Chapter 4
Two Degree-of-Freedom Oscillator
Coupled to a Non-ideal Source

In this chapter the two degree-of-freedom structure excited with a non-ideal source is
considered. The model corresponds to real energy harvester system (Felix et al. 2009),
centrifugal vibration machine (Dantas and Balthazar 2006), tuned liquid column
damper mounted on a structural frame (Felix et al. 2005a), portal frame (Felix et al.
2013) and portal frame foundation type shear building (Felix et al. 2005b), rotor-
structure system which moves in-plane (Quinn 1997), etc. These systems are usually
modelled as two mass systems with visco-elastic connection and excited with non-
ideal motor. The main attention is given to resonance capture (Balthazar et al. 2001)
in the presence of a 1:1 (Zniber and Quinn 2006) and 1:2 (Tsuchida et al. 2005)
frequency ratio. However, we suggest to model the aforementioned real systems as
an one-mass system with two degrees-of-freedom in two orthogonal directions as the
mass moves in-plane. Such model is given in the paper of Goncalves et al. (2016) and
treated numerically and experimentally. The model consists of a concentrated mass
which is supported by a set of linear springs and dampers positioned in two orthogonal
direction, such that the mass can move horizontally and vertically in a plane. A non-
ideal motor is attached to the mass such that the phenomena of resonance capture
can occur. In the paper of Goncalves et al. (2016) it is concluded that the resonance
can occur in both directions, in only one direction or can not occur. Limits between
these cases are determined in Cveticanin et al. (2017). The system is described with
the set of three coupled second order differential equations: two of them describing
the vibrations of the structure in two directions and one, which gives the motion of
the motor. An analytical procedure for solving the equations is developed and the
constraints for resonance are given.

The chapter is divided into six sections. In Sect. 4.2, the motion of the system which
contains a mass supported in two directions and excited with non-ideal energy source
is modeled. Mathematical model of the system is solved analytically in Sect.4.3.
The steady-state solution and the stability conditions for solutions are determined.
In Sect.4.4, two special cases are considered: first, the case when the frequencies
of the system in x and y directions are equal and then, the case when the frequency
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in y direction is two times higher than that in x direction. The resonant motions
are investigated. The influence of vertical and horizontal stiffness on the regions of
double resonance motion are considered. The obtained results are compared with
numerical results in Sect.4.5. The chapter ends with conclusions.

4.1 Model of the System

The system considered in this paper consists of a mass M supported by springs and
viscous dampers in two orthogonal directions (x and y). The spring constants are
defined with k, and k,, while the damping coefficients are ¢, and c,. The subscripts
x and y indicate the displacement directions. To the mass M a motor is attached with
unbalanced mass m at the distance d from the center of the motor shaft (Fig.4.1).

The motor shaft has moment of inertia defined by J. The motor - structure system
shown in Fig.4.1 has three degrees-of-freedom defined with three generalized coor-
dinates x, y and ¢. where the first two define the motion in two orthogonal directions
and the third is the angle position of the unbalance. Equations of motion of such
system are in general
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where T and U are the kinetic and potential energy of the system, ® is the dissipative
function and Qy, Q, and Q,, are generalized forces.

Motion of the system is excited with the motor torque M which depends on the
angular velocity of the rotor ¢. For the DC motor the motor torque model is assumed
to be a linear function of ¢, i.e.,

M(@) = M, (1 = i) , 4.2)
Qo

where M and €2 are constant values. Then the generalized force due to motor
torque is

0, = M($). (4.3)

For the model given in Fig. 4.1 the kinetic energy is
T oo 1 0
T = SMGE 437 + SJE + 3m(E +33), (4.4)
where the position of unbalance mass m is

Xm =X+dcosp, y,=y+dsinp. 4.5)

Substituting the time derivative of (4.5) into (4.4), we have

1 1
T =M+ m) (x> + y%) + ;U + md*)* + mdg(y cos p — i sing).  (4.6)
If the gravity potential energy is neglected, the potential energy of the system is

U= 1 X2+ lk y2. 4.7
2 277

The dissipative function of the system is

1 1
&= —c k2 + —cy)')z.

5 5 (4.8)

Substituting (4.3)—(4.6) into (4.1), we obtain the cart’s equations in x and y direction

(M + m)X + kex + ¢ = md($* cos o + @sin @), (4.9)
(M +m)§ + kyy + ¢,y = md(¢? sinp — @ cos ), (4.10)
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and the equation of motion of the unbalanced mass
(J + md*)$ = md (¥ sin p — ¥ cos ) + M($). 4.11)

Using the parameter values

kx 5 md
Wy = , Wy = , = ,
* M+m Y M +m " J + md?
Cy Cy md 1
= . = , = N = 3 412
G M+ m G M+m . M +m © J + md? ( )

Equations (4.9)—(4.11) are rewritten as

¥ wix 4 Gk = p(p? cos g + Psin @),
F4wiy+ ¢y = p@sing — Geos ),
@ =n(Xsing — ycosp) +eM(p). (4.13)

It has to be mention that the parameter ¢ is a small one, i.e., ¢ << 1 and the input
motor torque is small. Our aim is to solve the Eq. (4.13).

4.2 Analytical Solution

Let us give the equations of motion (4.13) in terms of uncoupled accelerations

_ HM@sing | unsinQe) (pg sing — Fy)
pn =1 2(un —1)
L m cos®  — 1) (ugp* cos p — Fy)
pn =1 ’

(4.14)

M@ cosp | pm sin(2¢0) (u? cos o — Fy)
p—1 2(pn — 1)
L sin®  — 1) (ug? sinp — F))
pn — 1 ’

(4.15)

_eM@) | neos P(u? sin o — Fy)
p—1 pn—1
_ nsing(ug® cos p — Fy) “.16)
pn —1 ’ '
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where
Fy = xwi + (ok, Fy = ywi + (). (4.17)
For the case when the parameters (,, (y, ¢+ and n are small, i.e.,

G =G, Gy =&Cy1,  p=eu,
n=en, (4.18)

where ¢ << 1 is a small parameter, Eq. (4.13) transform into the form

Epim = DF = = M(@) sing
2 i sin(2g) (ep11$? sin ¢ — ywy — £(,13)
+ 2
+ (% iy cos?  — 1) (ep1* cos @ — xwi —eCyx), (4.19)

ey sin(2) (4 cos  — xw? — (1)
2
+ (€ sin® @ — 1) (epi @ sin g — yw? — (1), (4.20)

Em — Dy = 2 M($) cos ¢ +

@ mm — D@ = —eM(§) + em cos p(ep @’ singp — yw) — (1)
— ey sin (ep * cos p — xw? — (1 X). 4.21)

Eliminating the terms with the small parameter ¢ of higher order than one, i.e., O %),
we have the following simplified equations

X+ wix = smgbz cos ¢ — e(y1 X, (4.22)
¥4+ wiy = em@’sing — ey, (4.23)
@ =eM(P) +em (ywi cos p — xwi sin ). (4.24)

Using the notation
Xp=x, =X, y1=y, n=y, Q=9 (4.25)

the Eqgs. (4.22)—(4.24) are rewritten in the following system of first order differential
equations

X1 = X2,
)‘52 = —W)%xl + E'LL]QZ COS  — 5<x]x25
1=,
)‘/2 = —w)zyl + E,LL]QZ Sin @ — EC)'lyZv
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o =Q,
Q= M(Q)+ en (ylwi cos p — xlwi sin ), (4.26)

where according to (4.2) the motor torque is

e M(Q2) =M, (1 — E) , 4.27)
Q

where M, and €2y motor constants. Equation (4.26) represent a system of coupled
differential equations whose solution is not easy to be obtained. For simplification,
let us introduce the new variables

x1 = ajcos(p + 1),

Xy = —aQ2sin(p + 1),

Y1 = az cos(p + ),

V2 = —ar 2 sin(p + ), (4.28)

where 2, aj, az, 11 and ), are time dependent functions. Substituting (4.28) into
(4.26) and using the relation ¢y = 2 we obtain

0 = a cos(ep + 1) — arthy sin(p + 1),
— a1 Qsin(p + 1) — a1y cos(p + ¥y)
— a1 2sin(p + Y1) = —wia; cos(p + 1) + a1Q* cos(p + )
+ep1Q% cos p + a1 Qsin(p + Y1),
0 = dy cos(ip + 1) — azthy sin(ep + 1),
—a2sin(p + 1) — arS2sin(y + 1)
—ay Qs cos(p + 1) = —wiar cos(p + 1) + a2’ cos(y + 1)
+epy Q% sin © + eCy1ax2sin(p + 1),
Q = enfas cos(p + wg)wf, cos i — aj cos(p + 1/&)%% sin ¢]
+eM(RQ), (4.29)

and after some modification

2

o Q .2 W)%_Q .
a +611§ sin“(p + ) = Tal sin 2(p + 1)

— e 2 cos psin(p + 1)
—eCyay sin (¢ + 1),

1/}+IQ'2( + 1) wi - @ 2o+ 1)
ay 1 ZQS 2] 1 Q ap Cos™(p 1

— 1182 cos @ cos(p + 1)
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1 i
- 5€<x1a1 sin 2(p + 1),

. Q .2 wy - 92 in?2
a + o sin (p+1n) = 5 dzsin (o + 1)
— e 2 sin @ sin(p + U»)

— eCy1as sin® (¢ + 1),

. Q B w)z, —Q? 5
a Yo — ESIH 20+ ) = g @ cos™ (¢ + 1n)

— g1 S2sin @ cos(p + 1)
1 .
- Eag}laz sin 2(p + 1),

Q= enylaz cos(p + wz)wi cos ¢

—aj cos(p + ¢1)wf sin ]
+eM(R2).
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(4.30)

The Eq. (4.30) are the first order differential equations which correspond to second
order equations (4.22)—(4.24). The system of equations (4.30) has to be solved for
Q, ay, az, Y and ¥,. As the Eq. (4.30) are coupled, to find the solution is not an easy
task. It is at this moment where the simplification is done. Averaging the equations

over the period 27 of the function ¢, we obtain the averaged equations

) Q 1 , 1
ai +611E = —55#19511”/’1 - 55@101,
oW Q? 1
aPy = g G~ EE/MQCOS Y1,
. Q 1 1
a + Ps = —ESMQCOS Py — EECylaL
. wi — Q2 1 .
ayy = —H5g % + §€M195m Yo,

. 1 .
Q=ecM(Q)+ & (azu{% cos i + ajw; sin ) .

4.2.1 Steady-State Motion

431

It is of interest to analyze the steady-state motion when a; = 0, a, = 0 and Q=0

and the corresponding Eq. (4.31) are

0 = puQgsinyg + Cags,

2 2
wx_QS

Qg

0= ais — (1825 cos Yig,

(4.32)
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0 = puS2s cos s + (yazs,
w? — Q3
0= ’Q—Saz + (1825 sin o, (4.33)
s

1
0=eM(Q)+ 37 (a2sw; cos s + arswy singys) . (4.34)

Eliminating ;5 in Eq. (4.32) the steady-state amplitude a;g as the function of €2 is

obtained
MQS

Jeor+ 5y

Using the same procedure and eliminating 1,5 in Eq. (4.33) the steady-state ampli-
tude a,y as the function of 2 yields

(4.35)

ays =

.UQS
ars =
V() + ( S)2

Dividing equations in (4.32) and (4.33) the phase angles in the both directions of
motion are obtained

(4.36)

CXQS wz' - Q%‘

. =2 5 4.37
Q% —w% CyQS ( )

tan s =

Comparing the amplitudes a5 and a,s we obtain the condition for which the motion
is out of resonance and also when the resonance occurs in one or both directions
of motion. For w, # Qg and w, # Qg the motion is out of resonance regime. The
amplitude of vibration in x and y direction depends on the damping properties of
the system and on the difference between the angular velocity of the motor and the
frequency of the system w, and wy, respectively. However, it is of interest to analyze
the motion when resonances appear.
Substituting (4.35)—(4.37) into (4.34), it is

1S gnw? Qoenw?
0= M(Q)+ GopSEs T, IR SITLY (4.38)

2@+ (EEy 2@+ )y

For the torque property (4.27) the relation (4.38) transforms into

Q Q3 w2 w?
EMO(] - _S) = _77/1' B) C wx + C) Y B .
Qo Q5)?

2| (G292 + (W - Q9 (R + (W2 —
(4.39)
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The Eq. (4.39) gives the relation between the angular velocity 2 and parameter €.
Let us rewrite (4.39) as

Qg
LS Gew? . G :
2eMy | (2P + W] — B () + (W] — 23
(4.40)

Qo = f(2) =

Calculating the first derivative d 2y /d Q25 and equating with zero, we obtain the values
of Qg which give the extreme values of 2, i.e., Q20 min (2s5) and ¢ max (2s).

4.2.2 Stability Analysis

Using the results of steady-state motion (4.32)—(4.34) the perturbed amplitudes,
phases and angular velocities are

ay=ais+&, a=as+&,
Y1 = Y15+ 01, U =g + 02,
Q=Q+ . (4.41)

where &, &, 61, 6, and w are small perturbation functions. Substituting (4.41) into
(4.31) and after linearization the system of coupled first order differential equations
follows

26195 + ars = —(Gears + 2uQs sin P s)w
— G Q2s€1 — (U cos s,
2a1501Q2s = —2Qs(ars — pcosPis)w
+ (Wi — Q)& + (U sin )0,
26,Q5 + ars® = —((yaas + 21825 08 Pog)w
— ((Q8)& + (R sin Pas) 03,
2a250,Q2s = —2R5(azs — epu 8in Yog)w
+ (W — 29 + (4 cos as) 05,
2e My
o
— (nazsw; sinhs)0 + (Nw; cos 1hr5) &
+ (w? sin15)&; + (najsw? cos Pis)0). (4.42)

200 = w
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Assuming the solution of (4.42) in the form

& = Arexp(At), & = Arexp(\r),
0, = Asexp(At), 0, = Agexp(Ar),
w = Asexp(\1), (4.43)

and substituting into (4.42), the system of linear algebraic equations is obtained

0= —(2AQs + Q) A1 — (U5 cos Pi5) As
—(aisA + Cars + 2825 sin 1y 5) As

0= (w2 — QA + (uQ3 sin s — 2a157\Qs) A3
—2Qg(ars — pcosPis)As,

0 = —(2QsA + £¢y125) Ag + (€25 sin ¢hs) As
— (azsA + (yaos + 21825 cos Pns) As,

0= (wi — Qé)Az + (uQ% COS Png — 2a5A2s) Ay
—2Qg(azs — psinng) As

0 = (qw?sinth1s)Aj + (w3 cos 1) A,
+ (nayw; cos 1h1s) Az — (naxw; sinthys) Ay

2e M,

0

—Q2A+

)As. (4.44)

The system has the nontrivial solution if the determinant is zero. The determinant of
the system is a fifth order algebraic equation. Solving the equation and applying the
Routh-Hurwitz criteria, the stability of the solutions is determined.

4.3 Special Cases

Two special cases are considered: one, when the resonance frequencies in both
orthogonal directions are equal, and the second, when the resonance frequency in
one direction is defined by half of the resonance frequency in the other direction.

4.3.1 Resonance Frequencies in Orthogonal Directions
Are Equal

For the special case when the frequencies in both direction are equal, i.e., w, = wy =
w, the steady state amplitudes of vibration are
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ps2s pS2s
ais = T o ars = T Qg
C2+( Qgs)Z C2+(WQ€5)2

while the corresponding phases are

Q w? — Q2
tan g = g"—sz tan ¢ns = —3
Qf —w Gy
For the resonant case when
QS =W — A,

and the detuning function is A = e, the equations transform into

/,LQS ,UQS
s = e, A5 = e,
V(G +4(eo) /GG +4(e0)?
Ce 2e0
tan == tantny = —,
Pis oo Pas G
ie.,
pS2s
ais = ,
V4w — Qg)?
pS2s

ars = s
G+ 4w — Q)

while the phase angles in the both directions of motion are

G 2(w —Qy)

tan g = 20—y tan s = R
y

Substituting (4.46)—(4.48) into (4.34) it is

1
EM(Q) = =

Cy n Ce
Cf +4(0)?  (C+4o0)? |’

i.e.,
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(4.45)

(4.46)

(4.47)

(4.48)

(4.49)



132 4 Two Degree-of-Freedom Oscillator Coupled ...

1
eM(Qs) = — 50y

Q <x
[ § 4w — Q)2 T aw- 93)2} ' (30

The influence of the detuning parameter on the motor torque is evident. For the
torque property (4.2) the relation (4.50) transforms into

M, |1 Q) _ 1 Q3
5‘ _— — ——— —
0 % 277M S

Gy «
|:C§ + 4w — Qs)? " G+4w-— 95)2] - @

If the damping properties in both direction are equal, i.e., for (; = (, = (, the
resonance occurs in both directions and the amplitude in both directions are the same
pS2g P2

= = as. (4.52)
\/412 + 4(e0)? \/gf + 4w — Q)2

ais = dxs =

For this assumption the angular velocity as the function of frequency €2 is obtained

as
Qg npw ¢
eMp{]l —— ) =— . 4.53
°( m) T RY: (453)

In Fig.4.2 according to (4.53) the evolution of the angular velocity is plotted.
The parameter values are: M = 0.064, m = 0.0021, J = 1077, d = 0.005 and

(a) (b)
2.5 . 1.04
[ 1.03F
2.0:
[ 1LO2f ==
1.5}
3 3 Lot
g | <
1.0f 1.00¢
[ 0.99f
0.5-
[ 0.98}
polisa i ey Syl ana i il i
80 05 o 15 20 s 090810 T2 T4 16 18 20
Qyfw Dyfw

Fig. 4.2 Angular velocity as the function of the parameter o: a resonant case, b extrem angular
velocities
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My = 0.005, the damping coefficient is {; = 0.006w where w = 307. The motor

is accelerated from rest to a fixed velocity by changing the parameter €2¢ and the

(Ro/w) — (s /w) curve is shown. As it can be seen only one resonant case appears.
Let us rewrite the relation (4.53) into

3 —1
Npw” G 1
Q=Qg |1+ — 4.54
’ S[ 412+4(w—szs>2eMJ #9
Equating the first time derivative % with 0, the condition for existence of extreme

values for € is obtained

3 8 4
0= 16w — Qg)* +4¢; [241 - } (= Qg — SIC o)
eMy eMy

1
4 3 3
3 4.55
+ ¢+ npw EM0<1 ( )

Solving the algebraic equation (4.55) for Q25 two real values are obtained for which
the extreme angular velocities exist (see Fig. 4.2b). For the assumed parameter values
the extreme values are:

Qomin 2

( Om“,—s) = (1.03117, 1.0206400) ,
w w P

Qomax 2

(O—m—s) = (1.97570, 1.0000046) . (4.56)
w w 0

From the Fig.4.2b it is obvious that the number of solutions is one, two or three.
Between P and Q three solutions exist. To examine the stability properties of the
solutions the procedure suggested in previous section is applied. It is obvious that
the stability of the solution depends on the torque characteristics M, and €2, charac-
teristics of the system p, 7 and <. In Fig. 4.2 it is shown that two solutions between P
and Q are stable and one is unstable. The stable solutions are shown with the full-line,
while the unstable solution is given with dotted-line.
Based on (4.52) and (4.53) the steady state amplitude is rewritten as

2 EM() QS 2
=—(1—- =) u2. 4.57
ag nw3<l ( ) Hidg ( )

Using (4.53) and (4.57) the amplitude as the function of parameter €2 is plotted in
Fig.4.3a, while in Fig.4.3b the amplitude-frequency diagram (4.57) and the curves
which depend on the motor torque for various values of parameter €2 are shown.
In Fig.4.3b) the curves are obtained for three various values of Q2q: 1. Q¢ min/w =
1.03117, 2. Qp/w = 1.5,3. Qomax/w = 1.97570. motor properties for three values
of angular velocity are presented.
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(a)
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Fig. 4.3 a Amplitude as the function of parameter £2¢; b Amplitude-frequency diagram and curves
dependent on motor torque for: 1. Qomin/w = 1.03117, 2. Qp/w = 1.5,3. Qomax/w = 1.97570

The curves 1 and 3 are boundary ones which satisfy the extreme conditions (4.56).
The intersection of these curves and of the amplitude-frequency diagram gives the
steady-state solutions. For boundary conditions (1) and (3) two steady-state solutions
exist, while inside this interval there are three solutions (see intersection of (2) and
the amplitude-frequency curve). In the regions outside these boundary ones, only
one steady state solution exists.

4.3.2 Resonance Frequency in One Direction Is Half
of the Resonance frequency in Other Direction

If the resonance frequency w, is defined by a half of the resonance frequency in the
y direction, i.e., for wy = witis w, = 2w, = 2w, the two resonance frequencies are
separated and two resonance features occur (Fig.4.4).

For that case we obtain the steady state amplitudes (4.35) and (4.36) as

_ p2g
als = ’
G252 + w2 — 23
QZ
s = i , (4.58)
JGQs7 + (4? — 222
while the steady state phases (4.37) are
Q 4u? — Q2
tan s = —25 pan g = 20— S (4.59)

Qé —wz’ CyQS '
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Fig. 4.4 Frequency as a 4
function of the motor torque
parameter ¢
3 L
S
w2
e |
'I 5
O L i "
0 1 2 3 4

Dy/w

The corresponding angular velocity - frequency relation (4.38) is

221G, p23w?
0=cM(Qs) + y— s
EOF Ca + @~
1 . QS 2
L oL (4.60)
2 ((:Q9)% + (w? — Q)2
i.e.,
Q 2Cy w2
0=cM, (1——5) ?C”‘ e 4.61)
Qo ((yR25)* + (4w — Q)

For numerical calculation the following numerical values are applied: M = 0.064,
m =0.0021, J =107, d = 0.005 and M, = 0.005, damping coefficients (, =
0.012w and ¢y = 0.024w where w = 307.

Due to Fig. 4.4 it is evident that two resonances appear. In Fig.4.5a, b the first and
the second resonances with extreme values are plotted.

The extreme values for the first resonance are

Q min Q
(0—, —S) = (1.02397, 1.01507)
P

w w
Qoma Q2
( 0 ,—S) = (1.06596, 1.00029), (4.62)
w w 0

and for the second

(QOmin &

w w

) = (2.07929, 2.05142),
R
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Fig. 4.5 a First resonance, b Second resonance
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Fig. 4.6 a Amplitudes as functions of the parameter Q2¢; b Amplitude-frequency curves with motor
characteristics for the extremal values of Q2¢: 7 (R0 min/w)p = 1.02397, 2 (R0 max/w) o = 1.06596,
3 (Qomin/w)r = 2.07929, 4 (Qomax/w)s = 2.65594

Q max Q
(0—,—5) — (2.65594, 2.00014). (4.63)
w w S

The second resonant is more significant. In Fig. 4.6a the amplitudes of vibration as
functions of the parameter 2, of the motor torque and in Fig.4.6b the amplitude-
frequency curve with motor characteristics for the extreme values of 2 are plotted.

For the both resonant regimes the Sommerfeld effect occurs. The amplitude solu-
tion between P and Q (Fig.4.7a) and S and R (Fig.4.7b) is unstable and the jump
phenomena occurs. From Fig.4.7 it is evident that there are three steady state solu-
tions in the interval of curves (1) and (2) for the first resonance and in the interval
(3) and (4) for the second resonance. The solutions between P and Q and also R and
S are unstable.
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Fig. 4.7 Amplitude-frequency diagram with motor characteristics for extrem angular velocities
for: a first resonance, b second resonance

4.4 Numerical Simulation

Let us rewrite the equations of motion (4.14)—(4.16) into six first order differential
equations
)'C=)C1, 5)=y1, gb:Q, (464)

_epM(py)sing N (1 sin(2) (pepi sin g — yw? — Cyy1)

pun —1 2(pn — 1)
2 -1 Q2 _ 2
+(w7 cos” ¢ — 1)(p€2” cos p — xwy Cxxl), (4.65)
pn =1
. eM(Q)ucosp  unsine)(uR? cos o — xw? — (,x1)
= +
p—1 2(pn =1
(um sin® ¢ — 1)(u?sin p — yw? — (y1)
| (umsin”y jz P — ywy C;yl’ 4.66)
pn —1
o _ME®  neos (2 sinp — yw? — Cyy1)
pn — 1 pn —1
_nsinp(ue2? cos ¢ — xwf — Gox1). “67)
pn—1

with motor torque function (4.27). Applying the fourth order Runge—Kutta procedure
the equations are solved numerically.
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Fig. 4.8 Amplitude as the function of motor torque parameter 2 for: a speeding up, b slowing
down (analytical solution - full line, numerical solution in x direction - squares, numerical solution
in y direction - circles)

Numerical solution is obtained for w, = wy, = w = 307 and parameter values
M = 0.064, m = 0.0021, J =107, d = 0.005, My = 0.005, ¢ = 0.006w and
plotted in Fig.4.8.

The procedure to obtain the result shown in Fig.4.8a is performed by slowly
increasing the parameter 2y of the DC motor and in Fig.4.8b by slowly decreasing
the parameter €2 applied to the motor. The numerically obtained results are given
with squares in x direction and with circles in y direction, while the analytical solution
with the full line. The numerical solution is compared with analytical one and shows
good agreement.

Let us consider the case when w, = w and w, = 2w and the parameters of the sys-
temare M = 0.064, m = 0.0021, J = 1077, d = 0.005, My = 0.005, ¢, = 0.012w
and ¢, = 0.024w where w = 307. Using the suggested procedure the solution for
slow increase of the parameter €2 is plotted in Fig. 4.9. Two resonances occur: one in
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Fig. 4.9 Amplitude as the function of motor torque parameter €2 for slow increase of 2¢: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles
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Fig. 4.10 Amplitude as the function of motor torque parameter 2 for slow decrease of Q: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles

x direction (Fig.4.9a) and the other in y direction (Fig.4.9b). The same procedure is
applied for obtaining solutions during decreasing of the parameter 2. We obtain the
first resonance in x direction (Fig. 4.10a) and the second in y direction (Fig.4.10b). In
the diagrams the jumps are observed when the system escapes resonance. Numerical
results given with squares in x direction and circles in y direction are compared with
analytical solution shown with full line. The numerical results are in good agreement
with the analytical results.

4.5 Conclusions

In this chapter we considered a discrete parameter spring-mass-damper which moves
in two orthogonal directions which is attached to a non-ideal rotating machine. Based
on the analysis the following is concluded:

1. The system behaves different according to the values of resonance frequencies in
the two orthogonal directions. Depending on the values of these frequencies the
resonance can occur in both directions, only in one direction or can not occur. In
the paper the limits between these cases are determined.

2. For the case when the frequencies of system in x and y direction are equal only
one resonance regime appears. If the damping in both directions are also equal,
the amplitudes of vibration in x and y direction are the same.

3. If the frequency of the system in y direction is two times higher than in x direction
two resonances occur: one, in x direction and other, in y direction.

4. In the mechanical two degrees-of-freedom system with non-ideal excitation the
Sommerfeld effect occurs. There is the jump in amplitude when the resonance
regime is escaped. For the case when the frequency of the system in x and y
directions are equal the Sommerfeld effect appears once time. If the frequency
in y direction is two times higher than that in x direction the jump phenomena
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occurs for two times for two different values of torque parameter. The procedure
for analytical calculation of angular velocities and the corresponding amplitudes
for which the jump occurs is suggested and the values are calculated for certain
numerical data. The analytical procedure predicts the appearance of Sommerfeld
effect for other relations between frequencies in two orthogonal directions, too.

5. Analytically obtained solutions are in good agreement with numerically obtained
ones.

6. The analytical solutions are compared with experimental results given in
Goncalves et al. (2016) and show good agreement.

7. The results published in this paper would be of special interest for engineers and
technicians in prediction of resonances and their elimination.
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