
Chapter 4
Two Degree-of-Freedom Oscillator
Coupled to a Non-ideal Source

In this chapter the two degree-of-freedom structure excited with a non-ideal source is
considered. Themodel corresponds to real energyharvester system (Felix et al. 2009),
centrifugal vibration machine (Dantas and Balthazar 2006), tuned liquid column
damper mounted on a structural frame (Felix et al. 2005a), portal frame (Felix et al.
2013) and portal frame foundation type shear building (Felix et al. 2005b), rotor-
structure system which moves in-plane (Quinn 1997), etc. These systems are usually
modelled as two mass systems with visco-elastic connection and excited with non-
ideal motor. The main attention is given to resonance capture (Balthazar et al. 2001)
in the presence of a 1:1 (Zniber and Quinn 2006) and 1:2 (Tsuchida et al. 2005)
frequency ratio. However, we suggest to model the aforementioned real systems as
an one-mass systemwith two degrees-of-freedom in two orthogonal directions as the
mass moves in-plane. Suchmodel is given in the paper of Goncalves et al. (2016) and
treated numerically and experimentally. The model consists of a concentrated mass
which is supported by a set of linear springs and dampers positioned in twoorthogonal
direction, such that the mass can move horizontally and vertically in a plane. A non-
ideal motor is attached to the mass such that the phenomena of resonance capture
can occur. In the paper of Goncalves et al. (2016) it is concluded that the resonance
can occur in both directions, in only one direction or can not occur. Limits between
these cases are determined in Cveticanin et al. (2017). The system is described with
the set of three coupled second order differential equations: two of them describing
the vibrations of the structure in two directions and one, which gives the motion of
the motor. An analytical procedure for solving the equations is developed and the
constraints for resonance are given.

The chapter is divided into six sections. InSect. 4.2, themotionof the systemwhich
contains amass supported in two directions and excited with non-ideal energy source
is modeled. Mathematical model of the system is solved analytically in Sect. 4.3.
The steady-state solution and the stability conditions for solutions are determined.
In Sect. 4.4, two special cases are considered: first, the case when the frequencies
of the system in x and y directions are equal and then, the case when the frequency
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122 4 Two Degree-of-Freedom Oscillator Coupled …

in y direction is two times higher than that in x direction. The resonant motions
are investigated. The influence of vertical and horizontal stiffness on the regions of
double resonance motion are considered. The obtained results are compared with
numerical results in Sect. 4.5. The chapter ends with conclusions.

4.1 Model of the System

The system considered in this paper consists of a mass M supported by springs and
viscous dampers in two orthogonal directions (x and y). The spring constants are
defined with kx and ky , while the damping coefficients are cx and cy . The subscripts
x and y indicate the displacement directions. To the mass M a motor is attached with
unbalanced mass m at the distance d from the center of the motor shaft (Fig. 4.1).

The motor shaft has moment of inertia defined by J . The motor - structure system
shown in Fig. 4.1 has three degrees-of-freedom defined with three generalized coor-
dinates x , y and ϕ.where the first two define the motion in two orthogonal directions
and the third is the angle position of the unbalance. Equations of motion of such
system are in general

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ ẏ
− ∂T

∂y
+ ∂U

∂y
+ ∂�

∂ ẏ
= Qy,

Fig. 4.1 Model of a
two-degree-of-freedom
oscillator coupled with a
non-ideal unbalanced motor
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d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (4.1)

where T andU are the kinetic and potential energy of the system,� is the dissipative
function and Qx , Qy and Qϕ are generalized forces.

Motion of the system is excited with the motor torque M which depends on the
angular velocity of the rotor ϕ̇. For the DCmotor the motor torque model is assumed
to be a linear function of ϕ̇, i.e.,

M(ϕ̇) = M′

(
1 − ϕ̇

�0

)
, (4.2)

where M0 and �0 are constant values. Then the generalized force due to motor
torque is

Qϕ = M(ϕ̇). (4.3)

For the model given in Fig. 4.1 the kinetic energy is

T = 1

2
M(ẋ2 + ẏ2) + 1

2
J ϕ̇2 + 1

2
m(ẋ22 + ẏ22 ), (4.4)

where the position of unbalance mass m is

xm = x + d cosϕ, ym = y + d sinϕ. (4.5)

Substituting the time derivative of (4.5) into (4.4), we have

T = 1

2
(M + m)(ẋ2 + ẏ2) + 1

2
(J + md2)ϕ̇2 + mdϕ̇(ẏ cosϕ − ẋ sinϕ). (4.6)

If the gravity potential energy is neglected, the potential energy of the system is

U = 1

2
kx x

2 + 1

2
ky y

2. (4.7)

The dissipative function of the system is

� = 1

2
cx ẋ

2 + 1

2
cy ẏ

2. (4.8)

Substituting (4.3)–(4.6) into (4.1), we obtain the cart’s equations in x and y direction

(M + m)ẍ + kx x + cx ẋ = md(ϕ̇2 cosϕ + ϕ̈ sinϕ), (4.9)

(M + m)ÿ + ky y + cy ẏ = md(ϕ̇2 sinϕ − ϕ̈ cosϕ), (4.10)
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and the equation of motion of the unbalanced mass

(J + md2)ϕ̈ = md(ẍ sinϕ − ÿ cosϕ) + M(ϕ̇). (4.11)

Using the parameter values

ωx =
√

kx
M + m

, ωy =
√

ky
M + m

, η = md

J + md2
,

ζx = cx
M + m

, ζy = cy
M + m

, μ = md

M + m
, ε = 1

J + md2
, (4.12)

Equations (4.9)–(4.11) are rewritten as

ẍ + ω2
x x + ζx ẋ = μ(ϕ̇2 cosϕ + ϕ̈ sinϕ),

ÿ + ω2
y y + ζy ẏ = μ(ϕ̇2 sinϕ − ϕ̈ cosϕ),

ϕ̈ = η(ẍ sinϕ − ÿ cosϕ) + εM(ϕ̇). (4.13)

It has to be mention that the parameter ε is a small one, i.e., ε << 1 and the input
motor torque is small. Our aim is to solve the Eq. (4.13).

4.2 Analytical Solution

Let us give the equations of motion (4.13) in terms of uncoupled accelerations

ẍ = −ε
μM(ϕ̇) sinϕ

μη − 1
+ μη sin(2ϕ)(μϕ̇2 sinϕ − Fy)

2(μη − 1)

+ (μη cos2 ϕ − 1)(μϕ̇2 cosϕ − Fx )

μη − 1
, (4.14)

ÿ = ε
μM(ϕ̇) cosϕ

μη − 1
+ μη sin(2ϕ)(μϕ̇2 cosϕ − Fx )

2(μη − 1)

+ (μη sin2 ϕ − 1)(μϕ̇2 sinϕ − Fy)

μη − 1
, (4.15)

ϕ̈ = −εM(ϕ̇)

μη − 1
+ η cosϕ(μϕ̇2 sinϕ − Fy)

μη − 1

−η sinϕ(μϕ̇2 cosϕ − Fx )

μη − 1
, (4.16)
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where

Fx = xω2
x + ζx ẋ, Fy = yω2

y + ζy ẏ. (4.17)

For the case when the parameters ζx , ζy,μ and η are small, i.e.,

ζx = εζx1, ζy = εζy1, μ = εμ1,

η = εη1, (4.18)

where ε << 1 is a small parameter, Eq. (4.13) transform into the form

(ε2μ1η1 − 1)ẍ = −ε2μ1M(ϕ̇) sinϕ

+ ε2μ1η1 sin(2ϕ)(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ)

2
+ (ε2μ1η1 cos

2 ϕ − 1)(εμ1ϕ̇
2 cosϕ − xω2

x − εζx1 ẋ), (4.19)

(ε2μ1η1 − 1)ÿ = ε2μ1M(ϕ̇) cosϕ + ε2μ1η1 sin(2ϕ)(μϕ̇2 cosϕ − xω2
x − εζx1 ẋ)

2
+ (ε2μ1η1 sin

2 ϕ − 1)(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ), (4.20)

(ε2μ1η1 − 1)ϕ̈ = −εM(ϕ̇) + εη1 cosϕ(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ)

− εη1 sinϕ(εμ1ϕ̇
2 cosϕ − xω2

x − εζx1 ẋ). (4.21)

Eliminating the termswith the small parameter ε of higher order than one, i.e., O(ε2),
we have the following simplified equations

ẍ + ω2
x x = εμ1ϕ̇

2 cosϕ − εζx1 ẋ, (4.22)

ÿ + ω2
y y = εμ1ϕ̇

2 sinϕ − εζy1 ẏ, (4.23)

ϕ̈ = εM(ϕ̇) + εη1(yω
2
y cosϕ − xω2

x sinϕ). (4.24)

Using the notation

x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, � = ϕ̇, (4.25)

the Eqs. (4.22)–(4.24) are rewritten in the following system of first order differential
equations

ẋ1 = x2,

ẋ2 = −ω2
x x1 + εμ1�

2 cosϕ − εζx1x2,

ẏ1 = y2,

ẏ2 = −ω2
y y1 + εμ1�

2 sinϕ − εζy1y2,
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ϕ̇ = �,

�̇ = εM(�) + εη1(y1ω
2
y cosϕ − x1ω

2
x sinϕ), (4.26)

where according to (4.2) the motor torque is

εM(�) =M0

(
1 − �

�0

)
, (4.27)

where M0 and �0 motor constants. Equation (4.26) represent a system of coupled
differential equations whose solution is not easy to be obtained. For simplification,
let us introduce the new variables

x1 = a1 cos(ϕ + ψ1),

x2 = −a1� sin(ϕ + ψ1),

y1 = a2 cos(ϕ + ψ2),

y2 = −a2� sin(ϕ + ψ2), (4.28)

where �, a1, a2, ψ1 and ψ2 are time dependent functions. Substituting (4.28) into
(4.26) and using the relation ϕ̇ = � we obtain

0 = ȧ1 cos(ϕ + ψ1) − a1ψ̇1 sin(ϕ + ψ1),

− ȧ1� sin(ϕ + ψ1) − a1�ψ̇1 cos(ϕ + ψ1)

− a1�̇ sin(ϕ + ψ1) = −ω2
xa1 cos(ϕ + ψ1) + a1�

2 cos(ϕ + ψ1)

+ εμ1�
2 cosϕ + εζx1a1� sin(ϕ + ψ1),

0 = ȧ2 cos(ϕ + ψ2) − a2ψ̇2 sin(ϕ + ψ2),

−ȧ2� sin(ϕ + ψ2) − a2�̇ sin(ϕ + ψ2)

−a2�ψ̇2 cos(ϕ + ψ2) = −ω2
ya2 cos(ϕ + ψ2) + a2�

2 cos(ϕ + ψ2)

+ εμ1�
2 sinϕ + εζy1a2� sin(ϕ + ψ2),

�̇ = εη1[a2 cos(ϕ + ψ2)ω
2
y cosϕ − a1 cos(ϕ + ψ1)ω

2
x sinϕ]

+ εM(�), (4.29)

and after some modification

ȧ1 + a1
�̇

�
sin2(ϕ + ψ1) = ω2

x − �2

2�
a1 sin 2(ϕ + ψ1)

− εμ1� cosϕ sin(ϕ + ψ1)

−εζx1a1 sin
2(ϕ + ψ1),

a1

(
ψ̇1 + 1

2

�̇

�
sin 2(ϕ + ψ1)

)
= ω2

x − �2

�
a1 cos

2(ϕ + ψ1)

− εμ1� cosϕ cos(ϕ + ψ1)
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− 1

2
εζx1a1 sin 2(ϕ + ψ1),

ȧ2 + a2
�̇

�
sin2(ϕ + ψ2) = ω2

y − �2

2�
a2 sin 2(ϕ + ψ2)

− εμ1� sinϕ sin(ϕ + ψ2)

− εζy1a2 sin
2(ϕ + ψ2),

a2

(
ψ̇2 − �̇

2�
sin 2(ϕ + ψ2)

)
= ω2

y − �2

�
a2 cos

2(ϕ + ψ2)

− εμ1� sinϕ cos(ϕ + ψ2)

− 1

2
εζy1a2 sin 2(ϕ + ψ2),

�̇ = εη1[a2 cos(ϕ + ψ2)ω
2
y cosϕ

− a1 cos(ϕ + ψ1)ω
2
x sinϕ]

+ εM(�). (4.30)

The Eq. (4.30) are the first order differential equations which correspond to second
order equations (4.22)–(4.24). The system of equations (4.30) has to be solved for
�, a1, a2, ψ1 and ψ2.As the Eq. (4.30) are coupled, to find the solution is not an easy
task. It is at this moment where the simplification is done. Averaging the equations
over the period 2π of the function ϕ, we obtain the averaged equations

ȧ1 + a1
�̇

2�
= −1

2
εμ1� sinψ1 − 1

2
εζx1a1,

a1ψ̇1 = ω2
x − �2

2�
a1 − 1

2
εμ1� cosψ1,

ȧ2 + a2
�̇

2�
= −1

2
εμ1� cosψ2 − 1

2
εζy1a2,

a2ψ̇2 = ω2
y − �2

2�
a2 + 1

2
εμ1� sinψ2,

�̇ = εM(�) + 1

2
εη1

(
a2ω

2
y cosψ2 + a1ω

2
x sinψ1

)
. (4.31)

4.2.1 Steady-State Motion

It is of interest to analyze the steady-state motion when ȧ1 = 0, ȧ2 = 0 and �̇ = 0
and the corresponding Eq. (4.31) are

0 = μ�S sinψ1S + ζxa1S,

0 = ω2
x − �2

S

�S
a1S − μ�S cosψ1S, (4.32)
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0 = μ�S cosψ2S + ζya2S,

0 = ω2
y − �2

S

�S
a2 + μ�S sinψ2S, (4.33)

0 = εM(�) + 1

2
η

(
a2Sω

2
y cosψ2S + a1Sω

2
x sinψ1S

)
. (4.34)

Eliminating ψ1S in Eq. (4.32) the steady-state amplitude a1S as the function of � is
obtained

a1S = μ�S√
(ζx )2 + (

ω2
x−�2

S
�S

)2
. (4.35)

Using the same procedure and eliminating ψ2S in Eq. (4.33) the steady-state ampli-
tude a2S as the function of � yields

a2S = μ�S√
(ζy)2 + (

ω2
y−�2

S

�S
)2

. (4.36)

Dividing equations in (4.32) and (4.33) the phase angles in the both directions of
motion are obtained

tanψ1S = ζx�S

�2
S − ω2

x

, tanψ2S = ω2
y − �2

S

ζy�S
. (4.37)

Comparing the amplitudes a1S and a2S we obtain the condition for which the motion
is out of resonance and also when the resonance occurs in one or both directions
of motion. For ωx �= �S and ωy �= �S the motion is out of resonance regime. The
amplitude of vibration in x and y direction depends on the damping properties of
the system and on the difference between the angular velocity of the motor and the
frequency of the system ωx and ωy, respectively. However, it is of interest to analyze
the motion when resonances appear.

Substituting (4.35)–(4.37) into (4.34), it is

0 = εM(�) + ζyμ�Sηω2
y

2(ζ2y + (
ω2
y−�2

S

�S
)2

+ ζxμ�Sηω2
x

2(ζ2x + (
ω2
x−�2

S
�S

)2
. (4.38)

For the torque property (4.27) the relation (4.38) transforms into

εM0(1 − �S

�0
) = −ημ�3

S

2

[
ζxω

2
x

(ζx�S)2 + (ω2
x − �2

S)
2

+ ζyω
2
y

(ζy�S)2 + (ω2
y − �2

S)
2

]
.

(4.39)
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The Eq. (4.39) gives the relation between the angular velocity � and parameter �0.

Let us rewrite (4.39) as

�0 = f (�S) = �S

1 + ημ�3
S

2εM0

[
ζxω

2
x

(ζx�S)2 + (ω2
x − �2

S)
2

+ ζyω
2
y

(ζy�S)2 + (ω2
y − �2

S)
2

] .

(4.40)

Calculating the first derivative d�0/d�S and equatingwith zero,we obtain the values
of �S which give the extreme values of �0, i.e., �0min(�S) and �0max(�S).

4.2.2 Stability Analysis

Using the results of steady-state motion (4.32)–(4.34) the perturbed amplitudes,
phases and angular velocities are

a1 = a1S + ξ1, a2 = a2S + ξ2,

ψ1 = ψ1S + θ1, ψ2 = ψ2S + θ2,

� = �S + �. (4.41)

where ξ1, ξ2, θ1, θ2 and � are small perturbation functions. Substituting (4.41) into
(4.31) and after linearization the system of coupled first order differential equations
follows

2ξ̇1�S + a1S�̇ = −(ζxa1S + 2μ�S sinψ1S)�

− ζx�Sξ1 − (μ�2
S cosψ1S)θ1,

2a1S θ̇1�S = −2�S(a1S − μ cosψ1S)�

+ (ω2
x − �2

S)ξ1 + (μ�2
S sinψ1S)θ1,

2ξ̇2�S + a2S�̇ = −(ζya2S + 2μ�S cosψ2S)�

− (ζy�S)ξ2 + (μ�2
S sinψ2S)θ2,

2a2S θ̇2�S = −2�S(a2S − εμ1 sinψ2S)�

+ (ω2
y − �2

S)ξ2 + (μ�2
S cosψ2S)θ2,

2�̇ = −2εM0

�0
�

− (ηa2Sω
2
y sinψ2S)θ2 + (ηω2

y cosψ2S)ξ2

+ (ηω2
x sinψ1S)ξ1 + (ηa1Sω

2
x cosψ1S)θ1. (4.42)
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Assuming the solution of (4.42) in the form

ξ1 = A1 exp(λt), ξ2 = A2 exp(λt),

θ1 = A3 exp(λt), θ2 = A4 exp(λt),

� = A5 exp(λt), (4.43)

and substituting into (4.42), the system of linear algebraic equations is obtained

0 = −(2λ�S + ζx�S)A1 − (μ�2
S cosψ1S)A3

−(a1Sλ + ζxa1S + 2μ�S sinψ1S)A5

0 = (ω2
x − �2

S)A1 + (μ�2
S sinψ1S − 2a1Sλ�S)A3

−2�S(a1S − μ cosψ1S)A5,

0 = −(2�Sλ + εζy1�S)A2 + (μ�2
S sinψ2S)A4

− (a2Sλ + ζya2S + 2μ�S cosψ2S)A5,

0 = (ω2
y − �2

S)A2 + (μ�2
S cosψ2S − 2a2Sλ�S)A4

−2�S(a2S − μ sinψ2S)A5

0 = (ηω2
x sinψ1S)A1 + (ηω2

y cosψ2)A2

+ (ηa1ω
2
x cosψ1S)A3 − (ηa2ω

2
y sinψ2S)A4

−(2λ + 2εM0

�0
)A5. (4.44)

The system has the nontrivial solution if the determinant is zero. The determinant of
the system is a fifth order algebraic equation. Solving the equation and applying the
Routh-Hurwitz criteria, the stability of the solutions is determined.

4.3 Special Cases

Two special cases are considered: one, when the resonance frequencies in both
orthogonal directions are equal, and the second, when the resonance frequency in
one direction is defined by half of the resonance frequency in the other direction.

4.3.1 Resonance Frequencies in Orthogonal Directions
Are Equal

For the special case when the frequencies in both direction are equal, i.e.,ωx = ωy =
ω, the steady state amplitudes of vibration are



4.3 Special Cases 131

a1S = μ�S√
ζ2x + (

ω2−�2
S

�S
)2

, a2S = μ�S√
ζ2y + (

ω2−�2
S

�S
)2

,

while the corresponding phases are

tanψ1S = ζx�S

�2
S − ω2

, tanψ2S = ω2 − �2
S

ζy�S
.

For the resonant case when
�S = ω − �, (4.45)

and the detuning function is � = εσ, the equations transform into

a1S = μ�S√
(ζ2x + 4(εσ)2

, a2S = μ�S√
ζ2y + 4(εσ)2

,

tanψ1S = − ζx

2εσ
, tanψ2S = 2εσ

ζy
,

i.e.,

a1S = μ�S√
ζ2x + 4(ω − �S)2

, (4.46)

a2S = μ�S√
ζ2y + 4(ω − �S)2

, (4.47)

while the phase angles in the both directions of motion are

tanψ1S = ζx

2(ω − �S)
, tanψ2S = 2(ω − �S)

ζy
. (4.48)

Substituting (4.46)–(4.48) into (4.34) it is

εM(�) = −1

2
ημ�3

S[
ζy

ζ2y + 4(εσ)2
+ ζx

ζ2x + 4(εσ)2

]
, (4.49)

i.e.,
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εM(�S) = −1

2
ημ�3

S[
ζy

ζ2y + 4(ω − �S)2
+ ζx

εζ2x + 4(ω − �S)2

]
. (4.50)

The influence of the detuning parameter on the motor torque is evident. For the
torque property (4.2) the relation (4.50) transforms into

εM0

(
1 − �S

�0

)
= −1

2
ημ�3

S[
ζy

ζ2y + 4(ω − �S)2
+ ζx

ζ2x + 4(ω − �S)2

]
. (4.51)

If the damping properties in both direction are equal, i.e., for ζx = ζy = ζ1, the
resonance occurs in both directions and the amplitude in both directions are the same

a1S = a2S = μ�S√
ζ21 + 4(εσ)2

= μ�S√
ζ21 + 4(ω − �S)2

= aS. (4.52)

For this assumption the angular velocity as the function of frequency �0 is obtained
as

εM0

(
1 − �S

�0

)
= − ημω3ζ1

ζ12 + 4(ω − �S)2
. (4.53)

In Fig. 4.2 according to (4.53) the evolution of the angular velocity is plotted.
The parameter values are: M = 0.064, m = 0.0021, J = 10−7, d = 0.005 and

Fig. 4.2 Angular velocity as the function of the parameter �0: a resonant case, b extrem angular
velocities
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M0 = 0.005, the damping coefficient is ζ1 = 0.006ω where ω = 30π. The motor
is accelerated from rest to a fixed velocity by changing the parameter �0 and the
(�0/ω) − (�S/ω) curve is shown. As it can be seen only one resonant case appears.

Let us rewrite the relation (4.53) into

�0 = �S

[
1 + ημω3ζ1

ζ12 + 4(ω − �S)2

1

εM0

]−1

. (4.54)

Equating the first time derivative d�0
d�S

with 0, the condition for existence of extreme
values for �0 is obtained

0 = 16(ω − �S)
4 + 4ζ1

[
2ζ1 − ημω3

εM0

]
(ω − �S)

2 − 8ημω4ζ1

εM0
(ω − �S)

+ ζ41 + ημω3 1

εM0
ζ31 . (4.55)

Solving the algebraic equation (4.55) for �S two real values are obtained for which
the extreme angular velocities exist (see Fig. 4.2b). For the assumed parameter values
the extreme values are:

(
�0min

ω
,
�S

ω

)
P

= (1.03117, 1.0206400) ,

(
�0max

ω
,
�S

ω

)
Q

= (1.97570, 1.0000046) . (4.56)

From the Fig. 4.2b it is obvious that the number of solutions is one, two or three.
Between P and Q three solutions exist. To examine the stability properties of the
solutions the procedure suggested in previous section is applied. It is obvious that
the stability of the solution depends on the torque characteristics M0 and�0, charac-
teristics of the system μ, η and ς. In Fig. 4.2 it is shown that two solutions between P
andQ are stable and one is unstable. The stable solutions are shownwith the full-line,
while the unstable solution is given with dotted-line.

Based on (4.52) and (4.53) the steady state amplitude is rewritten as

a2S = εM0

ηω3ζ1

(
1 − �S

�0

)
μ�2

S. (4.57)

Using (4.53) and (4.57) the amplitude as the function of parameter �0 is plotted in
Fig. 4.3a, while in Fig. 4.3b the amplitude-frequency diagram (4.57) and the curves
which depend on the motor torque for various values of parameter �0 are shown.
In Fig. 4.3b) the curves are obtained for three various values of �0: 1. �0min/ω =
1.03117, 2. �0/ω = 1.5,3. �0max/ω = 1.97570. motor properties for three values
of angular velocity are presented.
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Fig. 4.3 a Amplitude as the function of parameter�0; bAmplitude-frequency diagram and curves
dependent on motor torque for: 1. �0min/ω = 1.03117, 2. �0/ω = 1.5,3. �0max/ω = 1.97570

The curves 1 and 3 are boundary ones which satisfy the extreme conditions (4.56).
The intersection of these curves and of the amplitude-frequency diagram gives the
steady-state solutions. For boundary conditions (1) and (3) two steady-state solutions
exist, while inside this interval there are three solutions (see intersection of (2) and
the amplitude-frequency curve). In the regions outside these boundary ones, only
one steady state solution exists.

4.3.2 Resonance Frequency in One Direction Is Half
of the Resonance frequency in Other Direction

If the resonance frequency ωx is defined by a half of the resonance frequency in the
y direction, i.e., for ωx = ω it is ωy = 2ωx = 2ω, the two resonance frequencies are
separated and two resonance features occur (Fig. 4.4).

For that case we obtain the steady state amplitudes (4.35) and (4.36) as

a1S = μ�2
S√

(ζ1�S)2 + (ω2 − �2
S)

2
,

a2S = μ�2
S√

(ζy�S)2 + (4ω2 − �2
S)

2
, (4.58)

while the steady state phases (4.37) are

tanψ1S = ζx�S

�2
S − ω2

, tanψ2S = 4ω2 − �2
S

ζy�S
. (4.59)
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Fig. 4.4 Frequency as a
function of the motor torque
parameter �0

The corresponding angular velocity - frequency relation (4.38) is

0 = εM(�S) + 2ηζyμ�3
Sω

2

(ζy�S)2 + (4ω2 − �2
S)

2

+1

2

ηζxμ�3
Sω

2

(ζx�S)2 + (ω2 − �2
S)

2
. (4.60)

i.e.,

0 = εM0

(
1 − �S

�0

)
+ 2ηζyμ�3

Sω
2

(ζy�S)2 + (4ω2 − �2
S)

2
. (4.61)

For numerical calculation the following numerical values are applied: M = 0.064,
m = 0.0021, J = 10−7, d = 0.005 and M0 = 0.005, damping coefficients ζx =
0.012ω and ζy = 0.024ω where ω = 30π.

Due to Fig. 4.4 it is evident that two resonances appear. In Fig. 4.5a, b the first and
the second resonances with extreme values are plotted.

The extreme values for the first resonance are
(

�0min

ω
,
�S

ω

)
P

= (1.02397, 1.01507) ,

(
�0max

ω
,
�S

ω

)
Q

= (1.06596, 1.00029) , (4.62)

and for the second
(

�0min

ω
,
�S

ω

)
R

= (2.07929, 2.05142) ,
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(a) (b)

Fig. 4.5 a First resonance, b Second resonance

(a) (b)

Fig. 4.6 aAmplitudes as functions of the parameter�0; bAmplitude-frequency curves with motor
characteristics for the extremal values of�0: 1 (�0min/ω)P = 1.02397, 2 (�0max/ω)Q = 1.06596,
3 (�0min/ω)R = 2.07929, 4 (�0max/ω)S = 2.65594

(
�0max

ω
,
�S

ω

)
S

= (2.65594, 2.00014) . (4.63)

The second resonant is more significant. In Fig. 4.6a the amplitudes of vibration as
functions of the parameter �0 of the motor torque and in Fig. 4.6b the amplitude-
frequency curve with motor characteristics for the extreme values of �0 are plotted.

For the both resonant regimes the Sommerfeld effect occurs. The amplitude solu-
tion between P and Q (Fig. 4.7a) and S and R (Fig. 4.7b) is unstable and the jump
phenomena occurs. From Fig. 4.7 it is evident that there are three steady state solu-
tions in the interval of curves (1) and (2) for the first resonance and in the interval
(3) and (4) for the second resonance. The solutions between P and Q and also R and
S are unstable.
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(a) (b)

Fig. 4.7 Amplitude-frequency diagram with motor characteristics for extrem angular velocities
for: a first resonance, b second resonance

4.4 Numerical Simulation

Let us rewrite the equations of motion (4.14)–(4.16) into six first order differential
equations

ẋ = x1, ẏ = y1, ϕ̇ = �, (4.64)

ẋ1 = −εμM(ϕ1) sinϕ

μη − 1
+ μη sin(2ϕ)(μϕ2

1 sinϕ − yω2
y − ζy y1)

2(μη − 1)

+ (μη cos2 ϕ − 1)(μ�2 cosϕ − xω2
x − ζx x1)

μη − 1
, (4.65)

ẏ1 = εM(�)μ cosϕ

μη − 1
+ μη sin(2ϕ)(μ�2 cosϕ − xω2

x − ζx x1)

2(μη − 1)

+ (μη sin2 ϕ − 1)(μ�2 sinϕ − yω2
y − ζy y1)

μη − 1
, (4.66)

�̇ = −εM(�)

μη − 1
+ η cosϕ(μ�2 sinϕ − yω2

y − ζy y1)

μη − 1

−η sinϕ(μ�2 cosϕ − xω2
x − ζx x1)

μη − 1
. (4.67)

withmotor torque function (4.27). Applying the fourth order Runge–Kutta procedure
the equations are solved numerically.
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(a) (b)

Fig. 4.8 Amplitude as the function of motor torque parameter �0 for: a speeding up, b slowing
down (analytical solution - full line, numerical solution in x direction - squares, numerical solution
in y direction - circles)

Numerical solution is obtained for ωx = ωy = ω = 30π and parameter values
M = 0.064, m = 0.0021, J = 10−7, d = 0.005, M0 = 0.005, ζ = 0.006ω and
plotted in Fig. 4.8.

The procedure to obtain the result shown in Fig. 4.8a is performed by slowly
increasing the parameter �0 of the DC motor and in Fig. 4.8b by slowly decreasing
the parameter �0 applied to the motor. The numerically obtained results are given
with squares in x direction andwith circles in y direction,while the analytical solution
with the full line. The numerical solution is compared with analytical one and shows
good agreement.

Let us consider the case whenωx = ω andωy = 2ω and the parameters of the sys-
tem areM = 0.064,m = 0.0021, J = 10−7, d = 0.005, M0 = 0.005, ζx = 0.012ω
and ζy = 0.024ω where ω = 30π. Using the suggested procedure the solution for
slow increase of the parameter�0 is plotted in Fig. 4.9. Two resonances occur: one in

(a) (b)

Fig. 4.9 Amplitude as the function of motor torque parameter �0 for slow increase of �0: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles
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(a) (b)

Fig. 4.10 Amplitude as the function of motor torque parameter �0 for slow decrease of �0: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles

x direction (Fig. 4.9a) and the other in y direction (Fig. 4.9b). The same procedure is
applied for obtaining solutions during decreasing of the parameter�0.We obtain the
first resonance in x direction (Fig. 4.10a) and the second in y direction (Fig. 4.10b). In
the diagrams the jumps are observed when the system escapes resonance. Numerical
results given with squares in x direction and circles in y direction are compared with
analytical solution shown with full line. The numerical results are in good agreement
with the analytical results.

4.5 Conclusions

In this chapter we considered a discrete parameter spring-mass-damper whichmoves
in two orthogonal directions which is attached to a non-ideal rotatingmachine. Based
on the analysis the following is concluded:

1. The system behaves different according to the values of resonance frequencies in
the two orthogonal directions. Depending on the values of these frequencies the
resonance can occur in both directions, only in one direction or can not occur. In
the paper the limits between these cases are determined.

2. For the case when the frequencies of system in x and y direction are equal only
one resonance regime appears. If the damping in both directions are also equal,
the amplitudes of vibration in x and y direction are the same.

3. If the frequency of the system in y direction is two times higher than in x direction
two resonances occur: one, in x direction and other, in y direction.

4. In the mechanical two degrees-of-freedom system with non-ideal excitation the
Sommerfeld effect occurs. There is the jump in amplitude when the resonance
regime is escaped. For the case when the frequency of the system in x and y
directions are equal the Sommerfeld effect appears once time. If the frequency
in y direction is two times higher than that in x direction the jump phenomena
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occurs for two times for two different values of torque parameter. The procedure
for analytical calculation of angular velocities and the corresponding amplitudes
for which the jump occurs is suggested and the values are calculated for certain
numerical data. The analytical procedure predicts the appearance of Sommerfeld
effect for other relations between frequencies in two orthogonal directions, too.

5. Analytically obtained solutions are in good agreement with numerically obtained
ones.

6. The analytical solutions are compared with experimental results given in
Goncalves et al. (2016) and show good agreement.

7. The results published in this paper would be of special interest for engineers and
technicians in prediction of resonances and their elimination.
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