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Abstract. Hashing is one of the most popular and powerful approxi-
mate nearest neighbor search techniques for large-scale image retrieval.
Most traditional hashing methods first represent images as off-the-shelf
visual features and then produce hashing codes in a separate stage. How-
ever, off-the-shelf visual features may not be optimally compatible with
the hash code learning procedure, which may result in sub-optimal hash
codes. Recently, deep hashing methods have been proposed to simulta-
neously learn image features and hash codes using deep neural networks
and have shown superior performance over traditional hashing meth-
ods. Most deep hashing methods are given supervised information in the
form of pairwise labels or triplet labels. The current state-of-the-art deep
hashing method DPSH [1], which is based on pairwise labels, performs
image feature learning and hash code learning simultaneously by maxi-
mizing the likelihood of pairwise similarities. Inspired by DPSH [1], we
propose a triplet label based deep hashing method which aims to maxi-
mize the likelihood of the given triplet labels. Experimental results show
that our method outperforms all the baselines on CIFAR-10 and NUS-
WIDE datasets, including the state-of-the-art method DPSH [1] and all
the previous triplet label based deep hashing methods.

1 Introduction

With the rapid growth of image data on the Internet, much attention has been
devoted to approximate nearest neighbor (ANN) search. Hashing is one of the
most popular and powerful techniques for ANN search due to its computational
and storage efficiencies. Hashing aims to map high dimensional image features
into compact hash codes or binary codes so that the Hamming distance between
hash codes approximates the Euclidean distance between image features.

Many hashing methods have been proposed and they can be categorized
into data-independent and data-dependent methods. Compared with the data-
dependent methods, data-independent methods need longer codes to achieve
satisfactory performance [2]. Data-dependent methods can be further categorized
into unsupervised and supervised methods. Compared to unsupervised methods,
supervised methods usually can achieve competitive performance with fewer bits
due to the help of supervised information, which is advantageous for search speed
and storage efficiency [3].

Most existing hashing methods first represent images as off-the-shelf visual
features such as GIST [4], SIFT [5] and hash code learning procedure is inde-
pendent of the features of images. However, off-the-shelf visual features may not
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be optimally compatible with hash code learning procedure. In other words, the
similarity between two images may not be optimally preserved by the visual
features and thus the learned hash codes are sub-optimal [3]. Therefore, those
hashing methods may not be able to achieve satisfactory performance in practice.
To address the drawbacks of hashing methods that rely on off-the-shelf visual
features, feature learning based deep hashing methods [1,3,6,7] have been pro-
posed to simultaneously learn image feature and hash codes with deep neural
networks and have demonstrated superior performance over traditional hashing
methods. Most proposed deep hashing methods fall into the category of super-
vised hashing methods. Supervised information is given in the form of pairwise
labels or triplet labels, a special case of ranking labels.

DPSH [1] is the current state-of-the-art deep hashing method, which is super-
vised by pairwise labels. Similar to LFH [7], DPSH aims to maximize the likeli-
hood of the pairwise similarities, which is modeled as a function of the Hamming
distance between the corresponding data points.

We argue that triplet labels inherently contain richer information than pair-
wise labels. Each triplet label can be naturally decomposed into two pairwise
labels. Whereas, a triplet label can be constructed from two pairwise labels only
when the same query image is used in a positive pairwise label and a negative
pairwise label simultaneously. A triplet label ensures that in the learned hash
code space, the query image is close to the positive image and far from the
negative image simultaneously. However, a pairwise label can only ensure that
one constraint is observed. Triplet labels explicitly provide a notion of relative
similarities between images while pairwise labels can only encode that implicitly.

Therefore, we propose a triplet label based deep hashing method, which per-
forms image feature learning and hash code learning simultaneously by maxi-
mizing the likelihood of the given triplet labels. As shown in Fig. 1, the proposed
model has three key components: (1) image feature learning component: a deep
neural network to learn visual features from images, (2) hash code learning com-
ponent: one fully connected layer to learn hash codes from image features and
(3) loss function component: a loss function to measure how well the given triplet
labels are satisfied by the learned hash codes by computing the likelihood of the
given triplet labels. Extensive experiments on standard benchmark datasets such
as CIFAR-10 and NUS-WIDE show that our proposed deep hashing method out-
performs all the baselines, including the state-of-the-art method DPSH [1] and
all the previous triplet label based deep hashing methods.

Contributions: (1) We propose a novel triplet label based deep hashing method
to simultaneously perform image feature and hash code learning in an end-to-end
manner; (2) We present a novel formulation of the likelihood of the given triplet
labels to evaluate the quality of learned hash codes; (3) We provide ablative
analysis of our loss function to help understand how each term contributes to
performance; (4) We obtain state-of-the-art performance on benchmark datasets.
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2 Related Work

Hashing methods can be categorized into data-independent and data-dependent
methods, based on whether they are independent of training data. Represen-
tative data-independent methods include Locality Sensitive Hashing (LSH) [8]
and Shift-Invariant Kernels Hashing (SIKH) [9]. Data-independent methods gen-
erally need longer hash codes for satisfactory performance, compared to data-
dependent methods. Data-dependent methods can be further divided into unsu-
pervised and supervised methods, based on whether supervised information is
provided or not.

Unsupervised hashing methods only utilize the training data points to learn
hash functions, without using any supervised information. Notable examples for
unsupervised hashing methods include Spectral Hashing (SH) [10], Binary Recon-
structive Embedding (BRE) [11], Iterative Quantization (ITQ) [2], Isotropic
Hashing (IsoHash) [12], graph-based hashing methods [13–15] and two deep hash-
ing methods: Semantic Hashing [16] and the hashing method proposed in [17].

Supervised hashing methods leverage labeled data to learn hash codes. Typ-
ically, the supervised information are provided in one of three forms: point-
wise labels, pairwise labels or ranking labels [1]. Representative point-wise label
based methods include CCA-ITQ [2] and the deep hashing method proposed
in [18]. Representative pairwise label based hashing methods include Minimal
Loss Hashing (MLH) [19], Supervised Hashing with Kernels (KSH) [20], Latent
Factor Hashing (LFH) [21], Fash Supervised Hashing (FASTH) [22] and two
deep hashing methods: CNNH [23] and DPSH [1]. Representative ranking label
based hashing methods include Ranking-based Supervised Hashing (RSH) [24],
Column Generation Hashing (CGHASH) [25] and the deep hashing methods
proposed in [3,6,7,17]. One special case of ranking labels is triplet labels.

Most existing supervised hashing methods represent images as off-the-shelf
visual features and perform hash code learning independent of visual features,
including some deep hashing methods [16,17]. However, off-the-shelf features
may not be optimally compatible with hash code learning procedure and thus
results in sub-optimal hash codes.

CNNH [23], supervised by triplet labels, is the first proposed deep hashing
method without using off-the-shelf features. However, CNNH cannot learn image
features and hash codes simultaneously and still has limitations. This has been
verified by the authors of CNNH themselves in a follow-up work [3]. Other rank-
ing label or triplet label based deep hashing methods include Network in Network
Hashing (NINH) [3], Deep Semantic Ranking based Hashing (DSRH) [6], Deep
Regularized Similarity Comparison Hashing (DRSCH) [7] and Deep Similarity
Comparison Hashing (DSCH) [7]. While these methods can simultaneously per-
form image feature learning and hash code learning given supervision of triplet
labels, we present a novel formulation of the likelihood of the given triplet labels
to evaluate the quality of learned hash codes.

Deep Pairwise-Supervised Hashing (DPSH) [1] is the first proposed deep
hashing method to simultaneously perform image feature learning and hash code
learning with pairwise labels and achieves highest performance compared to
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Fig. 1. Overview of the proposed end-to-end deep hashing method. (Color figure online)

other deep hashing methods. Our method is supervised by triplet labels because
triplet labels inherently contain richer information than pairwise labels.

3 Approach

We first give the formal definition of our problem and then introduce our pro-
posed end-to-end method which simultaneously performs image feature learning
and hash code learning from triplet labels.

3.1 Problem Definition

Given N training images I = {I1, . . . , IN} and M triplet labels T =
{(q1, p1, n1), . . . , (qM , pM , nM )} where the triplet of image indices (qm, pm, nm)
denotes that the query image of index qm ∈ {1 . . . N} is more similar to the
positive image of index pm ∈ {1 . . . N} than to the negative image of index
nm ∈ {1 . . . N}. One possible way of generating triplet labels is by selecting
two images from the same semantic category (Iqm and Ipm

) and selecting the
negative (Inm

) from a different semantic category.
Our goal is to learn a hash code bn for each image In, where b ∈ {+1,−1}L

and L is the length of hash codes. The hash codes B = {bn}N
n=1 should sat-

isfy all the triplet labels T as much as possible in the Hamming space. More
specifically, distH(bqm ,bpm

) should be smaller than distH(bqm ,bnm
) as much

as possible, where distH(·, ·) denotes the Hamming distance between two binary
codes. Generally speaking, we aim to learn a hash function h(·) to map images
to hash codes. We can write h(·) as [h1(·), ..., hL(·)] and for image In, its hash
code can be denoted as bn = h(In) = [h1(In), ..., hL(In)].

3.2 Learning the Hash Function

Most previous hashing methods rely on off-the-shelf visual features, which may
not be optimally compatible with the hash code learning procedure. Thus deep
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hashing methods [1,3,6,7] are proposed to simultaneously learn image features
and hash codes from images. We propose a novel deep hashing method utilizing
triplet labels, which simultaneously performs image feature learning and hash
code learning in an end-to-end manner. As shown in Fig. 1, our method consists
of three key components: (1) an image feature learning component, (2) a hash
code learning component and (3) a loss function component.

Image Feature Learning. This component is designed to employ a Convolu-
tional neural network to learn visual features from images. We adopt the CNN-F
network architecture [26] for this component. CNN-F has eight layers, where the
last layer is designed to learn the probability distribution over category labels.
So only the first 7 layers of CNN-F are used in this component. Other networks
like AlexNet [27], residual network [28] can also be used in this component.

Hash Code Learning. This component is designed to learn hash codes of
images. We use one fully connected layer for this component and we want this
layer to output hash codes of images. In particular, the number of neurons of this
layer equals the length of targeted hash codes. Multiple fully connected layers or
other architectures like the divide-and-encode module proposed by [3] can also
be applied here. We do not focus on this in this work and leave this for future
study.

Loss Function. This component measures how well the given triple labels are
satisfied by the learned hash codes by computing the likelihood of the given
triplet labels. Inspired by the likelihood of the pairwise similarities proposed in
LFH [21], we present our formulation of the likelihood for a given triplet label.
We call this the triplet label likelihood throughout the text.

Let Θij denote half of the inner product between two hash codes bi,bj ∈
{+1,−1}L:

Θij =
1
2
bT

i bj (1)

Then the triplet label likelihood is formulated as:

p(T | B) =
M∏

m=1

p((qm, pm, nm) | B) (2)

with
p((qm, pm, nm) | B) = σ(Θqmpm

− Θqmnm
− α) (3)

where σ(x) is the sigmoid function σ(x) = 1
1+e−x , α is the margin, a positive

hyper-parameter and B is the set of all hash codes.
We now show how maximizing the triplet label likelihood matches the goal

to preserve the relative similarity between the query image, positive image and
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negative image. We first prove the following relationship between the Hamming
distance between two binary codes and their inner product:

distH(bi,bj) =
1
2
(L − 2Θij) (4)

According to Eq. 4, we can have

distH(bqm ,bpm
) − distH(bqm ,bnm

) = −(Θqmpm
− Θqmnm

) (5)

According to Eq. 3, we know that the larger p((qm, pm, nm) | B) is, the larger
(Θqmpm

− Θqmnm
− α) will be. Since α is a constant number here, the larger

(Θqmpm
− Θqmnm

− α) is, the smaller (distH(bqm ,bpm
) − distH(bqm ,bnm

)) will
be. Thus, by maximizing the triplet label likelihood p(T | B), we can enforce
the Hamming distance between the query and the positive image to be smaller
than that between the query and the negative image. The margin α here can
regularize the distance gap between distH(bqm ,bpm

) and distH(bqm ,bnm
). The

margin α can also help speed up training our model as explained later in this
Section and verified in our experiments in Sect. 4.4.

Now we define our loss function as the negative log triplet label likelihood as
follows,

L = − log p(T | B)

= −
M∑

m=1

log p((qm, pm, nm) | B)
(6)

Plug Eq. 3 into the above equation, we can drive that

L = −
M∑

m=1

(Θqmpm
− Θqmnm

− α − log(1 + eΘqmpm−Θqmnm−α)) (7)

Minimizing the loss defined in (7) is an intractable discrete optimization
problem [1]. One can choose to relax {bn} from discrete to continuous, i.e., relax
{bn} to {un}, where un ∈ R

L×1 and then minimize the loss. This is the strategy
employed by LFH [21], but this may be harmful to the performance due to the
relaxation error [29]. In the context of hashing, the relaxation error is actually
the quantization error. Although optimal real vectors {un} are learned, we still
need to quantize them to binary codes {bn}. This process induces quantization
error. To reduce it, we propose to also consider the quantization error when
solving the relaxed problem.

Concretely, we relax binary codes {bn} to real vectors {un} and re-define
Θij as

Θij =
1
2
uT

i uj (8)
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and our loss function becomes

L = −
M∑

m=1

(Θqmpm
− Θqmnm

− α − log(1 + eΘqmpm−Θqmnm−α))

+ λ
N∑

n=1

||bn − un||22

(9)

where λ is a hyper-parameter to balance the negative log triplet likelihood and
the quantization error and bn = sgn(un), where sgn(·) is the sign function and
sgn(u(k)

n ) equals to 1 if u(k)
n > 0 and −1, otherwise. The quantization error term∑N

n=1 ||bn−un||22 is also adopted as a regularization term in DPSH [1]. However,
they do not interpret it as quantization error.

Model Learning. The three key components of our method can be integrated
into a Siamese-triplet network as shown in Fig. 1, which takes triplets of images
as input and output hash codes of images. The network consists of three sub-
networks with exactly the same architecture and shared weights. In our experi-
ments, the sub-network is a fully connected layer on top of the first seven layers
of CNN-F [26]. We train our network by minimizing the loss function:

L(θ) = −
M∑

m=1

(Θqmpm
− Θqmnm

− α − log(1 + eΘqmpm−Θqmnm−α))

+ λ

N∑

n=1

||bn − un||22

(10)

where θ denotes all the parameters of the sub-network, un is the output of the
sub-network with nth training image and bn = sgn(un). We can see that L is
differentiable with respect to un. Thus the back-propagation algorithm can be
applied here to minimize the loss function.

Once training is completed, we can apply our model to generate hash codes
for new images. For a new image I, we pass it into the trained sub-network
and take the output of the last layer u. Then the hash code b of image I is
b = sgn(u).

Impact of Margin α. We argue that a positive margin α can help speed up the
training process. We now analyze this theoretically by looking at the derivative
of the loss function. In particular, for nth image, we compute the derivative of
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the loss function L with respect to un as follows:

∂L

∂un
= − 1

2

∑

m:(n,pm,nm)∈T
(1 − σ(Θqmpm

− Θqmnm
− α))(upm

− unm
)

− 1
2

∑

m:(qm,n,nm)∈T
(1 − σ(Θqmpm

− Θqmnm
− α))uqm

+
1
2

∑

m:(qm,pm,n)∈T
(1 − σ(Θqmpm

− Θqmnm
− α))uqm

+ 2λ(un − bn)

(11)

where σ(x) is the sigmoid function σ(x) = 1
1+e−x and T is the set of triplet

labels. In the derivative shown above, we observe this term (1 − σ(Θqmpm
−

Θqmnm
− α)). We know that σ(x) saturates very quickly, i.e., being very close

to 1, as x increases. If α = 0, when (Θqmpm
− Θqmnm

) becomes positive, the
term (1 − σ(Θqmpm

− Θqmnm
− α)) will be very close to 0. This will make the

magnitude of the derivative very small and further make the model hard to
train. A positive margin α adds a negative offset on (Θqmpm

− Θqmnm
) and

can prevent (1 − σ(Θqmpm
− Θqmnm

− α)) from being very small. Further this
makes the model easier to train and helps speed up the training process. We give
experiment results to verify this in Sect. 4.4.

4 Experiment

4.1 Datasets and Evaluation Protocol

We conduct experiments on two widely used benchmark datasets, CIFAR-10 [30]
and NUS-WIDE [31]. The CIFAR-10 [30] dataset contains 60,000 color images
of size 32×32, which can be divided into 10 categories and 6,000 images for each
category. Each image is only associated with one category. The NUS-WIDE [31]
dataset contains nearly 27,000 color images from the web. Different from CIFAR-
10, NUS-WIDE is a multi-label dataset. Each image is annotated with one or
multiple labels in 81 semantic concepts. Following the setting in [1,3,7,23], we
only consider images annotated with 21 most frequent labels. For each of the
21 labels, at least 5,000 images are annotated with the label. In addition, NUS-
WIDE provides links to images for downloading and some links are now invalid.
This causes some differences between the image set used by previous work and
our work. In total, we use 161,463 images from the NUS-WIDE dataset.

We employ mean average precision (MAP) to evaluate the performance of
our method and baselines similar to most previous work [1,3,7,23]. Two images
in CIFAR-10 are considered similar if they belong to the same category. Two
images in NUS-WIDE are considered similar if they share at least one label.

4.2 Baselines and Setting

Following [1], we consider the following baselines:
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1. Traditional unsupervised hashing methods using hand-crafted features,
including SH [10], ITQ [2].

2. Traditional supervised hashing methods using hand-crafted features, includ-
ing SPLH [32], KSH [20], FastH [22], LFH [21] and SDH [33].

3. The above traditional hashing methods using features extracted by CNN-F
network [26] pre-trained on ImageNet.

4. Pairwise label based deep hashing methods: CNNH [23] and DPSH [1].
5. Triplet label based deep hashing methods: NINH [3], DSRH [6], DSCH [7]

and DRSCH [7].

When using hand-crafted features, we use a 512-dimensional GIST descrip-
tor [4] to represent CIFAR-10 images. For NUS-WIDE images, we represent
them by a 1134-dimensional feature vector, which is the concatenation of a 64-D
color histogram, a 144-D color correlogram, a 73-D edge direction histogram,
a 128-D wavelet texture, a 225-D block-wise color moments and a 500-D BoW
representation based on SIFT descriptors.

Following [1,6], we initialize the first seven layers of our network with the
CNN-F network [26] pre-trained on ImageNet. In addition, the hyper-parameter
α is set to half of the length of hash codes, e.g., 16 for 32-bit hash codes and the
hyper-parameter λ is set to 100 unless otherwise stated.

We compare our method to most baselines under the following experimental
setting. Following [1,3,23], in CIFAR-10, 100 images per category, i.e., in total
1,000 images, are randomly sampled as query images. The remaining images are
used as database images. For unsupervised hashing methods, all the database
images are used as training images. For supervised hashing methods, 500 data-
base images per category, i.e., in total 5,000 images, are randomly sampled as
training images. In NUS-WIDE, 100 images per label, i.e., in total 2,100 images,
are randomly sampled as query images. Likewise, the remaining images are used
as database images. For unsupervised hashing methods, all the database images
are used as training images. For supervised hashing methods, 500 database images
per label, i.e., in total 10,500 images, are randomly sampled as training images.
Since NUS-WIDE contains a huge number of images, when computing MAP for
NUS-WIDE, only the top 5,000 returned neighbors are considered.

We also compare our method to DSRH [6], DSCH [7], DRSCH [7] and
DPSH [1] under a different experimental setting. In CIFAR-10, 1,000 images per
category, i.e., in total 10,000 images, are randomly sampled as query images. The
remaining images are used as database images and all the database images are
used as training images. In NUS-WIDE, 100 images per label, i.e., in total 2,100
images, are randomly sampled as query images. The remaining images are used
as database images and still, all the database images are used as training images.
Under this setting, when computing MAP for NUS-WIDE, we only consider the
top 50,000 returned neighbors.

4.3 Performance Evaluation

Comparison to Traditional Hashing Methods using Hand-crafted Fea-
tures. As shown in Table 1, we can see that on both datasets, our method
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Table 1. Mean Average Precision (MAP) under the first experimental setting. The
MAP for NUS-WIDE is computed based on the top 5,000 returned neighbors. The
best performance is shown in boldface. DPSH* denotes the performance we obtain by
running the code provided by the authors of DPSH in our experiments.

Method CIFAR-10 Method NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.710 0.750 0.765 0.774 Ours 0.773 0.808 0.812 0.824

DPSH 0.713 0.727 0.744 0.757 DPSH* 0.752 0.790 0.794 0.812

NINH 0.552 0.566 0.558 0.581 NINH 0.674 0.697 0.713 0.715

CNNH 0.439 0.511 0.509 0.522 CNNH 0.611 0.618 0.625 0.608

FastH 0.305 0.349 0.369 0.384 FastH 0.621 0.650 0.665 0.687

SDH 0.285 0.329 0.341 0.356 SDH 0.568 0.600 0.608 0.637

KSH 0.303 0.337 0.346 0.356 KSH 0.556 0.572 0.581 0.588

LFH 0.176 0.231 0.211 0.253 LFH 0.571 0.568 0.568 0.585

SPLH 0.171 0.173 0.178 0.184 SPLH 0.568 0.589 0.597 0.601

ITQ 0.162 0.169 0.172 0.175 ITQ 0.452 0.468 0.472 0.477

SH 0.127 0.128 0.126 0.129 SH 0.454 0.406 0.405 0.400

outperforms previous hashing methods using hand-crafted features significantly.
In Table 1, the results of NINH, CNNH, KSH and ITQ are from [3,23] and the
results of other methods except our method are from [1]. This is reasonable as
we use the same experimental setting and evaluation protocol.

Comparison to Traditional Hashing Methods using Deep Features.
When we train our model, we initialize the first 7 layers of our network with
CNN-F network [26] pre-trained on ImageNet. Thus one may argue that the
boost in performance comes from that network instead of our method. To further
validate our method, we compare our method to traditional hashing methods
using deep features extracted by CNN-F network. As shown in Table 2, we can see
that our method can significantly outperform traditional methods on CIFAR-
10 and obtain comparable performance with the best performing traditional
methods on NUS-WIDE. The results in Table 2 are copied from [1], which is
reasonable as we used the same experimental setting and evaluation protocol.

Comparison to Deep Hashing Methods. Now we compare our method to
other deep hashing methods. In particular, we compare our method to CNNH,
NINH and DPSH under the first experimental setting in Table 1 and DSRH,
DSCH, DRSCH and DPSH under the second experimental setting in Table 3.
The results of DSRH, DSCH and DRSCH are directly from [7]. We can see
that our method significantly outperforms all previous triplet label based deep
hashing methods, including NINH, DSRH, DSCH and DRSCH.
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Table 2. Mean Average Precision (MAP) under the first experimental setting. The
MAP for NUS-WIDE is computed based on the top 5,000 returned neighbors. The best
performance is shown in boldface.

Method CIFAR-10 NUS-WIDE

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.710 0.750 0.765 0.774 0.773 0.808 0.812 0.824

FastH + CNN 0.553 0.607 0.619 0.636 0.779 0.807 0.816 0.825

SDH + CNN 0.478 0.557 0.584 0.592 0.780 0.804 0.815 0.824

KSH + CNN 0.488 0.539 0.548 0.563 0.768 0.786 0.79 0.799

LFH + CNN 0.208 0.242 0.266 0.339 0.695 0.734 0.739 0.759

SPLH + CNN 0.299 0.33 0.335 0.33 0.753 0.775 0.783 0.786

ITQ + CNN 0.237 0.246 0.255 0.261 0.719 0.739 0.747 0.756

SH + CNN 0.183 0.164 0.161 0.161 0.621 0.616 0.615 0.612

Table 3. Mean Average Precision (MAP) under the second experimental setting. The
MAP for NUS-WIDE is computed based on the top 50,000 returned neighbors. The
best performance is shown in boldface. DPSH* denotes the performance we obtain by
running the code provided by the authors of DPSH in our experiments.

Method CIFAR-10 NUS-WIDE

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

Ours 0.915 0.923 0.925 0.926 0.756 0.776 0.785 0.799

DPSH 0.763 0.781 0.795 0.807 0.715 0.722 0.736 0.741

DRSCH 0.615 0.622 0.629 0.631 0.618 0.622 0.623 0.628

DSCH 0.609 0.613 0.617 0.62 0.592 0.597 0.611 0.609

DSRH 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631

DPSH* 0.903 0.885 0.915 0.911 N/A

We now compare our method to the current state-of-the-art method DPSH
under the first experimental setting. As shown in Table 1, our method outper-
forms DPSH by about 2% on both CIFAR-10 and NUS-WIDE datasets. Note
that on NUS-WIDE, we are comparing to DPSH* instead of DPSH. DPSH rep-
resents the performance reported in [1] and DPSH* represents the performance
we obtain by running the code of DPSH provided by the authors of [1] on NUS-
WIDE. We re-run their code on NUS-WIDE because the NUS-WIDE dataset
does not provide the original images to download instead of the links to image,
which results in some differences between the images used by them [1] and us.

As shown in Table 3, our method outperforms DPSH by more than 10% on
CIFAR-10 and about 5% on NUS-WIDE under the second experimental setting.
We also re-run the code of DPSH on CIFAR-10 under the same setting and
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Query Image Ours DPSH

Fig. 2. Retrieval examples. Left: Query images. Middle: Top images retrieved by hash
codes learnt by our method. Right: Top images retrieved by hash codes learnt by
DPSH [1].

we can obtain much higher the performance then what was reported in [1].1

The performance we obtain is denoted by DPSH* in Table 3 and we can see
our method still outperforms DPSH* by about 1%. We also show some retrieval
examples on NUS-WIDE with hash codes learned by our method and DPSH
respectively in Fig. 2.

4.4 Ablation Studies

Impact of the hyper-parameter α. Figure 3a shows the effect of the margin
α at 32 bits on CIFAR-10 dataset. We can see that within the same number of
training epochs, we can obtain better performance with a larger margin. This
verifies our previous analysis in Sect. 3.

Impact of the hyper-parameter λ. Figure 3b shows the effect of the hyper-
parameter λ in Eq. 9 at 12 bits and 32 bits on CIFAR-10 dataset. As one can
see, for both 12 bits and 32 bits, there is a significant performance drop in terms
of MAP when λ becomes very small (e.g., 0.1) or very large (e.g., 1000). This
is reasonable since λ is designed to balance the negative log triplet likelihood
and the quantization error. Setting λ to small or to large will lead to inbalance
between these two terms.

Impact of the number of training images. We also study the impact of the
number of training images on the performance. Figure 3c shows the performance

1 We communicated with the authors of DPSH. The main difference between our
experiments and their experiments is the step size and decay factor for learning rate
change. They say that with our parameters, they can also get better results than
what is reported in their paper [1].
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(a) Impact of α (b) Impact of λ

(c) Impact of number of training images

Fig. 3. Ablation studies.

of our method at 12 bits on CIFAR-10 using different number of training images.
We can see that more training images will incur noticeable improvements.

5 Conclusion

In this paper, we have proposed a novel deep hashing method to simultane-
ously learn image features and hash codes given the supervision of triplet labels.
Our method learns high quality hash codes by maximizing the likelihood of
given triplet labels under learned hash codes. Extensive experiments on stan-
dard benchmark datasets show that our method outperforms all the baselines,
including the state-of-the-art method DPSH [1] and all the previous triplet label
based deep hashing methods.
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