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Abstract. Deep convolutional neural networks (CNNs) have been
immensely successful in many high-level computer vision tasks given
large labelled datasets. However, for video semantic object segmenta-
tion, a domain where labels are scarce, effectively exploiting the repre-
sentation power of CNN with limited training data remains a challenge.
Simply borrowing the existing pre-trained CNN image recognition model
for video segmentation task can severely hurt performance. We propose
a semi-supervised approach to adapting CNN image recognition model
trained from labelled image data to the target domain exploiting both
semantic evidence learned from CNN, and the intrinsic structures of
video data. By explicitly modelling and compensating for the domain
shift from the source domain to the target domain, this proposed app-
roach underpins a robust semantic object segmentation method against
the changes in appearance, shape and occlusion in natural videos. We
present extensive experiments on challenging datasets that demonstrate
the superior performance of our approach compared with the state-of-
the-art methods.

1 Introduction

Semantically assigning each pixel in video with a known class label can be chal-
lenging for machines due to several reasons. Firstly, acquiring the prior knowl-
edge about object appearance, shape or position is difficult. Secondly, gaining
pixel-level annotation for training supervised learning algorithms is prohibitively
expensive comparing with image-level labelling. Thirdly, background clutters,
occlusion and object appearance variations introduce visual ambiguities that
in turn induce instability in boundaries and the potential for localised under-
or over-segmentation. Recent years have seen encouraging progress, particularly
in terms of generic object segmentation [1–6], and the success of convolutional
neural networks (CNNs) in image recognition [7–9] also sheds light on semantic
video object segmentation.

Generic object segmentation methods [2,3,5,10–12] largely utilise category
independent region proposal methods [13,14], to capture object-level description
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Fig. 1. Overview of our proposed method.

of the generic object in the scene incorporating motion cues. These approaches
address the challenge of visual ambiguities to some extent, seeking the weak
prior knowledge of what the object may look like and where it might be located.
However, there are generally two major issues with these approaches. Firstly,
the generic detection has very limited capability to determine the presence of an
object. Secondly, such approaches are generally unable to determine and differ-
entiate unique multiple objects, regardless of categories. These two bottlenecks
limit these approaches to segmenting one single object or all foreground objects
regardless classes or identifies.

Deep convolutional neural networks have been proven successful [7–9] in
many high-level computer vision tasks such as image recognition and object
detection. However, stretching this success to the domain of pixel-level classifi-
cation or labelling, i.e., semantic segmentation, is not naturally straightforward.
This is not only owing to the difficulties of collecting pixel-level annotations, but
also due to the nature of large receptive fields of convolutional neural networks.
Furthermore, the aforementioned challenges present in video data demand a
data-driven representation of the video object in order to give a spatio-temporal
coherent segmentation. This motivates us to develop a framework for adapting
image recognition models (e.g., CNN) trained on static images to a video domain
for the demanding task of pixel labelling. This goal is achieved by proposing a
semi-supervised domain adaptation approach to forming a data-driven object
representation which incorporates both the semantic evidence from pre-trained
CNN image recognition model and the constraint imposed by the intrinsic struc-
ture of video data. We exploit the constraint in video data that when the same
object is recurring between video frames, the spatio-temporal coherence implies
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the associated unlabelled data to be the same label. This data-driven object rep-
resentation underpins a robust object segmentation method for weakly labelled
natural videos.

The paper is structured as follows: We firstly review related work in video
object segmentation (Sect. 2). Our method introduced in Sects. 3 and 4 consists
of domain adaptation and segmentation respectively, as shown in Fig. 1. Evalu-
ations and comparisons in Sect. 5 show the benefits of our method. We conclude
this paper with our findings in Sect. 6.

2 Related Work

Video object segmentation has received considerable attention in recent years,
with the majority of research effort categorised into three groups based on the
level of supervisions: (semi-)supervised, unsupervised and weakly supervised
methods.

Methods in the first category normally require an initial annotation of the
first frame, which either perform spatio-temporal grouping [15,16] or propagate
the annotation to drive the segmentation in successive frames [17–20].

Unsupervised methods have been proposed as a consequence of the pro-
hibitive cost of human-in-the-loop operations when processing ever-growing
large-scale video data. Bottom-up approaches [4,21,22] largely utilise spatio-
temporal appearance and motion constraints, while motion segmentation
approaches [23,24] perform long-term motion analysis to cluster pixels or regions
in video data. Giordano et al. [25] extended [4] by introducing ‘perceptual organ-
isation’ to improve segmentation. Taylor et al. [26] inferred object segmentation
through long-term occlusion relations, and introduced a numerical scheme to
perform partition directly on pixel grid. Wang et al. [27] exploited saliency mea-
sure using geodesic distance to build global appearance models. Several methods
[2,3,5,6,11] propose to introduce a top-down notion of object by exploring recur-
ring object-like regions from still images by measuring generic object appearance
(e.g., [13]) to achieve state-of-the-art results. However, due to the limited recog-
nition capability of generic object detection, these methods normally can only
segment foreground objects regardless of semantic label.

The proliferation of user-uploaded videos which are frequently associated
with semantic tags provides a vast resource for computer vision research. These
semantic tags, albeit not spatially or temporally located in the video, suggest
visual concepts appearing in the video. This social trend has led to an increasing
interest in exploring the idea of segmenting video objects with weak supervi-
sion or labels. Hartmann et al. [28] firstly formulated the problem as learning
weakly supervised classifiers for a set of independent spatio-temporal segments.
Tang et al. [29] learned discriminative model by leveraging labelled positive
videos and a large collection of negative examples based on distance matrix. Liu
et al. [30] extended the traditional binary classification problem to multi-class
and proposed nearest-neighbour-based label transfer algorithm which encourages
smoothness between regions that are spatio-temporally adjacent and similar in
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appearance. Zhang et al. [31] utilised pre-trained object detector to generate a
set of detections and then pruned noisy detections and regions by preserving
spatio-temporal constraints.

3 Domain Adaptation

We set out our approach to first semantically discovering possible objects of
interest from video. We then adapt the source domain from image recognition
to the target domain, i.e., pixel or superpixel level labelling. This approach is
built by additionally incorporating constraints obtained from a given similarity
graph defined on unlabelled target instances.

3.1 Object Discovery

Proposal Scoring. Unlike image classification or object detection, semantic
object segmentation requires not only localising objects of interest within an
image, but also assigning class label for pixels belonging to the objects. One
potential challenge of using image classifier to detect objects is that any regions
containing the object or even part of the object, might be “correctly” recognised,
which results in a large search space to accurately localise the object. To narrow
down the search of targeted objects, we adopt category-independent bottom-up
object proposals.

As we are interested in producing segmentations and not just bounding
boxes, we require region proposals. We consider those regions as candidate object
hypotheses. The objectness score associated with each proposal from [13] indi-
cates how likely it is for an image region contain an object of any class. How-
ever, this objectness score does not consider context cues, e.g. motion, object
categories and temporal coherence etc., and reflects only the generic object-like
properties of the region (saliency, apparent separation from background, etc.).
We incorporate motion information as a context cue for video objects. There
has been many previous works on estimating local motion cues and we adopt a
motion boundary based approach as introduced in [4] which roughly produces
a binary map indicating whether each pixel is inside the motion boundary after
compensating camera motion. After acquiring the motion cues, we score each
proposal r by both appearance and context,

sr = A(r) + C(r)

where A(r) indicates region level appearance score computed using [13] and C(r)
represents the contextual score of region r which is defined as:

C(r) = Avg(M t(r)) · Sum(M t(r))

where Avg(M t(r)) and Sum(M t(r)) compute the average and total amount of
motion cues [4] included by proposal r on frame t respectively. Note that appear-
ance, contextual and combined scores are normalised.
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Proposal Classification. On each frame t we have a collection of region
proposals scored by their appearance and contextual information. These region
proposals may contain various objects present in the video. In order to identify
the objects of interest specified by the video level tag, region level classification is
performed. We consider proven classification architectures such as VGG-16 nets
[8] which did exceptionally well in ILSVRC14. VGG-16 net uses 3×3 convolution
interleaved with max pooling and 3 fully-connected layers.

In order to classify each region proposal, we firstly warp the image data in
each region into a form that is compatible with the CNN (VGG-16 net requires
inputs of a fixed 224 × 224 pixel size). Although there are many possible trans-
formations of our arbitrary-shaped regions, we warp all pixels in a bounding
box around it to the required size, regardless its original size or shape. Prior to
warping, we expand the tight bounding box by a certain number of pixels (10 in
our system) around the original box, which was proven effective in the task of
using image classifier for object detection task [32].

After the classification, we collect the confidence of regions with respect to
the specific classes associated with the video and form a set of scored regions,

{Hw1 , . . . ,HwK
}

where
Hwk

= {(r1, sr1 , cr1,wk
), . . . , (rN , srN , crN ,wk

)}
with sri is the original score of proposal ri and cri,wk

is its confidence from
CNN classification with regard to keyword or class wk. Figure 1 shows the posi-
tive detections with confidence higher than a predefined threshold (0.01), where
higher confidence does not necessarily correspond to good proposals. This is
mainly due to the nature of image classification where the image frame is quite
often much larger than the tight bounding box of the object. In the following dis-
cussion we drop the subscript of classes, and formulate our method with regard
to one single class for the sake of clarity, albeit our method works on multiple
classes.

Spatial Average Pooling. After the initial discovery, a large number of region
proposals are positively detected with regard to a class label, which include
overlapping regions on the same objects and spurious detections. We adopt a
simple weighted spatial average pooling strategy to aggregate the region-wise
score, confidence as well as their spatial extent. For each proposal ri, we rescore
it by multiplying its score and classification confidence, which is denoted by
s̃ri = sri · cri . We then generate score map Sri of the size of image frame, which
is composited as the binary map of current region proposal multiplied by its score
s̃ri . We perform an average pooling over the score maps of all the proposals to
compute a confidence map,

Ct =

∑
ri∈Rt Sri∑
ri∈Rt s̃ri

(1)



168 H. Wang et al.

Fig. 2. An illustration of the weighted spatial average pooling strategy.

where
∑

ri∈Rt Sri performs element-wise operation and Rt represents the set of
candidate proposals from frame t.

The resulted confidence map Ct aggregates not only the region-wise score but
also their spatial extent. The key insight is that good proposals coincide with
each other in the spatial domain and their contribution to the final confidence
map are proportional to their region-wise score. An illustration of the weighted
spatial average pooling is shown in Fig. 2.

3.2 Semi-supervised Domain Adaptation

To perform domain adaptation from image recognition to video object segmen-
tation, we define a weighted space-time graph Gd = (Vd, Ed) spanning the whole
video or a shot with each node corresponding to a superpixel, and each edge
connecting two superpixels based on spatial and temporal adjacencies. Temporal
adjacency is coarsely determined based on motion estimates, i.e., two superpix-
els are deemed temporally adjacent if they are connected by at least one motion
vector.

We compute the affinity matrix A of the graph among spatial neighbours as

As
i,j =

exp(−dc(si, sj))
ds(si, sj)

(2)

where the functions ds(si, sj) and dc(si, sj) computes the spatial and color dis-
tances between spatially neighbouring superpixels si and sj respectively:

dc(si, sj) =
||ci − cj ||2

2 < ||ci − cj ||2 >

where ||ci − cj ||2 is the squared Euclidean distance between two adjacent super-
pixels in RGB colour space, and < · > computes the average over all pairs i
and j.

For affinities among temporal neighbours st−1
i and stj , we consider both the

temporal and colour distances between st−1
i and stj ,

At
i,j =

exp(−dc(si, sj))
dt(si, sj)
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where

dt(si, sj) =
1

mi · ρi,j
, (3)

mi = exp(−wc · πi),

ρi,j =
|s̃t−1

i ∩ stj |
|s̃t−1

i | .

Specifically, we define the temporal distance dt(si, sj) by combining two factors,
i.e., the temporal overlapping ratio ρi,j and motion accuracy mi. πi denotes
the motion coherence, and wc = 2.0 is a parameter. The larger the temporal
overlapping ratio is between two temporally related superpixels, the closer they
are in temporal domain, subject to the accuracy of motion estimation. The
temporal overlapping ratio ρi,j is defined between the warped version of st−1

i

following motion vectors and stj , where s̃t−1
i is the warped region of st−1

i by
optical flow to frame t, and |·| is the cardinality of a superpixel. The reliability of
motion estimation inside st−1

i is measured by the motion coherence. A superpixel,
i.e., a small portion of a moving object, normally exhibits coherent motions. We
correlate the reliability of motion estimation of a superpixel with its local motion
coherence. We compute quantised optical flow histograms hi for superpixel st−1

i ,
and compute πi as the information entropy of hi. Smaller πi indicates higher
levels of motion coherence, i.e., higher motion reliability of motion estimation.
An example of computed motion reliability map is shown in Fig. 3.

Fig. 3. Motion reliability map (right) computed given the optical flow between two
consecutive frames (left and middle).

We follow a similar formulation with [33] to minimise an energy function
E(X) with respect to all superpixels confidence X (X ∈ [−1, 1]):

E(X) =
N∑

i,j=1

Aij ||xid
− 1

2
i − xjd

− 1
2

j ||2 + μ

N∑

i=1

||xi − ci||2, (4)

where μ is the regularisation parameter, and X are the desirable confidence of
superpixels which are imposed by noisy confidence C in Eq. (1). We set μ =
0.5. Let the node degree matrix D = diag([d1, . . . , dN ]) be defined as di =
∑N

j=1 Aij , where N = |V|. Denoting S = D−1/2AD−1/2, this energy function
can be minimised iteratively as
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Xt+1 = αSXt + (1 − α)C

until convergence, where α controls the relative amount of the confidence from
its neighbours and its initial confidence. Specifically, the affinity matrix A of Gd

is symmetrically normalised in S, which is necessary for the convergence of the
following iteration. In each iteration, each superpixel adapts itself by receiving
the confidence from its neighbours while preserving its initial confidence. The
confidence is adapted symmetrically since S is symmetric. After convergence,
the confidence of each unlabelled superpixel is adapted to be the class of which
it has received most confidence during the iterations (Fig. 4).

We alternatively solve the optimisation problem as a linear system of equa-
tions which is more efficient. Differentiating E(X) with respect to X we have

∇E(X)|X=X∗ = X∗ − SX∗ + μ(X∗ − C) = 0 (5)

which can be transformed as

(I − (1 − μ

1 + μ
)S)X∗ =

μ

1 + μ
C. (6)

Finally we have
(I − (1 − η)S)X∗ = ηC. (7)

where η = µ
1+µ .

The optimal solution for X can be found using the preconditioned (Incom-
plete Cholesky factorisation) conjugate gradient method with very fast conver-
gence. For consistency, still let C denote the optimal semantic confidence X for
the rest of this paper.

(a) Confidence maps of three consecutive frames

(b) Confidence maps after domain adaptation

Fig. 4. Proposed domain adaptation effectively adapts the noisy confidence map from
image recognition to the video object segmentation domain.
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4 Video Object Segmentation

We formulate video object segmentation as a superpixel-labelling problem of
assigning each superpixel two classes: objects and background (not listed in
the keywords). Similar to Subsect. 3.2 we define a space-time superpixel graph
Gs = (Vs, Es) by connecting frames temporally with optical flow displacement.

We define the energy function that minimises to achieve the optimal labelling:

E(x) =
∑

i∈V
(ψc

i (xi)+λoψ
o
i (xi))+λs

∑

i∈V,j∈Ns
i

ψs
i,j(xi, xj)+λt

∑

i∈V,j∈Nt
i

ψt
i,j(xi, xj)

(8)
where Ns

i and N t
i are the sets of superpixels adjacent to superpixel si spa-

tially and temporally in the graph respectively; λo, λs and λt are parameters;
ψc
i (xi) indicates the color based unary potential and ψo

i (xi) is the unary poten-
tial of semantic object confidence which measures how likely the superpixel to
be labelled by xi given the semantic confidence map; ψs

i,j(xi, xj) and ψt
i,j(xi, xj)

are spatial pairwise potential and temporal pairwise potential respectively. We
set parameters λo = 10, λs = 1000 and λt = 2000. The definitions of these unary
and pairwise terms are explained in detail next.

4.1 Unary Potentials

We define unary terms to measure how likely a superpixel is to be label as
background or the object of interest according to both the appearance model
and semantic object confidence map.

Colour unary potential is defined similar to [34], which evaluates the fit of a
colour distribution (of a label) to the colour of a superpixel,

ψc
i (xi) = −logU c

i (xi)

where U c
i (·) is the colour likelihood from colour model.

We train two Gaussian Mixture Models (GMMs) over the RGB values of
superpixels, for objects and background respectively. These GMMs are estimated
by sampling the superpixel colours according to the semantic confidence map.

Semantic unary potential is defined to evaluate how likely the superpixel to
be labelled by xi given the semantic confidence map cti

ψo
i (xi) = −logUo

i (xi)

where Uo
i (·) is the semantic likelihood, i.e., for an object labelling Uo

i = cti and
1 − cti otherwise.

4.2 Pairwise Potentials

We define the pairwise potentials to encourage both spatial and temporal
smoothness of labelling while preserving discontinuity in the data. These terms
are defined similar to the affinity matrix in Subsect. 3.2.
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Superpixels in the same frame are spatially connected if they are adjacent.
The spatial pairwise potential ψs

i,j(xi, xj) penalises different labels assigned to
spatially adjacent superpixels:

ψs
i,j(xi, xj) =

[xi �= xj ]exp(−dc(si, sj))
ds(si, sj)

where [·] denotes the indicator function.
The temporal pairwise potential is defined over edges where superpixels are

temporally connected on consecutive frames. Superpixels st−1
i and stj are deemed

as temporally connected if there is at least one pixel of st−1
i which is propagated

to stj following the optical flow motion vectors,

ψt
i,j(xi, xj) =

[xi �= xj ]exp(−dc(si, sj))
dt(si, sj)

.

Taking advantage of the similar definitions in computing affinity matrix in Sub-
sect. 3.2, the pairwise potentials can be efficiently computed by reusing the affin-
ity in Eqs. (2) and (3).

4.3 Optimisation

We adopt alpha expansion [35] to minimise Eq. (8) and the resulting label assign-
ment gives the semantic object segmentation of the video.

4.4 Implementation

We implement our method using MATLAB and C/C++, with Caffe [36] imple-
mentation of VGG-16 net [8]. We reuse the superpixels returned from [13] which
is produced by [37]. Large displacement optical flow algorithm [38] is adopted
to cope with strong motion in natural videos. 5 components per GMM in RGB
colour space are learned to model the colour distribution following [34]. Our
domain adaptation method performs efficient learning on superpixel graph with
an unoptimised MATLAB/C++ implementation, which takes around 30 s over
a video shot of 100 frames. The average time on segmenting one preprocessed
frame is about 3 s on a commodity desktop with a Quad-Core 4.0 GHz processor,
16 GB of RAM, and GTX 980 GPU.

We set parameters by optimising segmentation against ground truth over a
sampled set of 5 videos from publicly available Freiburg-Berkeley Motion Seg-
mentation Dataset dataset [39] which proved to be a versatile setting for a wide
variety of videos. These parameters are fixed for the evaluation.

5 Evaluation

We evaluate our method on a large scale video dataset YouTube-Objects [40]
and SegTrack [18]. YouTube-Objects consists of videos from 10 object classes
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with pixel-level ground truth for every 10 frames of 126 videos provided by [41].
These videos are very challenging and completely unconstrained, with objects of
similar colour to the background, fast motion, non-rigid deformations, and fast
camera motion. SegTrack consists of 5 videos with single or interacting objects
presented in each video.

5.1 YouTube-Objects Dataset

We measure the segmentation performance using the standard intersection-over-
union (IoU) overlap as accuracy metric. We compare our approach with 6 state-
of-the-art automatic approaches on this dataset, including two motion driven
segmentation [1,4], three weakly supervised approaches [29,31,40], and state-of-
the-art object-proposal based approach [2]. Among the compared approaches,
[1,2] reported their results by fitting a bounding box to the largest connected
segment and overlapping with the ground-truth bounding box; the result of [2]
on this dataset is originally reported by [4] by testing on 50 videos (5/class).
The performance of [4] measured with respect to segmentation ground-truth is
reported by [31]. Zhang et al. [31] reported results in more than 5500 frames
sampled in the dataset based on the segmentation ground-truth. Wang et al.
[27] reported the average results on 12 randomly sampled videos in terms of a
different metric, i.e., per-frame pixel errors across all categories, and thus not
listed here for comparison.

As shown in Table 1 and Fig. 5, our method outperforms the competing meth-
ods in 7 out of 10 classes, with gains up to 6.3%/6.6% in category/video aver-
age accuracy over the best competing method [31]. This is remarkable consid-
ering that [31] employed strongly-supervised deformable part models (DPM)

Table 1. Intersection-over-union overlap accuracies on YouTube-Objects dataset

Brox
[1]

Lee
[2]

Prest
[40]

Papazoglou
[4]

Tang
[29]

Zhang
[31]

Baseline Ours

Plane 0.539 NA 0.517 0.674 0.178 0.758 0.693 0.757

Bird 0.196 NA 0.175 0.625 0.198 0.608 0.590 0.658

Boat 0.382 NA 0.344 0.378 0.225 0.437 0.564 0.656

Car 0.378 NA 0.347 0.670 0.383 0.711 0.594 0.650

Cat 0.322 NA 0.223 0.435 0.236 0.465 0.455 0.514

Cow 0.218 NA 0.179 0.327 0.268 0.546 0.647 0.714

Dog 0.270 NA 0.135 0.489 0.237 0.555 0.495 0.570

Horse 0.347 NA 0.267 0.313 0.140 0.549 0.486 0.567

Mbike 0.454 NA 0.412 0.331 0.125 0.424 0.480 0.560

Train 0.375 NA 0.250 0.434 0.404 0.358 0.353 0.392

Cls. Avg 0.348 0.28 0.285 0.468 0.239 0.541 0.536 0.604

Vid. Avg NA NA NA 0.432 0.228 0.526 0.523 0.592
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as object detector while our approach only leverages image recognition model
which lacks the capability of localising objects. [31] outperforms our method on
Plane and Car, otherwise exhibiting varying performance across the categories
— higher accuracy on more rigid objects but lower accuracy on highly flexible
and deformable objects such as Cat and Dog. We owe it to that, though based
on object detection, [31] prunes noisy detections and regions by enforcing spatio-
temporal constraints, rather than learning an adapted data-driven representa-
tion in our approach. It is also worth remarking on the improvement in classes,
e.g., Cow, where the existing methods normally fail or underperform due to the
heavy reliance on motion information. The main challenge of the Cow videos
is that cows very frequently stand still or move with mild motion, which the
existing approaches might fail to capture whereas our proposed method excels
by leveraging the recognition and representation power of deep convolutional
neural network, as well as the semi-supervised domain adaptation.

(a) Aeroplane (b) Bird (c) Boat (d) Car (e) Cat

(f) Cow (g) Dog (h) Horse (i) Motorbike (j) Train

Fig. 5. Representative successful results by our approach on YouTube-Objects dataset.
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Interestingly, another weakly supervised method [29] slightly outperforms our
method on Train although all methods do not perform very well on this category
due to the slow motion and missed detections on partial views of trains. This is
probably owing to that [29] uses a large number of similar training videos which
may capture objects in rare view. Otherwise, our method doubles or triples the
accuracy of [29]. Motion driven method [4] can better distinguish rigid moving
foreground objects on videos exhibiting relatively clean backgrounds, such as
Plane and Car.

As ablation study, we evaluate a baseline scheme by removing the pro-
posed domain adaptation algorithm (Sect. 3.2) from the full system. As shown
in Table 1, the proposed semi-supervised domain adaptation is able to learn to
successfully adapt to the target with a gain of 6.8%/6.9% in category/video
average accuracies, comparing with the baseline scheme using only the seman-
tic confidence by merging initially discovered region proposals (Sect. 3.1) for
segmentation (with accuracies 0.536/0.523). This adaptation from the source
domain of image recognition to the target domain of video semantic segmen-
tation effectively compensates for the paradigm shift which is the key of our
proposed method to outperform the state-of-the-art despite the use of weakly
supervised image classifier.

5.2 SegTrack Dataset

We evaluate on SegTrack dataset to focus our comparison with the state-of-the-
art semantic object segmentation algorithm [31] driven by object detector. We
also compare with co-segmentation method [42] and the representative Figure-
Ground segmentation algorithms [1–4,27,31] as baselines. To avoid confusion
of segmentation results, all the compared methods only consider the primary
object.

As shown in Table 2, our method outperforms the semantic segmentation [31]
on birdfall and monkeydog videos, motion driven method [4] on four out of five
videos, proposal ranking method [2] on four videos, proposal merging method
[3] and saliency driven method [27] on two videos respectively. Clustering point
tracks based method [1] results in highest error among all the methods. Co-
segmentation method [42] reported the state-of-the-art results on three out of

Table 2. Quantitative segmentation results on SegTrack. Segmentation error as mea-
sured by the average number of incorrect pixels per frame.

Video (No. frames) Ours [1] [4] [3] [2] [42] [31] [27]

birdfall (30) 170 468 217 155 288 152 339 209

cheetah (29) 826 1968 890 633 905 NA 803 796

girl (21) 1647 7595 3859 1488 1785 1053 1459 1040

monkeydog (71) 304 1434 284 472 521 NA 365 562

parachute (51) 363 1113 855 220 201 189 196 207
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Fig. 6. Qualitative results of our method on SegTrack dataset.

five videos from SegTrack, albeit it can only segment single object as opposed
to our method which can deal with objects of multiple semantic categories.
Overall, our performance is about on par with the state-of-the-art semantic
object segmentation method [31]. Qualitative segmentation of our approach is
shown in Fig. 6.

6 Conclusion

We have proposed a semi-supervised framework to adapt CNN classifiers from
image recognition domain to the target domain of semantic video object
segmentation. This framework combines the recognition and representation
power of CNN with the intrinsic structure of unlabelled data in the target
domain to improve inference performance, imposing spatio-temporal smooth-
ness constraints on the semantic confidence over the unlabelled video data. This
proposed domain adaptation framework enables learning a data-driven represen-
tation of video objects. We demonstrated that this representation underpins a
robust semantic video object segmentation method which outperforms existing
methods on challenging datasets. As a future work, it would be interesting to
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incorporate representations learned from higher layers of CNN into the domain
adaptation, which might potentially improve adaptation by propagating and
combining higher level context.
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