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Abstract. While computer vision has made noticeable advances in the
state of the art for 2D image segmentation, the same cannot be said for
3D volumetric datasets. In this work, we present a scalable approach to
volumetric segmentation. The methodology, driven by supervoxel extrac-
tion, combines local and global gradient-based features together to first
produce a low level supervoxel graph. Subsequently, an agglomerative
approach is used to group supervoxel structures into a segmentation
hierarchy with explicitly imposed containment of lower level supervoxels
in higher level supervoxels. Comparisons are conducted against state of
the art 3D segmentation algorithms. The considered applications are 3D
spatial and 2D spatiotemporal segmentation scenarios.

1 Introduction

The advent of big data and ease of access to computational resources has led
to increasing interest in directly analyzing 3D data instead of merely relying on
their 2D image projections. Consequently, 3D supervoxels which are a natural
extension to 2D superpixels, play a key role as can be seen in many computer
vision applications spanning spatiotemporal video and 3D volumetric datasets.
For example, high dimensional data in the form of lightfields, RGBD videos and
regular video data, particle-laden turbulent flow data comprising dust storms
and snow avalanches and finally 3D medical images like MRIs are avenues for
further development and application of 3D supervoxel estimation methods.

The popular ultrametric contour map (UCM) framework [1] has established
itself as the state of the art in 2D superpixel segmentation. However, a direct
extension of this framework has not been seen in the case of 3D supervoxels. The
current popular frameworks in 3D segmentation start by constructing regions
based on some kind of agglomerative clustering (graph based or otherwise) of sin-
gle pixel data. However, the 2D counterparts of these methods on which they are
founded are not as accurate as UCM. This is because the UCM algorithm does
not begin by grouping pixels into regions. Instead it first computes a high quality
boundary map which is subsequently utilized toward obtaining closed regions.
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The two step process in UCM is carried out by combining boundary organiza-
tion with pixel clustering which leads to high quality segmentation results in 2D.
Therefore, it follows that a natural extension of this two step process in the case
of 3D should be a harbinger for success.

UCM derives its power from a combination of local and global cues which
complement each other in order to detect highly accurate boundaries. However,
all the other methods, with the exception of normalized cuts [2] (which directly
obtains regions) are inherently local and do not incorporate global image infor-
mation. In sharp contrast, UCM includes global image information by estimating
eigenfunction scalar fields of graph Laplacians formed from local image features.
Despite this inherent advantage, the high computational cost of UCM is a bottle-
neck in the development of its 3D analog. Recent work in [3] has addressed this
issue in 2D by providing an efficient GPU-based implementation but the huge
number of voxels involved in the case of spatiotemporal volumes remains an
issue. The work in [4] provides an efficient CPU-only implementation by lever-
aging the structure of the underlying problem and provided a reduced order
normalized cuts approach to solve the eigenvector problem. Consequently, this
opens up a plausible route to 3D as a reduced order approach effectively solves
the same globalization problem but at a fraction of the cost. Therefore, the main
work of this paper is threefold: First, we design filters for 3D volumes (either
space-time video or volumetric data) which provide local cues at multiple scales
and at different orientations akin to the approach in 2D UCM. Second, we intro-
duce a new method called as oriented intervening contour cue which extends
the idea of the intervening contour cue in [5] for constructing the graph affinity
matrix. Third, we solve the reduced order eigenvector problem by leveraging
ideas from the approach in [4]. After this globalization step, the local and global
fields are merged to obtain surface boundary fields. Subsequent application of
a watershed transform yields supervoxel tessellations (represented as relatively
uniform polyhedra that tessellate the region). The next step in this paper is to
build a hierarchy of supervoxels. While 2D UCM merges regions based on their
boundary strengths in its oriented watershed transform approach, we did not
find this approach to work well in 3D. Instead, to obtain the supervoxel hier-
archy, we follow the approach of [6] which performs a graph-based merging of
regions using the method of internal variation [7].

In summary, our approach extends the popular and highly accurate gPb-
UCM framework to 3D resulting in a highly scalable framework based on reduced
order normalized cuts. To the best of our knowledge, there does not exist a
surface detection method in 3D which uses graph Laplacian-based globaliza-
tion for estimating supervoxels. Further, our results indicate that owing to the
deployment of a high quality boundary detector as the initial step, our method
maintains a distinction between the foreground and background regions by not
causing unnecessary oversegmentation of the background at the lower levels of
hierarchy.

Road map: The next section describes the related work on 2D and 3D segmen-
tation which influenced our work. Section 3 describes how we extract supervoxels
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by extending the 2D gPb-UCM framework. Section 4 evaluates the proposed app-
roach and other state of the art supervoxel methods on two different types of 3D
volumetric datasets both qualitatively and quantitatively. Section 5 concludes
by summarizing our contributions and also discusses the scope for future work.
Throughout the paper, we use the term pixel and voxel interchangeably when
referring to the basic “atom” of 2D/3D images.

2 Related Work

Normalized Cuts and gPb-UCM: Normalized cuts [2] gained immense pop-
ularity in 2D image segmentation by treating the image as a graph and com-
puting hard partitions. The gPb-UCM framework [1] leveraged this approach in
a soft manner to introduce globalization into their contour detection process.
This led to a drastic reduction in the oversegmentation arising out of gradual
texture or brightness changes in the previous approaches. Being a computation-
ally expensive method, the last decade saw the emergence of several techniques
to speed up the underlying spectral decomposition process in [1]. These tech-
niques range from various optimization techniques like multilevel solvers [8,9],
to systems implementations exploiting GPU parallelism [3], and to approximate
methods like reduced order normalized cuts [4,10].

3D Volumetric Image Segmentation: Segmentation techniques applied to
3D volumetric images can be found in the literature of medical imaging (usually
MRI) and 2D+time video sequence segmentation. In 3D medical image segmen-
tation, unsupervised techniques like region growing [11] have been well studied.
In [12], normalized cuts were applied to MRIs but gained little attention. Recent
literature mostly focuses on supervised techniques [13,14]. In video segmenta-
tion, there are two streams of works. On one hand, [15–18] are frame based
that rely on segmenting each frame into superpixels in the first place. Therefore
they are not applicable to general 3D volumes. On the other hand, a variety of
other methods treat the video sequences as spatiotemporal volumes and try to
segment them into supervoxels. Those methods are mostly extensions of popu-
lar 2D image segmentation approaches, including graph cuts [19,20], SLIC [21],
mean shift [22], graph-based methods [6] and normalized cuts [9,23]. Besides
these, temporal superpixels [24–26] are another set of effective approaches that
extract high quality spatiotemporal volumes. A comprehensive review of super-
voxel methods can be found in [27,28]. All of this development in the area of 3D
supervoxels has led to a general consensus in the video segmentation community
that supervoxels have favorable properties which can be leveraged later in the
pipeline. These characteristics include: (i) supervoxel boundaries should stick
to the meaningful image boundaries; (ii) regions within one supervoxel should
be homogeneous while inter-supervoxel differences should be substantially large;
(iii) it’s important that supervoxels have regular topologies; (iv) a hierarchy of
supervoxels is favorable as different applications have different supervoxel gran-
ularity preferences.



40 C. Yang et al.

3 Supervoxel Extraction

Our work is a natural extension of the state of the art 2D superpixel method, the
gPb-Ultrametric Contour Map framework (gPb-UCM) [1], henceforth referred to
as 3D-UCM. The 2D gPb-UCM framework consists of three major parts: image
gradient features detection, globalization and agglomeration. Analogously, the
workflow in the 3D-UCM framework presented here is volume gradient features
detection, globalization and supervoxel agglomeration. However, the voxel car-
dinality of 3D volumetric images far exceeds their 2D counterparts. Therefore,
certain computational considerations force us to adopt reduced order eigensys-
tem solvers. These approximations will become clear as we proceed. The upside
is that the 3D-UCM algorithm becomes scalable to handle sizable datasets.

3.1 Volume Gradient Features Detection

We first require an edge detector to help quantify the presence of boundary-
surfaces. Most gradient-based edge detectors in 2D [29,30] can be extended to 3D
for this purpose. We based our 3D edge detector on the mPb detector proposed
in [1,31] which has been empirically shown to have superior performance in 2D.

The building block of the 3D mPb gradient detector is an oriented gradi-
ent operator G(x, y, z, θ, ϕ, r) that is described in detail in Fig. 1. To be more
specific, in a 3D volumetric intensity image, we place a sphere centered at each
pixel to denote its neighborhood. An equatorial plane specified by its normal
vector t(θ, ϕ) splits the sphere into two half spheres. We compute the inten-
sity histograms for both half spheres as g and h. Then we define the gradient
magnitude in the direction t(θ, ϕ) as the χ2 distance between g and h:

χ2(g,h) =
1
2

∑

i

(g(i) − h(i))2

g(i) + h(i)
. (1)

In order to capture gradient information at multiple scales, this gradient value
is calculated at different radius values r of the neighborhood sphere. Gradients
obtained from different scales are then linearly combined together using

G(x, y, z, θ, ϕ) =
∑

r

αrG(x, y, z, θ, ϕ, r) (2)

where αr weighs the gradient contribution at different scales. For multi-channel
3D images like video sequences, G(x, y, z, θ, ϕ) are calculated separately from
different channels and summed up using equal weights. Finally, the measure of
boundary strength at (x, y, z) is computed as the maximum response among
various directions t(θ, ϕ):

mPb(x, y, z) = max
θ,ϕ

G(x, y, z, θ, ϕ). (3)

In our experiments, θ and ϕ take values in {0, π
4 , π

2 , 3π
4 } and {−π

4 , 0, π
4 } respec-

tively and in one special case, ϕ = π
2 . Therefore we compute local gradients in
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Fig. 1. The oriented gradient operator G(x, y, z, θ, ϕ, r): At location (x, y, z), the local
neighborhood is defined by a sphere with radius r. An equatorial plane n (shaded
green) along with its normal vector t splits the sphere into two half spheres. The one
above n is shaded yellow and the one below is shaded blue. We histogram the intensity
values of voxels that fall in the yellow and blue half spheres respectively. Finally we
calculate the χ2 distance between the yellow and blue histograms as the local gradient
magnitude in the direction t of scale r (Color figure online).

13 different directions. Neighborhood values of 2, 4 and 6 voxels were used for r.
Equal weights αr were used to combine gradients from different scales. Also, as
is standard, we always apply an isotropic Gaussian smoothing filter with σ = 3
voxels before any gradient operation.

3.2 Globalization

The core aspect of the gPb-UCM algorithms is spectral clustering. It globalizes
the local cues obtained from the gradient features detection phase and specifically
focuses on the most salient boundaries in the image by analyzing the eigenvectors
derived from the normalized cuts problem [2]. However, this approach depends
on solving a sparse eigensystem at the scale of the number of pixels in the image.
Thus as the size of the image grows large, the globalization step becomes the
computational bottleneck of the whole process. This problem is even more severe
in the 3D setting because the voxel cardinality far exceeds the pixel cardinality
of our 2D counterparts. An efficient approach was proposed in [4] to reduce the
size of the eigensystem while maintaining the quality of the eigenvectors used in
globalization. We generalize this method to 3D so that our approach becomes
scalable to handle sizable datasets.

In the following, we describe the globalization steps: (i) graph construction
and oriented intervening contour cue, (ii) reduced order normalized cuts and
eigenvector computation, (iii) scale-space gradient computation on the eigenvec-
tor image and (iv) the combination of local and global gradient information.
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Graph Construction and Oriented Intervening Contour Cue: In 2D,
spectral clustering begins from a sparse graph obtained by connecting pixels that
are spatially close to each other. gPb-UCM [1] constructs a sparse symmetric
affinity matrix W using the intervening contour cue [5] that is the maximal value
of mPb along a line connecting two pixels. However, this approach doesn’t utilize
all the useful information obtained from the previous gradient features detection
step. Figure 2 describes a potential problem and how we deal with it. To improve
the accuracy of the affinity matrix, we take the direction vector of the maximum
gradient magnitude into consideration when calculating the pixel-wise affinity
value. We call this new variant as oriented intervening contour cue. For any
spatially close voxels i and j, we use īj to denote the line segment connecting i
and j. d is defined as the unit direction vector of īj. Assume P is a set of voxels
that lie close to īj. For any p ∈ P , n is the unit direction vector associated with
its mPb value. We define the affinity value Wij between i and j as follows:

Wij = exp(−max
p

{mPb(p)|〈d,n〉|}/ρ) (4)

where 〈〉 is the inner product operator of the vector space and ρ is a scaling
constant. In our experiments, P contains the voxels that are at most 1 voxel
away from īj. ρ is set to 0.1. In the affinity matrix W , each voxel is connected
to voxels that fall in the 5 × 5 cube centered at that voxel. So the graph defined
by W is very sparse.

Fig. 2. Left: Suppose we want to calculate the affinity value between voxels A and B.
C is the voxel with maximal mPb value that lies on the line segment ĀB. In the upper
left case, A and B belong to one region. In the lower left case, A and B are in two
different regions. But the intervening contour cue of UCM [1] gives the same affinity
value in both cases, which is not very satisfactory. Obviously it would be better if we
consider the direction t of C’s mPb. Right: In our oriented intervening contour cue
approach, when calculating affinity values, we always take the product of mPb(C) with
the absolute value of the inner product 〈t,n〉, where n is the unit direction vector of
line segment ĀB. If A and B are on different sides of a boundary surface, |〈t,n〉| will
be large, leading to small affinity value and vice-versa.
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Reduced Order Normalized Cuts and Eigenvector Computation: At
this point, the standard 2D gPb-UCM solves for the generalized eigenvectors of
the sparse eigensystem

(D − W )v = λDv (5)

where D is a diagonal matrix defined by Dii = ΣjWij . However, solving this
eigenvalue problem is very computationally intensive. It becomes the bottleneck,
both in time and memory efficiency, of the normalized cuts segmentation algo-
rithms. To overcome this, an efficient and highly parallel GPU implementation
was provided in [3]. However, this approach requires us to use GPU-based hard-
ware and software suites—an unnecessary restriction. A clever alternative in
[4,10] builds the graph on superpixels instead of pixels to reduce the size of the
eigensystem. We chose to generalize [4]’s approach to 3D as (i) the superpixel
solution is more scalable than the GPU solution in terms of memory require-
ments, (ii) specialized GPU co-processors are not commonly available in many
computing platforms like smart phones and wearable devices, and (iii) the app-
roach in [10] is specifically designed for superpixels in each frame in video seg-
mentation, thus not easily generalizable. Finally, the approach in [4] constructs
a reduced order normalized cuts system which is easier to solve. The reduced
order eigensystem is denoted by

(LT (D − W )L)x = λ′LT DLx (6)

where L ∈ R
m×n,x ∈ R

m and Lx = v. The purpose of L is to assign each pixel
to a superpixel/supervoxel. In our approach, the supervoxels are generated by
a watershed transform on the mPb image obtained from the volume gradient
features detection step. Obviously the number of supervoxels m is much smaller
than the number of voxels n in the whole 3D volumetric image. In practice,
there are usually two to three orders reduction in the size of the eigensystem
(from millions voxels to a few thousands supervoxels). Therefore it is much more
efficient to solve Eq. (6) than Eq. (5).

Fig. 3. Upper Left: One slice of a brain MRI from the IBSR dataset [32]. Lower
Left: One frame of a video sequence from the BuffaloXiph dataset [33]. Right: The
corresponding slices/frames of the first 4 eigenvectors.
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Scale Space Gradient Computation on the Eigenvector Image: We solve
for the generalized eigenvectors {x0,x1, . . . ,xn} of the system in (6) correspond-
ing to the smallest eigenvalues {λ′

0, λ
′
1, . . . , λ

′
n}. As stated in [4], λi in (5) will

equal to λ′
i and Lxi will match vi modulo an irrelevant scale factor, where vi

are the eigenvectors of the original eigensystem (5). Similar to the 2D scenario
[1], eigenvectors vi carry surface information. Figure 3 shows several example
eigenvectors obtained from two types of 3D volumetric datasets. In both cases,
the eigenvectors distinguish salient aspects of the original image. Based on this
observation, we apply the gradient operator mPb defined in (3.1) to the eigen-
vector images. The outcome of this procedure is denoted as ‘sPb’ because it
represents the ‘spectral’ component of the boundary detector, following the con-
vention established in [1]:

sPb(x, y, z) =
K∑

i=1

1√
λi

mPbvi
(x, y, z). (7)

Note that this weighted summation starts from i = 1 because λ0 always equals
0 and v0 is a vanilla image. The weighting by 1/

√
λi is inspired by the mass-

spring system in mechanics [1,34]. In our experiments, we use 16 eigenvectors,
i.e. K = 16.

The Combination of Local and Global Gradient Information: The last
step is to combine local cues mPb and global cues sPb. mPb tries to capture vari-
ations in every corner while sPb aims to obtain salient boundary surfaces. By lin-
early combining them together, we get a ‘globalized’ boundary detector gPb:

gPb(x, y, z) = ωmPb(x, y, z) + (1 − ω)sPb(x, y, z). (8)

In practice, we use equal weights for mPb and sPb. After obtaining the gPb
values, we apply a post-processing step of non-maximum suppression [29] to get
thinned boundary surfaces when the resulting edges from mPb are too thick.
Figure 4 shows some examples of mPb, sPb and gPb.

3.3 Supervoxel Agglomeration

At this point, the 2D gPb-UCM algorithm proceeds with the oriented water-
shed transform (OWT) [1,35,36] to create a hierarchical segmentation of the
image resulting in the ultrametric contour map. However, we find that the same
strategy does not work well in 3D. The reasons are two-fold. First, because of
the irregular topologies, it is more difficult to approximate the boundary surfaces
with square or triangular meshes in 3D than to approximate the boundary curves
with line segments in 2D. Second, in the merging process, following OWT, only
the information of the pixels on the boundaries are used when the boundaries
between superpixels are greedily removed. This is not a robust design especially
considering that in 3D the boundary surfaces are frequently fragmented.
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Fig. 4. sPb augments the strength of the most salient boundaries in gPb.

Due to the above considerations, we turn to the popular graph based image
and video segmentation methods [6,7] to create the segmentation hierarchy. We
first apply a watershed transform to the gPb strengths obtained from the pre-
vious step to get an oversegmentation. Next we iteratively merge the adjacent
segments starting from this oversegmentation. The output of this procedure is
a segmentation hierarchy represented by a tree-structure whose lower level seg-
ments are always contained in higher level segments. As in [6], the merge rules
run on a graph. The nodes of the graph are regions. First, for any two adja-
cent regions Ri and Rj , we assign an edge eij to connect them on the graph.
The weight of eij is set to the χ2 distance between Lab space or intensity value
histograms of Ri and Rj with 20 bins used. Also, for any region R, a quantity
named the relaxed internal variation RInt(R) is defined:

RInt(R) := Int(R) +
τ

|R| (9)

where Int(R) is defined as the maximum edge weight of its minimum spanning
tree (MST). For the lowest level regions, i.e. the regions of oversegmentation
obtained from the watershed transform, Int(R) is set to 0. |R| is the voxel cardi-
nality of region R. τ is a parameter to trigger the merging process and control the
preferred granularity of the regions. In each iteration of merging, all the edges
are traversed in ascending order. For any edge eij , we merge incident regions
Ri and Rj if the weight of eij is less than the minimum of the relaxed internal
variation of the two regions. Thus the merging condition is written as

weight(eij) < min{RInt(Ri),RInt(Rj)}. (10)

In practice, we increase the granularity parameter τ by a factor of 1.1 in each
iteration. This agglomeration process iteratively progresses until no edge meets
the merging criteria. The advantage of graph based methods is that they make
use of the information in all voxels in the merged regions. Furthermore, as shown
in the experiments below, we see that it overcomes the weakness of fragmented
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supervoxels of graph based methods. This is because traditional graph based
methods are built on voxel-level graphs.

Finally, we obtain a supervoxel hierarchy represented by a bottom-up tree
structure. This is the final output of the 3D-UCM algorithm. The granularity of
the segmentation is a user driven choice guided by the application.

4 Evaluation

We perform quantitative and qualitative comparisons between 3D-UCM and
state of the art supervoxel methods on two different types of 3D volumetric
datasets. Datasets and experimental results are presented in this section.

4.1 Experimental Setup

Datasets: The most typical use cases of 3D segmentation are medical images
like MRIs and video sequences. We use the publicly available Internet Brain Seg-
mentation Repository (IBSR) [32] for our medical imaging application. It con-
tains 18 volumetric brain MRIs with their white matter, gray matter and cerebro-
spinal fluid labeled by human experts. These represent cortical and subcortical
structures of interest in neuroanatomy. For video segmentation applications, we
use the dataset BuffaloXiph introduced by [33]. The 8 video sequences in the
dataset have 69–85 frames and are labeled with semantic pixels. This allows us
to examine whether the algorithms have the same perception as humans in the
case of 2D+time segmentation.

Methods: A comprehensive comparison of current supervoxel and video seg-
mentation methods is available in [27,28]. Building on their approach, in our
experiments, we will compare 3D-UCM to two state of the art supervoxel meth-
ods: (i) hierarchical graph based (GBH) [6] and (ii) segmentation by weighted
aggregation (SWA) [8,9,37]. GBH is the standard graph based method for video
segmentation and SWA is a multilevel normalized cuts solver that also generates
a hierarchy of segmentations.

4.2 Qualitative Comparisons

We present some example slices from both the IBSR and BuffaloXiph datasets
in Fig. 5. Even a cursory examination shows us that all the three methods differ
markedly in the kind of segmentations they obtain. However, it is hard to say
which method performs best when compared to the ground truth. As can be
noticed, GBH has a fragmentation problem in both the IBSR and BuffaloXiph
datasets. A large number of small fragments of irregular shapes are visible in
its results. On the other hand, SWA has a clean segmentation in IBSR but
suffers from fragmentation in video sequences. In contrast, 3D-UCM has the most
regular segmentation. This difference is clearer if we look at the whole hierarchy.
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Fig. 5. The level of segmentation hierarchy is chosen as similar to ground truth gran-
ularity. Left: IBSR dataset results. The white, gray and dark gray regions are white
matter, gray matter and cerebro-spinal fluid (CSF) respectively. Right: BuffaloXiph
dataset results.

Fig. 6. The hierarchy of segmentation of all three methods of the same skating frame
in Fig. 5. The leftmost column is the finest segmentation in each hierarchy.
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Figure 6 shows the segmentation from fine to coarse of the same skating frame
as in Fig. 5. Obviously, GBH and SWA generate unnecessary oversegmentations
of the background at finer levels. This is because the first building blocks of the
GBH and SWA hierarchies are single voxels. This makes them sensitive to local
illumination or intensity value changes. 3D-UCM overcomes this problem by
integrating global cues to obtain an initial set of supervoxels which leverage the
strength of a high quality boundary detector. Hence, the basic building blocks
of our hierarchy are these initial supervoxels and not the elementary voxels. It
suffices to say that 3D-UCM generates meaningful and compact supervoxels at
all levels of the hierarchy while GBH and SWA have a fragmentation problem
at the lower levels.

4.3 Quantitative Measures

As both the IBSR and BuffaloXiph datasets are densely labeled, we are able to
compare the supervoxels methods on a variety of measures.

Boundary Quality: The precision-recall curve is the most recommended mea-
sure and has found widespread use in comparing image segmentation methods
[1,31]. This was introduced into the world of video segmentation in [16]. We use
it as the boundary quality measure in our benchmarks. It measures how well
the machine generated segments stick to ground truth boundaries. More impor-
tantly, it shows the tradeoff between the positive predictive value (precision)
and true positive rate (recall). For a set of machine generated boundary pixels

(a) IBSR, boundary (b) IBSR, region (c) IBSR, compactness

(d) BuffaloXiph, boundary (e) BuffaloXiph, region (f) BuffaloXiph, compactness

Fig. 7. Quantitative measures.
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Sb and human labeled boundary pixels Gb, precision and recall are defined as
follows:

precision =
|Sb ∩ Gb|

|Sb| , recall =
|Sb ∩ Gb|

|Gb| . (11)

We show the precision-recall curves on IBSR and BuffaloXiph datasets in Fig. 7a
and d respectively. 3D-UCM performs the best on IBSR and is the second best on
BuffaloXiph. GBH does not perform well on BuffaloXiph while SWA is worse on
IBSR. One limitation of 3D-UCM is that there is an upper limit of its boundary
recall because it is based on supervoxels. GBH and SWA can have arbitrarily
fine segmentations. Thus they can achieve a recall rate arbitrarily close to 1,
though the precision is usually low in these situations.

Region Quality: Measures based on overlaps of regions such as Dice’s coef-
ficients are widely used in evaluating region covering performances of voxel-
wise segmentation approaches [38,39]. We use the 3D segmentation accuracy
introduced in [27,28] to measure the average fraction of ground truth segments
that is correctly covered by the machine generated supervoxels. Given that
Gv = {g1, g2, . . . , gm} are ground truth volumes, Sv = {s1, s2, ..., sn} are super-
voxels generated by the algorithms and V represents the whole volume, the 3D
segmentation accuracy is defined as

3D segmentation accuracy =
1
m

m∑

i=1

∑n
j=1 |sj ∩ gi| × 1(|sj ∩ gi| ≥ |sj ∩ gi|)

|gi|
(12)

where gi = V \ gi. We plot the 3D segmentation accuracy against the num-
ber of supervoxels in Figs. 7b and e. GBH and SWA again perform differently
in IBSR and BuffaloXiph datasets. But 3D-UCM consistently showed the best
performance, especially when the number of supervoxels is low.

Supervoxel Compactness: Compact supervoxels of regular shapes are always
favored because they benefit further higher level tasks in computer vision. The
compactness of superpixels generated by a variety of image segmentation algo-
rithms in 2D was investigated in [40]. It uses a measure inspired by the isoperi-
metric quotient to measure compactness. We use another quantity defined simi-
larly to specific surface area in material science and biology. In essence, specific
surface area and isoperimetric quotient both try to quantify the total surface area
per unit mass or volume. Formally, given that Sv = {s1, s2, . . . , sn} are super-
voxels generated by algorithms, the specific surface area to measure supervoxel
compactness is defined as

specific surface area =
1
n

n∑

i=1

Surface(si)
Volume(si)

(13)
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where Surface() and Volume() count voxels on the surfaces and in the super-
voxels respectively. Lower values of specific surface area imply more compact
supervoxels. The compactness comparisons on IBSR and BuffaloXiph are shown
in Figs. 7c and f. We see that 3D-UCM always generates the most compact super-
voxels except at small supervoxel granularity on IBSR. GBH does not perform
well in this measure because of its fragmentation problem, which is consistent
with our qualitative observations.

Our quantitative measures cover boundary quality, region quality and super-
voxel compactness that are the most important aspects of supervoxel qualities.
3D-UCM always performs the best or the second best in all measures on both
IBSR and BuffaloXiph datasets. In contrast, GBH and SWA fail on some mea-
sures. In conclusion, we have empirically shown that 3D-UCM is a very compet-
itive general purpose supervoxel method on 3D volumetric datasets with respect
to the proposed measures albeit on a few datasets.

5 Discussion

In this paper, we presented the 3D-UCM supervoxel framework, an extension of
the most successful 2D image segmentation technique, gPb-UCM, to 3D. Exper-
imental results show that our approach outperforms the current state of the art
in most benchmark measures on two different types of 3D volumetric datasets.
Furthermore, we deployed a reduced order normalized cuts technique to over-
come a computational bottleneck of the traditional gPb-UCM framework. This
immediately allows our method to scale up to large datasets. When we jointly
consider supervoxel quality and computational efficiency, we believe that 3D-
UCM can become the standard bearer for massive 3D volumetric datasets. We
expect applications of 3D-UCM in a wide range of vision tasks, including video
semantic understanding, video object tracking and labeling in high-resolution
medical imaging, etc.

Since this is a new and fresh approach to 3D segmentation, 3D-UCM still
has several limitations from our perspective. First, because it is a general pur-
pose technique, the parameters of 3D-UCM have not been tuned using super-
vised learning for specific applications. In immediate future work, we plan to
follow the metric learning framework as in [1] to deliver higher performance.
Second, since it is derived from the modular framework of gPb-UCM, 3D-UCM
has numerous alternative algorithmic paths that can be considered. In image
and video segmentation, a better boundary detector was proposed in [18], with
different graph structures deployed in [17,41,42] followed by graph partitioning
alternatives in [43,44]. A careful study of these alternative options may result in
improved versions of 3D-UCM going forward. Finally, 3D-UCM at the moment
does not incorporate prior knowledge for segmentation [45,46]. Prior information
like object shape and optical flow motion cues could greatly improve segmenta-
tion performance. These represent interesting opportunities for future work.
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