. 9 has an inconsistency problem, i.e. yi
∗ is only available in the

training phase and it is unknown in the testing phase. Therefore, Eq. 9 could not
be used to calculate the position of the landmarks. To solve this inconsistency
problem, yi

∗ is replaced by y∗ = (
∑

i y
i
∗)/n. By defining bt−1 = Rt−1y∗ we

obtain the new update equation:

hi
t = hi

t−1 − Rt−1F(hi
t−1) + bt−1, (10)

which solves the inconsistency problem. During the training phase, hi
t is set to

hi
∗ as our goal is to make hi

t equal to the target hi
∗. The loss is defined as:

∑

i

‖hi
∗ − hi

t−1 + Rt−1F(hi
t−1) − bt−1‖2 (11)

where hi
0 is obtained using Monte Carlo integration.

Thus, Eq. 11 can be considered as a special case of Eq. 6, making the SDM
a special case of our GRU network. As shown in Fig. 2(b), the traditional linear
regressor is equivalent to GRU if the update gate and reset gate are removed.
Finally, if we replace the tanh layer with the regressor R, we obtain the formula
for the shape increment ht for the image Ii, as follows:

hi
t = hi

t−1 − Rt−1F(hi
t−1) (12)

Equation 12 is a recurrent version of Eq. 10 except for the term bt−1 which
can be implemented by expanding the feature space by several columns set to 1.

As shown in Fig. 2, the traditional regressors at different time steps
(R1, R2, . . .) are trained independently, relying only on the input features while
totally lacking memory regarding previous states, since as it is shown in Eq. 11,
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Fig. 2. Differences in the architecture of the proposed recurrent regressor (a) compared
to the traditional regressor (b).
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every step has a separate loss function. In contrast, for our model the overall loss
over all the recurrent steps is defined and learned jointly by summing the steps
up (Eq. 6). Another way of thinking about our recurrent module, is to treat it
not as a regressor, but rather as a way of generating unique regressors at every
recurrent step with respect to the memory and the input features.

4 Experiments

Datasets. We evaluate the performance of our algorithm using the widely
adopted 300-W dataset [54]. This dataset is a combination of several in-the-wild
datasets, including AFW [55], LFPW [56], HELEN [57] and XM2VTS [58], that
are annotated with 68-point markup in a consistent manner. Similarly to previ-
ous works [8,13], for training the model we use the training samples from LFPW,
HELEN and the whole AFW dataset, which makes 3148 images in total. Testing
is performed on three different sets of images: (i) the common set includes the
testing images from the LPFW and HELEN, (ii) the challenging set includes
recently released 135 images also known as the IBUG set, and (iii) the full set
is a combination of the first two. We do not report the results for the original
annotations for HELEN and LFPW, since the accuracy of the state-of-the-art
methods has saturated.

Evaluation Metrics. To evaluate the performance of our method, we follow
the widely adopted evaluation metric [8,10,13], which is the average error of
the point-to-point Euclidean distance, normalized by the distance between the
outer corners of the eyes. This metric has been adopted for the 300-W challenge.

4.1 Implementation

For the CNN module, we follow the settings of the SRCNN framework in [52].
This module will extract features for all the image patches. After obtaining
the features for each image patch, we concatenate the feature vectors of the 68
landmarks and feed the features to the RNN module. For the RNN module, we
set the total number of recurrent iterations T to be 5. The weights in Eq. 6 are
set to powers of 10: w = [10−2, 10−1, . . . , 102]. Powers of 2 and 5 showed slightly
inferior performance to the powers of 10, while equal weights [1, 1, 1, 1, 1] showed
the worst performance.

To augment the size of the training data, we duplicate the images by adding
the mirrored examples, and we also replicate the training data 3 times by adding
noise to the bounding boxes. In the training phase, the batch size is set to 204
images. The learning rate is set to 0.01. The decay rate is set to 0.5, and the
learning rate will be decayed after every 10 epochs and the training process is
terminated after 200 epochs. After we obtain the model, we generate another
three replicates in the same manner and fine tune the network with the new
replicates for another 200 epochs.
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4.2 Understanding When to Stop Iterating

One of the further advantages of our RCFA is that the model can be easily
extended beyond the learned number of recurrent iterations without the need
of retraining the whole pipeline. Importantly, there is no upper bound on the
number of recurrent iterations one can perform. This, however, requires devising
a strategy to stop iterating. During training the RNN performed 5 recurrent
iterations. Intuitively, the model should require less iterations for a simple image,
while difficult examples may need additional recurrences. In order to define a
stopping strategy, we show the relationship between the average error and the
recurrent steps as shown in Fig. 3.

As it is seen from the left graph in Fig. 3 for easy images from the common set
additional iterations are redundant and do more harm, while the hard cases from
the challenging set benefit from iterating further (see Fig. 3, right). Typically,
for hard cases the error still continues decreasing when the number of iterations
is more than 15, while for the easy ones it remains stable between 5-th and 9-th
iterations and then goes up. This suggests a simple and efficient stopping criteria
that was used to generate the results for the RCFA adaptive in the Table 1. If the
difference between the previous landmark positions and the current landmark
positions is smaller than a threshold, we stop iterating. To set the threshold
value, we take the average difference between the 4-th and 5-th recurrence of all
the images in the training data. This simple stopping strategy allows our model
to automatically decide whether any additional iterations are necessary.

Figure 4 shows several qualitative examples of different number of recurrent
iterations required for different testing examples. The first two rows show that 4
steps are not sufficient to localize the landmarks, as one can easily see that the land-
marks on the jawline in the first row do not fit perfectly until the fifth recurrence.
A similar observation can be made for the subject shown in the second row. The
last two rows show cases, when even 5 iterations are not sufficient for the method

Fig. 3. Average error vs the number of recurrent iterations
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Fig. 4. Landmark localization for 5 recurrent steps. The top two rows show examples,
for which 5 iterations is sufficient, while the examples in the last two rows require
additional iterations.

to converge, due to difficult illumination conditions and extreme head poses. This
further supports the importance of the adopted stopping strategy.

4.3 Experimental Results

We report evaluation results on the three subsets of the 300-W dataset in Table 1.
It compares three different result of the same RCFA model against best perform-
ing state-of-the-art methods. The reported RCFA results are obtained using 5,
10 recurrent iterations and the proposed stopping strategy. We would like to
highlight, that due to the end-to-end structure, our model shows better perfor-
mance than the up-to-date face alignment methods regardless of the number
of iterations for the common set and the full set. Notably, when the proposed
stopping strategy is used, the proposed method outperforms other works by a
large margin for all three testing sets.

Interestingly, RCFA outperforms CFSS [8] by a margin of 16% on the com-
mon subset, while showing a little bit lower performance gain for the challenging
set and the full set (10% and 9% correspondingly). There are mainly two reasons
for this. Firstly, the commonly accepted evaluation metric is severely affected
by a small portion of hard examples. Secondly, these hard examples are not
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Table 1. Experimental results obtained on the three subsets of the 300-W dataset.

Method Common Challenging Full

Zhu and Ramanan [55] 8.22 18.33 10.20

DFMF [59] 6.65 19.79 9.22

ESR [60] 5.28 17.00 7.58

RCPR [61] 6.18 17.26 8.35

SDM [5] 5.57 15.40 7.50

Smith et al. [62] - 13.30 −
Zhao et al. [63] - − 6.31

GN-DPM [64] 5.78 − −
CFAN [65] 5.50 − −
ERT [11] - − 6.40

LBF [13] 4.95 11.98 6.32

LBF fast [13] 5.38 15.50 7.37

CFSS [8] 4.73 9.98 5.76

CFSS practical [8] 4.79 10.92 5.99

RCFA 5 iterations 4.08 12.81 5.81

RCFA 10 iterations 4.13 11.14 5.51

RCFA adaptive 4.03 9.85 5.32

evenly presented in the 300-W training/testing sets. The dataset is rather biased
towards having less extreme head poses, facial expressions and poor illumination
conditions.

Figure 5 shows the qualitative results for the images taken from the full set.
Clearly, due to end-to-end learning our framework handles even challenging face
images, such as facial expressions, extreme head poses, difficult lighting condi-
tions. It is also very interesting to observe that RCFA can handle faces with
severe occlusions, including sun-glasses, hands and hats. The reason why our
framework can work well for these images is because our RNN network can
not only learn the dependencies between each regressor, it also learns the loca-
tion dependencies between the landmarks. Thus, even though parts of the face is
occluded, our framework can still predict the location of the occluded landmarks
based on other landmarks.

In the current implementation, a single forward pass through the pipeline
takes around 10ms on average on Tesla K40, making it possible to apply the
proposed model for real-time video processing at 100 frames per second. We
would like to note, that no specific performance optimizations were used, there-
fore, we believe the running time can be decreased dramatically.
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Fig. 5. Selected qualitative examples taken from the full set of the 300-W dataset.

5 Conclusions

In this paper, we reformulate the classical cascaded regression face alignment
problem as a recurrent process, alleviating the two major limitations of the
CRMs. The proposed recurrent framework features end-to-end learning, start-
ing from the raw pixel data, removing the previously used hand-crafted features.
Replacing a standard cascade of independently learned shape regressors by a sin-
gle recurrent regressor brings further advantage of iterating beyond the learned
limit, making it possible to automatically decide when to stop.

The proposed RFCA method has room for further improvements. In our
experiments an average shape is used to initialize the pipeline, while it has been
shown that selecting a proper starting shape brings extra benefits [8]. Addition-
ally, more rigorous data augmentation can alleviate the bias of the training set
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and can make the data more uniform. Furthermore, we believe similar recurrent-
convolutional shape regression models can be employed to various other tasks
such as action recognition [66] and human pose estimation.
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Abstract. Recent methods for facial landmark location perform well
on close-to-frontal faces but have problems in generalising to large head
rotations. In order to address this issue we propose a second order lin-
ear regression method that is both compact and robust against strong
rotations. We provide a closed form solution, making the method fast
to train. We test the method’s performance on two challenging datasets.
The first has been intensely used by the community. The second has
been specially generated from a well known 3D face dataset. It is consid-
erably more challenging, including a high diversity of rotations and more
samples than any other existing public dataset. The proposed method is
compared against state-of-the-art approaches, including RCPR, CGPRT,
LBF, CFSS, and GSDM. Results upon both datasets show that the pro-
posed method offers state-of-the-art performance on near frontal view
data, improves state-of-the-art methods on more challenging head rota-
tion problems and keeps a compact model size.

1 Introduction

Facial landmark location consists of detecting a set of particular points on the
face. Usually these points have semantic meaning, their location being in highly
distinctive places around the eyes, mouth or nose. A set of such points is useful
for expressing both the rigid and non-rigid deformations of the face geometry.
Because facial geometry changes with identity, facial expression and head pose,
it is an important step in many automatic facial analysis tasks such as face
recognition, face expression recognition, face synthesis and age or gender esti-
mation [1].

A common approach for locating landmarks on the face is to model the
relation between the face appearance and its geometry. If we consider X∗ to be
the ground truth geometry, and Φ(I,X) a representation function of a geometry

c© Springer International Publishing AG 2017
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X on an image I, then starting from an initial estimation X0 landmark location
can be formulated as an optimisation problem of the form:

arg min
ΔX

f(X0 + ΔX) = ||Φ(I,X0 + ΔX) − Φ(I,X∗)||22 (1)

Because Φ is a highly non-linear function, f is non-convex and has many
local minima, the problem becomes severe in the case of large variations of the
texture which is normally the case with rotations of the head and strong non-
rigid deformations. Additionally, successfully solving the optimisation problem
is highly dependent on the initialisation.

Historically, Active appearance models (AAM) [2] are one of the most used
methods for 2D face registration. They are an extension of active shape models
(ASM) [3] which encode both geometry and intensity information. More recently,
even though single step landmark location methods have been proposed [4,5],
the most common approach is to model the relationship between texture and
geometry with a cascade of regression functions [6–12]. Features are extracted
from the current estimated geometry and passed to the learnt mapping in order
to update the geometry. This process is repeated iteratively for each step of the
cascade, applying a specific mapping to each. If we denote by Ri the regression
function at the ith step of the cascade, by Φi = Φ(I,Xi) the corresponding
representation and by bi a constant bias, then at every step of the cascade, the
geometry X will be updated in the following way:

Xi+1 = Xi + RiΦi + bi (2)

While most cascaded regression methods share this approach, considerable
variation can be found in representation, regression functions and initialisation
strategies. The simplest way to initialise the geometry is by starting with the
mean [8,9,11]. For faces, this works well in close-to-frontal scenarios but proves
inefficient when large pose variation occurs. A common solution is to try a set of
random initialisations and consider the median of the predictions as the final
solution [6,13]. Unfortunately, this considerably increases the computational
cost. An alternative approach is to apply the initial part of the cascade and
continue only if the variance of the regressed shapes is low, which is a strong
predictor of convergence towards the global minimum [7]. If this is not the case
then a different set of initial shapes is generated. Even so, all these methods
are dependent on the initialisation and prove low generalisation to large head
pose rotation. A coarse-to-fine searching approach was recently proposed to deal
with the initialisation dependency problem [14]. A regression function is learnt
from a set of shapes generated according to a probabilistic distribution on the
shape space. A dominant set approach is used to eliminate outliers between the
regressed shapes in an unsupervised manner. From the filtered subset the centre
of a smaller region of the original space is computed and the process repeated
until convergence. While it prevents locality of the solutions it improves robust-
ness to large pose variation.

The work of Dollar et al. which proved influential in the field of facial land-
mark localisation, uses intensities of sparse sets of pixels at predefined locations
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to represent texture in a shape indexed fashion for learning a fixed linear sequence
of weak regressors [13]. In this way, representation’s output depends on both the
image data and the current estimate of the geometry. Some of the methods
propose to jointly learn the representation and the regression function [6–8,11].
In this sense, several shape indexed locations are randomly generated and then
selected based on a certain optimisation criteria. Alternatively, local binary fea-
tures are learnt for each landmark independently [8]. During test, very fast land-
mark localisation is obtained. In a recent method [15], Difference of Gaussians
(DoG) features are selectively extracted from locations arranged in a pattern
inspired by the human visual system [16]. Learnt trees at early stages tend to
select indexed DoG features computed from distant sampling points while trees
at later stages tend to use nearby sampling points. Finally, a very common prob-
lem of most of the proposed methods, the lack of sensitivity to occlusions is tack-
led in the work of Burgos-Artizzu et al. [7]. They propose a method that reduces
exposure to outliers by detecting occlusions explicitly and using robust shape-
indexed features. It incorporates occlusion directly during learning to improve
shape estimation.

A distinct group of methods use predefined handcrafted representations while
learning the regression function from the data. For example, to overcome the
large computational time required by the regression of many generated shapes
at each stage more simple descriptors are used in the initial stages when coarse
localisation is performed. More complicated representations are used on final
stages when fine localisation takes place [14]. A particularly important set of
methods that use fixed representations are the ones derived from the Super-
vised Descent Method (SDM) [9]. SDM uses simplified SIFT features and linear
regressors. As is the case of previous methods, SDM works well for near frontal
faces but fails on strong rotations. To overcome this problem, Global Supervised
Descent Method (GSDM) [10] introduced an approach which uses a sub-space
defined by a set of directions of maximum variance of the training data to parti-
tion the original feature space. Each partition shares a similar descent direction
for the training instances falling within it. A linear regressor is learnt for each
partition. However, GSDM suffers from two main problems. Both the number
of training instances and model size increase exponentially with the number of
sub-space dimensions.

In order to perform landmark localisation under strong rotations while keep-
ing a fast and compact model, this work proposes a continuous formulation of
GSDM. Instead of using the sub-space to partition the feature space as GSDM
does, it is used to describe a space of linear regressors. This is equivalent to
proposing a regressor which estimates the second derivative of the gradient,
instead of the first as a standard linear regressor would (e.g. in SDM). While
this formulation may not be as expressive as GSDM, the amount of memory and
training instances required increases linearly with the number of dimensions of
the sub-space. Also, the proposed formulation defines a specific linear regressor
for each instance.
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In summary, our list of contributions is as follows:

– we present a method that improves state-of-the-art results on strongly rotated
faces

– the trained models are small, the amount of memory and training instances
required increase only linearly with the number of dimensions of the sub-spaces

– the method is fast to train due to its closed form solution
– we have synthesised largest 2D face dataset to date, with a challenging face

rotation distribution

The rest of the paper is organised as follows: in Sect. 2 we formulate the
proposed method, in Sect. 3 we present the experimental analysis and finally, in
Sect. 4, we conclude the paper.

Notations. Vectors (a) and matrices (A) are denoted by bold letters. An

u ∈ R
d vector’s Euclidean norm is ‖u‖2 =

√∑d
i=1 u2

i . B = [A1; . . . ;AK ] ∈
R

(d1+...+dK)×N denotes the concatenation of matrices Ak ∈ R
dk×N .

2 Continuous Supervised Descent Method

2.1 Second Order Regressor

The original SDM method [9] is an exemplar-based method which learns a series
of linear regressors approximating the data to the global optima in a cascaded
manner. Lets consider Xi ∈ R

n×m the m targets for each of n samples at a
given cascade step i, ΔΦi ∈ R

n×(k+1) = Φi − Φi the difference of the feature
vectors of length k from the mean, with a column vector of ones added in order
to account for the bias, and Ri ∈ R

(k+1)×m the linear regressor for each of the
m parameters. Then the update formula for SDM can be expressed as follows:

Xi+1 = Xi + (Φi − Φi)Ri = Xi + ΔΦiRi (3)

This can be seen as learning a linear approximation of the first-order partial
derivatives for each parameter. These correspond to ∂ΔXi+1/∂ΔΦi

j = ΔΦi
jR

i
j ,

with Ri being the Jacobian matrix, ΔΦi
j the jth column of ΔΦi and Ri

j the jth
row of Ri. To make this approximation, the slope is considered homogeneous for
any point of the feature space. This assumption does not hold for most problems,
where the gradient direction suffers from large variations on different locations
of that space. On Global SDM [10] these variations are handled by partitioning
the space into different regions and learning a linear regressor for each one.
This approach can approximate with high accuracy the gradient variations at
different regions of the space, but has the problem of doubling the amount of
learnt regressors and required training data each time the space is divided.

Here we introduce a continuous formulation, where a set of bases are learnt
for the regressors, effectively learning a linear approximation of the second deriv-
ative. To do so, first a set of main modes of variation are learnt from either ΔX∗

or ΔΦi using Principal Component Analysis (PCA):

ΔΦ̃i =
[
ΔΦiP1:l,1n

]
, (4)
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where l represents the number of bases to learn and P1:l is the projection matrix.
1n ∈ R

n×1 denotes an all-ones vector. Given that the total number of learnable
parameters for one of m targets equals p = (k + 1)(l + 1), learning the second
derivative for all parameters (l = k) would drastically increase the problem
dimensionality. Estimating the second derivative on the l main variation modes
is a more treatable problem. Given one of the targets ΔXi

j ∈ R
n×1, its associated

second order regressor is expressed as the solution to the following minimisation
problem:

arg min
Ri

j

||(ΔΦi ◦ (ΔΦ̃iRi
j))1(k+1) − ΔXi

j ||22 (5)

Here, Ri
j ∈ R

(l+1)×(k+1) is the set of l bases (and baseline or bias regres-
sor) describing the regressor for the jth target at the ith cascade step, and
◦ denotes the Hadamard product. Note that, according to Eq. 7, this formu-
lation learns a linear approximation to the second order partial derivatives
∂2ΔXi+1

j /(∂ΔΦi
p ∂ΔΦ̃i

q) = ΔΦi
pΔΦ̃i

q(R
i
j)pq. Thus Ri

j corresponds to a com-
pact version of the Hessian matrix for target j at cascade step i, having the
dimensionality of the feature space reduced before applying the second deriv-
ative. Equation 5 can be seen as a compact formulation defining a quadratic
regressor for each target, which is known to be a linear problem, having a closed
form solution. This minimisation problem can be expressed in a least squares
form, providing a closed form solution, as follows:

arg min
Ri

j

||(ΔΦ̃i � ΔΦi)vec(Ri
j

ᵀ
) − ΔXi

j ||22 (6)

Here � denotes the Khatri–Rao product, considering each instance (row) on
ΔΦi and ΔΦ̃i as a partition of the matrix, and vec(Ri

j
ᵀ) ∈ R

(kl+2)×1 is the
vectorisation of the regressor bases. Thus, while the second derivative estimate
is used for a subset of principal components, the regressor remains linear. This
allows us to rapidly and directly find the optimal regression weights given the
training instances. Note that this formulation could be extended to estimate
higher order derivatives by applying the Khatri–Rao product multiple times. At
test time, the parameters are updated with the following equation:

Xi+1
j = Xi

j + (ΔΦi ◦ (ΔΦ̃iRi
j))1(k+1) (7)

This formula estimates the regressor weights and bias for the current value of
the principal components Φ̃i, and applies it to the features. This is more memory-
efficient than performing the Khatri-Rao product of ΔΦi and ΔΦ̃i and then
performing a linear regression. The bias for the regressor bases is the baseline
regressor for an instance with the mean value for the l principal components
(PCs) of the feature vector. Each of the l regression bases in Ri corresponds to
the second derivative estimate wrt. a given PC. Note that when l = 0 the model
is a standard linear regressor. Thus, SDM can be seen as a special case of our
method where the second derivative is not taken into account for any PC.
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The proposed approach estimates a standard linear regressor for each
instance given the coordinates of the features sub-space ΔΦ̃i. Global SDM
assigns the same one to all instances falling into a given region of the parti-
tioned sub-space. Another advantage of this approach is that the number of
parameters learnt p at each cascade step increases linearly with the number
of bases (p = (k + 1)(l + 1)). With Global SDM it increases quadratically
(p = (k + 1)min(1, l2)). These two factors make the proposed approach both
more compact in terms of memory and more accurate, as shown in Sect. 3.3.
Because the regression space is continuous, the weights of the linear regressor
are adapted to each instance, providing more flexibility to the model. During
training, this also implies that for the proposed approach all the training data
is available for each base of the sub-space, helping to reduce over-fitting. GDSM
distributes the data between quadrants, logarithmically reducing the available
training data for each quadrant with the number of sub-space bases.

2.2 Implementation Details

As discussed in Sect. 2.1, the second derivative of the feature space is calculated
over the l principal components. For this work, similarly to [9], a simplified
SIFT descriptor is extracted from each landmark estimate. The descriptor has
a fixed 32 × 32 window around the landmark, rotated according to the in-
plane rotation of the current geometry relative to the mean facial shape. PCA is
then applied in order to reduce its dimensionality. Thus, the feature vector for
an instance j at the cascade step i is defined as Φi

j = sift(Ij ,Xi
j)

ᵀPi
1:k, the k

principal components of the extracted SIFT descriptors. This implicitly provides
the l parameters for the regressor bases, being Φ̃i

j = (Φi
j)1:l. The targets ΔXi

are rotated in the same way as the descriptor windows in order to maintain a
coherent update direction.

The feature vector length k and number of regression bases l may depend
on the problem and are free parameters of the model. Still, there are two con-
siderations to take into account. In a cascaded regression approach, the first
steps of the cascade broadly approximate the face pose and general shape, while
later steps tend to fine-tune the location of each landmark, working more locally.
This implies that at the fist steps a smaller amount of the total descriptors vari-
ance may be enough. Conversely, a higher amount of regression bases would
increase the adaptability to the descriptors main modes of variation, which are
expected to be caused by pose/illumination variations. The feature vector length
k is defined as a fixed percentage of the original SIFT features variance. While
it may be possible to adjust the number of bases l at each cascade step (for
instance with forward selection), in this work a global value is chosen for all
cascade steps.

The initial shape at the first cascade step is the mean shape. It is calculated
from the training instances ground truth shapes using Generalised Procrustes
Analysis.
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3 Experiments

This section is dedicated to the description and discussion of the experiments
conducted to validate the proposed method. We begin in Sect. 3.1 by describing
the two datasets we used, 300W a dataset intensely used by the community and
BU4DFE-S, a dataset we have specially synthesised from BU4DFE, a 3D face
dataset. In Sect. 3.2 we present the experimental setup and the methods used
for comparison1. In Sect. 3.3 we discuss the results.

The objective of these experiments are two-fold. First we want to show that
the proposed method achieves state-of-the-art results on close-to-frontal faces.
For this purpose we use 300W, a well known public dataset which is the de-facto
standard benchmarking dataset for facial landmark localisation. We then want
to show that the method outperforms other methods when applied to heavily
rotated faces. For this purpose we show results on the BU4DFE-S, a dataset
specially synthesised for this purpose. The reader is referred to Table 1 for the
overall results on the two considered datasets and to Fig. 3 for a comparative
study of the robustness to rotation 3. Detection examples are presented in Fig. 4.
The code for the experiments is made publicly available.

3.1 Data

In order to test the proposed method we used 300W, a well known facial
expression dataset. We also designed a new dataset, which we called BU4DFE-S,
consisting of 2D faces synthesised from BU4DFE, a public 3D dynamic facial
expression dataset.
300W. The 300 Faces In-the-Wild (300W) [17] database is a compilation of six
re-annotated datasets (68 landmarks). Following the same approach as in [8]
[15], four of the six datasets are used: AFW [18], LFPW [19], Helen [20] and
iBUG [17]. The test data for LFPW and Helen, along with iBug, are used as
test. The rest of data is used for training. This provides a total of 3148 and
689 train and test instances. The data is captured outside the lab and it has
balanced ethnic and gender distribution. While challenging and diverse, it does
not contain far-from-frontal faces and its number of samples is rather low.
BU4DFE-S. While annotated face datasets have become more challenging and
diverse in recent years, they still provide a low number of training instances
with limited variation in rotation. In order to compare the robustness of the
proposed method with state-of-the-art facial landmark localisation methods, we
have created BU4DFE-S, a new large 2D dataset synthesised from the publicly
available BU4DFE. BU4DFE is a high resolution dynamic 3D facial dataset [21].
101 subjects of ages between 18 to 45 years old are captured while showing facial
expressions in a controlled environment. The 3D facial expressions are captured
at 25 frames per second. Each sequence begins with the neutral expression,
proceeds to target emotion and then back to neutral. For creating the BU4DFE-
S we sample 5 frames from each captured sequence. The sampled 3D frames

1 Code and data generation script available at https://github.com/moliusimon/csdm.

https://github.com/moliusimon/csdm
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are equally distributed along the sequence, portraying varying intensities of the
same expression during onset, apex and offset.

We use the extracted 3D samples, to build 25 2D projections by rotating the
3D model in pitch and yaw. The projected images are generated as follows. The
BU4DFE provides the 3D point cloud of the face and an RGB image. Addi-
tionally for each of the 3D points the mapping is provided to the corresponding
position on the RGB image, making it possible to map the 3D geometry to the
colour texture. We first homogeneously down-sample the 3D points set by 20 and
build a triangle mesh from the remaining points. The down-sampling factor was
heuristically found as a trade-off between the computational cost for generating
the projected images and their quality. We consider an isometric projection to
associate texture patches to the mesh triangles. The mesh is then rotated with
the desired angle and the triangles are again projected to the 2D plane. The
new face is built by affine piece-wise warping of the initial texture patches to
the newly projections of the rotated triangles by taking into account self occlu-
sions. Inpainting is used to fill warping holes or artifacts. Finally, the images are
resized to a standard size of 200 × 200 pixels and a background is painted on
the remaining regions.

We have used the test partition of the Places Dataset, a scene recognition
dataset, to build the backgrounds [22]. It contains 41000 images of size 256 × 256
pixels. From every image we crop two 200 × 200 regions, one on the top-let corner
and the other on the bottom-down corner. The former is flipped. We use these
images to place a different background behind each of the generated faces. In
Fig. 1(a) we provide a summarised depiction of the process. The rotation angles
follow an inverse normal distribution for angles between ±90◦ in yaw and ±45◦

in pitch as shown in Fig. 1(b). In this way we obtain more highly rotated faces in
all directions than close-to-frontal faces. The generated data contains a total of
75000 rotated images of 100 persons. Each person appears in 750 samples with
6 different facial expressions at 5 different intensities rotated 25 times. As the
BU4DFE, the subjects are from different ethnicities and follow a balanced gender
distribution. The generated dataset has more instances and rotation variation
than any other existing public 2D dataset. We show some examples in Fig. 2.

Besides containing a larger number of samples (approximately 24 times more
than 300W), BU4DFE-S has two more important characteristics. First, for each
of the samples the pose is known which is not the case with most of the other
2D face datasets. There exist datasets containing captured faces under different
angles in the lab, but the angle distribution is extremely skewed [23]. Another
advantage of the BU4DFE-S is that we have total control over the pose distrib-
ution of the synthesised data. This makes possible benchmarking the robustness
to pose rotation against state-of-the-art methods as shown in Fig. 3.

3.2 Experimental Settings

For the proposed method the parameter space is larger than for SDM, specially
at the first cascade steps. In order to avoid over-fitting, the training data is aug-
mented. For both the 300 W and BU4DFE-S datasets the images and geometries
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(a) Data synthesis for BU4DFE-S.
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(b) Pose rotation distribution for BU4DFE-S.

Fig. 1. BU4DFE-S contains 2D rotated faces synthesised from BU4DFE, a 3D dynamic
facial expression dataset. In (a) we show how from a original sequence we sample a
limited number of equally spaced frames. For each of these frames we use the provided
3D mesh and the texture to generate 25 rotated projections. The rotation angle distri-
bution is shown in (b). We favour far-from-frontal faces with respect to close-to-frontal
ones in order to make the data as challenging as possible.

are mirrored, doubling the number of training instances. In the case of 300W,
which consists of only 3148 training images, the dataset is further augmented by
providing 25 different initial geometries. These are generated by applying a ran-
dom rotation between [−π/4, π/4], a displacement between [−5%, 5%] for both
width and height, and a scaling factor between [0.9, 1.1] to the mean shape.

Regarding the number of bases l and the captured feature space variance,
the values have been manually chosen for each dataset. For 300W, 2 bases and
95% of variance are used, while for BU4DFE-S, 5 bases and 85% of variance are
used. It is necessary to use fewer bases in 300 W in order to avoid over-fitting,
since the number of training instances is smaller.

Fig. 2. BU4DFE-S dataset samples. Annotated face landmarks are shown in green.
(Color figure online)

We compare the proposed method with the most important facial land-
mark localisation methods in recent years. This is done using the Normalised
Mean Euclidean Error (NMEE) metric, a standard error metric in the literature
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[7,9]. It corresponds to the mean euclidean distance between the detected and
ground truth landmarks, normalised by the inter-ocular distance. In the case
of BU4DFE-S, where large head rotations are present, the 3D inter-ocular dis-
tance is used instead. Otherwise for yaw angles close to 90◦ the inter-ocular dis-
tance would tend to zero, giving more weight to errors on heavily rotated faces.
For comparing results we considered the most important state-of-the-art meth-
ods [6–11,14,20]. RCPR is able to deal with occlusions by including occlusion
ground-truth of the landmarks in the learning process. As none of the consid-
ered datasets has annotated occlusions we discarded this feature during training.
For the ERT [11] and LBF [8], we compare with already published results for
the 300W. For a fair comparison we compare the results for the SDM and the
GSDM after training with the same number of steps as the proposed method.
It is important to note that GSDM is a method oriented to tracking the facial
geometry, but can be easily applied to the static case by modifying the definition
of the subspace used to partition the feature space. Instead of using two prin-
cipal components from ΔXi and one from ΔΦi, all principal components are
taken from ΔΦi. For the proposed approach, a 2-dimensional subspace is used
in the case of 300W, and a 5-dimensional one for BU4DFE-S. Finally, two recent
methods, CFSS [14] and CGPRT [15], have been considered. In their paper, the
authors of CGPRT publish two results, with different number of training steps.
The result we have obtained was with the larger number of steps and by ini-
tialising with the mean shape. CFSS does a constraint search of the shape in a
coarse-to-fine manner in subsequent finer shape subspaces. Even though a paral-
lel training on the CPU was attempted, we found training to be very slow, which
made impossible obtaining results for BU4DFE-S with the available hardware
resources.

3.3 Results Discussion

For the 300 W dataset, the trained model has been fit to the test data both using
mean shape initialisation and with 25 random initialisations sampled using the
same criteria used during training (see Sect. 3.2). The results of both approaches
are shown in Table 1. Without multiple test initialisations, the method has a
NMEE lower than those achieved by ESR, RCPR, SDM and GSDM, also sur-
passing ERT when using multiple initialisations. Yet LBF, CGPRT and CFSS
still have lower errors. Thus, the proposed approach surpasses, or is close, to
most state-of-the-art methods in the near frontal view conditions of the 300-w
dataset.

On BU4DFE-S the proposed method outperforms all considered state of
the art approaches. Because it is a dataset with large head pose rotations in
both pitch and yaw, this dataset better represents the strength of the proposed
algorithm to better adjust to the main modes of variation of the data. This is
analysed in Fig. 3. There, the NMEE is shown relative to the yaw rotation, for two
ranges of pitch. Without using multiple test initialisations, the proposed method
has an accuracy similar to that of the other state-of-the-art approaches for near-
frontal faces, but is much more robust to pose variations. It works specially
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Table 1. Our method compared with state-of-the-art methods in terms of mean land-
mark displacement as percentage of interocular distance (For the BU4DFE-S we com-
pute the interocular distance in 3D.) without (CSDM) and with multiple test initiali-
sations (CSDMa).

ESR [6] RCPR [7] SDM [9] ERT [11] LBF [8] CGPRT [15] CFSS [14] GSDM [10] CSDM CSDMa

300W 7.58 8.38 7.52 6.40 6.32 5.71 5.76 6.96 6.83 6.40

BU4

DFE-S

9.45 8.61 9.57 - - 15.81 - 9.01 8.28 7.62

well for both large pitch and yaw rotations. This contrasts with CGPRT, which
performed specially well for the 300 W dataset, but had problems with BU4DFE-
S. The only method still far from, but approaching the accuracy obtained by the
proposed approach is RCPR. It can be seen in Fig. 3 that while RCPR has the
lowest NMEE for frontal faces, it one of the best approaches when dealing with
large pose variations. When using multiple test initialisations, a much lower
average error is obtained, achieving the same accuracy for near-frontal faces as
ERT. This accuracy improvement is maintained regardless of the facial pose,
except for large pose rotations in both pitch and yaw, where the yaw angle is
close to 90◦. For these extreme cases, the error is only slightly lower than CSDM
without using multiple shape initialisations.

A breakdown of the NMEE by facial regions, as shown in Table 2, gives a
better insight on the method performance. For far from frontal head poses, the
proposed approach surpasses the state of the art accuracies on all facial regions,
both with and without multiple test initialisations. In the case of near-frontal
head poses, RCPR has a higher precision for the eyes and eyebrows. CSDM is
better at localising landmarks at the nose, mouth and contour regions when
using multiple shape initialisations. An interesting result is the error reduc-
tion when localising the contour landmarks with multiple shape initialisations.
While the other facial regions reduce the RMSE by about 5%, in the case of the
contour it is reduced by over 10%, both in close to and far from frontal head
poses. This is likely caused by the lack of edges and strong gradients on this
region. By averaging multiple predictions, the noise is reduced, obtaining a higher
accuracy.

GSDM is another method that exploits the features main modes of variation
to better approximate the descent direction at different regions of the feature
space. Compared to it, the proposed method obtains better results for both
300 W and BU4DFE-S while also producing a more compact model. The memory
required by GSDM increases quadratically with the number of considered bases,
while the proposed approach does so linearly. Furthermore, each position of
the subspace has a unique regressor assigned, while GSDM shares the same
regression weights for a given partition of the subspace. One downside to the
proposed approach is that the computational cost increases linearly with the
number of bases, while for GSDM the cost remains constant.

Similarly to SDM and GSDM, the proposed method provides a closed-form
solution. Compared to other state-of-the-art methods such as CFSS, CGPRT and
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Table 2. Normalised Mean Euclidean Error (NMEE) for different landmark subsets
corresponding to facial regions on BU4DFE-S. We group faces according to their pose.
Close-to-frontal faces have an yaw angle between ±30◦ and pitch angle between ±15◦.
Correspondingly far-from frontal faces have both yaw and pitch angles above ±30◦ and
±15◦respectively.

Close to frontal Far from frontal

ESR RCPR SDM CGPRT GSDM CSDM CSDMa ESR RCPR SDM CGPRT GSDM CSDM CSDMa

Eyes 3.92 3.38 4.02 10.53 3.92 4.04 3.82 6.94 6.11 6.76 14.29 6.25 5.55 5.20

Eyebrows 5.84 5.17 5.60 13.15 5.56 5.84 5.54 9.01 8.02 8.50 17.73 8.12 7.20 6.77

Nose 6.03 5.59 5.60 10.30 5.51 5.58 5.27 8.26 7.69 8.58 13.21 8.00 7.41 6.99

Mouth 5.46 4.28 4.47 10.91 4.27 4.40 4.27 8.20 6.70 8.18 14.52 6.72 6.17 5.84

Contour 12.59 12.11 13.26 17.49 13.52 13.27 12.04 17.30 17.19 18.54 22.43 18.53 17.20 15.27

LBF, which use stochastic processes when learning each regressor, the proposed
approach ensures a consistent result on different training runs given the same
data.
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Fig. 3. Normalised Mean Euclidean Error (NMEE) as a function of yaw on two different
pitch ranges on BU4DFE-S.

Multiple qualitative examples of faces from the BU4DFE-S dataset, with
the landmark predictions for different methods, are shown in Fig. 4. From these
examples it can be seen that SDM, CGPRT and RCPR struggle to correctly
locate inner face landmarks for heavily rotated faces. Compared to all other
considered methods, our proposal has a high accuracy on inner face landmarks
even with highly rotated faces, followed by GSDM and ESR. The main weakness
is the localisation of face contour landmarks, which is noisy due to the lack of
edges and little texture information on that area, resulting in a lack of smooth-
ness in the contour line. Even with this noise, as shown in Table 2, the proposed
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ESR RCPR SDM CGPRT GSDM CSDM

Fig. 4. Facial landmark localisation examples for BU4DFE-S.
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approach has a much better precision for this set of landmarks. An extension to
consider in the future would be regressing a parametrised shape, which should
increase the accuracy for the face contours.

4 Conclusion

In this work we extended cascaded regression approaches by introducing the sec-
ond order derivative over the main modes of variation of the features, presenting
a closed-form solution to the face alignment problem. We showed that by doing
so, the robustness to large head pose variations is greatly increased, surpassing
current state of the art methods. At the same time, the accuracy for near-frontal
faces is comparable to state of the art results. Furthermore, the learnt models
are smaller than those from other similar approaches.

In order to prove the effectiveness of our method on heavily rotated faces
we have built a new synthetic dataset based on a well known public 3D face
dataset. It contains large variations in both head pose and facial expressions, as
well as a large number of training instances, making it one of the largest, most
challenging datasets for facial landmark localisation to date.

Several future improvements can be envisioned, like parameterizing the face
to increase shape consistency especially for landmarks situated in regions with
little texture and extending the method to 3D, which would make it useful for
a larger number of applications.
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Abstract. We propose DeepExpr, a novel expression transfer app-
roach from humans to multiple stylized characters. We first train two
Convolutional Neural Networks to recognize the expression of humans
and stylized characters independently. Then we utilize a transfer learn-
ing technique to learn the mapping from humans to characters to create
a shared embedding feature space. This embedding also allows human
expression-based image retrieval and character expression-based image
retrieval. We use our perceptual model to retrieve character expressions
corresponding to humans. We evaluate our method on a set of retrieval
tasks on our collected stylized character dataset of expressions. We also
show that the ranking order predicted by the proposed features is highly
correlated with the ranking order provided by a facial expression expert
and Mechanical Turk experiments.

1 Introduction

Facial expressions are an important component of almost all human interac-
tion and face-to-face communication. As such, the importance of clear facial
expressions in animated movies and illustrations cannot be overstated. Dis-
ney and Pixar animators [1,2] have long understood that unambiguous expres-
sion of emotions helps convince an audience that an animated character has
underlying cognitive processes. The viewer’s emotional investment in a charac-
ter depends on the clear recognition of the character’s emotional state [3]. To
achieve lifelike emotional complexity, an animator must be able to depict char-
acters with clear, unambiguous expressions, while retaining the fine level control
over intensity and expression mix required for nuance and subtlety [4]. However,
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Fig. 1. Expressions are surprisingly difficult to create for professional animators. Three
professional animators were asked to make the character appear as surprised as possible.
None of the expressions achieved above 50% recognition on Mechanical Turk with 50
test subjects.

explicit expressions are notoriously difficult to create [5], as illustrated in Fig. 1.
This difficulty is in part due to animators and automatic systems relying on
geometric markers and features modeled for human faces, not stylized character
faces.

We focus our efforts on stylized 3D characters, defined as characters that no
human would mistake for another person, but would still be perceived as having
human emotions and thought processes. Our goal is to develop a model of facial
expressions that enables accurate retrieval of stylized character expressions given
a human expression query.

To achieve this goal, we created DeepExpr, a perceptual model of stylized
characters that accurately recognizes human expressions and transfers them to a
stylized character without relying on explicit geometric markers. Figure 2 shows
an overview of the steps to develop the framework of our model. We created
a database of labeled facial expressions for six stylized characters as shown in
Fig. 7. This database with expressions is created by facial expression artists and
initially labeled via Mechanical Turk (MT) [6]. Images are labeled for each of
six cardinal expressions: joy, sadness, anger, surprise, fear, disgust, and neutral.
First, we trained a Convolutional Neural Network (CNN) on a large database
of human expressions to input a human expression and output the probabilities
of each of the seven classes. Second, we trained a similar character model on an
artist-created character expression image database. Third, we learned a map-
ping between the human and character feature space using the transfer learning
approach [7]. Finally, we can retrieve character expressions corresponding to a
human using perceptual model mapping and human geometry.

We make the following contributions1:

1. A data-driven perceptual model of facial expressions.
2. A novel stylized character data set with cardinal expression annotations.
3. A mechanism to accurately retrieve plausible character expressions from

human expression queries.
1 Project page: http://grail.cs.washington.edu/projects/deepexpr/.

http://grail.cs.washington.edu/projects/deepexpr/
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Fig. 2. Overview of our pipeline. Feature extraction using CNNs and transfer learning
builds a model of expression mapping.

2 Related Work

There is a large body of literature classifying, recognizing, and characterizing
human facial expressions. Notably, Paul Ekman’s widely adopted Facial Action
Coding System (FACS) [8] is used as a common basis for describing and commu-
nicating human facial expressions. The FACS system is often used as a basis for
designing character animation systems [5,9] and for facial expression recognition
on scanned 3D faces [10]. However, despite these advances, creating clear facial
animations for 3D characters remains a difficult task.

2.1 Facial Expression Recognition and Perception

FACS for Animation. Though a reliable parameterization of emotion and
expression remains elusive, the six cardinal expressions pervade stories and face-
to-face interactions, making them a suitable focus for educators and facial expres-
sion researchers [11]. To guide and automate the process of expression anima-
tion, animators and researchers turn to FACS. For example, FACSGen [9] allows
researchers to control action units on realistic 3D synthetic faces. Though Roesch
et al. confirmed the tool’s perceptual validity settings by asking viewers to rate
the presence of emotions in faces developed using action unit combinations found
in “real life situations”, we found that their faces were unclear as demonstrated
in Fig. 3.

HapFACS [5], an alternative to FACSGen, allows users to control facial
movement at the level of both action units and whole expressions (EmFACS)
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according to Ekman’s formulas. The strict use of anatomy-based and constrained
motion by these systems limits their generalizability to characters with differ-
ent anatomy and limits their application, because the most believable animation
may require the violation of physical laws [1].

Fig. 3. DeepExpr yields clearer expressions than other approaches when tested on MT.
From left to right each generated face was intended to clearly convey an expression:
anger from MPEG-4 [12] scored 20% clarity for anger. Anger from HapFACS [5] scored
8% clarity for anger. Fear from HapFACS scored 20% clarity for fear. Fear using FAC-
SGen [9] scored 6% clarity for fear. Anger and fear faces retrieved with our approach,
both scored over 85% clarity.

Alternatively, the MPEG-4 standard [12] can describe motion in stylized faces
by normalizing feature motion to a standard distance. The MPEG-4 standard
provides users with archetypal expression profiles for the six cardinal expressions,
but like the FACS-based systems does not give the user feedback on the per-
ceptual validity of their expression, which may lead to unclear faces. As demon-
strated in Fig. 3, anatomically valid faces generated by these systems did not
consistently yield high recognition rates in MT with 50 test subjects.

Other Perceptual Models. The results shown in Fig. 3 support artists’ intu-
ition that anatomy based formulas for expressions must be tailored to each
unique face, and necessitate a perceptually guided system to find the optimal
configuration for a clear expression. Perceptual models such as Deng and Ma [13]
have also been explored for realistic faces with promising results. Deng and Ma
polled students’ perceptions of the expression of different motion-captured facial
configurations and ran Principal Component Analysis (PCA) [14] on the ver-
tices of the meshes of these faces. Using these results, they developed a Support
Vector Machine (SVM) [15] model for expression clarity as a function of PCA
weights for different areas of the face. They also showed significantly increased
expression clarity of generated speech animation by constraining the characters’
motion to fit their model. However, the scalability of their procedure is limited
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by its reliance on on-site subjects and the size and specificity of the seeding
dataset. We addressed these limitations by incorporating MT tests in our char-
acter expression data collection and training a deep learning model for expression
clarity.

2.2 Feature Extraction and Classification

Facial expression recognition can be broadly categorized into face detection, reg-
istration, feature extraction, and classification. In the detection step, landmark
points are used to detect a face in an image. In the registration step, the detected
faces are geometrically aligned to match a template image. Then the registered
image is used to extract numerical feature vectors as the part of the feature
extraction step.

These features can be geometry based such as facial landmarks [16,17],
appearance based such as Local Binary Patterns (LBP) [18], Gabor filters [19],
Haar features [20], Histogram of Oriented Gradients [21], or motion based such as
optical flow [22] and Volume LBP [23]. Recently, methods have been developed
to learn the features by using sparse representations [24,25]. A 3D shape model
approach has also been implemented to improve the facial expression recognition
rate [26]. A variety of fusion of features has also been utilized to boost up the
facial expression recognition performance [27,28]. They are mostly a combina-
tion of geometric and appearance based features. In the current practice of facial
expression analysis, CNNs have shown the capability to learn the features that
statistically allow the network to make the correct classification of the input
data in various ways [29,30]. CNN features fused with geometric features for
customized expression recognition [31] and Deep Belief Networks have also been
utilized to solve the Facial Expression recognition (FER) problem. A recent app-
roach [32] termed “AU (Action Unit)-Aware” Deep Networks demonstrated the
effectiveness in classifying the six basic expressions. Joint Fine-Tuning in Deep
Neural Networks [33] have also been used to combine temporal appearance fea-
tures from image sequences and temporal geometry features from temporal facial
landmark points to enhance the performance of the facial expression recognition.
Along similar lines, we have utilized deep learning techniques as a tool to extract
useful features from raw data for both human faces and stylized characters. We
then deploy a transfer learning approach, where the weights of the stylized char-
acter are initialized with those from a network pre-trained on a human face data
set, and then fine-tuned with the target stylized character dataset.

In the last step of classification, the algorithm attempts to classify the given
face image into seven different classes of basic emotions using machine learning
techniques. SVMs are most commonly used for FER tasks [18,34,35]. As SVMs
treat the outputs as scores for each class which are uncalibrated and difficult
to interpret, the softmax classifier gives a slightly more intuitive output with
normalized class probabilities and also has a probabilistic interpretation. Based
on that, we have used a softmax classifier to recognize the expressions in our
classification task using the features extracted by the deep CNNs.
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3 Methodology

We first describe the data collection approach and design of facial features that
can capture the seven expressions: joy, sadness, anger, surprise, fear, disgust, and
neutral. Then, we discuss our customized expression recognition and transfer
learning framework using deep learning.

3.1 Data Collection and Pre-processing

To learn deep CNN models that generalize well across a wide range of expres-
sions, we need sufficient training data to avoid over-fitting of the model. For
human facial expression data collection, we combined publicly available anno-
tated facial expression databases: extended CK+ [36], DISFA [37], KDEF [38]
and MMI [39]. We also created a novel database of facial expressions for six
stylized characters: the Facial Expression Research Group-Database (FERG-
DB). Both the databases have labels for the six cardinal expressions and neutral.

Fig. 4. Examples of registered faces from CK+, DISFA, KDEF, and MMI databases
showing disgust, joy, anger, and surprise emotion from left to right.

CK+: The Extended Cohn-Kanade database (CK+) includes 593 video
sequences recorded from 123 subjects. Subjects portrayed the six cardinal expres-
sions. We selected only the final frame of each sequence with the peak expression
for our method, which resulted in 309 images.

DISFA: Denver Intensity of Spontaneous Facial Actions (DISFA) database
consists of 27 subjects, each recorded while watching a four minutes video clip
by two cameras. As DISFA is not emotion-specified coded, we used the EMFACS
system [5] to convert AU FACS codes to expressions, which resulted in around
50,000 images using the left camera only.

KDEF: The Karolinska Directed Emotional Faces (KDEF) is a set of 4900
images of human facial expressions of emotion. This database consists of 70
individuals, each displaying 7 different emotional expressions. We used only the
front facing angle for our method and selected 980 images.

MMI: The MMI database includes expression labeled videos for more than
20 subjects of both genders for which subjects were instructed to display 79
series of facial expressions. We extracted static frames from each corresponding
sequence for the six cardinal emotions, resulting in 10,000 images.

We balanced out the final number of samples for each class for training our
network to avoid any bias towards a particular expression.
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Stylized Character Database. We created a novel database (FERG-DB)
of labeled facial expressions for six stylized characters. The animator created
the key poses for each expression, and they were labeled via MT to populate the
database initially. The number of key poses created depends on the complexity of
the expression for each character. We only used the expression key poses having
70% MT test agreement among 50 test subjects for the same pose. On average,
150 key poses (15–20 per expression) were created for each character. Interpo-
lating between the key poses resulted in 50,000 images (around 8,000 images per
character). The motivation behind the combination of different characters is to
have a generalized feature space among various stylized characters.

Data Pre-processing. For our combined human dataset, Intraface [40] was
used to extract 49 facial landmarks. We use these points to register faces to an
average frontal face via an affine transformation. Then a bounding box around
the face is considered to be the face region. Geometric measurements between
the points are also taken to produce geometric features for refinement of expres-
sion retrieval results as described in Sect. 3.2. Once the faces are cropped and
registered, the images are re-sized to 256× 256 pixels for analysis. Figure 4 shows
examples of registered faces from different databases using this method.

The corresponding 49 landmark points are marked on the neutral expression
of the 3D stylized character rig. This supplementary information is saved along
with each expression rendering and used later to perform geometric refinement
of the result. This step is performed only once per character.

3.2 Network Training Using Deep Learning

With approximately 70,000 images of labeled samples of human faces and 50,000
images for stylized character faces, the datasets are smaller in comparison to
other image classification datasets that have been trained from scratch in the
past. Moreover, since we have to use a portion of this data set for validation,
effectively only 80% of the data was available for training. We performed data
augmentation techniques to increase the number of training examples. This step
helps in reducing overfitting and improving the model’s ability to generalize.
During the training phase, we extracted 5 crops of 227× 227 from the four
corners and the center of the image and also used the horizontal mirror images
for data augmentation.

Training Human and Character CNN Models. Our human expression
network consists of three elements: multiple convolutional layers followed by
max-pooling layers and fully connected layers as in [41]. Our character network
is analogous to the human CNN architecture and does not require CONV4 for
the recognition task as the character images are not very complex. Unlike the
human dataset, there are fewer variations in the character dataset (light, pose,
accessories, etc.). To avoid overfitting, we limited our model to a fewer number
of convolutional parameters (until CONV3). Both networks are trained inde-
pendently. The details of the network layers are shown in Fig. 5 and network
parameters are given in the supplementary material.
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Fig. 5. Outline of the CNN architecture. The convolutional layers, max pooling layers
and fully connected layers are denoted as CONV, POOL and FC followed by the layer
number. Human expression image trained model (left), Stylized character expression
image trained model (middle) and fine-tuned character trained model (right) are shown.
In the transfer learning step, the last fully-connected layer (FC7 character) is fine-tuned
using stylized character data.

All three color channels are processed directly by the network. Images are
first rescaled to 256× 256 and a crop of 227× 227 is fed to the network. Finally,
the output of the last fully connected layer is fed to a softmax layer that assigns
a probability for each class. The prediction itself is made by taking the class
with the maximal probability for the given test image.

In the forward propagation step, the CONV layer computes the output of
neurons that are connected to local regions in the input (resized to 256× 256
in the data pre-processing step), each computing a dot product between their
weights and a small region they are connected to in the input volume, while the
POOL layer performs a downsampling operation along the spatial dimensions.
The output of each layer is a linear combination of the inputs mapped by an
activation function given as:

hi+1 = f((W i+1)Thi) (1)

where hi+1 is the ith layer output, W i is the vector of weights that connect to
each output node and f(·) is the non-linear activation function which is imple-
mented by the RELU layer given as: f(x) = max(0, x) where x is the input
to the neuron. The back-propagation algorithm to used to calculate the gradi-
ent with respect to the parameters of the model. The weights of each layer are
updated as:

δi = (W i)T δi+1.f ′(hi) (2)

where δi is the increment of weights at layer i. We train our networks using
stochastic gradient descent with hyperparameters (momentum = 0.9, weight
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decay = 0.0005, initial learning rate = 0.01). The learning rate is dropped by a
factor of 10 following every 10 epochs of training. The proposed network archi-
tectures were implemented using the Caffe toolbox [42] on a Tesla k40c GPU.

Transfer Learning. To create a shared embedding feature space, we fine-tuned
the CNN pre-trained on the human dataset with the character dataset for every
character by continuing the backpropagation step. The last fully connected layer
of the human trained model was fine-tuned, and earlier layers were kept fixed
to avoid overfitting. We decreased the overall learning rate while increasing the
learning rate on the newly initialized FC7 character layer which is highlighted
fine-tuned character trained model in Fig. 5. We set an initial learning rate of
0.001, so that the pre-trained weights are not drastically altered. The learning
rate is dropped by a factor of 10 following every 10 epochs of training. Our
fine-tuned model used 38 K stylized character image samples for training, 6K for
validation, and 6 K for test. The proposed architecture was trained for 50 epochs
with 40 K iterations on batches of size 50 samples.

Distance Metrics. In order to retrieve the stylized character closest expres-
sion match to the human expression, we used the Jensen—Shannon divergence
distance [43] for expression clarity and geometric feature distance for expression
refinement. It is described by minimizing the distance optimization function in
Eq. 3 given as:

φd = α |JS Distance| + β |Geometric Distance| (3)

where JS Distance is given as the Jensen—Shannon divergence distance between
FC6 feature vectors of human and character, and Geometric distance is given as
the L2 norm distance between geometric features of human and character. Our
implementation uses JS Distance as a retrieval parameter and then geometric
distance as a sorting parameter to refine the retrieved results with α and β as
relative weight parameters. Details of the computation are given as follows:

Expression Distance. For a given human expression query image, FC6 (512
outputs) features are extracted from the query image using the human expres-
sion trained model and for the test character images from the shared embed-
ding feature space using the fine-tuned character expression model. The FC7
(7 outputs) layer followed by a softmax can be interpreted as the probability
that a particular expression class is predicted for a given input feature vector.
By normalizing each element of the feature vector by the softmax weight, the
FC6 feature vectors are treated as discrete probability distributions. To measure
the similarity between human and character feature probability distributions,
we used the Jensen—Shannon divergence [43] which is symmetric and is com-
puted as:

JSD(H||C) =
1
2
D(H||M) +

1
2
D(C||M) (4)

where M = 1
2 (H +C), D(H||M) and D(C||M) represents the Kullback—Leibler

divergence [44] which is given as:



Modeling Stylized Character Expressions via Deep Learning 145

D(X||M) =
∑

i

X(i)log
X(i)
M(i)

(5)

where X and M are discrete probability distributions.
We used this distance metric to order the retrievals from the closest distance

to the farthest in the expression feature space. Our results show that the retrieval
ordering matched the query image label, and retrievals were ordered in order
of similarity to the query label. To choose the best match out of the multiple
retrievals with the same label as shown in Fig. 6, we added a geometric refinement
step as described in the next section.

Geometric Distance. The JS Divergence distance results in the correct expres-
sion match, but not always the closest geometric match to the expression.
Figure 6 shows the retrieval of the correct label (joy). To match the geometry,
we extract geometric distance vectors and use them to refine the result.

Fig. 6. Multiple retrieval results for the joy query image

We use the facial landmarks as described in Sect. 3.1, to extract the geometric
features including the following measurements: the left/right eyebrow height
(vertical distance between top of the eyebrow and center of the eye), left/right
eyelid height (vertical distance between top of an eye and bottom of the eye),
nose width (horizontal distance between leftmost and rightmost nose landmarks),
mouth width (left mouth corner to right mouth corner distance), closed mouth
measure (vertical distance between the upper and the lower lip), and left/right lip
height (vertical distance between the lip corner from respective the lower eyelid).
The geometric distance is a normalized space. Each of the distances between
landmarks is normalized by the bounding box of the face. After normalization,
we compute the L2 norm distance between the human geometry vector and
character geometry vectors with the correct expression label. Finally, we re-order
the retrieved images within the matched label based on matched geometry.

4 Experimental Results

The combined DeepExpr features and geometric features produce significant
performance enhancement in retrieving the stylized character facial expressions
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based on human facial expressions. The top results for all seven expressions on six
stylized characters are shown in Fig. 7. Human expression-based image retrievals
and character expression-based image retrievals are shown in the supplementary
material.

Fig. 7. Results from our combined approach - DeepExpr and geometric features. The
leftmost image in each row is the query image and all six characters are shown por-
traying the top match of the same expression - anger, fear, joy, disgust, neutral, sad
and surprise (top to bottom).

5 Evaluation

5.1 Expression Recognition Accuracy

For human facial expression recognition accuracy, we performed the subject inde-
pendent evaluation, where the classifier is trained on the training set and eval-
uated on images in the same database (validation and test set) using K-fold
cross-validation with K = 5. On average, we used 56 K samples for training in
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batches of 50 samples, 10 K samples for validation and 10 K for testing. The
overall accuracy of human facial expression recognition was 85.27%. Similarly,
for stylized character expression, we used 38 K character images for training
in batches of 50 samples, 6 K for validation, and 6 K for testing, and achieved
the recognition accuracy of 89.02%. Our aim with human expression accuracy
was to achieve a good score on the expression recognition which is close to the
state-of-the-art results in order to extract relevant features corresponding to a
facial expression. The details of human expression recognition accuracy for each
expression are given in the supplementary material.

5.2 Expression Retrieval Accuracy

We analyze our retrieval results by computing the retrieval score to measure how
close is the retrieved character expression label is to the human query expression
label. We also compare our results with a facial expression expert by choosing 5
random samples from the retrieved results with the same label and rank order
them based on their similarity to the query image. The details of analysis are
discussed as follows:

Retrieval Score. We measured the retrieval performance of our method by cal-
culating the average normalized rank of relevant results (same expression label)
[45]. The evaluation score for a query human expression image was calculated as:

score(q) =
1

1 − N · Nrel

(
Nrel∑

k=1

Rk − Nrel

(
Nrel + 1

)

2

)
(6)

where N is the number of images in the database, Nrel the number of database
images that are relevant to the query expression label q (all images in the charac-
ter database that have the same expression label as the human query expression
label), and Rk is the rank assigned to the kth relevant image. The evaluation
score ranges from 0 to 1, where 0 is the best score as it indicates that all the
relevant database images are retrieved before all other images in the database. A
score that is greater than 0 denotes that some irrelevant images (false positives)
are retrieved before all relevant images.

The retrieval performance was measured over all the images in the human
test dataset using each test image in turn as a query image. The average retrieval
score for each expression class was calculated by averaging the retrieval score for
all test images in the same class. Table 1 shows the final class retrieval score,
which was calculated by averaging the retrieval scores across all characters for
each expression class using only geometry and DeepExpr expression features. The
best match results in Fig. 8 confirm that the geometric measure is not sufficient
to match the human query expression with clarity.

Comparison. In order to judge the effectiveness of our system, we compared
DeepExpr to a human expert and MT test subjects. We asked the expert and



148 D. Aneja et al.

Table 1. Average retrieval score
for each expression across all char-
acters using only geometry and
DeepExpr features.

Expression Geometry DeepExpr

Anger 0.384 0.213

Disgust 0.386 0.171

Fear 0.419 0.228

Joy 0.276 0.106

Neutral 0.429 0.314

Sad 0.271 0.149

Surprise 0.322 0.125

Fig. 8. Best match results from
our Deep-Expr approach com-
pared to only geometric feature
based retrieval for Disgust (top)
and Fear (bottom).

the MT subjects to rank five stylized character expressions in order of decreasing
expression similarity to a human query image. The facial expression expert, 50
MT test subjects and DeepExpr ranked the same 30 validation test sets. We
aggregated the MT results into a single ranking using a voting scheme. We then
compared the DeepExpr ranking to the results, measuring similarity with two
measures. Both measures found a high correlation between DeepExpr ranking
compared with the expert and the MT ranking results. The details of the ranking
comparison tests are given in the supplementary material.

The Spearman rank correlation coefficient ρ measures the strength and
direction of the association between two ranked variables [46]. The closer the ρ
coefficient is to 1, the better the two ranks are correlated.

The average ρ coefficient for the expert rank orderings is 0.773 ± 0.336 and for
MT tests is 0.793 ± 0.3561. The most relevant correlation coefficient is between
the first rank chosen by the expert and the first rank chosen by DeepExpr as
they represent the best match with the query image. The Spearman correlation
with expert best rank is 0.934 and with MT best rank is 0.942, which confirms
the agreement on selection of the closest match to the human expression.

The Kendall τ test is a non-parametric hypothesis test for statistical depen-
dence based on the τ coefficient [47]. It is a pairwise error that represents how
many pairs are ranked discordant. The best matching ranks receive a τ value of
1. The average τ coefficient for expert validation rank orderings is 0.706 ± 0.355,
and the best rank correlation is 0.910. For the MT ranking, the average Kendall
correlation coefficient is 0.716 ± 0.343 and 0.927 is the best rank correlation.

The Spearman and Kendall correlation coefficients of DeepExpr ranking with
the expert ranking and MT test ranking for 30 validation experiments are shown
in Fig. 9. Note that more than half the rankings are perfectly correlated, and most
of them are above 0.8. Only two of the rankings had (small) negative correlations
in both correlation experiments: the order was confusing because of very subtle
difference in expressions (see supplementary material for details).
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Fig. 9. Correlation rank order result charts with (a) expert and (b) MT tests

6 Comparison with Character Animator

Currently to our knowledge, no other system performs stylized character retrieval
based on a learned feature set. The closest match to DeepExpr tool is Adobe
Character Animator (Ch) [48] which creates 2.5-D animations for characters. We
conducted an expression recognition experiment by creating a similar character
in Ch with different expressions as layers. We queried three human expression
images for each of the seven expressions. Then, we asked 50 MT test subjects to
recognize the expression for best matches from DeepExpr retrieved images and
Ch results. The results of the experiment are shown in Table 2. On an average,
joy, neutral and surprise had comparable recognition performance. DeepExpr
showed great improvement in recognition of fear and disgust. In Ch, fear was
confused with surprise due to the dependence on geometric landmarks of the face
showing an open mouth and disgust was most confused with anger. For anger
and sad, the closed mouth was most confused with neutral in Ch. An example of
a fear expression MT test is shown in Fig. 10. DeepExpr achieved higher (83%)
expression recognition accuracy as compared to the Ch animator tool (41%).

Table 2. Average expression recogni-
tion accuracy (%) for each expression
across all characters using Ch anima-
tor and DeepExpr.

Expression Ch animator DeepExpr

Anger 60 85

Disgust 47 86

Fear 42 81

Neutral 87 88

Joy 95 97

Sad 43 89

Surprise 93 95

Fig. 10. Expression matching results for
fear query image. Ch [48] result scored 41%
clarity for fear and DeepExpr result scored
83% clarity for fear.
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7 Conclusions and Future Work

We have demonstrated a perceptual model of facial expression clarity and geom-
etry using a deep learning approach combined with artistic input and crowd-
sourced perceptual data. Our results are highly correlated with a facial expres-
sion expert, in addition to MT subjects and have a higher expression recognition
accuracy as compared to Character Animator.

DeepExpr has several practical applications in the field of storytelling, pup-
peteering and animation content development. For example, the system could
assist animators during the initial blocking stage for 3D characters in any produc-
tion pipeline. When there are multiple animators working on the same character
during a production, using our expression recognition system will help enable a
consistent approach to the personality for that character. More importantly, our
approach provides a foundation for future facial expression studies. For example,
our perceptual model could be used to evaluate existing FACS.

Our system demonstrates a perceptual model of facial expressions that pro-
vides insight into facial expressions displayed by stylized characters. It can be
used to automatically create desired character expressions driven by human facial
expressions. The model can also be incorporated into the animation pipeline to
help animators and artists to better understand expressions, communicate how
to create expressions to others, transfer expressions from humans to charac-
ters, and to provide a mechanism for animators/storytellers to more quickly and
accurately create the expressions they intend.
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38. Lundqvist, D., Flykt, A., Öhman, A.: The Karolinska directed emotional faces-
KDEF. CD-ROM from department of clinical neuroscience, psychology section,
Karolinska Institutet, Stockholm, Sweden. Technical report (1998). ISBN 91-630-
7164-9

39. Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial
expression analysis. In: 2005 IEEE International Conference on Multimedia and
Expo, ICME 2005, p. 5. IEEE (2005)

40. Xiong, X., Torre, F.: Supervised descent method and its applications to face align-
ment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 532–539 (2013)

http://dx.doi.org/10.1007/978-3-319-10593-2_10
http://dx.doi.org/10.1007/978-3-540-75690-3_18
http://dx.doi.org/10.1007/978-3-642-14932-0_57


Modeling Stylized Character Expressions via Deep Learning 153

41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

42. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678.
ACM (2014)

43. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf.
Theor. 37, 145–151 (1991)

44. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22,
79–86 (1951)

45. Müller, H., Marchand-Maillet, S., Pun, T.: The truth about corel - evaluation in
image retrieval. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS,
vol. 2383, pp. 38–49. Springer, Heidelberg (2002). doi:10.1007/3-540-45479-9 5

46. Spearman, C.: The proof and measurement of association between two things. Am.
J. Psychol. 15, 72–101 (1904)

47. Kendall, M.G.: A new measure of rank correlation. Biometrika 30, 81–93 (1938)
48. Character Animator: Adobe After Effects CC 2016. Adobe Systems Incorporated,

San Jose, CA 95110–2704 (2016)

http://dx.doi.org/10.1007/3-540-45479-9_5


Variational Gaussian Process Auto-Encoder
for Ordinal Prediction of Facial Action Units

Stefanos Eleftheriadis1(B), Ognjen Rudovic1, Marc Peter Deisenroth1,
and Maja Pantic1,2

1 Department of Computing, Imperial College London,
London, UK

{stefanos,orudovic,m.deisenroth,m.pantic}@imperial.ac.uk
2 EEMCS, University of Twente, Enschede, The Netherlands

Abstract. We address the task of simultaneous feature fusion and mod-
eling of discrete ordinal outputs. We propose a novel Gaussian process
(GP) auto-encoder modeling approach. In particular, we introduce GP
encoders to project multiple observed features onto a latent space, while
GP decoders are responsible for reconstructing the original features.
Inference is performed in a novel variational framework, where the recov-
ered latent representations are further constrained by the ordinal output
labels. In this way, we seamlessly integrate the ordinal structure in the
learned manifold, while attaining robust fusion of the input features.
We demonstrate the representation abilities of our model on benchmark
datasets from machine learning and affect analysis. We further evalu-
ate the model on the tasks of feature fusion and joint ordinal prediction
of facial action units. Our experiments demonstrate the benefits of the
proposed approach compared to the state of the art.

1 Introduction

Automated analysis of facial expressions has attracted significant attention
because of its practical importance in psychology studies, human-computer inter-
faces, marketing research, and entertainment, among others [1]. The most objec-
tive way to describe facial expressions is by means of the facial action coding
system (FACS) [2]. This is the most comprehensive anatomically-based system
that can be used to describe virtually all possible facial expressions in terms
of 30+ facial muscle movements, named action units (AUs). FACS also defines
rules for scoring the intensity of each AU in the range from absent to maximal
intensity on a six-point ordinal scale. Therefore, FACS is critical for high-level
interpretation of facial expressions. For instance, the high intensity of AU12
(lip corner puller), as in full-blown smiles, may indicate joy. Conversely, its low
intensity may indicate fake smiles as in the case of sarcasm.

The machine analysis of AU intensities is challenging mainly due to the
complexity and subtlety of human facial behavior as well as individual differences
in expressiveness and variations in head-pose, illumination, occlusions, etc. [3].
These sources of variation are typically accounted for at the feature level by
c© Springer International Publishing AG 2017
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means of geometric- and appearance-based features, capturing the geometry and
texture changes in a face, respectively. Furthermore, some AUs usually appear
in combination with other AUs. For instance, the criteria for intensity scoring
of AU7 (lid tightener) are changed significantly if AU7 appears with a maximal
intensity of AU43 (eye closure) since this combination changes the appearance
as well as timing of these AUs [4]. Furthermore, co-occurring AUs can be non-
additive, e.g., if one AU masks another a new and distinct set of appearances
is created [2]. Thus, combining different facial features while accounting for AU
co-occurrences in a common framework is expected to result in a robust and
more accurate estimation of target AUs intensity.

Most existing approaches to AU intensity estimation model each AU inde-
pendently and cast it as a classification [4–8] or regression [9–12] task. While
classification seems to be a natural choice to handle the problem, the related
literature fails to account for the ordinal nature of the target intensity levels
(misclassification of different levels is equally penalized). The regression-based
approaches model the intensity levels on a continuous scale, which is sub-optimal
when dealing with discrete outputs. Similarly, the models that do attempt multi-
ple AU intensity estimation (e.g., [13–17]) adopt the same sub-optimal approach
to deal with the nature of the output as the independent methods. However,
they have showed improved performance in the target task due to the mod-
eling of AU co-occurrences. Apart from a few exceptions that treat each AU
independently [7,9,10], none of the aforementioned approaches addresses the
task of joint output modeling (i.e., multiple AUs) while accounting for differ-
ent modalities in the input (i.e., fusion of geometric and appearance features).
These limitations can naturally be addressed by following recent advances in
manifold learning [18–20] and, in particular, using the framework of Gaussian
processes (GPs) [21]. Within this framework, the problem of feature fusion is
transformed to that of learning from multiple views, while continuous-valued
predictions can be handled efficiently, for more than one output. However, as
with the regression-based models described above, these models treat the ordi-
nal labels as continuous values. This also limits their potential to unravel an
‘ordinal’ manifold, needed to facilitate estimation of target ordinal intensities.

In this work, we propose a novel manifold-based GP approach based on
the Bayesian GP latent variable model (B-GPLVM) [22] that performs simul-
taneously the feature fusion and joint estimation of the AU ordinal intensity.
Specifically, we propose the variational GP auto-encoder (VGP-AE), which is
composed of a probabilistic recognition model, used to project the observed
features onto the manifold, and a generative model, used for their reconstruc-
tion. This, in contrast to existing work (e.g., [23]) that applies deterministic
back-mappings, allows us to explicitly model the uncertainty in the projections
onto the learned manifold. Additionally, we endow the proposed VGP-AE with
the ordinal outputs [24]. The fusion of the information from the input features
and learning of the joint ordinal output is performed simultaneously in a joint
Bayesian framework. In this way, we seamlessly integrate the ordinal structure
into the recovered manifold while attaining robust fusion of the target features.
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To the best of our knowledge, this is the first approach that achieves simultaneous
feature fusion and joint AU intensity estimation in the context of facial behavior
analysis.

2 Related Work on AU Intensity Estimation

To date, most existing work on automated analysis focuses on the detection of
AU activations [25–28]. The problem of AU intensity estimation is relatively new
in the field. Most of the research in this area focuses on independent modeling of
AU intensities [4–12]. Only recently, joint estimation of the intensity levels has
been addressed [13–17]. This is motivated by the fact that intensity annotations
are difficult to obtain (due to the tedious process of manually coding) and that
AU levels are highly imbalanced. Thus, by imposing the structure on the output
in terms of AU co-occurrences robust intensity estimation is expected.

Toward this direction, [13] proposed a two-stage learning strategy, where a
multi-class support vector machine (SVM) is first trained for each AU indepen-
dently. Then, the structure modeling is handled via a dynamic Bayesian network,
which captures the semantic relationship among the AU-specific SVMs. In a sim-
ilar fashion, [14] used support vector regressors (SVR) and a Markov random
field (MRF). However, these two-stage approaches are sub-optimal for the target
task as the regressors/classifiers and the AU relations are learned independently.
To overcome this, [15] proposed to learn latent trees that encode both the input
features and (multiple) output AU labels. The structure of the latent variables
is modeled using a tree-like graph. However, in the presence of high-dimensional
inputs and multiple AUs, this method becomes prohibitively expensive. More-
over, the authors show that with this approach the fusion of different features
does not benefit the estimation of AU intensity, achieving similar performance to
when individual modalities are used. More recently, [17] proposed a sparse learn-
ing approach that uses the notion of robust principal component analysis [29]
to decompose expression from facial identity. Then, joint intensity estimation of
multiple AUs is performed via a regression model based on dictionary learning.
However, this approach can deal with a single modality only. [16] casts the joint
AU intensity estimation as a multi-task learning problem based on kernel regres-
sion (MLKR). However, in their formulation of the model, the use of MLKR does
not scale to high-dimensional features, let alone when using features of different
modalities (e.g., geometric and appearance).

The work presented in this paper advances the current state of the art in
several aspects: (1) The proposed VGP-AE can efficiently perform the fusion of
multiple modalities by means of a shared manifold; (2) Automatic feature selec-
tion is implicitly performed via the manifold. The recovered latent representa-
tions are used as input to multiple ordinal regressors [24], which are concurrently
learned in a joint Bayesian framework; (3) GPs allow us to efficiently deal with
high-dimensional input and output variables without significantly affecting the
model’s complexity.
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3 Variational Gaussian Process Auto-Encoder

We assume that we have access to a training data set D = {Y ,Z}, which is com-
prised of V observed input channels Y = {Y (v)}Vv=1, and the associated output
labels Z. Each input channel consists of N i.i.d. samples Y (v) = {y

(v)
i }Ni=1, where

y
(v)
i ∈ R

Dv denotes corresponding facial features. Z = {zi}Ni=1 is the common
label representation, where zic ∈ {1, . . . , S} denotes the discrete, ordinal state of
the c-th output (i.e., AU intensity level), c = 1, . . . , C. We are interested in simul-
taneously addressing the tasks of feature fusion and ordinal prediction of the mul-
tiple outputs. For this purpose, we propose an approach that resembles recent
work of generative models [30,31]. In these models, auto-encoders are employed
to learn compact representations of the input data. In a standard auto-encoding
setting, the encoding/decoding functions are modeled via neural networks. Here
we replace these functions with probabilistic non-parametric mappings, signif-
icantly reducing the number of optimized parameters, and naturally modeling
the uncertainty in the mappings. The proposed approach can be regarded as
a B-GPLVM (generative model) with a fast inference mechanism based on the
non-parametric, probabilistic mapping (recognition model). To achieve this, we
impose GP priors on both models, and hence, obtain a well-defined GP-encoder,
in accordance to the GP-decoder.

3.1 The Model

Within the above setting, we assume that the observed features Y (v) are gen-
erated by a random process, involving a latent (unobserved) set of variables
X = {xi}Ni=1,xi ∈ R

q, with q � Dv. The data pairs D = {Y ,Z} are assumed
to be conditionally independent given the latent variables, i.e., Y ⊥⊥ Z|X. The
random process of recovering the latent variables has two distinctive stages:
(a) a latent variable xi is generated from some general prior distribution

Fig. 1. The proposed VGP-AE. (a) f (v) and fr are the GP-decoder and GP-encoder,
respectively. The projection of the latent variable x to the labels’ ordinal plane is facil-
itated through the ordinal regression g(x). (b) Compact representation of the model.
(c) The proposed recognition model (GP-encoder) with the intermediate variable m.
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p(x) = N (0, I), and further projected to the labels’ ordinal plane via p(z|x); (b)
an observed input y

(v)
i is generated from the conditional distribution p(y(v)|x).

This process is described in Fig. 1(a),(b). Using this approach, we can now per-
form classification in the lower-dimensional space of X. However, this requires
access to the intractable true posterior p(x|y(v)).

To constrain the distribution of the latent variables we follow [30,31] and
introduce the recognition model pr(x|y(v)). Hence, we end up with a supervised
auto-encoder setting

y
(v)
i |xi = f (v)(xi; θ

(v)) + ε(v), xi|y(v)
i = fr(y

(v)
i ; θr) + εr, zi|xi = g(xi; W ), (1)

where the latent space is further encouraged to reflect the structure of the out-
put labels. Here, ε(v) ∼ N (0, σ2

vI), εr ∼ N (0, σ2
rI). We place GP priors on

f (v), fr with corresponding hyper-parameters θ(v),θr.1 g denotes the ordinal
regression that transforms the latent variables to the labels’ ordinal plane, via
W = {wc}Cc=1,wc ∈ R

q.
In the following, we detail how to learn the GP auto-encoder in Eq. (1) by

deriving a variational approximation to the log-marginal likelihood

log p(Y ,Z) = log
∫

p(Z|X)
∏

v
p(Y (v)|X)p(X)dX. (2)

3.2 Deriving the Lower Bound

We exploit the conditional independence property of Y ⊥⊥ Z|X and focus our
analysis on the GP auto-encoder. The ordinal information from the labels is
incorporated in the presented variational framework in Sect. 3.3. As in [28], we
place GP priors on f (v), fr, and after integrating out the mapping functions, we
obtain the conditionals

p(Y (v)|X) = N (0,K(v) + σ2
vI), pr(X|Y ) = N (0,Kr + σ2

rI), (3)

where K(v) = k(v)(X , X) and Kr =
∑

v k
(v)
r (Y (v), Y (v)) are the kernels associated

with each process. Note that in the recognition model the relevant kernel allows
us to easily combine multiple features via the sum of the individual kernel func-
tions. Training of the recognition model consists of maximizing the conditional
pr(X|Y ) w.r.t. the kernel hyper-parameters θr. For the generative model we
maximize the marginal likelihood (labels Z are omitted here)

p(Y ) =
∫ ∏V

v=1
p(Y (v)|X)p(X)dX. (4)

Since the above integral is intractable, we resort to approximations. Our main
interest is to recover a Bayesian non-parametric solution for both the GP encoder
and decoder. We first need to break the circular dependence between Y (v) and
X in order to train the two GPs simultaneously.
1 The subscript r indicates that the process facilitates the recognition model.
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GP-Encoder. We decouple X and Y by introducing an intermediate variable
M = {mi}Ni=1, so that the recognition model becomes y(v) → m → x. The
GP operates on y(v),m, while x is the noisy observations of m. This process
is described in Fig. 1(c). We follow a mean field approximation and introduce
the variational distribution q(X|M) =

∏
i qi(xi|mi) =

∏
i N (mi,Si). Here,

mi,Si ∈ R
q are variational parameters2 of qi. We define M by employing the

cavity distribution of the leave-one-out solution of GP [21]

p(M |Y ) =
∏

i
p(mi|Y ,M\i) =

∏
i
N (m̂i, σ̂

2
i I), (5)

where the subscript \i means ‘all datapoints except i’, and the mean and variance
of the Gaussian are given by [21]

m̂i = mi − [
K−1

r M
]
i
/
[
K−1

r

]
ii

, σ̂2
i = 1/

[
K−1

r

]
ii

. (6)

We now integrate out the intermediate layer and propagate the uncertainty of the
GP mapping to the latent variable X, which yields the variational distribution

q(X|Y ) =
∏

i
N (m̂i,Si + σ̂2

i I). (7)

GP-Decoder. The proposed recognition model, i.e., the variational distribution
of Eq. (7), can be employed to approximate the intractable marginal likelihood of
Eq. (4). By introducing the variational distribution as an approximation to the
true posterior, and after applying the Jensen’s inequality, we obtain the lower
bound to the log-marginal likelihood (again, labels Z are omitted)

log p(Y ) ≥ F1 =
∑

v
Eq(X|Y )

[
log p(Y (v)|X)

]
− KL(q(X|Y )||p(X)). (8)

Training our model consists of maximizing the lower bound of Eq. (8) w.r.t. the
variational parameters M ,S and the hyper-parameters of the kernels K(v),Kr.
Further details are given in Sect. 3.4.

3.3 Incorporating Ordinal Variables

In the previous section, we presented the recognition model that we employ
to learn a nonlinear manifold from the observed inputs. In the following, we
further constrain this manifold by imposing an ordinal structure. This is attained
by introducing ordinal variables that account for C ordinal levels of AUs. We
use the notion of ordinal regression [24] and, in particular, the ordinal threshold
model that imposes the monotonically increasing structure of the discrete output
labels to the continuous manifold. Formally, the non-linear mapping between the
manifold X and the ordinal outputs Z is modeled as

p(Z |g(X)) =
∏

i,c

p(zic|gc(xi)), p(zic = s|gc(xi)) =

{
1 if gc(xi) ∈ (γc,s−1, γc,s]

0 otherwise,

(9)
2 For simplicity we assume an isotropic (diagonal) covariance across the dimensions.
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where i = 1, . . . , N indexes the training data. γc,0 = −∞ ≤ · · · ≤ γc,S = +∞
are the thresholds or cut-off points that partition the real line into s = 1, . . . , S
contiguous intervals. These intervals map the real function value gc(x) into the
discrete variable s, corresponding to each of S intensity levels of an AU, while
enforcing the ordinal constraints. The threshold model p(zic = s|gc(xi)) is used
for ideally noise-free cases. Here, we assume that the latent functions gc(·)3 are
corrupted by Gaussian noise, leading to the following formulation

gc(xi) = wT
c xi + εg, εg ∼ N (0, σ2

g). (10)

By integrating out the noisy projections from Eq. (9) (see [32] for details), we
arrive at the ordinal log-likelihood

log p(Z |X , W ) =
∑

i,c
I(zic = s) log

(

Φ

(
γc,s − wT

c xi

σg

)

− Φ

(
γc,s−1 − wT

c xi

σg

))

,

(11)
where Φ(·) is the Gaussian cumulative density function, and I(·) is the indicator
function. Finally, by using the ordinal likelihood defined in Eq. (11), we obtain
the final lower bound of our log-marginal likelihood

logp(Y , Z |W ) ≥ F2 =
∑

v
Eq(X |Y )

[
log p(Y (v)|X)

]− KL(q(X |Y )||p(X))

+
∑

i,c

I(zic = s)Eq(X |Y )

[

log

(

Φ

(
γc,s − wT

c xi

σg

)

− Φ

(
γc,s−1 − wT

c xi

σg

))]

. (12)

3.4 Learning and Inference

Training our model consists of maximizing the lower bound of Eq. (12) w.r.t. the
variational parameters {S,M}, the hyper-parameters {θ(v), σv,θ

(v)
r , σr} of the

GP mappings, and the parameters {W , γ, σg} of the ordinal classifier. For the
kernel of the GP-decoder we use the radial basis function (RBF) with automatic
relevance determination (ARD), which can effectively estimate the dimensional-
ity of the latent space [18]. For the kernel of the GP-encoder we use the isotropic
RBF for each observed input. To utilize a joint optimization scheme, we use sto-
chastic backpropagation [30,31], where the re-parameterization trick is applied
in Eq. (12). Thus, we can obtain the Monte Carlo estimate of the expectation
of the GP auto-encoder from

Eq(X |Y )

[
log p(Y (v)|X)

]
=
∑

i
EN (ξ|0,I)

[
log p(y

(v)
i |m̂i + (S

1/2
i + σ̂iI)ξ)

]
. (13)

The expectation of the ordinal classifier is computed in a similar manner. The
advantage of Eq. (13) is twofold: (i) It allows for an efficient computation of the
lower bound even when using arbitrary kernel functions (in contrast to [18]);

3 Note that we adopt here a linear model for gc(·) as it operates on a low-dimensional
non-linear manifold X , already obtained by the GP auto-encoder.
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(ii) It provides an efficient, low-variance estimator of the gradient [30]. The
extra approximation (via the expectation) in the gradient step requires stochastic
gradient descent. We use AdaDelta [33] for this purpose.

Inference in the proposed method is straightforward: The test data y
(v)
∗ , are

first projected onto the manifold using the trained GP-encoder. In the second
step, we apply the ordinal classifier to the obtained latent position.

3.5 Relation to Prior Work on Gaussian Processes

Our auto-encoder approach is inspired by neural-network counterparts proposed
in [30,31], where probabilistic distributions are defined for the input and output
mapping functions. In the GP literature, auto-encoders are closely related to
the notion of ‘back-constraints’. Back-constraints were introduced in [34] as a
deterministic, parametric mapping (commonly a multi-layer perceptron (MLP))
that pairs the latent variables of the GPLVM [35] with the observations. This
mapping facilitates a fast inference mechanism and enforces structure preserva-
tion in the manifold. The same mechanism has been used to constrain the shared
GPLVM [36], from one view in [37] and multiple views in [38].

Back-constraints have been recently introduced to the B-GPLVM [22]. In [39]
the authors proposed to approximate the true posterior of the latent space by
introducing a variational distribution conditioned on some unobserved inputs.
However, those inputs are not related to the observation space considered in this
paper (i.e., the outputs Y of the GPLVM). In [23] the variational posterior of
the latent space is constrained by using the trick of the parametric deterministic
mapping from [34]. Finally, in [28], the authors replaced the variational approx-
imation with a Monte Carlo expectation-maximization algorithm. Samples were
obtained from the GP mapping from the observed inputs to the manifold.

Our proposed VGP-AE advances the current literature in many aspects: (1)
We introduce a GP mapping for our recognition model. Hence, can model differ-
ent uncertainty levels per input, which allows us to learn more confident latent
representations. (2) The use of the non-parametric GPs also allows us to model
complex structures at a lesser expense than the MLP (fewer parameters). Thus, it
is less prone to overfitting and scales better to high-dimensional data. (3) Com-
pared to [39] our probabilistic recognition model facilitates a low-dimensional
projection of our observed features, while the variational constraint in [39] does
not constitute a probabilistic mapping. (4) We learn the GP encoders/decoders
in a joint optimization, while [28] train the two models in an alternating scheme.

4 Experiments

We empirically assess the structure learning abilities of the proposed VGP-AE
as well as its efficacy when dealing with data of ordinal nature.
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4.1 Experimental Protocol

Datasets. We first show the qualitative evaluation of the proposed VGP-AE
on the MNIST [40] benchmark dataset of images of handwritten digits. We use
it to assess the properties of the auto-endoced manifold. We then show the
performance of VGP-AE on two benchmark datasets of facial affect: DISFA [6],
and BP4D [41] (using the publicly available data subset from the FERA2015 [8]
challenge). Specifically, DISFA contains video recordings of 27 subjects while
watching YouTube videos. Each frame is coded in terms of the intensity of 12
AUs, on a six-point ordinal scale. The FERA2015 database includes video of
41 participants. There are 21 subjects in the training and 20 subjects in the
development partition. The dataset contains intensity annotations for 5 AUs.
Features. In the experiment on MNIST dataset, we use the normalized raw
pixel intensities as input, resulting in a 784D feature vector. For DISFA and
FERA2015, we use both geometric and appearance features. Specifically, DISFA
and FERA2015 datasets come with frame-by-frame annotations of 66 and 49
facial landmarks, respectively. After removing the contour landmarks from
DISFA annotations, we end up with the same set of 49 facial points. We register
the images to a reference face using an affine transform based on these points.
We then extract Local Binary Patterns (LBP) histograms [42] with 59 bins from
patches centered around each registered point. Hence, we obtain 98D (geometric)
and 2891D (appearance) feature vectors, commonly used in modeling of facial
affect.
Evaluation. As evaluation measures, we use the negative log-predictive density
(NLPD) to assess the generative ability (reconstruction part) of our model. For
the task of ordinal classification, we report the mean squared error (MSE) and
the intra-class correlation (ICC(3,1)) [43]. These are the standard measures for
ordinal data. The MSE measures the classifier’s consistency regarding the rel-
ative order of the classes. ICC is a measure of agreement between annotators
(in our case, the ground truth of the AU intensity and the model’s predictions).
Finally, we adopt the subject-independent setting: for FERA2015 we report the
results on the subjects of the development set, while for DISFA we perform a
9-fold (3 subjects per fold) cross-validation procedure.
Models. We compare the proposed VGP-AE to the state of the art GP mani-
fold learning methods that perform multi-input multi-output inference. These
include: (i) manifold relevance determination (MRD) [18], a regression model
based on variational inference, (ii) variational auto-encoded deep GP (VAE-
DGP) [23], which uses a recognition model based on an MLP to constrain
the learning of MRD, and (iii) multi-task latent GP (MT-LGP) [19], which
uses the same MLP-based recognition model and a maximum likelihood learn-
ing approach. We also compare to the variational GP for ordinal regression
(vGPOR) [44]. As a baseline, we use the standard GP [21] with a shared covari-
ance function among the multi-outputs. We also compare to the single-output
ordinal threshold model (SOR) [24]. Finally, we compare to state of the art meth-
ods for joint estimation of AU intensity based on MRFs [14] and latent trees
(LT) [15], respectively. For the single input (no fusion) methods (GP, vGPOR,



Variational Gaussian Process Auto-Encoder 163

SOR, LT, MRF), we concatenate the two feature sets. The parameters of each
method were tuned as described in the corresponding papers. For the GP sub-
space methods, we used the RBF kernel with ARD, and initialized with the
20D manifold. For the GP regression methods, we used the standard RBF. For
the sparse variational GP methods (vGPOR, MRD, VAE-DGP) we used 200
inducing points, and 20 hidden units for the MLP in the recognition models of
VAE-DGP and MT-LGP.

4.2 Assessing the Recognition Model

In the following, we qualitatively assess the benefits of the proposed recognition
model in the task of manifold recovery from the MNIST dataset. We select an
image depicting the digit ‘1’ and rotate it around 360◦. This results in a set of
images of ‘1’s rotated at a step of 1◦. Our goal is to infer the true structure of
the data, for which we know a priori that it should correspond to a diagonal-like
kernel and a circular manifold. However, the challenge arises from the symmetry
of digit ‘1’, which is almost identical at opposite degrees (e.g., 0◦ and 180◦).
The results are depicted in Fig. 2. Note that since we do not deal with the clas-
sification task we exclude the ordinal component in VGP-AE. We compare the
learned manifold structure to the B-GPLVM [22], which does not model the
back-projection to the latent space, and a single layer VAE-DGP, where the
back-projections are modeled using MLP. In Fig. 2 (upper row), we see from
the learned kernels that the B-GPLVM is unable to fully unravel the dissimi-
larity between the ‘inverted’ images, resulting also in a non-smooth kernel with
a discontinuity at 180◦ and 270◦. By contrast, the VAE-DGP benefits from the
recognition model and manages to resolve this to some extent. Yet, the recov-
ered kernel still suffers from a discontinuity around 180◦. On the other hand,
the proposed VGP-AE, by using the more general recognition model based on
GPs (infinitely wide MLP), succeeds to accurately discover the true underlying
manifold, also resulting in a more smooth, almost ideal kernel. These observa-
tions are further supported by the instances of the learned 2D manifolds in Fig. 2
(lower row). B-GPLVM learns a disconnected manifold with ‘jumps’ at 180◦ and
270◦. However, both the VAE-DGP and proposed VGP-AE recover a circular
manifold, with the manifold recovered by VGP-AE being more symmetric.

4.3 Convergence Analysis

We next demonstrate the convergence of VGP-AE in the task of AU intensity
estimation on FERA2015. Figure 3(a) shows the effect of learning the ordinal
classifier and the auto-encoded manifold within the joint optimization frame-
work. It can be clearly seen from the recovered space that the information from
the labels has been correctly encoded in the manifold, which now has an ordi-
nal structure (the depicted coloring accounts for the ‘ordinality’ of AU12). As
depicted in Fig. 3(b), we can accurately reconstruct face shapes with different
AU intensities, by sampling from different regions of the space. Figure 3(c) shows
the convergence of the proposed method when optimizing the lower bound F2 of



164 S. Eleftheriadis et al.

0/360
90 180

270

0/360

90

180

270

0/360

90

180
270

B-GPLVM [22] VAE-DGP [23] VGP-AE

Fig. 2. Recovering the structure of a rotated ‘1’ from MNIST. The learned kernel
matrices (upper row) and 2D manifolds (lower row) obtained from B-GPLVM (left),
VAE-DGP (middle) and the proposed VGP-AE (right), initialized from the same ran-
dom instance.

Eq. (12) for different batch sizes of the stochastic optimization. With a small
batch size (100 datapoints) the model cannot estimate the structure of the
inputs well. Hence, it approximates the log-marginal likelihood less accurately.
By increasing the batch size to 500, the model converges to a better solution
and optimization becomes more stable since the curve becomes smoother over
the iterations. Further increase of the batch size does not have a considerable
effect.

In Fig. 3(d)–(e) we evaluate the generative part of the auto-encoder by mea-
suring the model’s ability to reconstruct both input features (points and LBPs)
in terms of NLPD. First of all, it is clear that our Bayesian training prevents
the model from overfitting, since the NLPD of the test data follows the trend of
the training data. Furthermore, we can see that the model can reconstruct the
geometric features better than the appearance, which is evidenced by the lower
NLPD (around −50 for points and 1500 for LBPs). We partly attribute this
to the fact that the LBPs are of higher dimension and therefore more difficult
to reconstruct. Another reason for this difference is that the model learns to
reconstruct the part of the features that enclose the more relevant information
regarding the task of classification. The latter is further supported by Fig. 3(e),
where we see the progress of the average ICC during the optimization. In the
beginning, the model has no information since the latent space is initialized ran-
domly. As we progress the model fuses the information of the input features in
the latent space and unravels the structure of the data. Thus, ICC starts rising
and reaches its highest value, .65 on the test data. After that point the model
does no longer benefit from the appearance features: it has reached the plateau.
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Fig. 3. Convergence analysis of the proposed method on FERA2015. (a) The recovered
latent space with ordinal information from AU12, and (b) reconstructed face shapes
sampled from different regions of the manifold. (c) the estimated average variational
lower bound, F2, per datapoint, for different batch sizes. The model’s reconstruction
capacity for the points (d) and LBP (e) features, measured by the NLPD. (f) the aver-
age ICC for the joint AU intensity estimation. The horizontal axis corresponds to the
amount of training points evaluated after 1500 epochs of the stochastic optimization.
(Color figure online)

4.4 Model Comparisons on Spontaneous Data of Facial Expressions

We compare the proposed approach to several methods on the spontaneous data
from the DISFA and FERA2015 datasets. Table 1 summarizes the results. First,
we observe that all methods perform significantly better (in terms of ICC) on
the data from FERA2015 than on DISFA. This is mainly due to the fact that
FERA2015 contains a much more balanced set of AUs (in terms of activations),
and hence, all models (single- and multi-output) can learn the classifiers for the
target task better. Furthermore, our proposed approach performs significantly
better than the compared GP manifold learning methods, which treat the output
labels as continuous variables. MRD lacks the modeling of back-projections. This
results in learning a less smooth manifold of facial expressions, which affects its
representation abilities, and hence, its predictions. On the other hand, the VAE-
DGP learns explicitly the mapping from the observed features to the latent space
in a deterministic and parametric fashion. Although this strategy is proven to
be superior to unconstrained learning, it can be severely affected in cases where
we have access to noisy and high-dimensional features. MT-LGP also models
the back-mappings. However, it reports worse results, especially on DISFA. This
drop in the performance is accounted to the non-Bayesian learning of the mani-
fold, which constitutes the model more prone to overfitting.
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Table 1. Joint AU intensity estimation on DISFA and FERA2015

Dataset DISFA FERA2015

AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg. 6 10 12 14 17 Avg.

ICC VGP-AE .48 .47 .62 .19 .50 .42 .80 .19 .36 .15 .84 .53 .46 .75 .66 .88 .47 .49 .65

VAE-DGP [23] .39 .34 .46 .13 .40 .31 .75 .14 .23 .14 .75 .45 .38 .72 .61 .82 .40 .38 .59

MRD [18] .46 .39 .43 .09 .28 .34 .71 .09 .30 .09 .73 .36 .36 .68 .59 .80 .38 .38 .57

MT-LGP [19] .41 .33 .28 .10 .23 .22 .56 .13 .26 .18 .65 .23 .30 .67 .61 .80 .37 .41 .57

vGPOR [44] .53 .49 .54 .21 .35 .40 .75 .18 .30 .16 .79 .39 .42 .74 .62 .84 .48 .35 .61

GP [21] .28 .13 .42 .03 .13 .23 .62 .08 .26 .19 .67 .23 .27 .69 .58 .81 .35 .38 .56

SOR [24] .25 .18 .65 .08 .46 .15 .77 .14 .24 .04 .82 .57 .36 .61 .50 .77 .28 .45 .52

LT [15] .28 .26 .44 .24 .50 .13 .69 .06 .21 .06 .62 .37 .32 .70 .59 .76 .30 .31 .53

MRF [14] .46 .38 .50 .37 .41 .34 .67 .32 .29 .20 .69 .46 .42 .64 .53 .79 .34 .46 .55

MSE VGP-AE .51 .32 1.13 .08 .56 .31 .47 .20 .28 .16 .49 .44 .41 .82 1.28 .70 1.43 .77 1.00

VAE-DGP [23] .40 .36 .95 .08 .48 .29 .43 .19 .32 .16 .76 .44 .41 .91 1.33 .81 1.46 .86 1.07

MRD [18] .42 .38 1.31 .08 .56 .27 .47 .20 .36 .18 .82 .53 .46 1.00 1.39 .83 1.64 .88 1.15

MT-LGP [19] .40 .35 1.25 .08 .60 .30 .73 .18 .36 .16 1.19 .67 .52 .97 1.31 .81 1.58 .84 1.10

vGPOR [44] .38 .34 .95 .06 .57 .27 .43 .18 .33 .18 .65 .53 .41 1.00 1.54 .76 1.78 1.11 1.24

GP [21] .52 .51 1.13 .13 .65 .36 .61 .23 .38 .20 .94 .66 .53 .94 1.40 .76 1.62 .88 1.12

SOR [24] .47 .40 1.13 .07 .63 .37 .55 .21 .35 .21 .71 .61 .48 1.44 1.82 1.08 2.58 1.01 1.59

LT [15] .44 .38 .93 .06 .36 .32 .46 .16 .29 .15 .97 .44 .41 .89 1.33 .91 1.48 .85 1.09

MRF [14] .37 .35 .94 .06 .45 .29 .46 .13 .32 .16 .77 .44 .40 1.20 1.66 .86 2.19 .92 1.37

Regarding the sparse ordinal regression instance of GPs, i.e., vGPOR, we
see that it manages to learn relatively accurate mappings between features and
labels, and thus, performs close to our proposed method. However, it reports
worse results since it cannot achieve the desirable fusion of the features without
learning an intermediate latent space. The baseline methods, i.e., GP and SOR,
report lower results. The GP attains low scores due to handling the ordinal
outputs in a continuous manner while the ordinal modeling helps SOR to report
consistently better.

Finally, the proposed approach significantly outperforms the state of the art
methods in the literature of AU intensity estimation, i.e., LT and MRF. LT
learns the label information in a generative manner, and treats them as extra
feature dimensions. Although this approach can be beneficial in the presence of
noisy features [15], it suffers from learning complicated and large tree structures
when falsely detecting connections between features and AUs. Hence, it per-
forms worse. The MRF performs on par to the proposed method on DISFA and
achieves the best average MSE, but it is consistently worse on FERA2015. This
inconsistency is due to its two-step learning strategy, which results in unraveling
a graph that cannot explain simultaneously all different features and AUs.

In Fig. 4 we evaluate the attained fusion between the best performing meth-
ods on FERA2015, i.e., the proposed VGP-AE, VAE-DGP [23] and vGPOR [44].
As we can see, the proposed approach (solid line, first tuple) manages to accu-
rately fuse the information from the two input features in the learned manifold.
Thus, it achieves higher ICC on all AUs compared to when the two modalities
are used individually as input features. On the other hand, although vGPOR
(third tuple, dotted line) reports also high ICC scores, it does not benefit from
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Fig. 4. Demonstration of the gain/loss from feature fusion for joint AU intensity esti-
mation on FERA2015. Within each AU the first tuple (solid line) corresponds to the
proposed VGP-AE, the second tuple (dashed line) to the VAE-DGP [23], and the third
tuple (dotted line) to the vGPOR [44].

the presence of the two features: In most cases it cannot achieve a significant
increase compared to the individual inputs. Finally, VAE-DGP (middle tuple,
dashed line) consistently attains better performance on all AUs with a single
feature as input. This can be attributed to modeling the recognition model via
the parametric MLP. The latter affects the learning of the manifold, especially
when dealing with the high-dimensional noisy appearance features.

The above mentioned difference between our approach and the VAE-DGP
is further evidenced in Fig. 5. The proposed fusion along with the novel non-
parametric, probabilistic recognition model in our auto-encoder leads to less
confusion between the ordinal states across all AUs. We further attribute this
to the ordinal modeling of outputs in our VGP-AE, contrary to VAE-DGP that
treats the output as continuous variables. This is especially pronounced in the
case of the subtle AUs 14 & 17, where examples of high intensity levels are
scarce.
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Fig. 5. Confusion matrices for predicting the 0–5 intensity of all AUs on FERA2015,
when performing fusion with VGP-AE (upper row) and VAE-DGP [23] (lower row).
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5 Conclusion

We have presented a fully probabilistic auto-encoder, where GP mappings gov-
ern both the generative and the recognition models. The proposed variational
GP auto-encoder is learned in a supervised manner, where the ordinal nature
of the labels is imposed to the manifold. This allows the proposed approach
to accurately learn the structure of the input data, while also remain competi-
tive in the classification task. We have empirically evaluated our model on the
task of facial feature fusion for joint intensity estimation of facial action units.
The proposed model outperforms related GP methods and the state of the art
approaches for the target task.
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Abstract. In this paper, we address the Multi-Instance-Learning (MIL)
problem when bag labels are naturally represented as ordinal variables
(Multi-Instance-Ordinal Regression). Moreover, we consider the case
where bags are temporal sequences of ordinal instances. To model this,
we propose the novel Multi-Instance Dynamic Ordinal Random Fields
(MI-DORF). In this model, we treat instance-labels inside the bag as
latent ordinal states. The MIL assumption is modelled by incorporat-
ing a high-order cardinality potential relating bag and instance-labels,
into the energy function. We show the benefits of the proposed app-
roach on the task of weakly-supervised pain intensity estimation from
the UNBC Shoulder-Pain Database. In our experiments, the proposed
approach significantly outperforms alternative non-ordinal methods that
either ignore the MIL assumption, or do not model dynamic information
in target data.

1 Introduction

Multi-Instance-Learning (MIL) is a popular modelling framework for address-
ing different weakly-supervised problems [1–3]. In traditional Single-Instance-
Learning (SIL), the fully supervised setting is assumed with the goal to learn a
model from a set of feature vectors (instances) each being annotated in terms of
target label y. By contrast, in MIL, the weak supervision is assumed, thus, the
training set is formed by bags (sets of instances), and only labels at bag-level
are provided. Furthermore, MIL assumes that there exist an underlying relation
between the bag-label (e.g., video) and the labels of its constituent instances
(e.g., image frames). In standard Multi-Instance-Classification (MIC) [4], labels
are considered binary variables y ∈ {−1, 1} and negative bags are assumed to
contain only instances with an associated negative label. In contrast, positive
bags must contain at least one positive instance. Another MIL assumption is
related to the Multi-Instance-Regression (MIR) problem [5], where y ∈ R is a
real-valued variable and the maximum instance-label within the bag is usually
assumed to be equal to y. Note, however, that none of these assumptions accounts
for structure in the bag labels. Yet, this can be important in case when the bag
labels are ordinal, i.e., y ∈ {0 ≺ ... ≺ l ≺ L}, as in the case of various ratings or
c© Springer International Publishing AG 2017
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intensity estimation tasks. In this work, we focus on the novel modelling task to
which we refer as Multi-Instance-Ordinal Regression (MIOR). Similar to MIR,
in MIOR we assume that the maximum instance ordinal value within a bag is
equal to its label.

To demonstrate the benefits of the proposed approach to MIOR, we apply
it to the task of automatic pain estimation [6]. Pain monitoring is particularly
important in clinical context, where it can provide an objective measure of the
patient’s pain level (and, thus, allow for proper treatment) [7]. The aim is to
predict pain intensity levels from facial expressions (in each frame in a video
sequence) of a patient experiencing pain. To obtain the labelled training data, the
pain level is usually manually coded on an ordinal scale from low to high intensity
[8]. To estimate the pain, several SIL methods have been proposed [9,10]. Yet,
the main limitation of these approaches is they require the frame-based pain
level annotations to train the models, which can be very expensive and time-
consuming. To reduce the efforts, MIL approaches have recently been proposed
for automatic pain detection [3,11,12]. Specifically, a weak-label is provided for
the whole image sequence (in terms of the maximum observed pain intensity
felt by the patient). Then, a video is considered as a bag, and image frames as
instances, where the pain labels are provided per bag. In contrast to per-frame
annotations, the bag labels are much easier to obtain. For example, using patients
self-reports or external observers [6]. Yet, existing MIL approaches for the task
focus on the MIC setting, i.e., pain intensities are binarized and model predicts
only the presence or absence of pain. Consequently, these approaches are unable
to deal with Ordinal Regression problems, and, thus, estimate different intensity
levels of pain – which is critical for real-time pain monitoring.

In this paper, we propose Multi-Instance Dynamic Ordinal Random Fields
(MI-DORF) for MIL with ordinal bag labels. We build our approach using the
notion of Hidden Conditional Ordinal Random Fields framework (HCORF) [13],
for modeling of linear-chains of ordinal latent variables. In contrast to HCORF
that follows the Single-Instance paradigm, the energy function employed in
MI-DORF is designed to model the MIOR assumption relating instance and
bag labels. In relation to static MIL methods, our MI-DORF also incorporates
dynamics within the instances, encoded by transitions between ordinal latent
states. This information is useful when instances (frames) in a bag are tempo-
rally correlated, as in pain videos. The main contributions of this work can be
summarised as follows:

• To the best our knowledge, the proposed MI-DORF is the first MIL approach
that imposes ordinal structure on the bag labels. The proposed method also
incorporates dynamic information that is important when modeling temporal
structure in instances within the bags (i.e., image sequences). While modeling
the temporal structure has been attempted in [11,14], there are virtually no
works that account for both ordinal and temporal data structures within MIL
framework.

• We introduce an efficient inference method in our MI-DORF, which has a sim-
ilar computational complexity as the forward-backward algorithm [15] used in
standard first-order Latent-Dynamic Models (e.g. HCORF). This is despite
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the fact that we model high-order potentials modelling the Multi-Instance
assumption.

• We show in the task of automated pain intensity estimation from the UNBC
Shoulder-Pain Database [6] that the proposed MI-DORF outperforms signif-
icantly existing related approaches applicable to this task. We show that due
to the modeling of the ordinal and temporal structure in the target data, we
can infer instance-level pain intensity levels that largely correlate with man-
ually obtained frame-based pain levels. Note that we do so by using only the
bag labels for learning, that are easy to obtain. To our knowledge, this has
not been attempted before.

2 Related Work

Multi-Instance-Learning. Existing MIC/MIR approaches usually follow the
bag-based or instance-based paradigms [16]. In bag-based methods, a feature
vector representation for each bag is first extracted. Then, these representations
are used to train standard Single-Instance Classification or Regression methods,
used to estimate the bag labels. Examples include Multi-Instance Kernel [17],
MILES [18], MI-Graph [19] and MI-Cluster Regression [20]. The main limita-
tion of these approaches is that the learned models can only make predictions at
the bag-level. However, these methods cannot work in the weakly-supervised set-
tings, where the goal is to predict instance-labels (e.g., frame-level pain intensity)
from a bag (e.g., a video). In contrast, instance-based methods directly learn
classifiers which operate at the instance level. For this, MIL assumptions are
incorporated into the model by considering instance-labels as latent variables.
Examples include Multi-Instance Support Vector Machines [21] (MI-SVM), MIL-
Boost [22], and Multi-Instance Logistic Regression [23]. The proposed MI-DORF
model follows the instance-based paradigm by treating instance-labels as ordinal
latent states in a Latent-Dynamic Model. In particular, it follows a similar idea
to that in the Multi-Instance Discriminative Markov Networks [24]. In this app-
roach, the energy function of a Markov Network is defined by using cardinality
potentials modelling the relation between bag and instance labels. MI-DORF also
make use of cardinality potentials, however, in contrast to the works described
above, it accounts for the ordinal structure at both the bag and instance level,
while also accounting for the dynamics in the latter.

Latent-Dynamic Models. Popular methods for sequence classification are
Latent-Dynamic Models such as Hidden Conditional Random Fields (HCRFs)
[25] or Hidden-Markov-Models (HMMs) [26]. These methods are variants of
Dynamic Bayesian Networks (DBNs) where a set of latent states are used to
model the conditional distribution of observations given the sequence label. In
these approaches, dynamic information is modelled by incorporating probabilis-
tic dependence between time-consecutive latent states. MI-DORF builds upon
the HCORF framework [13] which considers latent states as ordinal variables.
However, HMM and HCRF/HCORF follow the SIL paradigm where the main
goal is to predict sequence labels. In contrast, in MI-DORF, we define a novel
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energy function that encodes the MI relationship between the bag labels, and
also their latent ordinal states. Note also that the recent works (e.g., [11,14])
extended HMMs/HCRFs, respectively, for MIC. The reported results in this
work suggested that modeling dynamics in MIL can be beneficial when bag-
instances exhibit temporal structure. However, these methods limit their con-
sideration to the case where bag labels are binary and, therefore, are unable to
solve the MIOR problem.

MIL for Weakly-Supervised Pain Detection. Several works attempted pain
detection in the context of the weakly-supervised MIL. As explained in Sect. 1,
these approaches adopt the MIC framework where pain intensities are binarized.
For instance, [12] proposed to extract a Bag-of-Words representation from video
segments and treat them as bag-instances. Then, MILBoosting [22] was applied
to predict sequence-labels under the MIC assumption. Following the bag-based
paradigm, [3] developed the Regularized Multi-Concept MIL method capable of
discovering different discriminative pain expressions within an image sequence.
More recently, [11] proposed MI Hidden Markov Models, an adaptation of stan-
dard HMM to the MIL problem. The limitation of these approaches is that they
focus on the binary detection problem, and, thus, are unable to deal with (ordi-
nal) multi-class problems (i.e., pain intensity estimation). This is successfully
attained by the proposed MI-DORF.

3 Multi-Instance Dynamic Ordinal Random Fields
(MI-DORF)

3.1 Multi Instance Ordinal Regression (MIOR)

In the MIOR weakly-supervised setting, we are provided with a training set
T = {(X1, y1), (X2, y2), ..., (XN , yN )} formed by pairs of structured-inputs
X ∈ X and labels y ∈ {0 ≺ ... ≺ l ≺ L} belonging to a set of L possible
ordinal values. In this work, we focus on the case where X = {x1,x2, ...,xT } are
temporal sequences of T observations x ∈ Rd in a d-dimensional space 1. Given
the training-set T , the goal is to learn a model F : X → H mapping sequences X
to an structured-output h ∈ H. Concretely, h = {h1, h2, ..., hT } is a sequence of
variables ht ∈ {0 ≺ ... ≺ l ≺ L} assigning one ordinal value for each observation
xt. In order to learn the model F from T , MIOR assumes that the maximum
ordinal value in hn must be equal to the label yn for all sequences Xn:

F(Xn) = hn s.t yn = max
h

(hn) ∀ (Xn, yn) ∈ T (1)

3.2 MI-DORF: Model Overview

We model the structured-output h ∈ H as a set of ordinal latent variables. We
then define the conditional distribution of y given observations X. Formally,
P (y|X; θ) is assumed to follow a Gibbs distribution as:
1 Total number of observations T can vary across different sequences.
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Fig. 1. (a) Graphical representation of the proposed MI-DORF model. Node potentials
ΨN model the compatibility between a given observation xt and a latent ordinal value
ht. Edge potentials ΨE take into account the transition between consecutive latent
ordinal states ht and ht+1. Finally, the high-order cardinality potential ΨM models the
MIOR assumption relating all the latent ordinal states ht with the bag-label y. (b)
Equivalent model defined using the auxiliary variables ζt for each latent ordinal state.
The use of these auxiliary variables and the redefinition of node and edge potentials
allows us to perform efficient inference over the MI-DORF model (see Sect. 3.4).

P (y|X; θ) =
∑

h e−Ψ(X,h,y;θ)

∑
y′

∑
h e−Ψ(X,h,y′;θ) , (2)

where θ is the set of the model parameters. As defined in Eq. 3, the energy
function Ψ defining the Gibbs distribution is composed of the sum of three
different types of potentials. An overview of the model is shown in Fig. 1(a).

Ψ(X,h, y; θ) =
T∑

t=1

ΨN (xt, ht; θN ) +
T−1∑

t=1

ΨE(ht, ht+1; θE) + ΨM (h, y, θM ), (3)

MI-DORF: Ordinal Node Potentials. The node potentials ΨN (x, h; θN )
aim to capture the compatibility between a given observation xt and the latent
ordinal value ht. Similar to HCORF, it is defined using the ordinal likelihood
model [27]:

ΨN (x, h = l; θN ) = log

(

Φ

(
bl − βTx)

σ

)

− Φ

(
b(l−1) − βTx)

σ

))

, (4)

where Φ(·) is the normal cumulative distribution function (CDF), and θN =
{β,b, σ} is the set of potential parameters. Specifically, the vector β ∈ Rd

projects observations x onto an ordinal line divided by a set of cut-off points
b0 = −∞ ≤ · · · ≤ bL = ∞. Every pair of contiguous cut-off points divide the
projection values into different bins corresponding to the different ordinal states
l = 1, ..., L. The difference between the two CDFs provides the probability of
the latent state l given the observation x, where σ is the standard deviation of a
Gaussian noise contaminating the ideal model (see [13] for details). In our case,
we fix σ = 1, to avoid model over-parametrization.
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MI-DORF: Edge Potentials. The edge potential ΨE(ht, ht+1; θE) models
temporal information regarding compatibilities between consecutive latent ordi-
nal states as:

ΨE(ht = l, ht+1 = l′; θE) = Wl,l′ , (5)

where θE = WL×L represents a real-valued transition matrix, as in standard
HCORF. The main goal of this potential is to perform temporal smoothing of
the instance intensity levels.

MI-DORF: Multi-Instance-Ordinal Potential. In order to model the
MIOR assumption (see Eq. 1), we define a high-order potential ΨM (h, y; θM )
involving label y and all the sequence latent variables h as:

ΨM (h, y; θM ) =

{
w

∑T
t=1 I(ht == y) iff max(h) = y

−∞ otherwise
, (6)

where I is the indicator function, and θM = w. Note that when the maximum
value within h is not equal to y, the energy function is equal to −∞ and, thus,
the probability P (y|X; θ) drops to 0. On the other hand, if the MI assumption
is fulfilled, the summation w

∑T
t=1 I(ht == y) increases the energy proportion-

ally to w and the number of latent states h ∈ ht that are equal to y. This
is convenient since, in sequences annotated with a particular label, it is more
likely to find many latent ordinal states with such ordinal level. Therefore, the
defined MI potential does not only model the MI-OR assumption but also pro-
vides mechanisms to learn how important is the proportion of latent states h
that are equal to the label. Equation 6 is a special case of cardinality potentials
[28] also employed in binary Multi-Instance Classification [24].

3.3 MI-DORF: Learning

Given a training set T = {(X1, y1), (X2, y2), ..., (XN , yN )}, we learn the model
parameters θ by minimizing the regularized log-likelihood:

min
θ

N∑

i=1

log P (y|X; θ) + R(θ), (7)

where the regularization function R(θ) over the model parameters is defined as:

R(θ) = α(||β||22 + ||W||2F ) (8)

and α is set via a validation procedure. The objective function in Eq. 7 is differ-
entiable and standard gradient descent methods can be applied for optimization.
To this end, we use the L-BFGS Quasi-Newton method [29]. The gradient eval-
uation involves marginal probabilities p(ht|X) and p(ht, ht+1|X) which can be
efficiently computed using the proposed algorithm in Sect. 3.4.
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3.4 MI-DORF: Inference

The evaluation of the conditional probability P (y|X; θ) in Eq. 2 requires comput-
ing

∑
h e−Ψ(X,h,y;θ) for each label y. Given the exponential number of possible

latent states h ∈ H, efficient inference algorithms need to be used. In the case
of Latent-Dynamic Models such as HCRF/HCORF, the forward-backward algo-
rithm [15] can be applied. This is because the pair-wise linear-chain connectivity
between latent states h. However, in the case of MI-DORF, the inclusion of the
cardinality potential ΨM (h, y; θM ) introduces a high-order dependence between
the label y and all the latent states in h. Inference methods with cardinality
potentials has been previously proposed in [28,30]. However, these algorithms
only consider the case where latent variables are independent and, therefore,
they cannot be applied in MI-DORF. For these reasons, we propose an specific
inference method. The idea behind it is to apply the standard forward-backward
algorithm by converting the energy function defined in Eq. 3 into an equivalent
one preserving the linear-chain connectivity between latent states h.

To this end, we introduce a new set of auxiliary variables ζ = {ζ1, ζ2, ..., ζT },
where each ζt ∈ {0, 1} takes a binary value denoting whether the sub-sequence
h1:t contains at least one ordinal state h equal to y. Now we redefine the MI-
DORF energy function in Eq. 3 as:

Ψ(X,h, ζ, y; θ) =
T∑

t=1

ΨN (xt, ht, ζt, y; θN )+
T−1∑

t=1

ΨE(ht, ht+1, ζt, ζt+1, y; θE), (9)

where the new node and edge potentials are given by:

ΨN (xt, ht, ζt, y; θN ) =

{
ΨN (xt, ht; θN ) + wI(ht == y) iff ht <= y

−∞ otherwise
, (10)

ΨE(ht, ht+1, ζt, ζt+1, y; θE) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wht,h(t+1) iff ζt = 0 ∧ ζt+1 = 0 ∧ ht+1 	= y

Wht,h(t+1) iff ζt = 0 ∧ ζt+1 = 1 ∧ ht+1 = y

Wht,h(t+1) iff ζt = 1 ∧ ζt+1 = 1
−∞ otherwise

(11)
Note that Eq. 9 does not include the MIO potential and, thus, the high-

order dependence between the label y and latent ordinal-states h is removed.
The graphical representation of MI-DORF with the redefined energy function
is illustrated in Fig. 1(b). In order to show the equivalence between energies in
Eqs. 3 and 9, we explain how the original Multi-Instance-Ordinal potential ΨM

is incorporated into the new edge and temporal potentials. Firstly, note that ΨN

now also takes into account the proportion of ordinal variables ht that are equal
to the sequence label. Moreover, it enforces h not to contain any ht greater than
y, thus aligning the bag and (max) instance labels. However, the original Multi-
Instance-Ordinal potential also constrained h to contain at least one ht with the
same ordinal value than y. This is achieved by using the set of auxiliary variables
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ζt and the re-defined edge potential ΨE . In this case, transitions between latent
ordinal states are modelled but also between auxiliary variables ζt. Specifically,
when the ordinal state in ht+1 is equal to y, the sub-sequence h1:t+1 fulfills the
MIOR assumption and, thus, ζt+1 is forced to be 1. By defining the special cases
at the beginning and the end of the sequence (t = 1 and t = T ):

ΨN (x1, h1, , ζ1, y) =

⎧
⎪⎨

⎪⎩

ΨN (x1, h1) + wI(h1 == y) iff ζ1 = 0 ∧ l1 < y

ΨN (x1, h1) + wI(h1 == y) iff ζ1 = 1 ∧ l1 = y

−∞ otherwise
, (12)

ΨN (xT , hT , ζT , y) =

{
ΨN (xT , hT ) + wI(hT == y) iff ζT = 1 ∧ hT <= y

−∞ otherwise
,

(13)
we can see that the energy is −∞ when the MIOR assumption is not fulfilled.
Otherwise, it has the same value than the one defined in Eq. 3 since no additional
information is given. The advantage of using this equivalent energy function
is that the standard forward-backward algorithm can be applied to efficiently
compute the conditional probability:

P (y|X; θ) =

∑
h

∑
ζ e−Ψ(X,h,ζ,y;θ)

∑
y′

∑
h

∑
ζ e−Ψ(X,h,ζ,y′;θ) , (14)

The proposed procedure has a computational complexity of O(T · (2L)2)
compared with O(T ·L2) using standard forward-backward in traditional linear-
chain latent dynamical models. Since typically L << T , this can be considered
a similar complexity in practice. The presented algorithm can also be applied to
compute the marginal probabilities p(ht|X) and p(ht, ht+1|X). This probabilities
are used during training for gradient evaluation and during testing to predict
ordinal labels at the instance and bag level.

4 Experiments

4.1 Baselines and Evaluation Metrics

The introduced MI-DORF approach is designed to address the Multi-Instance-
Ordinal Regression when bags are structured as temporal sequences of ordi-
nal states. Given that this has not been attempted before, we compare
MI-DORF with different approaches that either ignore the MIL assumption
(Single-Instance) or do not model dynamic information (Static):

Single-Instance Ordinal Regression (SIL-OR): MIL can be posed as a SIL
problem with noisy labels. The main assumption is that the majority of instances
will have the same label than their bag. In order to test this assumption, we train
standard Ordinal Regression [27] at instance-level by setting all their labels to
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the same value as their corresponding bag. During testing, bag-label is set to
the maximum value predicted for all its instances. Note that this baseline can
be considered an Static-SIL approach.

Static Multi-Instance Ordinal Regression (MI-OR): Given that no MIOR
methods have previously been proposed for this task, we implemented this static
approach following the MIOR assumption. This method is inspired by MI-SVM
[21], where instance labels are considered latent variables and are iteratively
optimized during training. To initialize the parameters of the ordinal regressor,
we follow the same procedure as described above in SIL-OR. Then, ordinal values
for each instance are predicted and modified so that the MIOR assumption is
fulfilled for each bag. Note that if all the predictions within a bag are lower than
its label, the instances with the maximum value are set to the bag-label. On the
other hand, all the predictions greater than the bag-label are decreased to this
value. With this modified labels, Ordinal Regression is applied again and this
procedure is applied iteratively until convergence.

Multi-Instance-Regression (MIR): Several methods have been proposed in
the literature to solve the MIL problem when bags are real-valued variables. In
order to evaluate the performance of this approach in MIOR, we have imple-
mented a similar method as used in [23]. Specifically, a linear regressor at the
instance-level is trained by optimizing a loss function over the bag-labels. This
loss models the MIR assumption by using a soft-max function which approxi-
mates the maximum instance label within a bag predicted by the linear regressor.
Note that a similar approach is also applied in Multi-Instance Logistic Regres-
sion [31]. In these works, a logistic loss is used because instance labels take values
between 0 and 1. However, we use a squared-error loss to take into account the
different ordinal levels.

Multi-Instance HCRF (MI-HCRF): This approach is similar to the pro-
posed MI-DORF. However, MI-HCRF ignores the ordinal nature of labels and
models them as nominal variables. For this purpose, we replace the MI-DORF
node potentials by a multinomial logistic regression model2. Inference in MI-
HCRF is performed by using the algorithm described in Sect. 3.4.

Single-Instance Latent-Dynamic Models (HCRF/HCORF): We also
evaluate the performance of HCRF and HCORF. For this purpose, the Mutli-
Instance-Ordinal potential in MI-DORF is replaced by the employed in standard
HCRF [25]. This potential models the compatibility of hidden state values h with
the sequence-label y but ignores the Multi-Instance assumption. For HCRF, we
also replace the node potential as in the case of MI-HCRF. Inference is performed
using the standard forward-backward algorithm.

Evaluation Metrics: In order to evaluate the performance of MI-DORF and
the compared methods, we report results in terms of instance and bag-labels
2 The potential with the Multinomial Logistic Regession model is defined as

log(
exp(βT

l x)
∑

l′∈L exp(βT
l′ x)

). Where all βl defines a linear projection for each possible ordinal

value l [32].
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Fig. 2. Description of the procedure used to generate synthetic sequences. (a) A random
matrix modelling transition probabilities between consecutive latent ordinal values. (b)
Ordinal levels assigned to the random feature vectors according to the ordinal regressor.
(c) Example of a sequence of ordinal values obtained using the generated transition
matrix. The feature vector representing each observation is randomly chosen between
the samples in (b) according to the probability for each ordinal level. (c–d) Examples
of instance-level predictions in a sequence for MI-OR and MI-DORF.

predictions. Note that in the MIL literature, results are usually reported only
at bag-level. However, in problems such as weakly-supervised pain detection,
the main goal is to predict instance labels (frame-level pain intensities). Given
the ordinal nature of the labels, the reported metrics are the Pearson’s Correla-
tion (CORR), Intra-Class-Correlation (ICC) and Mean-Average-Error (MAE).
For bag-label predictions, we also report the Accuracy and average F1-score as
discrete metrics.

4.2 Synthetic Experiments

Synthetic Data: Given that no standard benchmarks are available for MIOR,
we have generated synthetic data. To create the synthetic sequences, we firstly
generated a sequence of ordinal values using a random transition matrix. It rep-
resents the transition probabilities between temporally-consecutive ordinal lev-
els. The first value for the sequence is randomly chosen with equal probability
among all possible ordinal levels. Secondly, we generate random parameters of an
Ordinal Regressor as defined in Eq. 4. This regressor is used to compute the prob-
abilities for each ordinal level in a set o feature-vectors randomly sampled from a
Gaussian distribution. Thirdly, the corresponding sequence observation for each
latent state in the sequence is randomly chosen between the sampled feature
vectors according to the obtained probability for each ordinal value. Finally, the
sequence-label is set to the maximum ordinal state within the sequence following
the MIOR assumption, and Gaussian noise (σ = 0.25) is added to the feature



MI-DORF for Weakly-Supervised Pain Intensity Estimation 181

Table 1. The performance of different methods obtained on the synthetic data.

Frame-level Sequence-level

CORR MAE ICC CORR MAE ICC ACC F1

SIL-OR 0.77 1.40 0.71 0.85 1.43 0.57 0.26 0.19

MI-OR 0.82 0.54 0.80 0.92 0.58 0.91 0.48 0.44

HCORF [13] 0.81 1.33 0.80 0.94 0.28 0.94 0.74 0.74

HCRF [25] 0.49 1.41 0.42 0.93 0.36 0.92 0.67 0.66

MIR [23] 0.79 0.58 0.78 0.92 0.42 0.91 0.61 0.61

MI-HCRF 0.77 0.75 0.67 0.93 0.43 0.93 0.59 0.58

MI-DORF 0.86 0.39 0.85 0.96 0.20 0.96 0.80 0.80

vectors. Figure 2(a–c) illustrates this procedure. Following this strategy, we have
generated ten different data sets by varying the ordinal regressor parameters
and transition matrix. Concretely, each dataset is composed of 100 sequences for
training, 150 for testing and 50 for validation. The last set is used to optimize
the regularization parameters of each method. The sequences have a variable
length between 50 and 75 instances. The dimensionality of the feature vectors
was set to 10 and the number of ordinal values to 6.

Results and Discussion: Table 1 shows the results computed as the average
performance over the ten datasets. SIL methods (SIL-OR, HCRF and HCORF)
obtain worse performance than their corresponding MI versions (MI-OR, MI-
HCRF and MI-DORF) in most of the evaluated metrics. This is expected since
SIL approaches ignore the Multi-Instance assumption. Moreover, HCORF and
MI-DORF obtain better performance compared to HCRF and MI-HCRF. This
is because the former model the latent states as nominal variables, thus, ignor-
ing their ordinal nature. Finally, note that MI-DORF outperforms the static
methods MI-OR and MIR. Although these approaches use the Multi-Instance
assumption and incorporate the labels ordering, they do not take into account
temporal information. In contrast, MI-DORF is able to model the dynamics of
latent ordinal states and use this information to make better predictions when
sequence observations are noisy. As Fig. 2(c–d) shows, MI-OR predictions tends
to be less smooth because dynamic information is not taken into account. In con-
trast, MI-DORF better estimate the actual ordinal levels by modelling transition
probabilities between consecutive ordinal levels.

4.3 Weakly-Supervised Pain Intensity Estimation

In this experiment, we test the performance of the proposed model for weakly-
supervised pain intensity estimation. To this end, we use the UNBC Shoulder-
Pain Database [6]. This dataset contains recordings of different subjects per-
forming active and passive arm movements during rehabilitation sessions. Each
video is annotated according to the maximum pain felt by the patient during
the recording in an ordinal scale between 0 (no pain) and 5 (strong pain). These
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annotations are used as the bag label in the MIOR task. Moreover, pain intensi-
ties are also annotated at frame-level in terms of the PSPI scale [33]. This ordinal
scale ranges from 0 to 15. Frame PSPI annotations are normalized between 0
and 5, in order to align the scale with the one provided at the sequence level.
Furthermore, we used a total of 157 sequences from 25 subjects. The remaining
43 were removed because a high discrepancy between sequence and frame-level
annotations was observed. Concretely, we do not consider the cases where the
sequence label is 0 and frame annotations contains higher pain levels. Similarly,
we also remove sequences with a high-discrepancy in the opposite way. Given
the different scales used in frame and sequence annotations, we computed the
agreement between them. For this purpose, we firstly obtained the maximum
pain intensities at frame-level for all the used sequences. Then, we computed
the CORR and ICC between them and their corresponding sequence labels. The
results were 0.83 for CORR, and 0.78 in the case of ICC. This high agreement
indicates that predictions in both scales are comparable. More importantly, this
supports our hypothesis that sequence labels are highly correlated with frame
labels; thus, the used bag labels provide sufficient information for learning the
instance labels in our weakly-supervised setting.

Facial-Features: For each video frame, we compute a geometry-based facial-
descriptor as follows. Firstly, we obtain a set of 49 landmark facial-points with
the method described in [34]. Then, the obtained points locations are aligned
with a mean-shape using Procrustes Analysis. Finally, we generate the facial
descriptor by concatenating the x and y coordinates of all the aligned points.
According to the MIL terminology, these facial-descriptors are considered the
instances in the bag (video).

Experimental Setup: We perform Leave-One-Subject-Out Cross Validation
similar to [12]. In each cycle, we use 20 subjects for training, 1 for testing and 4
for validation. This last subset is used to cross-validate the regularization para-
meters of each particular method. In order to reduce computational complexity
and redundant information between temporal consecutive frames, we have seg-
mented the sequences using non-overlapping windows of 0.5 s, similar to [12].
The instance representing each segment is computed as the mean of its corre-
sponding facial-descriptors. Apart from the baselines described in Sect. 4.1, we
also evaluate the performance of the MIC approach considering pain levels as
binary variables. For this purpose, we have implemented the MILBoosting [22]
method used in [12] and considered videos with a pain label greater than 0 as
positive. Given that MI-Classification methods are only able to make binary
predictions, we use the output probability as indicator of intensity levels, at bag
and instance-level, i.e., the output probability is normalized between 0 and 5.

Results and Discussion: Table 2 shows the results obtained by the evalu-
ated methods following the experimental setup previously described. By look-
ing into the results of the compared methods, we can derive the following con-
clusions. Firstly, SI approaches ( SIL-OR, HCORF and HCRF) obtain worse
performance than MI-OR and MIR. This is because pain events are typically
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Table 2. The performance of different methods obtained on the UNBC Database.

Frame-level Sequence-level

CORR MAE ICC CORR MAE ICC ACC F1

SIL-OR 0.31 1.67 0.22 0.59 1.52 0.56 0.19 0.16

MI-OR 0.39 0.76 0.28 0.64 1.01 0.63 0.39 0.31

HCORF [13] 0.24 1.92 0.12 0.30 1.36 0.30 0.39 0.19

HCRF [25] 0.09 2.29 0.05 0.26 1.52 0.26 0.29 0.13

MIR [23] 0.35 0.84 0.24 0.63 0.94 0.63 0.41 0.30

MILBoost [12] 0.28 1.77 0.11 0.38 1.7 0.38 0.3 0.2

MI-HCRF 0.17 1.45 0.11 0.26 1.69 0.26 0.28 0.21

MI-DORF 0.40 0.19 0.40 0.67 0.80 0.66 0.52 0.34

very sparse in these sequences and most frames have intensity level 0 (neutral).
Therefore, the use of the MIL assumption has a critical importance in this prob-
lem. Secondly, poor results are obtained by HCRF and MI-HCRF. This can be
explained because these approaches consider pain levels as nominal variables and
are ignorant of the ordering information of the different pain intensities. Finally,
MILBoost trained with binary labels also obtains low performance compared
to the MI-OR and MIR. This suggest that current approaches posing weakly-
supervised pain detection as a MIC are suboptimal, thus, unable to predict accu-
rately the target pain intensities. By contrast, MI-DORF obtains the best perfor-
mance across all the evaluated metrics at both the sequence and frame-level. We
attribute this to the fact the MI-DORF models the MIL assumption with ordi-
nal variables. Moreover, the improvement of MI-DORF compared to the static
approaches, such as MI-OR and MIR, suggests that modelling dynamic informa-
tion is beneficial in this task. To get better insights into the performance of our
weakly supervised approach, we compare its results (in terms of ICC) to those
obtained by the fully supervised (at the frame level) state-of-the-art approach to
pain intensity estimation - Context-sensitive Dynamic Ordinal Regression [35].
While this approach achieves an ICC of 0.67/0.59, using context/no-context fea-
tures, respectively, our MI-DORF achieves an ICC of 0.40 without ever seeing the
frame labels. This is a good trade-off between the need for the “very-expensive-
to-obtain” frame-level annotation, and the model’s performance.

Finally, in Fig. 3, we show more qualitative results comparing predictions
of MI-OR, MIR and MI-DORF. The shown example sequences depict image
frames along with the per-frame annotations and those obtained by compared
models, using the adopted weakly-supervised setting (thus, only bag labels are
provided). First, we note that all methods succeed to capture the segments in the
sequences where the intensity changes occur, as given by the frame-level ground
truth. However, note that MI-DORF achieves more accurate localization of the
pain activations and prediction of their actual intensity. This is also reflected in
terms of the MAE depicted, showing clearly that the proposed outperforms the
competing methods on target sequences.
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Fig. 3. Visualization of the pain intensity predictions at frame-level for MI-OR, MIR
and the proposed MI-DORF method. From top to bottom, three sequences with
ground-truth where MI-DORF predicted the sequence labels: 0, 3 & 5 respectively.

5 Conclusions

In this work, we introduced MI-DORF for the task of Multi-Instance-Ordinal
Regression. This is the first MI approach that imposes an ordinal structure on
the bag labels, and also attains dynamic modeling of temporal sequences of corre-
sponding ordinal instances. In order to perform inference in the proposed model,
we have developed an efficient algorithm with similar computational complexity
to that of the standard forward-backward method - despite the fact that we
model high-order potentials modelling the MIOR assumption. We demonstrated
on the task of weakly supervised pain intensity estimation that the proposed
model can successfully unravel the (ordinal) instance labels by using only the
(ordinal) bag labels. We also showed that this approach largely outperforms
related MI approaches – all of which fail to efficiently account for either tempo-
ral or ordinal, or both types of structure in the target data.
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4. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
Advances in Neural Information Processing Systems (1998)

5. Ray, S., Page, D.: Multiple instance regression. In: Proceedings of the International
Conference on Machine Learning (2001)

6. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Matthews, I.: Painful data:
the UNBC-McMaster shoulder pain expression archive database. In: International
Conference on Automatic Face and Gesture Recognition (2011)

7. Aung, M.S., Kaltwang, S., Romera-Paredes, B., Martinez, B., Singh, A., Cella,
M., Valstar, M.F., Meng, H., Kemp, A., Shafizadeh, M., Elkins, A.C., Kanakam,
N., rothschild, A.D., Tyler, N., Watson, P.J., Williams, A.C., Pantic, M., Bianchi-
berthouze, N.: The automatic detection of chronic pain-related expression: require-
ments, challenges and a multimodal dataset. IEEE Trans. Affect. Comput. (2015,
to appear)

8. Hjermstad, M.J., Fayers, P.M., Haugen, D.F., Caraceni, A., Hanks, G.W., Loge,
J.H., Fainsinger, R., Aass, N., Kaasa, S., EPCRC, E.P.C.R.C., et al.: Studies com-
paring numerical rating scales, verbal rating scales, and visual analogue scales
for assessment of pain intensity in adults: a systematic literature review. J. Pain
Symptom Manag. 41, 1073–1093 (2011)

9. Rudovic, O., Pavlovic, V., Pantic, M.: Automatic pain intensity estimation with
heteroscedastic conditional ordinal random fields. In: Bebis, G., et al. (eds.) ISVC
2013. LNCS, vol. 8034, pp. 234–243. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41939-3 23

10. Kaltwang, S., Rudovic, O., Pantic, M.: Continuous pain intensity estimation from
facial expressions. In: Bebis, G., et al. (eds.) ISVC 2012. LNCS, vol. 7432, pp.
368–377. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33191-6 36

11. Wu, C., Wang, S., Ji, Q.: Multi-instance hidden Markov model for facial expression
recognition. In: International Conference on Automatic Face and Gesture Recog-
nition (2015)

12. Sikka, K., Dhall, A., Bartlett, M.: Weakly supervised pain localization using multi-
ple instance learning. In: International Conference on Automatic Face and Gesture
Recognition (2013)

13. Kim, M., Pavlovic, V.: Hidden conditional ordinal random fields for sequence classi-
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Abstract. Regularizing neural networks is an important task to reduce
overfitting. Dropout [1] has been a widely-used regularization trick for
neural networks. In convolutional neural networks (CNNs), dropout is
usually applied to the fully connected layers. Meanwhile, the regular-
ization effect of dropout in the convolutional layers has not been thor-
oughly analyzed in the literature. In this paper, we analyze the effect of
dropout in the convolutional layers, which is indeed proved as a powerful
generalization method. We observed that dropout in CNNs regularizes
the networks by adding noise to the output feature maps of each layer,
yielding robustness to variations of images. Based on this observation, we
propose a stochastic dropout whose drop ratio varies for each iteration.
Furthermore, we propose a new regularization method which is inspired
by behaviors of image filters. Rather than randomly drop the activation,
we selectively drop the activations which have high values across the
feature map or across the channels. Experimental results validate the
regularization performance of selective max-drop and stochastic dropout
is competitive to the dropout or spatial dropout [2].

1 Introduction

Convolutional neural networks (CNNs) have been widely used for many com-
puter vision tasks such as image classification, segmentation, and detection in
recent years, mainly due to their high representation power and superior perfor-
mance. Since deep neural networks are involved with a large number of parame-
ters, regularization is a critical task to reduce overfitting. Other than a weight
decay term, many algorithms have been presented to regularize neural networks.
Dropout [1] is the most commonly used technique for regularization. For CNNs,
stochastic pooling [3] or maxout networks [4] are well known techniques to reg-
ularize convolutional layers. Though dropout has shown its effectiveness in con-
volutional layers in some cases [1,5,6], it is still rarely used with convolutional
layers in practice. Moreover, the effect of dropout in convolutional layers has not
been studied thoroughly. Different from the fully connected layers, convolutional
layers have smaller number of parameters compared to the size of feature maps.
Hence, it is believed that convolutional layers suffer less from overfitting.

In this paper, we analyze the effect of dropout in convolutional layers. We
found that dropout in convolutional layers as well as the fully connected layers
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 189–204, 2017.
DOI: 10.1007/978-3-319-54184-6 12
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are effective for regularization. The generalization effect of dropout in convolu-
tional layers is due to the enhanced robustness by adding noise to the inputs
of convolutional layers, not due to the model averaging in the case of fully con-
nected layers. Based on this observation, we propose two variants of dropout
which is suited for convolutional layers of CNNs. Similar to dropout [1], the pro-
posed methods turn off the activations of convolutional layers. While dropout
turns off the activations randomly, the first variant, max-drop, selectively drops
the activation which is the maximum value within each feature map or within
the same spatial position of feature maps. Since the neurons with high acti-
vation values contain key information about the problem at hand, dropping
the maximum activation probabilistically can grant generalization power to the
networks. The other variant, stochastic dropout, varies the dropout probabil-
ity based on the probability distribution which makes the network robust to
inputs with different levels of noise. Experimental results show that the pro-
posed method effectively regularizes convolutional layers and shows competitive
performance against dropout. This result indicates that unlike dropout, only
dropping a small portion of activations in the network can lead to a powerful
generalization performance.

The rest of the papers will be presented as follows. Related works are intro-
duced in Sect. 2, and we analyze the effect of dropout in convolutional layers in
Sect. 3. Based on the analysis, two variants of dropout, max-drop and stochas-
tic dropout, are proposed in Sects. 4 and 5 respectively. Experiments on various
datasets are conducted to compare the generalization performance of proposed
methods with dropout, and the results are illustrated in Sect. 6. Finally, conclu-
sions are made in Sect. 7.

2 Related Work

Many efforts have been made for regularizing neural networks. Dropout [1] is
the most popular method for network regularization. It randomly drops the
pre-designed portion of activations at each iteration to regularize the network.
Dropout can be viewed as cooperation of multiple models trained on different
subsets of data. From similar inspiration, DropConnect [7] drops the connec-
tions of the network instead of activations. It showed comparable generalization
performance with dropout.

Dropout works well in practice especially with fully connected layers. How-
ever, when applied to convolutional layers in a deep CNN, the performance of
dropout has been thought to be questionable. It is argued that convolutional
layers does not suffer from overfitting because the number of parameters for the
convolutional layers is small relative to the number of activations. Nevertheless,
dropout in convolutional layer is proven to improve generalization performance
in some extent by adding noise to the activations [1]. Network-in-Network [8]
efficiently integrated dropout in convolutional layer by using 1× 1 convolutional
layer followed by dropout, which enhances both representation and generaliza-
tion power. On the other hand, spatial dropout [2] has been suggested to consider
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the correlated activations in convolutional layers. The method drops the entire
feature maps rather than individual activations. Since spatially close activations
in the same feature map are tend to be correlated, the paper argues that dropout
does not suitably applied to volumetric feature map since it assumes indepen-
dence between the activations.

Various pooling methods have been proposed to regularize CNNs. Stochas-
tic pooling [3] determines the elements to pool probabilistically based on the
input activation values. Generalized pooling functions [9] learn parameters to
combine average and max pooling. Strided convolution [5] can also be viewed
as generalization of pooling operations. Wu and Gu [10] proposed probabilis-
tic weighted pooling which combines dropout in convolutional layers and max
pooling together.

Adding noise in the training step or to the activation function also helps
enhancing generalization power. Neelakantan et al. [11] found that adding noise
to the gradient during backpropagation helps deep networks converge faster and
prevent overfitting. Audhkhasi et al. [12] and Gulcehre et al. [13] showed that
adding carefully chosen noise to the activation can speed up training procedure.
Maxout networks [4] regularize networks by propagating only maximum activa-
tions. Huang et al. [14] proposed the regularization techniques which combine
maxout and dropout. Opposed to the maxout networks, our method prohibits
maximum activations from forward and backward propagation.

Among the numerous regularization methods, dropout is still used in most
neural networks due to its simplicity and reasonable performance. Though
Srivastava et al. [1] empirically proved the effectiveness of dropout in the convo-
lutional layers, dropout is not preferable to apply every layer in a deep convo-
lutional neural network since the scale of backpropagated error drops whenever
it passes the layer with dropout, which slows down the learning speed in the
lower convolutional layers. Therefore, dropout has been applied only to the fully
connected networks in most cases.

3 Effectiveness of Dropout in Convolutional Layer

We first investigate the effect of dropout in convolutional layers of CNNs.
Dropout is interpreted as bagging of different models which is trained on dif-
ferent subsets of data. On the other hand, it is believed that the regularization
effect of dropout in convolutional layers is mainly obtained from the robustness
to noisy inputs. To analyze the characteristics of dropout that actually help
generalizing convolutional layers, we scrutinized the distribution of activations
in a CNN trained on the CIFAR-10 dataset [15] with and without dropout in
convolutional layers. The network model used in this section consists of 10 con-
volutional layers and 4 pooling layers. All convolutional layers have kernels of
3×3 size, and inputs to the convolutional layers are padded by 1 pixels for both
sides. All pooling layers use 2 × 2 max pooling with stride of 2 except the last
layer for which we used 4×4 mean pooling. Dropout after pool4 with probability
of 0.5 is applied regardless of using dropout in convolutional layers or not. The
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number of filters is doubled after each pooling layer, which is a similar approach
to the VGGnet [16]. Rectified linear unit (ReLU) is used as a activation function
in all layers. Detailed configuration is illustrated in Fig. 1(a). While the CNN
that does not use dropout achieved 83.16% accuracy, when dropout is applied
to the output of every convolutional layer except the last conv4 3 layer with
ratio of 0.1, the network achieved 87.78% accuracy. We analyzed the reason of
accuracy improvement by looking into the behavior of the activated neurons in
the convolutional layers.

name filter size channels

conv1 1 3 × 3 64
conv1 2 3 × 3 64
pool1 max 2 × 2 / 2

conv2 1 3 × 3 128
conv2 2 3 × 3 128
pool2 max 2 × 2 / 2

conv3 1 3 × 3 256
conv3 2 3 × 3 256
conv3 3 3 × 3 256
pool3 max 2 × 2 / 2

conv4 1 3 × 3 512
conv4 2 3 × 3 512
conv4 3 3 × 3 512
pool4 mean 4 × 4

fc-softmax 512 × 10
(a)
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Fig. 1. (a) Structure of CNN used in the experiments. (b) Number of neurons that
never activated in each layer.

First, we investigated that every neuron in CNNs are working effectively,
which means that the filters in CNNs do not learn redundant or useless infor-
mation. One of the difficulties for training deep CNNs is that there exist dead
neurons in the convolutional layer that are never activated. Using variants of
ReLU activation functions such as leaky ReLU [17] or parametric ReLU [18] is
one of the solutions to avoid dead neurons. We verify that dropout is also useful
for avoiding dead neurons while the network still uses ReLU activation function.
We counted the number of neurons that are not activated at the test time for
each layer. The portions of never activated neurons with and without dropout
are shown in Fig. 1(b). Large number of dead neurons are observed in most lay-
ers when dropout is not applied. On the other hand, when dropout is applied to
the convolutional layers, almost all neurons are activated. Therefore, we verify
that dropout in convolutional layers helps filters to learn informative features of
images, which improves representation power of the network and classification
performance as a consequence.

Next, as discussed in [1], we compared the sparsity of the activations. It is
verified from [1] that in the fully connected layer, the activations are sparser when
dropout is used. To confirm that this statement also holds for the convolutional
layers in both lower and higher layers, we calculated the mean activation of
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Fig. 2. Histogram of mean activation of (a) conv1 1 layer without dropout. (b) conv1 1
layer with dropout. (c) conv4 2 layer without dropout. (d) conv4 2 layer with dropout.

all neurons in each layer. The mean activation of lower convolutional layers,
conv1 1 (Fig. 2(a) and (b)), and that of higher convolutional layers, conv4 2
(Fig. 2(c) and (d)) are shown. In the lower convolutional layers, the histogram
is almost flat when dropout is not used while it is bell shape when dropout
is applied. This indicates that some neurons are activated frequently or have
larger activation values, and others are activated less frequently or have small
activation values when dropout is not applied. Meanwhile, with dropout, every
neuron has similar mean activation value, which means that every neuron is
similarly activated. Since lower layers in CNN usually captures common features,
it is preferable behavior that neurons have similar mean activation values. In
the higher convolutional layer, we could verify the sparsity of activations with
dropout. A high peak near zero value is observed, which implies that the mean
activation of most neurons are concentrated at small values when dropout is
applied.

Based on these observations, we conclude that dropout in convolutional layers
helps filters to learn informative features. However, when dropout is applied to
every convolutional layers in deep CNNs, training process can be slow since
activation signals are dropped exponentially as dropout is applied repeatedly.
If higher drop probability such as 0.5 is applied in convolutional layers, CNNs
perform poor or cannot be trained at all. In the next sections, we propose two
variants of dropout to deal with this problem while maintaining the competitive
generalization power with dropout.
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4 Max-Drop Layer

In this section, we will explain a new regularization method named as max-drop.
Based on the information from Sect. 3, we note that neurons with high activation
contain important information in the network. Max-drop layer selectively drops
only the maximum activations. While dropout is motivated by model averaging,
max-drop layers originate from different inspiration from CNNs. Different images
of the same class often do not share the same features due to the occlusion,
viewpoint changes, illumination variation, and so on. For instance, human face
images may contain one eye or two eyes depending on the viewpoint. Therefore,
a feature which plays an important role in an image may not appear in different
images of the same class. Max-drop aims to simulate these cases by dropping
high activations deterministically, rather than randomly select activations to
drop off. In the lower layer of convolutional layers, this procedure of dropping the
maximum activations simulates the case that important features are not present
due to occlusion or other types of variations. In the higher layer, each feature map
learns more abstracted and class-specific information [19]. Therefore, turning off
high activations helps other neurons to learn the class-specific characteristics. It
is intuitively uncertain that dropped high activations on the higher convolutional
layers give generalization power, but we empirically prove that max-drop layers
effectively regularize higher convolutional layers similar to dropout.

Select the feature map
with probability poff

Find maximum and
drop the value to 0

Select spatial location
with probability poff

find maximum across the channel
and drop the value to 0

)b()a(

Fig. 3. Illustration of max-drop layer. Two different ways to find maximum value is
proposed in this paper: (a) feature-wise max-drop finds maximum value within each
feature map and drops the maximum values with probability poff . (b) Channel-wise
max-drop finds maximum value across each channel in the same spatial position and
drops the maximum values with probability poff .

In the max-drop layer, maximum element is found in the activations of con-
volutional layers and the maximum activation is dropped to zero with the prob-
ability of poff . Max-drop can be applied to both outputs of convolutional layers
or pooling layers as in the case of dropout. We propose two different strate-
gies to find maximum value which is illustrated in Fig. 3. The first strategy is
to find maximum within each feature map, which will be called as feature-wise
max-drop. This scheme turns off the most informative feature within the feature
map and drop the value to 0 with the probability poff . The portion of dropped
activations with respect to the entire activations of the convolutional layer is
calculated as
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pf =
1

nw × nf
poff , (1)

where nw, nh is the width and height of the feature map respectively. For
instance, if convolutional layer outputs 4 × 4 size feature map, then the maxi-
mum probability of drop will be 0.0625, which is smaller than the typical dropout
ratio.

Another strategy is to find maximum across the channels in the same position
of feature map, which is denoted as channel-wise max-drop. This scheme prevents
the highest activation to be propagated to the next layer on a certain spatial
position of the feature map. The actual drop probability for the channel-wise
max-drop is

pc =
1
nc

poff , (2)

where nc is the number of channels in the convolutional layer outputs. With the
same drop rate, channel-wise max-drop will drop smaller number of activations
than the feature-wise max-drop in higher layers where the size of feature map is
much smaller than the number of channels, and vice versa in the lower layers.

Dropping small number of neurons has an advantage over conventional
dropout. Max-drop does not suffer from slow training since gradients are propa-
gated through all activations except the maximum activations that are selected
to turn off. Empirically, when max-drop is applied to every convolutional layer,
test error decreases faster in the early stage of training than the case when
dropout is applied. Moreover, with the same learning rate, the network with
max-drop can be trained when high poff (larger than 0.5) is used while the
network with dropout usually failed to be trained when the drop probability
exceeds 0.2.

5 Stochastic Dropout

If we interpret the effect of dropout as gaining robustness by putting in noisy
inputs, giving different degrees of noise might be helpful. Also, it is hard to
determine an appropriate drop rate for the convolutional layers in most cases.
If dropout ratio is determined differently for every iteration, we believe that
CNN can be learned to handle different amount of information. Based on this
idea, we propose a stochastic dropout in which dropout ratio is determined from
probability distribution. In stochastic dropout, probability of dropping neurons
is drawn from the uniform distribution or normal distribution, i.e.,

poff ∼ N(μ, σ) or poff ∼ U(a, b) (3)

where N(μ, σ) is the normal distribution with mean μ and standard deviation
σ, and U(a, b) is the uniform distribution whose range is [a, b]. For our imple-
mentation, if μ = 0 for normal distribution, we used the absolute value of drawn
probability as poff . When μ is non-zero, we set poff = 0 if negative number is
drawn.
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We implemented max-drop and stochastic dropout using Caffe frame-
work [20]. Like the dropout implementation, the activations scale up by inverse of
drop probability when max-drop or stochastic dropout is applied.1 Note that the
scale factor is almost 1 for max-drop since the actual drop probability is near 0.
We also found that the performance is almost the same for max-drop regardless
of scale factor multiplication. GPU implementation of max-drop showed similar
computation time for one iteration of backpropagation with dropout.

6 Experimental Results

We examined the regularization performance of various algorithms using
MNIST [21], CIFAR-10, CIFAR-100 [15], and the street view house num-
bers (SVHN) [22] dataset. Max-drop and stochastic dropout are compared to
dropout [1] and spatial dropout [2] to validate the generalization performance
of the proposed methods against the conventional algorithms. To verify the reg-
ularization effect on the recently proposed very deep neural networks, we also
conducted an experiment with ResNet [23] on CIFAR-10 dataset.

The baseline model structure of the CNN is the same as the model described
in Fig. 1(a) except the MNIST dataset in Sect. 6.1 and ResNet [23] experiment
in Sect. 6.2. For the MNIST dataset, the number of channels for the network is
reduced from 64, 128, 256, 512 to 64, 96, 128, 256. Also, pool3 layer has 3 × 3
kernels with a stride of 2, and pool4 has 3 × 3 kernels to deal with the 28 × 28
input size. For ResNet experiment, we used the same 32-layer model suggested
in [23] except that the number of feature maps in every convolutional layer is
doubled. Mean substraction is the only preprocessing for the whole experiments.

For fair comparison, we searched the best parameter (e.g. drop probability)
for each method. To ease the parameter tuning process, we applied the regular-
ization algorithms for every convolutional layer with the same parameters. For
all models in the experiments, dropout with probability of 0.5 is applied after
pool4 and before the softmax. Dropout, spatial dropout, max-drop, or stochastic
dropout is applied after every convolution layers except the last conv4 3 layer.
When batch normalization [24] is applied, dropout after pool4 is removed and
the regularization methods are applied after conv4 3. Since drop probability of
max-drop has large values, we searched the parameter for max-drop with the
interval of 0.1, ranging from 0.1 to 0.9, and we used the interval of 0.05 for
dropout and spatial dropout, ranging from 0.05 to 0.5. We reported the selected
parameter together with the regularization method.

6.1 MNIST Dataset

As a sanity check, we experimented the proposed max-drop and stochastic
dropout on the MNIST dataset. MNIST has 60,000 training images and 10,000

1 Caffe implementation of dropout scales up the activations at training time instead
of scaling down them at test time unlike the original dropout paper [1].
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test images with 28 × 28 size. We trained CNNs for 60 epochs with the initial
learning rate of 0.01 and the batch size of 128. The learning rate is decreased by
0.1 for every 20 epochs. Since MNIST classification is an easy task, and the per-
formance is highly saturated, we conducted training 5 times for each model. We
reported the average classification error for each method with the standard devi-
ation as well as the classification of the ensemble classification error by averaging
the predictions of 5 models. The results are shown in Table 1.

Table 1. Classification error on MNIST

Method Classification error (%)

Average of 5 models Ensemble of 5 models

Baseline (without dropout) 0.604 ± 0.0829 0.57

Dropout (p = 0.2) 0.430 ± 0.0212 0.38

Spatial dropout (p = 0.1) 0.504 ± 0.0493 0.42

Feature-wise max-drop (p = 0.2) 0.488 ± 0.0657 0.42

Channel-wise max-drop (p = 0.5) 0.502 ± 0.0148 0.40

Stochastic dropout (N(0.2, 0.05)) 0.410± 0.0122 0.38

Stochastic dropout (U(0.1, 0.3)) 0.448 ± 0.0363 0.42

It is shown that all regularization methods significantly improve the perfor-
mance of the baseline. Dropout has higher improvement on classification accu-
racy than max-drop. For average performance, stochastic dropout also showed
the best performance.

We also analyzed the effect of regularization methods with small amount of
training data. We randomly select 20% of the training images from the MNIST
dataset and trained with the small dataset. The performance is illustrated in
Table 2, which shows similar tendency to Table 1.

Table 2. Classification error on MNIST with 20% of training data.

Method Classification error (%)

Average of 5 models Ensemble of 5 models

Baseline 1.126 ± 0.0802 0.92

Dropout (p = 0.2) 0.808 ± 0.0740 0.76

Spatial dropout (p = 0.1) 0.872 ± 0.0335 0.78

Feature-wise max-drop (p = 0.4) 0.882 ± 0.0676 0.83

Channel-wise max-drop (p = 0.5) 0.888 ± 0.0638 0.79

Stochastic dropout (N(0.2, 0.05)) 0.810 ± 0.0534 0.80

Stochastic dropout (U(0.1, 0.3)) 0.802± 0.0444 0.75
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In general, regularization methods reduced the classification error by 20 ∼
30%. Also, standard deviation has smaller values when regularization methods
are applied, which means that regularization in convolutional layers provides sta-
ble results. Dropout shows superior performance to max-drop in MNIST dataset.
Though stochastic dropout works slightly better than dropout with fixed proba-
bility, it seems that giving different levels of noise does not take much advantage
against dropout. Spatial dropout showed inferior performance, which indicates
that independence between feature map does not play an important role in reg-
ularization of convolutional layers.

6.2 CIFAR-10 and CIFAR-100 Dataset

CIFAR-10 and CIFAR-100 datasets are image classification dataset which consist
of 10 and 100 classes respectively. Each dataset has 50,000 training images and
10,000 test images with 32 × 32 size. For the CIFAR datasets, we reported the
classification error of a single model for each method. To ensure convergence of
models, we trained CNNs for 250 epochs with the initial learning rate of 0.02
and the batch size of 128. The learning rate is decreased by 0.5 for every 25
epochs.

The classification accuracy is illustrated in Table 3. In CIFAR-10, channel-
wise max-drop showed better result than dropout. Note that despite the high
drop probability, the actual drop probability of channel-wise max-drop is very
small, about 0.01 for the first convolutional layer and about 0.001 for the last
convolutional layer. The result verifies that dropping only high activations results
in similar regularization effect to random drop. Also, unlike MNIST experiment,
stochastic dropout of normal distribution with zero mean showed best perfor-
mance. One possible interpretation is that giving different levels of noise to the
input of the convolutional layers makes the layers robust to intra-class variations,
thus obtaining enhanced generalization power.

Table 3. Classification error on CIFAR-10 dataset.

Method Classification error (%)

Baseline 16.84%

Dropout (p = 0.1) 12.22%

Spatial dropout (p = 0.05) 13.78%

Feature-wise max-drop (p = 0.2) 12.55%

Channel-wise max-drop (p = 0.7) 12.00%

Stochastic dropout (N(0.0, 0.2)) 11.79%

Stochastic dropout (U(0.0, 0.4)) 12.86%

Next, we compared the progress of training for baseline, dropout, and
channel-wise max-drop models. The losses on the training set and the test set,
and the accuracies on the test set is illustrated in Fig. 4. The training losses are
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plotted in log-scale (Fig. 4(a)). It is shown that the training loss of dropout and
max-drop fluctuates heavily compared to the baseline model since each layer in
those models takes noisy inputs. Dropout has larger variations than max-drop
since the number of dropped activations is larger. These fluctuations does not
affect the test loss or accuracy, as shown in Fig. 4(b). It is interesting that the
test loss of max-drop is even higher than the baseline model while maintain-
ing similar accuracy with dropout. Since max-drop drops the highest activation
which contains important information, the model is learned to classify an image
with less informative feature. This will increase the uncertainty of the prediction,
which leads to high softmax loss values.
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Fig. 4. (a) Training error of baseline, dropout (p = 0.1), and channel-wise max-drop
(p = 0.7). (b) Test error and test set accuracy of the models.

We also analyzed the activation behavior of max-drop following the analysis
of dropout in Sect. 3. The number of neurons that are never activated at the test
time are counted for each regularization method and reported in Fig. 5. Similar
to dropout, all regularization methods have little number of never activated
neurons for all layers. Thus, it is verified that max-drop helps neurons to learn
discriminative features as in the case of dropout.

The histogram of mean activation in the lower and higher convolutional layers
for max-drop models are shown in Fig. 6. As observed in Fig. 6(a) and (b), the
histogram is bell-shaped in the lower convolutional layer like dropout, which
indicates that max-drop also make neurons evenly activated. Meanwhile, for the
higher convolutional layer, number of neurons that has mean activation near zero
is small unlike either dropout or no regularization case. Max-drop pushes neurons
to have similar mean activations, but it does not prefer sparse activations.

To investigate the usefulness of the regularization methods in the specific
layers, we trained the model by applying dropout and max-drop only to the
lower layers (conv1 1 and conv1 2) and only to the higher layers (conv4 1 and
conv4 2). The classification errors for both cases are shown in Table 4. Regular-
ization methods improves the network in both lower and higher layers, but the
regularization effect is more powerful in the higher layers. We found that high



200 S. Park and N. Kwak

conv1_1 conv4_3

Number
of never
activated
nuerons

0

5

10

15

20
Dropout
Spatial dropout
Feature-wise max-drop
Channel-wise max-drop

Fig. 5. Number of never activated neurons in the models with dropout, max-drop, and
spatial dropout.
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Fig. 6. Histogram of mean activation of (a) conv1 1 layer with feature-wise max-drop.
(b) conv1 1 layer with channel-wise max-drop. (c) conv4 2 layer with feature-wise max-
drop. (d) conv4 2 layer with channel-wise max-drop.

drop ratio is preferable for higher layers, while low drop ratio showed better per-
formance in lower layers. Feature-wise max-drop in higher layers and channel-
wise max-drop in lower layers showed better regularization performance. Spatial
dropout also proved its effectiveness in higher layers.

Table 4. Effect of regularization in lower and higher convolutional layers.

Method conv1 regularization conv4 regularization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Dropout p = 0.05 15.69 p = 0.3 15.14

Spatial dropout p = 0.05 16.16 p = 0.25 14.48

Feature-wise max-drop p = 0.1 15.93 p = 0.7 15.06

Channel-wise max-drop p = 0.1 15.02 p = 0.4 15.47

Next, we combined the regularization methods with other methods that
improves generalization performance. Batch normalization [24] improves train-
ing speed and the performance of network by normalizing the activations of each
layer in neural networks. We applied the regularization methods after batch nor-
malization is performed. Data augmentation is also a simple way to grant gen-
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eralization power to neural networks. Following the previous works [4,8,25], we
applied data augmentation to training data by padding 4 pixels on all sides of
images and by flipping images horizontally. The classification errors are shown in
Table 5. With batch normalization, dropout showed the best performance. After
activations are normalized, it seems that the importance of maximum value is
decreased, which leads to the poor generalization performance of max-drop com-
pared to dropout or spatial dropout. With data augmentation, spatial dropout
showed the smallest error, but the improvement of all regularization methods
from the baseline is very small. The result indicates that data augmentation
imposes generalization power to the CNNs which make the regularization meth-
ods less effective.

Table 5. Effect of regularization when combined with batch normalization and data
augmentation.

Method With batch normalization With data augmentation

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 12.10 - 8.01

Dropout p = 0.1 9.85 p = 0.05 8.54

Spatial dropout p = 0.15 10.69 p = 0.05 7.17

Feature-wise max-drop p = 0.2 10.67 p = 0.2 7.73

Channel-wise max-drop p = 0.2 11.15 p = 0.4 7.49

Recently, deep residual learning [23] enabled training of very deep networks.
To investigate the regularization performance in the very deep CNNs, we trained
32-layer ResNet on CIFAR-10 dataset. We followed the training procedure and
hyper parameters selection from [23] without data augmentation. The result is
illustrated in Table 6. All of the tested methods showed superior performance
over the baseline with a margin of 2 ∼ 4% except spatial dropout. This indicates
that dropout and max-drop is still effective for regularizing very deep networks.

Table 6. Classification error on CIFAR-10 dataset using ResNet-32.

Method Classification error (%)

Baseline 12.84%

Dropout (p = 0.1) 9.14%

Spatial dropout (p = 0.1) 16.33%

Feature-wise max-drop (p = 0.2) 10.72%

Channel-wise max-drop (p = 0.1) 11.15%
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Lastly, we evaluated the regularization methods on CIFAR-100 dataset. The
dataset has much less training samples for each class than CIFAR-10. The clas-
sification errors without data augmentation are shown in Table 7. Regularization
effect is much stronger than CIFAR-10 mainly due to the small amount of train-
ing samples, which reduced the classification error up to 15%. Without batch
normalization, max-drop methods outperforms dropout. When batch normaliza-
tion is used, dropout shows more improvements.

Table 7. Classification errors on CIFAR-100 dataset.

Method W/O batch normalization W/batch normalization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 50.26 - 38.84

Dropout p = 0.3 37.23 p = 0.15 32.46

Spatial dropout p = 0.15 42.07 p = 0.1 35.28

Feature-wise max-drop p = 0.4 36.22 p = 0.2 34.27

Channel-wise max-drop p = 0.7 35.33 p = 0.3 34.71

Table 8. Classification errors on SVHN dataset.

Method W/O batch normalization W/batch normalization

Parameter Classification
err. (%)

Parameter Classification
err. (%)

Baseline - 2.46 - 2.34

Dropout p = 0.25 2.46 p = 0.1 2.02

Spatial dropout p = 0.05 2.58 p = 0.15 2.07

Feature-wise max-drop p = 0.4 2.29 p = 0.2 2.14

Channel-wise max-drop p = 0.4 2.30 p = 0.7 2.28

6.3 SVHN Dataset

SVHN dataset contains much more training samples than the previous datasets.
The dataset consists of over 600,000 training images and 26,032 test images. We
trained CNN for 15 epochs with the initial learning rate of 0.01 and the batch size
of 128 for the experiments on SVHN dataset. The learning rate is decreased by
0.1 for every 5 epochs. Data augmentation is not applied. The classification errors
are reported in Table 8. Huge number of training samples weakens the effect of
regularization. Without batch normalization, max-drop methods showed a small
improvement, while dropout and spatial dropout worsen the performance of the
network. Dropout showed the best performance when batch normalization is
applied.
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7 Conclusion

We have investigated and verified the usefulness of dropout-like methods in con-
volutional layers. Usage of dropout in convolutional layers is justified by looking
into the activation behavior of neurons. Regularization effect in the convolutional
layers is strong when training samples are small and when data augmentation
is not used. Also, newly-proposed max-drop and stochastic dropout methods
showed competitive results to the conventional dropout, which implies that these
methods can substitute dropout in convolutional layers of CNNs. Max-drop layer
can be generalized such as dropping largest k activations or suppress the activa-
tions by multiplying constant value instead of dropping them to zero. We expect
that carefully adjusted parameters may increase the performance.
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Abstract. Large neural networks trained on small datasets are increas-
ingly prone to overfitting. Traditional machine learning methods can
reduce overfitting by employing bagging or boosting to train several
diverse models. For large neural networks, however, this is prohibitively
expensive. To address this issue, we propose a method to leverage
the benefits of ensembles without explicitely training several expensive
neural network models. In contrast to Dropout, to encourage diversity
of our sub-networks, we propose to maximize diversity of individual net-
works with a loss function: DivLoss. We demonstrate the effectiveness of
DivLoss on the challenging CIFAR datasets.

1 Introduction

Ensemble methods such as bagging [1], boosting (e.g. [2]), or more specifically
Random Forests [3], have shown great success in improving generalization per-
formance of machine learning methods. They combine several diverse classifiers
to a single predictor, e.g. by averaging their responses. This reduces the general-
ization error compared to the individual classifiers, since an ensemble of diverse
classifiers reduces the variance term in the bias-variance trade-off.

Unfortunately, traditional ensembling methods such as bagging or boosting
are prohibitively expensive for neural networks. Large neural networks need sev-
eral days to train, e.g. [4,5]. Further, especially for real-world applications with
real-time requirements, evaluating an ensemble of several networks at test time
is computationally too expensive. Additionally, for systems with low memory
capacity, such as embedded systems, employing large ensembles is infeasible.

Previous work [6] proposes Dropout to randomly omit neurons of the hidden
layers to implement efficient model averaging for neural networks. This can be
interpreted as an efficient combination of an exponential number of different
neural networks. However, we found that individual sub-networks trained by
Dropout have low diversity. This is due to the fact that these sub-networks
share all their parameters with each other and only rely on random feature sub-
sampling to encourage diversity. Further, Dropout is applied on the hidden layers
of a neural network.
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In contrast to this we focus on efficient model averaging on the output layer of
a neural network. To this end, we divide the last hidden layer of a neural network
into several, possibly overlapping, groups and optimize a loss function for each
of the groups individually rather than over the full output layer. We group the
neurons during training such that the ensemble can be mapped back to a regular
neural network. By doing this no additional computational cost is incurred at
runtime. Instead of relying on sub-sampling of training samples and features,
as done by Dropout, we propose a loss function to maximize diversity of our
individual network predictors. With this loss function we can effectively balance
diversity and discriminativeness of our sub-networks and achieve competitive
accuracy to Dropout. We name our method DivLoss.

As our experiments show, sub-networks trained with DivLoss have a larger
diversity compared to sub-networks trained with Dropout. Further, we demon-
strate that our method can outperform Dropout on the CIFAR-10 and CIFAR-
100 datasets. Finally, we show that our method benefits from the decorrelation
of hidden units, similar to [7].

The remainder of this paper is structured as follows. In Sect. 2 we discuss
related work. Next, in Sect. 3 we review preliminaries on learning theory and
introduce our DivLoss. In Sect. 4 we demonstrate effectiveness of our method in
several experiments.

2 Related Work

Improving performance of neural networks for supervised learning problems has
recently received a lot of attention from the research community. There is a lot
of work which is complementary to our method.

A simple, yet effective way to improve accuracy is data augmentation, e.g. [4].
During training, before showing an input sample to the network, a transforma-
tion can be applied on the training sample, which preserves the label of the
sample. For example mirroring, crops, affine transformations and photometric
transformations can be used for image categorization.

Another way to improve neural networks are activation functions. Recently
proposed activation functions are more expressive than standard activation func-
tions such as sigmoid or tanh, or are presumably easier to optimize than standard
regularization functions, e.g. [8–12].

Since deeper networks are exponentially more expressive than shallow net-
works, and training very deep networks is challenging due to exploding and
vanishing gradients [13], there is a line of work which focuses on enabling train-
ing of deeper neural networks. These methods add residual connections or use
gating functions from lower to higher layers to enable a better gradient flow in
the network and reduce the vanishing and exploding gradient problem [14,15].

Further, some recent contributions focus on improving optimization algo-
rithms for training deep neural networks. They propose accelerated first-order
gradient methods specifically designed for neural networks, e.g. [16–19]. These
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methods focus on reducing the training time (i.e. fewer iterations), and presum-
ably let the network converge to a better local minimum. Additionally, Ioffe
et al. [20] leverage batch statistics to normalize inputs to activation functions.
This reduces the internal covariate shift and significantly accelerates training.

Further, there are methods which aim to improve the weight initialization of
neural networks. This is especially useful for training very large neural networks,
as these models do not converge if the weight initialization is not carefully tuned,
e.g. [9,21–23].

Since networks presumably perform better if their hidden features are dis-
criminative, several methods propose auxiliary loss layers on top of hidden layers
to regularize neural networks [24,25]. Further, Cogswell et al. [7] use auxiliary
functions to decorrelate hidden neurons. This enables the network to learn more
diverse features and reduces redundancy in the representation of deep networks.

Some methods change the structure of the networks, e.g. by adding additional
1 × 1 convolutions on top of convolutional layers [26], using layers of multiple
scales [27], adding an “Inception” layer, consisting of convolutions of different
sizes combined with max-pooling [24] or replacing 5 × 5 convolutions with 3 × 3
convolutions [5].

Closely related to our method are contributions which leverage the benefits of
ensembles to improve generalization performance of neural networks. Recently,
Hinton et al. [28] propose to leverage the “dark knowledge” of neural networks
to train a network on the predictions of an ensemble to improve accuracy of
the new model. The ensemble predictions are used as soft-labels in combination
with the original labels to train a new network achieving better accuracy com-
pared to individual networks of the ensemble. This idea is extended by Romero
et al. [29] to train a wide teacher network and a smaller network, which mim-
ics the predictions of the teacher network on the output and hidden layers.
In contrast to this kind of work, we leverage the benefits of ensembles without
explicitly training several full networks to improve performance of a single neural
network. We argue that our method is complementary to these approaches, as
better individual predictors result in better ensemble performance. This results
in more accurate soft-labels which are useful for these methods.

Another promising line of research focuses on improving accuracy by efficient
model averaging. The most prominent work is Dropout [6], which randomly
omits hidden units from the network during training. Wan et al. [30] generalize
this idea to randomly omit weights of the network during training. Stochastic
Pooling [31] introduces a pooling method which samples the activations of the
receptive fields, rather than just taking the max or the mean. These methods
rely on random noise to increase diversity of neural networks. In contrast to
these methods we propose a loss function to increase diversity.

Most closely related to our work is the pioneering work of negative cor-
relation learning [32], which also uses a loss function to reduce correlation of
different networks in an ensemble. However, networks trained with negative cor-
relation learning do not share parameters, which is prohibitively expensive for
training large neural networks. Further, negative correlation learning focuses on
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non-computer vision related regression problems and penalizes the correlation of
predictions. We show that optimizing cross entropy can achieve better accuracy
compared to negative correlation learning for computer vision related classifi-
cation tasks. Further, we compare this method in a more modern setting, with
larger networks, larger datasets and recent contributions such as ReLU activa-
tions or Dropout.

3 Towards Efficient Neural Network Ensembles

Given a fully annotated dataset, we want to efficiently train a neural network
ensemble to obtain a single highly accurate neural network model. However,
training and evaluating several independent neural networks on a dataset is
computationally expensive, especially for very large networks. Hence, we pro-
pose to share most parameters between the individual models, as illustrated in
Fig. 1. We divide the last hidden layer into several groups, which is indicated
by the respective color. Groups might overlap and share parameters with each
other. Further, in contrast to standard ensembles, we train our network ensem-
ble jointly and not sequentially. With this strategy expensive computations for
shared parameters can be re-used among different neural network models. Addi-
tionally, due to parameter sharing, we can map our networks back to a regular
neural network at test time. Hence, DivLoss does not impose any additional
computational cost at test time.

As we will discuss in Sect. 3.1, one key-requirement for ensembles is to reduce
correlation among individual models and make them diverse. However, by shar-
ing the feature representation as well as the training set, the individual classifiers

Fig. 1. We divide the last hidden layer into several possibly overlapping groups. Neu-
rons of each group are combined into a classifier. For each of these classifiers we sep-
arately optimize a loss which minimizes the training error (e.g. cross-entropy). To
increase diversity of the classifiers we add a separate loss between classifiers. (Color
figure online)
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will make highly correlated decisions. To address this issue, we propose to max-
imize the pairwise cross entropy between different classifiers of the ensemble. As
we will see, this increases the diversity of classifiers and improves generalization
performance.

3.1 Learning Theory

One well-known theoretical result in machine learning is the bias-variance trade-
off, e.g. [33]. It states that the generalization error can be decomposed into a bias
and variance term. Here, we briefly review the main results of Ueda et al. [34],
which analyze the bias-variance trade-off in context of neural network ensembles.
For the sake of clarity, we stick to the notation introduced by Ueda et al.

The purpose of learning methods is to construct a model f(x; θ) that approx-
imates an unknown target function g(x). θ is a parameter vector which is
estimated by leveraging a set of i.i.d. samples zN = {z1, z2, . . . , zN}, where
zi = (xi, yi), xi ∈ R

d, yi ∈ R and N is the total number of training samples. zN

is the realization of a random sequence ZN = {Z1, . . . , ZN}, whose ith compo-
nent consists of a random vector Zi = (Xi, Yi). Hence, each zi is generated from
an unknown joint probability function p(x, y). The parameters θ of the neural
network are estimated by an optimization algorithm given the dataset zN :

θ̂(zN ) = arg min
θ

N∑

i=1

(yi − f(xi; θ))2/N. (1)

Note that since θ̂ depends on a zN , the estimated predictor f(x; θ̂(zN )) is also
a realization of a random variable f(x;ZN ). Further, Ueda et al. [34] introduces
a new random variable Z0 = (X0, Y0) ∈ R

d+1, which has a distribution identical
to that of Zi, but is independent of Zi for all i. The generalization error of the
estimator can then be defined as

GErr(f) = EZN

{
EZ0

{[
Y0 − f(X0;ZN )

]2}}
, (2)

where EZ0{·} and EZN {·} denotes expectation with respect to the distribution
Z0 and ZN , respectively. This generalization error decomposes into the well-
known bias and variance terms

GErr(f) = EX0

{
V ar{f |X0} + Bias{f |X0}2

}
+ σ2, (3)

where σ2 denotes the irreducible noise, V ar{f |X0 = x0} and Bias{f |X0 = x0}
are conditional variance and bias given X0 = x0

V ar{f |X0} = EZN

{(
f(X0;ZN ) − EZN {f(X0;ZN )})2}

, (4)

Bias{f |X0} = EZN

{
f(X0;ZN )

} − g(X0). (5)
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For an ensemble, let f1, f2, . . . , fM denote M estimators, where the mth
estimator is separately trained on zN

(m), i.e. the training set for the mth estimator,
m = 1, . . . ,M . The output of the ensemble is the average of the estimators:

f (M)
ens (x) =

1
M

M∑

m=1

fm(x; zN
(m)) (6)

Ueda et al. [34] derive the following generalization error of the ensemble
estimator

GErr(f (M)
ens ) = EX0

{
1
M

V ar(X0) +
(

1 − 1
M

)
Cov(X0) + Bias(X0)2

}
+ σ2,

(7)

where V ar(·), Bias(·) and Cov(·) are variance, bias and covariance of the M
estimators, defined as follows

V ar(X0) =
1
M

M∑

m=1

V ar{fm|X0},

Cov(X0) =
1

M(M − 1)

∑

m

∑

m′ �=m

Cov{fm, fm′ |X0},

Bias(X0) =
1
M

M∑

m=1

Bias{fm|X0}. (8)

Interestingly, the correlation between individual estimators Cov(X0) is part
of this generalization bound. Hence, low correlated and diverse classifiers are
desirable to achieve good ensemble performance. Similar results were observed
for other popular ensemble methods, such as Random Forests. For this specific
learning method Breiman et al. [3] show an upper bound on the error which
depends on the strength (i.e. inverse proportional to the bias) and correlation
between individual models.

Motivated by these results, in addition to reducing the variance term, we aim
to reduce Cov(X0) of our ensemble. Unfortunately, directly minimizing Cov(X0)
is impossible, since the distribution of p(x, y) is unknown so we cannot compute
expectations over it. Ensemble methods typically subsample the training set or
features to reduce correlation among estimators [3]. In the context of neural
networks these ideas have been leveraged by Dropout [6], which subsamples
different hidden features for each network for each training sample. In contrast
to this work, we propose using a loss function to increase the diversity among
several networks in the following section.

3.2 Efficient Model Averaging for Deep Neural Networks

To create our individual predictors we divide the last hidden layers into several,
possibly overlapping, groups and optimize a loss function for each of these groups



Efficient Model Averaging for Deep Neural Networks 211

separately (recall Fig. 1). The architecture of our ensemble method allows map-
ping it back to a regular neural network at test time. Hence, by our ensemble
method, no additional computational cost is incurred at runtime and negligi-
ble additional cost is incurred at training time. Training time is dominated by
computing the forward and backward passes of the convolution layers.

For the sake of clarity, to avoid cluttering the notation, we here consider only
non-overlapping groups of hidden units. To implement overlapping groups we
simply share a subset of weights between classifiers. Let xi denote the activations
of the last hidden layer (i ∈ {1 . . .H}) and W the output weight matrix W ∈
R

H×D with entries wij , where H is the number of hidden neurons and D the
number of outputs units of the neural network. We group C non-overlapping
neurons in the hidden layer to classifiers. For classifiers with softmax activation,
we define the logit (i.e. the inputs to the last softmax nonlinearity) cbj of such
a classifier as

cbj =
b·C∑

i=(b−1)·C
xi · wij + bbj , (9)

where bbj denotes the bias term, b is the block index and j ∈ {1, . . . , C} indicates
the output class.

We define the ensemble logit as average of the B = H/C individual classifiers

oj =
1
B

B∑

b=1

cbj . (10)

The final classifier output is defined as softmax function over oj . By setting
our method up this way, we can map it back to a regular neural network at
test time, hence, imposing no additional runtime overhead. For non-overlapping
groups we can push the scaling factor 1

B back into the last weight matrix W .
For overlapping groups we have to scale weights which are used by multiple
classifiers by an appropriate scaling factor. The ensemble prediction can then
be computed by a simple forward pass. Note that by setting our network up
this way, it corresponds to taking the geometric mean of the individual classifier
softmax outputs and re-normalizing them to a probability distribution:

σ(oj) =
e

1
B ·∑B

b=1 cbj

Z
=

(∏B
b=1 ecbj

) 1
B

Z
(11)

=

(∏B
b=1 σ(cbj) · Zb

) 1
B

Z
=

(∏B
b=1 σ(cbj)

) 1
B

Ẑ
,

where Zb denotes the normalization for the softmax activation of the bth clas-
sifier, Z denotes the normalization for the softmax of the classifier ensemble
and
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Ẑ =
Z

(∏B
b=1 Zb

) 1
B

=

∑D
j=1

[(∏B
b=1 Zb

) 1
B

(∏B
b=1 σ(cbj)

) 1
B

]

(∏B
b=1 Zb

) 1
B

(12)

=
D∑

j=1

(
B∏

b=1

σ(cbj)

) 1
B

.

We see that the geometric mean of the normalizations of the individual clas-

sifier, i.e.
(∏B

b=1 Zb

) 1
B

, is independent of j, can be pulled out of the sum and
cancels with the denominator. Hence, the ensemble output is proportional to the
geometric mean of the responses of the individual classifiers.

We want both, our final ensemble and our individual classifiers to be dis-
criminative on our training set. To this end, we minimize the cross entropy on
both, the ensemble predictions and the predictions of the individual classifiers
by introducing the loss

Ldiscr =
N∑

i=1

(
H(y(i), σ(o(i))) + λparts ·

(
1
B

B∑

b=1

H(y(i), σ(c(i)b ))

))
, (13)

where N is the total number of training samples and y(i) is the label of the
ith training sample. With a slight abuse of notation σ(o(i)) denotes the softmax
activations of the full ensemble for the ith sample, σ(c(i)b ) denotes the softmax
activation for the ith sample of the bth classifier. The parameter λparts is a
hyperparameter which balances the influence of the individual classifiers and
the ensemble and is set by (cross-)validation. We typically sweep it out on a log
scale, i.e. 2{0,1,2,3}. Finally, H(p, q) denotes the cross entropy between probability
distributions p and q.

3.3 Enforcing Diversity

Naively applying Eq. (13) to a learning problem will result in several individual
classifiers, which all have highly correlated predictions. Hence, according to the
bias-variance-correlation trade-off there is no benefit in such a setup. To address
this problem, we propose to maximize the cross entropy between all classifier
pairs. Cross entropy is employed in logistic regression and in most neural net-
works for classification as loss function. It measures the dissimilarity between two
probability distributions and is typically used to minimize dissimilarity between
ground-truth label and predicted label in supervised learning problems.

In contrast to that, to encourage diversity for different classifiers, we propose
to maximize the cross entropy (i.e. maximize dissimilarity or minimize similar-
ity) between all pairs of classifiers. More formally, we define the following loss
function:
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Ldiversity =
1

B · (B − 1)

N∑

i=1

B∑

b=1

∑

b′ �=b

−H(σ(c(i)b ), σ(c(i)b′ )), (14)

where N is the number of samples, B the number of classifiers, σ(c(i)b ) denotes
the output for the ith sample from the bth classifier and H is the cross entropy
between the two classifiers.

Our final loss function L is a combination of Ldiscr and Ldiversity:

L = Ldiscr + λdiversity · Ldiversity (15)

where λdiversity is a hyperparameter, balancing the influence of the diversity loss
and the discriminative loss. The parameter is set by (cross-)validation on a log
scale, i.e. 10{2,3,4}. We call this loss function DivLoss, as it encourages diversity
between individual predictors of an ensemble.

3.4 Loss Function on Hidden Layers

Compared to Dropout, our method is applied only on the output layer of a
neural network, and not on an arbitrary hidden layer. For very large networks,
however, it might be beneficial to apply regularization already on top of hidden
layers. To address this issue, inspired by deeply supervised networks [24,25], we
propose to apply our ensemble layer on top of intermediate hidden layers as
auxiliary layer (see Fig. 2). During training time, we can divide any hidden layer
of a network into possibly overlapping groups, as indicated by the corresponding
color, and optimize our loss on them. The next layer in the regular feed forward
pass receives all neurons from this hidden layer as input (i.e. it does not operate
on individual groups).

Fig. 2. We can apply our method on top of any hidden layer in a neural network.
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Note that this setup does not introduce any additional computational cost
during test time, since these auxiliary layers are just used during training time,
and not during test time. In Sect. 4.3 we show that this setup can indeed improve
accuracy.

4 Evaluation

In this section we provide a detailed evaluation of our method on CIFAR-10 and
CIFAR-100 [35]. These datasets each consist of 50,000 training images and 10,000
test images of size 32 × 32. CIFAR-10 has 10 object classes, wheras CIFAR-100
has 100 object classes. Both datasets have a uniform class distribution, i.e. there
are 6,000 images per class in CIFAR-10, from which 1,000 are in the test set,
and 600 images per class in CIFAR-100, from which 100 are in the test set. For
pre-processing, following [7], we subtract the mean of the training set from the
images.

We run our experiments on a regular desktop machine with a NVIDIA GTX
770 GPU and a Core i5-4570 CPU with 3.20 GHz and implement our method in
Theano [36]. For training parameters (learning rate, momentum, weight decay)
we use the standard Caffe learning parameters for the CIFAR-10 Quick archi-
tecture. As network architecture we use a larger version of the CIFAR-10 Quick
architecture, which is proposed by Cogswell et al. [7]. The architecture is C-
64 × 5 × 5, MP-3 × 3(2 × 2), C-64 × 5 × 5, AP-3 × 3(2 × 2), C-128 × 5 × 5,
AP-3× 3(2× 2), FC-128, FC-128, FC-D, where C-F ×S ×S, denotes a convolu-
tion layer with F filters of size S ×S, MP-N ×N(S ×S) denotes a max pooling
layer of size N×N with stride S×S, AP-N×N(S×S) denotes an average pooling
layer of size N ×N with stride S ×S, and FC-N denotes a fully connected layer
of size N . Each layer except the last two fully connected layers are followed by
a ReLU nonlinearity. The last fully connected layer is our output layer, which
has an output dimensionality of D = 10 in our CIFAR-10 experiments and a
dimensionality of D = 100 in our CIFAR-100 experiments and uses a softmax
nonlinearity. The last hidden layer uses no nonlinearity (i.e. is a linear layer).

4.1 Comparison with Negative Correlation Learning

In this section we compare maximizing cross-entropy loss between classifiers to
minimizing the correlation, as proposed by negative correlation learning [32].
Hence, we directly penalize the correlation of the ensemble for a training sample
with the following function:

1
D

D∑

j=1

B∑

b=1

∑

b′ �=b

(σ(cbj) − σ(oj)) · (σ(cb′j) − σ(oj)), (16)

where D is the number of classes, cbj are logits of the bth classifier for the jth
class and oj is the logit of the ensemble output. We also experimented by directly
penalizing the logits as opposed to their softmax activations, but achieved best
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results with the above formulation. We compare negative correlation learning to
the cross entropy loss and the absolute correlation, i.e.:

1
D

D∑

j=1

B∑

b=1

∑

b′ �=b

|(σ(cbj) − σ(oj)) · (σ(cb′j) − σ(oj))| . (17)

We run the experiments on CIFAR-10 and summarize the results in Table 1.
We observe more accurate results for maximizing cross-entropy than for mini-
mizing correlation. We hypothesize that this is because cross-entropy is a more
natural fit to measure diversity for classifiers which output a probability distri-
bution compared to correlation. Further, penalizing the absolute value of the
correlation works better for classification problems, since it encourages classifers
to be weakly correlated, as opposed to negatively correlated.

Table 1. Comparison to negative correlation learning on CIFAR-10.

Method Test acc.

Cross entropy 82.3

Absolute correlation 81.28

Negative correlation 80.9

Baseline 80.86

4.2 Diversity

In this section we analyze the effect on the diversity of our ensemble and compare
it to a network trained with Dropout. To measure diversity, we count the number
of disagreements of all classifier pairs.

0.5
B · (B − 1)

B∑

b=1

∑

b′ �=b

1
N

N∑

i=1

fb(xi) �= fb′(xi), (18)

where B is the number of classifiers and fb(xi) is the bth classifier output for the
ith sample (i.e. the label prediction). The higher this number, the more diverse
the classifier outputs are.

Since Dropout is an approximate average of an exponential number of neural
networks, we sub-sample 16 sub-networks and analyze their correlation on the
validation set. We execute this experiment 10 times and compare this to a net-
work trained with our method consisting of 16 sub-networks on CIFAR-10. We
report the diversity of individual sub-networks, the average accuracy of these 16
individual sub-networks and the accuracy of the full ensemble in Table 2. Since
for the Dropout experiments, we sub-sample 16 sub-networks and repeat the
experiment 10 times, we report mean and standard deviation of the diversity
and the average accuracy of the individual sub-networks.
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Interestingly, in Table 2 we see that our method trains sub-networks which
are more diverse on the validation set compared to Dropout. Further, individual
sub-networks are less accurate compared to Dropout, but complement each other
better, since we tie them together with a global loss.

Table 2. Diversity of a network trained with Dropout and our method on CIFAR-10.

Method Diversity Avg. sub-network acc. Ensemble acc.

Dropout 0.071 ± 0.0025 0.799 ± 0.00073 81.07

Ours 0.240 0.744 82.3

4.3 CIFAR-10

In this section, we evaluate our method on the CIFAR-10 dataset. To make a fair
comparison, we use the same architecture as proposed in [7], i.e. we double the
number of hidden units and convolution filters of the Caffe 10 Quick architecture
and add an additional fully connected layer to our network. This architecture will
be denoted “Baseline”. We split the training set into 10,000 validation images
and 40, 000 training images to determine hyperparameters (i.e. our weighting
parameter, dropout rates, DeCov [7] hyperparameters). Our method benefits
from a large number of non-overlapping groups, as diversity can be easier maxi-
mized if no parameters are shared among groups. To enable a fair comparison to
existing work, we fix the hidden layer size to 128. We divide the last hidden layer
into non-overlapping groups with 8 hidden units, as sub-networks with a smaller
number of hidden units fail in our experiments to learn anything meaningful.
As in [7] our network takes 32 × 32 patches as input and we do not apply any
kind of data augmentation. We shuffle the training dataset after each epoch and
employ early stopping.

We apply our ensembling method on top of the output layer of the neural net-
work and report our results in Table 3. We see that our method can significantly
outperform Dropout [6] and achieves similar results to DeCov [7]. Additionally,
our method can benefit from DeCov as well as Dropout. We hypothesize that
DeCov helps a neural network to develop more decorrelated features, which help
building more diverse classifiers. With Dropout the generalization performance
of individual networks of our ensemble increases, hence the performance of the
full ensemble improves. For a fair comparison, we also apply re-shuffling and
early stopping to DeCov [7], which improves the overall accuracy by 0.38.

To show that our method works on auxiliary layers, we additionally apply our
loss on the first fully connected layer. We observe a notable increase in accuracy
from 82.3 to 83.44 for our method.

4.4 CIFAR-100

We re-use the same network architecture for the CIFAR-100 experiment. Since
the number of hidden units (128) is quite small compared to the number of
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Table 3. CIFAR-10 classification accuracy.

Method Test acc.

DeCov [7] 81.68

DeCov + re-shuffling and early stopping 82.06

Baseline 80.86

Dropout 81.07

DivLoss 82.3

DivLoss + Dropout 82.52

DivLoss + Decov 82.95

classes, we perform weight sharing for our classifiers. We fix the number of hid-
den units of a single classifier to 64 and randomly group hidden units to a
classifier. We use 16 classifiers in our experiments. Further, we split the dataset
into 10, 000 validation images and 40, 000 training images and determine our
hyperparameters (i.e. the weighting parameter, dropout rates, DeCov hyperpa-
rameter) on the validation set.

Our results are summarized in Table 4. All 3 regularization methods
(DivLoss, Dropout, DeCov) achieve similar results on CIFAR-100 and can sig-
nificantly improve over a baseline method which just uses weight decay as regu-
larization. Further, we observe that we can combine DivLoss with Dropout and
DeCov, to increase accuracy.

Table 4. CIFAR-100 classification accuracy.

Method Test acc.

DeCov [7] 45.10

DeCov + re-shuffling and early stopping 49.61

Baseline 47.38

Dropout 49.44

DivLoss 49.42

DivLoss + Dropout 49.9

DivLoss + DeCov 50.08

When we additionally apply our loss function as auxiliary layer on the first
fully connected layer, we observe an increase in accuracy from 49.42 to 50.32.

5 Conclusion

We proposed an ensemble method which improves the generalization perfor-
mance of neural networks by efficient model averaging. Motivated by learning
theory, we propose to optimize a loss function to increase the diversity of the
individual classifiers of the ensemble. Our method can be trained end-to-end
with stochastic gradient descent and momentum. Further, we showed that our
method outperforms or achieves competitive performance compared to Dropout
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and DeCov on the challenging CIFAR datasets. Since we setup our method so
that it can be mapped back to a regular neural network, no additional runtime
cost is incurred at test time. At training time we impose negligible additional
runtime cost for computing the responses and the loss for our sub-networks. This
overhead is, however, negligible, since most of the time during training is spent
computing forward and backward passes of convolution layers.

Our experiments show that our method benefits especially from very wide
networks where the number of hidden units is large compared to the number of
classes. In such networks diversity of sub-networks can be better maximized as
they have less shared parameters.

Compared to Dropout, which is an approximate ensemble of exponentially
many classifiers sharing the same parameters, our method relies on a smaller
number of classifiers. To enforce diversity, Dropout relies on randomly omitting
neurons from the hidden layers. In contrast to that, our method employs a loss
function to encourage diversity of individual classifiers. Due to backpropagation,
the diversity also affects the hidden layers (i.e. the feature representation) of the
network and, similar to Dropout, encourages a diverse feature representation.

Future work will analyze larger sub-networks consisting of several layers with
separate (non-shared) weights.
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Abstract. We propose a new CNN-CRF end-to-end learning frame-
work, which is based on joint stochastic optimization with respect to
both Convolutional Neural Network (CNN) and Conditional Random
Field (CRF) parameters. While stochastic gradient descent is a stan-
dard technique for CNN training, it was not used for joint models so far.
We show that our learning method is (i) general, i.e. it applies to arbi-
trary CNN and CRF architectures and potential functions; (ii) scalable,
i.e. it has a low memory footprint and straightforwardly parallelizes on
GPUs; (iii) easy in implementation. Additionally, the unified CNN-CRF
optimization approach simplifies a potential hardware implementation.
We empirically evaluate our method on the task of semantic labeling
of body parts in depth images and show that it compares favorably to
competing techniques.

1 Introduction

Deep learning have tremendous success since a few years in many areas of com-
putational science. In computer vision, Convolutional Neural Networks (CNNs)
are successfully used in a wide range of applications – from low-level vision, like
segmentation and optical flow, to high-level vision, like scene understanding and
semantic segmentation. For instance in the VOC2012 object segmentation chal-
lenge1 the use of CNNs has pushed the quality score by around 28% (from around
50% to currently around 78% [1]). The main contribution of CNNs is their abil-
ity to adaptively fine-tune millions of features to achieve best performance for
the task at hand. However, CNNs have also their shortcomings. One limitation
is that often a large corpus of labeled training images is necessary. Secondly, it is
difficult to incorporate prior knowledge into the CNN architecture. In contrast,
graphical models like Conditional Random Fields (CRFs) [2] overcome these two
limitations. CRFs have been used to model geometric properties, such as object
shape, spatial relationship between objects, global properties like object con-
nectivity, and many others. Furthermore, CRFs designed based on e.g. physical
properties are able to achieve good results even with few training images. For

1 http://host.robots.ox.ac.uk:8080/leaderboard.

c© Springer International Publishing AG 2017
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these reasons, a recent trend has been to explore the combination of these two
modeling paradigms by using a CRF, whose factors are dependent on a CNN. By
doing so, CRFs are able to use the incredible power of CNNs, to fine-tune model
features. On the other hand, CNNs can more easily capture global properties
such as object shape and contextual information. The study of this fruitful com-
bination (sometimes called “deep structured models” [3]) is the main focus of our
work. We propose a generic joint learning framework for the combined CNN-CRF
models, based on a sampling technique and a stochastic gradient optimization.

Related Work. The idea of making CRF models more powerful by allowing
factors to depend on many parameters has been explored extensively over the
last decade. One example is the Decision Tree Field approach [4] where factors
are dependent on Decision Trees. In this work, we are interested in making the
factors dependent on CNNs. Note that one advantage of CNNs over Decision
Trees is that CNNs learn the appropriate features for the task at hand, while
Decision Trees, as many other classifiers, only combine and select from a pool of
simple features, see e.g. [5,6] for a discussion on the relationship between CNNs
and Decision Trees. We now describe the most relevant works that combine
CNNs and CRFs in the context of semantic segmentation, as one of the largest
application areas of this type of models. The framework we propose in this
work is also evaluated in a similar scenario, although its theoretical basis is
application-independent.

Since CNNs have been used for semantic segmentation, this field has made
a big leap forward, see e.g. [7,8]. Recently, the advantages of additionally inte-
grating a CRF model have given a further boost in performance, as demon-
strated by many works. To the extent that the work [1] is currently leading the
VOC2012 object segmentation challenge, as discussed below. In [9] a fully con-
nected Gaussian CRF model [10] was used, where the respective unaries were
supplied by a CNN. The CRF inference was done with a Mean Field approxima-
tion. This separate training procedure was recently improved in [11] with an end-
to-end learning algorithm. To achieve this, they represent the Mean Field itera-
tions as a Recurrent Neural Network. The same idea was published in [12]. In [10],
the Mean Field iterations were made efficient by using a so-called permutohedral
lattice approximation [13] for Gaussian filters. However, this approach allows for
a special class of pairwise potentials only. Besides the approaches [11] and [12],
there are many other works that consider the idea of backpropagation with a
so-called unrolled CRF-inference scheme, such as [14–20]. These inference steps
mostly correspond to message passing operations of e.g. Mean Field updates or
Belief Propagation. However the number of inference iterations in such learning
schemes remains their critical parameter: too few iterations lead to a quality
deterioration, whereas more iterations slow down the whole learning procedure.

Likelihood maximization is NP-hard for CRFs, which implies that it is also
NP-hard for joint CNN-CRF models. To avoid this problem, piece-wise learn-
ing [21] was used in [1]. Instead of likelihood maximization a surrogate loss is
considered which can be minimized efficiently. However, there are no guarantees
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that minimization of the surrogate loss will lead to maximization of the true
likelihood. On the positive side, the method shows good practical results and
leads the VOC2012 object segmentation competition at the moment.

Another likelihood approximation, which is based on fractional entropy and a
message passing based inference, was proposed in [3]. However, there is no clear
evidence that the fractional entropy always leads to tight likelihood approxima-
tions. Another point relates to the memory footprint of the method. To avoid the
time consuming, full inference, authors of [3] interleave gradient steps w.r.t. the
CNN parameters and minimization over the dual variables of the LP-relaxation
of the CRF. This allows to solve the issue with a small number of inference
iterations comparing to the unrolled inference schemes. However, it requires to
store current values of the dual variables for each element of a training set. The
number of the dual variables is proportional to the number of labels in the used
CRF as well as to the number of its pairwise factors. Therefore, the size of such
a storage can significantly exceed the size required for the training set itself. We
will discuss this point in more details in Sect. 4.

Contribution. Inspired by the contrastive divergence approach [22], we pro-
pose a generic joint maximum likelihood learning framework for the combined
CNN-CRF models. In this context, “generic” means that (i) factors in our CRF
are of a non-parametric form, in contrast to e.g. [11], where Gaussian pairwise
potentials are considered; and (b) we maximize the likelihood itself instead of its
approximations. Our framework is based on a sampling technique and stochastic
gradient updates w.r.t. both CNN and CRF parameters. To avoid the time con-
suming, full inference we interleave sampling-based inference steps with CNN
parameters updates. In terms of the memory overhead, our method stores only
a single (current) labeling for each element of the training set during learning.
This requires less memory than the training set itself. Our method is efficient,
scalable and highly parallelizable with a low memory footprint, which makes it
an ideal candidate for a GPU-based implementation.

We show the efficiency of our approach on the task of semantic labeling of
body parts in depth images.

2 Preliminaries

Conditional Random Fields. Let y = (y1, . . . , yN ) be a random state vector,
where each coordinate is a random variable yi that takes its values from a finite
set Yi = {1, . . . , |Yi|}. Therefore y ∈ Y :=

∏N
i=1 Yi, where

∏
stands for a

Cartesian product. Let x be an observation vector, taking its values in some set
X . The energy function E : Y ×X ×R

m → R assigns a score E(y ,x ,θ) to a pair
(y ,x ) of a state and an observation vector and is parametrized by a parameter
vector θ ∈ R

m. An exponential posterior distribution related to the energy E
reads

p(y |x ,θ) =
1

Z(x ,θ)
exp(−E(y ,x ,θ)). (1)
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Here Z(x ,θ) is a partition function, defined as

Z(x ,θ) =
∑

y∈Y
exp(−E(y ,x ,θ)). (2)

Let I = 1, ..., N be a set of variable indexes and 2I denote its powerset. Let
also YA stand for the set

∏
i∈A Yi for any A ⊆ I. In CRFs, the energy function

E can be represented as a sum of its components depending on the subsets of
variables yf ∈ Yf , f ⊂ I:

E(y ,x ,θ) =
∑

f∈F⊂2I

ψf (yf ,x ,θ). (3)

The functions ψf : Yf ×X ×R
m → R are usually called potentials. For example,

in [9,11] only CRFs with unary and pairwise potentials are considered, i.e. |f | ≤ 2
for any f ∈ F .

In what follows, we will assume that each ψf is potentially a non-linear
function of θ and x . It can be defined by e.g. a CNN with the input x and
weights θ.

Inference is a process of estimating the state vector y for an observation x .
There are several inference criteria, see e.g. [23]. In this work we will stick to the
so called maximum posterior marginals, or shortly max-marginal inference

y∗
i = arg max

yi∈Yi

p(yi|x ,θ) := arg max
yi∈Yi

∑

(y′∈Y : y′
i=yi)

p(y′|x ,θ) for all i. (4)

Though maximization in (4) can be done directly due to the typically small
size of the sets Yi, computing the marginals p(yi|x ,θ) is NP-hard in general.
Summation in (4) can not be performed directly due to the exponential size of the
set Y. In our framework we approximate the marginals with Gibbs sampling [24].
The corresponding estimates converge to the true marginals in the limit. We
detail this procedure in Sect. 3.

Learning. Given a training set {(x d,yd) ∈ (X × Y)}D
d=1, we consider the maxi-

mum likelihood learning criterion for estimating θ:

arg max
θ∈Rm

D∑

d=1

log p(yd|x d,θ) = arg max
θ∈Rm

D∑

d=1

[−E(yd,x d,θ) − log Z(x d,θ)
]
. (5)

Since a (stochastic) gradient descent is used for CNN training, we stick to it for
estimating (5) as well. The gradient of the objective reads:
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∂
∑D

d=1 log p(yd|x d,θ)
∂θ

=
D∑

d=1

[

−∂E(yd,x d,θ)
∂θ

− ∂ log Z(x d,θ)
∂θ

]

=
D∑

d=1

[

−∂E(yd,x d,θ)
∂θ

− 1
Z(x d,θ)

∂
∑

y∈Y exp(−E(y ,x d,θ))
∂θ

]

=
D∑

d=1

⎡

⎣−∂E(yd,x d,θ)
∂θ

+
∑

y∈Y

exp(−E(y ,x d,θ))
Z(x d,θ)

∂E(y ,x d,θ)
∂θ

⎤

⎦

=
D∑

d=1

⎡

⎣−∂E(yd,x d,θ)
∂θ

+
∑

y∈Y
p(y |x d,θ)

∂E(y ,x d,θ)
∂θ

⎤

⎦

=
D∑

d=1

[

−∂E(yd,x d,θ)
∂θ

+ Ep(y |xd,θ)

∂E(y ,x d,θ)
∂θ

]

. (6)

Direct computation of the gradient (6) is infeasible due to an exponential num-
ber of possible variable configurations y , which must be considered to compute
Ep(y |xd,θ)

∂E(y ,xd,θ)
∂θ . Inspired by [22], in our work we employ sampling based

approximation of (6) instead, which we detail in Sect. 3.

Stochastic Approximation. The stochastic gradient approximation proposed
in [25] is a common way to learn parameters of a CNN nowadays. It allows to
perform parameter updates for a single randomly selected input observation, or
a small subset of observations, instead of computing the update step for the
whole training set at once, as the latter can be very costly. Assume that the
gradient of some function f(θ) can be represented as follows:

∇θf = Ep(y|θ)∇θg(y, θ). (7)

Then under mild technical conditions the following procedure

θi+1 = θi − ηi∇θg(y′, θi), where y′ ∼ p(y|θi) (8)

and ηi is a diminishing sequence of step-sizes, converges to a critical point of the
function f(θ). We refer to [25,26] for details, for the cases of both convex and
non-convex functions f(θ).

3 Stochastic Optimization Based Learning Framework

Stochastic Likelihood Maximization. Since the value ∂E(yd,xd,θ)
∂θ does not

depend on y, we can rewrite the gradient (6) as

∂
∑D

d=1 log p(yd|x d,θ)
∂θ

=
D∑

d=1

Ep(y |xd,θ)

[

−∂E(yd,x d,θ)
∂θ

+
∂E(y ,x d,θ)

∂θ

]

. (9)
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The summation over samples from the training set can be seen as an expectation
over a uniform distribution and therefore the index d can be seen as drawn from
this uniform distribution. According to this observation we can rewrite (9) as

∂
D∑

d=1

log p(yd|x d,θ)

∂θ
= D · Ep(y ,d|xd,θ)

[

−∂E(yd,x d,θ)
∂θ

+
∂E(y ,x d,θ)

∂θ

]

, (10)

where p(y , d|x d,θ) = p(d)p(y |x d,θ) and p(d) = 1
D . Assume that we can obtain

i.i.d. samples y ′ from p(y |x d,θ). Then the following iterative procedure con-
verges to a critical point of the likelihood (5) according to (7) and (8)

θi+1 = θi − ηi

[

−∂E(yd,x d,θi)
∂θ

+
∂E(y ′,x d,θi)

∂θ

]

, (11)

where d is uniformly sampled from {1, . . . , D} and y ′ ∼ p(y |x d,θi).
Now we turn to the computation of the stochastic gradient −∂E(yd,xd,θ)

∂θ +
∂E(y ′,xd,θ)

∂θ itself, provided yd,y ′,x d and θ are given. In the overcomplete repre-
sentation [23] the energy (3) reads

E(y ,x , θ) =
∑

f∈F

∑

ŷf∈Yf

ψf (ŷf ,x ,θ) · �yf = ŷf �, (12)

where expression �A� equals 1 if A is true and 0 otherwise. Therefore
∂E(y ,x ,θ)

∂ψf (ŷf ,x ,θ) = �yf = ŷf �. If the potential ψf (ŷf ,x ,θ) is an output of a CNN,

then the value − ∂E(yd,xd,θ)
∂ψf (ŷf ,xd,θ)

+ ∂E(y ′,xd,θ)
∂ψf (ŷf ,xd,θ)

= −�yd
f = ŷf � + �y ′

f = ŷf � is the
error to propagate to the CNN. During the back-propagation of this error all
parameters θ of the CNN are updated. The overall stochastic maximization pro-
cedure for the likelihood (5) is summarized in Algorithm 1. The algorithm is fully
defined up to sampling from the distribution p(y |x d,θ) in Step 5. We discuss
different approaches in the next subsection.

Algorithm 1. Sampling-based maximization of the likelihood (5)
1: Initialize parameters θ0 of the CNN-CRF model.
2: for i = 1 to M (max. number of iterations) do
3: Uniformly sample d from {1, . . . , D}
4: Perform forward pass of the CNN to get ψf (ŷ , xd, θi−1) for each f ∈ F and

ŷf ∈ Yf

5: Sample y ′ from the distribution p(y |xd, θi−1) defined by (1)
6: Compute the error −�yd

f = ŷf � + �y ′
f = ŷf � for each f ∈ F and ŷf ∈ Yf

7: Back propagate the error through CNN to obtain a gradient ∇θ

8: Update the parameters θi := θi−1 − ηi∇θ

9: return θM
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Sampling. Obtaining an exact sample from p(y |x ,θ) is a difficult problem for
a general CRF due to the exponential size of the set Y 	 y of all possible config-
urations. There are, however, ways to mitigate it. The full Markov Chain Monte
Carlo (MCMC) sampling method [27] starts from an arbitrary variable config-
uration y ∈ Y and generates the next one y ′. In our case this generation can
be done with e.g. Gibbs sampling [24], as presented in Algorithm 2. Algorithm 2
passes over all variables yn and updates each of them according to the condi-
tional distribution p(yn|y\n,x ,θ), where \n denotes all variable indexes except
n. Let nb(n) = {k ∈ I|∃f ∈ F : n, k ∈ f} denote all neighbors of the variable n.
Note, that due to the Markov property of CRFs [28], it holds

p(yn|y\n,x ,θ) = p(yn|ynb(n)
,x ,θ) ∝ exp

⎛

⎝−
∑

f∈F :n∈f

ψf (yf ,x ,θ)

⎞

⎠ . (13)

Therefore, sampling from this distribution can be done efficiently, since it
requires evaluating only those potentials ψf (yf ,x ,θ) which are dependent on
the variable yn, i.e. for f ∈ F such that n ∈ f . Algorithm 2 summarizes one
iteration of the sampling procedure. Note that it is highly parallelizable [29] and
allows for efficient GPU implementations. Under mild technical conditions the
MCMC sampling process converges to a stationary distribution after a finite
number of iterations [27]. This distribution coincides with p(y |x ,θ). However,
such a sampling is time-consuming, because convergence to the stationary dis-
tribution may require many iterations and must be performed after each update
of the parameters θ.

To overcome this difficulty a contrastive-divergence (CD) method was pro-
posed in [30] and theoretically justified in [31]. For a randomly generated index
d ∈ {1, . . . , D} of the training sample one performs a single step of the MCMC
procedure starting from a ground-truth variable configuration, which in our case
boils down to a single run of Algorithm2 for y = yd. Unfortunately, the suffi-
cient conditions needed to justify this method according to [31] do not hold for
CRFs in general. Nevertheless, we provide an experimental evaluation of this
method in Sect. 5 along with a different technique described next.

Persistent contrastive divergence (PCD) [32] is a further development of
contrastive divergence, where one step of the MCMC method is performed
starting from the sample obtained on a previous learning iteration. It is based
on the assumption that the distribution p(y ,x ,θ) changes slowly from itera-
tion to iteration and a sample from p(y |x d,θi−1) is close enough to a sample
from p(y |x d,θi). Moreover, when getting closer to a critical point, the gradient
becomes smaller and therefore p(y ,x ,θi) deviates less from p(y ,x ,θi−1). There-
fore, close to a critical point the generated samples can be seen as samples from
the stationary distribution of the full MCMC method, which coincides with the
desired one p(y |x ,θ).

With the above description of the possible sampling procedures the whole
joint CNN-CRF learning Algorithm1 is well-defined.
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Algorithm 2. Gibbs sampling
Require: A variable configuration y ∈ Y
1: for n = 1, . . . , N do
2: y′

n is sampled from p(yn|y\n, x , θ)
3: yn ← y′

n

4: return y

4 Comparison to Alternative Approaches

Unrolled Inference. In contrast to the learning method with the unrolled
inference proposed in [11,12], our approach is not limited to Gaussian pairwise
potentials. In our training procedure the potentials φf (yf ,x ,θ) can have arbi-
trary form.

The piece-wise training method [1] is able to handle arbitrary potentials in
CRFs. However, maximization of the likelihood (5) in that work is substituted
with

(arg)max
θ

D∑

d=1

∑

f∈F

[
−ψf (yd

f ,x d,θ) − log
∑

yf∈Yf

exp(−ψf (yf ,x d,θ))
]
, (14)

which lacks a sound theoretical justification.

LP-relaxation and fractional entropy based approximation is employed
in [3]. As mentioned above, there is no clear evidence that the fractional entropy
always leads to tight likelihood approximations. Additionally, the method
requires a lot of memory: to avoid the time consuming, full message passing
based inference, the gradient steps w.r.t. the CNN parameters θ and minimiza-
tion over the dual variables of the LP-relaxation of the CRF are interleaved with
each other. This requires to store current values of the dual variables for each
training sample. The number of dual variables is proportional to the number of
labels used in the CRF as well as to the number of its factors. So, for example in
our experiments we use a dataset containing 2000 images of the approximate size
320 × 120. The corresponding CRF has 20 labels and around 106 pairwise fac-
tors (see Sect. 5 for details). The dual variables stored by the method [3] would
require around 200MB per image and 0.4 TB for the whole dataset. Note that our
approach requires to store only the current variable configuration y for each of
the D training samples, when used with the PCD sampling. Therefore, it requires
only 78 MB of working storage for the whole dataset. The difference between our
method and the method proposed in [3] gets even more pronounced for larger
problems and datasets, such as the augmented Pascal VOC dataset [33,34] con-
taining 10000 images with 500 × 300 pixels each.
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5 Experiments

In the experimental evaluation we consider the problem of semantic body-parts
segmentation from a single depth image [35]. We specify a CRF, which has
unary potentials dependent on a CNN. We test different sampling options in
Algorithm 1 and compare our approach with another CRF-CNN learning frame-
work proposed in [11]. Additionally, we analyze the trained model, in order to
understand whether it can capture an object shape and contextual information.

Dataset and Evaluation. We apply our approach to the challenging task of
predicting human body parts from a depth image. To the best of our knowledge,
there is no publicly available dataset for this task that contains real depth images.
For this reason, in [35], a set of synthetically rendered depth images along with
the corresponding ground truth labelings were introduced (see examples in Fig. 1
(left column)). In total there are 19 different body part labels, and one additional
label for the background. The dataset is split into 2000 images for training and
500 images for testing. As a quality measure, the authors use the averaged per-
pixel accuracy for body parts labeling, excluding the background. This makes
sense since the background can be easily identified from the depth map.

Our Model. Following [4], in our experiments, we use a pixel-level CRF that
is able to capture geometrical layout and context. The state vector y defines
a per pixel labeling. Therefore the number N of coordinates in y is equal to
the number of pixels in a depth image, which has dimensions varying around
130 × 330. For all n ∈ {1, . . . , N} the label space is Yn = {1, . . . , 20}. The
observation x represents a depth image. Our CRF has the following energy
function E(y ,x ,θ):

E(y ,x ,θ) =
N∑

n=1

ψn(yn,x ,θ) +
∑

c∈C

∑

(i,j)∈Ec

ψc(yi, yj ,θ) , (15)

where ψn(yn,x ,θ) are unary potentials that depend on a CNN. Our CRF has
|C| classes of pairwise potentials. All potentials of one class are represented by a
learned value table, which they share. The neighborhood structure of the CRF is
visualized in Fig. 2b. All pixels are connected to 64 neighbors, apart from those
close to the image border.

The local distribution (13) used by the sampling Algorithm2 takes the form:

pi(yi=l|x, yR\i; θ) ∝ exp
[
−ψi(l) −

∑

c

(
ψc(l, yj′) + ψc(yj′′ , l)

)]
. (16)

Note that according to our CRF architecture there are exactly two edges (apart
from the nodes close to the image border) in each edge class c that are incident
to a given node i. The corresponding neighboring nodes are denoted by j′ and
j′′ in (16).
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Input
Depth

Ground
Truth CNN

86.53%

[11] joint
learning

90.88%

Ours
separate
learning

90.38%

Ours joint
learning

93.14%

83.93% 88.20% 87.74% 90.27%

90.15% 92.62% 91.98% 93.58%

Fig. 1. Results. (From left to right). The input depth image. The corresponding
ground truth labeling for all body parts. The result of a trained CNN model. The
result of [11] using an end-to-end training procedure. Our results with separate learn-
ing and joint learning, respectively. Below each result we give the averaged pixel-wise
accuracy for all body parts.
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Fig. 2. Model Insights. (a) Illustrating the 19 body parts of a human. (c–e) Weights
of pairwise factors for different pairs of labels, see details below. (b) Neighborhood
structure for pairwise factors. The center pixel (red) is connected via pairwise factors
to all green pixels. Note that “opposite” edges share same weights, e.g. the edge with
x, y-shift (5, 10) has the same weights as the edge with x, y-shift (−5, −10). (c) Weights
for pairwise potentials that connect the label “head” with the label “foot”. Red means
a high energy value, i.e. a discouraged configuration, while blue means the opposite.
Since there is no sample in the training dataset where a foot is close to a head, all edges
are positive or close to 0. Note that the zero weights can occur even for very unlikely
configurations. The reason is that during training these unlikely configurations did not
occur. (d) Weights for pairwise potentials that connect the label “left torso” with the
label “right torso”. The potentials enforce a straight, vertical border between the two
labels, i.e. there is a large penalty for “left torso” on top (or below) of “right torso”
(x-shift 0, y-shift arbitrary). Also, it is encouraged that “right torso” is to the right
of the “left torso” (Positive x-shift and y-shift 0). (e) Weights for pairwise potentials
that connect the label “right chest” with the label “right upper arm”. It is discouraged
that the “right upper arm” appears close to “right chest”, but this configuration can
occur at a certain distance. Since the training images have no preferred arm-chest
configurations, all directions have similar weights. (Color figure online)

As mentioned above, the unary terms of our CRF model depend on the image
via a CNN. Since most existing pre-trained CNNs [7,36,37] use RGB images
as input, for the depth input we use our own fully convolutional architecture
and train it from scratch. Moreover, since some body parts, such as hands, are
relatively small, we use the architecture that does not reduce the resolution
in intermediate layers. This allows us to capture fine details. All intermediate
layers have 50 output channels and a stride of one. The final layer has 20 output
channels that correspond to the output labels. The architecture of our CNN is
summarized in Table 1. During training, we optimize the cross-entropy loss. The
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Table 1. CNN architecture for body parts segmentation.

Layer conv1 relu1 conv2 relu2 conv3 maxpool1 relu3 conv4 Softmax

Kernel size 41 × 41 - 17 × 17 - 11 × 11 3 × 3 - 5 × 5 -

Output channels 50 50 50 50 50 50 50 20 20

CNN is trained using stochastic gradient descent with the momentum 0.99 and
with the batch size 1.2

In our experiments, we consider two learning scenarios: separate learning and
joint (end-to-end) learning. In both cases we start the learning procedure from
the same pre-trained CNN. For separate learning only the CRF parameters (pair-
wise potentials) are updated, whereas the CNN weights (unary potentials of the
CRF) are kept fixed. In contrast, for joint (end-to-end) learning all parameters
are updated. During the test-time inference we empirically observed that start-
ing Gibbs sampling (Algorithm2) from a random labeling can lead to extremely
long runtimes. To speed-up the burn-in-phase, we use the marginal distribution
of the CNN without CRF. This means that the first sample is drawn from the
marginal distribution of the pre-trained CNN.

We also experiment with different sampling strategies during the training
phase: we considered (i) the contrastive-divergence with K sampling iterations,
denoted as CD-K for K equal to 1, 2, 5 and (ii) the persistent contrastive-
divergence PCD.

Baselines. We compare our approach to the method of [35], which introduced
this dataset. Their approach is based on a random forest model. Unfortunately,
we were not able to compare to the recent work [38], which extends [35], and
is also based on random forests. The reason is that in the work [38] its own
evaluation measure is used, meaning that the accuracy of only a small subset of
pixels is evaluated. This subset is chosen in such a way that each of the 20 classes
is represented by the same number of pixels. We are concerned, however, that
such small pixel subsets may introduce a bias. Furthermore, we did not have
this subset at our disposal. Since our main aim is to evaluate CNN-based CRF
models, we compare to the approach [11]. As described above, they incorporate a
densely connected Gaussian CRF model into the CNN as a Recurrent Neuronal
Network of the corresponding Mean Field inference steps. This approach has
recently been the state-of-the-art in the VOC2012 object segmentation challenge.

Results. Qualitative and quantitative results are shown in Fig. 1 and Table 2
respectively. Our method with joint learning is performing best. In particular,
the persistent contrastive-divergence version shows the best results, which con-
forms to the observations made in other works [32]. The CNN-CRF approach

2 We use the commonly adopted terminology from the CNN literature for technical
details, to allow reproducibility of our results.
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Table 2. Average per-pixel accuracy for all foreground parts. Separate learning means
that weights of the respective CNN were trained prior to CRF parameters. In contrast,
joint training means that all weights were learned jointly, starting with a pre-trained
CNN. We obverse that joint training is superior to separate training, and furthermore
that the model of [11], which is based on a dense Gaussian CRF, is inferior to our
generic CRF model.

Method Learning Accuracy

Online random forest [35] - ≈ 79.0%

CNN - 84.47

CNN + CRF [11] separate 86.55%

CNN + CRF [11] Joint 88.17%

CNN + CRF (ours) PCD Separate 87.62%

CNN + CRF (ours) CD-1 Joint 88.17%

CNN + CRF (ours) CD-2 Joint 88.15%

CNN + CRF (ours) CD-5 Joint 88.23%

CNN + CRF (ours) PCD Joint 89.01%

of [11] is inferior to ours. Note that the accuracy difference of 1% can mean
that e.g. a complete hand is incorrectly labeled. We attribute this to the fact
that for this task the spatial layout of body parts is of particular importance.
The underlying dense Gaussian CRF model of [11] is rotational invariant and
cannot capture contextual information such as “the head has to be above the
torso”. Our approach is able to capture this, which we explain in detail in
Figs. 2 and 3. We expect that even higher levels of accuracy can be achieved by

Fig. 3. Model Insights. (a) The most likely labeling for a separately trained CNN. For
the circled pixel, the local marginal distribution is shown. (b) Max. marginal labeling of
a separately trained CRF, which uses the CNN unaries from (a), i.e. our approach with
separate learning. We observe that unaries are spatially smoothed-out. (c) Most likely
labeling of a CNN that was jointly trained with the CRF. The labeling looks worse
than (a). However, the main observation is that the pixel-wise marginal distributions
are more ambiguous than in (a), see the circled pixel. (d) The final, max-marginal
labeling of the jointly trained CRF model, which is considerably better than the result
in (b). The reason is that due to the ambiguity in the local unary marginals, the CRF
has more power to find the correct body part configuration. The inlet shows the ground
truth labeling.
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exploring different network designs and learning strategies, which we leave for
future work.

6 Discussion and Future Work

We have presented a generic CRF model where a CNN models unary factors. We
have introduced an efficient and scalable maximum likelihood learning procedure
to train all model parameters jointly. By doing so, we were able to train and
test on large-size factor graphs. We have demonstrated a performance gain over
competing techniques for semantic labeling of body parts. We have observed
that our generic CRF model can capture the shape and context information of
relating body parts.

There are many exciting avenues for future research. We plan to apply our
method to other application scenarios, such as semantic segmentation of RGB
images. In this context, it would be interesting to combine the dense CRF model
of [11] with our generic CRF model. Note that a dense CRF is implicitly modeling
the property that objects have a compact color distribution, see [39], which is a
complementary modeling power to our generic CRF model.
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Abstract. Visual dictionary learning has the capacity to determine
sparse representations of input images in a data-driven manner using
over-complete bases. Sparsity allows robustness to distractors and resis-
tance against over-fitting, two valuable attributes of a competent clas-
sification solution. Its data-driven nature is comparable to deep convo-
lutional neural networks, which elegantly blend global and local infor-
mation through progressively more specific filter layers with increasingly
extending receptive fields. One shortcoming of dictionary learning is that
it does not explicitly select and focus on important regions, instead it gen-
erates responses on uniform grid of patches or entire image. To address
this, we present an object-aware dictionary learning framework that sys-
tematically incorporates region proposals and deep features in order to
improve the discriminative power of the combined classifier. Rather than
extracting a dictionary from all fixed sized image windows, our methods
concentrates on a small set of object candidates, which enables consol-
idation of semantic information. We formulate this as an optimization
problem on a new objective function and propose an iterative solver.
Our results on benchmark datasets demonstrate the effectiveness of our
method, which is shown to be superior to the state-of-the-art dictionary
learning and deep learning based image classification approaches.

1 Introduction

Dictionary learning (DL) has attracted considerable amount of attentions in the
past few years. The goal of DL is to learn an over-complete collection of atoms for
representation in a data-driven manner. The main property of learned dictionary
is that it is capable of approximating an input signal as a linear combination of
a small number of atoms. Recently, dictionary learning approaches have widely
applied to various problems of computer vision area, such as image denoising
[1,2], image restoration [3], image synthesis [4,5], visual tracking [6] and image
classification [7–9].

The original intention of DL methods is to reconstruct the input data faith-
fully by a learned over-complete dictionary. Therefore, they are not appropriate
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Fig. 1. Overall framework of our object-aware dictionary learning method.

for the visual recognition task. To overcome this problem, recent work [7–19]
attempt to learn discriminative dictionaries in order to achieve better perfor-
mance in classification problems. However, one main drawback of existing visual
dictionary learning methods is that they are unable to select and focus on impor-
tant image regions explicitly. Instead, these methods only generate responses on
the regular patches or the entire image. For the visual recognition problem, espe-
cially in complex scenes, localized semantic information of image often provides
crucial visual cues for improving the discriminative power of feature representa-
tion. Nevertheless, few efforts have been made to explore useful discriminative
semantic information within local regions in the dictionary learning for image
classification.

Recently, Convolutional Neural Networks (CNN) [21] have been shown to be
successful in numerous visual recognition problems. One main advantage of the
CNN is that it allows integrating the global context and local cues through multi-
ple filter layers with increasingly extending receptive fields thanks to the pooling
operations. Inspired by this property of the CNN, we propose an Object-Aware
Dictionary Learning (OADL) framework to address the above shortcoming of
dictionary learning. To this end, we incorporate a region proposal mechanism
into the deep features extraction by the CNN to discover underlying local seman-
tic information in the image. We design a new object category aware objective
for dictionary learning and then feed the deep features of region proposals to
extract multiple discriminative class-specific dictionaries.

Unlike conventional dictionary learning approaches that extract a dictionary
from all the fixed sized image patches or entire image, our method concentrates
on a small set of object candidates. We first extract the region proposals, which
encode the local semantic information of image and provide important visual
cues for recognition task. This facilitates the feature representation to consolidate
the semantic information and suppress the distraction due to the background.
We then learn the class-aware dictionary of the object candidate features. To
minimize our dictionary learning objective, we derive an efficient iterative opti-
mization procedure that alternatively solves several simpler subproblems. In the
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recognition stage, the learned discriminative dictionaries are used to encode the
deep features of all object candidates within image and generates a global image
representation by max-pooling. Figure 1 shows the framework of this new OADL
method.

The remainder of this paper is organized as follows: The related works are
briefly reviewed in Sect. 2. Section 3 presents the proposed object-aware dictio-
nary learning framework that integrates with the region proposals and deep
features systematically to improve the discriminative power of feature represen-
tation. The optimization algorithm of the OADL is also described in this section.
Experimental results are given in Sect. 4.

2 Related Work

In order to enhance the representation power of image feature, many works aim
to learn a discriminative dictionary for different visual recognition tasks. Existing
dictionary learning approaches can be grouped as unsupervised and supervised
methods. The goal of unsupervised dictionary learning is to compose an over-
complete dictionary by minimizing the reconstruction error. A typical example
for unsupervised dictionary learning would be the KSVD algorithm [15], which
iteratively applies SVD to fit the atoms of a single dictionary to reconstruction
error. To reduce the time complexity, Lee et al. [20] cast the standard sparse
representation to the least squares problem.

To obtain a feature representation with more discriminative power, super-
vised dictionary learning incorporates additional classification objective into
reconstruction loss using the labeled data. The existing supervised dictionary
learning can be further grouped into two categories. Methods in the first cat-
egory aim to make the representation coefficients discriminative by learning a
single dictionary across all classes. The common characteristic of recent meth-
ods [11–13,16,17] is to combine a classification loss term with the standard sparse
dictionary learning formulation. Similarly, Jiang et al. [9] incorporate both a label
consistent constraint and a linear classification cost into the KSVD objective for
improving the discriminative power of feature encoding.

Methods in the second category [7,8,10,14,18,19] learn a set of class-specific
sub-dictionaries, and then these multiple sub-dictionaries are concatenated
together to form a structured dictionary for feature representation. Specifically,
Mairal et al. [18] integrate a softmax discriminative function with the KSVD
model. Ramirez et al. [14] impose an incoherent constrain in the standard dic-
tionary learning model, which encourages the learned class-specific dictionaries
to be as independent as possible. Yang et al. [7] incorporate the Fisher Dis-
criminant criterion into the dictionary learning for further improving the dis-
criminative capability of class-specific dictionaries. Zhou et al. [8] propose to
learn multiple class-specific dictionaries and a shared dictionary for the groups
of classes that have the visually similar patterns. Gao et al. [19] also propose
to train the class-specific dictionaries and a shared dictionary for addressing
the fine-grained recognition problem. In addition, Gu et al. [10] learn a struc-
tured synthesis dictionary and a structured analysis dictionary simultaneously
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for enhancing the representation power of feature. However, the existing dictio-
nary leaning schemes are not capable of selecting and focusing on the important
regions within image. Instead, these methods extract a visual dictionary from
the fixed sized image patches or the entire image. For this reason, the underly-
ing image regions with useful semantic cues and background clutters cannot be
distinguished in the dictionary learning procedure.

For the feature generation task, the convolutional neural networks [21–23]
provide powerful solutions. One advantage of CNN based methods is that they
allow fusing the global and local information through gradually more specific
filter layers with increasing receptive fields.

Recently, the region proposals approaches [24–27] provide an effective option
to generate the object candidates from image. These methods utilize objectness
measures derived from different visual cues. Compared with the traditional image
interest points and sliding windows, region proposals are capable of detecting
regions with high-level semantic meanings.

3 The Proposed Method

We first introduce our object-aware dictionary learning framework, which con-
sists of object proposal generation, class-aware dictionary learning, and image-
level feature representation. In Sect. 3.4, we then present the optimization algo-
rithm for solving all the variables in our OADL objective function.

3.1 Region Proposal Generation

In order to explore the local semantic information, we propose to adopt con-
volutional neural network (CNN) features and further integrate deep features
with the region proposals in our method. Compared with the fixed size of image
patch, each region proposal is a mid-level element of image, which allows us to
extract important region information in image for the recognition task.

We use the EdgeBox [27] algorithm to generate a set of initial region proposals
within image. Then the non-maximum suppression (NMS) is adopted to refine
these region windows, where the overlap rate of NMS is set to 0.8 IoU. Afterward,
the deep feature is utilized to describe each region proposal in image. Finally,
all the CNN features of region proposals from the training samples are fed into
our OADL model to obtain a set of discriminative class-specific dictionaries.

3.2 Object-Aware Dictionary Learning (OADL)

Let X = [X1,X2, . . . , XC ] be a set of training data with C classes, where
Xi ∈ Rd×Ni , i = 1, 2, . . . , C denotes the training samples corresponding to
class i, d is the dimension of the feature and Ni denotes the number of sam-
ples from class i. Each column in Xi is the CNN feature of one region pro-
posal. The goal of the OADL objective is to learn a structured dictionary
D = [D1,D2, . . . , DC ,DC+1] ∈ Rd×K , which is used to transform the CNN
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features into a discriminative feature space. K =
∑C+1

i=1 Ki is the number of
visual atoms in dictionary D, where Ki denotes the number of visual atoms in
class-specific dictionary Di. Since different object classes may have the similar
visual patterns, we further incorporate a shared dictionary DC+1 to represent
the common visual patterns in the OADL model. We formulate the OADL model
for C classes as follows:

min
Ai,Zi,Di,DC+1,wi,bi

C∑

i=1

{ Ni∑

n=1

[‖Xn
i − D∈iZ

n
i ‖2

F + ‖Xn
i − DAn

i ‖2
F

+ α ‖An
i − Zn

i ‖2
F + J(wi, bi, A

n
i , yi) + λ1 ‖An

i ‖1

+ λ2 ‖Zn
i ‖1] + β

C+1∑

j=1,j �=i

‖DT
i Dj‖2

F }

(1)

where Xn
i , n = 1, 2, . . . , Ni denotes all the feature data of n-th image from

class i, dictionary D∈i is a sub-dictionary associated with class i, defined as
[Od×Σi−1

q=1Kq
,Di, Od×ΣC+1

q=i+1Kq
] ∈ Rd×K , and O is the zero matrix. Zn

i is the
class-specific representation coefficients of Xn

i on dictionary D∈i. We define
D = [D1,D2, . . . , DC ,DC+1] ∈ Rd×K as the structured dictionary that con-
catenates all the class-specific dictionaries Di, i = 1, 2, . . . , C and the additional
background dictionary DC+1 together. An

i is the representation coefficients of
Xn

i on the structured dictionary D. J(·) corresponds to a hinge loss for classifi-
cation (see below for details). ‖An

i ‖1, ‖Zn
i ‖1 are the sparsity constrains imposed

on the representation coefficients An
i and Zn

i . α, β, λ1, λ2 are the weighting para-
meters to balance the different terms in the objective function. We now describe
each term in detail in the following.

Discriminative Reconstruction Terms: The first two terms of Eq. (1) are
the reconstruction residual terms. These two terms ensure the input data from
class i not only to be represented using the class-specific dictionary D∈i, but
also be reconstructed by the structured dictionary D. Due to this property, the
learned class-specific dictionaries have both the data generation and discrimina-
tive properties.

Coefficients Consistency Constraint Term: The third term ‖An
i − Zn

i ‖2
F

aims to make the indexes of non-zero entries in representation coefficients An
i

and Zn
i to be the same as far as possible. In this energy term, An

i is the
representation coefficients of Xn

i using the structured dictionary D, and Zn
i

denotes the representation coefficients of Xn
i on the class-specific dictionary

D∈i. This penalty term encourages the consistency between the representation
coefficients An

i and Zn
i . Therefore, the non-zero entries of An

i only appear on
the indexes of visual atoms associated with class-specific dictionary Di. In other
words, it indicates that the structured dictionary D tends to represent the sam-
ples Xn

i of class i by choosing the visual atoms in dictionary Di. Due to this
consistency property, the discriminative power of feature representation can be
strengthened.
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Classification Error Term: The fourth term J(wi, bi, A
n
i , yi) of Eq. (1) is a

loss function to measure the classification error. In our method, we incorporate
a SVM hinge loss into our objective, which is defined as J(wi, bi, A

n
i , yi) =‖

wi‖2 + R(wi, bi, A
n
i , yi), where R(wi, bi, A

n
i , yi) = η

∑Pn
i

j=1[max(0, yi · wT
i An,j

i +
bi − 1)]2 is the quadratic hinge loss due to the differentiable property [28]. wi,
bi are the parameters of SVM classifier and η is a constant. Pn

i denotes the
number of region proposals in the n-th image from class i, yi is the label of
sample corresponding to class i, and An,j

i denotes the representation feature of
j-th region proposal within the n-th image from class i. The Ai, Zi denote the
representation coefficients of Xi on dictionaries D and D∈i, respectively. The
minimization of this term is to guide the dictionary learning process, which is
beneficial to obtain a discriminative feature representation.

Dictionary Incoherent Constraint: The coefficient consistency constraint
focuses on the representation coefficients to promote the discriminative power of
Ai. We further incorporate a dictionary incoherent constraint [14] in the last term
to ensure the multiple class-specific dictionaries to be as independent as possible.
It is another way to improve the discrimination of Ai. Besides, we impose the
incoherent constraint between all the class-specific dictionaries Di, i = 1, 2, . . . , C
and the additional background dictionary DC+1, which is used to separate the
shared visual patterns and the class-specific visual patterns for all classes.

3.3 Construction of Image-Level Feature

We first describe our proposed feature representation strategy for each region
proposal using a group sparsity constraint. With the region features, we then
introduce the construction of image-level feature for final recognition task.

Given the learned discriminative structured dictionary D = [D1,D2,
. . . , DC ,DC+1], we propose to encode the deep feature of an object proposal
with the l1/l2-norm group sparsity constraint. Mathematically, the feature cod-
ing step is solved by the following l1/l2-norm regularized least squares problem.

min
Bn

i

‖Xn
i − D/C+1B

n
i ‖2

2 + ρ

C∑

m=1

‖Bn
i,m‖2 (2)

where the dictionary D/C+1 denotes the structured dictionary D when removing
the visual atoms associated with the background class C+1. Instead of using the
overall dictionary D for feature representation, the shared visual patterns of all
classes corresponding to potential background/common information can be sep-
arated by the dictionary D/C+1. Bn

i is the representation coefficients of Xn
i on

dictionary D/C+1. In the feature coding step, we divide the representation coef-
ficients into C non-overlapping groups, where Bn

i,m, m = 1, 2, . . . C denotes the
m-th group of representation coefficients Bn

i . The entry indexes of Bn
i,m is asso-

ciated to the class-specific dictionary Dm. This feature representation strategy
with l1/l2-norm sparsity encourages the dictionary D/C+1 to represent feature
sample by selecting the groups of visual atoms corresponding to the class-specific
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Fig. 2. Visual interpretation of the proposed feature coding strategy.

dictionaries. Therefore, the discriminative power of feature representation can
be promoted effectively. ρ is a weighting parameter to balance the reconstruction
term and the sparsity constrain in the objective function.

Figure 2 depicts the proposed feature representation property. In our method,
we use the SLEP tool [29] to solve the minimization problem of Eq. (2). Once all
the feature representations of region proposals within an image are computed,
we then use them to construct the image-level feature by max-pooling all the
object proposal features in an image for the recognition task.

3.4 Optimization Algorithm for Dictionary Learning

To solve the OADL problem, we derive an iterative algorithm to optimize the
objective with respect to the variables in Eq. (1) alternatively. The detailed
optimization procedures can be divided into the following five sub-problems:
(1) updating variable Ai with fixed variables Zi, Di, DC+1 and wi, bi; (2) com-
puting Zi by fixing Ai, Di, DC+1 and wi, bi; (3) updating dictionary Di when
fixing Ai, Zi, DC+1 and wi, bi; (4) updating dictionary DC+1 with fixed Ai, Zi,
Di, wi, bi. (5) updating wi, bi while fixing variables Ai, Zi, Di, DC+1. We now
describe each subproblem in detail.

Updating An
i : With fixing the representation coefficients Zn

i , dictionaries Di,
DC+1 and classifier parameters wi, bi, we can reduce the objective function of
Eq. (1) with respect to An

i into the following optimization task:

min
An

i

‖Xn
i − DAn

i ‖2
F + α ‖An

i − Zn
i ‖2

F + R(wi, bi, A
n
i , yi) + λ1 ‖An

i ‖1 . (3)

We note that the objective can be optimized by considering each region pro-
posal separately as they are decoupled. The representation coefficients An

i can be
rewritten as An

i = [An,1
i , An,2

i , . . . , A
n,Pn

i
i ] ∈ RK×Pn

i , where An,j
i ∈ RK×1, j =

1, 2, . . . , Pn
i denotes the representation feature of j-th region proposal in the n-

th image from class i, Pn
i is the number of region proposals in the n-th image

from class i. We first assign the image label to these region proposals associated
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with this image and then the classification error cost of An,j
i is computed using

a linear SVM with parameters wi, bi. If the predicted label of An,j
i is consistent

with the groundtruth, the classification error cost is set to zero. Otherwise, we
use ‖bi − 1 + yi · wT

i An,j
i ‖2

F to approximate the quadratic hinge loss. Finally, the
minimization problem of Eq. (3) with respect to each representation feature An,j

i

can be converted into the standard sparse coding formulation with l1-norm.

Updating Zn
i : Suppose that the variables An

i , Di, DC+1 and wi, bi are fixed,
we can compute the representation coefficients Zn

i as the following form:

min
Zn

i

‖Xn
i − D∈iZ

n
i ‖2

F + α ‖An
i − Zn

i ‖2
F + λ2 ‖Zn

i ‖1 . (4)

We can rewrite the above equation into a standard form,

min
Zn
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2

F

+ λ2 ‖Zn
i ‖1 (5)

where I ∈ RK×K denotes an identity matrix, K is the number of visual atoms
in structured dictionary D. Let X̃n

i = (Xn
i ,

√
αAn

i )T , D̃∈i = (D∈i,
√

αI)T , the
minimization formulation of Eq. (5) is converted to a sparse coding problem. In
our method, we use SPAMS solver [30] to find the optimal solution.

Updating Di: When the representation coefficients Ai, Zi, background dictio-
nary DC+1 and classifier parameters wi, bi are fixed, each class-specific dictionary
Di can be updated separately. We compute the dictionary Di by removing the
terms that are independent of class-specific dictionary Di, and the optimization
objective function (1) with respect to Di is reduced to the following form:

min
Di

‖Xi − D∈iZi‖2
F + ‖Xi − DAi‖2

F +β

C+1∑

j=1,j �=i

‖DT
i Dj‖2

F . (6)

To find the optimal dictionary, we propose to compute each visual atom
of dictionary Di = [d1

i , d
2
i , . . . , d

Ki
i ] ∈ Rd×Ki one by one. Specifically, when

we compute the t-th visual atom dti, the other visual atoms of Di are fixed.
We rewrite the representation coefficients Zi and Ai as Zi = [z1

i ; z
2
i ; . . . ; z

K
i ] ∈

RK×Ni , Ai = [a1
i ; a

2
i ; . . . ; a

K
i ] ∈ RK×Ni , where zti ∈ R1×Ni , at

i ∈ R1×Ni , t =
1, 2, . . . ,K denote the t-th row vector of Zi and Ai, respectively. To update visual
atom dti, we let the first derivative of dti equal to zero. Therefore, the t-th visual
atom in dictionary Di is computed as the closed-form

dti = (‖zti‖2
2 I+ ‖at

i‖2
2 I + βH1H

T
1 )−1 · (Y1 · zt

T

i + Y2 · atT

i ) (7)

where Y1 = Xi − ∑Ki

u=1,u �=t dui zui , Y2 = Xi − ∑Ki

u=1,u �=t dui au
i − ∑C+1

h=1,h�=i DhAh
i

and H1 = [D1,D2, . . . , Di−1,Od×Ki
,Di+1 . . . , DC ,DC+1]. Ah

i denotes the sub-
matrix of representation coefficients Ai corresponding to the indexes of h-th class,
O is a zero matrix associated with the indexes of class-specific dictionary Di.
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As an visual atom in dictionary, the atom dti is further normalized by the
l2-norm, i.e. d̂ti = dti/ ‖dti‖2. Similarly, we can compute all the visual atoms of
class-specific dictionary Di.

Updating DC+1: In order to compute the background dictionary DC+1, the
other variables Ai, Zi, Di, wi, bi are fixed. When removing the independent
terms with respect to DC+1, the minimization formulation of Eq. (1) is converted
into the following optimization problem.

min
DC+1

‖Xi − DAi‖2
F + β

C+1∑

j=1,j �=C+1

‖DT
C+1Dj‖2

F (8)

In our method, we update each visual atom of background dictionary DC+1

one by one. When the t-th visual atom is updated, the rest of visual atoms
in DC+1 are kept fixed, and we can compute the t-th visual atom dtc+1 by a
closed-form solution,

dtc+1 = (‖at
i‖2

2 I + βH2H
T
2 )−1 · (Y3 · atT

i ) (9)

where Y3 = Xi − ∑KC+1
u=1,u �=t duc+1a

u
i − ∑C+1

h=1,h�=C+1 DhAh
i and H2 = [D1,D2,

. . . , DC ,Od×KC+1 ]. Here at
i, t = 1, 2, . . . K denote the t-th row vector of rep-

resentation coefficients Ai, and Ah
i is the sub-matrix of Ai corresponding to

the h-th class, O denotes a zero matrix associated with background dictionary
DC+1. The updated dictionary atom is then normalized by the l2-norm. Once
all the visual atoms in DC+1 is computed, the background dictionary DC+1 is
updated.

Updating wi, bi: To update the classifier parameters wi, bi, the other variables
are fixed. In our method, we cast the SVM classifier learning problem with C
classes into the C one-vs-all SVM sub-problems. More specifically, we first assign
the image label to the region proposals in that image. Then all the feature
representations of region proposals across all classes are used to train multiple
SVM classifiers. In our OADL, a linear SVM solver [28] is adopted to learn the
parameters of SVM classifiers.

Initialization: To start the iterative procedure, we need to initialize the vari-
ables {Di, Zi, Ai, i = 1, 2, . . . , C} and DC+1. For class-specific dictionary Di,
it is initialized by the K-SVD [15] algorithm using all the region proposals of
images from class i. We also adopt the K-SVD algorithm to initialize the back-
ground dictionary DC+1 using the region proposals of training samples across
all classes. The representation coefficients Zi and Ai are initialized by solving
the sparse coding problem with l2,1-norm: minZi

‖Xi − D∈iZi‖2
F + ρ1 ‖Zi ‖2,1,

minAi
‖Xi − DAi‖2

F + ρ2 ‖Ai‖2,1, respectively. ρ1, ρ2 are the scale parameters
to balance the different energy terms. The proposed optimization procedures of
the OADL objective are summarized in Algorithm1.



246 Y. Xie et al.

Algorithm 1. Object-Aware Dictionary Learning
Input: training samples X = [X1, X2, . . . , XC ], the number of visual atoms Ki, i =

1, 2, . . . , C, C + 1 for each class-specific dictionary and an additional background
dictionary, parameters α, β, λ1 and λ2.

Output: class-specific dictionary Di, i = 1, 2, . . . , C, background dictionary DC+1

1: initialize Di, Zi, Ai, i = 1, 2, . . . , C, and DC+1

2: while not convergence and the maximum number of iterations is not reached do
3: for i = 1 −→ C do
4: update representation coefficients An

i by solving Eq. (3);
5: update representation coefficients Zn

i using Eq. (5);
6: for t = 1 −→ Ki do
7: update the t-th visual atom dt

i of class-specific dictionary Di by Eq. (7);
8: end for
9: for t = 1 −→ KC+1 do

10: update the t-th visual atom dt
c+1 in background dictionary DC+1 by Eq. (9);

11: end for
12: compute the parameters wi, bi of SVM classifier ;
13: end for
14: end while

4 Experiments

In this section, we verify the effectiveness of our method with other compet-
ing methods on the UIUC8 Sport [31] and Graz-02 [32] public datasets. The
goal of our OADL method is to learn a feature subspace for improving the dis-
criminative power of feature representation. In the experiments, we adopt two
convolutional neural networks: VGG-F [22] and VGG-VeryDeep19 [23] models
to generate the CNN features for evaluating our method. Specifically, the deep
features generated by the last fully-connected layer in CNN models [22,23] before
the 1000-way softmax operation are used to learn our dictionary representations.
The OADL(F) and OADL(VD19) denote our method integrated with the dif-
ferent deep features for brevity. For the OADL method, the dimension of deep
feature is reduced to 1000 by PCA in the experiments. The weighting parameters
α, β, λ1, λ2 of the OADL model are empirically set as 0.01, constant η is set to
0.2. In the recognition stage, the scale parameter ρ for the regularization term
of group sparsity is set to 0.5. Finally, the obtained global image representation
is fed into a linear SVM classifier for predicting the label of image.

4.1 UIUC8 Sport Dataset

We first evaluate our method and several competing approaches on the UIUC8
Sport [31] event recognition dataset. This dataset have eight sport classes and
1792 images in total, including rowing, badminton, polo, bocce, snowboarding,
croquet, sailing and rockclimbing. The number of images from each class varies
from 137 to 250. Several example images of this dataset are shown in Fig. 3.
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Fig. 3. Sample images from different classes on the UIUC8 Sport dataset.

Following the common experimental setting on this dataset [33], we ran-
domly choose 70 images from each class as the training samples and randomly
select 60 images from the rest images as the testing samples in the experiment.
As for our OADL model, we learn the class-specific dictionary with 200 visual
atoms for each class. The number of visual atoms in background dictionary is
also set to 200. We show the confusion matrices of our method on the UIUC8
Sport dataset in Fig. 4. More specifically, the confusion matrix of OADL incor-
porating with the deep feature by VGG-F model is demonstrated in Fig. 4(a).
Figure 4(b) shows the obtained confusion matrix by our OADL with the deep
feature of VGG-VeryDeep19 model on the UIUC8 Sport dataset. Moreover, we
evaluate our method with several competing approaches on this dataset, such
as KSPM [34], ScSPM [28], LLC [35], KSVD [15], SPMSM [36], LRSC [37],
VLAD [38], VC+VQ [39], OB [40], ISPR [41], RSP [42], LPR [43], LSC [33],
LScSPM [44], Fusion [45], DSFL+DdCAF [46] and the two deep features by
VGG-F [22] and VGG-VD19 [23] models. The recognition results of different
methods are summarized in Table 1. It is noticed that our OADL model out-
performs the state-of-the-art methods, including the recent dictionary learning
and two powerful deep learning based image classification approaches. Finally,
our method achieves the highest performance on the UIUC8 Sport dataset. In
addition, we can observe that the OADL(VD19) gains the better recognition
accuracy than the OADL(F). It indicates the discrimination of feature represen-
tation by our OADL method can be further enhanced with the increase of depth
in convolutional network.

Furthermore, we evaluate the effects of different components in the proposed
scheme. In details, we first test the sensitivity of region proposal in the overall
framework. Then we verify the impact of dictionary learning component of our
scheme. Table 2 summarizes the recognition results on the UIUC8 Sport dataset.
Specifically, Proposed (overlap= 0.5), Proposed (overlap= 0.8) denote our app-
roach with different overlap rate of NMS for generating the region proposals by
the EdgeBox [27] objectness method. The Proposed (EdgeBox, dim=300) and
Proposed (Selective Search,dim=300) denote the proposed approach integrated
with different objectness methods [27,47] when the dimensionality of deep fea-
ture is reduced to 300 by PCA, respectively. Baseline (NoDL) is a designed
baseline method that purely uses the extracted 4096-dimensional CNN features
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Fig. 4. Confusion matrices on the UIUC8 Sport dataset for our method. (a) Confusion
matrix with the deep feature of VGG-F model. (b) Confusion matrix with the deep
feature of VGG-VeryDeep19 model.

Table 1. Performance comparisons between our method and the state-of-the-art
approaches on the UIUC8 Sport dataset.

Method Accuracy (%) Method Accuracy (%)

KSPM [34] 79.98 RSP [42] 79.6

ScSPM [28] 82.74 LPR [43] 86.25

LLC [35] 81.77 LSC [33] 82.79

K-SVD [15] 82.21 LScSPM [44] 85.31

SPMSM [36] 83.0 Fusion [45] 94.8

LRSC [37] 88.17 DSFL+DdCAF [46] 96.78

VLAD [38] 79.16 VGG-F [22] 94.5

VC+VQ [39] 88.4 VGG-VD19 [23] 95.45

OB [40] 77.88 OADL(F) 96.9

ISPR [41] 89.5 OADL(VD19) 98.09

of region proposals [27] within image to form the global image feature by max-
pooling. Table 2 shows that the component of region proposal has only slight
effect on the recognition accuracy. Besides, it is noticed that our dictionary learn-
ing objective has the significant impact to the performance of overall scheme.

4.2 Graz-02 Dataset

The Graz-02 dataset contains 1096 images with three classes, including bike,
car and people. It is also a challenge object recognition dataset because the
objects from each class have the large intra-class differences in location, scale
and viewpoint, as shown in Fig. 5. The effectiveness of our method is also tested
on this dataset following the standard evaluation setting [32]. In detail, the
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Table 2. The effects of different components in the proposed approach.

Variants of proposed method Accuracy (%)

Proposed (overlap= 0.5) 97.4

Proposed (overlap= 0.8) 98.09

Proposed (EdgeBox [27], dim = 300) 93.11

Proposed (Selective Search [47], dim = 300) 93.81

Baseline (NoDL) 93.08

Fig. 5. Sample images of different classes from the Graz-02 dataset.

class-specific dictionary with 400 visual atoms is learned for each class. For the
background dictionary in OADL model, the number of visual atoms is also set
to 400 in the experiment. Moreover, we compare the OADL method with several
competing approaches [48–50] and the two CNN features by VGG-F [22] and
VeryDeep-19 [23] models on this dataset. The recognition results of different
methods are summarized in Table 3. As can been seen, our OADL method is
superior to the deep features and other competing approaches on the Graz-02
dataset. It is also observed that the discriminative power of feature generated
by our OADL method can be promoted effectively with the increasing depth of
convolutional network.

In addition, we give the computation time of our method on the Graz-02
dataset in Fig. 6. Specifically, the number of training samples across all classes is
first fixed to 8874 in the experiments, then we vary the number of visual atoms

Table 3. Recognition results of different methods on the Graz-02 dataset.

Method Bike Car People Total

[48] 89.5 80.2 85.2 84.9

[49] 91.2 87.5 85.3 88.0

[50] - - - 82.2

VGG-F [22] 94.44 96.05 85.71 92.48

VGG-VD19 [23] 96.91 97.74 89.29 94.98

OADL(F) 98.15 97.18 88.57 94.99

OADL(VD19) 98.77 97.74 91.43 96.24
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Fig. 6. Computation time analysis on the Graz-02 dataset. (a) Training time of OADL
as a function of the number of visual atoms per class. (b) Running time of OADL with
the increase of training samples across all classes.

per class with [100, 200, 300, 400]. The running time of OADL during each iter-
ation as a function of the number of visual atoms is shown in Fig. 6(a). We can
see that the computation time of OADL increases with the number of visual
atoms per class gradually. With fixed the number of visual atoms per class to
200, we change the number of training samples from all classes in the range
[8874, 6000, 4000, 2000]. Figure 6(b) demonstrates that the runtime of OADL
increases with the growth of training samples. All experiments are performed
using a single CPU Intel Core at 3.0 GHz.

5 Conclusion

Visual dictionary learning provides a data-driven manner to represent image
data as a linear combination of a few atoms from an over-complete dictionary.
However, a critical problem of existing dictionary learning approaches is that
they do not focus on the important image regions explicitly. Thus, discrimina-
tive semantic information within image regions cannot be selected effectively for
the recognition task during dictionary learning procedure. Currently, the con-
volutional neural network (CNN) has the capacity to combine the global and
local information within image by means of designed specific filter layers with
the increasingly receptive fields. Motivated by the advantage of deep feature, we
proposed an object-aware dictionary learning framework that integrates the deep
features and region proposals to overcome this problem. Instead of extracting a
dictionary from all the fixed size of image patches or entire image, our method
focuses on the small amounts of object candidates, which ensure the local seman-
tic information can be encoded into the feature representation of image. We treat
this as a unified optimization problem and derive an iterative algorithm to solve
it. The experimental results on two public benchmark datasets demonstrate that
our method outperforms the state-of-the-art dictionary learning and several deep
learning based image classification approaches.
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Abstract. This paper describes a method of clothing-invariant gait
recognition by modifying intensity response function of a silhouette-
based gait feature. While a silhouette-based representation such as gait
energy image (GEI) has been popular in gait recognition community
due to its simple yet effective property, it is also well known that such
a representation is susceptible to clothes variations since it significantly
changes silhouettes (e.g., down jacket, long skirt). We therefore propose
a gait energy response function (GERF) which transforms an original
gait energy into another one in a nonlinear way, which increases discrim-
ination capability under clothes variation. More specifically, the GERF
is represented as a vector of components of a lookup table from an origi-
nal gait energy to another one and its optimization process is formulated
as a generalized eigenvalue problem considering discrimination capabil-
ity as well as regularization on the GERF. In addition, we apply Gabor
filters to the GEI transformed by the GERF and further apply a spatial
metric learning method for better performance. In experiments, the OU-
ISIR Treadmill dataset B with the largest clothing variation was used to
measure the performance both in verification and identification scenarios.
The experimental results show that the proposed method achieved state-
of-the-art performance in verification scenarios and competitive perfor-
mance in identification scenarios.

1 Introduction

Gait recognition [1] is one of behavioral biometrics and advantageous over the
other biometrics (e.g., face, iris, finger vein) because it can be used even at a
distance from a camera since it does not require a high image resolution. In
addition, gait is usually captured as an unconscious behavior, and hence it does
not require subject cooperation in general. Due to these characteristics, it can be
applied to many areas (e.g., surveillance, forensics, criminal investigation [2–4]).

Gait recognition approaches can be divided into two main groups: model-
based approaches [5–10] and model-free (appearance-based) approaches [11–16].
The model-based approaches have greater invariant properties and are better at
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 257–272, 2017.
DOI: 10.1007/978-3-319-54184-6 16
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GEI [14]

GEnI [15]

Masked GEI [16]

GERF

Fig. 1. Concept of the proposed GERF compared with existing intensity
transformation-based approaches.

handling occlusion, noise, scale, and rotation. These approaches, however, require
higher resolution images for model fitting and have relatively high computational
cost.

The appearance-based approaches directly use input or silhouette images in a
holistic way to extract gait features without modeling, and hence they generally
work well even for relatively low-resolution images. In particular, silhouette-
based representations such as gait energy image (GEI) [14], frequency-domain
feature [17], chrono-gait image [18], Gabor GEI [19], are dominant in gait recogni-
tion community due to its simple yet effective property. The appearance-based
approaches, however, often suffer from many covariates (e.g., clothing, view,
speed, and carrying status) since the appearance-based features of individu-
als are significantly affected by them, which causes a rapid decline in recog-
nition rate. Among these covariates, clothing is one of the most challenge
covariates [11,20–23].

There are two major categories to address the clothing-invariant problem in
appearance based approaches: (1) spatial metric learning-based approaches and
(2) intensity transformation-based approaches. In addition, the spatial metric
learning-approaches further fall into two families: whole-based approaches [14–
16,24] and part-based approaches [21–23,25,26].
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While the whole-based approaches usually apply discriminative projections
to the holistic appearance-based features (e.g., linear discriminant analysis
(LDA) [14,18,27] in conjunction with principal component analysis (PCA), dis-
criminant analysis with tensor representation (DATER) [28,29], random sub-
space method (RSM) [23,26] to gain robustness to the clothes variation, the
part-based approaches firstly divide the whole body into multiple body parts
and then exploit the body parts which are not so much affected by the clothes
variation by adaptively assigning weights for individual body parts [21] or finding
the effective body parts [22], which mitigates the effect of clothes variation.

Whereas the above mentioned approaches mainly focus on the metric learn-
ing aspect, the intensity transformation-based approaches more focus on gait
representation aspect. Since the clothes variation affects more on static parts
(e.g., torso and limb shapes) than on dynamic parts (e.g., leg and arm motion),
gait entropy image (GEnI) [15] extracts the dynamic parts from GEI by com-
puting its Shannon entropy, where gait energy for each pixel is regarded as a
foreground probability. For example, the pixels with large and small gray values
(e.g., 255 and 0) in GEI become small in GEnI, while the pixels with middle
values (e.g., 127) become large (see Fig. 1, the top row). The static parts (i.e.,
complete foreground and background), however, still have discrimination capa-
bility to some extent even under clothes variation, and hence GEnI discards
such useful information. Moreover, GEnI treats two different gait energies which
are symmetric with just the middle value (i.e., 127.5), as the same value, and
hence it loses discrimination capability (e.g., gait energies 64(= 127.5 − 63.5)
and 191(= 127.5 + 63.5) returns the same value in GEnI).

In order to solve the latter problem, masked GEI [16] is proposed, where gait
energies whose corresponding gait entropy is smaller than a certain threshold
(i.e., more static parts) are masked out and are set to zero, while the other gait
energies are kept as their original values (see Fig. 1, the middle row). Masked
GEI is, however, dependent on choice of the threshold to mask out and also still
discards useful static information.

Because both GEnI and masked GEI are generated from GEI, we can regard
this as a sort of gait energy transformation process via a gait energy response
function (GERF). While both GEnI and masked GEI employ hand-crafted
GERFs to focus on the dynamic parts, we may generate more discriminative
features under clothes variation by designing the GERF in a more general and
data-driven way.

We therefore propose to introduce the GERF to transform GEI into more
discriminative feature and show its effectiveness on gait recognition under clothes
variation. The contributions of this work are three-fold.

1. A data-driven approach to intensity transformation
While the existing intensity transformation-based methods such as GEnI and
masked GEI are designed in a handcrafted way, the proposed method learn
the GERF in a data driven way. More specifically, we train the GERF so as
to maximizing the discrimination capability using the training set including
clothes variation. This enables us to realize a good tradeoff between static
and dynamic parts, unlike the existing method discard the static parts.
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2. A closed-form solution to optimize the GERF
We train the GERF so as to maximize dissimilarity for different subjects’
pairs while to minimize dissimilarities for the same subjects’ pairs, and con-
sequently formulate its optimization process as a generalized eigenvalue prob-
lem. We therefore obtain an analytic solution in a closed form without any
iterations and hence avoids troublesome convergence problems which is insep-
arable from a nonlinear optimization framework.

2. State-of-the-art performance on clothing-invariant gait recognition
We achieved the state-of-the-art performance on clothing-invariant gait recog-
nition using publicly available gait database containing the largest clothes
variations up to 32 types, in conjunction with Gabor filtering and spatial
metric learning.

2 Gait Recognition Using GERF

2.1 Representation of GERF

In this section, we introduce the GERF for the most widely used gait feature, i.e.,
GEI. For this purpose, we briefly describe the GEI at first. The GEI [14] a.k.a.
averaged silhouette [30] is a size-normalized and registered silhouette averaged
over one gait period (cycle) T defined as

I(x, y) =
1
T

T∑

t=1

B(x, y, t), (1)

where B(x, y, t) is a size-normalized and registered binary silhouette value (0
and Imax

1 for background and foreground, respectively) at the position (x, y) at
the n-th frame, and I(x, y) is a gait energy (averaged silhouette) at the position
(x, y). While the domain of the gait energy is real number, i.e., I(x, y) ∈ R, we
approximate it as an integer number, i.e., I(x, y) ∈ {0, 1, . . . , Imax} for simplicity.

A transformation from an original gait energy I(x, y) to another one I ′(x, y)
is then defined via the GERF f as

I ′(x, y) = f(I(x, y)) ∀(x, y). (2)

Since the original gait energy takes one of (Imax + 1) integer numbers from 0 to
Imax, the GERF is represented as a lookup table f = [f0, ..., fImax

]T ∈ R
Imax+1,

where fi represent a transformed gait energy from an original gait energy i.
Next, we consider a dissimilarity measure between a pair of GEIs transformed

from original GEIs I1 and I2. We simply adopt Euclidean distance between them
and define its squared distance d2I1,I2

and further formulate it in a quadratic form
of f as

d2I1,I2 =
∑

x,y

(fI1(x,y) − fI2(x,y))2 = fT AI1,I2f , (3)

where AI1,I2 ∈ R
(Imax+1)×(Imax+1) is a coefficient matrix for quadratic-form

representation and its (l,m) component is obtained using the Kronecker delta
δi,j as
1 Imax is usually 255 for 8-bit depth.
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(AI1,I2)l,m =
∑

x,y

(δI1(x,y),lδI1(x,y),m + δI2(x,y),lδI2(x,y),m

− δI1(x,y),lδI2(x,y),m − δI2(x,y),lδI1(x,y),m).
(4)

2.2 Training of GERF

In order to make the transformed GEI discriminative under clothes variation,
we optimize the GERF using a training set including the clothes variation. The
whole training set is composed of two subsets S and D, where the subset S is a
set of GEI pairs of the same subject, while the subset D is a set of GEI pairs of
different subjects. For better discrimination, it is preferable to make it larger the
sum of squared distances DS for the same subject pairs S while make it smaller
the sum of squared distances DD for the different subject pairs. Here, DS and
DD are calculated as

DS =
∑

(I1,I2)∈S
d2I1,I2 =fT SSf

DD =
∑

(I1,I2)∈D
d2I1,l2 =fT SDf ,

(5)

where SS ∈ R
(Imax+1)×(Imax+1) and SD ∈ R

(Imax+1)×(Imax+1) are computed as
SS =

∑
(I1,I2)∈S AI1,I2 and SD =

∑
(I1,I2)∈D AI1,I2 , respectively.

Moreover, in order to make the GERF smoother, we also introduce a regu-
larizer DR, which is defined as

DR = w1

Imax∑

i=1

(fi − fi−1)2 + w2

Imax−1∑

i=1

(fi+1 − 2fi + fi−1)2

= fT (w1SR1 + w2SR2)f

= fT SRf ,

(6)

where w1 and w2 are weighting parameters for the first-order and second-order
smoothness, and SR1 ∈ R

(Imax+1)×(Imax+1) and SR2 ∈ R
(Imax+1)×(Imax+1) are

coefficients matrices for the first-order and the second-order smoothness, which
are defined as

SR1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . . . . . . . . 0

...
. . . −1 2 −1

0 · · · 0 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, SR2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 0 · · · · · · · · · 0

−2 5 −4
. . .

...

0 −4 6 −4
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . −4 6 −4 0

...
. . . −4 5 −2

0 · · · · · · · · · 0 −2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)
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Finally, the GERF is optimized so as to maximize the ratio between the sum
of squared distances DD for the different subject pairs and those DS for the same
subject pairs plus the regularizer DR under an L2 norm constraint on f as

f∗ = arg max
f

fT SDf

fT (SS + SR)f
s.t. ‖f‖ = 1. (8)

In an analogous fashion to well-known LDA formulation, we can formulate this
optimization problem as the following generalized eigenvalue problem

SDf = λ(SS + SR)f s.t. ‖f‖ = 1, (9)

where λ is an eigenvalue, and f is regarded as a corresponding eigenvector. We
therefore analytically obtain the optimal GERF f∗ in a closed-form solution by
assigning the eigenvector corresponding to the largest eigenvalue.

2.3 Gabor Filtering

In order to further improve the performance, we introduce two sequential
processes after obtaining a GEI transformed with the optimal GERF (call it
GEI-GERF later), since the proposed GERF can be jointly used with other
filtering and spatial metric learning techniques.

Orientation

Scale

1 2 ... Nd

1

2

...

Ns

Gabor filtering

GEI w/ GERF

Gabor-GERF

Fig. 2. An example of Gabor-GERF. The rows show different scales and the columns
show different orientations. In this figure, Ns = 5 and Nd = 8.

The first one is Gabor filtering, which has been successfully employed in gait
recognition because of its effectiveness [19,31]. In a similar way to [19], we will
briefly describe Gabor functions. The Gabor function are defined by multiplying
an elliptical Gaussian envelope function with a complex oscillation, defined as

ψs,d(p) =
|ks,d|2

δ2
exp

{
−|ks,d|2‖p‖2

2δ2

} [
exp (k(jks,d) · p) − exp

(
−δ2

2

)]
, (10)
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where a vector p = [x, y]T is the spatial location in Gabor kernel window, a
complex number ks,d = θse

jφd determines the scale (s = 0, . . . , Ns − 1) and
orientation (d = 0, . . . , Nd − 1) of the Gabor kernel function, j is an imaginary
unit, and k(·) is a function to convert a complex number to a two-dimensional
real vector. Specifically, θs = 2−s(π/2) is the scale item, and φd = πd/Nd is the
direction item. Since we have Ns scales and Nd orientations, we then get a total
of NsNd Gabor functions.

Given a GEI-GERF whose width and height are W and H, respectively, it
is convolved with all the Gabor kernel functions and further down-sampled into
half size (i.e., W/2 by H/2) for computational efficiency in the same way as [31].
We then concatenate all NsNd downsampled Gabor-filtered images into a single
image, where scale and orientation components are concatenated along row and
column directions, respectively. As a result, we obtain a concatenated image
whose width and height are W ′ = NdW/2 and H ′ = NsH/2, respectively. In
this paper, we call it Gabor-GERF later and show an example of the Gabor-
GERF in Fig. 2.

2.4 Spatial Metric Learning

Once we obtain the Gabor-GERF, we introduce a spatial metric learning, i.e.,
two-dimensional LDA (2DLDA) in conjunction with preceding dimension reduc-
tion by two-dimensional PCA (2DPCA) [32]. Unlike PCA and LDA handle
one-dimensional vector unfolded from an image matrix, a covariance matrix for
2DPCA and within-class and between-class matrices for 2DLDA are directly
constructed using the original image matrices and result in smaller size of
covariance/within-class/between-class matrices, which ensures lower time com-
plexity and less singularity than PCA and LDA, respectively. We therefore adopt
a combination of 2DPCA and 2DLDA (call it 2DPCA+2DLDA later) for spatial
metric learning.

Suppose that we have M samples of Gabor-GERFs {Xi ∈ R
H′×W ′}(i =

1, . . . ,M) in the training set, and its mean is denoted by X̄. The covariance
matrix ST ∈ R

W ′×H′
for 2DPCA (projection for column direction) is

ST =
1
M

M∑

i=1

(Xi − X̄)T (Xi − X̄). (11)

We then obtain a projection matrix P ∈ R
W ′×W ′′

composed of a set of W ′′ eigen-
vectors of the covariance matrix ST . In this paper, we set the reduced dimension
W ′′ so as to keep more than 99% variance (i.e., less than 1% information loss).

After applying 2DPCA to the Gabor-GERF and obtaining projected matrices
Yi = (Xi − X̄)P, (i = 1, . . . , M), we subsequently calculate the within-class
scatter matrix Sw ∈ R

H′×H′
and between-class scatter matrix Sb ∈ R

H′×H′
as

Sw =
M∑

i=1

(Yi − Ȳli)(Yi − Ȳli)
T (12)
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Sb =
Nc∑

c=1

Mc(Ȳc − Ȳ )(Ȳc − Ȳ )T , (13)

where li is the class label (subject ID) for the i-th sample, Ȳc is a mean for the
c-th class, Ȳ is a total mean, Nc is the number of classes, and Mc is the number
of samples for the c-th class. Finally, the optimal projection w∗ for 2DLDA is
obtained as

w∗ = arg max
w

wT Sbw

wT Sww
. (14)

We then reformulate Eq. (14) as a generalized eigenvalue problem and obtain
a projection matrix R ∈ R

H′×H′′
composed of a set of eigenvectors corresponding

to the H ′′ largest eigenvalues.
Once we obtain the projection matrices P and R, we project the Gabor-

GERF Xi into dimension reduced matrix Zi in the 2DPCA+2DLDA space as

Zi = RT (Xi − X̄)P. (15)

Finally, matching for a pair of Gabor-GERFs is done based on Euclidean distance
in the 2DPCA+2DLDA space.

3 Experiments

3.1 Data Set

We used the OU-ISIR Gait Database, Treadmill Dataset B [33] for our experi-
ments, since it has the largest clothing variations. It includes 68 subjects with
at most 32 combinations of different clothing. The whole dataset is divided into
three subsets: training set, gallery set, and probe set. In the training set, there
are 446 sequences of 20 subjects with the range of 15 to 28 different combina-
tions of clothing. The gallery set and probe set form the testing set composed
of 48 subjects, which were disjoint from the 20 subjects in the training set. The
gallery contains only standard clothing type (i.e., regular pant and full shirt),
while the probe set includes 856 sequences of other remaining clothing types.

3.2 Parameter Setting

There are two main hyper parameters of our GERF in the training stage:
weighting parameters of the regularizer w1 and w2. We experimentally set
w1 = w2 = 5000. About parameters in Gabor filtering, we set Gabor kernel
window size to 41 × 41 and set parameter δ (in Eq. (10)) to 2π. The number of
scales Ns and orientations Nd are set to 5 and 8, respectively. Since the silhouette
image resolution provided in the database is 128 × 88, and hence the resolution
of the Gabor-GERF is 320 × 352.
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3.3 Comparison with Intensity Transformation-Based Methods

To investigate the effectiveness of the proposed GERF module, we firstly con-
ducted comparison experiments with a family of intensity transformed-based
methods, i.e., GEnI and Masked GEI as well as GEI as a baseline.

We show examples for the four gait features, i.e., GEI, GEnI, Masked GEI,
and GEI w/GERF, as well as cropped original images in Fig. 3. Note that the
trained GERF is depicted as a red curve at the bottom row of Fig. 1. The profile
of the GERF for smaller gait energy (e.g., gait energy from 0 to 127) is similar to
the profile of GEnI, which suggests to emphasize the difference from background
to middle-level gray value. On the other hand, the profile of the GERF for
larger gait energy is approximately flat and hence the complete background and
foreground is still differentiated, unlike GEnI or Masked GEI confuse it. In this
way, the proposed GERF can highlight differences in dynamic parts on one hand,
and it keeps static information on the other hand.

GEI

GEnI

Masked GEI

GEI w/ 
GERF

Input image

type Ytype Xtype A type Vtype C type P

Fig. 3. Examples of extracted features for intensity transformation-based methods.
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(a) ROC curves (b) CMC curves

Fig. 4. ROC and CMC curves for intensity transformation-based methods.

Table 1. EER [%] and rank-1 identification rate (denoted as Rank-1) [%] for intensity
transformation-based methods. Bold and Italic bold fonts indicate the best and the
second best, respectively, which is consistent throughout this paper.

Method EER Rank-1

GEI [14] 16.12 52.80

GEnI [15] 12.81 59.00

Masked GEI [16] 28.15 28.04

GERF (proposed) 11.57 61.33

In addition, performances in verification (one-to-one matching) and identifi-
cation (one-to-many matching) scenarios are evaluated. In verification scenarios,
we employ an receiver operating characteristics (ROC) curve which indicates
the tradeoff between the false rejection rate (FRR) of the same subject and the
false acceptance rate (FAR) of different subjects when an acceptance threshold
changes. Moreover, an equal error rate (EER) of FAR and FRR is also evalu-
ated. In identification scenarios, we employ cumulative matching characteristics
(CMC) curve which shows the rates that the true subjects are included within
each of rank.

The ROC curves in Fig. 4(a) show that the proposed GERF outperforms
other features. In Table 1, EER for the proposed GERF method is the lowest
11.57%, which represents the best verification performance. The CMC curves
in Fig. 4(b) also show that the proposed GERF yielded the best performance
among the four features. In Table 1, rank-1 identification rate is the highest
61.33%, which indicates the best identification performance.

As for reference, we have investigated the sensitivity of the hyper parameters
w1 and w2 on rank-1 identification rate of the proposed GERF. For simplicity,
we set the same parameters both for w1 and w2, and changed it in the range
from 1 to 10,000 as shown in Fig. 5. As a result, rank-1 identification rate is not
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Fig. 5. Sensitivity analysis of the hyper parameters on rank-1 identification rates. The
horizontal axis is shown by log-scale.

so much degraded for smaller range of the hyper parameters (less than 5,000)
and is still better than the second best method, i.e., GEnI with 59.0% rank-1
identification rate. It is therefore turned out that the proposed method is not
so insensitive to the setting of parameter w1 and w2 as long as we use less than
5,000.

3.4 Comparison with the State-of-the-Arts Methods

In verification scenarios, we compare the proposed method with the frequency-
domain feature (denoted as whole-based) [17], part-based method with adap-
tive weight control (denoted as part-based) [21], GEI with LDA (denoted as
LDA) [34], SVB frieze pattern [24] and gait components-based method (denoted
as components-based) [35] to confirm its effectiveness. The performance is eval-
uated by ROC curves in Fig. 6(a). As a result, the proposed method gets the
state-of-the-art performance in contrast to the other methods.

(a) ROC curves (b) CMC curves

Fig. 6. ROC and CMC curves compared with the state-of-the-arts.
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Table 2. EERs [%] and rank-1 identification rates [%] compared with the state-of-the-
arts.

Method EER Rank-1

Baseline+GEI [30] - 52.8

LDA [34] 15.48 -

SVB frieze pattern [24] 19.81 -

Components-based [35] 18.25 -

GEI+PCA+LDA [14] - 54.3

GEnI+PCA+LDA [15] - 57.4

Whole-based [17] 14.88 58.1

Part-based [21] 10.26 66.3

Part-EnDFT [22] - 72.8

GEI+RSM [23] Not applicable 80.4

Gabor+RSM-HDF [26] Not applicable 90.7

Gabor-GERF+2DPCA+2DLDA (proposed method) 6.19 83.4

In identification scenarios, we compare the proposed method with the
averaged silhouette (denoted as baseline+GEI) [30], GEI+PCA+LDA [14],
GEnI+PCA+LDA [15], whole-based [17], part-based [21], part-EnDFT [22],
GEI+RSM [23], Gabor+RSM-HDF [26] to confirm its effectiveness. Note that
this different list of benchmarks in identification scenario from that in verification
scenario comes from the difference in the availabilities of reported results in each
paper. The performance is evaluated by CMC curve s in Fig. 6(b). In addition,
the Rank-1 identification rate is shown in Table 2. The proposed method gets the
second best performance, lower than the Gabor+RSM-HDF [26]. However, we
need to point out that the RSM framework cannot guarantee a stable accuracy
because of its randomness. Moreover, the RSM framework is only applicable to
identification scenarios since it relies on a framework of majority voting to all
of the galleries. Considering these points, we can say that the proposed method
is promising since it can be employed both in identification and verification sce-
narios, which indicates the widely application range of the proposed method.

3.5 Analysis of Individual Modules

In order to investigate the effectiveness of individual modules (GEI/GEnI/GERF,
Gabor filtering and spatial metric learning methods), we compare totally eight
methods: GEI+2DPCA+2DLDA, GEnI+2DPCA+2DLDA, GERF, GERF+
PCA +LDA, GERF+2DPCA+2DLDA, Gabor-GERF, Gabor-GERF+PCA+
LDA and Gabor-GERF+2DPCA+2DLDA. The ROC and CMC curves are
reported in Fig. 7(a) and (b), while EER and rank-1 identification rate are reported
in Table 3, respectively. If we exclude Gabor filtering and 2DPCA+2DLDA from
the full proposed method (Gabor-GERF+2DPCA+2DLDA), rank-1 identifica-



Gait Energy Response Function for Clothing-Invariant Gait Recognition 269

tion rates drops by approximately 10%, and EER increases by approximately 2%,
and hence we confirmed that Gabor filtering and spatial metric learning success-
fully enhance the proposed GERF framework.

(a) ROC curves (b) CMC curves

Fig. 7. ROC and CMC curves of GERF and Gabor-GERF w/metric learning.

Table 3. EER [%] and rank-1 identification rate (denoted as Rank-1) [%] of GERF
and Gabor-GERF w/metric learning.

Method EER Rank-1

GEI+2DPCA+2DLDA 8.91 70.68

GEnI+2DPCA+2DLDA 7.48 75.47

GERF 11.57 61.33

GERF+PCA+LDA 10.98 62.85

GERF+2DPCA+2DLDA 7.94 71.50

Gabor-GERF 8.41 71.50

Gabor-GERF+PCA+LDA 8.53 65.00

Gabor-GERF+2DPCA+2DLDA 6.19 83.41

3.6 Analysis of Difficulty Levels by Clothing Type

To evaluate the difficulty levels of clothes variation for the proposed method,
we compute the rank-1 identification rates for all probe clothing types and list
them in descending order as shown in Fig. 8. For the first 21 probe clothes types,
the proposed method achieves over 85% rank-1 identification rate, which include
more complex clothing type, such as clothing type B (i.e., regular pants + down
jacket), clothing type 6 (i.e., regular pants + long coat + muffler). It is therefore
validated that the proposed method effectively gains the discriminative features
under a certain clothes types.
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Fig. 8. Sorted clothing types according to recognition rate with the proposed method
(Gabor-GERF+2DPCA+2DLDA).

For the rest of the probe clothing types, the average rank-1 identification
rate drops to approximately 67%. Specifically, the lowest two clothing types are
type V (i.e., skirt + down jacket) with 44% rank-1 identification rate and type
R (i.e., raincoat) with 61% rank-1 identification rate. In fact, the clothing type
V has quite different appearance from the others as shown in Fig. 3, and even
the proposed GERF suffers from large intra-subject variations. Use of a single
common GERF for all the clothes type may cause this performance degradation,
one of future research avenues is a clothes type-adaptive selection of a suitable
GERF from multiple GERFs in future.

4 Conclusion

The paper described a data-driven framework to learn GERF for clothes-
invariant gait recognition. The GERF transforms an original gait energy into
another one so as to make it more discriminative under clothes variation. The
GERF is represented as a look-up table vector and is optimized through efficient
generalized eigenvalue problem, which enables us to obtain analytical solution
in a closed form without any iterations. In addition, in order to boost the GERF
performance, Gabor filtering and 2DPCA+2DLDA are employed. Through com-
prehensive experiments, the proposed method shows the state-of-the-art perfor-
mance in verification scenarios and competitive performance in identification
scenarios.

Since, we only use the eigenvector corresponding to the largest eigenvalue as
the GERF, the use of multiple eigenvectors will be investigated in the future.
Moreover, since we use a common GREF regardless clothes type and spatial
positions, further performance improvement is expected by introducing adaptive
selection of GREF in future.
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Abstract. This paper proposes a novel human action recognition using
the decision-level fusion of both skeleton and depth sequence. Firstly, a
state-of-the-art descriptor RBPL, relative body part locations, is adopted
to represent skeleton. But the original RBPL employs all the available
joints, which may introduce redundancy or noise. This paper proposes
an adaptive optimal joint selection model based on the distance trav-
eled by joints before RBPL for each different action, which can reduce
redundant joints. Then we use dynamic time warping to handle temporal
misalignment and adopt KELM, kernel-based extreme learning machine,
for action recognition. Secondly, an efficient feature descriptor DMM-
disLBP, depth motion maps-based discriminative local binary patterns,
is constructed to describe depth sequences, and KELM is also used for
classification. Finally, we present an effective decision fusion for action
recognition based on the maximum sum of decision values from skeleton
and depth maps. Comparing with the baseline methods, we improve the
performance using either skeleton or depth information, and achieve the
state-of-the-art average recognition accuracy on the public dataset MSR
Action3D using proposed fusing strategy.

1 Introduction

Human action recognition is an active area in computer vision and has various
applications in surveillance, health care and video games. In the past decades,
many researchers focused on recognizing action from RGB videos, which is a
difficult task due to illumination changes and background clutter [1].

Recently, with the introduction of some cost-effective depth sensors, such as
Microsoft Kinect, both depth maps and 3D skeleton are provided. Unlike tradi-
tional RGB images, depth maps are insensitive to light condition and cluttered
background. And skeleton contains much action-relevant information because it
describes human body naturally. These recent advances facilitate a lot of research
on skeleton-based and depth maps-based methods for action recognition.

For skeleton-based human action recognition, Xia et al. [2] proposed HOJ3D
(Histograms Of 3D Joint locations) to represent poses. They constructed this
view-invariant feature by placing joint locations into 3D spatial bins, which is real
time but depends on estimated skeleton root position [3]. Vemulapalli et al. [1]
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 273–287, 2017.
DOI: 10.1007/978-3-319-54184-6 17
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proposed a skeletal representation RBPL (Relative Body Part Locations) that
explicitly models the 3D geometric relationships between various body parts.1

Using RBPL representation, they modeled human actions as curves in Lie group
and then mapped them into Lie algebra, and finally used SVM for classification.
However, this approach considers all body parts, which may involves confusion
or redundancy. More recently, Du et al. [4] proposed an end-to-end hierarchical
recurrent neural network (RNN) for skeleton-based action recognition. They
divided skeleton into five parts according to human physical structure, and then
five subnets were used for training and testing separately.

On the other hand, for depth maps-based action recognition, Li et al. [5]
presented a bag of 3D points for action recognition. They used a small number
of 3D points as a descriptor of the 3D shape of each pose. However, it is difficult
to sample the interest points robustly due to the large intra-class variability [3].
Yang et al. [6] proposed a method based on DMM (Depth Motion Maps) to
capture motion cues and use HOG (Histogram of Oriented Gradients) on DMM
to extract features. Recently, Chen et al. [7] proposed another descriptor DMM-
LBP, which extracted LBP (Local Binary Patterns) on DMM from three views
to describe texture features. This method outperformed DMM-HOG on public
dataset MSR Action3D [5].

The above methods only use single information for action recognition, how-
ever, each information has its own advantages and may complements each other.
Skeleton joints have stronger representation power than depth maps while depth
maps suffer less distortion than skeleton joints. Thus, some researchers [8–10]
pay attention to fusing multiple information for action recognition. Althloothi
et al. [8] employed MKL (Multiple Kernel Learning) to fuse two features
extracted from depth images and skeleton. But they only used six specified
body parts to describe actions, which may overlook other important ones for
certain action. And they used spherical harmonics coefficients as shape feature
to represent depth maps, which may be unreliable due to the huge intra-class
variability of body silhouettes. This method only achieves average accuracy of
79.27% on MSR Action3D dataset. Recently, Liu et al. [10] proposed 3D-based
deep convolutional neural network to directly learn spatio-temporal features from
depth sequences and computed a so-called JointVector feature to describe skele-
ton sequences. Finally, the SVM classification results from high-level feature and
JointVector are fused. They achieved average accuracy of 84.07%.

The above analysis shows that it is important to make sure the high accuracy
using single information before fusion. This paper focuses on the improvement of
feature description ability for skeleton-based and depth maps-based action recog-
nition. Then we further present a decision fusion strategy to combine these two
types of information to improve the final recognition performance. The overview
of our method is illustrated in Fig. 1.

Firstly, for skeleton-based feature description, we model the human skeleton
by RBPL [1]. However, the original RBPL may introduce redundancy due to

1 The authors don’t name their method. In order to facilitate the writing, we name it
RBPL (Relative Body Part Locations).
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Fig. 1. Overview of our proposed method.

considering all the available joints. We propose an adaptive optimal joint selec-
tion based on the distance traveled by joints (OJSDTJ) before RBPL to reduce
redundance. This optimal joint selection measures the importance of joint by
the distance it travels firstly and a two-layered model is further used to enhance
the robustness and discriminative power of selected joints for each action. Then
we use DTW (Dynamic Time Warping) [11] to handle temporal misalignment
and perform the final classification by KELM (Kernel-based Extreme Learning
Machine) [12]. Compared with the original RBPL framework, proposed method
OJSDTJ achieves an average accuracy of 89.66% on MSR Action3D, which is
improved by 1.56%, while the feature dimensionality is reduced by 69.56%.

Secondly, for depth maps-based feature description, inspired by DMM-LBP
descriptor [7], we propose DMM-disLBP (Depth Motion Maps-based discrimina-
tive Local Binary Patterns) descriptor to improve texture description ability for
depth sequence. We first calculate DMMs from three views on depth sequences
to capture motion information. Then disLBP operator [13] is applied to over-
lapped blocks of the DMM. This operator is based on the optimal pattern subsets
learned from a three-layered model, rather than using all predefined patterns like
conventional LBP. We subsequently concatenate the disLBP histograms of the
blocks for each DMM to form the feature vectors. And KELM is used for clas-
sification. Compared with DMM-LBP, our DMM-disLBP achieves an average
accuracy of 94.28% on MSR Action3D, which is improved by 2.14%.

Thirdly, to combine above two methods, we present an effective decision
fusion based on the maximum sum of decision values from multiple KELMs.
Compared with the results using single information (89.66%, 94.28%), this fusion
achieves average accuracy of 97.30%, which shows the reliability of this fusion.

The contributions of this paper can be summarized as follows. (1) An opti-
mal joint selection method based on the distance traveled by joints is proposed
to reduce redundant joints and improves recognition performance. (2) A dis-
criminative descriptor DMM-disLBP to describe depth maps is proposed, which
improves feature description ability. (3) Finally, we propose an effective decision
fusion strategy based on the maximum sum of decision values from skeleton-
based and depth maps-based action recognition. And the proposed fusing method
achieves average recognition accuracy of 97.3% on public dataset MSR Action3D,
which is the state-of-the-art result on this dataset.
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Fig. 2. Human skeleton captured by Kinect.

2 Skeleton-Based Action Recognition

Figure 2 shows a human skeleton with 20 joints and 19 body parts,2 which is cap-
tured by Kinect. Most existing skeleton-based methods simply extract features
from all the joints [1] or some predefined joints [8]. This paper proposes a novel
adaptive optimal joint selection method for each different action as Fig. 3 shows.
Firstly, we preprocess raw skeletal data to ensure skeleton scale-invariant and
view-invariant, and then Savitzky-Golay filter [4] is employed to reduce noise.
Secondly, we propose a two-layered model to select discriminative joints for each
action. The histogram of this model represents the distance traveled by all joints
of a skeleton in Fig. 3. Layer 1 aims to determine the dominant joint subset from
the initial joint set of each training sequence. And Layer 2 is used to select the
discriminative dominant joint set of each action class by taking intersection of
the joint subsets from Layer 1. Thirdly, RBPL is employed to represent skeleton.3

Finally, we use DTW to handle temporal misalignment and KELM to perform
classification. The details of each step are as follows.

2.1 Basic Preprocessing

We adopt the methods in [1,4] to preprocess raw skeletal data. Generally speak-
ing, actions are independent of the performer’s location. Therefore, it is essen-
tial step to transform raw skeletal data from real world coordinates to human-
centered coordinates. This can be completed by placing the origin of coordinate
system on the hip center (joint 7 in Fig. 2). Besides, it is obvious that the lengths
of body parts vary from person to person. To ensure skeleton scale-invariant, we
take one skeleton as reference to normalize the lengths of body parts of all the
other skeletons. To eliminate view-dependency, the vector from left hip (joint 6)
to right hip (joint 5) is first projected to the ground plane. And skeleton is then
rotated to where this projection is parallel to the global x-axis.

2 http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/
SkeletonModelMSRAction3D.jpg.

3 The diagram of RBPL is quoted from [1].

http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/SkeletonModelMSRAction3D.jpg
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/SkeletonModelMSRAction3D.jpg
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Fig. 3. The main steps of our skeleton-based method.

Next, to handle noise issues, a simple Savitzky-Golay smoothing filter is
employed. The filter is designed as follows.

fi = (−3xi−2 + 12xi−1 + 17xi + 12xi+1 − 3xi+2)/35 (1)

where xi denotes the skeleton joint coordinates in the ith frame, and fi denotes
the filtering result.

2.2 Skeletal Representation

In order to make it easier to understand our method, here we first introduce
a state-of-the-art skeletal representation in [1], relative body part locations
(RBPL). The main idea of RBPL is described as follows. Given a pair of body
parts, each one of them can be rotated and translated to the orientation and
location of another part. Therefore, we can use the structure consisting of this
rotation and translation to represent their relative geometric relationship. Math-
ematically, this structure is proven to be a member of the special Euclidean group
SE(3), which is a matrix Lie group. That is, we can represent the relative 3D
geometry between a pair of body parts as a point in SE(3). Accordingly, a skele-
ton S at frame T including various pairs of body parts can be represented as a
point in SE(3)× . . .×SE(3), i.e. Lie group. Therefore, an action consisting of a
skeleton sequence can be represent as a curve in Lie group. For the subsequent
processing, each sequence should have an equal number of samples. Since we
represent a sample as a point in Lie group, it is easy to use the interpolation
algorithm in [1] to complete this task. Finally, we map the action curves from Lie
group to its Lie algebra, a vector space, where standard classification is directly
applicable.
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2.3 Proposed Optimal Joint Selection

Though RBPL explicitly models human skeleton, it has two major limitations.
The first one is high computational cost. As is mentioned in [1], skeleton S with
20 joints and 19 body parts can be represented as a point, which is a 2052-
dimensional vector. Accordingly, a sequence with N frames is represented as a
vector of dimension 2052×N . This high dimensional vector may lead to huge cost
for computation. Another limitation is that taking all joints into consideration
may include redundant information which could complicate the classification.

To overcome the above-mentioned limitations, inspired by disLBP [13], an
adaptive joint selection is proposed to select the most discriminative joint subsets
for each given action. This method simultaneously considers the robustness and
discriminative power of selected joints, and can be formulated into a two-layered
model described as follows.

Layer 1 aims to select the most dominant and robust joints from each training
skeleton sequence. The main idea of this layer comes from an observation that the
importance of a joint is associated with the distance traveled by it. Specifically
speaking, given an action, the joints which have longer distance traveled during
this action process may play more important role in depicting it. In contrast,
the joints which almost keep still may contribute little to recognizing this action.
And sometimes they may involve noise, which harms the subsequent feature
extraction. The Algorithm1 describes the details of Layer 1.

Algorithm 1 (Layer 1). Determine the dominant joint subset of each training
sequence xi from the training set Ttrain.

Input: at t = 1, 2, . . . , T , the joint positions JPj(t) from the initial joint set
of each sequence xi, where j = 1, 2, . . . ,m (m denotes the number of the initial
joints). And the threshold parameter n to determine the proportions of dominant
joints selected from each training sequence.

Output: Dominant joint set Ji with respect to each training sequence xi.
1. FOR j = 1 TO m
2. si[j] = si,j =

∑T
t=2 ‖JPj(t)−JPj(t− 1)‖2, where ‖ • ‖ denotes l2 norm

3. END FOR
4. Initialize reference vectors V , where V [j] = j (j = 1, . . . ,m)
5. Sort si in descending order to obtain ŝi. Change the configuration of V

according to element order of ŝi, resulting in V̂
6. FOR k = 1 TO m
7. IF

(∑k
l=1

ŝi,l∑m
l=1 ŝi,l

)
� n

8. BREAK
9. END IF
10.END FOR
11.RETURN Ji =

{
V̂ [1], . . . , V̂ [k]

}
as a dominant joint subset for sequence

xi ∈ Ttrain

In the second layer, the most discriminative joint subsets for each class are
estimated by minimizing inter-class similarity based on joints selected from
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Layer 1. Theoretically, different sequences belonging to the same action cate-
gory should have the same dominant joint subset. However, due to distortion or
noise, these sequences from the same class usually have different joint subsets.
To minimize class ambiguity, we take the intersection of dominant joint sub-
sets across all training sequences belonging to the same class. The Algorithm2
describes the details of Layer 2.

Algorithm 2 (Layer 2). Select the discriminative dominant joint set of class j
input: Dominant joint sets J1, J2, . . . , JnJ

of nJ sequences belonging to class
j obtained from Algorithm1.

output: Discriminative dominant joint set JCj of class j.
1. Initialize JCj = J1
2. FOR each sequence k = 2 TO nJ belonging to class j
3. JCj = JCj ∩ Jk
4. END FOR
5. RETURN JCj

Since RBPL representation is applied to body parts rather than joints, we
should transform our joint sets to body part sets. Considering that RBPL mod-
els the relative 3D geometry between various body parts, we first add joint torso
(joint 4) to strengthen this relative relationship. And then joint sets are trans-
lated to body part sets.

Let E = {e1, e2, . . . , em−1} denotes the initial body part set, where m denotes
the number of the initial joints, and ej = {ej1 , ej2} denotes the body part ej con-
necting joint ej1 to joint ej2 , the Algorithm3 explains the transform as follows.

Algorithm 3. Transform discriminative dominant joint set JCj of class j to
the corresponding discriminative dominant body part set ECj

input: The discriminative dominant joint set JCj = {J1, J2, . . . , Jc} for each
class j obtained from Algorihtm 2, where c = |JCj |, and the initial body part
set E.

output: Discriminative dominant joint set ECj of class j.
1. Initialize JCj = JCj ∪ Jtorso, ECj = �
2. FOR i = 1 TO c
3. FOR k = 1 TO m − 1
4. IF Ji ∈ {ek1 , ek2}
5. ECj = ECj ∪ ek
6. END IF
7. END FOR
8. END FOR
9. RETURN ECj

Through the selection of Layer 1 and Layer 2, we have obtained discriminative
joint subset for each action. After applying the transform algorithm, we also get
the discriminative body part subset for each action, which has removed the
confusion and redundancy. Then we apply RBPL to our body parts set ECj
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of class j, we obtain the so-called OJSDTJ skeletal representation. Comparing
with the original RBPL, it has several advantages of lower computational cost,
higher robustness and stronger discriminative power.

2.4 Temporal Modeling and Classification

The above mentioned OJSDTJ algorithm is used to extract feature from each
frame of a skeleton sequence. However, the action sequences may have different
lengths due to the various motion for different persons and different repeats.
Following [1], DTW is used to handle rate variations. We first apply DTW to
compute the nominal curves across all training sequences belonging to the same
action. And then all curves are warped into the nominal curves of each class.
Since the warping process requires all curves to have equal length, we employ
the interpolation algorithm [1] to re-sample the curves before mapping to vec-
tor space. Unlike the proposed method in [1], we directly perform classification
rather than applying Fourier temporal pyramid (FTP) [14] before. The reason
is that two major functions of FTP, temporal matching and denoising, can be
replaced by DTW and Savitzky-Golay smoothing filter respectively. One-vs-all
linear KELM is employed to the final classification. The experimental evaluation
will be described in Subsect. 5.1.

3 Depth Maps-Based Action Recognition

Due to the distortion of skeleton in some sequences, it is insufficient to only
use skeletal feature to robustly describe action. This paper further improves
depth maps-based method based on recent DMM-LBP method [7], which has the
highest average recognition rate among depth maps-based approaches on MSR
Action3D dataset. The main steps of our proposed depth maps-based method
DMM-disLBP are shown in Fig. 4. DMM is first used to capture motion cues
from three views and then disLBP operator [13] is applied to DMM to extract
texture feature. Finally, KELM is used for action classification. The details of
each step are described as follows.

We first employ depth motion maps (DMM) to capture motion information.
The main idea behind DMM is as follows. Given a depth sequence with N
frames, we project all the frames onto three orthogonal Cartesian planes from
three project views [front(f), side(s), top(t)]. This projection produces three 2D
images, denoted by mapf , maps, mapt. Then the following equation is applied
to generate three DMMs [7].

DMM{f,s,t} =
N−1∑

j=1

|mapj+1
{f,s,t} − mapj{f,s,t}| (2)

where j is the frame index.
As is shown in Fig. 4, DMMs contain abundant texture information, which

reflects the temporal motion characteristics. Therefore, an effective texture
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Fig. 4. The main steps of our depth maps-based method.

descriptor LBP (local binary patterns) is then used to extract the texture feature.
Unlike using conventional LBP in [7], we employ a novel LBP named disLBP
(discriminative LBP). This kind of LBP is based on the optimal pattern subset
learned from a three-layered model in [13]. And thus, it performs better than
conventional LBP. We apply disLBP operator to overlapped blocks of the DMMs
and calculate disLBP histograms for each block. The resulted histograms of the
blocks in a DMM are represented as a feature vector. And disLBP feature vector
for each DMM is then concatenated as a global feature vector. KELM is used for
final classification. The experimental evaluation will be described in Subsect. 5.2.

4 Decision-Level Fusion Based on the Maximum Sum of
Decision Values

Based on above proposed skeleton-based method and depth maps-based method,
we further introduce an efficient decision-level fusion to combine two complemen-
tary methods. It can be precisely described as follows.

Given a testing sequence x, let n denotes the total number of action category,
we assume that the KELM in our skeleton-based method gives the decision values
of each class i (i = 1, . . . , n) as: v1, . . . , vn, and the KELM in our depth maps-
based method gives the decision values of each class i as: v̂1, . . . , v̂n. Then we
can calculate the class label l of sequence x by the following equation:

l = argmax
i

{v1 + v̂1, . . . , vn + v̂n} (3)

This method is called decision fusion based on the max sum of decision values,
or DFMSDV for short.
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5 Experimental Evaluation

In this section, we evaluate our proposed methods on a challenging public
dataset, MSR Action3D dataset [5]. This dataset contains 20 different actions
performed by 10 different subjects and with up to 3 different repetition. It was
divided into three subsets (AS1, AS2, AS3) of 8 actions each. Specially speaking,
the AS1 and AS2 subsets include similar actions, while AS3 includes complex
actions. Following [4,7–10,15–18], we test our methods on the three subdatasets
and use all of the 557 video clips. Specially, we choose one half of the subjects
(1, 3, 5, 7, 9) as training set and the rest for testing. Therefore, we have a total
number of 284 sequences for training and 273 sequences for testing. Here we use
the average recognition accuracy on AS1, AS2 and AS3 to measure the perfor-
mance of different methods.

We design three experiments on this dataset to evaluate our proposed meth-
ods. (1) For skeleton-based action recognition, we test three frameworks includ-
ing original RBPL [1], proposed RBPL-Ours and proposed OJSDTJ. (2) For
depth maps-based method, we compare the method DMM-LBP [7] and our pro-
posed DMM-disLBP with the same parameters setting. (3) To illustrate the
effectiveness of fusing method, we evaluate recognition performance of our pro-
posed fusing strategy DFMSDV and also compare our proposed methods with
various state-of-the-art methods.

5.1 Skeleton-Based Approach Evaluation

As is mentioned in Sect. 2, we propose optimal joint selection model OJSDTJ to
combine RBPL for skeletal representation.

Parameters Setting. For the data reliability, we remove the first and the last
n frames of skeleton sequences, here we set n = 1. Our OJSDTJ bases on the
distance traveled by joints and we find that the proportion of the distances trav-
eled by hands, arms and elbows in most actions are more than 98% on training
set. Therefore, only joints belonging to hands, arms and elbows are selected
for these actions unless threshold parameter n is higher than 0.98. So we set
n = 0.99. After optimal joint selection, we use RBPL to extract skeleton feature
and employ KELM for classification as is mentioned in Sect. 2. For KELM, we
choose linear kernel and set parameter C = 1000.

Table 1. Recognition accuracy (%) of three different frameworks on MSR Action3D.

Method AS1 AS2 AS3 Avg.

RBPL (RBPL+DTW+FTP+SVM) [1] 86.67 83.04 94.59 88.10

RBPL-Ours (Filter+RBPL+DTW+KELM) 87.62 84.82 94.59 89.01

OJSDTJ (Filter+OJSDTJ+RBPL+DTW+KELM) (Ours) 90.47 83.92 94.59 89.66
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Experimental Results. As Table 1 shows, we compare three methods: the
original framework RBPL [1], our proposed framework RBPL-Ours, and our
proposed framework OJSDTJ. The original framework RBPL employs a combi-
nation of RBPL, DTW and FTP for skeleton feature description, and SVM is
used for final classification. By contract, our proposed framework RBPL-Ours
employs a combination of Savitzky-Golay filter, RBPL and DTW for skeleton
feature description, and KELM is used for final classification. Note that the accu-
racy of the original framework using RBPL is different from [1], this is because
their experimental parameters setting is different. We obtained the results of
original RBPL [1] within the same experimental setting as ours, such as sub-
jects (1, 3, 5, 7, 9) as training set and the rest for testing. Compared with the
original framework, our proposed framework RBPL-Ours achieves higher accu-
racy on AS1 and AS2, and the average accuracy is also improved by 0.91%. This
result shows that our framework RBPL-Ours outperforms the original one with
the same skeletal representation. The main reason may be that the combina-
tion of Savitzky-Golay filter and DTW performs better than FTP on denoising
and temporal misalignment. Compared with RBPL-Ours, the framework using
OJSDTJ achieved much higher accuracy on AS1, and the average accuracy is
also 0.65% higher. However, this method performs worse slightly on AS2 when
using OJSDTJ. Further analysis on AS2 (Table 2) shows us that only two action
high arm wave and draw circle are performed worse. The reason may be that
Layer 1 fails to select the key joints of these two actions for some noisy train-
ing sequences, which may lead to the missing of the key joints when we take
the intersection set in Layer 2. Nevertheless, the average accuracy of our frame-
work OJSDTJ still performs the best among these three frameworks for action
recognition.

Moreover, OJSDTJ has lower computational cost than RBPL. Here we ana-
lyze the dimension reduction after using OJSDTJ. Since we have 20 actions and
20 joints, the initial total number of joints is 20 × 20 = 400 and each sequence
is represented as a vector of 155,952 dimensions on MSR Action3D dataset for
initial RBPL. For proposed OJSDTJ, we only have 139 joints in total and each
sequence is represented as a vector of 47,469 dimensions on average, which is
reduced by 69.56%. The above experimental results show that our proposed
framework OJSDTJ has 1.56% improvement of average accuracy with better
computational efficiency than original RBPL framework [1] as Table 1 shows.

Table 2. Accuracy (%) comparison of RBPL-Ours and OJSDTJ on AS2.

High arm
wave

Hand
catch

Draw
cross

Draw
tick

Draw
circle

Two-hand
wave

Forward
kick

Side-
boxing

RBPL-Ours 91.67 33.33 76.92 93.33 73.33 100 100 100

OJSDTJ 83.33 33.33 84.62 100 60.00 100 100 100
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Table 3. Recognition accuracy (%) of DMM-LBP and DMM-disLBP withm = 4, r = 1.

Method AS1 AS2 AS3 Avg.

DMM-LBP [6] 95.24 88.39 92.79 92.14

DMM-disLBP (Ours) 97.14 89.29 96.40 94.28

5.2 Depth Maps-Based Approach Evaluation

As is mentioned in Sect. 3, we employ DMM-disLBP descriptor to characterize
depth sequences and use KELM for classification.

Parameters Setting. To ensure data reliability, we remove the first and the
last n frames of depth sequences, here we set n = 1.

Following [7], we calculate DMMs from three projection views [front(f),
side(s), top(t)]. The sizes of DMMf , DMMs,and DMMt are normalized to
be 102 × 54, 102 × 75, and 75 × 54 respectively. The block sizes of the DMMs
were considered to be 25 × 27, 25 × 25, and 25 × 27 corresponding to DMMf ,
DMMs, and DMMt. Then we applied disLBP on DMMs to extract texture
feature. Following [13], we set the threshold parameter n = 0.90 for disLBP. We
also set the radius r and the number of the neighbors m for disLBP descriptor.
We initially want to follow the setting of LBP in [7]. But the authors don’t tell
us the parameters setting when testing on three subsets. So we set r = 1 and
m = 4, a default setting in the authors’ code. Within this setting, DMM-LBP
performs a little worse compared with the results listed in [7]. And we perform
classification by KELM. Following [7], we choose RBF kernel and set C = 1000,
Gamma = 10.5.

Experimental Results. As is shown in Table 3, we compare two approaches:
DMM-LBP and DMM-disLBP with parameter m = 4, r = 1. Comparing with
DMM-LBP, our proposed method performs better on AS1, AS2, and AS3. The
average accuracy is 2.14% higher than the original method. The result shows
that disLBP is more effective than conventional LBP to extract texture feature.

5.3 Results of Decision Fusion

To combine our skeleton-based and depth maps-based method, we propose a
fusion strategy DFMSDV for action recognition as is mentioned in Sect. 4.

The parameters setting is as the same as the Subsects. 5.1 and 5.2.

Table 4. Recognition accuracy (%) of OJSDTJ, DMM-disLBP, and DFMSDV.

Method AS1 AS2 AS3 Avg.

OJSDTJ 90.47 83.92 94.59 89.66

DMM-disLBP 97.14 89.29 96.40 94.28

DFMSDV 99.05 93.75 99.10 97.30
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We compare our three proposed approaches in Table 4. As Table 4 shows,
compared with OJSDTJ based on skeleton, fused method DFMSDV improves
the accuracy on AS1, AS2, AS3 by 8.58%, 9.83%, 4.51% respectively and achieves
7.64% higher average accuracy. Compared with DMM-disLBP, DFMSDV
improves the accuracy on AS1, AS2, AS3 by 1.91%, 4.46%, 2.7% respectively
and achieves 3.02% higher average accuracy. These results shows that our deci-
sion fusion strategy combines these two complementary methods well. Also, we
compare our proposed approaches with various state-of-the-art human action
recognition approaches [1,4,7–10,15–18] on MSR Action3D dataset. The detailed
results are shown in Table 5. We can see that our proposed method DFMSDV
achieves the highest accuracy on AS1 (99.05%) and the highest average accu-
racy (97.30%). Note that we still list the best average accuracy of DMM-LBP,
94.9% rather than 92.14% mentioned in Subsect. 5.2. But our proposed method
DFMSDV also performs better than this best result. The results shows that
DFMSDV outperforms all the other method using only single information or
combining multiple information, which is also shown in Fig. 5.

In our survey, we find that the average accuracy in paper [19] is 98.2% on
MSR Action3D dataset, which uses subjects (2, 3, 5, 7, 9) as training set rather
than (1, 3, 5, 7, 9) as Table 5 shows. We also add extra experiments using subjects
(2, 3, 5, 7, 9) as training set and keep the same parameters setting as our above
experiments. The final average accuracy is 97.62%, which is a little lower than
[19]. Compared with the results in Table 5, the average accuracy of our fusion
method has increased by 0.32%. The average accuracy of our skeleton-based
method has increased by 3.38% while the average accuracy of our depth maps-
based approach has reduced by 0.93%. This result shows that the parameters of
our depth method should be tuned with the change of training set.

Table 5. Recognition accuracy (%) comparison of our proposed approaches and various
state-of-the-art human action recognition on MSR Action3D dataset.

Method Information Year AS1 AS2 AS3 Avg.

Althloothi et al. [8] Skeleton+Depth 2014 74.3 76.8 86.7 79.27

Evangelidis et al. [15] Skeleton 2014 88.39 86.61 94.59 89.86

Theodorakopoulos et al. [16] Skeleton 2014 91.23 90.09 99.5 93.61

Vemulapalli et al. [1] Skeleton 2014 86.67 83.04 94.59 88.10

Vieira et al. [17] Depth 2014 91.7 72.2 98.6 87.5

Shen et al. [18] Depth 2014 90.6 81.4 94.6 88.87

Du et al. [4] Skeleton 2015 93.33 94.64 95.50 94.49

Chen et al. [7] Depth 2015 98.1 92.0 94.6 94.9

Liu and Pei [9] Skeleton+Depth 2015 91.55 84.67 93.06 89.76

Liu et al. [10] Skeleton+Depth 2016 86.79 76.11 89.29 84.07

DMM-disLBP (Ours) Depth 2016 97.14 89.29 96.40 94.28

OJSDTJ (Ours) Skeleton 2016 90.47 83.92 94.59 89.66

DFMSDV (Ours) Skeleton+Depth 2016 99.05 93.75 99.10 97.30
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Fig. 5. Comparison of our proposed methods and various state-of-the-art approaches.

6 Conclusion

This paper proposes an adaptive optimal joint selection model based on distance
traveled by joints to select discriminative joint subsets for each given action.
Using this framework, we achieve higher average accuracy for action recogni-
tion while reducing feature dimensionality considerably. We also introduce an
effective depth descriptor DMM-disLBP to improve the feature description abil-
ity of depth maps. Finally, we propose a decision fusion scheme based on the
maximum sum of decision values to combine skeleton and depth maps informa-
tion. Our final fusing results outperform most state-of-the-art action recognition
approaches published recently on MSR Action3D dataset.
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Foundation: 4142051.
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Abstract. Most previous methods for tracking of multiple objects fol-
low the conventional “tracking by detection” scheme and focus on
improving the performance of category-specific object detectors as well
as the between-frame tracklet association. These methods are therefore
heavily sensitive to the performance of the object detectors, leading
to limited application scenarios. In this work, we overcome this issue
by a novel model-free framework that incorporates generic category-
independent object proposals without the need to pretrain any object
detectors. In each frame, our method generates a small number of tar-
get object proposals that are shared by multiple objects regardless of
their category. This significantly improves the search efficiency in com-
parison to the traditional dense sampling approach. To further increase
the discriminative power of our tracker among targets, we treat all other
object proposals as the negative samples, i.e. as “distractors”, and update
them in an online fashion. For a comprehensive evaluation, we test on the
PETS benchmark datasets as well as a new MOOT benchmark dataset
that contains more challenging videos. Results show that our method
achieves superior performance in terms of both computational speed and
tracking accuracy metrics.

1 Introduction

Single object tracking attained considerable success thanks to the advances in
“tracking-by-detection” that demonstrated improved performance on standard
benchmarks [1–3]. Compared to single-object tracking counterpart, multiple-
object tracking is a more challenging task due to the frequent occlusions between
the target objects [4] and typical similarities in their motion patterns as well
as visual appearances. Moreover, the background scenes also tend to be more
cluttered due to the presence of other moving objects [3,5].

In model-based tracking-by-detection of multiple objects, an offline trained
category-specific object detector, e.g., DPM [6] or R-CNN [7], is applied at every
frame to generate high quality object hypotheses, and then graph-based methods
such as max-flow [8,9] are used to solve the subsequent multi-frame multi-target
association problem. These multiple object tracking methods, however, depend
heavily on the performance of category-specific object detectors, which often miss
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 288–304, 2017.
DOI: 10.1007/978-3-319-54184-6 18
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#1 #351 #543

#1 #45 #55

Fig. 1. Results obtained using our model-free multiple object tracking method. Bound-
ing boxes of the same color denote the same tracked object. After initialization, our
method tracks each object without any pretrained models. (Color figure online)

objects or generate false positives that are induced by the discrepancy between
the training dataset and the test conditions of individual deployments [10].

Being constrained to a specific object class also limits the applicability of
the tracker to a certain setting, for example, multiple vehicle tracking in traffic
scenes. In practice, however, various applications demand tracking of different
types of objects undergoing complex motions as shown in Fig. 1.

On the other end of the spectrum, “model-free” approaches aim to track
arbitrary (category-independent) objects [11–15]. They initiate a single bounding
box on the target in the first frame and then employ either a generative [16–19]
or a discriminative [20–23] strategy to train their object models online. These
methods are successfully applied for single-object tracking. However, extending
“model-free” methods to multiple tracking task is not a straightforward problem
due to two major reasons:

• Computational efficiency – Since each tracker searches around the previous
location to localize the object, the time cost is proportional to the number of
objects.

• Interactions – Objects contact or occlude each other. They often have sim-
ilar appearances. Blindly and independently applying single-object trackers
multiple times for different targets leads to ambiguities and tracking failures.

To overcome the above challenges, we propose a model-free multiple object
tracking framework based on generic object proposals. We take advantage of the
proposals in both online training and testing of the tracker.

In the testing stage, a small set of object candidates are generated based on
simple objectness cues first. Notice, this set is shared by all trackers and it pro-
vides two benefits: (i) a significant reduction of the number of candidates, and
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(ii) tracking accuracy improvement since many false positives can be eliminated
at this stage. The proposals are then assigned to trackers based on the classifier
confidence and temporal smoothness measures. The number of proposals can be
as many as hundreds while the number of objects might be only a few. We use
the Hungarian algorithm [23,24] with appropriate modifications to reduce the
computational cost during the data association stage. Other association methods
[1–3] can also be used, yet we observe that the computationally efficient Hun-
garian method works favorably when we build discriminative classifiers based on
the generated proposals.

In the training stage, we collect the proposals as hard negative sam-
ples instead of manual selecting around positive samples. These proposals are
expected to contain the other targets and object-like background clutter. Min-
ing explicitly for such hard negative samples and employing hard negatives in
the training of individual object models significantly improves the discriminative
power of the object models. We update the classifiers at certain time intervals in
an online fashion to compensate for object appearances changes over time and
incorporate new distractors. A few local candidates sampled around the previ-
ous object locations are included in the negative set to further improve tracking
precision.

We focus on a challenging scenario of multi-object tracking where each object
may move very fast in an irregular fashion. To our knowledge, this chal-
lenge has not been widely researched and there are only a few benchmarks (e.g.
PETS [5]) available for investigation. Therefore, we collected an extensive set
of challenging video sequences from various sources and manually labeled the
ground-truth object locations for a comprehensive experimental evaluation.

Our method is conceptually simple, easy to implement, and most impor-
tantly, achieves superior performance in comparison to several state-of-the-art
techniques in terms of both tracking accuracy metrics and computational effi-
ciency.

2 Related Work

Here we give a brief review to previous methods for multi-object tracking that
are most related to this paper. For more comprehensive literature surveys the
reader is referred to [3,11–13].

Multiple Target Tracking. As aforementioned in Sect. 1, most multiple object
tracking methods focus on the data association problem, assuming sufficiently
long and accurate tracklets are provided by using advanced object detectors [3].
For example, [25] considers motion dynamics as the major cue to distinguish
different targets with similar appearance. It solves the problem as generalized
linear assignment (GLA) of tracklets, which are incrementally joined forming
longer trajectories based on their similar dynamics. The work in [1] observes
that motion cues are not always reliable for this task, due to for example abrupt
camera movement. As a remedy a structured motion constraint between objects
is therefore proposed to address this issue.
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Tracker in [2] proposes an online discriminative appearance learning approach
to handle similar appearances of different objects in tracklet association. This
method is similar to our method to be described in this paper; however, in their
work those negative training samples are only collected around the tracklets,
while ours pivots on the hard negative ones.

Model-Free Object Tracking. Model-free object tracking algorithms are pro-
posed primarily for solving single object tracking applications [11,12]. The work
in [26] tries to improve the identification of a single target object by also tracking
stable features in the background, thereby improving the location prior for the
target object. [27] proposes a context-aware tracker which considers a set of aux-
iliary objects as the contextual information for the foreground. These auxiliary
objects must satisfy conditions such as having persistent co-occurrence with the
foreground and consistent motion correlation.

The tracker in [28] is probably the most closely related work to ours. However,
they assume spatial relationship between objects. For instance, nearby objects
tend to move along the same direction. The appearance models of all the objects
and the structural constraints between these objects are jointly trained in an
online structured support vector machine framework. Our framework has no
such an assumption and can track arbitrarily moving objects.

Object Proposals for Visual Tracking. As reported in [29,30], using object
proposal improves the object detection benchmark along with the convolutional
neural nets. Since, a subset of high-quality candidates are used for detection,
object proposal methods boost not only the speed but also the accuracy by
reducing false positives. The top performing detection methods [31,32] for PAS-
CAL VOC [33] use detection proposals. Among the existed proposal methods,
the EdgeBox method [30] proposes object candidates based on the observation
that the number of contours wholly enclosed by a bounding box is an indicator
of the likelihood of the box containing an object. It is designed as a fast algo-
rithm to balance between speed and proposal recall, comparing to BING [34]
and region proposal network (RPN) [7].

Many work exist adopting the object proposals for the model-free single
object tracking. A straightforward strategy based on linear combination of the
original tracking confidence and an adaptive objectness score obtained by BING
is employed in [35]. In [36], a detection proposal scheme is applied as a post-
processing step, mainly to improve the tracker’s adaptability to scale and aspect
ratio changes. EBT [37] employs the EdgeBoxes method to globally track the
object, disregarding potentially fast or drastic object motion. In contrast, our
work utilizes the shared proposals for efficient handling of multiple trackers. [38]
deals with generic object tracking for street scenes by generating multi-scale
candidates from the point-density map. Tracking is performed using the pseudo-
Boolean optimization (QPBO) method. In comparison, our method is applied
to more generic object categories rather than street scenes. Besides, our object
models is built taking advantage of the proposals, while [38] adopts a generative
model using RGB feature distance.
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3 Multiple Object Tracking with Proposals

As illustrated in Fig. 2, our framework starts with a few manually initialized
bounding boxes on the target objects to be tracked in the first frame of the
video. This is similar to the single object online visual tracking task [11–13].
Given these initial bounding boxes, denoted as {Bi

t=1}, i = 1, . . . , No, where No

is the total number of objects, the multiple object tracking problem then aims to
find the locations and bounding boxes of the multiple objects in the remainder
of the video while maintaining the correct identity of each object.

Following the tracking-by-detection framework, we train the object appear-
ance models for each object. We have an option to use either the generative
or discriminative learning strategy. Recent literature on object tracking resort
to the discriminative learning to maximize the inter-class separability between
the object and background regions and report improved performance as the dis-
criminative learning is more robust to distractions from the background. This
property is especially important in multiple object tracking [2,39] where the
objects exhibit similar appearance and interact frequently, as depicted in Fig. 2.

As explained in Sect. 1, we do not independently initialize No classifiers by
collecting locally and densely sampled negative patches as training samples, a
scheme that conventional online single object trackers typically employ.

Instead, we incorporate object proposals [29,30] to generate a small number
of shared object candidates. Notice that, we are not simply using the original
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Fig. 2. The structure of our model-free multiple object tracker. The only input is the
bounding boxes at the first frame. Our method then initializes multiple classifiers for
each object taking advantage of a small set of object proposals generated from the
frame. In the next frame, these classifiers are used to assign confidence scores for the
candidate proposals. The final trajectories are obtained after solving the optimal asso-
ciation problem. Note that, we also apply the proposals to online update the classifiers
to make them more robust to distractors.
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object proposals either, since the sizes of the objects usually change during the
tracking. We impose the proposal bounding box sizes to be within a certain
range of the object sizes. More details about this can be found in Sect. 3.1.

Suppose the object proposal bounding boxes are {B̂j
t=1}, j = 1, . . . , N t=1

p ,
where N t=1

p is the total number of proposals in the first frame. We train the
classifiers with the corresponding positive samples Bi

t=1 that are not in the
common negative set {B̂j

t=1}. The initialized classifiers are denoted as

f i
t=1(B), i = 1, . . . , No, (1)

We additionally select a small set of local candidates sampled around the object
to further improve the discriminative power, thus the localization precision, of
the classifier as [37].

In the consecutive frame, we generate a set of proposals {B̂j
t=2}, j = 1, . . . ,

N t=2
p , to be shared and tested by all classifiers {f i

t=1(B)}. Considering the tem-
poral smoothness between the object Bi

t=1 and the proposal B̂j
t=2, (spatial dis-

tance between them), we build an association matrix that will be efficiently
optimized by a modified Hungarian algorithm [23,24]. The new object locations
are then determined as the optimal solution of this association problem. More
details about it can be found in Sect. 3.2.

To adapt the object appearance changes as well as to increase the discrimina-
tive power of the classifiers against newly appeared distractors, we incrementally
update the classifiers by treating the estimated bounding box in current frame
as the positive sample and object proposals as the negative samples as we did
in the first frame. More information is in Sect. 3.3.

3.1 Object Proposal Generation

As mentioned in Sect. 2, various object proposal algorithms exist. We employ
EdgeBox [30] as it strikes a good balance between recall and speed. In our
experimental analysis, we also test other proposal methods such as BING [34]
and region proposal network (RPN) [7].

Two important factors should be noticed here. The first one is the about
the sizes of the generated object proposals, termed as size adaption ratio and
denoted as α ∈ [0, 1]. We allow the size of the proposals maximally differ the
target with a bounding box intersection-over-union (IoU) [33] of ratio α. To be
specific, we consider B̂j

t only when

max
i

(IoU(B̂j
t , B

i
t−1, )) > α, i ∈ [1, . . . , No] (2)

This setting significantly reduces the number of proposals while permitting the
object window to adapt the target size changes at the same time. We use α = 0.8
and test other values in the experimental part.

The other factor is the maximal number of object proposals generated. Edge-
Box does not output a fixed number of proposals. The number of proposals could
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be any depending on the threshold of the “objectness” score (set as 0.01 as rec-
ommended). An appropriate maximal number of proposals needs to be used as
its lower values may result in missing the object window in the proposal set
while its higher values would cause an extensive number of distractors. We set
this number at 500 for all experiments. We also run test other values of the
maximal number of proposals in Sect. 4.2.

Similar to [37], we generate a fixed number of bounding boxes, {B̃k
t }i

t−1,
k = 1, . . . , Ns, by sampling only around the previous object location Bi

t−1 for
each object (as in traditional methods). This set {B̃k

t }i
t−1 is only tested by the

corresponding classifier f i
t−1(B) and they are useful to smoothen the trajectory

as the object proposal component works independently at each frame, which
may result in temporally inconsistent proposals. Thus, a combined set of {B̂j

t }∪
{B̃k

t }i
t−1 is used during the test stage for the classifier f i

t−1(B). However, we
only update the classifier when the estimated one comes from the proposal set
{B̂j

t } to attain resistance to potential corruptions. We sample Ns = 80 patches
uniformly within a 30-pixels radius. More details are in Sect. 3.3.

3.2 Optimal Target Association

Given No targets and (N t
p + Ns × No) candidates, the target association stage

therefore aims to find the optimal non-repetitive No candidates for the No tar-
gets, such that the overall gain is maximized. Note that, the candidates {B̃k

t }i
t−1

are only allowed to link with target i, thus we set the gain values of linking them
to other targets to zero.

The gain value P (Bt, i) of linking a candidate Bt to target i is designed base
on both classifier confidence score and temporal smoothness,

P (Bt, i) = f i
t−1(Bt) + s(Bt, B

i
t−1). (3)

s(Bt, B
i
t−1) is a term representing the temporal smoothness between the previous

target bounding box Bi
t−1 and the candidate box Bt. We use a simple function

in this paper: s(Bt, B
i
t−1) = exp(− 1

2σ2 ‖c(Bt) − c(Bi
t−1)‖2), where c(Bt) is the

center of bounding box Bt and σ is a value controlling the impact of the temporal
smoothness term. We set σ = Ri, where Ri is half of the diagonal length of the
initialized bounding box Bi

1. We also test other values as in Sect. 4.2.
Once the gain values are set, the standard Hungarian algorithm [23,24] can be

modified to optimally solve the association problem. As (N t
p+Ns×No) is usually

much larger than No (a few hundreds vs. a few), available fast implementation
[40] is too slow to be applied directly. We thus firstly find top No candidates for
each target i locally and separately. As the global optimal assignment for that
target i must be one of them, we then combine those found local candidates into
a small matrix in which the optimal solution is exact the same global optimal
solution to the original association problem. Notice that, the standard Hungar-
ian algorithm solves the minimization problem, thus a simple modification is
required before feeding the small matrix to it.
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3.3 Online Updating with Proposals

To update the classifier, f i
t−1 → f i

t , we also generate a few local samples, {B̃k
t }i

t,
k = 1, . . . , Ns, around the estimated object location Bi

t. They are helpful to
increase the discriminative power of the classifier, as the object proposals alone
represent other good “object-like” regions and training with them increases the
discriminative power among “objects-like”candidates, while the negative sample
space contains a lot more other negative samples, thus more negative samples
help. The updating procedure is applied every 5 frames to balance computational
time and minimize potential drift.

As mentioned in the last paragraph of Sect. 3.1, we treat the estimated result
Bi

t as an indication for model updating. This is to say, when Bi
t ∈ {B̃k

t }i
t−1,

we assume that there is no good object proposal and the current estimation is
a compromise for trajectory smoothness, thus skipping the model updating. If
Bi

t ∈ {B̂j
t }, then it suggests a good estimation which has both desirable classi-

fier response and high “objectness”, then we update the object model f i
t−1(B)

immediately.

3.4 Proposed Tracker: PMOT

Various object models can be integrated into our framework. We choose a pop-
ular structured support vector machine (SSVM) method [41], as it shows good
performance on several benchmarks [11,12]. The tracker is denoted as PMOT
to reflect the concepts of shared proposals and multiple object tracking.

Denote the support vector set trained in the SSVM as Vt−1, the classifica-
tion function can then be expressed as a weighted sum of affinities between the
candidate bounding box and the support vectors [41,42]:

f i
t−1(Bt) =

∑

B̄m∈Vt−1

wmk(B̄m, Bt), m = 1, . . . , |Vt−1| (4)

where wm is a scalar weight associated with the support vector B̄m. Kernel
function k(B̄m, Bt) calculates the affinity between two feature vectors extracted
from B̄m and Bt respectively. The classifier is updated in an online fashion
using [43,44] with a budget [45]. Intersection kernel is used and other parameters
are set same as [41]. We use histogram features obtained by concatenating 16-
bin intensity histograms from a spatial pyramid of 5 levels and RGB channels
separately. At each level L, the patch is divided into L × L cells, resulting in a
2640-D feature vector.

4 Experiments

4.1 Full Benchmark Evaluations

To evaluate the performance of the proposed multiple object tracking method,
we collect 10 videos from various sources, including TB50 [15], OTB [11] and
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VOT2015 [13]. We denote this dataset as MOOT (Multiple Object Online Track-
ing) and a few samples can be seen in Fig. 5. The number of targets in these
videos ranges from 2 to 5. This dataset contains extremely challenging scenar-
ios, including repetitive mutual occlusion (videos “liquor” and “skating2”) and
similar appearance among the targets (videos “bolt1”, “bolt2”, “football” and
“basketball”).

We also evaluate the proposed method on the video sequences from Perfor-
mance Evaluation of Tracking and Surveillance (PETS) 2015 [5]. These videos
are from surveillance cameras and all targets are humans. We list the details
of the four sequences in Table 1 with corresponding challenges featured. As we
can see, all sequences contain challenging aspects, while video “A1 ARENA-
15 06 TRK RGB 2” (row 2 in Fig. 3) is the most difficult one containing both
deformation and occlusion challenges.

Compared Trackers and Evaluation Metrics. Our method (PMOT) is com-
pared with several state-of-the-art methods. Specifically, we compare our method

Table 1. Attributes of the four video sequences from the PETS dataset.

Video #humans #frames Challenge

N1 ARENA-01 02 TRK RGB 2 3 115 Size change

W1 ARENA-11 03 ENV RGB 3 2 107 Body deformation

W1 ARENA-11 03 TRK RGB 1 2 101 Body deformation

A1 ARENA-15 06 TRK RGB 2 3 121 Occlusion and body deformation

#1 #31 #55 #93 #110

#1 #26 #45 #61 #87

#1 #39 #64 #93 #120

#1 #15 #58 #86 #101

Fig. 3. Sample sequences from the PETS benchmark dataset [5] with ground truth
object windows (blue). (Color figure online)
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with SPOT [28] which addresses a similar task as ours and it deploys a structure
preserving model. We also compare with several single online object trackers
to corroborate the point that by sharing and building discriminative classifiers
based on proposals, our method is more robust to drifting. MEEM [20], KCF
[22] and Struck [41] are three top-ranked trackers in recent large benchmarks
[11,12,15,46] for single online object tracking. For all the trackers, we use their
default settings and separately initialize on each object for each video. We also
modify the PMOT for the single object case, denoted as PMOTsingle. This
allows us to precisely analyze the improvement of adopting the proposal sharing
scheme, in term of both the tracking metrics and computational efficiency.

We use the single online object tracking metrics to measure the tracking
performance, similar to [28]. Evaluation metrics and code are provided by the
benchmark [11,15]. We employ the one-pass evaluation (OPE) and use two met-
rics: precision plot and success plot. The former one calculates the percentage
(precision score, PS) of frames whose center location is within a certain thresh-
old distance with the ground truth. A commonly used threshold is 20 pixels.
The latter one calculates a same percentage but based on bounding box overlap
threshold. We utilize the area under curve (AUC) as an indicative measurement
for it.

Experimental Setting. Our tracker is implemented using C++ and MATLAB,
on an i7-2600 3.40 GHz desktop with a 8 GB RAM. For the EdgeBox proposal
method and SSVM applied, we use the default setting recommended by the
authors, except those specified otherwise. We further discuss some parameters
in Sect. 4.2.

Benchmark Results. The results are summarized in Fig. 4 and Table 2. We
can see that the SPOT tracker achieves undesirable results, significantly lagging
behind other compared methods. In term of the PS metric, it is 27.3% worse
than Struck, the second worst tracker. It is not particularly surprising though, as
can be seen in Fig. 5, where we draw the visual comparison between the proposed
PMOT and SPOT. It clearly demonstrates that the SPOT tracker presumes a
strong spatial structure exhibited among the objects, while it does not always
hold. As shown in the video “bolt1” (row 1 in Fig. 5), the four dash-line windows
(SPOT) still maintain the relative positions while drifting away the true objects.
In contrast, our method robustly and consistently tracks the objects even they
are not moving coherently.

When comparing to the single object online tracking methods, the improve-
ment is clearly shown. On the challenging MOOT dataset, our PMOT tracker
outperforms the second best tracker by a large margin, with 9% and 14.7%
in term of AUC and PS respectively. We can also see the clear advantage of
applying the proposal based approach. Even the single object tracking variant,
PMOTsingle, outperforms the best non-proposal tracker, MEEM, by 7.8% and
3.8% in AUC and PS respectively. This is partly contributed by the online updat-
ing strategy of collecting the proposals as hard negative samples to improve the
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Fig. 4. Success plot and precison plot on two datasets: MOOT and PETS. Algorithms
are ranked by the area under the curve (AUC) and the precision score (20 pixels
threshold, PS). Our method achieves consistently superior performance, especially on
the more challenging MOOT dataset.

Table 2. Area Under Curve (AUC) of success plot and precision score (PS) with 20
pixels threshold on the MOOT dataset for the one-pass evaluation (OPE). Cell values:
AUC/PS

MOOT PMOT PMOTsingle SPOT [28] MEEM [20] KCF [22] Struck [41]

ball1 66.2/99.0 66.0/99.3 30.6/67.4 51.3/74.5 48.5/83.1 52.7/86.0

basketball 61.5/84.0 60.2/81.7 11.6/8.6 46.2/70.9 51.3/59.8 38.5/50.3

bolt1 47.4/93.8 36.6/71.6 0.5/0.5 23.5/50.6 34.3/70.6 33.9/73.8

bolt2 50.8/89.0 38.6/69.9 0.6/0.8 47.3/90.4 50.9/93.6 57.4/97.7

football 62.0/94.6 57.8/88.9 23.4/41.5 60.7/97.0 49.5/69.1 57.5/79.7

human4 60.7/93.5 34.5/48.5 61.5/99.5 57.4/91.2 50.2/75.7 62.7/94.7

jogging 67.4/97.6 63.8/89.7 12.3/13.5 60.6/88.4 15.5/19.9 15.0/19.7

liquor 61.0/79.8 41.6/51.0 32.8/38.2 10.6/16.8 18.8/24.6 7.2/8.9

skating1 56.5/71.2 46.5/55.4 55.5/78.4 62.2/92.3 62.8/89.6 35.9/50.0

skating2 50.8/44.9 48.1/43.7 34.6/25.8 35.9/28.4 33.7/37.1 26.7/18.2

Mean 58.5/86.2 49.5/71.5 23.7/34.1 41.7/67.7 40.5/61.6 37.5/61.4
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#20#1 #61 #80

#1 #25 #44 #120

#1 #36 #62 #117

#1 #34 #65 #97

#1 #238 #442 #653

#1 #105 #219 #385

#115#1 #47 #78

Fig. 5. Qualitative comparisons with the proposed PMOT tracker (solid lines) against
the SPOT tracker (dash lines) on videos “bolt1”, “ball1”, “liquor”, “bolt2”, “football”,
“skating2” and “jogging” from MOOT dataset (from top to bottom). Our method
exhibits robustness in challenging scenarios such as repetitive mutual occlusions and
similar target appearances.

discriminative power of the classifier, hence is robust to the distractions from
other objects as well as potential distractors in the background.

For the PETS dataset, we can see that the improvement of PMOT is
not great, outperforming the second best tracker, by 3.4% and 0.7% in the
PS and AUC metrics, respectively. This is partly due to the fact that there
is no significant interactions presented among the objects on PETS, except
the video “A1 ARENA-15 06 TRK RGB 2”. Therefore, our proposed multiple
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object tracking system is unable to take a strong advantage of the proposal
sharing benefit.

4.2 Further Remarks

Temporal Smoothness. The smoothness term s(Bt, B
i
t−1) (3) discussed in

Sect. 3.2 controls the temporal consistency of the trajectory. This is especially
important in our formulation as the object proposals are generated indepen-
dently in each frame, which results temporal inconsistencies inevitably. We test
different σ values and include the results in Table 3. We observe that a small
σ leads to a strong smoothness constraint, which harms the performance when
objects are occluded, while a large σ tends to result in unstable trajectories.

Size Adaption Ratio. The size adaption ratio α in (2) allows the target window
to adapt the object size changes naturally once set properly. A smaller α leads
to a larger set of object proposals with a more significant size variance, which
harms both the computational efficiency and trajectory stability. We validate it
with different values and results is in Table 3. It corroborates that a larger value
is preferable, but the performance drops when α = 0.9, as it constrains the sizes
of object proposals too tight that it fails to adapt the object size changes.

Table 3. Area Under Curve (AUC) of success plot and precision score (20 pixels
threshold) results of PMOT with different temporal smoothness constraints and size
adaption ratios.

Temporal smoothness Size adaption ratio

σ = 0.5Ri σ = Ri σ = 2Ri α = 0.7 α = 0.8 α = 0.9

AUC 51.0 58.5 56.2 49.5 58.5 57.9

PS 72.3 86.2 84.1 70.5 86.2 84.9
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Fig. 6. Area Under Curve (AUC) of success plot and precision score (20 pixels thresh-
old) results of PMOT with different maximal numbers of proposals and various proposal
methods.
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Table 4. Processing times (frames per second, fps) of PMOT on videos containing
different number of objects.

PMOT PMOTsingle

# of targets No 2 3 4 5 1

fps 4.1 3.3 2.6 1.9 5.3

Maximal Number of Object Proposals. We test 5 variants with the max-
imal object proposal number set at 200, 350, 500, 750 and 1000, respectively.
The results are reported in term of AUC/PS metrics as included in Fig. 6. As
discussed in Sect. 3.1, using insufficient number of proposal leads to a bad cov-
erage of the false positives as well as the object, while using a large number of
proposals attracts spurious candidates.

Alternative Object Proposal Methods. We evaluate using other two pop-
ular object proposal methods, BING [34] and region proposal network (RPN)
[7], instead of EdgeBox for proposals. Results are in Fig. 6. Both performances
are worse than the EdgeBox method. This is expected. As shown [29,30], BING
results in a relatively low recall of the objects, while RPN performs undesirably
for small-size objects.

Failure Mode. Our method may not find every single object in every frame
since we use object proposals as object candidates. Thus it may miss the object
under, for example, extreme conditions (severe blur, distortion). Such miss detec-
tions, however, do not occur all the time. A temporary failure does not harm the
overall performance since the model is incrementally and selectively updated.

Computational Efficiency. Since the object proposals are shared among the
classifiers of multiple targets, we reduce the computational load by not repeating
the proposal generation and feature extraction for each target. Table 4 shows
the processing times (frames per second, fps) for different number of targets.
We categorize the test videos according to the number of targets in them. For
PMOTsingle, the number of targets is always 1. As we can see, our system is
computationally efficient.

5 Conclusion

We proposed a computationally efficient and accurate model-free multiple object
tracking method. It takes the advantage of the object proposals and generates
a small and shared set of object hypotheses in the frame. Then it initializes
multiple classifiers for each target using the shared set. In consecutive frames, the
application and update of the classifiers are also achieved by using the detected
proposals. We evaluated our method on both PETS and a newly introduced
dataset. The results show superior performance against the state-of-the-art.
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Abstract. It is a challenging problem to detect partially occluded
pedestrians due to the diversity of occlusion patterns. Although train-
ing occlusion-specific detectors can help handle various partial occlu-
sions, it is a non-trivial problem to integrate these detectors properly. A
direct combination of all occlusion-specific detectors can be affected by
unreliable detectors and usually does not favor heavily occluded pedes-
trian examples, which can only be recognized by few detectors. Instead
of combining all occlusion-specific detectors into a generic detector for
all occlusions, we categorize occlusions based on how pedestrian exam-
ples are occluded into K groups. Each occlusion group selects its own
occlusion-specific detectors and fuses them linearly to obtain a classifer.
An L1-norm linear support vector machine (SVM) is adopted to select
and fuse occlusion-specific detectors for the K classifiers simultaneously.
Thanks to the L1-norm linear SVM, unreliable and irrelevant detectors
are removed for each group. Experiments on the Caltech dataset show
promising performance of our approach for detecting heavily occluded
pedestrians.

1 Introduction

Pedestrian detection has many applications such as video surveillance and
autonomous driving and much work has been done to improve its performance in
recent years [1–6]. Despite recent progress, partial occlusions are still a great chal-
lenge for pedestrian detection. Some state-of-the-art approaches achieve promis-
ing results on pedestrian detection benchmarks like Caltech [7] when pedestrians
to be detected are not occluded or only slightly occluded. When heavy occlusions
are present, their performances decrease drastically. For example, the log-average
miss rate of Checkerboard detector [4] on the Caltech benchmark is 18.5% when
only unoccluded or partially occluded pedestrians are considered. Its perfor-
mance drops to 77.5% when pedestrians to be detected are heavily occluded.
More efforts are still required to improve the performance of detecting heavily
occluded pedestrians.

A simple yet effective approach to occlusion handling for pedestrian detec-
tion is to train specific detectors for various occlusion patterns [5,8]. Occlusion

c© Springer International Publishing AG 2017
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Fig. 1. Different integrations of occlusion-specific detectors. Left: The average pattern
0 is obtained by averaging visible parts of pedestrian examples in the Caltech dataset
[7] and the top 4 occlusion patterns whose detectors have the highest weights are shown
blow. Blue regions in the occlusion patterns indicate visible parts of the human body.
The pedestrian which is heavily occluded in the image below is ranked at 4th among top
5 regions. Right: Our approach clusters the pedestrian examples into 2 groups each of
which selects its own compatible occlusion-specific detectors. The detectors associated
with the average pattern 1 rank the pedestrian in the image below at 1st. (Color figure
online)

patterns can be manually designed according to prior knowledge [8] or automat-
ically selected from a large pool of candidates [5]. After occlusion patterns are
obtained, a specific detector is trained independently for each occlusion pattern.
To make the approach work well, it is important to integrate the occlusion-
specific detectors properly. Specifically, for a given image region, a detection
score should be assigned to it based on the outputs of these detectors. A sim-
ple method is to assign the maximum among these outputs to the image region
as adopted in [8]. This method needs a sophisticated score calibration to make
the outputs of the independently trained detectors comparable. In [5], a weight
vector is learned by training a linear support vector machine (SVM) to combine
the outputs of occlusion-specific detectors. The important detectors would have
large combination weights thus score calibration is not required. However, as this
method only learns a single weight vector for all pedestrian examples, it may not
be able to well separate these pedestrian examples from background especially
when some of these examples are heavily occluded. A heavily occluded pedes-
trian usually receives low scores from the detectors of some occlusion patterns
whose visible portion is incompatible with the visible part of the pedestrian. For
example, the detector of the occlusion pattern in which only the lower body is
visible would probably assign a low score to a pedestrian whose lower body is
occluded. Therefore, with the single weight vector, heavily occluded pedestrians
tend to have a relatively low detection score compared to fully visible pedestrians
and are not easy to be distinguished from the background as illustrated in the
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left of Fig. 1. In addition, some occlusion detectors, especially those unreliable
ones, tend to produce noisy outputs and including them may not help improve
and even decrease the detection performance.

Following the framework in [5], we propose a new approach to integrate
occlusion-specific detectors for heavily occluded pedestrian detection. Instead
of only learning a single weight vector to fuse all occlusion-specific detectors,
we cluster pedestrian examples into several groups according to their occlu-
sion patterns and learn a weight vector for each group such that a pedestrian
example in the group is scored by the linear combination of the outputs of the
occlusion-specific detectors specified by the weight vector. To remove irrelevant
and unreliable occlusion-specific detectors, we impose sparsity on the weight
vector of each group. The weight vectors are learned simultaneously by training
an L1-norm linear SVM [9]. Our integration approach selects highly compatible
occlusion-specific detectors for each group and can better distinguish heavily
occluded pedestrians from the background as illustrated in the right of Fig. 1.
The effectiveness of our approach is demonstrated on the Caltech dataset [7].

2 Related Work

Occlusion handling is a difficult problem for pedestrian detection and some
approaches have been proposed for this purpose. In [10], a pedestrian template
is divided into several blocks and the occlusion is inferred by estimating the vis-
ibility statuses of these blocks. An implicit shape model (ISM) [11] is adopted
in [12] to generate pedestrian hypotheses in an image with associated support-
ing regions which are further verified using local and global cues. As each pixel
can only be assigned to the supporting region of one hypothesis, this approach
is able to separate overlapping pedestrians. Several approaches [5,8,13,14] repre-
sent occlusions by a set of patterns for each of which a specific detector is learned.
The approaches in [13,14] discover frequently occurring occlusion patterns from
annotated training data and train a deformable part model (DPM) [15] for each
occlusion pattern. In [5,8], occlusion patterns are manually defined and boosted
detectors are adopted. Different from the occlusion patterns defined in [5,8] which
only model a single pedestrian, the occlusion patterns used in [13,14] can model a
single pedestrian or two overlapping pedestrians. For detection, these occlusion-
specific detectors are integrated in a winner-take-all fashion [8,13,14] or using lin-
ear combination [5]. Our approach adopts the same framework as [5,8] with a new
integration approach in which a sparse subset of occlusion-specific detectors are
selected. Group sparsity has been exploited in [16] to select components for learn-
ing a mixture model, but we use it to simultaneously select and fuse detectors. In
[17], multi-pedestrian detectors which are learned for detecting overlapping pedes-
trians are exploited to refine detections obtained by single-pedestrian detectors in
a probabilistic framework. Some other approaches [18–24] learn a set of part detec-
tors which are properly integrated for occlusion handling. In [18–20], a human
body is divided into several parts and outputs from part detectors are integrated
using a set of rules [18], by linear combination with weights learned from inten-
sity, depth and motion cues [19] or in a Bayesian framework [20]. Different from
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(a) p = (1, 1, 2, 6) (b) p = (1, 1, 3, 3)

Fig. 2. Examples of occlusion patterns. (a) The right portion of the human body
is occluded. Two instances marked by red rectangles are shown on the right: one is
occluded by another pedestrian and the other is truncated by the image boundary. (b)
The lower body is occluded. Two pedestrians on the right are occluded by carts. (Color
figure online)

the approaches in [18–20], a human body is represented by a set of overlapping
parts which are organized in a hierarchy structure in [21–24]. In [24], a set of rules
are defined specifically for the hierarchy structure for inferring occlusion based
on part visibility statuses. A discriminative deep model is used to learn correla-
tions among part visibility statuses [21,22] and the mutual visibility relationship
among pedestrians [23] respectively. Then, pedestrian classification is done in a
probabilistic framework with detection scores from part detectors as input and
part statuses as hidden variables.

3 Training Occlusion-Specific Detectors

Occlusions may occur at different parts of a pedestrian and have various patterns.
For example, the lower body of a pedestrian may be occluded by a car, and the
left or right half body may be occluded by a pole or another pedestrian. As
in [5], we construct a pool of occlusion patterns in which different parts of a
human body are occluded. The human body is represented by an R × C grid,
where R and C are the numbers of cells in one row and one column respectively.
We sample all possible rectangular subregions of size r × c in the grid with
Rmin ≤ r ≤ C and Cmin ≤ c ≤ C. Each subregion together with the grid
form one occlusion pattern in which the subregion represents the visible part of
the human body. To avoid sampling subregions that are too small, we restrict
the minimum height and width of a subregion. For each size r × c, we sample
subregions from top-left to bottom-right in the grid with a step length of one cell
in both horizontal and vertical directions. Mathematically, an occlusion pattern
can be represented by a 4-tuple p = (x, y, r, c), where (x, y) are the top-left
coordinates of the occlusion pattern in the grid and (r, c) specifies its width and
height. We set Rmin = 2, Cmin = 2, R = 6 and C = 3 in our experiments,
resulting in a pool of 45 occlusion patterns. The occlusion pattern pool can be
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Fig. 3. Process of training a detector for the upper-body pattern.

expressed as P = {pi|1 ≤ i ≤ M}, where pi = (xi, yi, ri, ci) and M = 45.
Figure 2 shows two examples of occlusion patterns.

For each occlusion pattern, we train a detector using locally decorrelated
channel features (LDCF) [25] and RealBoost [26]. Figure 3 illustrates the train-
ing process for the upper-body pattern. LDCF belongs to a family of channel
features [2–4,27] which are widely used for pedestrian detection. We consider
the human body as a rigid object and model it with a template of H × W
pixels, where H and W are the height and width, respectively. As the ground-
truth bounding boxes of positive examples usually have different sizes and aspect
ratios, we perform bounding box standardization as in [7]: for each ground-truth
bounding box, we adjust its width such that the aspect ratio after adjustment
is equal to H

W while keeping its height and center coordinates unchanged. An
example of bounding box standardization is given at the top-left of Fig. 3. The
original bounding box is marked in red and the green rectangle is the new bound-
ing box after standardization. It is pointed out in [1] that including a certain
amount of background around a pedestrian as context can improve detection
performance. To exploit the surrounding context, we add some padding to the
template boundary. Denote the height and width of the padded template by H ′

and W ′ respectively. Accordingly, we expand the standardized bounding box of
a positive example by including some background around it. The yellow rectan-
gle at the top-left of Fig. 3 shows the expanded bounding box of the pedestrian
example. Finally, we crop the region corresponding to the visible part of the
occlusion pattern from the expanded bounding box as a positive training patch.
Negative patches are sampled from background regions. For feature extraction,
each training patch is scaled to the size of the visible part in the template. For
example, the size of a training patch for the upper-body pattern is H′

2 ×W ′. We
use the same channels as in [3] to compute features for training examples: nor-
malized gradient magnitude (1 channel), LUV color channels (3 channels) and
histograms of oriented gradients (6 channels), with a total of 10 feature channels
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for each training patch. Each feature channel is a per-pixel lookup table which
has the same size as the training patch. We further downsample the feature chan-
nels by a factor of 2. LDCF learns a set of k m × m filters to locally decorrelate
channel features where k is a predefined number (See [25] for details). Apply-
ing these k filters to the 10 features channels results in a total of 10k feature
channels. We downsample the 10k feature channels by a factor of 2 to represent
the training patch. If the size of a training patch is s × t (s = H′

2 and t = W ′

for the upper-body pattern), the final feature representation has s
4 × t

4 × 10k
dimensions. With a set of training patches, we train and combine a set of weak
classifiers which are decision trees in our implementation to obtain a boosted
detector using RealBoost.

Let L be the number of weak classifiers of each detector and di be the detector
of the i-th occlusion pattern pi. Given an image patch x whose size is H ′ × W ′,
we denote by ψi(x) the channel features extracted from x corresponding to pi.
The detection score of x given by di is computed by

di(x) =
L∑

j=1

wj
i f

j
i (ψi(x)), (1)

where f j
i is the j-th weak classifier of di and wj

i is the corresponding weight.
The set of detectors trained for the occlusion patterns in P can be expressed as
D = {di|1 ≤ i ≤ M}.

4 Integrating Occlusion-Specific Detectors

After obtaining the occlusion-specific detectors as described in Sect. 3, we need
to integrate these detectors properly for pedestrian detection. Specifically, given
an image patch x whose size is H ′ × W ′ pixels, we want to assign a score g(x)
indicating how likely the image patch x contains a pedestrian based on the
detection scores di(x) (1 ≤ i ≤ M) from the occlusion-specific detectors in D.

In [5], a linear SVM is trained to combine detection scores from different
part detectors which are learned by deep neural networks. This method also
applies to our detectors. Mathematically, the goal is to learn a weight vector
a = [a1, . . . , aM ] to linearly combine the detection scores from the M detectors

g(x) =
M∑

i=1

aidi(x) + b, (2)

where b is a constant. Given a set of training examples (xi, yi) for 1 ≤ i ≤ N
with xi an image patch and yi ∈ {1,−1} the label of xi, the weight vector a is
obtained by solving the following optimization problem:

min
a, b

||a||22 + C

N∑

i=1

max(0, 1 − yig(xi)), (3)
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(a) (b)

Fig. 4. Visible part clustering. (a) Red and green bounding boxes show the visible
part and the full body of a pedestrian example respectively. (b) Four cluster centers
obtained by K-means on pedestrian examples in the Caltech dataset. Cyan and white
regions indicate visible and occluded parts respectively. (Color figure online)

where C is a parameter. By defining a score vector s = [d1(x), . . . , dM (x)], we
can write the score of x as g(x) = 〈a · s〉 + b, where 〈a · s〉 is the inner product
of a and s.

Nevertheless, the above method has two limitations. First, it only learns a sin-
gle weight vector for all pedestrian examples with various occlusion patterns. The
decision boundary specified by a and b may not well separate these pedestrian
examples from the background, especially when heavy occlusions are present.
Actually, for a heavily occluded pedestrian, some occlusion-specific detectors
are irrelevant and tend to give a low detection score. For example, an occlusion
pattern in which the upper body is occluded does not have any overlap with
a pedestrian whose lower body is occluded thus the pedestrian would proba-
bly receive a low detection score from the detector of that occlusion pattern.
Therefore, heavily occluded examples usually have a relatively low score com-
pared with fully visible pedestrians and are not easy to be distinguished from the
background (See the left part of Fig. 1). Second, some occlusion-specific detectors
are not reliable and may produce noisy outputs. Including these detectors may
not help improve and even decrease the detection performance. To address the
two limitations, we cluster pedestrian examples into several groups according to
how they are occluded and learn a weight vector for each group such that only a
subset of occlusion-specific detectors which are both relevant and reliable would
contribute to the group.

Each pedestrian example is annotated with two bounding boxes which
denote the visible part Bvis = (x1

vis, y
1
vis, x

2
vis, y

2
vis) and the full body Bfull =

(x1
full, y

1
full, x

2
full, y

2
full) respectively (See Fig. 4(a)). Let wfull = x2

full −x1
full +1

and hfull = y2
full − y1

full + 1 be the width and height of Bfull respectively. We
normalize the visible part Bvis relative to the full body Bfull to obtain a new

bounding box Bnorm = (x1
norm, y1

norm, x2
norm, y2

norm) where x1
norm = x1

vis−x1
full

wfull
,
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y1
norm = y1

vis−y1
full

hfull
, x2

norm = x2
vis−x1

full

wfull
and y2

norm = y2
vis−y1

full

hfull
. Then, we use

K-means to cluster pedestrian examples into K groups according to their normal-
ized visible parts. Figure 4(b) shows the clustering result on pedestrian examples
in the Caltech dataset [7] with K = 4. It can be seen that pedestrian examples
in the Caltech dataset are usually occluded from the left, right or bottom.

After clustering the pedestrian examples into K groups, we learn a weight
vector cj = [c1j , . . . , c

M
j ] and a bias bj for each group with 1 ≤ j ≤ K such that

a pedestrian example x in the j-th group is scored by

gj(x) =
M∑

i=1

cijdi(x) + bj . (4)

However, if we learn the weight vectors separately for each group, the final scores
may not be comparable and a further calibration would be required. To solve
this problem, we propose to learn cj and bj for 1 ≤ j ≤ K simultaneously by
training a single L1-norm linear SVM [9]. The pedestrian examples comprise
the positive training set and negative training examples are collected from back-
ground regions. Each training example xi for 1 ≤ i ≤ N is labeled by li = (yi, gi)
where yi ∈ {−1, 1} indicates whether xi is a pedestrian and gi ∈ {1, . . . , K} is
its group index. Let si = [d1(xi), . . . , dM (xi)] be the detection scores of xi from
the M detectors. We represent xi by a long feature vector ui = [u1

i , . . . ,u
K
i ]

where uj
i (1 ≤ j ≤ K) is a (M + 1)-dimensional feature vector corresponding to

the j-th group and is defined by

uj
i =

{
[si, B] if gi = j;
[0, B] otherwise, (5)

where B is a constant feature. We learn a long weight vector w = [w1, . . . ,wK ],
where wj = [wj(1), . . . ,wj(M +1)] (1 ≤ j ≤ K) is a (M +1)-dimensional weight
vector corresponding to the j-th group, by solving the following optimization
problem:

min
w

||w||1 + C

N∑

i=1

max(0, 1 − yi 〈w · ui〉). (6)

The lasso penalty ||w||1 is first proposed in [28] for regression problems and
its L1 nature would cause some weights in w to be exactly zero when C is
sufficiently small (See [9] for more discussions). For a specific group, irrelevant
and unreliable occlusion-specific detectors are usually less important and tend
to receive a weight of zero. After w is learned, we can obtain cj and bj by setting
cj = [wj(1), . . . ,wj(M)] and bj = Bwj(M + 1). We choose a large value for B
to reduce the impact of its corresponding weights wj(M + 1) for 1 ≤ j ≤ K in
the lasso penalty ||w||1 (B = 5000 is used in our experiments). At testing stage,
the score of an image patch x is determined by the largest score from the K
groups: g(x) = max1≤j≤K gj(x).
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Fig. 5. (a) Results of occlusion-specific detectors. (b) Results of our LDCF implemen-
tation and some state-of-the-art approaches using channel features.

5 Experiments

We evaluate the proposed approach on the Caltech dataset [7]. Following the
standard evaluation protocol, we use video sets S0–S5 for training and S6–S10
for testing. Detection performance is summarized by log average miss rate over 9
false positive per-image (FPPI) points ranging from 10−2 to 100. Three subsets
from S6–S10 are used for testing: Reasonable, Partial and Heavy. In the Reason-
able subset, only pedestrians with at least 50 pixels tall and under no or partial
occlusion are used for evaluation. This subset is widely used for evaluating pedes-
trian detection approaches. In the Partial and Heavy subsets, pedestrians are
at least 50 pixels tall and are partially occluded (1–35% occluded) and heavily
occluded (35–80% occluded) respectively.

5.1 Implementation Details

For training detectors of occlusion patterns, we set the template size of the
human body to 100×41 and the template size becomes 112×48 after an amount
of padding is added. Four 5 × 5 filters are used for LDCF extraction, producing
a total of 40 feature channels for an image patch. We sample training data from
video sets S0–S5 at an interval of 2 frames. The maximum depth of a decision
tree is set to 5 and a boosted detector of L = 4096 decision trees is trained for
each occlusion pattern. We adopt five rounds of bootstrapping to learn 64, 512,
1024, 2048 and 4096 decision trees respectively.

For integrating occlusion-specific detectors, we sample pedestrians that are
at least 50 pixels tall and are occluded no more than 60% as positive exam-
ples. Negative examples are collected by several rounds of hard mining. We use
LIBLINEAR [29] and G-SVM [30] for solving linear SVMs and L1-norm lin-
ear SVMs respectively. Besides linear combination, we also implement a max
integration approach in which the final score of an example x is defined as
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Fig. 6. Common occlusion patterns.

g(x) = max1≤i≤Mdi(x). We convert the output of each detector di into a prob-
ability by logistic regression:

d′
i(x) =

1
1 + exp(−qidi(x) − ri)

, (7)

where qi and ri are the parameters to be learned. Then, the final score becomes
g′(x) = max1≤i≤Md′

i(x).

5.2 Results of Occlusion-Specific Detectors

Figure 5(a) shows the results of occlusion-specific detectors of some common
occlusion patterns given in Fig. 6 on the Reasonable subset. We can see that the
log-average miss rates of these detectors vary largely from 18.5% to 61.2%. The
detector of the full body pattern P1 performs best among the seven detectors.
The detectors of P2 and P3 performs slightly worse than the detector of P1.
From P4 to P7, the performance increases gradually when the amount of occlu-
sion decreases. Generally, the detector of a heavily occluded pattern performs
worse than the detector of a pattern that is only slightly or not occluded on
the Reasonable subset. Figure 5(b) shows the comparison between our imple-
mentation of LDCF (LdcfP1) and some state-of-the-art approaches which are
also based on channel features: ACF [3], LDCF [25], SpatialPooling+ [31] and
Checkerboards [4]. LdcfP1 achieves a much better performance than the original
LDCF and performs as well as Checkerboards.

5.3 Results of Different Integration Methods

We compare the proposed integration approach with three baselines: Max, Max-
Cal and Linear. Linear is the approach proposed in [5] which learns a weight
vector to linearly combine outputs of occlusion-specific detectors as described
in Sect. 4. Max and MaxCal are two approaches using the max integration as
described in Sect. 5.2 without and with score calibration respectively. For each
baseline, we experiment with different numbers of occlusion-specific detectors.
We set the number of occlusion-specific detectors m to 1, 5, 10, 15, 20, 25, 30,
35, 40 and 45 respectively. When m = 1, the detector of the full body pattern
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Fig. 7. Top 20 occlusion patterns of Linear with associated combination weights.

is used. For m > 1, we choose top m occlusion-specific detectors with the high-
est combination weights learned by Linear. Figure 7 shows the top 20 occlusion
patterns of Linear. For our approach, we adjust the parameter C in Eq. (6) to
control the number of occlusion-specific detectors to be selected.

Table 1 shows the results of the three baselines and our approach applied
to different numbers of occlusion-specific detectors on the Reasonable, Partial
and Heavy subsets. It can be seen that MaxCal outperforms Max for differ-
ent values of m on all the three subsets. As our occlusion-specific detectors
are trained independently, proper score calibration is necessary for the max
integration approach to work well. On the Reasonable subset, integrating a
number of occlusion-specific detectors (m > 1) using MaxCal does not help
improve the performance compared to the detector of the full body pattern
(m = 1). This is probably because the full-body detector already works reason-
ably well for detecting pedestrians which are slightly or not occluded, while for
MaxCal, occlusion-specific detectors could introduce more false positives. When
the amount of occlusion increases, the other detectors can complement the full-
body detector for detecting partially and heavily occluded pedestrians. As shown
in Table 1, the best performance of MaxCal is achieved when m > 1 on both Par-
tial and Heavy subsets. Linear outperforms MaxCal for most values of m on the
three subsets. In Linear, the outputs of occlusion-specific detectors are adjusted
with combination weights and the complementarity among different detectors
are exploited to better distinguish pedestrians from background. In most cases,
integrating a number of occlusion-specific detectors using Linear outperforms
a single detector as shown in Table 1. The best performances of Linear on the
three subsets are achieved at m = 20, m = 35 and m = 40 respectively. Overall,
our approach achieves better performance than Linear for most values of m on
the three subsets. According to the results of Linear and Ours in Table 1, more
detectors are needed with the increase of occlusion. Note that the best perfor-
mance of Linear and Ours on each testing subset is not achieved at m = 45.
This shows that including all the detectors does not necessarily have the best
performance as some detectors can produce noisy outputs.



316 C. Zhou and J. Yuan

(a) Group 1

(b) Group 2

Fig. 8. Average occlusion patterns and top occlusion patterns of two groups of Ours-g2.

Table 1. Results of different integration methods. The bold number in each row indi-
cates the best performance of the corresponding method.

m=1 m=5 m=10 m=15 m=20 m=25 m=30 m=35 m=40 m=45

Max 18.5 25.5 26.0 24.8 23.5 26.6 28.6 29.1 29.1 29.2

MaxCal 18.5 19.0 20.2 20.2 18.8 18.8 18.6 19.1 18.9 18.5

Linear 18.5 17.4 21.2 16.4 15.6 17.3 16.8 16.0 16.3 16.2

Ours 18.5 15.9 15.8 15.4 15.3 15.3 15.3 15.3 15.5 16.0

(a) Reasonable

m=1 m=5 m=10 m=15 m=20 m=25 m=30 m=35 m=40 m=45

Max 39.3 48.5 45.7 43.3 42.2 46.1 48.5 48.7 45.9 48.5

MaxCal 39.3 42.7 43.1 39.6 39.0 38.1 37.5 38.4 36.9 37.8

Linear 39.3 40.4 41.4 37.5 37.2 36.1 38.0 35.0 36.0 38.4

Ours 39.3 38.0 37.2 37.8 36.6 36.1 36.6 36.3 36.4 37.5

(b) Partial

m=1 m=5 m=10 m=15 m=20 m=25 m=30 m=35 m=40 m=45

Max 75.7 72.3 78.2 78.3 77.9 76.8 73.8 73.4 73.1 73.4

MaxCal 75.7 72.0 74.7 74.6 74.5 74.0 72.6 73.1 72.9 72.4

Linear 75.7 77.0 71.9 74.6 74.2 73.0 79.2 75.3 71.5 75.0

Ours 75.7 75.0 74.6 74.4 74.4 73.8 72.8 72.7 72.5 74.0

(c) Heavy
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Fig. 9. Results of our integration approach and three baselines.

Figure 9 shows the results of the proposed integration approach and three
baselines: Max-m45, MaxCal-m45 and Linear-m45. All the three baselines use
m = 45 occlusion-specific detectors. Ours-gK is our approach with K groups.
It can be seen that our approach performs best on all the three subsets. The
difference between Linear-m45 and Ours-g1 is that the combination weights of
Linear-m45 is learned by a linear SVM, while Ours-g1 adopts an L1-norm SVM
to obtain its combination weight vector. With the sparsity constraint, Ours-g1
only selects 37 occlusion-specific detectors and discards the remaining 8 noisy
ones. Ours-g1 outperforms Linear-m45 consistently on the Reasonable, Partial
and Heavy subsets. Ours-g2 achieves a slightly worse performance than Ours-g1
on the Reasonable subset, but when the occlusion becomes more severe, Ours-
g2 outperforms Ours-g1. Compared to Ours-g1, Ours-g2 achieves performance
gains of 0.4% and 2.2% respectively on the Partial and Heavy subsets. The
performance improvements of Ours-g2 over Linear-m45 on the three subsets are
0.9%, 2.7% and 4.9% respectively. The advantage of our approach over Linear-
m45 becomes more obvious when heavy occlusions are present. Figure 10 shows
the results of our approach with different numbers of groups ranging from 1 to 5.
We can see that from K = 2, increasing the number of groups does not help much
for the detection performance. Actually, most pedestrians in the Caltech dataset
are occluded from the bottom according to the occlusion statistics in [7]. Figure 8
shows the average occlusion patterns and top occlusion patterns with the highest
combination weights of two groups of Ours-g2. The first group corresponds to
pedestrians which are slightly or not occluded and most pedestrians in the second
group are occluded from the bottom. Ours-g2 gives high weights to the full-
body pattern and partially occluded patterns in the first group (See the first
5 occlusion patterns), while occlusion patterns in which the human body is
occluded from the bottom are more important in the second group, for example,
the first three occlusion patterns.

Figure 11 shows the results of four integration approaches and some state-of-
the-art approaches. Ours-g2 achieves the best performance among approaches
using channel features on the three subsets. Compared with our own implemen-
tation of LDCF LdcfP1, Ous-g2 achieves performance gains of 3.0%, 3.6% and
5.6% respectively on the Reasonable, Partial and Heavy subsets. Linear-m45
also outperforms LdcfP1 consistently on the three subsets. Generally, properly
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Fig. 10. Results of our integration approach with different numbers of groups.
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Fig. 11. Results of four integration approaches and some state-of-the-art approaches.
Solid lines represent channel-feature based approaches and dashed lines represent deep-
learning based approaches.

integrating a number of occlusion-specific detectors can achieve a better per-
formance than the single full-body detector, especially when heavy occlusions
are present. Currently, approaches using deep neural networks [5,32] or features
learned by these networks [6,33] achieve better performance. Our detector inte-
gration approach still applies when the occlusion-specific detectors are replaced
with detectors learned by these approaches.

6 Conclusions

In this paper, we propose a new approach to integrate occlusion-specific detec-
tors for detecting heavily occluded pedestrians. Instead of linearly combining all
occlusion-specific detectors into a generic detector for all occlusions, we catego-
rize occlusions based on how pedestrian examples are occluded into K groups
each of which selects its own occlusion-specific detectors and fuses them linearly
to obtain a classifier. The K classifiers are learned simultaneously by an L1-norm
linear SVM which can effectively remove irrelevant and unreliable occlusion-
specific detectors for each group. The experiments on the Caltech dataset demon-
strate the effectiveness of our approach.
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Abstract. Typical pedestrian re-identification system consists of fea-
ture extraction and similarity learning modules. The learning methods
involved in the two modules are usually designed separately, which makes
them sub-optimal to each other, let alone to the re-identification tar-
get. In this paper, we propose a deep second-order siamese network
for pedestrian re-identification which is composed of a deep convolu-
tional neural network and a second-order similarity model. The deep
convolutional network learns comprehensive features automatically from
the data. The similarity model exploits second-order information, thus
more suitable for re-identification setting than traditional metric learn-
ing methods. The two models are jointly trained over one unified large
margin objective and the consistent convergence is guaranteed. More-
over, our deep model can be trained effectively with a small pedestrian
re-identification dataset, through an irrelevant pre-training and relevant
fine-tuning process. Experimental results on two public datasets illus-
trate the superior performance of our model over other state-of-the-art
methods.

1 Introduction

Re-identifying a target pedestrian observed from a non-overlapping camera net-
work is an important task in many real-world applications, such as threat detec-
tion, human retrieval and cross-camera tracking. During the past several years,
it has drawn a lot of attentions from the field of computer vision and pattern
recognition. Despite a lot of efforts spent on this task, pedestrian re-identification
still remains largely unsolved due to low quality of images and complex varia-
tions in viewpoints, poses and illuminations. Some examples are shown in Fig. 1
to illustrate these difficulties.

Classical solutions for pedestrian re-identification mainly consist of two mod-
ules: feature extraction and similarity learning. Previous work usually focused
on either feature extraction [1–10] or similarity learning [11–19].

c© Springer International Publishing AG 2017
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Fig. 1. Examples of pedestrian images. The left five columns are from VIPeR dataset
[1], and the right ones are from CUHK01 dataset [16]. Each column contains two images
from same person in different cameras, indicated by red and blue boxes respectively.
(Color figure online)

Early feature extraction methods mainly capture two clues: color and tex-
ture. They combine sophisticated low-level features such as HSV, Gabor, HOG
to describe the appearance model of pedestrian images, from which the similar-
ity between a pair of images can then be measured by some similarity metric
learning methods. Farenzena et al. [2] proposed the Symmetry-Driven Accumu-
lation of Local Features (SDALF). They exploited the symmetry structure of
pedestrians to handle view variations. Ma et al. [4] combined Gabor filters and
covariance descriptor to handle illumination changes. However, handcrafted fea-
tures are extremely hard to design due to the complicated variations in the real
world camera networks. People often fail to take all interference factors into con-
sideration. Recently, a series of work by Zhao et al. [7–9] attempted to use the
saliency parts of pedestrians to estimate whether they are the same person or
not. However, the saliency parts are not always consistent under different camera
views. A common situation is that the same part of a pedestrian may look quite
different from two cameras due to complex lighting conditions and pose changes.
Recently Zheng et al. [20] proposed a general feature fusion scheme for image
search which can also be utilized in pedestrian re-identification. Given a query
image, their method can automatically evaluate the effectiveness of a to-be-fused
feature, and then make use of the good features and ignore the bad ones.

Recently, some researchers try to boost the performance of pedestrian re-
identification in the metric learning context [13–15,21]. Zheng et al. [13] pro-
posed the Probabilistic Relative Distance Comparison (PRDC) model to max-
imize the likelihood of genuine pairs (from the same person) having smaller
distances than those of imposter pairs (from different persons). A simple though
effective strategy to learn a distance metric, named KISSME, from equivalence
constraints was proposed in [14]. Mignon and Jurie [15] proposed the Pairwise
Constrained Component Analysis (PCCA) to learn a projection from raw input
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space into a latent space where a desired constraint is satisfied. Chen et al. [21]
introduced a mixture of linear similarity functions that is able to discover dif-
ferent matching patterns in the polynomial kernel feature map. These typical
metric learning (ML) methods generally aim to automatically learn similarity
metrics from data under supervised or semi-supervised learning setting. To this
end, the original data is usually transformed to another feature space where
the distance measure is more ideal for the learning objective. However, metric
learning for pedestrian re-identification is much more difficult than that for tra-
ditional learning tasks such as classification. As for pedestrian re-identification
problems, we need to estimate whether a pair of images are from the same person
or not. For this purpose, metric learning here should deal with the challenges
of large number of classes (persons) and large within-class variance. Moreover,
since the training and testing datasets contain totally different persons, metric
learning for pedestrian re-identification is expected to generalize well to unseen
categories. Therefore, common metric learning strategy of globally linear trans-
formation in Euclidean or Cosine distance may not be an effective solution for
this problem. Different from previous typical methods, Li et al. [17] proposed the
Locally Adaptive Decision Function (LADF) model that exploits second-order
information which is more effective to model the complex relations between
pedestrian image pairs. This model achieved good performance on pedestrian
re-identification task.

It is worth noting that all the above methods only focused on one aspect of
the pedestrian re-identification task, either feature extractor or similarity learn-
ing model. However, designing features and learning similarity model separately
cannot guarantee their optimality for each other, thus making the whole re-
identification system sub-optimal. If the feature extraction part fails to capture
consistent and comprehensive features, even a sophisticated similarity learning
algorithm will behave poorly. On the other hand, when we have features contain-
ing rich information, we still cannot re-identify a pedestrian successfully with an
ineffective similarity learning model.

Recently, deep networks [22–24] are proposed to tackle this problem. The
end to end architecture can improve the optimality of their models. Specifically,
[22] proposed a siamese network named the Deep Metric which is quite sim-
ilar to an early work by Chopra et al. [11]. The main difference is that they
use the Cosine norm to evaluate the similarity score while Euclidean norm is
used in [11]. This model is similar to typical metric learning except that Deep
Metric takes raw image pixels (instead of handcrafted features) and transforms
them nonlinearly through a convolutional neural network (CNN), instead of
traditional linear transformations. Therefore, the CNN in Deep Metric model
actually works as both a feature extractor and a metric learner. This is too
much duty for a single model. Even with nonlinear approximation ability, Deep
Metric model may not perfectly fit for pedestrian re-identification task. In Deep
Re-ID [23] model, several layers are designed to tackle different issues in pedes-
trian re-identification, such as photometric transforms, displacement and pose
transforms. However, it is too ideal to expect each single layer to handle a
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complex variation. Ahmed et al. [24] proposed an improved deep architecture for
pedestrian re-identification. Similar to Deep Re-ID, they formulated the prob-
lem of pedestrian re-identification as a binary classification problem. And they
both defined a similar layer to encode the differences between features, which are
extracted from previous convolutional layers. As they both train their models
directly with a relatively small pedestrian re-identification dataset, the scale of
their networks is limited. This limitation results in weaker hierarchical semantic
abstraction ability of their model.

To address all the above problems for pedestrian re-identification task, we
propose a deep second-order siamese network (DSSN) which is composed of a
CNN model as feature extractor and a second-order similarity model as similar-
ity learner. Deep CNN model succeeds in many computer vision applications as
a feature extractor thanks to its highly nonlinearity and hierarchical semantic
abstraction ability. However, it is quite hard to train a large scale CNN model
with a relatively small pedestrian re-identification dataset. Inspired by RCNN
[25], we design an irrelevant pre-training and relevant fine-tuning strategy to ini-
tialize the deep CNN. In the similarity learning part, we propose a model which
encodes second-order information. The higher-order similarity layer can model
more complex relation than typical ML methods, thus more suitable for pedes-
trian re-identification task. Both the deep CNN and the second-order similarity
model are trained alternately with one unified energy based loss function to
guarantee their optimality for each other. Moreover the energy based loss func-
tion leads to a large margin solution, which in turn enhances the generalization
ability of the proposed method. Experimental results on benchmark pedestrian
re-identification tasks verify the effectiveness of our proposed method. The main
contributions in this paper can be summarized as follows:

– With irrelevant pre-training and relevant fine-tuning process, we succeed in
training a large scale deep CNN with a small pedestrian re-identification
dataset.

– A similarity model encoding second-order information is proposed to estimate
the similarities between feature pairs, which is more effective than previous
metric learning methods for pedestrian re-identification problem.

– Thanks to the alternate learning strategy, a reasonably optimal large margin
solution is guaranteed.

2 Deep Second-Order Siamese Network

To estimate the similarity between two pedestrian images, we propose a method
named Deep Second-order Siamese Network (DSSN). The architecture of our
proposed method is shown in Fig. 2. It is composed of two identical convolutional
neural networks (CNN) and a second-order similarity (SS) function. With a
carefully designed energy based loss function, an ideal large margin solution
for re-identification task is guaranteed. In the following subsections, we present
the CNN model, the second-order similarity model and the energy based large
margin solution in details.
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2.1 Convolutional Neural Network (CNN)

The re-identification performance is affected by many factors such as low image
resolution, illumination, viewpoint and pose variations. To overcome these inter-
ference factors, we need to extract comprehensive and robust features. Designing
features with all interference factors taken into consideration is extremely hard.
Nevertheless deep CNN model shows its superior power over handcrafted models
thanks to its high nonlinearity and hierarchical semantic abstraction in many
computer vision applications. And with a elaborately designed objective, deep
CNN model can be learned to fit for a certain goal. Thus we believe features
learned from a deep CNN are more powerful than handcrafted features or fea-
tures learned via shallow networks.

To this end, we construct a deep convolutional neural network as feature
extractor for pedestrian re-identification task. The network is same as that pro-
posed in [26] except that we remove the softmax layer. The deep CNN contains
five convolutional layers and two fully connected layers. The forward process of
each layer is expressed in the following equations:

zl+1 = Wl+1 ∗ al + bl+1 (1)
al+1 = σ(zl+1) (2)
σ(x) = max(0, x) (3)

Wl+1 and al+1 are the parameter matrix and the activation of the (l + 1)th

layer respectively. σ(·) is the activation function and we use Rectified Linear
Units (ReLU) in this paper. The details about the network can be found in
[26]. The outputs of the last fully connected layer are taken as the learned deep
features.

As illustrated in Fig. 2, two pedestrian images are split into several non-
overlapping stripes. The two CNNs take each pair of the corresponding stripes
as input and output the learned deep features for the following similarity model.

2.2 Second-Order Similarity Function

In standard siamese network [11,22], the distance between two deep features is
usually calculated by a simple Euclidean or Cosine metric. Previous experimen-
tal results [22] of this type of siamese network on pedestrian re-identification
task did not demonstrate superior power over handcrafted feature followed by
metric learning methods [17]. Actually, extracting general sophisticated features
with a deep network is not good enough for pedestrian re-identification task.
Proper metric learning with respect to high-level re-identification objective is
still necessary.

To handle the complex relation addressed above, a variety of metric learning
(ML) methods [11–19] have been proposed. Despite of different objective func-
tions, these metric learning models calculate the new distance similarly as:
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Fig. 2. An overview of the deep second-order siamese network (DSSN). In the train-
ing phase, the gradients of the energy based loss function with respect to all model
parameters are back-propagated through the whole network which are indicated by the
yellow arrows. (Color figure online)

dML(x1,x2) = (x1 − x2)TLTL(x1 − x2)

= xT
1 Mx1 + xT

2 Mx2 − 2xT
1 Mx2

(4)

x1,x2 ∈ R
d are features extracted from a pair of pedestrian images. M = LTL

is a real symmetric matrix. By learning a desired L, samples from the same class
get closer to each other while those from different classes farther in a projected
latent space.

However, as pointed out in [17], there is an intrinsic mismatch between typical
ML methods and re-identification task. The projection matrix L learned from
training samples may not work well for testing samples from new categories.
A desired model for pedestrian re-identification requires the ability of adapting
locally rather than a simple global projection. Similar to [17], we define a second-
order similarity function to capture local data structures as follows:

s(x1,x2) =
1
2
(xT

1 Ax1 + xT
2 Ax2) + xT

1 Bx2 + b. (5)

s(x1,x2) > 0 means x1 and x2 being a genuine pair, otherwise an imposter
pair. {A,B, b} are parameters for the similarity function. A and B are real
symmetric matrices, and b is the bias term. And due to the symmetric constraint:
s(x1,x2) = s(x2,x1), we use A for both x1 and x2. Compared with typical
ML methods, the second-order similarity metric can model much more complex
relations due to three sets of parameters {A,B, b}.
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2.3 Energy Based Large Margin Model

To learn improved deep features and an ideal second-order similarity function for
pedestrian re-identification task, we adopt an energy based large margin model
as it can generalize well to unseen examples. Suppose there are P pairs of labeled
images, (x1,x2, y)i, i = 1, . . . , P , where xi

1 and xi
2 are the features extracted by

the CNN model described before, and yi = 1 indicates a genuine pair and yi = 0
an imposter pair. We define the overall loss function as:

L(Θ) =
P∑

i

L(Θ, (x1,x2, y)i)

=
P∑

i

yiLG(Θ, E(xi
1,x

i
2)) + (1 − yi)LI(Θ, E(xi

1,x
i
2))

(6)

Θ represents the whole set of parameters involved in the CNN and the similarity
function. LG(·) and LI(·) are the loss functions for genuine and imposter pairs
respectively. E(xi

1,x
i
2) is the energy function measuring the compatibility of a

pair of the image features, which is defined as:

E(xi
1,x

i
2) =

1
Z

exp (−s(xi
1,x

i
2)

λ0
), (7)

where

Z =
P∑

i=1

exp(−s(xi
1,x

i
2)

λ0
) (8)

is the partition function. Lower energy E(xi
1,x

i
2) indicates larger s(xi

1,x
i
2), which

suggests xi
1 and xi

2 form a genuine pair. On the contrary, higher energy suggests
the data being an imposter pair.

The two partial loss functions LG(·) and LI(·) take the forms of:

LG(xi
1,x

i
2) = αE(xi

1,x
i
2)

2
, (9)

LI(xi
1,x

i
2) = 2 exp (−βE(xi

1,x
i
2)) (10)

α and β are two constant parameters. The energy value E > 0 is guaranteed due
to its definition. Clearly, LG(·) is a monotonically increasing function and LI(·)
is a monotonically decreasing function, respect to E. It has been proved in [11]
that with the partial losses of such monotonicity, minimizing the loss function
L(Θ) defined in Eq. (6) leads to a large margin solution which can generalize
well to unseen persons.

To understand in a more loose way, minimizing L(Θ) corresponds to decreas-
ing the energy E(xi

1,x
i
2) for genuine pairs and increasing the energy for imposter

pairs. Equivalently, the objective leads to larger similarity score s(xi
1,x

i
2) for gen-

uine pairs and smaller similarity score for imposter pairs.
Researchers in [17] also proposed a method to approach a large margin solu-

tion for second-order metric model. They train their proposed model in SVM-like
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fashion. It should be noticed that the SVM-like solution is not quite straight-
forward to combine with the back-propagation algorithm. That’s why we choose
the energy-based loss function.

2.4 Gradients

The parameters in both CNN and second-order similarity model are jointly opti-
mized with the unified loss function 6. We use alternate training process to adjust
each part of the deep second-order siamese network to get an optimal model. It
should be pointed out that Li et al. [17] proposed a SVM-like objective function
to approach the large margin solution. However, it is pretty hard for the SVM-
like objective to optimize the CNN model. Instead, we adopt the energy based
loss function, since it is quite straightforward to use back propagation (BP) algo-
rithm to optimize both the CNN and similarity models under the energy based
framework.

Optimizing the second-order similarity model is pretty straightforward. We
can calculate the derivatives of the loss function (6) with respect to {A,B, b} as
follows:

∂L
∂A

=
P∑

i=1

∇i ∗ xi
1x

i
1
T + xi

2x
i
2
T

2
(11)

∂L
∂B

=
P∑

i=1

∇i ∗ xi
1x

i
2

T
(12)

∂L
∂b

=
P∑

i=1

∇i (13)

with

∇i =
2yiα(E3 − E2) + 2(yi − 1)β(E2 − E) exp (−βE)

λ0
, (14)

where E is the abbreviation for E(xi
1,x

i
2). Then, we can use a gradient based

optimization method like L-BFGS to obtain local optimal estimates for A,B
and b.

We use back-propagation (BP) algorithm to optimize the parameters of the
convolutional neural network. Suppose the CNN has N layers and Wn is the
parameter matrix of the n-th layer. The gradients of loss L with respect to Wn

is calculated as:

∂L
∂Wn

= an−1δn (15)

δN =
∂L
∂aN

� σ′(zN ) (16)

δn = (Wn+1T δn+1) � σ′(zn) (17)

zn is the input of the activation function σ(·) in the n-th layer. an is the corre-
sponding activation vector. δn is the error term defined in BP algorithm.
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The inputs to the second-order metric model, xi
1 and xi

2 are also the outputs
of the CNNs. Thus δN in our model can be calculated as:

δN =
∑

i

∂L
∂xi

� σ′(zN ) (18)

∂L
∂xi

1

= ∇i ∗ (Axi
1 + Bxi

2) (19)

∂L
∂xi

2

= ∇i ∗ (Axi
2 + Bxi

1) (20)

Once we get δN , the rest work can be done with typical BP algorithm.
As proved in [11], minimizing the loss function (6) with respect to the para-

meters of the CNN and the second-order similarity model will both lead to large
margin solutions. Therefore, consistent convergence of our optimization method
is guaranteed.

3 Learning Strategy

As large scale of parameters generally requires large scale of training samples,
successful deep networks are usually trained on large datasets, such as ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset [27] which con-
tains millions of images. However, most of the public pedestrian re-identification
datasets only contain several thousand images. It is unreasonable to directly
train a deep model involving millions of parameters with such a small dataset.

In the work of Girshick et al. [25], researchers found a way to bridge the
huge gap between small scale dataset and large scale model. They pre-train the
model on ILSVRC dataset with supervision and then fine-tune the model with a
domain-specific loss function on a small dataset. The reason behind the success
is that lower level convolutional filters detecting edges, orientations, etc. can be
shared across different sources of datasets, while higher level filters encoding rich
semantic information must be task specific. Pre-training on a large dataset with
supervision can generate effective low-level filters and a good initialization for
high-level filters. After that fine-tuning process can further adjust the model to
fit some specific task on a small dataset.

Inspired by this paradigm, our learning strategy consists of three stages.
First, we pre-train the CNN model on the ILSVRC dataset. On the second
stage, we fine-tune it with a pedestrian dataset with supervision. At last, we
jointly minimize the loss function (6) with respect to both the CNN model and
the second-order similarity model.

3.1 Supervised Pre-training and Fine-Tuning CNN

We pre-train the CNN model with the open source Caffe library [28] on ILSVRC
dataset. The detailed training process is the same as [25]. After the pre-training
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Algorithm 1. The main learning algorithm
Input: Dataset D = {(x1,x2, y)

i}n
i=1

Random initialized W (CNN model)
Random initialized {A,B, b} (SS model)

Output: Wopt and {A,B, b}opt

1: Pre-train W on ILSVRC dataset
2: Fine-tune W on D with Euclidean norm as similarity measure
3: while until convergence do
4: Randomly select a batch of data samples from D
5: Compute the value of Eq. 6 for this batch
6: Use back-propagation algorithm to calculate the gradients of W and {A,B, b}
7: Update W and {A,B, b}
8: end while
9: Wopt ← W

10: {A,B, b}opt ← {A,B, b}
11: return Wopt and {A,B, b}opt

step, the lower level convolutional filters are capable of extracting general instruc-
tive low-level image features.

The high-level filters in the pre-trained CNN model is suitable for image
classification but may not fit for encoding significant information for pedestrian
re-identification. Therefore, we fine-tune the CNN model using a set of pedestrian
images. To this end, we construct genuine pairs and imposter pairs from these
images, and minimize the loss function L(Θ) on these sample pairs. In this
stage, we replace the second-order similarity model in the DSSN model with
a Euclidean norm. The effectiveness of the learned CNN model for pedestrian
re-identification task is validated through experiments in Sect. 4.3.

3.2 Joint Optimization

After the fine-tuning process, we need to minimize the loss function (6) with
respect to both the CNN and the second-order similarity model to guarantee
their optimality for each other. To achieve this goal, we calculate the gradients
of the second-order similarity model based on Eqs. 11–13. And the gradients of
CNN in each layer can be computed through back-propagation algorithm. The
error terms in the last full connected layer is in the form of Eqs. 18–20. Classical
stochastic gradient descent (SGD) algorithm can be applied to optimize the CNN
and second-order similarity model simultaneously. As discussed in Sect. 2.3, each
step in the optimization process will lead to a large margin solution. Thus the
DSSN model composed of the CNN model and second-order similarity model is
guaranteed to converge to a local optimal state, which is fairly desirable for the
pedestrian re-identification task.

To summarize, our overall learning algorithm is described in Algorithm1.
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4 Experiments and Analysis

We conduct our experiments on two benchmark datasets, i.e. the VIPeR [1]
dataset and the CUHK01 [16] dataset. We compare our method to other deep
models and state-of-the-art methods for pedestrian re-identification. The results
validate the effectiveness of our proposed DSSN model.

4.1 Datasets

VIPeR dataset contains 632 people and 2 images for each pedestrian. Images
are normalized to 48 × 128 for evaluations. A pair of images are captured from
2 different camera views (camera A and camera B). The viewpoint change is of
90◦ or more. Complex illumination conditions and huge pose variations make
VIPeR dataset the most challenging pedestrian re-identification dataset.

CUHK01 dataset contains 971 people which are also captured from 2 camera
views and are normalized to 60×160. And there are 2 images for each pedestrian
in each camera view. Images in CUHK01 dataset have higher resolution. The
illumination condition is more stable than VIPeR dataset. The better quality
makes it possible for the DSSN to encode more information.

4.2 Evaluation Protocol

Our experiments on both datasets follow the evaluation protocol in [1]. The
datasets are randomly partitioned into two even parts as training set and test-
ing set. For VIPeR dataset 316 pedestrians are randomly picked up as training
samples and 486 pedestrians for CUHK01 dataset. In the testing phase, the
probe set is composed of images from camera A, and the gallery set is from
camera B. We calculate the similarity scores between a target in the probe set
and all candidates in the gallery set based on our proposed model. Then we can
get the ranking of the candidates based on their similarity scores. The standard
cumulative matching characteristic (CMC) curve is then reported to measure the
performance over the whole probe set [29]. Generally higher CMC curve indi-
cates better performance. To get stable statistics, all experiments are repeated
10 times with random training and testing partition on both datasets. And the
average CMC curves over 10 trials are reported to evaluate the performance on
both datasets.

4.3 Feature Learned via Deep CNN V.S. Handcrafted Feature

To evaluate the effectiveness of the deep CNN model, we compare the feature
extracted from the fine-tuned deep CNN model (Deep feature) with several hand-
crafted features. They are HGR feature [30], eLDFV [3], eBiCov [4] and QALF
[20]. Among them, HGR feature is used in [17] and achieved a good perfor-
mance on pedestrian re-identification task. It is a hierarchical gaussianization
representation based on simple patch color descriptors. It can be seen as the
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baseline of the handcrafted feature. eLDFV is a fusion of Weighted Color His-
tograms (wHSV), Maximally Stable Color Regions (MSCR) [2] and fisher vectors
encoded local descriptors. eBiCov is a bio-inspired covariance descriptor fused
with wHSV and MSCR. QALF is a self-adaptive feature fusion method that
fuses several low-level features such as Color Histograms, Color Names, LBP,
HOG. The results of different feature methods on VIPeR dataset are presented
in Table 1. The best results at each rank are highlighted in bold face.

Table 1. Comparison with different features on VIPeR (Unit: %).

Method Rank-1 Rank-5 Rank-10 Rank-20

HGR 9.46 22.50 31.80 40.41

eLDFV 22.34 46.92 60.04 71.81

eBiCov 20.66 42.62 56.11 67.67

QALF 30.17 51.60 62.44 73.81

Deep feature 30.70 55.70 65.82 74.37

From Table 1, we can tell that the Deep feature is much better than HGR,
eLDFV and eBiCov features. The Rank-1 matching rate is around 20%, 8% and
10% higher than these three methods respectively. It is worth noting that eLDFV
and eBiCov both fused several different features. And fusing features together
generally can achieve better performance. QALF can even reward good features
with higher weights and punish bad features. But the Deep feature alone is still
slightly better than the QALF feature. These results demonstrate that due to
the great semantic abstraction ability of the deep CNN model, the learned Deep
feature is better than handcrafted ones for pedestrian re-identification task.

4.4 Comparison Between Similarity Methods

In our proposed model, the second-order similarity (SS) function is defined to
model the complex relation between pair data. To validate the need for metric
learning and the effectiveness of our SS model, we compare it with other similar-
ity methods including Euclidean norm (Euc) and Mahanalobis based distance
function (Eq. 4). Euc is compared as the baseline method. And Mahalanobis
based distance is the similarity measure in most typical metric learning methods.
We use Euc and Mahalanobis based distance as similarity function respectively
to replace our SS model. And they are jointly trained with the CNN model
under the same strategy described in Sect. 3. The results of different similarity
methods on VIPeR and CUHK01 datasets are shown in Fig. 3.

It is clear showed in Fig. 3(a) and (b) that the performance of Mahalanobis
based distance are better than Euc. The Rank-1 matching rate of Mahalanobis
based distance are around 8% and 4% higher than Euc on VIPeR and CUHK01
respectively. While adopting the same CNN model and training strategy, the
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Fig. 3. Experimental results compared with different similarity methods.

only difference between these methods are the similarity measures. The better
performance demonstrate that even processed by a strong CNN model, metric
learning method is still a essential part in pedestrian re-identification.

We also notice that our proposed SS model achieves much better results than
Mahalanobis based distance. The Rank-1 matching rate on two datasets are
around 7% and 20% higher respectively. Mahalanobis based distance, like other
typical ML method tries to find an ideal latent space through one single global
projection while our SS model exploits the second-order information. Hence the
better performance demonstrates the advantage of the second-order model over
typical ML methods. This is all due to the ability of modeling more complex
relation.

4.5 Comparison with Other Deep Models

As the proposed DSSN model is a deep model, we compare it with other deep
models proposed for pedestrian re-identification task. These models include Deep
Metric [22], FPNN [23] and Improved Deep [24]. Deep Metric is a siamese
network but with similarity layer being a simple Cosine norm. FPNN model
and Improved Deep model both formulate pedestrian re-identification task as a
binary classification problem and train their models directly with relative small
pedestrian re-identification datasets.

In Table 2, we present the experimental results of different deep models on
VIPeR and CUHK01 datasets. Unavailable statistic data is denoted by −. And
the best results at each rank are highlighted in bold face. From Table 2 it is
obvious that our proposed DSSN achieves the best performance on both datasets.
On VIPeR dataset, the Rank-1 matching rate of our DSSN model is 45.31% while
the best of other methods is only 34.81%. This shows the superior power of our
DSSN model over other deep models. Besides we notice that our DSSN model
gets more improvement on VIPeR dataset than on CUHK01 dataset. On VIPeR
dataset the Rank-1 matching rate is around 11% higher than the others while
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Table 2. Comparison with deep models on VIPeR and CUHK01 (Unit: %).

Method VIPeR CUHK01

Rank-1 Rank-5 Rank-10 Rank-20 Rank-1 Rank-5 Rank-10 Rank-20

Deep
metric

28.23 59.27 73.45 86.39 - - - -

Improved
deep

34.81 63.61 75.63 84.49 47.53 71.60 80.25 87.45

FPNN - - - - 27.87 59.64 73.53 87.34

DSSN 45.31 78.00 87.81 92.37 54.36 78.53 86.19 92.11

it is only around 7% on CUHK01 dataset. Considering the fact that VIPeR
dataset suffers more from viewpoint changes and illumination variations than
CUHK01 dataset, the larger improvement on VIPeR dataset indicates that our
DSSN model is more robust to these interference factors than the other ones.

Compared with the Cosine norm of Deep Metric, our second-order similarity
model can model more complex relation. And as for FPNN and Improved Deep
they train their network directly while our DSSN adopts the pre-training and
fine-tuning process. This makes our model deeper and better trained than theirs.
Further more, the joint optimization leads our model to a overall optimal state.
These differences result in the remarkable improvement over other deep models.
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Fig. 4. Experimental results compared with state-of-the-art methods.

4.6 Comparison with State-of-the-Art Methods

After validating the effectiveness of each part in our DSSN model, we also com-
pare our DSSN model with several state-of-the-art methods: SalMatch [8], Mid-
Filter [9], LADF [17], QALF [20] and PKFM [21]. SalMatch and MidFilter define
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features based on the saliency parts in pedestrian images. LADF solved a SVM-
like objective which leads its similarity model to a large margin solution. PKFM
introduced a mixture of linear similarity functions to discover different matching
patterns in the polynomial kernel feature maps.

CMC curves on VIPeR and CUHK01 dataset of different methods are shown
in Fig. 4(a) and (b) respectively. We denote the methods of combining the Deep
feature with our SS model as Deep+SS. The difference between Deep+SS and
our full DSSN model is that the CNN model and the SS model of Deep+SS
method are trained separately while our DSSN model are jointly optimized. From
Fig. 4(a) we can see that on VIPeR dataset Deep+SS method achieves better
result than other methods except for DSSN. The Rank-1 matching rate of PKFM
is only 36.77% while Deep+SS method reaches at 40.83%. This result indicates
that the fine-tuned CNN model and the SS model are quite effective. Simple
combination achieves decent improvement over other methods. Furthermore, the
performance of DSSN are better than Deep+SS on a remarkable scale. The Rank-
1 matching rate of DSSN reaches at 45.31%. This indicates the proposed joint
optimization algorithm further improves the CNN model and the second-order
similarity model.

Similar results have been found on CUHK01 dataset in Fig. 4(b). Deep+SS
outperforms others while DSSN achieves the best result. The Rank-1 matching
rate of DSSN is 54.35%. These results further validate the effectiveness of the
proposed DSSN model and the joint optimization algorithm.

5 Conclusion

In this paper, we propose a novel deep second-order siamese network for pedes-
trian re-identification which consists of feature extraction and similarity learning
modules. The features learned via the deep CNN model encode effective informa-
tion for pedestrian re-identification. And the second-order relation exploited in
the similarity function makes the model more suitable for re-identification task.
We propose an joint optimization process to train the model successfully. There-
fore the feature learning and similarity learning modules are optimal for each
other, which is rarely seen in previous related works. The experimental results
validate the superiority of our model over other methods on two benchmark
datasets.
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Abstract. This paper presents a novel and effective approach to depres-
sion recognition in the visual modality of videos, which automatically
predicts the depression level through two cost-sensitive stages. It deliv-
ers an improved solution in two ways compared with other vision based
methods. On the one hand, current techniques regard depression recogni-
tion as either a classification or a regression problem, which tends to incur
overfitting due to the high complexity of the model and the limited num-
ber of training samples. To handle such an issue, we propose a two-stage
framework consisting of a coarse classifier and a fine regressor. The former
makes use of a set of linear functions, corresponding to different depres-
sion intensities, to approximate the complex non-linear model, where a
coarse range of the test sample is preliminarily located. The latter then
predicts its precise depression level within the given range. On the other
hand, depression recognition is different from the general classification
and regression tasks, since its analysis is cost-sensitive as the diagnosis
of heart diseases and cancers. However, this critical cue is not taken into
account in the previous investigations, thus making their results prob-
lematic. To address this drawback, we embed the indicator of medical
risk assessment into both the two stages by constraining the classifier
using a weight matrix and loosening the regressor to an expanded range
of depression level. The proposed method is evaluated on the Audio and
Video Emotion Challenge (AVEC) 2013, and the performance is superior
to the best one so far reported using the visual modality. Furthermore,
it proves complementary to the audio based methods, and their joint
use further ameliorates the accuracy. These facts clearly highlight the
effectiveness of the proposed method on depression recognition.

1 Introduction

Major Depressive Disorder (MDD), often simply called depression, is a mental
disorder characterized by a pervasive and persistent low mood, accompanied by
low self-esteem and a loss of interest or pleasure in normally enjoyable activities.
It adversely affects a person’s family, work or school life, sleeping and eating
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 338–351, 2017.
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habits, and general health. When left untreated, depression can cause severe
consequences, such as addiction, self-injury, reckless behavior and even suicide.
Due to its harmfulness, in the recent years, MDD has received increasing atten-
tion within many related communities all over the world. Fortunately, according
to some medical studies [1,2], it is treatable, and early detection of depression
is extremely important, which has an immediate effect on easing the social and
personal burden related to this illness.

Traditional methods of assessing psychopathology mostly depend on the ver-
bal reports of patients, behaviors reported by friends and mental status experi-
ences, such as the Scale for the Assessment of Negative Symptoms (SANS [3]),
the Hamilton Rating Scale for Depression (HRSD [4]) and the Beck Depres-
sion Inventory (BDI-II [5]). They are all based on subjective ratings, and for
lack of objective and quantitative measurements, the diagnosis results obtained
for the same patient may be inconsistent at different time or various envi-
ronment. In addition, they generally require extensive human expertise and
are time-consuming. Therefore, Automatic Depression Detection (ADD) is very
promising.

ADD is a young topic and it has not been discussed until 2009 [6]. To the best
of our knowledge, the progress that has been made so far on affective computing
mental disorder analysis is not so extensive. More recently, it has become one
of most attention-getting topics, because the population increase of people with
MDD, the technical development of artificial intelligence, and the public release
of research data. In medical practice, it is not sufficiently informative to only
decide whether the patients have depression or not, and it is expected to evaluate
the severity of MDD. Taking BDI-II as an example, its depression value ranges
from 0 to 63: 0–13 indicates the minimal state, 14–19 indicates the mild state,
20–28 indicates the moderate state, and 29–63 indicates the severe state. As
a result, ADD should be formulated as a regression or a multi-classification
problem.

Generally, there are two types of approaches towards this issue, i.e., audio
based and vision based. Although vision based methods have a variety of clues,
such as facial behaviors and body gestures, their results are not as accurate as
the audio based ones. On the one hand, there are more factors to consider in
the visual channel, which makes the model more complex and the feature less
robust [8,9], and non-linear classifiers or regressors are thus commonly employed
for MDD analysis. On the other hand, MDD datasets are usually of small-scale
for privacy protection demand as well as high acquisition cost. For instance,
the size of training set in AVEC2013 is only 50, even less than the number of
depression levels. Because of the limited training data and the complex visual
model, the existing methods tend to be easily prone to overfit. As shown in Fig. 1,
some visual features used in leading methods are depicted, which indicates that
the separability of the samples is not so good as expected. Moreover, in serious
illness analysis, such as the diagnosis of heart diseases and cancers disease, there
is always a need for risk assessment [10], where the misclassification of patients for
healthy ones leads to more side effects than the opposite situation. Additionally,



340 X. Ma et al.

(a) LBP feature encoded by FV. (b) LPQ feature encoded by FV.

(c) LBP features encoded by MHH [7]. (d) EOH features encoded by MHH [7].

Fig. 1. t-SNE visualization of some visual features used in state of the art work. It
can be seen that in these feature spaces above, accurately classifying the samples
into different group is a challenging task. Meanwhile, we can also see that if a single
regression model is built to fit all these points, it tends to overfit.

in the context of using BDI-II as an indicator for depression level, misdiagnosing
the depression state from minimal to severe brings in a higher cost than that
from minimal to mild. However, the current investigations in ADD do not take
such a factor into account, and treat the positive and negative errors equally,
making their results not reliable enough.

This paper aims to contribute to this research area by addressing the two
problems above, which proposes a novel approach for depression prediction in the
visual modality of videos. Firstly, in contrast to the methods in the literature
that make use of a single complex regression model to predict the depression
state. It works in a two-stage manner consisting of a coarse classifier and a fine
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regressor. The former makes use of a set of linear functions, corresponding to
the four depression levels defined by BDI-II (i.e., minimal, mild, moderate, and
severe), to approximate the complex non-linear model, where a coarse range
of the test sample is preliminarily located. The latter then predicts its precise
depression level within the given range. This framework alleviates the potential
tendency to overfitting in training data. Secondly, we embed the indicator of
medical risk assessment into both the two stages. In the first classification stage,
to incorporate the requirements of cost sensitivity in medical diagnosis [11],
we use a cost-sensitive classifier to make a optimal decision under asymmetric
costs. In the second regression stage, to tolerate the possible classification error,
we introduce a cost-sensitive loose which only approves to predict the depression
state within to the coarse range as well as an adjacent more serious one.

To validate the effectiveness of our proposed approach, experiments are car-
ried out on the depression prediction dataset, namely AVEC2013. The results
achieved outperform the state of the art, and to the best of our knowledge, it
ranks the first place in the visual modality. Meanwhile, the proposed method
is well complementary to the audio based ones, evidenced by the improvement
when they are joint used for multi-modal depression analysis.

2 Related Work

According to the information used, ADD methods can be categorized into audio
based ones and vision based ones, and this study focuses on the latter. In this
section, we give a brief introduction of recent ADD approaches.

Audio-based ADD methods can be found in [6,12–14]. They analyze the
audio features, such as spectrum, energy, Mel Frequency Cepstrum Coefficients
(MFCC), etc., which are supposed to be related to the depression emotion. Please
refer to [15] for a more thorough review on ADD using the audio modality.

Vision based methods employ spatial and temporal information in the visual
channel, where dynamic features are extracted from videos to capture depression
related facial and body motions, and a standard classification and regression
method is then used to predict the depression level.

As far as we know, the first published effort [16] by Wang et al. using visual
clues towards schizophrenia, a kind of more serious mental disorder, dated back
to 2008 from University of Pennsylvania. They proposed a computational frame-
work that creates probabilistic expression profiles for video data and can poten-
tially help to automatically quantify emotional differences between patients with
neuropsychiatric disorders and healthy controls. They extracted geometric fea-
tures based on facial landmarks and trained several probabilistic classifiers. To
incorporate temporal information, they propagated classification results at each
frame throughout the whole video. They pointed out that temporal dynamics
are essential to capture subtle changes of facial expressions.

The following study [6] is the first one to address depression itself. They used
manual FACS coding and Active Appearance Model (AAM) to represent facial
expressions and adopted Support Vector Machine (SVM) and logistic regression
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for decision making respectively. They also attempted to fuse the contributions of
audio and visual signals and claimed such combination improves the performance
of depression detection. Their finding suggests the feasibility of ADD and has
positive impacts on the clinical theory and practice.

More recently, Meng et al. [7] applied Motion History Histogram (MHH) to
encode dynamic cues represented in the Local Binary Patterns (LBP) and Edge
Orientation Histograms (EOH) feature spaces and used Partial Least Square
(PLS) to predict depression levels, which ranked the first place in video-based
methods in the AVEC2013 challenge. Cummins et al. [13] compared Space-Time
Interest Points (STIPs) and Pyramid of Histogram of Gradients (PHOG) in their
Support Vector Regression (SVR) based depression prediction system and found
PHOG performed better in capturing the visual variations. Kächele et al. [17]
presented a hierarchical classifier framework, which stacked a multilayer neural
network over the SVR ensemble, to recognize the depression state and adopted
the Kalman filter for the final audio-video decision fusion, which improved the
prediction accuracy on the AVEC2013 dataset. Chao et al. [18], investigated the
recent dominant deep learning models on this issue, and exploited Long Short
Term Memory Recurrent Neural Network (LSTM-RNN) to describe dynamic
temporal information. They used multi-task learning to boost the performance
and reported very competitive results. Wen et al. [19] extracted Local Phase
Quantization at Three Orthogonal Planes (LPQ-TOP) for representation of
dynamic clues and utilized sparse coding and SVR for prediction.

In spite of the great improvement in ADD performance, these methods gen-
erally build the non-linear model in certain feature spaces and further apply a
linear classifier or regressor for prediction. Figure 1 demonstrates that the fea-
tures used for depression modeling are not competent enough as we expect. Fur-
thermore, the high complexity of the features and the limited size of the training
samples are prone to incur the problem of overfitting, dramatically degrading the
generality. In addition, they treat ADD as a regular classification or regression
task, and do not consider the medical analysis risk, which makes their result not
so convincing in practice.

3 Cost-Sensitive Two-Stage Approach

To deal with the limitations of current vision based methods, we propose a cost-
sensitive two-stage approach for ADD, which is composed of a coarse classifier
and a fine regressor as illustrated in Fig. 2. The first stage employs a small set of
linear functions, each of which corresponds to a depression level (in BDI-II), to
approximate the complex non-linear model, and preliminarily localizes the coarse
depression range of the test sample. The second stage then precisely predicts its
level within the given range. Figure 3 shows such a motivation, where a single
regressor is not sufficient to model the samples in certain visual feature space as
in Fig. 3(a), but the piecewise approximation well addresses this problem as in
Fig. 3(b). Furthermore, we take the medical risk into account in both the stages
by constraining the classifier using a cost matrix and loosening the regressor
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Fig. 2. Framework of the proposed two-stage ADD system.

(a) (b)

Fig. 3. Visualization of the advantage of the two stage framework. (a) Regression on
the original data encoded by FV, where the samples are not linearly separable in the
visual feature space, and a more complex model tends to overfit. (b) Regression on
linear piecewise approximation of the non-linear model, where FVs are first classified
into 4 groups and the regression is constrained to one of them for prediction.

to an expanded range of depression level. The details of each major steps are
introduced in the subsequent.

3.1 Feature Encoding

For each video sample, the first step is to capture its motion variations. Dense
trajectory features [20] have proved efficient for video representation in action
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recognition. In this study, such features are expected to be useful in depression
prediction because trajectories reflect the local motion information of the video
and dense representation provides very comprehensive description of a single
frame, which respectively capture temporal changes and spatial characteristics.
In our case, for each trajectory, Histogram of Orientation Gradients (HOG),
Histogram of Optical Flow (HOF) and Motion Boundary Histogram (MBH)
are computed and combined into a single one due to their complementarity in
capturing detailed local dynamic variations.

When these features are extracted, we need to integrate them to obtain final
representation for a video. Different from the previous studies that use MHH [7],
GMM [12], Vector of Local Aggregated Descriptors (VLAD) [21], etc., we employ
Fisher Vector (FV) [22] to encode the visual clues in videos, by aggregating the
local descriptors into holistic representation. FV can be regarded as the general-
ization of the popular Bag-of-Visual Words (BoVW) representation. Compared
with bag of features, FV encodes both the first and second order statics between
the video descriptors and a Gaussian Mixture Model (GMM). It is found to
be the most effective in a recent evaluation of patch encoding techniques [22].
Specifically, let xn be the nth D-dimensional local descriptors extracted from
a video, γn(k) be the soft assignment of xn to the kth Gaussian, and wk, μk

and σk be the mixture weight, mean and diagonal of the covariance matrix of
Gaussian k respectively. After normalization, the gradients of a descriptor xn

w.r.t. the mean and variance of the kth Gaussian are:

Gμk
=

N∑

n=1

γn(k)(xn − μk)/
√

σkwk, (1)

Gσk
=

N∑

n=1

γn(k)[(xn − μk)2 − σ2
k]/

√
2σ2

kwk, (2)

The whole video can then be represented as a 2 × D × K dimensional FV for
the following classification and regression steps.

3.2 First Stage: Coarse Classifier

The first stage performs a typical classification process to provide a prelimi-
nary categorization for each FV, which represents a patient’s interview video.
According to BDI-II, we define 4 different groups, i.e. minimal, mild, moderate,
and severe, which are used to build corresponding linear models for an approxi-
mation to the intrinsically nonlinear depression state. These groups of different
depression levels have their own characteristics, and they should thus be treated
differently in the following stage. In this paper, we explore two regular classi-
fication methods: logistic regression and Linear Discriminant Analysis (LDA),
because they are computational efficient and less tendentious to overfit, and well
match to FV [23].

Meanwhile, a regular classification problem treats all the types of misclassi-
fication errors equally. However, in depression analysis, the four classes denote



Cost-Sensitive Two-Stage Depression Prediction Using Dynamic Visual Clues 345

increasing levels, and misclassifying a sample to the classes farther to the actual
one has a higher cost than to the ones nearer to it. For example, misclassifying
from the minimal depression state to the severe one should have a higher cost
than to the mild one. Therefore, we consider this factor as a constraint when the
classifier is trained, to make the results more convincing for medical practice.
In this stage, we consider the misclassification caused by the whole class, i.e.
class-dependent costs.

In this case, the cost associates to the level difference between the true and
predicted label. The costs, denoted as c(k, l) for predicting class k if the true
label is l, are usually organized into a K × K matrix where K is the number
of classes. Generally, it is assumed that the cost of predicting the correct class
label y is minimal, i.e. c(y, y) ≤ c(k, y) for all k = 1, · · · ,K. In this work, we set
the cost of correct classification to zero, i.e. c(y, y) = 0.

Table 1. Cost matrix for the coarse classifier.

True/pred Minimal(0) Mild(1) Moderate(2) Severe(3)

Minimal(0) 02 12 22 32

Mild(1) 12 02 12 22

Moderate(2) 22 12 02 12

Severe(3) 32 22 12 02

In multi-class cost-sensitive classification, we use the rpart package [24]. The
cost matrix used in this paper is shown in Table 1, where the cost is the square
of the difference between two labels, which penalizes misclassification.

3.3 Second Stage: Fine Regression

The second stage provides the final quantification of the depression state, which
performs regression based on the results of the first stage. Here, we consider two
simple regression methods: Ordinary Least Squares (OLS) and least absolute
shrinkage and selection operator (LASSO). When making the final prediction, if
the predicted response falls outside the range imposed by the coarse classifier,
the value is cut off to its left or right boundary. For example, when regression
is carried out on the minimal depression cluster, ranging from 0 to 13, if the
predicted value is 20, it is assigned to 13 (Fig. 4).

However if the coarse classifier gives a wrong result, the fine regressor def-
initely fails. To make the method more robust, we propose a strategy which
loosens the range to two adjacent clusters to tolerate possible errors incurred
in the previous stage. On the other hand, in a normal regression problem, the
confidence interval is two-sided. For example, in age estimation, it is the same
if the age of 25 years old is predicted to 24 or 26. But in medical analysis, to
control the medical risk, it is only allowed to predict the depression state to its
actual level or a slightly more serious one rather than to a less serious one.
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a test sample
cut off to upper limit

(a)

a test samplels

Loosened range

(b)

Fig. 4. Demonstration of the effectiveness of loosening the coarse range in the fine
regression stage. (a) Regression without loosening coarse range and (b) regression with
loosening coarse range.

Based on such consideration, in the second stage, we merge two consecutive
clusters (the cluster given by the first stage and the adjacent one with a higher
level), generating minimal and mild state, mild and moderate state, moderate
and severe state and severe state. We then train regressors on them. In this way,
when a sample is classified to the mild depression class, the regressor trained on
the merged cluster of the mild and moderate states is used to predict its BDI-II
score. This strategy, not only makes the entire system more reliable, but also
better balances the medical diagnosis risk.

4 Experimental Evaluation

In this section, we describe the dataset, experimental settings, results, and the
comparison with the state of the arts.

4.1 AVEC2013 Dataset

The proposed method is evaluated on the AVEC2013 dataset, which is a sub-
set of the audio-visual depressive language corpus (AViD-Corpus). The whole
dataset contains 340 video clips of 292 subjects performing a Human-Computer
Interaction task while being recorded by a webcam and a microphone in a num-
ber of quiet settings. There is only one person per clip and all the participants
are recorded from one to four times, with a period of two weeks between the
measurements. 5 subjects appear in 4 recordings, 93 in 3, 66 in 2, and 128 in
only one session. The length of these clips ranges from 20 to 50 min with the
average of 25. The total duration of all clips lasts 240 h. The mean age of the
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subjects is 31.5 years old, in the interval of 18 to 63 with a standard deviation of
12.3. For the organization of the AVEC2013 challenge, the dataset is split into
three parts: a training part, a development part, and a test part, each of which
has 50 video clips.

4.2 Experimental Setting

When extracting dense trajectory features, we follow the parameter settings in
[20]. The final dimensions of the descriptors are 30, 96, 108 and 192 for trajectory,
HOG, HOF and MBH respectively. For feature encoding, we choose K = 256
as the number of Gaussian and randomly sample a subset of 1000 × K descrip-
tors from the training part of AVEC2013 to estimate the mixture model. After
obtaining all the FVs, we apply power normalization and L2 normalization to
them as in [23]. Principal Component Analysis (PCA) is adopted for FV dimen-
sionality reduction. In the experiments, the AVEC2013 training subset is used
for model learning and the test one is used for validation. The development sub-
set is not used. The performance is measured in Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) averaged over all the test samples as ruled
by [25].

4.3 Results

The RMSE between the estimated BDI-II scores and the ground truth labels is
13.61 and the MAE is 10.88 [25], both of which are taken as the baseline results.

Evaluation of Two-Stage Model. In Table 2, we compare the performance
of different combinations of classifiers (i.e. logistic regression and LDA) and
regressors (i.e. OLS and LASSO) on the test part of AVEC2013. We can see
that the combination of LDA and OLS achieves the best results in terms of both
the measured errors, which are 7.26 and 8.91 for MAE and RMSE respectively.
Moreover, it also displays the results of the traditional one-stage methods, and
we find out that the proposed two-stage system performs much better than using
a single regression model to predict the depression level. For example, single OLS
achieves 7.63 and 9.51 for MAE and RMSE, which are obviously inferior to the
ones reached by the proposed approach.

Comparison with State-of-the-Art. In Table 3, we compare our depression
prediction results with the previous studies which also make use of visual clues on
the test part in AVEC2013. The counterparts include the state of the art results
so far reported since the AVEC2013 challenge was held. We can see that in the
literature, the performance is slowly improved. While in this study, we reduce
the best MAE and RMSE by 0.54 and 0.77 respectively. In particular, when
compared with [19], the latest research on AVEC2013, our MAE and RMSE
values are much lower, with the drop of 0.9 and 1.32 respectively.
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Table 2. Comparison of different combinations of classifiers and regressors using the
same FV features on the AVEC2013 test set.

Classifier Regressor MAE RMSE

- LASSO 7.74 9.67

Logistic regression LASSO 7.69 9.59

LDA LASSO 7.51 9.39

- OLS 7.63 9.51

Logistic regression OLS 7.53 9.32

LDA OLS 7.26 8.91

Table 3. Comparison with previous vision-based studies in depression prediction on
the AVEC2013 test set.

Methods Modality MAE RMSE

Baseline [25] (2013) Video 10.88 13.61

Meng et al. [7] (2013) Video + Audio 8.72 10.96

Kächele et al. [17] (2014) Video 8.97 10.82

Kaya et al. [14] (2014) Video 7.86 9.72

Wen et al. [19] (2015) Video 8.22 10.27

Ours Video 7.26 8.91

Table 4. Multimodal fusion of vision and audio based methods at the score level.

Modality MAE RMSE

Audio 10.88 14.49

Video 7.26 8.91

Video + Audio 6.75 8.29

Multimodal Fusion. In the literature, it has been pointed out that visual and
audio channels convey complementary information for depression recognition.
We also evaluate contribution of the proposed method when it is combined with
audio based ones. In our study, we make use of the top 20 MFCCs, the first
and second order frame-to-frame difference coefficients. To achieve holistic rep-
resentation for each video, we adopt BoVW, which has been successfully used
for musical genre classification [26]. Next, we use the linear regressor, the linear
opinion pool method is employed in the final multimodal fusion step due to its
simplicity [7]. The fused depression score can be formulated as:

Dfinal(x) =
K∑

i=1

α(i)Di(x) (3)
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where x is a test sample, Di(x) is the decision value of ith modality seperately,
and α(i) is the corresponding weight which satisfies

∑K
i=1 α(i) = 1.

The results of multimodal fusion are shown in Table 4. We can see that
although the audio based method used is a very simple one, whose MAE and
RMSE are 10.88 and 14.49 respectively, when it is combined with the proposed
vision based method, the performance is further improved. The MAE and RMSE
values are decreased to 6.75 and 8.29, outperforming the ones of either of the
single modalities. It indicates that the our method presents complementary clues
to the audio based method.

5 Conclusions

The contribution of this paper lies in two aspects. Firstly, we propose a novel
two-stage framework for ADD in the visual modality, which consists of a coarse
classier and a fine regressor. The classification step uses a set of linear functions
to approximate the complex non-linear model and coarsely locates a range for the
test sample, where the regression step further precisely predicts its depression
level. It mitigates the potential tendency to overfitting to training data. Secondly,
we present a new scheme in both the two stages, which takes the medical risk
into account, making the results of depression prediction more convincing.

The proposed method is validated on the AVEC2013 test set, and to the best
of knowledge, the result achieved is the best in the visual channel so far reported
on this benchmark. Moreover, it is complementary to the audio based methods,
and their combination further ameliorates the accuracy.
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Abstract. In this paper, we propose a novel model for recognizing
human interaction in videos via discriminative patches. Each frame
is represented as a set of mid-level discriminative patches, which are
extracted automatically by association rule mining on convolutional
neural networks (CNN) activations. We further refine these patches based
on the observation that discriminative patches usually occur in climax
period of an interaction. The climax of an interaction in the paper is
defined as the continuous frames which have more firing patches. The
patches are further purified by a reward-punishment rule, which ensures
that the discriminative patches emerge in climax period or key frames
frequently and seldom occur in non-key frames. Finally, the label of
an interaction video clip is determined by votes of each patch detected
in it. The experimental results on UT-Interaction Set #1, Set #2 and
BIT-Interaction Dataset show that the proposed discriminative patches
obtain encouraging performances.

1 Introduction

Recently, interaction recognition has become a popular research topic due to its
great scientific importance and practical applicability. Lots of applications have
taken the advantage of interaction recognition, such as video analysis, surveil-
lance and smart human-robot or human-computer interaction.

In close human interactions (e.g. shake-hands and hug), motion ambiguity
increases significantly which leads that commonly used features such as interest
points and trajectories are difficult to be uniquely assigned to a particular per-
son. Therefore, recognizing human interactions become even more challenging.
Mid-level discriminative patches proposed by Singh et al. [1] are clusters of image
patches with rich semantic meanings discovered from a dataset where only image
labels are available. A variety of state-of-the-art image classification methods
[1–4] have validated that utilizing image patches which capture important
aspects of objects is efficient in recognition field. Similar to recognizing objects
from images, image patches can also be applied to human interaction recog-
nition when the videos are treated as numerous image frames. However, a lot
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 352–367, 2017.
DOI: 10.1007/978-3-319-54184-6 22
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Fig. 1. An example of an interaction-sensitive patch and an non-interaction-sensitive
patch. The interaction-sensitive patches are more discriminative and occur only within
a particular period of time (the top of the pictures), while the non-interaction-sensitive
ones span over the whole video (the bottom ones). (a) shake-hands; (b) kick.

of challenges will emerge while exploiting the image patches directly. The first
reason is frames explosion. Since there will be thousands of frames in a short
video clip, we need the extremely large memory during training. Efficient mid-
level discriminative patches discovering method which can handle “big data” is
emergency. The other one is existing non-interaction-sensitive patches. Unlike
discovery objects from images, some non-interaction-sensitive patches may exist
in a video all along. An example is illustrated in Fig. 1. From the figures, we can
observe that in both video clips of shake-hands and kick, the most discrimina-
tive interaction-sensitive patches appear within a period of time (the patches on
the top), while the non-interaction-sensitive patches span over the whole video
(the bottom ones). It is essential to preserve interaction-sensitive patches and
withdraw non-interaction-sensitive ones.

In this paper, we propose a human interaction recognition method based on
key frames and discriminative patches in them (KFDP). Inspired by work of
Poselets in object recognition [5] and mid-level discriminative patches [1], we
represent videos in terms of discriminative patches rather than semantic parts
or global feature vectors. The patches can be body parts or interaction parts, but
are not restricted to them. The number of parts in each frame is also not limited.
To avoid tedious key-point annotation in learning Poselets [5] and overcome the
plague of frames explosion, we adopt mid-level deep pattern mining (MDPM)
algorithm [6] to discover discriminative patches. Based on the observation that
discriminative patches often emerge in the climax part rather than the whole
process, we discover key frames and propose a reward-punishment rule to purify
mid-level discriminative patches.

The remainder of the paper is organized as follows. In Sect. 2, related work
is covered. The details of the proposed model are introduced in Sect. 3. Section 4
reports the experimental results and Sect. 5 concludes the paper.

2 Related Works

Human interaction recognition has been receiving much attention in computer
vision. The key to interaction problem is how to represent the interactive infor-
mation between people. A popular solution used in [7–12] is to learn joint
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motion state for interactions. Specifically, [8] utilized body part tracker to extract
each individual in videos, and then described spatial and temporal connections
between interacting people. Choi et al. [9] utilized human pose, velocity and
spatial-temporal distribution of people to express action information. They fur-
ther proposed a system that simultaneously tracked people and recognized their
activities. Methods in [10,13] learned key-frames to represent complex actions.
Although these approaches developed a good representation for videos, they
heavily rely on the success of object detection and trackers algorithms.

To alleviate the dependence on trackers and detection, Brenderl et al. [14]
over-segmented the whole video into some tubes first, and then adopted spa-
tiotemporal graphs to learn the relationship among the parts. Raptis et al. [15]
grouped the trajectories into clusters, each of which could be treated as an action
part. Lan et al. [7] represented crowd context at both feature level and action
context level. Kong et al. [16,17] proposed a method to describe complex interac-
tions with rich semantic descriptions. Approaches in [18,19] regarded interacting
people as a group and recognized their interactions based on group motion pat-
terns. Sum-product networks [19] divided a video clip into multiple spatiotem-
poral volumes. Although these part-related methods achieved high performance,
optimization algorithms in their models are complex and huge predicting para-
meter space overwhelmed the learning model.

Mid-level discriminative patch named by Singh et al. [1] are clusters of dis-
criminative patches exacted through a cross-validation training strategy. Owing
to the great success of mid-level discriminative patches, many works has been
put forward based on that. Doersch et al. [2] formulated mid-level visual ele-
ment discovery from the perspective of the well-known mean-shift algorithm.
Bossard [20] discovered representative and discriminative superpixels using a
Random Forest framework. Xu et al. [21] proposed an activity auto-completion
(AAC) model, which explores discriminative patches for video representation
and constructs prefix-candidate pairs for auto-completion.

In this paper, we adopt mid-level deep pattern mining (MDPM) [6] to dis-
cover candidate discriminative patches for human interaction recognition. The
mid-level deep pattern mining (MDPM) algorithm adopts association rules on
the powerful convolutional neural networks (CNN) features to mine mid-level
visual element, which is suitable for “big data” in video analysis. We further
make use of the climax stages of an interaction to discover key frames and pro-
pose a reward-punishment approach to refine the candidate patches. Finally, the
label of an interaction is determined by a voting scheme based on these patches.

3 The Proposed KFDP Model

In this section, we first introduce how to mine candidate discriminative patches
with mid-level deep pattern mining (MDPM) [6] in Sect. 3.1. Then the details of
how to locate key frames or the climax stage and refine the candidate patches
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Fig. 2. Details of mining candidate patches. Given image patches sampled from both
the target action (e.g. shake-hands) and the other categories, we extract every patch’s
CNN activation and regard it as a transaction of itemsets. Patterns are then obtained
through association rule mining. Discriminative patch clusters are gained by searching
image patches with the same patterns.

by the proposed reward-punishment rules are discussed in Sects. 3.2 and 3.3,
respectively. In Sect. 3.4, human interaction recognition is showed.

3.1 Mining Candidate Patches

An overview of mining candidate patches is illustrated in Fig. 2. The approach
is divided into two procedures: CNN activation extraction and association rule
mining.

CNN Activation Extraction. We first sample 128 ∗ 128 patches with a stride
of 32 pixels from each image. Then, for each image patch, we extract the 4096-
dimensional output of the first fully-connected layer of BVLC Reference Caf-
feNet [22] or the 19-layer VGG-VD model [23]. To generate the final feature
vector for each image, we consider two steps as follows.

(1) Sparsified CNN. Given the input feature as the first fully-connected layer
of a CNN model, the CNN activation of an image patch is obtained by
retaining only the K largest values of the vector and setting the remaining
values as zero. That is, we force the features to be sparse.

(2) Binarized CNN. For each 4096-dimensional CNN activation of an image
patch, we set the K largest values of the vector to one and the remaining
elements to zero.

These two steps of processing CNN activation are critical to the appropriacy
of such features to form the basis of a transaction-based approach. Work [6]
has compared the “CNN-Sparsified” and “CNN-Binarized” counterpart with the
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baseline feature, it validates that CNN activations do not suffer from binarization
when K is small, the accuracy even increases slightly in some cases. That could
explain that the discriminative information within its CNN activation is mostly
embedded in the dimension indices of the K largest magnitudes. We set K = 20
in the experiments, following the empirical setting of [6].

Association Rule Mining. We hope that the discriminative patches have
two characteristics: (1) repesentative: they should occur frequently enough in
one target activity class; and (2) discriminative: they should appear rarely in
other categories of activities. Furthermore, the demand of processing “big data”
requires handling the huge number of frames in videos efficiently. We adopt
association rule mining [6] and frequent itemset learning to discover candidate
discriminative patches for each class. Both might be used in processing large
numbers of customer transactions to reveal information about their shopping
behaviors.

More formally, let A = {a1, a2, ..., aM} denote a set of M items. A transaction
T is a subset of A (i.e., T ⊆ A) which contains only a small number of items (i.e.,
| T | � M). We also define a transaction database D containing R (typically
millions, or more) transactions (i.e., D = {T1, T2, ..., TR}). The frequent itemset
and association rule are defined as follows. Note that the definitions are based
on market analysis.

Definition 1 (Frequent Itemset). Suppose that an itemset I is a subset of
global itemset A. We are interested in the fraction of transactions T ∈ D which
contain I. The support of I reflects this expression:

supp(I) =
|{T |T ∈ D, I ⊆ T}|

N
∈ [0, 1] (1)

where | � | means the cardinality. I is called a frequent itemset when supp(I)
is larger than a expected threshold.

Definition 2 (Association Rule). The confidence of an association rule conf
(I → 1) can be taken to reflects this expression:

conf(I → 1) =
supp(I

⋃{1})
supp(I)

=
|{T |T ∈ D, (I

⋃{1}) ⊆ T}|
T |T ∈ D, I ⊆ T}| ∈ [0, 1]

(2)

In a traditional pattern mining model this might be taken to imply that customers
who bought items in I are also likely to buy item 1. In practice, we are interested
in “good” rules, meaning that the confidence of these rules should be reasonably
high.

Given the transaction database D, we use the Apriori algorithm to discover
a set of patterns P through association rule mining. Each pattern P ∈ P must
satisfy the following two criteria:

supp(P) > suppmin, (3)
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Fig. 3. Some examples of candidate patches discovered on the UT-Interaction Set #1,
for each interaction, we present the top-1 patches (upper line) and top-2 patches (lower
line).

conf(P → pos) > confmin, (4)

where suppmin and confmin are thresholds for the support value and confidence.
We now show how association rule mining implicitly satisfies the two require-

ments of candidate patches discovery, i.e., representativeness and discriminative-
ness. Specifically, based on Eqs. (3) and (4), we are able to rewrite Eq. (2), thus

supp(P ∪ {pos}) = supp(P ) × conf(P → pos)
> suppmin × confmin

(5)

where supp(P ∪ {pos}) measures the frequent pattern P discovered in transac-
tions of the target action among all the transactions. Hence, values of supp(P)
and conf(P → {pos}) larger than their thresholds ensure that pattern P is
found frequently in the target category, akin to the representativeness require-
ment (Eq. (5)). A high value of confmin (Eq. (4)) also ensures that pattern P
is more likely to be found in the target category rather than all other classes,
reflecting the discriminativeness requirement.

Lastly, we merge similar patterns in an iterative procedure while training
linear discriminant analysis (LDA) detectors, because some patches belonging
to different patterns may overlap or describe the same visual concept. Figure 3
shows some candidate patch clusters.

3.2 Locating Key Frames

Usually an interaction has its start, climax and end periods, and the key elements
to recognize human interaction is located in the climax part. We investigate the
temporal distribution of the firing candidate patches and get some interesting
observations. Figure 4 shows exemplars of the temporal distribution of the six
interactions of the first people on UT Set #1. We can see that more candidate
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Fig. 4. Distribution of candidate patches in the interaction video exemplars. The key
frames are in the time interval where more candidate patches response.

patches emerge in the middle part of the video clip whereas fewer are detected
in the other parts. Hence, we develop a simple approach, using a threshold for
judging whether a frame is a key frame or not, based on Eq. (6) as

ζj = nj
min +

2

3
× (nj

max − nj
min), (6)

where ζj is the threshold number of detected patches on a frame to become a
key frame for video j. nj

max and nj
min are the maximum number and minimum

number of firing patches on a frame of video j, respectively.
According to temporal distribution of the number of patches on each video

and ζj defined by Eq. (6), we then define frames of video j where the firing
candidate patches are no less than ζj as the discriminative frames or key frames.

3.3 Refining Discriminative Patches

As shown in Fig. 1 and the top-1 patch of “push” in Fig. 3, due to the effects of
non-interaction-sensitive patches and backgrounds, patches mined in a class do
not necessarily satisfy the aforementioned two characteristics: representativeness
and discriminativeness. Therefore, we propose a reward-punishment approach to
further refine the candidate patches.

Intuitively, if a patch cluster turns up in key frames frequently and seldom
emerges in non-key frames, it will be highly discriminative. To refine the can-
didate patches, we proposed a Reward-Punishment Rules: reward the frequent
patches in key frames and punish the patches occurring in non-key frames. The
details of reward-punishment rules are as follows.
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Fig. 5. Some examples of final discriminative patches discovered on the UT-Interaction
Set #1, for each interaction, we present the top-1 patches (upper line) and top-2 patches
(lower line).

(1) Frequency Score: Frequency score measures how often a patch occur dur-
ing key frames. An ideal patch cluster is expected to occur in key frames
frame by frame. Then if a patch appears in a key frame, this cluster will
be rewarded, otherwise will be punished. The frequency score is summed by
the scores during the period of key frames, formulated as

φi =

Tke∑

t=Tks

frequency(ϕi(t)), (7)

where ϕi is the ith cluster and frequency(ϕi(t)) means whether some
patches of ϕi occur in the tth key frame, respectively. frequency(ϕi(t))
is 1 if ϕi exists, otherwise −1. Tks and Tke indicate the beginning and the
ending timestamp of the key frames.

(2) Discriminativeness Score: Discrimination constraint requires patch clus-
ters seldom occur in a non-key frame, otherwise their discrimination
decreased and get punished. The discriminativeness score is summarized
during the non-key frames, formulated in Eq. (8)

ψi =

Tks∑

t=Ts

discrimination(ϕi(t)) +

Te∑

t=Tke

discrimination(ϕi(t)), (8)

where ϕi is the ith cluster and discrimination(ϕi(t)) means whether some
patches of ϕi occur in the tth non-key frame. discrimination(ϕi(t)) is −1
if ϕi exists, otherwise 0. Ts and Te indicate the beginning and the ending
timestamp of the video, respectively.

The final score of a patch cluster is obtained by merging its frequency score
and discriminativeness score. We introduce λ to balance these two aspects, as
shown in Eq. (9). We rank the scores of all clusters and select clusters which
have top-N for each interaction.
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δi = λ · φi + (1 − λ) · ψi, (9)

where δi is the summation of φi and ψi with a certain balance coefficient λ. The
impact of balance coefficient λ will be investigated in Sect. 4.2. Some examples
of the refined discriminative patches are depicted in Fig. 5.

3.4 Interaction Recognition

We regard the top N clusters of each category as the final discriminative patches
of each interaction and then learn N discriminative detectors for each interaction
by SVM classifiers: LIBSVM [24]. The patches belonging to a particular cluster
are used as positive samples and negative samples are from other categories.
The feature of a patch is the first fully-connected layer of the 19-layer VGG-VD
model [23], which has been extracted at the stage of mining candidate patches.

Given an unknown interaction video, we detect discriminative patches by
sliding window with SVM detectors. The predicted label of the video clip is
obtained by accumulating the votes of each detected patch.

4 Experiments

we conduct extensive experiments to evaluate the proposed interaction recog-
nition method on UT-Interaction Set #1, Set #2 [25] and BIT-Interaction
Dataset [16].

The UT-Interaction Set #1 and UT-Interaction Set #2 [25] are created for
high-level human interaction analysis, and both of them consist of six differ-
ent types of human interaction activities: shake-hands, hug, kick, point, punch
and push, with 10 videos per activity class. Figure 6(a) shows some example
snapshots of the six activities from two datasets. Backgrounds in Set #2 are
more complex than those in Set #1 (e.g. tree moves, camera jitters). Following
the experiment settings in [25], 10-fold leave-one-sequence-out cross validation
setting is used.

The BIT-Interaction Dataset [16] consists of 8 classes of human interaction
activities: bow, boxing, handshake, high-five, hug, kick, pat and push. Each class
contains 50 videos, to provide a total of 400 videos. some example snapshots of
the eight activities are shown in Fig. 6(b). In experiments on BIT dataset, 272
videos are randomly chosen for training and the remaining videos are used for
testing, as following [26].

4.1 Experimental Parameters

We sample a frame at 5 frames interval for each video. For each image, we resize
its dimension to 320 ∗ 240, then sample 128 ∗ 128 patches with a stride of 32
pixels, and calculate the CNN features using the 19-layer VGG-VD model [23]
in caffe1. Because the number of patches sampled varies in different datasets,
1 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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(a) Example snapshots of six different interactions (shake-hands, point, kick, hug, push
and punch) from UT Set #1 (top) and UT Set #2 (bottom). Set #2 is more complicated
than UT Set #1, since there are more tree moves, camera jitters, etc..

(b) Example snapshots of eight different interactions (bow, boxing, handshake, high-five,
hug, kick, pat, push) from BIT-Interaction Dataset.

Fig. 6. Example snapshots of different datasets

two parameters suppmin and confmin in the association rule mining in Sect. 3.1
are set according to each dataset so that at least 100 patterns are discovered for
each category.

Number of Clusters. We first investigate the parameter of number of dis-
criminative clusters for each action category. It is expected that recognition
performance is not always getting better with the increasing number of final
clusters and certain numbers of discriminative patches (e.g., 50) are enough to
discriminate different actions. Table 1(a) illustrate the accuracy of the proposed
model on UT Set #1 with different number of clusters in each class. It can be
seen that ten to fifty patches get satisfying results. The best accuracy is got-
ten with top 20 discriminative patches and we fix this parameter as 20 in the
following experiments.

Parameter of λ. The parameter λ in Eq. (9) controls the balance between
frequency and discriminativeness in reward-punishment rules. Table 1(b) shows
recognition accuracies of the proposed model on UT Set #s1 with different λ
values. It can be seen that the best performance is gotten when λ = 0.25, which
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Table 1. Impact of different factors on UT Set #1

(a) Impact of clusters

Clusters per class Accuracy( % )

1 78.33%

5 88.33%

10 93.33%

20 96.67%

50 95.00%

(b) Impact of λ

Value of λ Accuracy( % )

0 95.00%

0.25 96.67%

0.5 93.33%

0.75 91.67%

1 90.00%

(c) Impact of key frames

Methods Key frame non-Key frame

Accuracy( % ) 96.67% 90.00%

means that discrimination factor plays a little more important role than the
frequency factor. Hence, we fix λ = 0.25 in the following experiments. Please
note that, when λ = 0, we only consider the discrinativeness. That is, we only
concern whether the patch seldom occurs on non-key frames, without considera-
tion about its appearance on key frames. However, remember that the candidate
patches are mined by frequent rules so that they must appear frequently in the
training samples. Thus it is reasonable that it’s performance is acceptable though
it not the best one. On the other hand, only the frequency is taken into consid-
eration when λ = 1, which means that we do not concern the patch appear on
non key frames or not. Therefore it may not be discriminative enough and the
performance is not satisfying.

Key Frames. We also check the effect of key frames and the refinement of
patches. The action recognition results on UT Set #1 are shown in Table 1(c). It
can be seen that the patches refined by key frames is more effective than those
extracted by only associate rules, which demonstrates the benefit brought by
using key frames to purify the discriminative patches. It is interesting to observe
that the accuracy without key frames and patch refinement (Non-key frame) is
90.00%, same as the result of λ = 1 in Table 1(b). Actually, in the case of λ = 1,
the role of non-key frame is absent, which is similar with the case that all the
frames are key frames, i.e., without refinement.

4.2 Experimental Results

In this section, we present the experimental results of our proposed KFDP model
and compared with other methods on UT-Interaction Set #1, UT-Interaction
Set #2 [25] and BIT-Interaction Dataset [16].

Result on UT-Interaction Sets. In the first experiment, we test the proposed
method on UT-Interaction datasets. The confusion matrix is shown in Fig. 7. Our
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Fig. 7. Confusion matrices on UT sets

Table 2. Recognition accuracy on UT sets

(a) Accuracy on UT set #1

Methods Accuracy(%)

Ryoo & Aggarwal [18] 70.80%

Lan et al. [7] 78.33%

MSSC [27] 83.33%

Ryoo [28] 85.00%

Kong et al. [16] 88.33%

Vahdat et al. [10] 93.33%

Raptis et al. [13] 93.33%

Zhang et al. [29] 95.00%

Fu et al. [17] 91.67%

Ours 96.67%

(b) Accuracy on UT set #2

Methods Accuracy(%)

MSSC [27] 81.67%

HM [30] 83.33%

MTSSVM [31] 86.67%

Vahdat et al. [10] 90.00%

Zhang et al. [29] 90.00%

Kong et al. [26] 91.67%

Ours 93.33%

proposed method achieves 96.67% and 93.33% accuracy on UT-Interaction Set
#1 and UT-Interaction Set #2, respectively. Table 2(a) and (b) compare the pro-
posed method with some baseline methods [7,10,13,16–18,27–29] on the UT Set



364 D. Shan et al.

0.88

0.00

0.00

0.00

0.00

0.00

0.06

0.00

0.00

0.81

0.06

0.06

0.00

0.00

0.06

0.06

0.00

0.00

0.81

0.00

0.00

0.06

0.00

0.00

0.06

0.06

0.00

0.88

0.00

0.00

0.00

0.00

0.00

0.06

0.06

0.06

0.94

0.00

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.88

0.00

0.00

0.06

0.00

0.06

0.00

0.00

0.00

0.88

0.00

0.00

0.06

0.00

0.00

0.06

0.06

0.00

0.88

Predicted Activity

A
ct

u
a
l A

ct
iv

ity

bow
boxing

shake
highfive

hug
kick

pat
push

bow

boxing

shake

highfive

hug

kick

pat

push

Fig. 8. Confusion matrix on BIT dataset.

Table 3. Recognition accuracy on BIT dataset.

Methods Accuracy(%)

Bag-of-word 70.31%

Lan et al. [7] 83.33%

Kong et al. [16] 82.03%

Kong et al. [26] 85.38%

Ours 86.72%

#1 and #2, respectively. Compared with these methods, the performance gain
achieved by our method is significant due to the use of mid-level discriminative
knowledge of human interaction.

Most of confusions are arisen by visually similar movements and the influence
of moving objects in the background. Our method can recognize human inter-
actions in some challenging situations, e.g. partially occlusion and background
clutter. On one hand, since there are 20 different kinds of classifiers for each
category, even if some classifiers is out of work, the others would help to predict
the label. On the other hand, because the final clusters refined on the key frames
by reward-punishment rules, they can overcome background clutter clustering
phenomenon to some extent.

Table 2(a) indicates that our method outperforms all the baseline methods
[7,10,13,16–18,27–29] on the UT Set #1. Compared with all the methods, the
performance gain achieved by our method is significant due to the use of mid-level
discriminative knowledge of human interaction. Table 2(b) compare the results of
our method with other leading approaches, our proposal utilizes discriminative
patches to better represent complex human interactions and thus achieves the
best results on the UT Set #2. Analysing the results, this may be because
that with the interdependencies of both discriminative patches and key frames,
our method can recognize some challenging interaction videos and thus achieves
higher performance.
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Result on BIT-Interaction Dataset. We test our method on BIT-Interaction
Dataset and show the confusion matrix in Fig. 8. Our method achieves 86.72%
recognition accuracy. Table 3 shows the comparative results with previous meth-
ods [7,16,26], which demonstrate the superiority of our proposed method. Com-
pared with the baseline bag-of-words method, the result gain achieved by our
method is significant due to the use of mid-level discriminative knowledge of
human interaction. Our method also significantly outperforms Lan etal. and
Kong etal.’s methods, which validates the effectiveness of the key frames in pro-
moting the discrimination of interactive patches.

5 Conclusions

In this paper, we have proposed a novel model (KFDP) for recognizing human
interaction in videos with discriminative patches. The candidate discriminative
patches are first mined from videos of different interactions by applying associ-
ation rules on convolutional neural networks (CNN) activations. Based on the
observation that there are more discriminative patches occurring in the climax
period of a human interaction, we define frames in such intervals as key frames
and the final discriminative patches are obtained by further refining the candi-
date patches using reward-punishment rules, which ensure that a discriminative
patch occur frequently during key frames and seldom emerge during non-key
frames. The experimental results on UT-Interaction Sets and BIT-Interaction
Dataset are comparable with the state-of-art, which indicates that the benefits
of using discriminative patches in human interaction recognition.
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tion of China (Nos. 61472387, 61272320, and 61572004) and Beijing Natural Science
Foundation (Nos. 4152005 and 4162058).
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Abstract. Generating the discriminative representations of video clips
is of vital importance for human action recognition, especially for com-
plex action scenarios. In this paper, we particularly introduce Overcom-
plete Independent Component Analysis (OICA) to directly learn struc-
tural spatio-temporal features from the raw video data. OICA as an
unsupervised learning method can fully exploit the unlabeled videos,
which is crucial for action recognition since labeling huge volume of video
data is too effort-consumed in practice. In addition, features learned by
OICA can more accurately describe the complex actions with enough
details owing to the overcompleteness and independence constraints to
the component bases. Furthermore, inspired by the layered structure of
deep neural network, we also propose to stack OICA to form a two-layer
network for abstracting robust high-level features. Such stacking is prac-
tically proved effective for boosting the recognition accuracy. We eval-
uate the proposed stacked OICA network on four benchmark datasets:
Hollywood2, YouTube, UCF Sports and KTH, which cover the simple
and complex action scenarios. The experimental results show that our
method always outperforms the baselines, and achieves the state-of-the-
art performance.

1 Introduction

Action recognition is one of the most active topics in video understanding, which
can be applied to various visual systems, e.g., intelligent video surveillance [23],
and sport video analysis [21]. For the complex scenes and actions, however, the
existing approaches still perform unsatisfactorily if the real-world videos are
involved. Thus exploring more effective models of action recognition is always
one of its core missions.

Action recognition as a specific recognition task generally follows the com-
mon pipeline consisting of the feature extraction and classification. Particularly,
the feature extraction methods play a critical role due to its primarily determin-
ing the final performance [38]. Thus most of the previous works always put their
emphasis on how to produce discriminative and robust features from video clips.

c© Springer International Publishing AG 2017
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The traditional approach is to manually design some appropriate features, e.g.,
transforming the well-performed 2D features into the corresponding 3D ver-
sions [13,33]. These hand-crafted features can provide good performance, but
are difficult to adapt specific visual tasks as they are mainly constructed accord-
ing to given prior knowledge. Consequently, the recognition accuracy may be
greatly decreased when they are applied to some complex video scenarios, e.g.,
web videos, movies, and TV shows.

To tackle this issue, some data-driven methods are proposed that can adap-
tively learn a proper feature extraction model using provided samples. For exam-
ple, Convolutional Neural Network (CNN) as an end-to-end feature extractor is
able to generate one complete feature for each video clip by straightforwardly
processing the raw pixels [14]. However, CNN, which is usually used as one of
the supervised learning methods, requires lots of labeled training data, and in
practice supplying sufficient labels is very difficult for action recognition due to
the massiveness and complication of video data. On the contrary, the unsuper-
vised learning methods can fully utilize the unlabeled data to boost the perfor-
mance [2], which is exactly the way we would investigate in this paper.

Unsupervised learning tends to find hidden structure by following the neu-
robiological organization of brains [7]. Recently, there can see growing interests
in development of unsupervised feature learning methods; these include Deep
Belief Nets (DBN) [18], Slow Feature Analysis (SFA) [34], Sparse Coding [17],
and Independent Component Analysis (ICA) [8]. In particular, ICA and its varia-
tion Independent Subspace Analysis (ISA) have demonstrated impressive perfor-
mance [20,26]. Moreover, in analogy to the mechanism of visual cortex in brain,
the components learned by ICA are similar to the receptive fields of the V1 area
for static images and the MT area for sequences of images [36]. Therefore, it is
believed that ICA has enormous potentiality in achieving better performance for
action recognition.

The original ICA (ISA as well) has two major drawbacks in recognizing com-
plex actions. First, the number of learned components cannot exceed the dimen-
sionality of input data [19]. Consequently, one action is only described and recon-
structed by limited components, which actually are not enough to completely
represent complex actions. Meanwhile, it has been shown that the overcomplete
feature learning would produce better performance, i.e., the number of latent
components is quite significant in unsupervised learning models [2]. Second, ICA
is sensitive to the process of data whitening, especially for high-dimensional
data [19], which, however, are unavoidable for robustly representing complex
actions. Hence the inherent characteristics of ICA hinder further boosting the
performance of action recognition. In this paper, we propose to introduce Over-
complete Independent Component Analysis (OICA) in automatically extracting
the local features of video clips. OICA adopts the overcomplete independent
bases to reconstruct the action elements (blocks of image sequences). Naturally,
OICA would certainly produce more robust action representations w.r.t, image
variations, owing to the overcompleteness of learned components.
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Fig. 1. The two-layer OICA model for action recognition. Samples from the input video
are represented by the first-layer OICA bases. Then the combined responses are feed
into the second-layer OICA to get a hierarchical representation.

For modern feature learning, the layered models are usually able to achieve
more promising performance, e.g., deep neural networks [14]. In philosophy, such
layer-by-layer structure can hierarchically exploit the semantic features of input
data, and the features generated in higher layers may be more robust in describ-
ing complex structural actions due to their high-level abstraction. Inspired by
such a principle, we propose to stack OICA to form a two-layer OICA network,
as illustrated in Fig. 1. Samples from the input video are represented by the
first-layer OICA bases. Then the combined responses are feed into the second-
layer OICA network to get high-level features. In practice, it is observed that
the two-layer OICA certainly performs better than the one-layer version with
involving a significant accuracy increase.

We evaluate the proposed stacked OICA network model on four well-
known benchmark datasets: KTH [32], Hollywood2 [24], UCF Sports [29], and
YouTube [23]. The datasets actually cover the simple and complex action sce-
narios. The experimental results show that our method always outperforms the
baselines, especially for the complicated datasets, and achieves the state-of-the-
art performance on these datasets.

2 Related Works

The key to action recognition is to generate the discriminative and robust video
representations. For most of the modern approaches, such a process is generally
completed by two successive steps: feature extraction and feature integration [38].
Here the former is to map the spatio-temporal pixels into many local features,
and the latter is to integrate these features into video representations fed the
final classifier. Traditionally, the two steps are conducted separately. Particu-
larly, some sophisticated feature integration methods can be directly used by
referring image classification, e.g., Bag of Words (BoW) [27], LDC [39], and
Fisher Vector [30]. Thus current works in action recognition mainly focus on
how to extract better features from videos.
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In the previous literatures, the hand-crafted features are first proposed, which
are mostly constructed by transforming the corresponding 2D features, e.g.,
HOG3D [13], 3D-SIFT [33], and Extended SURF [41]. These features can achieve
noticeable performance on simple datasets (e.g., Weizmann [6], and KTH [32]),
but the accuracy would greatly decrease for complex action scenarios from the
realistic videos. On the other hand, the feature detector also affects the recogni-
tion performance seriously as it controls the locations and number of extracting
features [38]. Roughly, the detectors can be divided into two types: sparse and
dense. The sparse way is to detect the spatio-temporal interest points according
to specified criteria, such as Harris3D [16], Hessian detector [41], and temporal
Gabor filter [5]. Particularly, the newly proposed Dense Trajectories [37] and
Improved Trajectories [40] can also be viewed to extend this route by consider-
ing trajectories. On the contrary, the dense sampling strategy [9] is to extract
features over multi-scale regular grids, which are usually predefined according
to the requirements of a specific task. Wang et al. [38] empirically evaluated
the combinations of different features and detectors. It is shown that the dense
sampling consistently outperforms all of the sparse interest point detectors, and
no hand-crafted feature always performs well for all of action datasets, i.e., any
feature has its own limitation.

Recently, There has been a growing interest in applying unsupervised learn-
ing methods to visual features for their ability of exploiting unlabeled data.
For example, Kanan and Cottrell [12] show that ICA can be used to generate
robust visual features for recognition. In [26], TICA, a extension of ICA, was
proposed for image recognition and achieves state-of-the-art performance. Le et
al. [20] propose ISA, another extension of ICA, to learn invariant spatio-temporal
features. However, the features learned by these ICA based methods possess a
crucial limitation, i.e., the number of features cannot exceed the dimensionality
of input data. Indeed, Coates et al. [2] have shown that the classification accu-
racy would be consistently increased if the latent components are overcomplete
in unsupervised learning models, e.g., RBM [18,35], and sparse autoencoder [1].
Hence such a drawback of ICA hinders its further application to recognise com-
plex action scenarios.

Another interesting unsupervised learning work is the deeply-learned slow
feature analysis (SFA) [34]. The model is particularly designed to learn the
invariant and slowly varying features from noisy and quickly varying signals to
represent motion patterns. The work in [34] similarly adopts stacking architec-
ture of feature learning. However, SFA may suffer from the curse of dimension-
ality, since the dimensionality of the expanded function space increases very fast
with the number of input signals [42]. Thus, SFA may be not suitable for visual
tasks due to the natural high dimensionality of video data. Differently, Overcom-
plete Independent Component Analysis (OICA) we would adopt in this paper is
inherently designed to deal with complex data [8].
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3 Methology

In this section, we elaborate on the details of our proposed approach. We first
give a brief introduction of the OCIA algorithm. Secondly, we apply the OICA
algorithm to video data and build the proposed stacked OICA network. Then
we illustrate the properties of the learned OICA features and explain how to
compose local features. Finally, we describe the model we used to classify the
local features.

3.1 OICA for Image Data

OICA is one of the unsupervised learning models, which has an inherent advan-
tage of having capacity to learn features from unlabeled data. Given a set a
unlabeled image patches {x1,x2, · · · ,xm} where xi ∈ R

D denotes the grey-scale
values in a patch. Both the OICA model and the traditional ICA model express
xi as a linear transformation of latent variables, i.e., the independent compo-
nents, which are required to be non-Gaussian and mutually independent:

xi = As =
n∑

j=1

ajsj . (1)

where A is a full column rank matrix called the basis matrix and stay the same
for all patched. Each column of A, i.e., aj is called as a basis function. s =
(s1, s2, · · · , sn)T are the independent components (or source signals), different
from patch to patch. Here n is the number of independent components.

In the traditional ICA [8], the optimization problem to solve the bases is
defined as

min
W

m∑

i=1

k∑

j=1

g(W(j)xi), s.t. WWT = I. (2)

where g(·) is the measure function that can be any sufficiently regular, odd, non-
linear function, e.g., g(·) = tanh(·). W ∈ R

k×n is the transformation matrix,
also called as filter matrix. W(j), which denoted the jth row of the transfor-
mation matrix, is a linear transformation. Here m is the number of the image
patch, and k is the number of the linear transformations. The orthogonality
constraint represented by WWT = I prevents the linear transformations in W
from becoming degenerate [8]. To speed up the optimization above, the unlabeled
image patches are required to be whitened to have zero mean,

∑m
i=1 xi = 0, and

unit covariance, 1
m

∑m
i=1 xixT

i = I. The basis matrix equals the inverse of the
transformation matrix, e.g., A = W−1. Note that W is orthonormal, therefore,
A = W−1 = WT .

The traditional ICA requires that the dimension of input samples strictly
equals the number of independent components, i.e., k ≡ n. However, it has been
shown that the overcomplete feature learning possesses more powerful ability to
represent data [2]. The overcompleteness of ICA means k > n, and consequently
the basis matrix A is not invertible any more, and the orthonormality constraint
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cannot be held completely. Instead, an approximate orthogonality constraint is
needed. In particular, to compute overcomplete ICA representation, we adopt the
method proposed by Le et al. [19] to replaces the hard orthonormal constraint in
Eq. (2) due to its low computation complexity. Specifically, let the basis matrix
be A = WT . Then the reconstruction cost of representing the input data xi with
the basis functions in A can be denoted as ‖WTWxi − xi‖22. Consequently, the
following unconstrained optimization problem is produced as

min
W

λ

m

m∑

i=1

‖WTWxi − xi‖22 +
m∑

i=1

k∑

j=1

g(W(j)xi). (3)

where λ is the parameter that controls the penalty of the reconstruction error.
This optimization problem can be efficiently solved by the unconstrained opti-
mizers such as L-BFGS [22] and CG [31]. Moreover, the introduced reconstruc-
tion penalty works well even when the input training samples are not completely
whiten.

Once the transformation matrix for OICA model is learned, an image patch
can be represented by the corresponding components:

s = Wx. (4)

where s is exactly the feature representation of the image patch x.
For the complex scenes in high-resolution videos, a single globe OICA kernel

is difficult to represent large video blocks accurately and robustly. Next, we
apply the OICA algorithm to video data and introduce a stacked model to learn
hierarchical features.

3.2 OICA on Video Blocks

Figure 2 illustrates how we apply the OICA to the video data. First, we extract
3D video blocks instead of small image patches. Specifically, we first take a
sequence of image patches and flatten them into a vector. Then, we whiten these
vectors by removing the DC component. After that, PCA is employed to reduce

Fig. 2. Graphical depiction of applying the OICA algorithm to video data. We extract
small video blocks from videos. Then the blocks are sent to stacked OICA network
with whitening and PCA as preprocessing steps.
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Fig. 3. Comparison of the video blocks extracted after (a) and before (b) applying the
frame difference. Each row of (a) contains the illustrations of two video blocks applying
the frame difference, and (b) is similar for random sampling. The columns of (a) and
(b) indicate the patterns of the video blocks.

the dimension of the inputs. Finally, the OICA learns the transformation matrix
W from the resulting vectors with the method detailed in Sect. 3.1.

Unsupervised algorithms are often trained on blocks which are randomly
sampled from videos. Randomly sampling 3D video blocks may results that
a large number of blocks only contain background information. However, the
foreground information is more important in disambiguating similar actions. In
order to enhance the foreground information, we design a video block extrac-
tion method based on frame difference. Specifically, for each training video, we
randomly sample M blocks and compute differences between adjacent frames
to detect moving pixels. Then the sampled blocks are sorted by their energies,
which is the sum of intensities of all the pixels in that block. Finally, only the N
highest energy blocks are kept. In our experiments, M and N are set to 400 and
200 respectively. Figure 3 compares the video blocks extracted after and before
applying frame difference. The experimental comparison between our sampling
strategy and random sampling is detailed in the Sect. 4.4.

3.3 Stacked Convolutional OICA Network

Inspired by the fact that high-level features usually produce more promising
performance, we propose a stacked convolutional OICA network, in which the
higher layers can better abstract the input video. Figure 4 illustrates the stacked
OICA architecture. The size of the blocks input to the OICA algorithm in the
first layer (OICA1), is w1 ×h1 (spatial) and t1 (temporal). Similarly, we extract
blocks of size w2 × h2 (spatial) and t2 (temporal)in the second layer. To get
hierarchical representation, we set the video blocks in the second layer larger
than the ones in the first layer, thus each video block in the second layer can
be regarded as a collection of overlapping video blocks in the first layer. The
top of Fig. 4 illustrate such construction wherein the biggest cube represents a
second layer block. The inner cubes, such as the red, green ones, represent video
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Fig. 4. An illustration of the stacked convolutional OICA network. The biggest cube
on the top represents a block in the second layer. The inner cubes are input to the first
layer and convolved with OICA1. The combined first-layer responses are processed by
whitening and PCA, and then input to the second-layer OICA algorithm (OICA2).

blocks in the first layer. Then, the OICA1 is convolved with each inner block.
The responses are combined and input to the OICA algorithm in the second
layer (OICA2).

To speed up the computation, whitening and PCA are applied to reduce the
dimensions of the inputs. Furthermore, our stacked network is trained greedily
layerwise in the same manner as other methods proposed in the deep learning
literature [1,18] to reduce the training time. More specifically, we train the first
layer until convergence before training the second layer.

3.4 Properties of the Extracted Features from OICA Network

Figure 5 shows typical features learned by the OICA1 trained on video blocks
of size 14 × 14 × 8. It is observed that the OICA algorithm is able to learn
Gabor features (edge filters) with diverse orientation and frequencies. The OICA
model is especially intriguing for image modeling due to its characteristics closely
related to overcomplete wavelet bases [28]. The large number of basis make OICA
algorithm be good candidates for representing complex video data in comparison
to other algorithms such as ICA, ISA.

3.5 Pooling and Local Features

The stacked OICA network detects simple features in the first layer and robust
features in the second layer. As a second layer blocks contains several inner
blocks, the number of simple features is much larger than the robust features.
Meanwhile, the simple features are not as significant as the robust ones, so we
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Fig. 5. Typical features learned in the first layer of the stacked OICA network by
training the OICA1 on 14 × 14 × 8 video blocks. The results are shown in the original
space, i.e., the inverse of the preprocessing (whitening) was performed.

try to reduce the contribution of the simple features by mean spatial-temporal
pooling. Specially, the responses of the inner blocks in the same big block are
processed with mean pooling. Then PCA is applied on the results to further
reduce the dimension. Finally, the resulting simple feature and the second layer
feature are concatenated to construct local features. In our experiments, the
PCA layers keep 200 features in the first layer and 200 features in the second
layers, so each local feature is a 400-dimensional vector.

3.6 Classification Model for Human Actions

We use the standard bag-of-feature (BOF) model to evaluate the performance of
our local features. In particular, the stacked OICA network learns features from
videos on a dense grid in which the second layer blocks overlap 50% in w, h and
t dimensions. The codebook is obtained with k-means clustering of the learned
features from training videos. Then, a video can be represented as a frequency
histogram over the visual words.

We apply a non-linear SVM with X 2 kernel to classify the human actions.
For multi-class classification, we apply the “one versus all others” approach and
select the class with the highest score. We achieve the best performance when
the number of visual words equals 4500.

4 Experiments

In this section, we numerically compare our algorithm against the state-of-the-art
action recognition algorithms. For fair comparison, we follow the pipeline in [38],
which consists of the extraction of local features, Hard Vector Quantization with
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k-means, and classification. The mean average precision (AP) over all classes is
adopted as the metric to measure the performance of the action recognition
methods.

In the experiment, the inputs to the first-layer OICA network are of size
14 × 14 (spatial) and 8 (temporal). The OICA1 learns 200 features, i.e., there
are 200 blue nodes in Fig. 2. The OICA2 is trained on blocks of size 18×18×12.
The convolution step is performed in the OICA2 with a stride of 4. The OICA2
learns 800 features, i.e., there are 800 yellow nodes in Fig. 2, and then PCA to
200 features.

4.1 Datasets

We conduct the experimental evaluation on four standard human action
datasets, i.e., Hollywood2 [24], YouTube [23], UCF Sports [29] and KTH [32],
see Fig. 6. These action datasets are very diverse. The Hollywood2 dataset is
made up of real movies with significant background clutter, whereas the KTH
views human actions in front of a uniform background. The YouTube dataset
are low quality, whereas the UCF sports videos are high resolution.

Hollywood2 Action Dataset [24] is collected from 69 different Hollywood
movies which are divided into 33 training movies and 36 test movies. The dataset
provides 12 classes of human actions, i.e., answering phone, driving car, eat-
ing, fighting person, getting out of car, hand shaking, hugging person, kissing,
running, sitting down, sitting up, and standing up. The dataset is especially
challenging since the scenes in the movies contain various complex context and
background.

Fig. 6. Sample frames from video sequences of Hollywood2 (first row), YouTube (sec-
ond row), UCF sports (third row) and KTH (last row) action datasets.
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YouTube Dataset [23] is collected from YouTube video website. It contains 11
action categories, i.e., basketball shooting, biking, tennis swinging, diving, soccer
juggling, golf swinging, horseback riding, volleyball spiking, swinging, trampoline
jumping, and walking with a dog. A total of 1600 video clips are available. We
follow the original experimental in [23].

UCF Sports Action Dataset [29] contains 10 types of human actions: swing-
ing (on the pommel horse and on the floor), diving, kicking weight-lifting, horse
riding, running, skateboarding, swinging (at the high bar), golf swinging, and
walking. The dataset consists 150 video samples and shows large intra-class vari-
ability. Here we follow the standard protocol in [38], i.e., adding a horizontally
flipped version of each sequence.

KTH Action Dataset [32] is a traditional dataset that contains 6 different
human actions, i.e., hand waving, hand clapping, jogging, walking, boxing, and
running. Each action is performed multiple times by 25 subjects in four differ-
ent conditions (outdoors, outdoors with scale variation, outdoors with different
clothes, and indoors). The background in this dataset is static and homogeneous.

4.2 Classification Results

For the datasets of Hollywood2, YouTube, and UCF Sports, Tables 1, 2 and 3 pro-
vide the resulting classification performance, respectively. For each dataset, the
performance of typical methods is also provided for comparison, which include
the start-of-the-art performance in the previous works. From the results, it can
be seen that our proposed method outperforms all the hand-crafted features
on these datasets. In particular, for the complex datasets of Hollywood2 and
YouTube, our method involve a larger accuracy increase, which implies that the

Table 1. Average accuracy on the Hollywood2 dataset.

Algorithm Mean AP

Hessian [41] + ESURF [15] 38.2%

Harris3D [25] + HOG/HOF [15] (from [38]) 45.2%

Dense + HOG3D [13] 45.3%

Hessian [41] + HOG/HOF [15] 46.0%

Cuboid [5] + HOG/HOF [15] 46.2%

Convolutional GRBM [35] 46.6%

Dense + HOG/HOF [15] 47.7%

DL-SFA [34] 48.1%

Hierarchical ISA [20] 53.3%

One-layer OICA 51.6%

Random sampled OICA 54.5%

Our method 55.1%
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Table 2. Average accuracy on the YouTube dataset.

Algorithm Accuracy

Feature combining and pruning [23]
-Static features:
HAR+HES+MSER+SIFT

-Motion features:
Harris3D+Gradients+Heurristics

71.2%

Hierarchical ISA [20] 75.8%

One-layer OICA 74.9%

Random sampled OICA 78.5%

Our method 78.9%

Table 3. Average accuracy on the UCF sports dataset.

Algorithm Accuracy

Hessian [41] + ESURF [15] 77.3%

Harris3D [25] + HOG/HOF [15] (from [38]) 78.1%

Hessian [41] + HOG/HOF [15] 79.3%

Dense + HOF [15] 82.6%

Cuboid [5] + HOG3D [13] 82.9%

Dense + HOG3D [13] 85.6%

Hierarchical ISA [20] 86.5%

DL-SFA [34] 86.6%

One-layer OICA 82.9%

Random sampled OICA 86.5%

Our method 86.8%

proposed OICA model is especially effective for the complex action scenarios.
Let us focus on the unsupervised methods, DL-SFA [34] show the best perfor-
mance among all baseline methods. But our method defeats it with big gaps,
e.g., 55.1% vs. 48.1% on Hollywood2.

We report the performance on the KTH dataset in Table 4. Particularly,
we compare the accuracy achieved by our method against the best results ever
published. For this dataset, the background does not convey any meaningful
information [38]. Therefore, we direct apply a Region of Interest (ROI) detector
to this dataset. Naturally, the human detectors based on sliding windows (e.g.,
[4]) and trackers (e.g., [3]) can provide good bounding boxes. Finally, our method
achieves the accuracy of 93.3%.
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Table 4. Average accuracy on the KTH dataset. The symbol (∗) indicates that the
method uses an interest point detector or other interest region detect technique.

Algorithm Accuracy

(∗) Hessian [41] + ESURF [15] 81.3%

Dense + HOF [15] 88.0%

(∗) Cuboid [5] + HOG3D [13] 90.0%

Convolutional GRBM [35] 90.0%

3D CNN [11] 90.2%

(∗) Hierarchical ISA [20] 91.4%

HMAX [10] 91.7%

(∗) Harris3D [25] + HOG/HOF [15] (from [38]) 91.8%

(∗) Harris3D [25] + HOF [15] (from [38]) 92.1%

DL-SFA [34] 93.1%

(∗) One-layer OICA 91.4%

(∗) Random sampled OICA 93.1%

(∗) Our method 93.3%

4.3 Benefits of the Second Layer

Now we experimentally investigate the effect of the stacked OCIA on the classifi-
cation performance compared to one-layer OICA. To this end, we further provide
the classification accuracies of the one-layer OICA model. Here, the one-layer
OICA is implemented by directly discarding the second-layer OICA and execut-
ing the following stages using the first-layer features. From the results, it can be
seen that the classification performance is consistently decreased if the second-
layer OICA is removed, and the gaps in four datasets are 3.5%, 4.0%, 3.9%, 1.9%,
respectively. The results show that the features in the higher layer are indeed
helpful to action recognition.

4.4 Benefits of Our Sampling Strategy

Our sampling strategy is detailed in Sect. 3.2. Here, we experimentally compare
our sampling strategy with random sampling. To make this a fair comparison,
we just replace our sampling strategy with random sampling, e.g., we randomly
sample 200 video blocks for each train video. The experimental results are pre-
sented in the tables for four datasets. All the results in the tables show that
our sampling strategy is better than random sampling. The performance gaps
in four datasets are 0.6%, 0.4%, 0.3%, 0.2%, respectively.

5 Conclusion

In this paper, we proposed a stacked Overcomplete Independent Compo-
nent Analysis (OICA) model to extract the discriminative features from
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spatio-temporal videos for human action recognition. Firstly, we analyzed the
properties of OICA as one of unsupervised learning models, and then intro-
duced it to extracting local features of video clips for action recognition. Fur-
thermore, we proposed to stack OICA to form a two-layer OICA network. Such
layered structure provides an ability to produce more robust and discriminative
high-layer features. Finally, we experimentally verified the effectiveness of the
proposed method by the performance comparison on four benchmark datasets,
especially for complex action scenarios. In the future, we plan to construct a
more powerful OICA network by better incorporating different components.
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Abstract. In this paper, we address the problem of searching action
proposals in unconstrained video clips. Our approach starts from action-
ness estimation on frame-level bounding boxes, and then aggregates the
bounding boxes belonging to the same actor across frames via link-
ing, associating, tracking to generate spatial-temporal continuous action
paths. To achieve the target, a novel actionness estimation method is
firstly proposed by utilizing both human appearance and motion cues.
Then, the association of the action paths is formulated as a maximum set
coverage problem with the results of actionness estimation as a priori. To
further promote the performance, we design an improved optimization
objective for the problem and provide a greedy search algorithm to solve
it. Finally, a tracking-by-detection scheme is designed to further refine
the searched action paths. Extensive experiments on two challenging
datasets, UCF-Sports and UCF-101, show that the proposed approach
advances state-of-the-art proposal generation performance in terms of
both accuracy and proposal quantity.

1 Introduction

Video action analysis is an important research topic for human activity under-
standing, and has gained a wide attention in recent years. A common task of
video action analysis is action recognition, which aims to identify which type
of action is occurring in a video volume [1–3]. Compared to action recognition,
action detection is a more difficult task, as it requires not only determining the
action class, but also localizing the action in the video. Similar to the object
detection task, in which reliable object proposals play a crucial role in the detec-
tion performance [4], action proposal is also a fundamental problem in action
detection.

This paper focuses on generating high-quality action proposals in both spatial
compactness and temporal continuity. Existing works in the literature have made
different efforts to address the problem, including segmentation-and-merging
strategy [5–8], dense motion features [9–11], human-centric models [12,13], and
object proposals based approaches [14,15]. Despite promising results achieved
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 384–399, 2017.
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in these works, video action proposal generation is still a challenging problem
due to the complex spatio-temporal relationship modeling involved in the task.
The problem can be considered as a task with two essential steps, namely spa-
tial (i.e. frame-level) actionness estimation and temporal (i.e. video-level) action
path generation. For one aspect, because of the large diversity and variation of
human actions, it is difficult to generate robust frame-level actionness proposals
which contain meaningful action motion patterns and are clearly discriminative
from the background in unconstrained videos. For the other aspect, as a fact
that the whole number of potential actionness regions on each frame usually
has an exponential growth of the video duration [16], it is extremely impractical
to calculate on all possible connections of the regions for generating the action
paths and guaranteeing each of them associated with the same actor(s).

To tackle the above mentioned issues in the generation of action proposals,
we propose a novel framework based on spatial actionness estimation from multi-
ple cues and temporal action path extraction from a fast inference and tracking.
Firstly, unlike previous works using selective search [4] or edge boxes [17] for gen-
erating object proposals for actionness estimation, we employ more action related
cues including both human and motion. Secondly, a deep Faster-RCNN [18]
network is trained and fine-tuned on augmented action detection datasets for
obtaining accurate human proposals. Then action motion patterns with Gaussian
Mixture Models are modeled for motion estimation of each human proposal.
Both human and motion estimations are feed into a proposed forward and back-
ward search algorithm for video-level action path generation. Finally, we use a
tracking-by-detection approach to refine the action path by supplement action-
ness proposals missing in frames.

The key contributions of this paper include three folds: (i) we construct an
action detector at frame-level by taking both appearance and motion clues into
account, which can handle the problem of detecting human with uncommon
poses and discriminate actionness proposals containing meaningful motion pat-
terns from the backgrounds; (ii) We formulate the action path generation as
a maximum convergence problem [19]. We propose an improved optimization
objective for the problem and provide a greedy search algorithm to solve it. (iii)
Extensive experiments on UCF-Sports, UCF-101 datasets show that the pro-
posed method achieves the state-of-the-art performance compared with other
existing approaches.

2 Related Work

Traditionally, action localization or detection is performed by sliding window
based approaches [20–23]. For instance, Siva and Xiang [20] proposed a super-
vised model based on multiple-instance-learning to slide over subvolumes both
spatially and temporally for action detection. Instead of performing an exhaus-
tive search through sliding over the whole video volumes, Oneata et al. [6] put
forward a branch-and-bound search approach to achieve the time-efficiency. The
main limitation of these sliding-window based approaches is that the detection
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results are confined by a video subvolume, and thus can not accurately capture
the varying shape of the motion.

Some research works address the problem by employing segmentation-and-
merging strategy. Generally, these methods include three steps: (i) segment the
video; (ii) merge the segments to generate tube proposals; (iii) represent tubes
with dense motion features and construct action classifier for recognition. For
instance, in [8] action tubes are generated by hierarchically merging super-voxels.
However, accurate video segmentation is a difficult problem especially under
unconstrained environments. To alleviate the difficulty encountered with seg-
mentation, some other methods use a figure-centric based model. In [12] the
human and objects are detected first and then their interactions are described.
Kläser et al. [13] detect human on each frame and track the detection results
across frames using optical flow. Our approach also utilizes tracking, via a more
robust tracking-by-detection approach [24,25] based on a combined feature rep-
resentation of color and shape.

Recently, some methods built upon generation of action proposals are pre-
sented. Gkioxari and Malik [15] proposed to utilize Selective Search method
for proposing actions on each frame, then scored those proposals by using fea-
tures extracted by a two-streams Convolutional Neural Networks (CNN), and
finally, linked them to formation tubes. Philippe et al. [9] adopted the same
feature extraction procedure, then utilized a tracking-by-detection approach to
link frame-level detections, in combination with a class-specific detector. Our
method replaces object proposal method and two-stream CNN with the Faster
R-CNN model for calculation efficiency. The most related work to ours is that
presented in [14], in which actionness score is calculated for each action path
and then a greedy search method is used to generate proposals. Our work differ-
entiates from theirs in the following three aspects: (i) we train a Faster R-CNN
model for human estimation, which has a stronger ability to differentiate human
from backgrounds; (ii) compared with the optimization objective they proposed,
our improved optimization objective simultaneously maximizing actionness score
and member similarity in a path set, thus can effectively cluster the paths from
the same actor into a group; (iii) we utilize a tracking-by-detection approach to
supplement the missing detections.

3 The Proposed Approach

The proposed approach takes video clip as input and generates action pro-
posal results. The framework of our approach is illustrated in Fig. 1. The main
procedure consists of two stages: spatial actionness estimation and temporal
action path extraction. Firstly, bounding boxes at frame-level that may contain
meaningful motion are extracted by simultaneously considering appearance and
motion cues; then action paths corresponding to the same actor at video-level
are generated and linked to obtain action proposals. The details of our method
will be elaborated in the following sections.
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Fig. 1. The framework of the proposed action proposal generation approach.

3.1 Spatial Actionness Estimation

Human Estimation. Detection of Human proposal is an important and heuris-
tic step for action localization. We implement the human proposal detection
employing the Faster R-CNN [18] pipeline with a VGG-16 model [26] pre-trained
on ILSVRC dataset [27]. Faster R-CNN introduces a Region Proposal Network
(RPN) that simultaneously predicts object bounding boxes and their correspond-
ing objectness scores in near real-time speed. As the human detection task is a
binary-classification problem, the output of the classification layer of Faster-
RCNN network is revised to a two-way softmax classifier: one for the ‘human’
class and the other for the ‘background’ class. For action classes such as diving
and swing, the appearance (especially for the shape and the pose) of the human
changes significantly among the whole action duration. Therefore, the detection
network fine-tuned on the standard PASCAL VOC 2007 dataset is unable to
effectively detect the human under those circumstance. To handle the problem,
we perform a data augmentation by merging the training data of the human
class of PASCAL VOC 2007 and 2012, and rotating each training sample with
seven different angles from π

4 to 7π
4 with an interval of π

4 . Let bi
t denotes the

bounding box for the i-th human proposal at t-th frame. The bounding box
is represented as [x, y, w, h], where w and h stand for width and height respec-
tively, and (x, y) is the center. After training, for each bounding box b∗

∗ in the test
video, a probability Sh(b∗

∗) can be estimated by the CNN network. By setting
a probability threshold, human proposals with higher probability are kept for
follow-up processing. A comparison of human detection results between original
Faster R-CNN model and our refined one is showed in Fig. 2, from which it can
be clearly observed that detection results from refined model are more precise
and compact.
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Fig. 2. Comparison of human detection results. The bounding boxes with red and
green color are the ground truth and the detection results respectively. The 1-st and
3-nd columns are from the initial Faster R-CNN [18] (There is a missing detection in
the 3-nd column); while the 2-nd and 4-th columns are from our fine-tuned model.
(Color figure online)

Motion Estimation. Human cue provides important prior information for
generating frame-level action proposals, however it is not sufficient to determine
whether an action occurs, e.g., human standing still. Thus we propose to further
utilize motion cue for discarding false positive action proposals. The histograms
of optical flow (HOF) [10] descriptor is used to describe the motion pattern
of each human proposal. We construct two Gaussian Mixture Models (GMMs)
Gp(.) and Gn(.) upon the HOFs, which represent the positive and negative pro-
posal class respectively, to predict the probability of a motion pattern belonging
to the actions or the background. HOFs calculated within bounding boxes of an
Intersection-over-Union (IoU) overlapping with ground truth more than 0.5 are
used as positive samples, while those with IoU overlapping less than 0.1 as neg-
ative samples. Given a test proposal bi

t and its HOF hi, we define the likelihood
of bi

t being a motion score using the predictions from two mixture of Gaussian
models as:

Sm(bi
t) = σ(Gp(hi)/Gn(hi)), (1)

where σ = 1/(1 + e−x) maps likelihood into the range [0, 1]. To reduce the
influence induced by camera movement to optical flow calculation, we adopt the
approach presented by [2] to estimate camera motion and subtract it to obtain
robust optical flow.

Actionness Score Calculation. The actionness score of a bounding box bi
t

consists of two parts: human detection score and motion score, and is defined as
follows:

S(bi
t) = Sh(bi

t) + λp ∗ Sm(bi
t), (2)

where λp is the parameter that balances the human estimation and motion
estimation score.

3.2 Temporal Action Path Extraction

Problem Formulation. Given action proposals on each frame, our goal is to
find a set of action paths P = {p1, p2, . . . , pi}, where pi = {bi

s, b
i
s+1, . . . , b

i
e}

corresponds to a path that starts from s-th frame and ends at e-th frame. Yu
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and Yuan [14] formulate finding action path set P as a maximum set coverage
problem (MSCP) and propose an optimization objective maximizing actionness
score. Inspired by their work, we formulate it as a MSCP with an improved
optimization objective, which simultaneously maximizes actionness score and
similarity among members within the path set P. Formally, our optimization
objective can be presented as follows:

max
P∈Φ

∑

bt∈
⋃

pi

S(bt) +
∑

i,j

W (pi, pj)

s.t. |P| ≤ N

O(pi, pj) ≤ ηp,∀pi, pj ∈ P, i �= j,

(3)

where W (pi, pj) represents the similarity between action path pi and pj , and
its definition will be explained in subsection action-path-association; S(bt) is the
actionness score of bounding box bt (cf. Eq. 2); Φ is action-path-candidate set; ηp

is a threshold. The first constraint in Eq. 3 sets the maximum number of paths
contained in P; while the second constraint facilitates P to avoid generating
redundant action paths that are overlapped. The overlapping of two paths is
evaluated by O(pi, pj), which is defined as follows:

O(pi, pj) =
1

max(tie, t
j
e) − min(tis, t

j
s)

•
∑

max(tis,tjs)≤t≤min(tie,tje)

o(bi
t, b

j
t ). (4)

In Eq. 4, o(bi
t, b

j
t ) is defined as ∩(bit,b

j
t)

∪(bit,b
j
t)

, representing for IoU of two bounding boxs

bi
t and bj

t .

Action Path Generation. To solve the MSCP in Eq. 3, the action-path-
candidate set Φ needs to be obtained first. We wish that Φ consists of spatio-
temporal smooth path pi whose consecutive elements bi

t, b
i
t+1 should satisfy the

following two requirements:

o(bi
t, b

i
t+1) ≥ ηo

‖C(bi
t) − C(bi

t+1)‖ + λa‖H(bi
t) − H(bi

t+1)‖ ≤ ηf ,
(5)

where o(bi
t, b

i
t+1) represents IoU, as defined in Eq. 4; C(bi

t) and H(bi
t) stand for

histograms of color (HOC) and histograms of gradient (HOG) of bi
t, and λa is a

trade-off balancing the weight of the two terms; ηo and ηf are thresholds. The
first requirement in Eq. 5 ensures that consecutive bounding box bi

t and bi
t+1

are spatially continuous; the second requirement ensures that bi
t and bi

t+1 have
similar appearance, thus the path pi may follow the same actor.

To obtain Φ, we adopt the method proposed by [14] with minor modifica-
tion to avoid generating much highly-overlap paths. The algorithm includes two
stages: forward search and backward track. The aim of the former is to locate the
end of a path; while that of the latter seeks to recover the whole path. The cen-
tral idea is to maintain an updating pool of best Top-N path candidates, which



390 N. Li et al.

Algorithm 1. Forward Search and Backward Track
Input: bounding box score S(bit)
Output: action path pk, k = 1, 2, . . . , N
1: τk = 0, bk = ∅, k = 1, 2, . . . , N
2: for t = 1 → T do
3: for i = 1 → Nb

t do
4: τ(bit) = max

b
j
t−1

τ(bjt−1) + S(bit)

5: end for
6: step1: update each candidate (τk, bk) with bit that connects with bk and has the

largest score τ(bit)
7: step2: update (τN , bN ) as (τ(bit, ), b

i
t), if τ(bit) > τN

8: end for
9: backward trace to locate bkt , t = ts, ts+1, . . . , te in pk

is represented as Φ = (τk, bk), k = 1, 2, . . . , N , where τk is the score of path
k and obtained by accumulating S(bk

t ) of bk
t it passes by; bk is the bounding

box of the end of k-th path. In the forward search, it also records an accumu-
lated actionness score of each bi

t : τ(bi
t) = max

bjt−1

τ(bj
t−1) + S(bi

t), where bj
t−1 and

bi
t satisfy the two requirements in Eq. 5. Given bi

t at frame t, we update path
candidate pool according to the following two steps: first, for each candidate
(τk, bk), k = 1, 2, . . . , N , if there exists any bi

t connecting to bk, then bk will be
replaced by bi

t that has the largest τ(bi
t); second, if the accumulated score of bi

t is
larger than the score of N -th proposal, i.e. τ(bi

t) > τN , then (τN , bN ) is updated
as (τ(bi

t), b
i
t). After the forward search, a backward trace is performed to recover

each bk
t on the candidate path (τk, bk). More specifically, for path pk, we obtain

{bk
t : t = ts, ts+1, . . . , te} by solving the equation: τk =

∑
ts≤t≤te

S(bk
t ).

The pseudo-code of forward-backward search is illustrated in Algorithm1. It
takes bounding box score S(bi

t) as input data and outputs action paths pk, k =
1, 2, . . . , N . The lines 1 to 8 describe forward search and line 9 corresponds to
backward trace. In line 3, N b

t denotes the number of bounding box on frame t.

Action Path Association. Once obtaining Φ, the MSCP in Eq. 3 can be
solved. According to [19], the maximum set coverage problem is NP-hard but
a greedy-search algorithm can achieve an approximation ratio of 1 − 1/e. Here,
we present a greedy-search solution to address the problem. In the beginning,
we search for the candidate pi with the largest action score τk in Φ, then add it
into path set P. Supposing that P has contained k action paths, we enumerate
the rest paths in Φ and find the one that maximizes the flowing equation as the
k + 1-path pi:

arg max
i

∑

b∈pi∪p1∪...∪pk

S(b) + σ(1/k ·
∑

j=1,2,...,k

W (pi, pj)). (6)
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Fig. 3. Examples of tracking-by-detection results. The bounding boxes with green and
red color are the groundtruth and the detected frame-level human bounding boxes
respectively, and those with blue color are obtained by our tracking-by-detection strat-
egy. All the missing human targets before frame 34 are perfectly located by the tracking
approach. (Color figure online)

In Eq. 6, W (pi, pj) represents the similarity of action path pi and pj , and is
defined as: W (pi, pj) = 1/(‖C(pi) − C(pj)‖ + λa‖H(pi) − H(pj)‖), where C(p∗)
and H(p∗) represent the cluster centers of HOC and HOG of bounding boxes
from path p∗ respectively. The larger value of W (pi, pj), the more likely that the
paths pi and pj follow the same actor. To reduce redundant paths in set P, the
newly added path pi should satisfy the constraint in Eq. 4.

Action Path Completion. As human detection may miss hitting in some
frames, the track obtained by connecting the paths in P will have temporal
gaps. To get a temporal-spatial continuous track of an actor, we fill the gaps
by using tracking-by-detection approaches [9]. We train a linear SVM as frame-
level detector. The initial set of positives consist of bounding boxes in set P,
while negatives compose of bounding boxes excluded from set P and boxes that
are randomly selected around positives with the IoU less than 0.3. Given the
detection region bt on frame t, we intend to find the most likely location on
frame t + 1 where the human detection is missed. Firstly, we map bt to b

′
t+1

with the shift of the median of optical-flow inside region bt; secondly, construct
a search region b

′
t+1 by extending the height and width of b

′
t+1 to half past

one times of original length; thirdly, scan b
′
t+1 with a set of windows whose

ratio between width and length varies in a range [0.8, 1.2] to adapt possible size
change of an actor. The best region bt+1 is selected as the one that maximizes
the following equation:

bt+1 = arg max
γ∈N(b

′
t+1)

Sf (γ), (7)

where N(b′
t+1) represents the window set produced by scanning b

′
t+1 and Sf (·)

is the SVM detector whose input feature is chosen as the combination of HOC
and HOG. After obtaining bt+1, we update the SVM detector by adding bt+1 as
a positive sample and boxes around bt+1 with the IoU less than 0.3 as negatives.
An example of how the tracking approach supplementing missing detections is
illustrated in Fig. 3.
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3.3 Action Proposal Generation

The spatio-temporal continuous track can be considered as an action tube that
focuses on an actor from appearing until disappearing. For each action tube,
if its duration is larger than a specified threshold (e.g. 20), we regard it as an
action proposal, denoted as T .

4 Experiment

In this section, we describe the details of the experimental evaluation of the
proposed approach, including datasets and evaluation metrics, implementation
details, an analysis of the proposed approach and the overall performance com-
parison with state of the art methods.

4.1 Datasets and Evaluation Metric

We evaluate the performance of the proposed action proposal approach on two
publicly available action-detection datasets: UCF-Sports [28] and UCF-101 [29].

UCF-Sports. UCF-Sports dataset consists of 150 short videos of sports col-
lected from 10 action classes. It has been widely used for action localization.
The videos are truncated to contain a single action and bounding box annota-
tion is provided for each frame.

UCF-101. UCF-101 dataset has more than 13000 videos that belong to 101
classes. In a subset of 24 categories, human actions are annotated both spatially
and temporally. Compared with UCF-Sports, only a part of videos (74.6%) are
trimmed to fit the motion.

Evaluation Metric. To evaluate the quality of the action proposal T , we
follow the metric proposed by [11]. More specifically, the estimation is based on
the mean IoU value between action proposal T and ground truth G, which is
defined as: IoU(G,T ) = 1

|C|
∑
t∈C

o(Gt,Tt), where Gt and Tt are the detection

bounding box and ground truth on t-th frame respectively; o(., .) is the IoU value
that is defined in Eq. 4; |C| is the set of frames where either the detection result
or the ground truth is not null. An action proposal is considered as true-positive
if IoU(G,T ) ≥ η, where η is a specified threshold. In the following passage, η
is set as 0.5 if not specified.

4.2 Implementation Details

The human estimation is implemented under the Caffe platform [30] and based
on the Faster R-CNN pipeline with a VGG16 model for parameter initialization
as described in Sect. 3.1. We use a four-step alternating training strategy [18] to
optimize two pipelines (i.e. RPN and Fast RCNN) of the whole network. For
training the RPN pipeline, the same settings of scales and aspect ratios are used
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Fig. 4. Recall vs. maximum number of path in set P under different test settings.

as in [18]. For training the Fast RCNN pipeline, the mini-batch size is set to
128, and the ratio of positive to negative samples is set to 1:4. The network is
trained with Stochastic Gradient Descent (SGD) with an initial learning rate of
0.001 and drop by 10 times at every the 5-th epochs, and the momentum and
weight decay are set as 0.9 and 0.0005 respectively.

For the motion estimation of the bounding boxes, the number of components
of GMMs is set to the same as the number of action categories. For constructing
GMMs, we use randomly selected 1/3 of the video clips in UCF-101 for training
and test on UCF-Sports dataset. While test on UCF-101 dataset, all the video
clips of UCF-Sports are used for training. This setting is for a fair comparison
with existing non-learning based methods which test on the whole dataset. The
number of action paths in a candidate set Φ is set to 50 for UCF-Sports and 100 for
UCF-101, as the latter one has a longer duration of action videos on average, and
hence may contains more action-path segments. The value of N in Eq. 3 (i.e. the
maximum number of paths in set P) is set as 12 for UCF-Sports and 18 for UCF-
101. For each video clip, we propose at least one path set P, while a path set P
is generated, the paths {pi, i = 1, 2, . . . , N} in P are removed from the candidate
set Φ and the greedy search algorithm is performed again to find a new path set
P

′
until the duration of the longest path p

′
i (p

′
i ∈ P

′
) is less than 10.

4.3 Analysis of the Proposed Approach

We analyze the performance of the proposed approach from different aspects,
including the sensitivity of the parameter N (i.e., the maximum number of path
in set P), the influence of actionness estimation based on human appearance
and motion cues, and the number of generated proposals.

Figure 4 shows the recall performance of our approach using different action-
ness estimation schemes by varying the value of N . From Fig. 4, it can be
observed that the proposed approach achieves the best performance when the
value of N is in the range [9, 14] on UCF-Sports, and the performance degrades
significantly when N is far from this range. The optimal value of N for UCF-101
is larger than that for UCF-Sports. The reason is probably that the video clips of
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UCF-101 have longer duration than UCF-Sports on average, and thus the action
path is more likely to be separated into multiple segments. We can also observe
that the proposed approach using both the human appearance and motion cues
for actionness estimation (i.e. H + M) yields better recall performance than
that using only the human appearance cue (i.e. H) on the two datasets. This
demonstrates our initial intuition that employing multiple action-related cues
for actionness estimation can help to further improve the performance of action
proposal generation.

As also shown in Fig. 4, at the best performance point of recall on UCF-
Sports, the number of the generated action proposals of our approach is only
13, and it is significantly less compared with state-of-the-art methods on the
same recall performance level (see Table 1). The notable improvement is mainly
due to the precise human estimation from our fine-tuned Faster-RCNN model,
and the modified forward-backward search algorithm for generating candidate
set Φ. Compared to [14], the improved optimization objective leverages appear-
ance similarity among paths for effectively separating different actors. Figure 5
illustrates the improvement by our approach. It can be observed that the action
path generated by the proposed approach is correctly associated to the same
actor. More examples of the action-proposal generation results on UCF-Sports
and UCF-101 are shown in Figs. 8 and 9, respectively.

Fig. 5. Examples of action-path generation results. The 1-st row shows the results
obtained from [14] (The action path contains an irrelevant actor within the first few
frames); the 2-nd row is our results, where the main actor is correctly tracked.

The runtime of the proposed approach includes three parts: (i) spatial action-
ness estimation: Faster RCNN for human estimation takes around 0.1 seconds
per frame (s/f) and GMM-HOF for motion estimation takes around 1 s/f; (ii)
temporal action path extraction: the average runtime of this step is 0.09 s/f; and
(iii) action path completion takes 0.5 s/f. In summary, the average runtime of the
approach is 1.69 s/f. We conduct the runtime analysis on the UCF-Sports dataset
with an image resolution of 720× 404, and based on hardware configurations of
an Nvidia Tesla-K80 GPU, 3.4 GHz CPU and 4 GB memory.
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4.4 Overall Performance

We compare the performance of the action proposal generation of the proposed
approach with state-of-the-art methods on UCF-Sports and UCF-101. We vary
the value of IoU (η) in [0, 1], and plot recall as a function of η. Figure 6 shows
Recall vs. IoU curves of difference approaches. It is clear that our approach
obtains a significant performance gap over the state-of-the-art methods on UCF-
Sports (The recall of ours is above 0.7 when η is even at 0.7, while the others are
below 0.4.), and achieves very competitive performance on UCF-101. Figure 7
also shows the recall performance for each action category. We can observe that
our approach presents superior recall performance on almost all action categories
except for few classes (e.g., Walk and Kick) on UCF-Sports, and on UCF-101,
ours greatly outperforms the comparison methods on action classes such as Bik-
ing, Surfing and TrampolingJumping.

From Fig. 7, it can be also noticed that the performance on UCF-101 is infe-
rior to that on UCF-Sports. The reason is probably because the testing action
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Table 1. Quantitative performance comparison of the action proposal generation with
state-of-the-art methods with commonly used metrics.

ABO MABO Recall #Proposals

UCFSprots

Brox and Malik, ECCV 2010 [31] 29.84 30.90 17.02 4

Jain et al., CVPR 2014 [8] 63.41 62.71 78.72 1,642

Oneata et al., ECCV 2014 [6] 56.49 55.58 68.09 3,000

Gkioxari and Malik, CVPR 2015 [15] 63.07 62.09 87.23 100

APT, BMVC 2015 [11] 65.73 64.21 89.36 1,449

Ours 89.64 74.19 91.49 12

UCF 101

Brox and Malik, ECCV 2010 [31] 13.28 12.82 1.40 3

APT, BMVC 2015 [11] 40.77 39.97 35.45 2,299

Ours 63.76 40.84 39.64 18

video clips of UCF-101 have more dynamically and continuously varying size of
actors and are more untrimmed than UCF-Sports. Finally, we report the overall
performance on the two datasets in Table 1 using several commonly used metrics,
including ABO (Average Best Overlap), MABO (Mean ABO over all classes)
and the average number of proposals per video. The results further confirm the
superior action proposal generation performance achieved by our approach. It
should be noted that on the same level recall performance, our approach gener-
ates relatively much smaller number of action proposals for each video clip than

Fig. 8. Examples of action-proposal generation results on UCF-Sports. The bounding
boxes with green and red color are the ground truth and the action proposal, respec-
tively. (Color figure online)
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Fig. 9. Examples of action-proposal generation results on UCF-101. The bounding
boxes with green and red color are the ground truth and the action proposal, respec-
tively. (Color figure online)

the other methods, which is especially important for reducing the computational
complexity for the follow-up applications such as action recognition and action
interaction modeling.

5 Conclusions

A novel framework for action proposal generation in video has been presented
in this paper. Given an unconstrained video clip as input, it generates spatial-
temporal continuous action paths. The proposed approach is built upon action-
ness estimation leveraging both human appearance and motion cues on frame-
level bounding boxes, which are produced by a Faster-RCNN network trained
on augmented datasets. Then we search spatial-temporal action paths via link-
ing, associating, and tracking the bounding boxes across frames. We formulate
the association of action paths belonging to the same actor as a maximum set
coverage problem and propose a greedy search algorithm to solve it. Exper-
iments on two challenging datasets demonstrate that our approach produces
more accurate action proposals with remarkably less proposals compared with
the state-of-the-art approaches. Based on the observation on the experimental
results, the proposed approach is especially effective when the action video clip
contains only one actor. In the future, we will explore using CNN networks
for better actionness estimation of video frames, and consider recurrent neural
networks for modeling the action paths for action recognition.
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Abstract. The presented work aims at tackling the problem of exter-
nally calibrating a network of cameras by observing a dynamic scene
composed of pedestrians. It relies on the single assumption that human
beings walk aligned with the gravity vector. Usual techniques to solve
this problem involve using more assumptions such as a planar ground or
assumptions about pedestrians’ motion. In this work, we drop all these
assumptions and design a probabilistic layered algorithm that deals with
noisy outlier-dominated hypotheses to recover the actual structure of the
network. We demonstrate our process on two known public datasets and
exhibit results to underline the effectiveness of our simple but adaptable
approach to this general problem.

1 Introduction

External calibration of a camera network is a process preceding many other
tasks in computer vision such as scene reconstruction or human gesture analysis.
Manual techniques are inconvenient as they require moving a calibration pattern
in the common field of view or manually annotating corresponding points in
multiple images. Automatic techniques exist to circumvent this manual part by
automatically detecting corresponding keypoints or regions. However, when the
baseline grows or the scene becomes dynamic, precision and recall of all kinds
of such correspondences drop dramatically.

The use of dynamic objects finds its use in many different fields of work.
Surveillance applications usually cannot rely on background correspondences of
the scene as people are moving in front, or because of the lack of stable detectable
keypoints. A variety of work has already been done in this area, relying on
assumptions about different aspects of human beings such as average height,
motion or a planar ground.

In this work, we aim at demonstrating the possibility to solve this problem by
using the smallest assumption of human walking: Human beings stand against
a common gravity vector while walking. Following the paradigm that intra-
camera correspondences (between multiple time steps) are more reliable than
inter-camera ones (e.g. pedestrian correspondences), we fit a plane through an
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 400–415, 2017.
DOI: 10.1007/978-3-319-54184-6 25
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Fig. 1. Views from two cameras Ca and Cb at times t1 and t2 (stacked with trans-
parency). In each camera view, a walking person defines a plane (marked in red)
between his head and foot points in two time steps. Planes between multiple cameras
are related by a homography H, which is used during our external camera calibration
approach. Green arrows show gravity vector examples. (Color figure online)

estimated gravity vector of a tracked person at two time instances (Fig. 1). Using
a probabilistic sampling framework, we establish plane correspondences between
multiple camera pairs at different time steps and intervals in order to estimate
the relative pose between two cameras. On a coarser level, all pairwise pose
estimations will be fused into a geometrically consistent network.

We believe the contributions of our work to be multifold:

– A layered Markov chain Monte Carlo algorithm for camera calibration to work
with noisy outlier-dominated data.

– Usage of foot-head planes for external camera calibration.
– Extension to the Shortest Triangle Paths Algorithm to incorporate stability

constraints.

We present the current state of the art in this field in the Sect. 2. Section 3
presents the underlying mathematical model used for relative pose estimation
based on homography extraction and decomposition over four points on a plane.
It is followed by the in-depth presentation of our algorithm in Sect. 4. Afterwards
will come the results presentation in Sect. 5 before concluding in Sect. 6.

2 Related Work

Camera calibration is extensively studied as knowledge about the scene geom-
etry simplifies many computer vision tasks, e.g. multi-view object tracking or
searching correspondences along the epipolar line for depth estimation. If we
assume we have correspondences between image points x̄c

i in different cameras



402 L. Lettry et al.

Cj , we can use the regular structure-and-motion approach: combine all x̄c
i in a

measurement matrix which is factorized into the underlying 3D points X i and
the motion of the cameras.

Manual techniques have been created such as [1] which uses this technique
with one light source manually moved through the scene, providing one inter-
camera correspondence for many frames. In order to provide many correspon-
dences per frame, calibration patterns could be used such as [2] for intrinsic
parameters estimation or [3] in the case of a camera network. However, such
manual procedures can be cumbersome or even impossible to conduct in cer-
tain situations, e.g. surveillance setups where cameras are not reachable. An
automatic and reliable procedure is thus needed for such situations.

Automatic inter-camera correspondences have been the solution developed to
overcome those manual procedures. These techniques rely on detecting keypoints
and establishing correspondences based on appearance of a patch around the
extract points [4]. Non-linear optimizations can then be used to improve the
precision and quality of such estimations [5]. However, determining inter-camera
correspondences automatically becomes especially hard if cameras have a small
field of view overlap (or even none in a network of cameras), or if they watch in
different directions (also called wide baseline) as analyzed for example by [6]. To
focus on the calibration approach, many methods take given correspondences as
input [7,8]. Very few methods do not require such knowledge, as [9].

Even though dynamic objects add another layer of complexity, they have been
used and analyzed to extract information of all kinds. Pedestrians, for example,
have been studied in many different fields of computer vision such as in detection
task [10] or for tracking purposes [11]. They also have been extensively used as
observations of inter-camera correspondences in camera calibration [7–9,12–20].
Although being intrinsically hard elements to work with due to their intra-class
variety and per-instance non rigid deformations, they can be used in conjunction
with various assumptions or priors.

Many different methods relying on pedestrian observations have been pre-
sented to solve the intrinsic parameters estimation problem. [17] suggested to
extract vanishing points and line on a single pedestrian. Since vanishing points
are sensitive to noise, other works have built upon it to robustify this approach,
such as [18] which detects leg crossing events in order to extract more accurate
foot-head points, or [14] which proposes a probabilistic approach in the form of
a Markov-chain Monte-Carlo process to handle noise. [13] worked on a different
assumption which incorporates a prior about the pedestrian motion. An impor-
tant shadow model is added by [12] to extract more accurate points, with the
same goal [15] used a human model.

External camera calibration has also been addressed using pedestrians as
basic observations. [21] proposed to observe soccer players with PTZ cameras
for calibration helped by the particular ground markings of soccer fields. [20] also
calibrated PTZ camera networks but by tracking a single pedestrian walking on
a plane, requiring a known inter-camera correspondence. On another side, [9]
showed a work not requiring inter-camera correspondences by working directly
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on foreground blobs instead of pedestrians. All these works assumed a planar
ground where people walked, [7] went away from this assumption and proposed
camera network calibration on uneven terrains.

The underlying optimization process in camera calibration can take very
different shapes to overcome noisy data. For example as a fully probabilistic
approach as in [14]. Certain methods filter outliers based on robust analysis [7].
Others may want to extract only very reliable points by adding different models
to compensate for noise as [12] which learns a complex shadow model to increase
the precision of point extraction or [15].

In this work, we do not focus on precise point extraction or assume reliable
and accurate information. This is motivated by the will of being robust in every
situation, even when early processings in the pipeline, such as background sub-
traction or tracking, may fail. By extension, we do not use complexe non-linear
refinement as it ask for accurate data in the first place.

The closest works to our approach are [9,14]. [14] proposed a Markov chain
Monte Carlo approach but focused only on intrinsic camera calibration of one
camera. We present a 3-layer cascade of Markov chain Monte Carlo in the differ-
ent setup of external network calibration. [9] also follows the idea of analyzing
inter-camera correspondences prior to network calibration but relies on a stable
ground plane estimation from person heights.

3 Pose Estimation Using Tracklet Correspondences

Our pose estimation is based on the decomposition of homographies Hab into

Hab = Kb(Rab +
1
d
tabn

ᵀ)K−1
a (1)

where Rab, tab are rotation and translation of cameras Cb wrt. Ca, and n and d
are orientation and distance of the underlying plane wrt. Ca which maps points
according to x̄b = Habx̄a. Thus, if H can be estimated precisely, the external
camera parameters are known (up to scale which is encoded in d). Furthermore,
any plane visible in both cameras can be used to estimate Rab, tab, just n and
d are plane-dependent.

For our scenario, an intuitive idea would be to select the foot points as x̄
from four pedestrians in two views and compute H (see Fig. 2c). However, the
planarity might not be valid and, more important, all foot point correspondences
have to be true which is unlikely for large baselines with low precision. Formally,
this plane configuration would be four inter-camera correspondences, one time
instance (intra-camera correspondence), and two cameras, or C41 = (4, 1, 2) as
done in [21]. Since Hab has eight degrees of freedom, the product of the configu-
ration elements has to be 8. Since the number of cameras is 2, the configuration
space is quite limited, so only C22 = (2, 2, 2) and C14 = (1, 4, 2) would be alter-
native minimal sampling sets.

Out of these, C14 (Fig. 2a) also intuitively aims at determining the ground
plane, but this time from one point visible over time. Compared to C41, it has the
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advantage that only one true inter-camera correspondence is needed. However,
the configuration is degenerate if the four intra-camera correspondences are on
a line, which often occurs during human walking.

We focus on the C22 configuration, which means two points in two frames for
two cameras (Figs. 1 and 2b). Compared to C14, it has the disadvantage that
two inter-camera correspondences are needed. However, by establishing corre-
spondences between pedestrians instead of points, with stably-localizable head
and foot points, we only need one inter-camera pedestrian correspondence and
two time instances where it is seen.

Fig. 2. Different configurations for H estimation (magenta plane). (a) shows C14 =
(1, 4, 2) an example of a pedestrian walking (blue track) from which we select four
points. (b) C22 = (2, 2, 2) is the situation used in this paper, with two points extracted
at two timesteps and (c) presents C41 = (4, 1, 2) an estimation of a ground plane using
four foot points at the same timestep. (Color figure online)

4 Markov Chain Monte Carlo Cascade for Likelihood
Maximization

The presented algorithm takes as inputs m synchronized sequences produced by
cameras Ci forming a network N . We assume the intrinsic calibration Ki known.
For automatic temporal synchronization, audio signals could be cross-correlated,
and for intrinsic parameters, automatic techniques, as presented in Sect. 2, could
be used.

These sequences will be in first place pre-processed to extract pedestrian
tracklets. These tracklets will be used to produce the so-called foot head points
as explained in Sect. 4.1, similarly to [12,14,20].

As a second step, tracklets in different views will be associated in pedestrian
pair hypotheses. These hypotheses will be the basic elements of the pairwise
pose estimation process (Sect. 4.2) which aims at estimating the relative pose
density for all camera pairs. This will be conducted as a Markov chain Monte
Carlo procedure which follows the idea of [14]. Once this density is estimated
for every camera pair, we will fuse the pairwise pose estimates into a consistent
network by a triangular structural term (Sect. 4.3).



Markov Chain Monte Carlo Cascade for Camera Network Calibration 405

Our algorithm is a 3-layer cascade of Markov chain Monte Carlo sampling.
Each layer approximates different posterior densities and uses their estimations
to feed on the next layer. The first layer is at the pedestrian observation level,
which will suggest relative poses for a second layer at a camera pair level. We
formulate this global network optimization as a maximum likelihood problem
which will be solved by a last layer of sampling.

4.1 Pre-processing

The first step is to detect and track pedestrians to produce pedestrian tracklets.
For detection, we use a standard deformable part model as presented in [10] and
used the already trained algorithm provided online and trained on the Pascal
VOC dataset [22]. Having the detection bounding boxes, we create the tracklets
using the flow algorithm proposed in [11] and kindly distributed online by the
authors. Please note that the tracklets might be incomplete or falsely developed.
Our approach is designed to simply not consider these for the calibration in a
later steps. The jth tracklet in camera Ci is noted tij . For computational purpose
we filter out all short tracklets with less than 2 s overlap.

Based on these tracklets, we will extract the commonly called foot head points
for every pedestrian at every frame they are seen. To extract such points in a
frame f , we use a naive background subtraction method in the form of a grayscale
per-pixel median filter. Albeit being naive and extremely simple, this background
filtering method has been sufficient. We then compute the principal components
of the foreground enclosed inside the detection bounding box. As humans are
mainly distributed along the vertical axis, itself colinear to the gravity vector, we
take the first principal axis vpa and the center of mass of the foreground pcm to
extract two points using it. The head point is simply computed as pcm +vpa and
the corresponding foot point pcm − vpa. This naive point extraction method is
motivated by the will of having a robust algorithm as accurate points or tracklets
may not be available in dynamic environment where lots of occlusions can occur.

4.2 Pairwise Pose Density Estimation

We will first derive the estimation of the probability density of a relative pose
(R, t) between a camera pair (Ca, Cb), given all correspondences in-between:

pcc(R, t | Ca, Cb) (2)

In this section, we assume that there is no side information from the network. pcc
is modeled as Parzen density over previous estimates of R, t . In order to itera-
tively refine pcc, we sample a correspondence from all hypotheses which, in turn,
will be used to compute another R′, t ′ sample, as explained later in Sect. 4.2.
To guide multinomial correspondences sampling, we use pcp as described in the
following. We apply Bayes’ theorem to transform (2) into:

pcc(R, t | Ca, Cb) =
pcp(Ca, Cb | R, t)p(R, t)

p(Ca, Cb)
(3)
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The denominator p(Ca, Cb) is usually considered constant and we do the same
for p(R, t) which would be a prior on the relative pose. We devise pcp as:

pcp(Ca, Cb | R, t) =
∏

(ta
i ,tb

j)∈(Ca,Cb)

ppp(tai , tbj | R, t), (4)

Following is the definition of the pedestrian pair probability with the repro-
jection error modeled by the Blake-Zisserman distribution:

ppp(tai , tbj | R, t) = (δd)φ

√√√√
δd∏

f=1

e− e(ta
i

,tb
i

,f|R,t)2

2σ2 + ε, (5)

where e(tai , tbj , f | R, t) is the reprojection error between tai and tbj , evaluated at
the foot head points of frame f . δd denotes the tracklet length. φ ∈ [0, 1] is an
independence parameter. As we expect our pedestrian pairs to be correlated, we
used φ = 0.5 in our experiments. ε = 0.01 represents the uniform noise in the
data. The reprojection standard deviation σ has been set to a standard value of
5 pixels.

The reprojection error e at frame f is defined as average error of the respective
head and foot points in both cameras Ca and Cb. To evaluate e for a head or
foot point correspondence (xa,x b), we use R and t to triangulate (xa,x b) to
the 3D point X . After re-projecting X into both camera views, the Euclidean
distance to xa and x b is used for e.

Relative Pose Guided Sampling. Having sampled a particular pair of track-
lets (tai , tbj) in the previous section, it will be used to generate the next relative
pose R′, t ′ by sampling with respect to:

prt(R, t |tai , tbj) =
ppp(tai , tbj | R, t)p(R, t)

p(tai , tbj)

∝ ppp(tai , tbj | R, t)pcc(R, t | Ca, Cb)

∝ ppp(tai , tbj | R, t)pcp(Ca, Cb | R, t) (6)

The theorem of Bayes is used here again, we assume the denominator con-
stant again. Note that you could also use it as a prior on the pedestrian pair
correspondence from other information (e.g. an appearance prior). We incorpo-
rated the prior p(R, t) = pcc(R, t | Ca, Cb) ∝ pcp(Ca, Cb | R, t) (thanks to (3))
as an indication of the overall likelihood of a relative pose with respect to the
camera pair.

Density prt will also be modeled as a Parzen density of the previously visited
R, t . Every time correspondences are selected to suggest a new relative pose, they
firstly produce a completely new R, t as explained in Sect. 3 as an exploration
step and incorporate it into the Parzen density estimate. Then R′, t ′ is sampled
from prt. This procedure allows us to balance exploration and exploitation with
the goal to find likely solution for (3).
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4.3 Network Configuration Optimization

We now have a description of (3) for every pair of cameras (Ca, Cb). We want
to combine them to recover the structure of the network, in other words we
want to find the most likely set of relative poses for each edge that produces a
consistent network. By consistent we mean relative poses that produces triangle
stable network. We define triangle stability by:

eΔ = ‖Id − P ab ◦ P bc ◦ P ca‖f (7)

where Id is the identity matrix, ‖ · ‖f the Frobenius norm [23] and P ij are
4 × 4 pose matrices from Ci to Cj . The smaller eΔ is, the more consistent the
triangle is. Due to the unknown scale that exists between the relative poses, we
cannot directly concatenate them. To overcome this problem we locally solve for
the scale, each of the three relative poses brings an unknown scale, we fix one
to 1 and use a least square solution to obtain the two left. After rescaling the
translation component of the relative poses, they can be used for comparison.

One could just select the most likely relative pose for each camera pair but
it would probably violate the triangle constraints (eΔ � 0). We formalize this
problem as a maximization for the relative pose set P = {P ab ∀ (Ca, Cb)} which
fulfills camera pairs likelihood pcp and network constraints pΔ:

arg maxPp(N | P) =
∏

pcp(Ca, Cb | P ab)

·
∏

pΔ(P ab, P bc, P ca) (8)

The first product of pcp is our data term coming directly from the previous
step (Eq. 4) and reflecting the pedestrian observations. The second product is a
structural term based on eΔ which is modeled as a Gaussian:

pΔ(P ab, P bc, P ca) = e
− ‖Id−P ab◦P bc◦P ca‖2

f

2β2 (9)

We empirically found β = 0.25 for good results. Setting it too low blocks the
exploration into local minima and too high does not guide the sampling anymore.

4.4 Gibbs Metropolis Hastings Sampling

We now show how we can maximize (8) using a random walk algorithm. Due
to nonlinearity and high dimensionality, it is extremely hard to solve this max-
imization problem by a direct approach or exhaustive testing. We propose to
use the Gibbs sampling approach tinted with Metropolis Hastings acceptance
ratio to walk through the state space. Our Gibbs sampling approach creates a
network state vector SN of n = 1/2 · m(m − 1) (m = number of cameras in N)
random variables P ab, each corresponding to the relative pose of one camera
pair. At every iteration, every random variable P ab of the network state vector
SN is updated by sampling it from the distribution

p(P ab | SN \ {P ab}) (10)
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In our work, we composed this distribution using the camera pair data term (3)
and a product of the triangle stability term (9) which leads the sampling around
locations that produce consistent network configurations:

p(P ab | SN \ {P ab}) = pcc(P ab | Ca, Cb)

·
∏

i/∈{a,b}
pΔ(P ab, P bi, P ia) (11)

Sampling from this distribution gives us a new state P ab′. In order to guide
this sampling more strongly towards the optimal solution, we spice the standard
Gibbs sampling by computing an acceptance ratio α as follows:

α =
p(N | SN ′

)
p(N | SN )

(12)

where SN ′ is the network state vector where P ab has been replaced by P ab′. The
actual state vector SN is updated based on the value of α. If α is bigger than one,
which would mean accepting this new state increases the probability of having
a correct network, we accept the change. Otherwise it means the change will
decrease the quality of the current estimate. In this case, we accept the change
proportionally to α (small decrease in quality have more chances to be accepted
than big ones). This process is summarized in Algorithm 1

Data: Discrete estimation of densities pcc(P
ab | Ca, Cb)

Result: Best network configuration SB

∀ (Ca, Cb) : P ab ← arg maxpcp(P
ab | Ca, Cb);

SN ← {P ab};

SB ← SN ;
for n iterations do

for ∀ P ab ∈ SN do

P ab′ ← sample from p(P ab | SN \ {P ab});

α ← p(N|SN′)
p(N|SN )

;

if rand() < α then

SN ← SN \ {P ab} ∪ P ab′;
end

if p(N | SN ) > p(N | SB) then
SB ← SN ;

end

end

end
Algorithm 1: Outline of the global network optimization sampling algorithm.

By the random walk, we explore the density in Eq. (8). Likely solutions
are sampled preferably, but to overcome local minima, unlikely solutions are
also explored. As final network configuration result, we use the most-probable
explored state according to (8).
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4.5 Smallest Stable Triangular Spanning Tree

As not all cameras are connected with each other (no common pedestrians obser-
vations) and some estimates are very hard (unstable camera pair configuration),
we add a final selection step that will select only the best relative poses. Indeed,
we computed the relative pose for every camera pair, yet we only need a subset
of it in order to be able to calibrate it up to one unknown scale. We used an
augmented version of the shortest triangle paths algorithm presented by [24,25].
This algorithm produces triangle paths which are triangular connected, meaning
it is enough for estimating all the unknown scales down to one global scale.

For the sake of conciseness, we refer to [25], and briefly explain our extensions:
we incorporate our triangle stability probabilities combined with our pairwise
likelihoods as edge weights on top of their graphical model. This allows us to
find paths that correctly explain pedestrian observations as well as having a
structurally stable network. We finally differ from their approach by initializing
the algorithm from multiple different entry nodes instead of the one with highest
probability, and by selecting the most probable paths set as solution.

Fig. 3. The first images of all 7 cameras of the PETS 2009 sequence.

5 Experimental Results

As input data, we take the sequences PETS 2006 S1-T1-C and 2009 S2.L1 (Fig. 3)
consisting of 3’021 frames per 4 cameras, and 795 frames for each 7 cameras
respectively. The cameras record a central scene from 360 degrees. As evaluation
metric, we use relative camera pose differences in percentage to the groundtruth.
For rotation comparison, between estimate R and ground truth R′, we based
our distance measure on [26] and used the Φ5 distance function |Id −R′Rᵀ|f. As
scale invariant translation measure, we compute the angular difference between
the translation vectors.

5.1 Structure-for-Motion as Baseline Comparison

To demonstrate the difficulty of calibrating these sequences, we test the state-of-
the-art structure-from-motion pipeline from VisualSfM [4,5] to compensate for
it not being able to take as input grountruth intrinsic calibration, we guided its
estimation by providing the ground truth in the EXIF information of the image.
Manual verification of estimated intrinsic proved it to be correctly estimated.
Firstly, a standard Structure-from-Motion is conducted. The first images of all
cameras are matched and their relative pose is verified with an epipolar model.
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Fig. 4. Top: Only frame pair of PETS2009 with an inlier-only correspondence set.
Bottom: Typical failure containing overfitted outliers.eps

Although we tried several ways of optimizing the results, out of the 21 relative
inter-camera poses, only one was estimated from inlier correspondences (Fig. 4)
leading to early breakdown of the algorithm.

We then proceeded to use the same input for VisualSfM as our algorithm
uses. The complete list of corresponding foot head points for every hypothesis is
fed to VisualSfM. Unfortunately, due to the number of outliers dominating the
inliers, only a small subset of the cameras are estimated. Multiple repetitions
have been conducted for the calibration and the best, selected firstly on the
number of cameras then on the actual error measurements, is shown in Table 1.
In order to provide a comparison baseline, we added the pedestrian correspon-
dence knowledge for VisualSfM and used only foot head points of true manually
annotated pedestrian correspondences as input. Again only partial networks are
estimated. The results are summarized in Table 2.

Table 1. Baseline results produced using VisualSfM with the same input as our algo-
rithm.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C

Remarks Only 4 cameras Only 2 cameras

R t R t

Mean 15.0 35.8 7.1 4.8

Std 9.5 28.3 0 0

Min 3.4 7.4 7.1 4.8

Max 21.2 64.2 7.1 4.8
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Table 2. Baseline results produced using VisualSfM and pedestrian correspondence
knowledge.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C

Remarks Only 5 cameras Only 3 cameras

R t R t

Mean 8.9 5.3 5.9 2.7

Std 4.4 1.1 2.2 2.0

Min 2.6 3.2 4.6 0.6

Max 18.0 6.8 8.5 4.6

5.2 Camera Calibration Using Our Cascade of Markov-Chain
Monte-Carlo

To evaluate our algorithm, we compare our estimation to the dataset
groundtruths. Two different scenarios are presented, the first one named whole
network will compare every estimated relative poses whereas minimal network
will evaluate only the minimal relative pose set computed using the triangle
path algorithm from Sect. 4.5. The pairwise pose estimation process is iterated
for 5000 iterations and the global network optimization is conducted for 2500
iterations. On non-optimized Matlab code, the pairwise density estimation took
in average 1 h per camera pair and the global network optimization a few hours.
We believe it to be optimizable and parallelizable.

Table 3 presents the error measures for Pets2009 and Pets2006 datasets.
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Fig. 5. Plot of energy during a global optimization. Red shows the pairwise energy,
green the network energy and blue the total energy. The minimal energy is denoted
by the magenta line. (Energies have been smoothed for readability purposes). (Color
figure online)

We can see that the triangle path extraction allows us to increase the quality
of the network on every aspect. Note that Pets2006 dataset has only four cameras
resulting in six different camera pairs, when the minimal network solution needs
five camera pairs to cover the whole network, limiting the selection of better
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relative poses and thus the amelioration in results. By comparing the minimal
columns of Table 3 and Tables 3 to 2, we can see that our algorithm is able to
correctly estimate relative poses with an error similar to what our baseline with
groundtruth correspondences knowledge is able to achieve, however it is to be
noted that our approach produces estimates for every camera. Also note that our
algorithm estimates all cameras when the baseline for Pets2009 only managed
to produce estimates for 5 cameras.

As the presented algorithm belongs to the random walk algorithm family, it
is interesting to look at the energy variation as shown in Fig. 5. It can be seen
that the global minimum may not be at the minimum of either the pairwise
or network energies and sometimes accepting worse relative poses can lead to
improving the overall solution by avoiding local minima.

Table 3. Rotational error relative to groundtruth as percentage to the grountruth.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C

Network whole minimal whole minimal

R t R t R t R t

Mean 15.7 8.1 10.5 6.1 13.2 6.6 10.3 5.7

Std 10.7 6.5 5.5 4.0 6.9 5.0 7.3 5.2

Min 2.4 0.6 2.4 0.6 3.4 0.8 3.4 0.8

Max 37.5 23.9 20.3 14.4 21.6 13.6 19.0 10.7

A collateral result from network external calibration is the possibility to
match pedestrians in different views. We computed the Jaccard index between
inlier pedestrian set produced by the groundtruth pose and our estimated pose.
We achieve in average 31.3% on the Pets2009 sequence and 25.6% on the
Pets2006. Unfortunately, pedestrian correspondence are not found reliably when
the relative pose estimation error is too big (when <5%, the average Jaccard
index is 64.6% but when >15% it becomes 0%) but remarkably, the triangle
stability term allows the use of false correspondences for calibration. Figure 7
shows some typical falsely found correspondences: reasonable results but false
due to occlusion, and overfitting during the triangular reprojection.

In a last experiment, we took pedestrian correspondence estimates (pedes-
trian estimated with likelihood above 1% as shown in Fig. 6) and used their
foot head points as input in VisualSfM to obtain a robust relative pose estima-
tion. This is the same process as for our baseline, except we do not take the
inlier pedestrians from the groundtruth but from our estimation, to see if our
algorithm is able to produce such knowledge accurately. The results are shown
in Table 4. In Pets2009 sequence, only a subset of cameras managed to be cor-
rectly estimated with errors in the same range as our estimates and the baseline.
Pets2006 produced no correct results for our estimates due to too many wrong
estimated correspondences. It can be seen that non-linear optimizations do not
improve our estimates significantly.
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Table 4. VisualSfM results as a post processing over our pedestrian inlier estimation
for Pets2009.

Dataset Pets2009 S2.L1

Remarks Only 4 cameras

R t

Mean 9.6 5.8

Std 5.5 2.3

Min 3.5 0.8

Max 18.0 6.5

Fig. 6. Inlier-correspondence examples after our optimization. Magenta and yellow
lines show respectively corresponding head and foot points. First row shows Pets2009
sequence and the bottom one: Pets2006. (Color figure online)

Fig. 7. Typical false correspondence examples after our optimization, labeled as in
Fig. 6.
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6 Conclusion and Future Work

We have presented a probabilistically justified algorithm in the form of a cascade
of Markov chain Monte Carlo algorithm and applied it to the task of estimating
the external calibration of a camera network by observing unconstrained pedes-
trians. This algorithm has many advantages, its probabilistic formulation pro-
viding it an adaptability property for whoever would like to incorporate more
priors (e.g. appearance prior). A collateral result of a good estimation is the
pedestrian correspondences deduction which can be useful in many surveillance
situations and used as prior information for other processes. Its main quality
is its robustness against noisy data due to inexact point extraction or drifting
tracklets and against outlier dominated hypotheses. Lastly, we think the sim-
plicity of this algorithm allows it to be improved on different aspects such as the
relative pose estimation in itself but also by addressing wider problems such as
camera synchronization or intrinsic calibration.

Acknowledgement. This research was supported by the SNF project “Tracking in
the Wild” CRSII2 147693/1.
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Abstract. Although the Region-based Convolutional Neural Network
(R-CNN) families have shown promising results for object detection,
they still face great challenges for task-specific detection, e.g., pedestrian
detection, the current difficulties of which mainly lie in the large scale
variations of pedestrians and insufficient discriminative power of pedes-
trian features. To overcome these difficulties, we propose a novel Scale-
Adaptive Deconvolutional Regression (SADR) network in this paper.
Specifically, the proposed network can effectively detect pedestrians
of various scales by flexibly choosing which feature layer to regress
object locations according to the height of pedestrians, thus improving
the detection accuracy significantly. Furthermore, considering CNN can
abstract different semantic-level features from different layers, we fuse
features from multiple layers to provide both local characteristics and
global semantic information of the object for final pedestrian classifica-
tion, which improves the discriminative power of pedestrian features and
boosts the detection performance further. Extensive experiments have
verified the effectiveness of our proposed approach, which achieves the
state-of-the-art log-average miss rate (MR) of 6.94% on the revised Cal-
tech [1] and a competitive result on KITTI.

1 Introduction

Pedestrian detection aims to locate all pedestrian instances with various poses,
scales and occlusions in an image. Over the last decade, it has become a hot
topic for its wide applications, such as smart vehicles, video surveillance and
robotics.

Recently, a lot of efforts have been devoted to pedestrian detection based on
boosted decision forests [2–6], deformable part model [7–9], and deep learning
models [10–12]. No matter what kinds of methods, the scale of pedestrian which
largely affects the feature representation or even dominates the detection per-
formance still has not been well solved. In traditional methods, sliding windows
and image pyramids are often used to capture objects in different scales. How-
ever, image pyramids lead to high computational complexity. For CNN-based
methods, brute-force learning (single scale) and image pyramids (multi-scale)
c© Springer International Publishing AG 2017
S.-H. Lai et al. (Eds.): ACCV 2016, Part II, LNCS 10112, pp. 416–430, 2017.
DOI: 10.1007/978-3-319-54184-6 26



Scale-Adaptive Deconvolutional Regression Network for Pedestrian Detection 417

are the most used solutions. Brute-force learning simply forces the network to
directly learn scale invariance, which is difficult to learn strong convolutional
filters. While multi-scale input always takes a large amount of GPU memories,
and spends more time to train and test. Since pedestrians with different scales
may show quite different appearances, which lead to varied discriminative power
with features extracted from the same descriptor. Especially for small pedes-
trians, general feature extraction often leads to weak classification. Therefore,
how to design a scale adaptive detector is critical for boosting the detection
performance.

Among the recent state-of-the-art generic object detectors [13–16], Fast
R-CNN [15] and its variant Faster R-CNN [16] are the most prevalent pipelines.
One common problem of these solutions is that the last convolutional layer is
too small and coarse, which means the features pooled from this layer are lack
of sufficient representation capacity for small objects. An intuitive solution is
to upsample the feature maps to a proper size. Recently, Long et al. [17] pro-
posed an in-network upsampling layer for pixelwise prediction. Noh et al. [18]
designed a deconvolutional network which contains unpooling and deconvolution
operations to decode the convolutional feature maps for generating accurate seg-
mentation results. Similarly to [18], Badrinarayanan et al. [19] also proposed an
encoder-decoder architecture to achieve pixel-wise segmentation. All these works
show that the finer upsampling or decoding, the more accurate predictions. As
analyzed above, a refined feature map from the upsampling layers or deconvolu-
tional layers could help to obtain a more accurate portrayal for the small objects.
Note that for small objects, the features pooled from a coarse feature map are
filled with repeated values which are lack of discriminative representation ability.

Another application is image super-resolution [20], where a coarse to fine
deconvolutional layer could capture more rich structural and local information
for a finer reconstruction. Therefore, the deconvolutional layers are to obtain a
better representation of local and structural information for small pedestrians.
It makes sense to design a scale-adaptive network for pedestrian detection. In
this way, the features of large and small objects are pooled from different lay-
ers for training different regressers respectively, which we called scale-adaptive
deconvolutional regression (SADR).

In addition, before the arrival of R-CNN, Dollár et al. [4] aggregated multi-
ple hand-crafted channels (ACF) to train the cascaded adaboost. Zhang et al.
[6] applied many of filters in ACF channels to obtain a more rich feature rep-
resentation. All of these works indicate that the more rich features, the better
classification. Recently, feature fusion from different CNN layers has shown the
effectiveness to enhance the discriminability [10,21–23]. Actually, different layers
in a neural network contain different levels of discriminative information. The
lower layers always represent the local characteristics, whereas the deeper layers
focus on the global semantic information. An intuitive idea is to fuse features of
different layers to learn a strong and powerful classifier. Therefore, we investigate
the effects of fusing features from different layers on pedestrian classification.
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To sum up, the main contributions of this work are as follows:

(1) We propose a novel scale-adaptive deconvolutional regression (SADR) net-
work for pedestrian detection, which could flexibly detect pedestrians with
different size.

(2) By computing the classification and regression loss respectively, we integrate
multi-layer outputs of CNN network to boost the detection performance.

(3) Extensive experiments on the challenging Caltech dataset well demonstrate
the effectiveness of the proposed approach. We achieve the state-of-the-art
result with 6.94% miss rate, which is significantly better than 9.29% by
CompACT-Deep [24].

2 Related Work

In this section, we mainly review some existing object detection and pedestrian
detection approaches.

Object Detection. Most recent state-of-the-art object detection methods fol-
low the pipeline of R-CNN [13], which first generated object proposals by some
unsupervised algorithms (e.g. Selective Search [25], Edge Boxes [26] and MCG
[27]) from the input image and then classified each proposal into different cate-
gories. Since the feature extraction in R-CNN is time-consuming and the training
process is implemented through a multi-stage pipeline, two subsequent models,
i.e. Fast R-CNN [15] and Faster R-CNN [16] were proposed to improve the com-
putational efficiency and integrate the multi-stage training process into an uni-
fied pipeline. Moreover, Faster R-CNN introduced a Region Proposal Network
(RPN) to reduce the time of proposal generation.

Pedestrian Detection. In the literature of pedestrian detection, lots of top
performing pedestrian detectors based on hand-crafted features are explored.
The Integral Channel Features (ICF) [3] and Aggregated Channel Feature (ACF)
[4] efficiently computed features such as local sums, histograms, and Haar fea-
tures and their various generalizations using integral images. Zhang et al. [5]
designed informed filters by incorporating prior information as to the appearance
of the up-right human body. Cai et al. [24] proposed complexity-aware cascaded
detectors, which combined features of very different complexities. Deformable
part-based models [8] learned a mixture of local templates for each part to deal
with appearance variations. Many recent works using convolutional neural net-
works (CNN) to improve the performance of pedestrian detection [10–12,28,29].
Ouyang and Wang [12] integrated feature extraction, part deformation handling,
occlusion handling and classification into a joint deep model. Tian et al. [29] used
semantic tasks to assist pedestrian detection. Sermanet et al. [10] exploited two
contextual regions centered on each object for pedestrian detection. Hosang et
al. [28] firstly applied the R-CNN framework [13] to pedestrian detection and
achieved promising performance on Caltech [30] and KITTI [31] dataset.
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Scale Processing. A few works intend to deal with the scale problem. In most
cases, image pyramids (multi-scale inputs) are always used to solve this prob-
lem, but it is very time-consuming. More recently, Li et al. [32] designed two
sub-networks to learn the universality and specificity of large-scale and small-
scale proposals, which resulted in more training time. Yang et al. [33] proposed
scale-dependent pooling to handle the scale variation. However, they used the
earlier convolutional layers to model the small objects, which might be too weak
to make a strong decision. In addition, in order to improve classification perfor-
mance they also introduced the cascaded AdaBoost Classifiers, which increased
the complexity. In this paper, we propose a scale-adaptive deconvolutional regres-
sion architecture which is different from [32,33], and in order to decrease the
complexity we just use one classifier.

3 The Proposed Approach

3.1 Overview

Figure 1 shows the overall framework of the proposed pedestrian detection net-
work. Based on the framework of Faster R-CNN [16], the proposed approach
involves two steps: pedestrian candidates generation and pedestrian/background
classification. During our implementation, we found that the Region Proposal
Network (RPN) serves well as a candidate generator, which achieves 99% recall
on Caltech and 96% on KITTI. Thus here we focus on improving the detection
accuracy for the second stage. On the one hand, to effectively deal with pedestri-
ans with different scales, we introduce the deconvolutional layers to adaptively
upsample the feature map for small pedestrians. In this way, we can adaptively
pool RoIs (Region of Intersets) from corresponding layers for regression accord-
ing to the size of proposals, instead of just pooling from the last convolutional
layer. Compared to Fast R-CNN, this scale-adaptive deconvolutional regression
(SADR) architecture can more precisely represent pedestrians of different scales
and the features used for bounding box regression are more powerful.

Bbox Regression

So max Classifica on
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RoIPooling

Concat

Small 
RoIs
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RoIs

1x1 
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Each 
RoIs
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Fig. 1. The architecture of the proposed detection network.
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On the other hand, to further enhance the discriminative power of clas-
sification, we concatenate features RoI-pooled from multiple layers, including
deconvolutional and some convolutional layers. This kind of multi-scale feature
fusion strategy can effectively capture some fine-grained details by pooling from
multiple layers, which is especially important for classification. Conversely, fea-
tures which are pooled directly from the last convolutional layer may not contain
sufficient information for classification.

Finally, the proposed network ends up with three output layers. The first two
output layers operate on different RoI feature vectors and output the predicted
coordinate tuples for small and large RoIs respectively. The last output layer is
the standard softmax layer which predicts the classification score of each RoI.

3.2 Network Architecture

In the proposed detection network, we use the pre-trained VGG16 model [34] to
initialize the proposed network. All the convolutional layers and max pooling lay-
ers of the VGG16 network are used to encode features before the deconvolutional
layers to decode features from the input image. All of the fc layers are initialized
from VGG16 at the beginning. We randomly initialize the 1 × 1 convolution
layer by drawing weights from a zero-mean Gaussian distribution with standard
deviation 0.01. Given an image, we firstly apply RPN to generate a number
of proposals. Then the proposed detection network takes the whole image and
the proposals as input. In the forward pass, the scale-adaptive deconvolutional
regression (SADR) verifies the height of each proposal and pools the region of
interest from the corresponding layers according to the height, the details will
be discussed in Sect. 3.3. We also concatenate the RoI-pooled features from the
outputs of multi-layers to score each proposal.

After the forward pass, each proposal gets a regressed coordinate tuple and
a score, which denote the original predictions. Box refinement [35] is followed
to the final inference. That is, we take the original predictions as the input and
forward into the network again. Thus, we obtain a new classification score and a
new regressed box, which denote the new predictions. Then, we merge the new
predictions and the original predictions as the final result. Non-maximum sup-
pression (NMS) is applied on the union set of predictions with an IoU threshold
of 0.3, and then followed by bounding box voting [36] to refine the final position
of proposals. The reason using box voting is that boxes with high scores not
always have higher localization accuracy due to various factors, such as training
with suboptimal examples and so on. Therefore, it is beneficial for the recall by
exploiting predicted boxes around the object to compute the final position.

3.3 Scale-Adaptive Deconvolutional Regression

Scale variation, especially for small-scale pedestrians, is a great challenge in
pedestrian detection. Focusing on this problem, we propose a novel scale-
adaptive deconvolutional regression (SADR) network which effectively integrates
small-scale and large-scale regression into a unified framework.
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As we known, the max pooling and the stride in convolution operations
can reduce the spatial resolution of an input image over layers. As a result, the
feature map at the conv5-3 in VGG16 turns out to be 1/16 of the original image.
Actually, in Fast R-CNN [15], we can compute the minimal size of object which
has no repeated RoI-pooled features using the following equation:

Smin = ss × sr (1)

where ss and sr are the stride of specific layer and the output size of RoI pooling
operation respectively. The default value of sr is 7 × 7. Here we use the height
to denote the scale or size of an instance, as the height doesn’t vary signifi-
cantly while the width is more sensitive to pedestrian’s pose [30]. Based on the
assumption, the minimal height of bounding box is 112 pixels for conv5-3, 56
for the first deconvolutional layer and 28 for the second deconvolutional layer.
So the proposed SADR architecture can flexibly choose the appropriate layers
to do regression according to the height of pedestrians. The box regression loss
is calculated as:

Lloc(F ) =

⎧
⎪⎨

⎪⎩

Lloc(Fc5), h ∈ [112,∞)
Lloc(Fd1), h ∈ [56, 112)
Lloc(Fd2), h ∈ (0, 56)

(2)

where Fc5 , Fd1 and Fd2 denote the features pooled from conv5-3, the 1st and
2nd deconvolutional layers respectively, h means the height of proposals. Lloc

is the regression loss for each branch. In fact, the Caltech test set (reasonable)
only evaluates the pedestrians with height greater than 50 pixels, therefore we
just use the 1st deconvolutional layer to tackle the instances with height ranging
from 50 to 112 pixels.

As shown in Fig. 1, each regression branch is followed by 2 4096-d fc layers
with ReLU activations and dropout layers so as to learn a set of scale-specific
parameters. In the fine-tuning process, we first divide the input proposals into
three groups depending on the height and then feed them into corresponding RoI
pooling layers so as to pool features from corresponding layers for regression.
Since each regression branch learns from scale-specific samples, the branch will
capture the rich information for this scale, resulting in a more accurate detection
model.

The advantages of SADR are two-fold. On the one hand, the features
extracted from deconvolutional layers could capture more rich structural infor-
mation which are more powerful than the earlier convolutional layers. On the
other hand, a single network is designed to adaptively select corresponding layers
for regression according to the height of RoIs, which makes the training process
more concise and fast. In this way, the proposed SADR effectively avoids upsam-
pling the input images to handle specific instances.

3.4 Multi-layer Feature Fusion

As analysis previously, using reduplicative RoI-pooled features is hard to learn
a strong classifier and regresser. We concatenate the RoI-pooled features from
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multiple layers, including deconvolutional and some convolutional layers. This
kind of multi-scale feature fusion strategy can effectively capture some fine-
grained details by pooling from multiple layers, which are especially important
for classification. These multi-layer features are used to predict its scores to
pedestrian.

The implementation of fusing multi-layer features is closely related to those
used in [21]. Different from [21], we find it also works well without the complex
operations of L2-normalized and scaled. That’s to say, we directly concatenate
each RoI-pooled feature along the channel axis and reduce the dimension to
512 × 7 × 7 with a 1 × 1 convolution. This kind of integration for multi-layer
features can effectively boost the performance of pedestrian detection.

3.5 Multi-task Loss

For training the proposed detection network, we use a multi-task loss for joint
object classification and scale-adaptive bounding box regression. The final loss
function is defined as:

L(p, k∗, t, t∗) = Lcls(p, k∗) +
n∑

i=1

λi[k∗
i ≥ 1]Lloc i(ti, t∗i ) (3)

where p = (p0, p1) is a discrete probability distribution over 2 categories (pedes-
trian or not). k∗ is the true category label, n is the number of scales, k∗

i ⊆ k∗

is the true label of RoIs corresponding to ith scale. ti and t∗i are the predicted
tuple and the true tuple for bounding box regression respectively. Lloc i is the
standard smoothed L1 loss. λi is the predefined hyper-parameter to balance the
losses of different tasks, here we set λ1 = · · · = λn = 1 as same to Fast R-CNN.

It should be noted that the proposed network achieves regression and classifi-
cation in a different manner. Only the regression distinguishes the size of objects,
while the classification loss treats all objects equally by exploiting identical fea-
tures regardless of the size of objects. That’s because classification and regression
are two different sub-tasks. So in backpropagation, derivatives for classification
loss can be back-propagated to all the previous layers.

4 Experiments

4.1 Datasets and Metrics

Caltech Pedestrian Dataset. The Caltech dataset [30] is one of the most
prevalent datasets for pedestrian detection. It consists of 10 hours of 640 × 480
30 Hz video in an urban traffic environment. The raw annotations amount to a
total of 350k bounding boxes and 2300 unique pedestrians. The standard training
set and test set extract one out of each 30 frames, which results in 4024 frames
with 1014 pedestrians for evaluating. In most case, researchers can leverage more
data for training by extracting one out of three or four frames. Recently, Zhang
et al. [1] revised the original annotations and released a new high quality ground
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truth for training and testing. In this paper, we use the new annotations of
Caltech10x for training and evaluated on the new aligned test set. In the standard
Caltech evaluation, the log-average miss rate (MR) which is averaged over the
FPPI range of [10−2, 100] is used to evaluate the performance of detectors.

KITTI Dataset. The KITTI object detection benchmark [31] consists of 7481
training images and 7518 test images. Due to the diversity of scale, occlusion and
truncation of objects, the dataset evaluates at three levels of difficulty, i.e., easy,
moderate and hard, where the difficulty is differentiated by the minimal scale of
object and the occlusion and truncation of the object. The benchmark follows
the PASCAL protocol and use Average Precision (AP) to measure the detection
performance, where 50% overlap thresholds are adopted for pedestrian.

4.2 Evaluation on Caltech Dataset

Implementation Details. We use the pre-trained VGG16 model to initialize
the proposed detection framework. For the RPN stage, each location in a feature
map generates 10 bounding boxes with one aspect ratio of 2.0, where 2.0 indicates
the ratio between height and width of the box. In both RPN and the proposed
detection network, the scale of input image is set to be 720 pixels on the shortest
side and the negative examples have an IoU threshold ranges from 0 to 0.1.
We use stochastic gradient descent with momentum of 0.9 and weight decay
of 0.0005 to train our detection network. Each SGD mini-batch is constructed
from 2 images which are randomly chosen from the whole training set. The
foreground-to-background in a mini-batch is set to be 1:3, thus ensuring that
25% of training examples is foreground (fg) RoIs.

For training detection network, we use the same way as [16]. In stage 1, we
update all the parameters except the first four convolutional layers. We fine-
tune the network for about 4 epochs with initial learning rate of 0.001 which
is decayed by 0.1 after 2 epochs. In stage 2, we only update the parameters of
deconvolution and fc layers. We fine-tune the network for about 10 epoches with
a fixed learning of 0.0001. The whole network is trained on a single NVIDIA
GeForce GTX TITAN X GPU with 12 GB memory.

Analysis on SADR. We first evaluate the effectiveness of the proposed SADR
architecture. Table 1 shows that the Faster R-CNN baseline [16] which just uses
the feature map of conv5-3 to do classification and regression achieves 10.59%
miss rate, which outperforms most of state-of-the-art detectors showed in Fig. 3.
We observe that the main factor affecting performance is small objects, since
the large objects have already achieved 1.10% miss rate. Therefore we upsample
the last convolutional feature map by inserting a deconvolutional layer between
conv5-3 and fc6 in VGG16. The features pooled from the 1st deconvolutional
layer are fed into the classifier and regresser. As we predicted, the overall perfor-
mance improves a lot. Especially for the small objects, the miss rate improves
from 11.65% to 10.29%, which verifies that a bigger feature map is better for
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Table 1. Miss rate(MR) of baseline and our scale-adaptive deconvolution regression
(SADR) based model. S, L and A denote the height group of [50, 112), [112, ∞) and
[50, ∞). Baseline: Faster R-CNN [16]; d1: the 1st deconvolutional layer.

Methods SADR S L A

Baseline [16] No 11.65% 1.10% 10.59%

Baseline [16] + d1 No 10.29% 1.55% 9.41%

Baseline [16] + d1 Yes 9.04% 0.0% 8.27%

locating small objects. We also observe that the performance of large objects
degrades slightly. It maybe lost some spatial information when pooling from the
deconvolutional layer, since the last convolutional layer can normally pool object
with minimum height of 112 pixels. With a flexible scale-adaptive strategy, the
best performance is achieved by the proposed SADR method both in small and
large objects. On the one hand, compared with the baseline Faster R-CNN, the
performance of large objects is further improved and achieves zero miss rate,
which implies that the features pooled from the deconvolutional layer are more
discriminative for classification than the last convolutional layer. It indirectly
indicates that features extracted from deeper structures are more powerful to
differentiate the object category. On the other hand, in contrast to the second
model in Table 1, the performance of small objects is further improved from
10.29% to 9.04%, which confirms that the SADR architecture can more easily
learn the inter-scale variances as the small-scale and large-scale branches just
focus on their own specificity respectively.

Analysis on Multi-layer Feature Fusion. We also compare different feature
fusion strategies for the classification performance. In this section, we use the
same SADR architecture, just to verify the effectiveness of multi-layer feature
fusion for classification. Based on the analysis of Table 1, we use features pooled
from conv5-3 to do bounding box regression for candidates with height greater
than 112 pixels and use the first deconvolutional layer for height ranging from
50 to 112 pixels.

As shown in Table 2, the first line is the baseline Faster R-CNN, the rest of
models all use the proposed SADR architecture. As the analysis previously, the
model in line 2 outperforms baseline for two reasons. First, features extracted
from the finer feature map are more discriminative for classification. Second,
the SADR architecture is superior in learning the inter-scale variances. We
observe that the performance almost remains unchanged by blending Deconv1
with Conv5, while the fusion of Deconv1 and Conv4 benefits a little more. This
result is caused by two factors, the layer depth and down-sampling factor. In
general, a deeper layer with lower down-sampling factor can better represent
the object, there is a tradeoff between depth and down-sampling factor. This
observation also stands in CCF [37]. The fusion of these three layers achieves
the best performance, which confirms that the more rich features, the better
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Table 2. Comparison performance for different feature fusion strategies. We only use
two scale-adaptive regression branches. Line 1 is the baseline Faster R-CNN; line 2 to
line 5, using Conv5 to do regression for height between [112, ∞) and Deconv1 for height
less than 112. Deconv1: features pooled from the first deconvolution; Conv5: features
pooled from conv5-3 in VGG16; Conv4: features pooled from conv4-3 in VGG16; MR:
log-averaged miss rate over the FPPI range of [10−2, 100]; BR: box refinement, first
introduced in [36] as iterative localization.

Deconv1 Conv5 Conv4 MR +BR Δ
√

10.59% 8.96% +1.63%√
8.27% 8.48% −0.21%√ √
8.25% 8.48% −0.23%√ √
7.96% 7.90% +0.06%√ √ √
7.40% 6.94% +0.46%

(a) (b)

Fig. 2. Average miss rate on Caltech test set. (a) The comparison of different feature
fusion strategies; (b) Adding box refinement.

classification. In fact, different layers in convolutional neural networks contain
different levels of structural information, while integrating them can capture
fine-grained details.

Box Refinement. As shown in Table 2, we observe that MR improves a lot
and reaches 8.96% after adding box refinement for baseline. We all know that
box refinement just simply revises the position of final detection boxes, it has no
effects on the score of bounding box. In addition, combined with Table 1, we can
conclude that the main factor influencing the performance of a detector is the
regression part of the network, i.e., the ability of localization for small objects.
However, for model in line 2, the performance degrades slightly after adding box
refinement, which means the accuracy of localization is good enough. Figure 2
shows the average miss rate for different feature fusion strategies.
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Fig. 3. The comparison of pedestrian detection performance with all recent state-of-
the-art methods on revised Caltech test set [1].

Comparison with the State-of-the-Arts. The overall experimental results
are shown in Fig. 3. We compare our detector with all the existing best-
performing methods, including hand-crafted models, like ACF-Caltech+ [38],
LDCF [38], Katamari [39], SpatialPooling+ [40] (which combines HOG, LBP,
spatial covariance and optical flow) and Checkboards [6](which requires a large
number of filter channels), and CNN-based models, like TA-CNN [29] and the
current state-of-the-art CompACT-Deep [24]. Our method outperforms the cur-
rent best detector CompACT-Deep by 1.89%, with the help of box refinement
strategy, we further lower the MR to 6.94%. Since we use the new revised Cal-
tech10x to train our model, we just evaluate on the new testing set.

4.3 Evaluation on KITTI Dataset

We also evaluate our method on the more challenging KITTI dataset [31]. Since
KITTI contains more small objects with minimum height 25 pixels, we insert
two deconvolutional layers in our network to ensure the features pooled from
corresponding layers are more powerful. Therefore, we group the object proposals
into 3 levels based on their height, i.e., [25, 56) for the 2nd deconvolutional layer,
[56, 112) for the 1st deconvolutional layer and [112,∞) for conv5-3. The scale
of input image is set to be 450 pixels on the shortest side, other parameter
configurations are the same as Caltech.

Table 3 and Fig. 4 show the performance on KITTI. It can be observed that
our method achieves a competitive result, which outperforms the SDP+ RPN
[33] on Easy and Moderate subsets. In contrast with the CompACT-Deep [24],
which is the state-of-the-art on Caltech, our methods improves 12.94%, 11.96%
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Table 3. Comparison to state-of-the-art on KITTI Pedestrian. The evaluation metric
is average precision (AP).

Methods Easy (%) Moderate (%) Hard (%)

Ours 83.63 70.70 64.67

SDP + RPN [33] 80.09 70.16 64.82

3DOP [41] 81.78 67.47 64.70

Mono3D [42] 80.35 66.68 63.44

Faster R-CNN∗ [16] 78.86 65.90 61.18

SDP + CRC(ft) [33] 77.74 64.19 59.27

CompACT-Deep [24] 70.69 58.74 52.71

FilteredICF [6] 67.65 56.75 51.12

Note: * indicates anonymous submission and this paper is
submitted to ECCV16.

Fig. 4. Comparison to state-of-the-art on KITTI pedestrian (moderate).

and 11.96% on Easy, Moderate and Hard subsets respectively. Our detector
on KITTI consists of 3 scale-specific regression branches, which means more
parameters need to be learn than Caltech. However, KIITI has less training
data which only contains 7481 training images covering 4487 pedestrians, our
network can achieve a better result with more training images.

5 Conclusion

In this paper, we propose a novel scale-adaptive deconvolutional regression
(SADR) network for pedestrian detection, which could flexibly detect pedes-
trians with different size. Since each regression branch learns from scale-specific
examples, the proposed network has the ability to capture inter-scale differences,
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resulting in a more sophisticated detection model. By computing the classifica-
tion and regression loss respectively, we integrate features pooled from multi-
layers to further boost the detection performance. Extensive experiments on the
public pedestrian dataset clearly demonstrate the superiority of the proposed
method, we achieve a state-of-the-art result with MR 6.94% on Caltech dataset
and a promising result on KITTI.
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