
Chapter 3
Nonlinear Oscillator and a Non-ideal Energy
Source

In this chapter the motion of the non-ideal system which contains a nonlinear one
degree-of-freedom oscillator and a non-ideal energy source is considered. In such
a non-ideal oscillator-motor system there is an interaction between motions of the
oscillator and of the motor as it was already explained in the previous chapter. How-
ever, due to nonlinear properties of the oscillator in the non-ideal system beside the
Sommerfeld effect some additional phenomena are evident. Depending on the para-
meter properties of the oscillator the motion is regular or irregular. Results on motion
of the non-ideal systems with nonlinear oscillators are published in Dimentberg et al.
(1997), Warminski et al. (2001), Warminski and Kecik (2006) Dantas and Balthazar
(2007), Felix et al. (2009a), Zukovic and Cveticanin (2007, 2009), Nbendjo et al.
(2012), Cveticanin and Zukovic (2015a, b) etc.

This chapter is divided into five sections. In Sect. 3.1, a generalization of themodel
of the non-ideal oscillator-motor is done: a strong nonlinear oscillator is coupledwith
a motor with nonlinear torque property. The model of the structure-motor system is
generalized by assuming that the driving torque is a nonlinear function of the angular
velocity and the oscillator is with strong nonlinearity. The oscillator-motor system
is assumed as a non-ideal one where not only the motor affects the motion of the
oscillator but also vibrations of the oscillator have an influence on the motor motion.
The model of the motor-structure system is described with two coupled strong non-
linear differential equations. An improved asymptotic analytic method based on the
averaging procedure is developed for solving such a system of strong nonlinear
differential equations. The steady state motion and its stability is studied. Results
available the discussion of the Sommerfeld effect. A new procedure for determina-
tion of parameters of the non-ideal system for which the Sommerfeld effect does
not exist is developed. For these critical values of the parameter the Sommerfeld
effect is suppressed. In Sect. 3.2, the suggested theoretical consideration is applied
for pure nonlinear oscillator driven by a motor with nonlinear torque characteristics.
As a special case the pure nonlinear oscillator where the order of the nonlinearity is
a positive rational number is investigated. The influence of the order of nonlinearity
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50 3 Nonlinear Oscillator and a Non-ideal Energy Source

on the dynamic properties of the system is also analyzed. The numerical simulation
is done for the motor oscillator system, where the motor torque is a cubic function of
the angular velocity and the oscillator is with pure nonlinearity. The obtained results
are compared with those obtained analytically (Cveticanin and Zukovic 2015b). In
Sect. 3.3, a pure strong nonlinear oscillator which is coupled to a non-ideal source
whose torque is a linear function of the angular velocity is considered. An analytical
solving procedure based on averaging is developed. The approximate solution has
the form of the Ateb function. The resonant case is considered. Steady-state solution
and characteristic points are determined. Special attention is given to suppression of
the Sommerfeld effect. The section ends with some numerical examples (Cveticanin
and Zukovic 2015a). In Sect. 3.4 the non-ideal system with the Duffing oscillator
of cubic type is analyzed. The hardening Duffing oscillator with one stable fixed
point which is coupled to a non-ideal energy source is mathematically modelled
and analytically solved. Approximate solution of the problem is calculated. Condi-
tion for the steady-state motion are obtained. Stability of motion is investigated and
phenomena of jump in the amplitude-frequency diagram is treated. Using the numer-
ical simulation the chaotic motion is detected. A procedure for controlling chaos is
introduced (Zukovic and Cveticanin 2007). Finally, in Sect. 3.5, the non-ideal system
with bistableDuffing oscillator, which has three fixed points, is considered. The semi-
trivial and non-trivial solutions are determined. Based on the semi-trivial solutions
the conditions for quenching of the amplitude of the mechanical system are obtained.
In this chapter the stability of non-trivial solutions is investigated. Based on the signs
of the Lyapunov exponents (Lyapunov 1893) regions of chaos and hyperchaos are
determined (Nbendjo et al. 2012).

3.1 Nonlinear Oscillator Coupled with a Non-ideal Motor
with Nonlinear Torque

In the previous chapter the systems which have the following limitations are
considered:

• the elastic force of the structure is assumed to be linear (Zukovic and Cveticanin
2009), or with small nonlinearity (Dimentberg et al. 1997; Warminski et al. 2001;
Dantas and Balthazar 2006; Felix et al. 2009b),

• the torque property of the motor is assumed to be a linear function of the angular
velocity (Dantas and Balthazar 2003; Tsushida et al. 2003 and 2005; Souza et al.
2005a and 2005b; Castao et al. 2010).

In this section a generalization to the model of motor-structure system is done.
It is assumed that the elastic property of the system need not be linear or with a
small nonlinearity but with a strong nonlinearity of any order, described with any
positive rational exponent of the displacement. The motor torque is assumed to be a
nonlinear function of angular velocity. No limitation to the form of the forcing torque
is introduced. Such a generalization gives us an opportunity to give a more realistic
view of the dynamics of the system.
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In general, the model of the non-ideal system is an oscillator-motor one which
has two degrees of freedom. The motion is described with a system of two coupled
differential equations (see Felix et al. 2009b)

mẍ + f̂1(x) = f̂2(x, ẋ) + F̂(ϕ, ϕ̇, ϕ̈, q̂), I ϕ̈ = M(ϕ̇) + R̂(ϕ, ϕ̇, ẍ, q̂), (3.1)

where x and ϕ are generalized coordinates of the system (displacement and angu-
lar position), f̂1 is the deflection function of the oscillator, f̂2 is the function
which describes other properties of the oscillator (damping, relaxation, hysteresis...),
F̂ and R̂ are coupling functions of the oscillator and the motor, m is the mass of the
oscillator, I is the moment of inertia of the rotating part of the motor and q̂ is the
measure of the unbalance of the rotor. The deflection function of the oscillator f̂1(x)
is usually assumed to be linear or weakly nonlinear, while the function f̂2 is supposed
to be a small one. In general, the torque of the electro-motor is

M(ϕ̇) = L(ϕ̇) − H(ϕ̇), (3.2)

where ϕ̇ is the angular velocity of the motor and L(ϕ̇) and H(ϕ̇) are driving and
resisting torques. The torque property of the motor is usually assumed to be a linear
function of the angular velocity

M(ϕ̇) = V ∗
m − C∗

mϕ̇, (3.3)

where C∗
m and V ∗

m are characteristics of the motor (Felix et al. 2009b). Comparing
the real motor torque with the (3.3) it is evident that the assumed model represents
the first approximation of the real one.

The aim is to make the generalization of the problem on non-ideal systems con-
sidering the whatever any nonlinear oscillator and the improved version of the motor
torque model. The function f̂1(x) in (3.1) need not to be a small nonlinear function,
but may be a strong nonlinear one. The elastic force in the oscillator is the function
of any rational order of the displacement (integer or non-integer). Besides, the motor
torque (3.2) need not to be a linear velocity function (3.3), but it may be a nonlinear
one.

3.1.1 Nonlinear Motor Torque Property

As it is stated by Nayfeh and Mook (1979), for determination of the influence of
the motion on the motor properties it is necessary to know the characteristics of
the motor. Kononenko and Korablev (1959) plotted experimentally obtained torques
as a function of the frequency or angular velocity of rotor for various types of DC
motors, for an asynchronous and a synchronousmotor. For themost of thementioned
characteristics it is common that they are nonlinear.
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Fig. 3.1 Torque curves for various values of control parameter Vm and constant parameter n:
a linear property (n = 1), b cubic property (n = 3)

The DC series wound motor, which is considered in this section, has a net of
nonlinear characteristics for various constant control or regulator parameters (see
Kononenko 1969). Mathematical model of the motor characteristics is assumed in
the form

M(ϕ̇) = (V ∗
m − C∗

mϕ̇)n, (3.4)

where V ∗
m and C∗

m are constant parameters and n = 2, 3, 4, . . . is a positive integer.
It should be mentioned that the relation (3.4) includes the linear model (3.3) for
n = 1. The DC series wound motor develops a large torque and can be operated at
low speed. It is a motor that is well suited for starting heavy loads. Because of that
it is often used for industrial cranes and winches, where very heavy loads must be
moved slowly and lighter loads moved very rapidly. Introducing the dimensionless
time parameter τ , the relation (3.4) transforms into

�(�) = (Vm − Cm�)n, (3.5)

where �(�) is the dimensionless driving torque with dimensionless parameters Vm

and Cm and angular velocity �.
In Fig. 3.1 the torque curves for various values of control parameter Vm and con-

stant parameter n are plotted: (a) linear property (n = 1), (b) cubic property (n = 3).
It can be concluded that for increasing of the control parameter Vm the curves move
to right in the �(�) − � plane. For the arbitrary value of the motor frequency, the
higher the control parameter Vm , the higher the value of the torque �(�). In Fig. 3.2,
the torque curves for constant value of parameter Vm and various values of the order
of nonlinearity is plotted. Increasing the order of nonlinearity n the curves move to
the left in the �(�) − � plane.

Namely, for a certain constant frequency, the motor torque is higher if the order of
nonlinearity n is smaller. Nevertheless, the driving torque is zero and independent on
the order n for the angular velocity � = Vm/Cm . The higher the control parameter
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Fig. 3.2 Torque curves for
various values of the
nonlinearity order n and
constant control
parameter Vm

Vm , the higher the value of the angular velocity � for which the driving torque is
zero.

3.1.2 Solution Procedure in General

Introducing the motor characteristics (3.5) into (3.1) and after some modification
dimensionless differential equations follow as

y” + f1(y) = f2(y, y
′) + F(ϕ,ϕ′,ϕ”, q), (3.6)

ϕ” = �(ϕ′) + R(ϕ,ϕ′, y”, q), (3.7)

where y and ϕ are the dimensionless generalized coordinates, q is the dimension-
less unbalance measure, f1, f2, F , R and � are the functions of the dimensionless
coordinates and parameters and (′) =d/dτ , (”) =d2/dτ 2 with dimensionless time τ .

To classify the ‘small’ and ‘arge’ values in the system (3.6), (3.7), we introduce a
small parameter ε << 1. Due to the physical sense of the problem the functions f2,
F , R and � are small and we have

y” + f1(y) = ε f2(y, y
′) + εF(ϕ,ϕ′,ϕ”, q), (3.8)

ϕ” = ε2�(ϕ′) + ε2R(ϕ,ϕ′, y”, q). (3.9)

The terms on the right side of Eqs. (3.8) and (3.9) are small values of the first and
second order, respectively, but different from zero. It must be mentioned that, in this
paper, we analyze the system with small foundation damping and in the Eq. (3.8) the
damping term is of order ε.

In the previous investigation it was assumed that the function f1(y) is a linear one,
and the Eq. (3.8) is with small perturbed terms on the right-hand side of the equation.
In this paper the generalization of the problem is done, as the function f1(y) need not
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be linear. The suggested mathematical procedure is based on the method described
for the perturbed linear differential equation.

If ε = 0 the Eqs. (3.8) and (3.9) simplify into two uncoupled differential equations

y′′ + f1(y) = 0, ϕ′′ = 0. (3.10)

For the case when f1(y) is the linear deflection function, the differential equation
(3.10) is a linear one and has the exact solution in the form of the trigonometric func-
tion. Otherwise, the trigonometric function represents only the approximate solution
of the nonlinear differential equation (3.10). In the papers (Cveticanin 2009; Cveti-
canin 2009; Cveticanin and Pogany 2012) it is already shown that the approximate
solution of trigonometric type is very close to the numerical solution of (3.10) and
represents a satisfactory asymptotic solution. It gives as the opportunity to assume
the asymptotic solution to (3.10) in the form

y = a cos(ω(a)t + ψ), ϕ′ = �, (3.11)

where a, ψ and � are arbitrary constants which satisfy the initial conditions. It is
worth to say that the frequency of vibration ω of the nonlinear differential equation
(3.10) depends on the amplitude a and has to satisfy exactly or approximately the
relation

− aω2 cos(ωt + ψ) + f1(a cos(ωt + ψ)) ≈ 0. (3.12)

It is of special interest to consider the resonant case (see Cveticanin 1995), when
the difference between the frequency of vibration of the structure ω(a) and of the
driving frequency � is small. Due to the fact that ω depends on a, there is a trace of
frequencies which have to satisfy the relation

� − ω(a) = (εσ)2, (3.13)

where εσ << 1. The solution of (3.11) and its first time derivative for the resonant
case are

y = a cos(ϕ + ψ), y′ = −a� sin(ϕ + ψ). (3.14)

The method suggested in this paper requires the solution of (3.8) and (3.9) to
be close to (3.14) which is the solution of (3.11). Namely, the solution of (3.8) is
the perturbed version of (3.14), where the parameters are time variable. Using the
procedure given by Kononenko (1969) and Cveticanin (1992) the solution of (3.8)
is suggested in the form

y = a(τ ) cos(ϕ(τ ) + ψ(τ )) ≡ a cos(ϕ + ψ), (3.15)

and
y′ = −a(τ )�(τ ) sin(ϕ(τ ) + ψ(τ )) ≡ −a� sin(ϕ + ψ). (3.16)
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The first time derivative of (3.15) is

y′ = a′ cos(ϕ + ψ) − a(�′ + ψ′) sin(ϕ + ψ). (3.17)

Comparing (3.17) with (3.16), it follows

a′ cos(ϕ + ψ) − aψ′ sin(ϕ + ψ) = 0. (3.18)

Substituting the solution (3.15) and the corresponding first (3.16) and second time
derivative of (3.16) into (3.8), we obtain

−a′� sin(ϕ + ψ) − a�(� + ψ′) cos(ϕ + ψ) − a�′ sin(ϕ + ψ)

+ f1(a cos(ϕ + ψ))

= ε f2(a cos(ϕ + ψ),−aω sin(ϕ + ψ)) + εF(ψ,�,�′, q), (3.19)

where according to (3.11) the differential equation (3.9) transforms into two first
order differential equations

�′ = ε2�(�) + ε2R, (3.20)

ϕ′ = �, (3.21)

with
R = R(ϕ,�,−a�2 cos(ϕ + ψ), q).

Using the relation (3.12) and neglecting termswith the second order small parame-
ter O(ε2), the relation (3.18) with (3.19) gives two first order differential equations

a′ = − ε

�
(F + f2) sin(ϕ + ψ) + a(�2 − ω2) sin(ϕ + ψ) cos(ϕ + ψ)(3.22)

aψ′ = −a
�2 − ω2

�
cos2(ϕ + ψ) − ε(F + f2)

�
cos(ϕ + ψ) (3.23)

where

F = F(ϕ,�,�′, q), f2 = f2(a cos(ϕ + ψ),−a� sin(ϕ + ψ)).

Equations (3.20)–(3.23) are four first order differential equations which correspond
to two second order differential equations (3.8) and (3.9). Our task is to solve and
analyze these equations.

Averaging procedure

Due to complexity of Eqs. (3.20)–(3.23) it is a heavy task to solve them. This is
the reason that the approximate solution procedure for the system of differential
equations (3.20)–(3.23) is introduced. In order to eliminate all resonances for the



56 3 Nonlinear Oscillator and a Non-ideal Energy Source

dynamic system described with (3.22) and (3.23), we define the resonant surface by
rewriting the relation (3.13) into

�(τ ) − ω(a) = (εσ)2,

with a = a(τ ). Now, we perform the averaging over the slow varying variables and
apply the standard averaging procedure (see Zhuravlev andKlimov 1988; Cveticanin
1993, 2003). Averaging Eqs. (3.20)–(3.23) over the period of vibration gives

a′ = − 1

�
(F̄(ψ,�, q) + f̄2(a)), (3.24)

aψ′ = −a
�2 − ω2

2�
− (F̄∗(ψ,�, q) + f̄ ∗

2 (a)), (3.25)

�′ = �(�) + R̄(ψ,�, a, q), (3.26)

where F̄ , F̄∗, f̄2, f̄ ∗
2 and R̄ are averaged functions F , f2 and R, respectively. Equa-

tions (3.24) and (3.25) give variations of the amplitude and initial phase of vibration
of the oscillator, while (3.26) describes the variation of the averaged angular velocity
of the motor. Solving these equations we obtain a − t , ψ − t and � − t relations
for various values of parameter. Equations describe the non-stationary motion of the
system and give us very objective qualitative analysis of the problem.

It is of special interest to study the influence of the motion of the motor on the
oscillator, but also of the oscillator on themotor. It requires the analysis of the coupled
system of differential equations (3.24)–(3.26). Solutions a − t and � − t have to be
compared with corresponding relations for the case when there is not an interaction
between the support and the motor. Then, F̄ = R̄ = 0 and the Eqs. (3.24)–(3.26)
simplify into

a′ = − f̄2(a)

ω(a)
, ξ′ = f̄ ∗

2 (a)

a
, (3.27)

�′ = �(�). (3.28)

Separating variables in Eqs. (3.27)1 and (3.28) and after some calculation, we have

s(a0) − s(a) = τ , (3.29)

�1(�) − �1(�0) = τ , (3.30)

where

s(a) =
∫

f̄2(a)

ω(a)
da, �1(�) =

∫
d�

�(�)
,

a0 is the initial amplitude of the oscillator vibration and �0 is the initial angular
velocity of the motor. Based on (3.27)2 and (3.29) the ψ − a and ψ − τ relations,
for the initial phase of vibration of the oscillator, are calculated.



3.1 Nonlinear Oscillator Coupled with a Non-ideal Motor … 57

Comparing Eqs. (3.24)–(3.26) and (3.27), (3.28), it is evident that the most sig-
nificant difference in amplitude and angular velocity is for the resonant case when
the difference between the angular velocity of the motor � and the eigenfrequency
of the oscillator ω is quite small.

3.1.3 Steady-State Motion and Its Stability

The steady state motion of the coupled oscillator-motor system is described with the
system of three algebraic equations

F̄(ψ,�, q) + f̄2(a) = 0, (3.31)

a
�2 − ω2

2�
+ F̄∗(ψ,�, q) + f̄ ∗

2 (a) = 0, (3.32)

�(�) + R̄(ψ,�, a, q) = 0, (3.33)

which represent right-hand sides of Eqs. (3.24)–(3.26). Eliminating the parameter ξ
by combining Eqs. (3.31) and (3.32), and also (3.31) and (3.33), a system of two
algebraic equations is obtained

Q1(a,�, q) = 0, Q2(a,�, q, Vm) = 0, (3.34)

where equations give a − � relations for various values of q and parameter Vm of
the driving torque (see Eq. (3.3)). Algebraic equations (3.34) are nonlinear and very
complex. The solution of (3.34) gives the amplitude of oscillator vibration and the
angular velocity of motor for the steady state motion. Very often, the solution of
(3.34) is analyzed graphically by plotting of the frequency-response curves a − �

for the oscillator (relation (3.34)1) and the motor (relation (3.34)2). The intersection
of the curves give us the steady-state parameters of the system.

To analyze the stability of the steady-state solution the Jacobi determinant is
formed

J =

⎡
⎢⎢⎣

d f̄2(a)

da
∂ F̄
∂ψ

∂ F̄
∂�

�2−ω2

2� − aω
�

dω
da + f̄ ∗

2 (a)

da
∂ F̄∗
∂ψ

∂ F̄∗
∂�

− a
∂ R̄
∂a

∂ R̄
∂ψ

∂ R̄
∂�

+ d�
d�

⎤
⎥⎥⎦ . (3.35)

The characteristic equation is

J3λ
3 + J2λ

2 + J1λ + J0 = 0, (3.36)

where
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J3 = 1, J2 = −
(
d f̄2(a)

da
+ ∂ F̄∗

∂ψ
+ ∂ R̄

∂�
+ d�

d�

)
, J0 = − det(J ),

J1 =
(
d f̄2(a)

da
+ ∂ F̄∗

∂ψ

)(
∂ R̄

∂�
+ d�

d�

)
+ d f̄2(a)

da

∂ F̄∗

∂ψ

+∂ F̄

∂ψ

(
�2 − ω2

2�
− aω

�

dω

da
+ f̄ ∗

2 (a)

da

)

−∂ F̄

∂�

∂ R̄

∂a
− ∂ R̄

∂ψ

(
∂ F̄∗

∂�
− a

)
. (3.37)

Using the Routh–Hurwitz criteria it can be concluded that the stability for the steady-
state solution (3.31)–(3.33) is satisfied if

J0 > 0, J1 > 0, J2 > 0, J1 J2 − J0 J3 > 0. (3.38)

3.1.4 Characteristic Points on the Steady State Curves

Let us determine the locus of characteristic points and characteristic control para-
meter in the frequency-response curve (3.34)1 where the jump phenomena appears
(see Fig. 3.3). The criteria is that at these points P and R the both curves given with
(3.34) have the same direction of the joint tangent. Namely, for

dQ1 = ∂Q1

∂�
d� + ∂Q1

∂a
da = 0, dQ2 = ∂Q2

∂�
d� + ∂Q2

∂a
da = 0, (3.39)

the equality of the direction of the tangents of the curves (3.34)1 and (3.34)2 in P is

Fig. 3.3 Characteristic
points
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da

d�
≡ −

(
∂Q1
∂�

∂Q1
∂a

)

�P ,aP ,VmP

= −
(

∂Q2
∂�

∂Q2
∂a

)

�P ,ap,Vmp

. (3.40)

Solving algebraic equations (3.40) and also (3.34), values �P , aP , VmP for a peak
point are obtained. The frequency �P corresponds to the amplitude aP and gives the
control parameter for motor torque VmP . Using the value of the control parameter
VmP , Eq. (3.34) give us the additional pair of (�Q, aQ) values due to the fact that
system of algebraic equations is nonlinear. Points P and Q correspond to the same
value of control parameter VmP .

The same procedure is applied for determining the�R, aR, VmR and also (�S, aS)
which corresponds to VmR . The critical frequency �R with correspondent amplitude
aR gives the value of the control parameter VmR for which the jump phenomena to
the point S appears during decreasing of the control parameter Vm . In the region
between VmP and VmR in the amplitude-frequency diagram a gap exists.

To eliminate the Sommerfeld effect the control parameter Vm has to be beyond the
interval (VmP , VmR). The number of stable steady-state solutions outside this interval
is only one.

3.1.5 Suppression of the Sommerfeld Effect

The Sommerfeld effect does not appear if, for all of values of the driving torque, only
one steady-state response of the oscillator exists. Then, the intersection between the
amplitude-frequency curves of the oscillator and of the motor has only one unique
solution. Using this criteria the parameters of the system have to be calculated. For
technical reasons we suggest an approximate analytical method for determination of
the parameters of the non-ideal system where Sommerfeld effect does not exist. The
basic requirement of the method is that the bone curve Q3(a,�) of the amplitude-
frequency characteristic of the oscillator (3.34)1 and the amplitude-frequency curve
of the motor (3.34)2 have the equal gradient for the extreme steady-state position
(a∗,�∗). Namely, the following relations have to be satisfied

Q1(a
∗,�∗, q∗) = 0, Q2(a

∗,�∗, q∗, V ∗
m) = 0, Q3(a

∗,�∗) = 0,

da

d�
≡ −

(
∂Q1
∂�

∂Q1
∂a

)

�∗,a∗,V ∗
m ,q∗

= −
(

∂Q3
∂�

∂Q3
∂a

)

�∗,a∗,V ∗
m ,q∗

. (3.41)

Solving the system of algebraic equations (3.41) the parameter q∗ is obtained, for
which only one solution for �∗, a∗ and V ∗

m exists. Due to the fact that for either
value of the control parameter Vm the amplitude-frequency curve (3.34)2 remains
parallel to Q2(a,�, q∗, V ∗

m) = 0 and also to the bone curve Q3(a,�) = 0 it can be
concluded that there is only one intersection between any Q2(a,�, q∗, Vm) = 0 and
the amplitude-frequency curve Q1(a,�, q∗) = 0.
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Remark 1 Using the same relations (3.41) instead of q∗ another critical parameter
of the system can be calculated (for example C∗

m).

3.1.6 Conclusion

Analyzing the results the following is concluded:

1. The generalized non-ideal mechanical system contains the nonlinear oscillator
of any order and a motor with the driving torque which need not to be the linear
function of the angular velocity.

2. The approximate solution procedure of the problem suggested in the text is suit-
able for the near resonant case and gives the results which are possible to be
used for the stability analysis and discussion of the characteristic properties of
the system.

3. The approximate value of the control parameter for the non-ideal source is ana-
lytically calculated applying the method of equating the gradient of the both
amplitude-frequency curves (of the oscillator and of the motor) in the intersec-
tion points. The criteria for the Sommerfeld effect is obtained.

4. It can be concluded that the method developed in the text gives the parameter
values for which the Sommerfeld effect is suppressed. For these parameters there
exists only one steady-state response of the oscillator for all values of the driving
torque.

5. The suitable choice of non-ideal system parameters available the motion without
jumps.

6. The analytically obtained results show a good agreement with numerically
obtained ones. It proves the correctness of the analytic procedures.

3.2 Pure Nonlinear Oscillator and the Motor
with Nonlinear Torque

Let us consider a motor-structure system shown in Fig. 3.4.
A motor with an unbalance is connected to a viscoelastic structure with nonlinear

properties. The motion occurs in a horizontal plane and is constrained so that the
motor executes a rectilinearmotion along the x -axis. The elastic force of the structure
is assumed as a pure nonlinear displacement function

Fe = kx |x |α−1 , (3.42)

where α ≥ 1 and α ∈ R is a positive rational number (integer or non-integer) which
represents the order of nonlinearity and k is the coefficient of rigidity. Experimental
investigation on a significant number of materials, for example: aluminum, titanium
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Fig. 3.4 Model of the
motor-structure non-ideal
system

and other aircraft materials (Prathap and Varadan 1976), copper and copper alloys
(Lo and Gupta 1978), aluminum alloys and annealed copper (Lewis and Monasa
1982), wood (Haslach 1985), ceramic materials (Colm and Clark 1988), hydrophilic
polymers (Haslach 1992; Pilipchuk 2010), composites (Chen and Gibson 1998),
polyurethane foam (Patten et al. 1998), felt (Russell and Rossing 1998), etc., show
that the stress-strain properties of the material are nonlinear. The nonlinear depen-
dence of the restoring force on the deflection is a polynomial whose exponent is of
positive integer or non-integer order. For most of these materials the damping prop-
erties are also nonlinear. However, for the mentioned metallic materials and their
alloys the order of nonlinearity in the damping force is small and the linear damping
force model gives a good approximation. Thus, the damping force-velocity function
is

Fd = cẋ, (3.43)

where c is the damping constant. Mass of the system is M , the moment of inertia
of the motor rotor is J , mass of the rotor unbalance is m and the length of the
rotor unbalance is d. The considered non-ideal system has two degrees-of-freedom,
represented by the generalized coordinates x and ϕ and the motion is described with
two Lagrange differential equations

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (3.44)

where T is the kinetic energy,U is the potential energy, � is the dissipative function
and Qx and Qϕ are the generalized forces. The kinetic energy, potential energy and
the dissipation function are expressed by

T = 1

2
Mẋ2 + 1

2
m(ẋ − dϕ̇ cosϕ)2 + 1

2
m(dϕ̇ sinϕ)2 + 1

2
J ϕ̇2, (3.45)
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U = k

α + 1
xα+1, � = 1

2
cẋ2, (3.46)

where ε << 1 and a dot denotes differentiation with respect to time t . For the driving
torque (3.2) the generalized forces are

Qx = 0, Qϕ = M(ϕ̇). (3.47)

Equations of motion (3.44) have the form

ẍ(M + m) + kx |x |α−1 + cẋ − md(ϕ̈ cosϕ − ϕ̇2 sinϕ) = 0,

(J + md2)ϕ̈ − mdẍ cosϕ = M(ϕ̇), (3.48)

and the initial conditions are

x(0) = x0, ẋ(0) = 0, ϕ(0) = 0, ϕ̇(0) = ω0. (3.49)

It is convenient to normalize the coordinates and time according to

x −→ y = x/ l, t −→ τ = �∗t, (3.50)

where l is the initial length of the non-deformed spring and �∗ is the synchronous
angular velocity of the rotor. By introducing (3.50) the differential equations (3.48)
transform into

y” + εζ1y
′ + p2y |y|α−1 = εμ1(ϕ” cosϕ − ϕ′2 sinϕ),

ϕ” = ε2[η2y” cosϕ + M(ϕ′)], (3.51)

with non-dimensional initial conditions

y(0) = A, y′(0) = 0, ϕ(0) = 0, ϕ′(0) = ω0

�∗ = ω, (3.52)

where

p = ω∗

�∗ , ω∗2 = klα−1

M + m
, A = x0

l
, ε = m

M + m
,

εμ1 =
(

m

M + m

)(
d

l

)
, ε2η2 =

(
d

l

)
ml2

(J + md2)
,

εζ =
(

m

M + m

)
c

�∗m
, ε2M(ϕ′) = M(�∗ϕ′)

(J + md2)�∗2 , (3.53)

�∗ is the synchronous angular velocity (Dimentberg et al. 1997) and prime denotes
differentiation with respect to τ . It is worth to say that ε << 1 is a small positive
parameter. Using the expression (3.51) we have
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y” + p2y |y|α−1 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.54)

ϕ” = ε2[M(ϕ′) − η2 p
2y |y|α−1 cosϕ]. (3.55)

The Eqs. (3.54) and (3.55) represent the system of two coupled differential equa-
tions which describe the motion of the non-ideal system given in Fig. 3.4. Comparing
(3.54) and (3.55) with (3.8) and (3.9) we have

f1 = p2y |y|α−1 , f2 = −ζ1y
′, F = −μ1ϕ

′2 sinϕ, R = −η2 p
2y |y|α−1 cosϕ.

(3.56)
Now, the differential equations (3.54) and (3.55) have to be solved.

3.2.1 Approximate Solution Procedure

For the case when the small parameter ε tends to zero, the differential equations
(3.54) and (3.55) transform into

y” + p2y |y|α−1 = 0, ϕ” = 0. (3.57)

The two differential equations (3.57) are uncoupled and can be solved independently
but according to the initial conditions (3.52). Equation (3.57)1 is a second order pure
nonlinear differential equation with rational order of nonlinearity. The approximate
analytical solution of the (3.57)1 is assumed in the form of a harmonic function
(3.11)1 with the frequency (see Cveticanin 2009; Cveticanin and Pogany 2012)

ω = ωα

√
p2a(α−1)/2, (3.58)

where

ωα =
√

α + 1

2

√
π�( 3+α

2(α+1) )

�( 1
α+1 )

, (3.59)

and � is the gamma function (Gradstein and Rjizhik 1971). The relation (3.58) is
the exact analytically obtained frequency of vibration of the nonlinear elastic struc-
ture (3.57)1. The asymptotic solution (3.11)1 approximately satisfies the differential
equation (3.57)1, i.e.,

− aω2 cos(ωt + ψ) + p2aα cosα(ωt + ψ) ≈ 0. (3.60)

Using the generalized procedure given in Sect. 3.3 and substituting the approxi-
mate solution with time variable parameters (3.15) and the corresponding derivatives
into (3.54) it follows
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−a′� sin(ϕ + ψ) − a�(� + ψ′) cos(ϕ + ψ) (3.61)

+p2aα cosα(ϕ + ψ)

= −εμ1�
2 sinϕ + εζ1a� sin(ϕ + ψ),

where for the resonant condition (3.13) and using the relation (3.60), the differential
equation (3.61) simplifies into

−a′� sin(ϕ + ψ) − a(�2 − ω2 + �ϕ′) cos(ϕ + ψ) = εμ1�
2 sin φ + εζ1a� sin(ϕ + ψ).

(3.62)
The relations (3.18) and (3.62) are the two first order differential equations which

correspond to the second order differential equation (3.54). Solving the Eqs. (3.18)
and (3.62) for a′ and ψ′ the relations (3.22) and (3.23) for (3.116) follow

a′ = εμ1� sinϕ sin(ϕ + ψ) − εζ1a sin
2(ϕ + ψ)

−a
�2 − ω2

�
sin(ϕ + ψ) cos(ϕ + ψ), (3.63)

aψ′ = −a
�2 − ω2

�
cos2(ϕ + ψ) − εμ1� sinϕ cos(ϕ + ψ)

+εζ1a sin(ϕ + ψ) cos(ϕ + ψ). (3.64)

Substituting the solution (3.15) into the differential equation (3.55) and using the
relations (3.56) and (3.60) we obtain (3.20) with (3.21), i.e.,

�′ = ε2M(�) − ε2η2aω2 cos(ϕ + ψ) cosϕ, ϕ′ = �. (3.65)

Equations (3.63)–(3.65) represent the four first order differential equations which
correspond to the second order differential equations (3.54) and (3.55). After aver-
aging equations transform into

a′ = −ζ1a

2
+ μ1�

2
cosψ, (3.66)

ψ′ = −�2 − ω2

�
+ μ1�

2a
sinψ, (3.67)

�′ = M(�) − η2a�2

2
cosψ. (3.68)

Equations (3.66)–(3.68) describe the non-stationary motion of the system.

3.2.2 Steady-State Motion and Its Properties

If there is no interaction between the oscillator and the motor the amplitude of
vibration of the oscillator decreases exponentially from the initial amplitude A (due
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Fig. 3.5 � − τ curves for
various values of the
nonlinearity order n: n = 2
(full line), n = 3 (dotted line)

to viscous damping) as a = A exp(−γτ/2), and the variation of the angular velocity
of the motor satisfies the relation

� = Vm

Cm
− Vm

Cm

1

(1 + CmV
n−1
m (n − 1)τ )1/(n−1)

. (3.69)

In Fig. 3.5, � − τ curves for various values of parameter n are plotted.
Namely, for Vm = 1 and Cm = 1 the � − τ relations according to (3.69) are:

for n = 2

� = 1 − 1

1 + τ
, (3.70)

for n = 3

� = 1 − 1

(1 + 2τ )1/2
. (3.71)

Analyzing the relations (3.69) i.e., (3.70) and (3.71), it is obvious that for any value
of parameter n, the angular velocity is zero for τ = 0, and tends to the constant
steady-state value Vm/Cm . The smaller the value of the parameter n, the steady-state
value is achieved in a shorter time.

For the steady-state respons, Eqs. (3.66)–(3.68) have the form

ζ1a

2
= μ1�

2
cosψ, (3.72)

�2 − ω2

�
a = μ1�

2
sinψ, (3.73)

M(�) = η2a�2

2
cosψ. (3.74)

Solving the algebraic equations (3.72)–(3.74), the steady-state properties of the sys-
tem are determined.

Eliminating ξ from (3.72) and (3.73) and also from (3.72) and (3.74) following
two a − � relations are obtained
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(μ1�)2 = a2
(

ζ21 + 4

(
�2 − ω2

�

)2
)

, (3.75)

ζ1a
2� = 2

μ1

η2
M(�), (3.76)

i.e., after substituting (3.58) and (3.4) it follows

(μ1�)2 = a2
(

ζ21 + 4

(
�2 − ω2

α p
2a(α−1)

�

)2
)

, (3.77)

ζ1a
2� = 2

μ1

η2
(Vm − Cm�)n. (3.78)

The solution of the system of algebraic equations (3.75) and (3.76) depends on the
motor torque function but also on the order of nonlinearity of the oscillator. Solving
algebraic equations (3.77) and (3.78) for a and �, the steady-state phase angle ψ is
calculated. Namely, the relation for phase is

2
�2 − ω2

�ζ1
= tanψ, (3.79)

and is obtained by dividing Eqs. (3.72) and (3.73).

3.2.3 Characteristic Points

According to the procedure given in Sect. 3.3, characteristic points in amplitude-
frequency curves can be calculated. Solving the system of algebraic equations (3.77)
and (3.78) and also the relation

da

d�
≡ 2μ2

1�
3 − �a2ζ21 − 8a2

(
�2 − ω2

)
�

aζ21�
2 + 4a

(
�2 − ω2

)2 − 4(α − 1)a
(
�2 − ω2

)
ω2

= −ζ1a2 + 2nCm
μ1

η2
(Vm − Cm�)n−1

2ζ1a�
,

where ω is given as (3.58), the parameters aP , �P and VmP of the characteristic point
P are obtained.

Due to complexity to the suggested calculation an approximate solution procedure
is recommended. Using the fact that the locus of the point P is near the position of
the point P’, where solutions of the Eq. (3.77) bifurcate from one to two, i.e., from
three to two real solutions, it is suggested to consider the characteristics of P’ instead
of P. Thus, for
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�P ′ = ωp′ = ωαa
(α−1)/2
p′

√
p2, (3.80)

the relation (3.77) gives the peak amplitude

aP ′ =
(

ζ1

ωαμ1

√
p2

) 2
α−3

. (3.81)

Substituting (3.81) into (3.80), the locus �P ′ for aP ′ is obtained

�P ′ =
(

ζ1

μ1

) α−1
α−3 (

ωα

√
p2
) 2

3−α

. (3.82)

Equations (3.81) and (3.82) with (3.78) give the value of a control parameter VmP ′

of the motor torque

VmP ′ = Cm

(
ζ1

μ1

) α−1
α−3 (

ωα

√
p2
) 2

3−α +
(η2

2

) 1
n

(
ζ1

μ1

) 2α
n(α−3) (

ωα

√
p2
) 6

n(3−α)

.

(3.83)
For this approximate value of the control parameter VmP ′ the Sommerfeld effect has
to appear. Analyzing the relation (3.77) it is obvious that the position of the extreme
point P’ is on a line

a = μ1

ζ1
�.

The gradient of the line does not depend on the order of nonlinearity α, but only on
the parameters μ1 and ζ1.

3.2.4 Suppression of the Sommerfeld Effect

As it is previously shown Eqs. (3.81)–(3.83) give us values �P ′ and aP ′ of the point
P’ and also the corresponding control parameter VmP ′ , which forces the amplitude-
frequency torque curve through the point P’. If the amplitude-frequency torque curve
and the backbone curve (3.80) have the equal gradients in the P’ i.e.,

da

d�
≡ 2

ωα(α − 1)
√
p2a

α−3
2

= −ζ1a2 + 2nCm
μ1

η2
(Vm − Cm�)n−1

2ζ1a�
, (3.84)

the additional condition for suppression of the Sommerfeld effect in the system is
obtained. Namely, solving the system of four algebraic equations (3.81)–(3.83) and
(3.84) four unknown values are obtained: a∗, �∗, V ∗

m and also α∗, ζ∗
1 , μ∗

1, η∗
2 or

C∗
m . The forth mentioned parameter is the control parameter for elimination of the

Sommerfeld effect.
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The left side of the Eq. (3.84) is the gradient of the backbone curve in the point
P’. Using (3.81) the gradient is

(
da

d�

)
P ′

= 2μ1

ζ1(α − 1)
.

It depends on the order of nonlinearity α: for α < 1 it is negative, for α > 1 it is
positive, while for α = 1 it represents an orthogonal direction. The bending is higher
for α significantly higher or smaller than 1.

Using relations (3.81)–(3.83), Eq. (3.84) is rewritten as

4ζ1
1 − α

= γ + Cmnμ1

(
2

η2

) 1
n
(

ζ1

μ1

) 2
n ((n−1)+ n−3

α−3 ) (
ωα

√
p2
) 2(n−3)

(3−α)n
. (3.85)

If the order of nonlinearity α and parameters n, γ, μ1 and η2 are known, solving
the relation (3.85), for example, for the parameter C∗

m , we have

C∗
m = 3 + α

1 − α

1

n

(η2

2

) 1
n

(
ζ1

μ1

)1− 2
n ((n−1)+ n−3

α−3 ) (
ωα

√
p2
) 2(n−3)

(α−3)n
. (3.86)

Substituting (3.86) into (3.87) the control parameter V ∗
m is

V ∗
m =

(
3 + α

1 − α

1

n
+ 1

)(η2

2

) 1
n

(
ζ1

μ1

) 2α
n(α−3) (

ωα

√
p2
) 6

(3−α)n
. (3.87)

It can be concluded that for parameter values (3.86) and (3.87) in the non-ideal
system with known order of nonlinearity α the jump phenomena is excluded.

3.2.5 Numerical Examples

In this section, numerical examples of electro-motors connected with pure nonlin-
ear elastic structures are considered. As is shown in the previous section, there are
numerous materials whose elastic properties are strong nonlinear. We choose two
of them: the copper alloy with α = 4/3 and aluminium alloy with α = 5/3 (Jutte
2008). The corresponding elastic forces are

Fe1 = kx |x |1/3 , Fe2 = kx |x |2/3 . (3.88)

If the motor-structure system is driven with the motor torque of cubic type

M(ϕ̇) = (V ∗
m − C∗

mϕ̇)3. (3.89)
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differential equations of motion are:
for α = 4/3

y” + p2y |y|1/3 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.90)

ϕ” = ε2[(Vm − Cmϕ′)3 − η2 p
2y |y|1/3 cosϕ], (3.91)

for α = 5/3

y” + p2y |y|2/3 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.92)

ϕ” = ε2[(Vm − Cmϕ′)3 − η2 p
2y |y|2/3 cosϕ]. (3.93)

Corresponding averaged differential equations of motion obtained analytically are

a′ = −ζ1a

2
+ μ1�

2
cosψ, (3.94)

ξ′ = −�2 − ω2
α p

2a(α−1)

�
+ μ1�

2a
sinψ, (3.95)

�′ = (Vm − Cm�)3 − η2a�2

2
cosψ, (3.96)

where dependently on the order α the frequency constants are ω4/3 = 0.96916 and
ω5/3 = 0.940 81 (see Cveticanin 2009). For μ1 = 0.15, η2 = 0.05, p2 = 1, Cm = 1
and ζ1 = 0.1 the steady-state amplitude-frequency relations (3.77) for these systems
are:
for α = 4/3

0.0225�2 = a2
(
0.01 + 4

(
�2 − 0.93927a1/3

�

)2
)

, (3.97)

for α = 5/3

0.0225�2 = a2
(
0.01 + 4

(
�2 − 0.885 12a2/3

�

)2
)

, (3.98)

while the relation (3.78) for the motor is

0.1a2� = 6(Vm − �)3. (3.99)

In Fig. 3.6, amplitude-frequency steady-state diagrams for various values of con-
trol parameter Vm and order of nonlinearity α are plotted.

Analytically obtained (full line) curves (3.97)–(3.99) are compared with numeri-
cally (3.90)–(3.93) ones, obtained by increasing (circle) and decreasing (squares) of
the control parameterVm .Numerical solutions are obtained applying theRunge–Kutta
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Fig. 3.6 Frequency-response curves for variousα obtained: a analytically (full line), b numerically
(circles - for the increasing of the Vm , squares - for decreasing of the Vm)

Table 3.1 Coordinates of
peak in the ap-�p diagram
for control parameter VmP
and certain value of α

α aP ′ �P ′ VmP ′ VmP

4/3 1.5667 1.0445 1.3941 1.4000

5/3 1.6764 1.1176 1.4917 1.4970

procedure. We note that there is a hysteresis in diagrams in the region P-Q-R-S (see
Fig. 3.6), where two stable steady-state responses exist. This phenomena, called Som-
merfeld effect, depends on the orders of nonlinearity α.

Using relations (3.81)–(3.83) coordinates of peaks (aP ′ ,�P ′) in the diagram (3.77)
and corresponding control parameters VmP ′ are calculated and shown in Table 3.1.
Approximate values VmP ′ are compared with the exact numerically obtained value
VmP . It can be seen that they are in good agreement.

For the value of the control parameter VmP the amplitude-frequency curve (3.78)
represents the boundary for which the Sommerfeld effect exists.

The question is whether the Sommerfeld effect in this non-ideal system can be
suppressed. Using the procedure given in this section, the value of the parameter α
for which the Sommerfeld effect is suppressed can be calculated. For the driving
torque with cubic nonlinearity (n = 3) the relation (3.85) simplifies to

4ζ1
1 − α

= ζ1 + 3Cmμ1

(
2

η1

) 1
3
(

ζ1

μ1

) 4
3

. (3.100)

Substituting the previously mentioned parameter values and Cm = 1 into (3.100) we
obtain the critical value of the order of nonlinearity

α∗ = 0.59851. (3.101)
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Fig. 3.7 Time history
diagrams for α = 5/3:
a non-stationary diagram for
Vm = 1.2; b, c Steady-state
diagrams for Vm = 1.2;
d non-stationary motion for
Vm = 1.4

For α = α∗ the Sommerfeld effect is suppressed. It means, that for all values of
α ≥ 1 the Sommerfeld effect exists.

To prove the correctness of analytically and numerically obtained results, let
us plot curves for the steady-state and of the non-stationary motion. In Fig. 3.7,
amplitude-frequency diagrams of the oscillator with nonlinearity order α = 5/3 for
the control parameter Vm = 1.2 (non-stationary motion in Fig. 3.7a and two steady-
state motions in Fig. 3.7b, c) and for the control parameter Vm = 1.4 (non-stationary
motion in Fig. 3.7d) are shown. Comparing these diagrams with values shown in
Fig. 3.7, it can be seen that they are in good agreement.

Based on the obtained results, it can be concluded that the methods developed
for the general type of the non-ideal system (mentioned in the previous sections) are
applicable for the pure nonlinear oscillator coupled with a non-ideal source excited
with the nonlinear torque.

3.3 Pure Strong Nonlinear Oscillator and a Non-ideal
Energy Source

Let us consider a non-ideal energy source which is settled on a foundation which is a
nonlinear oscillator (Fig. 3.4) The elastic characteristic of the oscillator is pure non-
linear and described with an elastic force which is proportional to the displacement
x with the positive rational exponent α ∈ R (integer or noninteger)
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Fe = kx |x |α−1 , (3.102)

where k is the rigidity constant. The damping property of the system is supposed to
be a linear velocity function and is given with the damping force

Fd = cẋ, (3.103)

where c is the damping coefficient.
The oscillator is driven by a motor which has an unbalancem which is on the dis-

tance d to the rotor shaft. Position of the unbalance is varying in time and is described
with the angle ϕ. As it is suggested in Dantas and Balthazar (2003), Tsuchida et al.
(2003, 2005), Souza et al. (2005a, b), Felix et al. (2009a), Castao et al. (2010), the
motor torque is a linear function of angular velocity

M(ϕ̇) = Vϕm − Cϕmϕ̇, (3.104)

where Cϕm and Vϕm are constant values and ϕ̇ is the angular velocity of the motor.
The system executes a rectilinear motion and the displacement is given with the
variable x . This motion has an effect on the rotation of the rotor of the motor.

The suggested oscillator-motor systemhas two-degrees-of-freedom. The two gen-
eralized coordinates are x and ϕ. In general, the Lagrange differential equations of
motion for the system are

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (3.105)

where T is the kinetic energy,U is the potential energy, � is the dissipation function
and Qx and Qϕ are the corresponding generalized forces.

The kinetic energy, potential energy and the dissipation function are, respectively,

T = 1

2
Mẋ2 + 1

2
m(ẋ − dϕ̇ cosϕ)2 + 1

2
m(dϕ̇ sinϕ)2 + 1

2
J ϕ̇2, (3.106)

U = k

α + 1
xα+1, � = 1

2
cẋ2, (3.107)

where a dot denotes differentiation with respect to time t , M is mass of the oscillator,
J is the moment of inertia of the motor rotor, m is mass of the rotor unbalance and
d is the length of the rotor unbalance. The virtual work of the motor torque is

δA = M(ϕ̇)δϕ, (3.108)

and the generalized forces
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Qx = 0, Qϕ = M(ϕ̇). (3.109)

Substituting (3.106)–(3.109) into (3.105), the mathematical model of the system is
obtained (Cveticanin 2009)

ẍ(M + m) + kx |x |α−1 + cẋ − md(ϕ̈ cosϕ − ϕ̇2 sinϕ) = 0,

(J + md2)ϕ̈ − mdẍ cosϕ = M(ϕ̇). (3.110)

In this case the effect of gravitational force is omitted. The model (3.110) represents
a system of two coupled strong nonlinear second order differential equations. To
find the exact (closed form) solution of (3.110) is even impossible. An approximate
solving procedure for the resonant motion of the system is suggested. It is based
on the averaging procedure adopted for the system (3.110). The influence of the
nonlinearity order on the Sommerfeld effect is discussed. A method for suppress-
ing Sommerfeld effect is developed. The critical parameters for the Sommerfeld
phenomena are approximately determined. As examples the steady-state resonant
motions of the oscillators with non-integer order driven by a non-ideal force are
considered.

3.3.1 Model of the System

It is convenient to normalize the coordinates and time in (3.110) according to

x −→ y = x/ l, t −→ τ = �∗t, (3.111)

where l is the initial length of the non-deformed spring and �∗ is the synchronous
angular velocity of the rotor (see Dimentberg et al. 1997). By introducing (3.111)
and the notation φ → ψ1, the differential equations (3.110)) transform into

y” + ζ y′ + p2y |y|α−1 = μ(ϕ” cosϕ − ϕ′2 sinϕ),

ϕ” = ηy” cosϕ + (V ∗
m − C∗

mϕ′), (3.112)

where

p2 = klα−1

�∗2(M + m)
, ζ =

(
c

M + m

)
1

�∗ , μ = dm

l(M + m)
,

η = dml

J + md2
, V ∗

m = Vϕm

(J + md2)�∗2 , C∗
m = Cϕm

(J + md2)�∗ , (3.113)

and (′) ≡(d/dτ ), (”) ≡(d2/dτ 2). After some modification, we have
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y”(1 − μη cos2 ϕ) + p2y |y|α−1 + ζ y′ = μ
[
(V ∗

m − C∗
mϕ′) cosϕ − ϕ′2 sinϕ

]
,

ϕ”(1 − μη cos2 ϕ) + μηϕ′2 cosϕ sinϕ = −η(ζ y′ + p2y |y|α−1) cosϕ

+(V ∗
m − C∗

mϕ′). (3.114)

Due to the physical properties of the system, it can be concluded that the parameters
μ and η are small in comparison to 1 and can be treated as the product of a small
parameter ε and constants μ1 and η1, i.e., μ = εμ1 and η = εη1. The same is valid for
V ∗
m and C∗

m , and also the damping parameter ζ, i.e., we have V ∗
m = εVm , C∗

m = εCm

and ζ = εζ1. Then, the system of differential equations (3.114) is simplified into

y” + p2y |y|α−1 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′),
ϕ” = −εη1 p

2y |y|α−1 cosϕ + εVm(1 − Kmϕ′), (3.115)

where ε << 1 is a small positive parameter and Km = Cm/Vm . In (3.115) the small
terms of the second order are neglected. The Eq. (3.115) represent the system of two
coupled differential equations which describe the motion of the non-ideal system
given in Cveticanin and Zukovic (2015a).

3.3.2 Analytical Solving Procedure

Let us rewrite the differential equations (3.115) into a system of four first order
differential equations

y′ = z,

z′ = −p2y |y|α−1 + εF1,

ϕ′ = �,

�′ = εF2, (3.116)

where

F1 = −(μ1�
2 sinϕ + ζz), F2 = Vm(1 − Km�) − η1 p

2y |y|α−1 cosϕ.

(3.117)
For ε = 0, the Eq. (3.116) transform into

y′ = z, z′ = −p2y |y|α−1 , ϕ′ = �, �′ = 0. (3.118)

The first two differential equations describe themotion of a pure integer or noninteger
order nonlinear oscillator (see Cveticanin et al. 2012; Cveticanin and Pogany 2012).
The exact analytical solution of (3.118) is
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y = aca(α, 1, νt), z = −2ha(α+1)/2

α + 1
sa(1,α, νt),

ϕ = C1t + C2, � = C1, (3.119)

where

ν = ha(α−1)/2, h = |p|
√

α + 1

2
, (3.120)

C1 andC2 are constants of integration, A is an arbitrary constant and ca(α, 1, νt) =ca
and sa(1,α, νt) = sa are the cosine and sine Ateb-functions given by Droniuk et al.
(1997, 2010), Droniuk and Nazarkevich (2010) (see Appendix). Namely, (3.119) is
the generating solution of the generating Eq. (3.118). Based on that solution, the trial
solution for (3.116) is introduced.

Let us express y, z, ϕ and � as functions of new variables a, ψ, ϕ and �, i.e.

y = aca(α, 1,ψ) ≡ aca(ψ),

z = − 2h

α + 1
a(α+1)/2sa(1,α,ψ) ≡ − 2h

α + 1
a(α+1)/2sa(ψ), (3.121)

and ψ2 → �. According to the expressions for the derivatives of Ateb functions
(A22) and (A23) (see Appendix), the first time derivatives of (3.121) follow

y′ = a′ca(ψ) − 2ψ′

α + 1
asa(ψ),

z′ = −ha(α−1)/2A′sa(ψ) − 2hψ′

α + 1
a(α+1)/2caα(ψ). (3.122)

Substituting (3.122) into (3.116) and using the relations (A21) (see Appendix) and
(3.120), the modified equations of motion are

ψ′ = ha(α−1)/2 − εF1
α + 1

2h
a−(α+1)/2ca(ψ),

a′ = −εF1

h
a(1−α)/2sa(ψ),

ϕ′ = �,

�′ = εF2, (3.123)

where

F1 = −μ1�
2 sinϕ + ζ1

2h

α + 1
a(α+1)/2sa(ψ),

F2 = Vm(1 − Km�) − η1 p
2aca(ψ) |aca(ψ)|α−1 cosϕ.
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Equation (3.123) are the four first order differential equations which in the first
approximation correspond to (3.166). In these equations the trigonometric and Ateb
periodic functions exist. It is well known that the period of trigonometric functions
sinϕ and cosϕ is 2π, while of the Ateb functions sa(ψ) and ca(ψ) is 2�α, where the
expression for �α is given in Appendix (see Eq. (A14))

�α = B

(
1

α + 1
,
1

2

)
, (3.124)

and B is the beta function (Abramowitz and Stegun 1964). Introducing the new
variable

ψ = �α

2π
ψ̄, (3.125)

we obtain the Ateb functions sa(�α

2π ψ̄) and ca(�α

2π ψ̄) whose period is also 2π as is
for the trigonometric functions sinϕ and cosϕ. Substituting (3.125) into (3.123), it
follows

ψ̄′ =
(
2π

�α

)
ha(α−1)/2 − εF1

α + 1

2h

(
2π

�α

)
a−(α+1)/2ca

(
�α

2π
ψ̄

)
,

a′ = −εF1

h
a(1−α)/2sa

(
�α

2π
ψ̄

)
,

ϕ′ = �,

�′ = εF2, (3.126)

where

F1 = −μ1�
2 sinϕ + ζ1

2h

α + 1
a(α+1)/2sa

(
�α

2π
ψ̄

)
,

F2 = Vm (1 − Km�) − η1 p
2Aca

(
�α

2π
ψ̄

) ∣∣∣∣aca
(

�α

2π
ψ̄

)∣∣∣∣
α−1

cosψ. (3.127)

Differential equations (3.126) represent the mathematical model of the non-ideal
system for the non-resonant case which is not of a significant interest. Much more
important case is the resonant one.

3.3.3 Resonant Case and the Averaging Solution Procedure

Let us introduce the new variable θ which satisfies the relation

ψ̄ = θ + ϕ, (3.128)
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with time derivative
ψ̄′ = θ′ + �. (3.129)

Substituting (3.129) and (3.128) into (3.126), differential equations with variables
A, θ, ϕ and � follow as

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εF1

α + 1

2h

(
2π

�α

)
a−(α+1)/2ca

(
�α

2π
(θ + ϕ)

)
,

a′ = −εF1

h
a(1−α)/2sa

(
�α

2π
(θ + ϕ)

)
,

ϕ′ = �,

�′ = εF2, (3.130)

where

F1 = −μ1�
2 sinϕ + γ

2h

α + 1
a(α+1)/2sa

(
�α

2π
(θ + ϕ)

)
,

F2 = Vm(1 − Km�) − η1 p
2aca

(
�α

2π
(θ + ψ1)

) ∣∣∣∣aca
(

�α

2π
(θ + ϕ)

)∣∣∣∣
α−1

cosϕ.

(3.131)

For the case when (
2π

�α

)
ha(α−1)/2 − � = εσ, (3.132)

the condition of nonlinear resonance is satisfied. Thus, according to (3.130)1, θ′ is
of the order ε. For θ′ of the order O(ε), the relation (3.129) yields the difference
between the frequencies (ψ̄′ − ϕ′) ≡ (ψ̄′ − �) to be also of the ε order.

To solve the system of differential equations (3.130) is not an easy task. It is
the reason the averaging procedure suggested by Zhuravlev and Klimov (1988) is
adopted for this special case. The averaging is done over the period 2π of the variable
ϕ. The averaged differential equations are

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εF̄1θ

α + 1

2h

(
2π

�α

)
a−(α+1)/2,

a′ = −εF̄1A

h
a(1−α)/2,

ϕ′ = �, � = εF̄2, (3.133)
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where

F̄1A = −μ1�
2 f̄1 + ζ1

2h

α + 1
a(α+1)/2 f̄2,

F̄1θ = −μ1�
2 f̄3 + ζ1

2h

α + 1
a(α+1)/2 f̄4,

F̄2 = Vm(1 − Km�) − η1 p
2Aα f̄5, (3.134)

and

f̄1 = 1

2π

2π∫

0

sinϕsa

(
�α

2π
(θ + ϕ)

)
dϕ, f̄2 = 1

2π

2π∫

0

sa2
(

�α

2π
(θ + ϕ)

)
dϕ,

f̄3 = 1

2π

2π∫

0

sinϕca

(
�α

2π
(θ + ϕ)

)
dϕ,

f̄4 = 1

2π

2π∫

0

sa

(
�α

2π
(θ + ϕ)

)
ca

(
�α

2π
(θ + ϕ)

)
dϕ,

f̄5 = 1

2π

2π∫

0

cosϕca

(
�α

2π
(θ + ϕ)

) ∣∣∣∣caα−1

(
�α

2π
(θ + ϕ)

)∣∣∣∣ dϕ. (3.135)

Being the sine and cosine Ateb periodic functions, they are suitable for Fourier series
expansion. The finite Fourier approximation of the functions is according to Droniuk
et al. (2010, 2010)

sa(1,α,ψ) = a0
2

+
∞∑
n=1

an sin
πnψ

�α
,

ca(α, 1,ψ) =
∞∑
n=1

bn cos
πnψ

�α
, (3.136)

where the coefficient in the series are

a0 = 2

�α

�α∫

0

sa(1,α,ψ)dψ, an = 2

�α

�α∫

0

sa(1,α,ψ) sin
πnψ

�α
dψ,

bn = 2

�α

�α∫

0

ca(α, 1,ψ) cos
πnψ

�α
dψ (3.137)

and ψ ≡ �α

2π (θ + ϕ). In this calculation the Fourier series expansion of the function
ca(ψ)

∣∣caα−1(ψ)
∣∣ is also introduced as (see Mickens 2004; Cveticanin 2008)
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ca(ψ)
∣∣caα−1(ψ)

∣∣ =
∞∑
n=1

cn cos(nψ), (3.138)

with

cn = 4

π

π/2∫

0

ca(ψ)
∣∣caα−1(ψ)

∣∣ cos(nψ)dψ. (3.139)

For practical reasons, it is suitable to determine the solution in the first approximation.
Then, using the first terms of the Fourier series (3.136), the expressions (3.134) and
(3.135) are transformed into

f̄1 = 1

2
a1 cos θ, f̄2 = 1

2
a21, f̄3 = −1

2
b1 sin θ, f̄4 = 0, f̄5 = 1

2
c1 cos θ,

(3.140)
and

F̄1A = −1

2
μ1a1�

2 cos θ + ζ1
h

α + 1
a(α+1)/2a21,

F̄1θ = 1

2
μ1b1�

2 sin θ, F̄2 = Vm(1 − Km�) − 1

2
η1 p

2aαc1 cos θ (3.141)

where a1, b1 and c1 are the coefficients calculated according to (3.137) and (3.139) for
n = 1. Substituting (3.141) into (3.133) the simplified averaged differential equations
are

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εμ1

2
b1�

2 α + 1

2h

(
2π

�α

)
a−(α+1)/2 sin θ,

A′ = −1

h
a(1−α)/2

(
−εμ1

2
a1�

2 cos θ + εζ1a
2
1

h

α + 1
a(α+1)/2

)
,

�′ = ε

(
Vm(1 − Km�) − 1

2
η1c1 p

2aα cos θ

)
. (3.142)

The equations describe the transient motion in the resonant case.

Steady - state solution

Equating the right side of the Eq. (3.142) to zero and after some modification the
steady-state equations up to the first order approximation are

εμ1�
2 sin θ = 1

b1

4h

α + 1

[
ha(α−1)/2 −

(
�α

2π

)
�

]
a(α+1)/2, (3.143)

εμ1�
2 cos θ = 2εζ1a1h

α + 1
a(α+1)/2, (3.144)
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η1c1 p
2aα cos θ = 2Vm(1 − Km�). (3.145)

Eliminating the variable θ in the Eqs. (3.143) and (3.144) the frequency - response
relation is as follows

1 = a(α+1)

�4μ2
1

⎛
⎝
(
2ζ1a1h

α + 1

)2

+
(
4h

εb1

ha(α−1)/2 − (
�α

2π

)
�

α + 1

)2
⎞
⎠ . (3.146)

Dividing Eqs. (3.144) and (3.145) the a − θ expression as a function of the control
parameter Vm is obtained

Vm(1 − Km�) = η1c1a1 p2

μ1(α + 1)

ζ1h

�2
a(3α+1)/2. (3.147)

Characteristic points

The characteristic point P for the curves (3.72) and (3.147) corresponds to the peak
amplitude and exists if the condition of the equality of the gradients da/d� for the
both curves is satisfied.Due to complexity of the expressions, it is suggested to use the
approximate procedure for obtaining of this point. Instead of the exact characteristic
point P, the point P’ is determined, in which the bifurcation of the solutions of the
Eq. (3.72) appears. It is known that the locus of these two points (P and P’) are quite
close to each other.

Let us assume that in (3.66) the left hand side of the equation is zero, i.e.,

ha(α−1)/2 −
(

�α

2π

)
� = 0. (3.148)

Substituting (3.148) into (3.72) the peak amplitude is obtained

aP =
(

1

μ1

(
�α

2πh

)2 (2ζ1a1h
α + 1

))2/(α−3)

. (3.149)

Substituting (3.149) into (3.148), the locus �P for aP is obtained

�P =
((

�α

2πh

)(α+1) ( 2ζ1a1h

μ1(α + 1)

)(α−1)
)1/(α−3)

. (3.150)

Equations (3.149) and (3.150) with (3.147) give the value of a control parameter
VmP ′ of the motor torque

VmP = q2c1a1 p2

μ1(α + 1)(1 − Km�P)

ζ1h

�2
P

a(3α+1)/2
P . (3.151)
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For this approximate value of the control parameter VmP the Sommerfeld effect has
to appear.

Analyzing the relations (3.149) and (3.150) it can be seen that the relations are
independent on the value of η1.

3.3.4 Suppression of the Sommerfeld Effect

As it is previously shown the Eqs. (3.149)–(3.151) give us the values aP ′ , �P ′ of the
point P’ and also the corresponding control parameter VmP for which the Sommerfeld
effect exists and the amplitude-frequency torque curve is forced through the point
P’. Our intention is to suppress the Sommerfeld effect which is evident for P’.

Let us calculate the gradient of the backbone curve (3.148) in the bifurcation
point P. Substituting aP given with the relation (3.149) into the first derivative
(da/d�) of the relation (3.148), the required gradient is obtained

(
da

d�

)
P

= α + 1

α − 1

μ1

ζ1a1

(
2π

�α

)
. (3.152)

The gradient is the function of the order of the nonlinearityα. Forα < 1 the direction
of the tangent is such to give an obtuse angle and for α > 1 a sharp angle. For α = 1
the tangent is orthogonal.

The gradient of the amplitude-frequency torque curve (3.147) for the bifurcation
point is also worth to be determined. The first derivative (d A/d�) for (3.147) is
calculated and the coordinates �P for aP given with relations (3.149) and (3.150)
have to be substituted

(
da

d�

)
P

= VmP
2(2 − 3Km�P)μ1

η1c1a1 p2ζ1h

α + 1

3α + 1

�P

(aP)(3α−1)/2
. (3.153)

Equating the gradients (3.152) and (3.153) in the P’ and assuming the condition
(3.151), we have

3α + 1

α − 1

μ1

ζ1a1

(
2π

�α

)
= 2(2 − 3Km�P)

(α + 1)(1 − Km�P)

aP

�P
. (3.154)

The relation (3.154) depends on the parameter of the torque Km , parameters of
eccentricity μ1, and also on the order of nonlinearity α. Due to the motor properties
(3.3) and the sign of the gradient of the Vm curve, it can be concluded that the relation
(3.154) is valid only for α < 1.

Let us solve the relation (3.154) for the driving parameter

K̃m = 2 − p1
(3 − p1)�P

, (3.155)
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where

p1 = (3α + 1)(α + 1)

α − 1

μ1

ζ1a1

(
π

�α

)
�P

aP
. (3.156)

Then the value Ṽm is the necessary one for elimination of the Sommerfeld effect. Sub-
stituting the value of K̃m (3.155) into the relation for VmP (3.151), the corresponding
control parameter Ṽm is obtained

Ṽm = (3 − p1)η1c1a1 p2

μ1(α + 1)

ζ1h

�2
P

a(3α+1)/2
P . (3.157)

Finally, the parameter C̃m is

C̃m = Ṽm

K̃m

= η1c1a1 p2(3 − p1)2

μ1(α + 1)(2 − p1)

ζ1h

�p
a(3α+1)/2
P . (3.158)

For the parameter value (3.158) i.e., (3.155) and (3.157) the jump phenomena in the
non-ideal system with known order of nonlinearity α is excluded. For all values of
the control parameter Vm there is always only one steady point in the a − � curve,
i.e., only one intersection point between Vm and a − � curve. Then, the Sommerfeld
effect does not exist.

3.3.5 Numerical Examples of Non-ideal Driven Pure
Nonlinear Oscillators

For physical interpretation, a motor-support system mounted in a soya extraction
plant is considered: mass of the system is (M + m) of 5 kg, radius of the motor
rotor is 0.120 m, measure of the unbalance is md = 0.0125 kgm, length l is 0.05 m,
moment of inertia of themotor rotor J = 0.698 × 10−3 kgm2, the synchronous speed
of the rotor is �∗ = 1450 rpm and the damping coefficient is c = 37. 961 kg/s. The
three types of nonlinearity are considered: one, with the order of nonlinearity α =
2/3 (smaller than 1) and coefficient of rigidity k = 0.42470 × 105 N/m2/3, second,
with α = 1 (linear case) and coefficient of rigidity k = 1. 152 8 × 105 N/m and with
the order of nonlinearity α = 5/3 (higher than 1) and coefficient of rigidity k =
8. 494 1 × 105 N/m5/3. Two values of the motor parameters are considered: Cϕm =
1.898Nm/s andCϕm = 18.98Nm/s. The corresponding non-dimensional parameters
are according to (3.53): ε = 0.1, μ1 = 0.5, η1 = 0.5, p2 = 1 and ζ1 = 0.5. Two
values for Cm are 1 and 10. Varying the control parameter Vm of the motor, the
steady-state properties of the system are analyzed. For Cm = 1 the initial control
parameter for the increasing case is Vm = 0.3 and for the decreasing case it is Vm =
1.2, while forCm = 10 it is Vm = 3 and Vm = 12, respectively. The analytical results
are obtained by solving the relations (3.72) and (3.147), and numerical ones by
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Fig. 3.8 Frequency-
response steady state curve
obtained analytically for
α = 5/3 and Cm = 10 with
characteristic points

integrating of the original differential equations of motion (3.48). For numerical
calculation the Runge–Kutta procedure is applied.

The numerical procedure is as follows: for a certain value of the control parameter
Vm the relations (3.48) are numerically solved and the amplitude and frequency are
computed. The amplitude of vibration is computed for the maximal disposition of
the oscillator from the equilibrium position, while the frequency of vibration is the
averaged value for ψ̇1 during the steady state motion. These values are the initial
values for the further numerical calculation. Increasing the control parameter Vm

for a small value, the new steady-state parameters are computed. The numerical
calculation is repeated for the new higher value of the control parameter and with
initial conditionswhich are the previous steady-state parameters. After the significant
repetition of the numerical process for increasing of the control parameter Vm , an
amplitude-frequency curve for increasing of the control parameter is obtained. In
contrary, if the same procedure is applied but the control parameter is decreased the
another amplitude-frequency curve is obtained which partly differs from the first
one.

If during the numerical solution of (3.48) the obtained amplitudes significantly
differ for the two infinitesimal close values of the control parameter Vm , it is evi-
dent that the jump phenomena occurs. It gives us the chance to “recognized” the
Sommerfeld effect during the numerical process.

In Figs. 3.8 and 3.9 the amplitude - frequency diagrams obtained analytically
by solving (3.72) and (3.147) and numerically by solving (3.48) for Cm = 10 and
α = 5/3 are plotted. The control parameter Vm is varied and the steady-state ampli-
tude - frequency values are obtained. The computation timewas 200 periods of vibra-
tion T . The steady-state numerical solution is reached after approximately 30T . The
period T is computed numerical. For the certain value of control parameter Vm the
steady state amplitude and frequency are calculated. These values were used as the
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Fig. 3.9 Frequency-
response curves for α = 5/3
and Cm = 10 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

initial conditions for computation of the steady-state values for the new value of the
control parameter Vm .

From the both figures it is obvious that for slow increasing of � and variation of
the motor parameter Vm , the amplitude of vibration increases up to the point P. Using
the relations (3.149)–(3.151) the parameters of the characteristic point are obtained:
aP = 0.9, �P = 0.92 and VmP = 9.42. Along the curve VmP the jump phenomena
from P to Q (aQ = 0.098, �Q = 0.94) occurs. For that position �Q > �P , but
the amplitude aQ is significantly smaller than aP . Further increase of the control
parameter Vm causes the further decrease of the amplitude of vibration for increase
of the frequency �. If the value of the control parameter Vm is decreased, the steady-
state locus in a − � plane moves to left along the a − � curve to the point R.
The frequency � decreases and the amplitude a increases slowly up to the value
of aR = 0.1 at the frequency �R = 0.6 (the values are obtained numerically). For
VmR = 6.01 a sudden change in the amplitude of vibration appears. The amplitude
jumps along the curve VmR to the value aS = 0.3with�S = 0.6. The further decrease

Fig. 3.10 Frequency-
response steady state curve
obtained analytically for
α = 5/3 and Cm = 1 with
characteristic points
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of the control parameter Vm produces amplitude and frequency decrease. The region
in the a − � plane bounded with the part SP and RQ of the a − � curves and also
RS and PQ parts of the Vm − � curves represent the hysteresis and the jump from P
to Q and R to S in the system is the so called Sommerfeld effect well known in the
non-ideal mechanical systems.

In Fig. 3.9 the values obtained numerically by solving of the original differential
equations of motion (3.48) for increasing of the control parameter Vm is plotted
with circles (o) and for decreasing of the control parameter with a filled squares
(�). Comparing the analytically obtained solutions (full line) with the numerically
obtained values it can be seen that the results are in a good agreement.

In Figs. 3.10 and 3.11 the frequency-response curve for the oscillator with order
of nonlinearity α = 2/3 and motor parameter Cm = 1 is plotted. The curves in
Fig. 3.10 are obtained by solving the approximate relations (3.72) and (3.147), while
in Fig. 3.11 numerically solved differential equations (3.48) are plotted. Both figures
show that for slow increasing of � and variation of the motor parameter Vm , the
amplitude of vibration increases up to the point P whose properties are aP = 0.9,
�P = 0.9 and VmP = 1.12.

Fig. 3.11 Frequency-
response curves for α = 5/3
and Cm = 1 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

Fig. 3.12 Frequency-
response steady state curve
obtained analytically for
α = 2/3 and Cm = 10 with
characteristic points
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Along the curveVmP the jumpphenomena fromP toQ (aQ = 0.055,�Q = 1.115)
occurs: the frequency �Q is higher than �P , and the amplitude aQ is smaller than
aP . During further increase of the control parameter Vm , the amplitude of vibra-
tion decreases while the frequency � increases. If the value of the control parame-
ter Vm is decreased, the steady-state locus in a − � plane moves to left along the
a − � curve to the point R. The frequency decreases to �R = 0.6 and the amplitude
increases to aR = 0.125 when VmR = 0.6. Then a sudden change in the amplitude
of vibration appears. The amplitude jumps along the curve VmR to the amplitude
aS = 0.3 and frequency �S = 0.585. The further decrease of the control parameter
Vm produces amplitude and frequency decrease. The bounded region SPQR repre-
sents the hysteresis plane. Comparing Figs. 3.8 and 3.10 it is seen that the Sommer-
feld effect occurs for lower values of the motor parameter Vm if Cm = 1 than if it is
Cm = 10.

In Fig. 3.11 the numerically obtained a − � diagrams are plotted: Vm is increased
(o), and Vm is decreased (�). These numerically obtained results by solving (3.48)
are compared with analytically obtained results (full line curves). The difference
between the analytical and numerical solutions is negligible.

In Figs. 3.12 and 3.13 the analytically and numerically obtained amplitude -
frequency curves for the oscillator with the order of nonlinearity α = 2/3 and motor
parameter Cm = 10 are plotted. The analytical solutions are obtained by solving
(3.72) and (3.147), and the numerical solutions by solving (3.48). The computation
procedure was the same to that made in the previous calculation.

First, the control parameter Vm was slowly increased. The steady-state frequency
and amplitude increase, too, up to P, when the control parameter has the value VmP =
12.45 and the amplitude and frequency are aP = 0.075, �P = 1.24. These values
are obtained analytically by solving the relations (3.149)–(3.151). For that value of
control parameter (VmP = 12.45) a sudden change in amplitude occurs for the almost

Fig. 3.13 Frequency-
response curves for α = 2/3
and Cm = 10 obtained
analytically (full line),
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)
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Fig. 3.14 Frequency-response steady state curve obtained analytically for α = 2/3 and Cm = 1 :
a with characteristic points, b for increasing of Vm , c for decreasing of Vm

the same frequency.Namely, there is the jump to the pointQwith the following values
of the amplitude and frequency: aQ = 0.475, �Q = 1.22. Increasing the value of
Vm gives decreasing of the amplitude a and increasing of �. If the control parameter
is Vm and the frequency � are decreased, the amplitude of vibration increases up to
aR = 1.0 for VmR = 10.55 and�R = 1.03. At that value of the control parameter the
jump to another steady state position occurs with amplitude aS = 0.02 and frequency
�S = 1.04. Further decrease of the control parameter gives also the decrease of the
amplitude and frequency. Finally, it can be concluded that the Sommerfeld effect and
the jump phenomena occur for VmP = 12.45 and VmR = 10.55.

Comparing the analytically obtained curve (full line) and the numerically obtained
curves for the case when the control parameter increases (o) and when it decreases
(�) it can be seen that the difference is negligible (see Fig. 3.13).

In Figs. 3.14 and 3.15 the frequency-response curve for the oscillator with order
of nonlinearity α = 2/3 and motor parameter Cm = 1 is plotted. The curves in
Fig. 3.14 are obtained by solving the approximate relations (3.72) and (3.147), while
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Fig. 3.15 Frequency-
response curves for α = 2/3
and Cm = 1 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

in Fig. 3.15 numerically solved differential equations (3.48) are plotted. In Fig. 3.14b
the steady-state motion for increasing value of the control parameter Vm is plotted.
The amplitude of vibration increases slowly with the frequency up to the point A1

with coordinatesaA1 = 0.1,�A1 = 1.24 for the control parameterVmA1 = 1.249. For
that value of the control parameter the other steady state motion is with the amplitude
aA2 = 0.875, and frequency �A2 = 1.04. For this value of the control parameter the
amplitude increases significantly, and the frequency decreases. For higher values of
the control parameter the tendency of increase but also decreasing of the frequency
is evident. For the control parameter VmA3 = 1.305 the peak amplitude aA3 = 1.025
for �A3 = 1.03 is reached. For this value of control parameter the another steady
statemotion iswith amplitude and frequency aA4 = 0.455,�A4 = 1.25, respectively.
Further increase of the control parameter Vm gives the decrease of the amplitude and
increase of the frequency.

In Fig. 3.14c the procedure is repeated but in the opposite direction: the control
parameter Vm is decreased. Decreasing Vm , the amplitude is increasing up to aB1 =
0.7and the frequency is decreased to �B1 = 1.13 for VmB1 = 1.261. At that value of
the control parameter a jump to the amplitude aB2 = 0.9 and frequency �B2 = 1.04
occurs. Further decrease of the control parameter causes decrease of the amplitude
but increase of the frequency to the boundary values aB3 = 0.475, �B3 = 1.12 for
VmB3 = 1.190. For that value of control parameter the other steady state motion is
with parameters aB4 = 0.025, �B4 = 1.19. Decreasing Vm the amplitude and fre-
quency decrease. In Fig. 3.14a the four values of the control parameter Vm for with the
amplitude - frequency curve of the motor is the tangent of the steady state curve are
shown. It means, that for� slowly increased two times the jump phenomena appear:
from A1 to A2 (the amplitude jumps to a higher value) and from A3 to A4 (the ampli-
tude jumps to a smaller value) as is shown in Fig. 3.14b. For slow decreasing of �

the amplitude jumps two times in the steady-state curve, too (see Fig. 3.14c) from
B1 to B2 (the amplitude jumps to a higher value) and from B3 to B4 (the amplitude
jumps to a smaller value).
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In Fig. 3.15 the numerically obtained a − � diagrams are plotted: Vm is increased
(o), and Vm is decreased (�). These numerically obtained results by solving (3.48)
are compared with analytically obtained results (full line curves). The difference
between the analytical and numerical solutions is negligible.

In Fig. 3.16 the influence of the control parameter Vm on amplitude-frequency
curve obtained analytically by solving (3.72) and (3.147) for the linear oscillator
α = 1 and motor parameter Cm = 1 is analyzed. In the diagram two values of the
control parameter for which the Sommerfeld effect occurs is obtained. For the case
of increasing frequency, the control parameter for which two steady state motions
P(aP = 1, �P = 1) and Q(aQ = 0.14, �Q = 1.24) exist is VmP = 1.251. For the
case of decreasing frequency, for the control parameter VmR = 1.101 the jump is
from R(aR = 425, �R = 1.06) to S(aS = 0.075, �S = 0.7).

In Fig. 3.17 we plot the case where the Sommerfeld effect is suppressed. The
parameters of the system are α = 2/3, ε = 0.1, μ1 = 0.5, η1 = 0.5, p2 = 1 and
ζ1 = 1.2. Two values of Cm are considered: Cm = 0.85 (Fig. 3.17a) and Cm = 5
(Fig. 3.17b) while Vm is varied. The first value for Cm is computed according to
(3.158) and the second value is an arbitrary one. It can be seen that for Cm = 5 the
Vm intersects the A-� curve in one, two or three points giving the Sommerfeld effect.

Fig. 3.16 Frequency-
response steady state curve
obtained analytically for
α = 1 and Cm = 1 with
characteristic points

Fig. 3.17 Frequency-
response steady state curve
obtained analytically for
α = 2/3 and: a Cm = 0.85,
and b Cm = 5
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ForCm = 0.85 only one intersection point of Vm with the amplitude frequency exists
and no amplitude jump exists. Thus, the Sommerfeld effect is eliminated.

Comparing the curves and the results plotted in Figs. 3.8, 3.9, 3.10, 3.11, 3.12,
3.13, 3.14, 3.15 and 3.16 the following is concluded:

1. The amplitude-frequency curve bends on right forα > 1 (Figs. 3.8 and 3.9), on the
left forα < 1 (Figs. 3.12, 3.13, 3.14 and 3.15) and is straight forα = 1 (Fig. 3.16).

2. For Cm = 10 the lines for Vm curves in Figs. 3.8, 3.9, 3.12 and 3.13 are closed to
the vertical direction and this case is close to the ideal system. For the ideal system,
the oscillator has no influence on the motion of the motor and there is no coupling
between these two motions. The ideal system has one-degree-of-freedom and the
motion of the oscillator is forced with a time periodical excitation force. The
mathematical model of the system is a second order differential equation. For
Cm = 10 (see Figs. 3.14, 3.15 and 3.16) the Vm curves are bent and the properties
of non-ideal system are highly significant. For Cm = 1 and α = 1 two charac-
teristic values of the control parameter Vm are evident (see Fig. 3.16), while for
Cm = 10 and α = 2/3 even four (Figs. 3.14 and 3.15).

3. In the system with order of nonlinearity α = 2/3 the Sommerfeld effect can be
eliminated by suitable assumption of the value of the parameterCm (see Fig. 3.17).
Namely, for Cm = 5 the effect of jump occurs (Fig. 3.14b), while for the critical
value Cm = 0.85 and any value of Vm , the Sommerfeld effect is eliminated.

3.3.6 Conclusion

Analyzing the results the following is concluded:

1. In the non-ideal system which contains a pure nonlinear oscillator (order of the
nonlinearity is integer or non-integer) and a motor with linear torque properties
(a non-ideal source) for certain parameter values the resonant phenomena appears.

2. The approximate averaging procedure, based on the introduction of additional
slow variables, as it is assumed that the angular velocity and the frequency of the
structure are functions of these variables, is appropriate for analytical analysis of
the problem. The suggested averaging procedure gives the equations which are
suitable for analysis of the near resonant case. Results which are obtained are
applicable for the analysis of the characteristic properties of the system:

(a) The amplitude-frequency curve bends on right for the nonlinearity of the
order higher than 1, i.e., the order is a positive rational number higher than
1. The amplitude-frequency curve bends on the left, if the nonlinearity is
a positive rational number smaller than 1. For the linear case,the backbone
curve of the amplitude-frequency steady state curve is straight.

(b) The approximate value of the control parameter for the non-ideal source
is analytically calculated applying the method of equating the gradient of
the both amplitude-frequency curves (of the oscillator and of the motor) in
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the intersection points. The criteria for the Sommerfeld effect is analytically
obtained.

(c) The Sommerfeld effect occurs not only for the linear case and when the
nonlinearity is higher than 1 (as it is previously published), but also if the
nonlinearity is a positive rational number smaller than 1.

(d) The parameters of the energy source effect the steady-state properties of
the non-ideal mechanical system. The both parameters of the motor torque
(Vmφ and Cmφ) and also their rate determine the motion properties. Hence,
independently on the order of nonlinearity, the higher the value of Cmφ the
system tends to the ideal one.

(e) For the casewhen the nonlinearity is of the order smaller than 1, the amplitude
jump effect may occur two times during increase of the motor property Vmφ

and two times during its decrease. For certain motor property the characteris-
tic curve may be the tangent of the amplitude-frequency curve in two points
during increase of Vmφ and also during its decrease, and for these values
the jump effect occur. In the linear non-ideal oscillator and in the oscillator
with a nonlinearity higher than 1 the jump phenomena is evident once during
increasing and once during decreasing of Vmφ. Namely, the characteristic of
the motor is the tangent of the amplitude-frequency curve for one Vmφ during
increase, and for other value during decrease.

4. The method given in this text obtains motor torque parameters which can sup-
press the Sommerfeld effect in the non-ideal mechanical system with the positive
nonlinearity of order smaller than 1. The Sommerfeld effect and the jump phe-
nomena in the amplitude for non-ideal systemmay be suppressed by these critical
parameter values.

5. Comparing the analytical and numerical solutions it is evident that they are in a
good agreement independently on the order of nonlinearity.

3.4 Stable Duffing Oscillator and a Non-ideal
Energy Source

Let us consider a motor operating on a structure with strong cubic nonlinearity
(Fig. 3.18). Oscillator is of Duffing type and is connected with the motor with limited
power supply. The motor has an eccentric mass which is the part of the non-ideal
perturbation source. The driving of the system comes from the unbalanced rotor
linked to the oscillator fed by an electric motor. The driven system is taken as a
consequence of the dynamics of the whole system (oscillator plus rotor). Duffing
oscillator, connected with non-ideal energy source, is of hardening type with strong
cubic nonlinearity which was widely investigated by Krylov and Bogolubov (1943),
Ueda (1985), Fang and Dowell (1987), Pezeshki and Dowell (1988), Yuste and
Bejarano (1986, 1990), Cheng et al. (1991), Chen and Cheung (1996), Chen et al.
(1998), Gendelman and Vakakis (2000), Mickens (2001, 2006), Andrianov (2002),
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Fig. 3.18 Model of the
motor-structure non-ideal
system

He (2002), Hu andXiong (2003), Andrianov andAwrejcewicz (2003a, b), Amore and
Aranda (2005), Cveticanin (2004, 2006, 2011), Ozis and Yildirm (2007), Belendez
et al. (2007),Cveticanin et al. (2010),Kovacic et al. (2010) andothers. The structure of
mass M is connected to a fixed basement by a non-linear spring and a linear viscous
damper (damping coefficient c). The nonlinear spring stiffness is given by k1x +
k2x3, where x denotes the structure displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the structure is due to an
in-board non-ideal motor driving an unbalanced rotor. We denote by ϕ the angular
displacement of the rotor unbalance, and model it as a particle of mass m and radial
distance d from the rotating axis. The moment of inertia of the rotating part is J . For
the resonant case the structure has an influence on the motor input or output. The
forcing function is dependent of the system it acts on and the source is of non-ideal
type.

The non-ideal problem has two - degrees of freedom, represented by the general-
ized coordinates x andϕ. The kinetic energy T , potential energyU and the dissipative
function � are expressed by

T = 1

2
Mẋ2 + 1

2
m(ẋ2 + d2ϕ̇2 − 2dẋϕ̇ sinϕ) + 1

2
J ϕ̇2, (3.159)

U = 1

2
k1x

2 + 1

4
k2x

4 − (M + m)gx − mgd cosϕ, � = 1

2
cẋ2. (3.160)

A dot denotes differentiation with respect to time t . Lagrange’s equations of motion
for the system are in general

d

dt

(
∂T

∂ ẋ

)
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

(
∂T

∂ϕ̇

)
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ̇,

where Qx and Qϕ̇ are generalized forces.
The differential equations of motion have the form
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ẍ(M + m) + cẋ − md(ϕ̈ sinϕ + ϕ̇2 cosϕ) + k1x + k2x
3 = (M + m)g,

(J + md2)ϕ̈ − mdẍ sinϕ + mgd sinϕ = M(ϕ̇), (3.161)

where M(ϕ̇) is the motor torque. The most often used model of the torque is the
linear moment-speed relation (see Dimentberg et al. 1997)

M(ϕ̇) = M0

(
1 − ϕ̇

�

)
, (3.162)

where M0 and � are constant values.
It is convenient to normalize the coordinates and time according to

x −→ y = �2

g
x, t −→ τ = �t, (3.163)

where g is the gravity constant. By introducing (3.163) the differential equations
(3.161) transform into

y” + ζ y′ + p2y + γy3 = 1 + μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ − η sinϕ + F(1 − ϕ′), (3.164)

where

p = ω∗

�
, ω∗2 = k1

M + m
, γ = k3g2

(M + m)�6
, ζ = c

�(M + m)
,

μ = m

M + m

d�2

g
, η = gmd

�2(J + md2)
, F = M0

�2(J + md2)
, (3.165)

and prime denotes differentiationwith respect to τ . The differential equations (3.164)
are non-linear and coupled.

3.4.1 Asymptotic Solving Method

In the regime near resonant the difference between the excitation frequency is close
to the natural frequency. For the near resonant case one can write

ϕ′ − p = εσ, (3.166)

where εσ is the detuning parameter with the small parameter ε << 1. Expressing
parameters of equations (3.165) by

ζ = εζ1, γ = εγ1, μ = εμ1, η = εη1, F = εF1, (3.167)
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the differential equations of motions have the form

z′′ + p2z = εμ1
(
ϕ′′ sinϕ + ϕ′2 cosϕ

)− εζ1z
′ − εγ1

(
z + 1

p2

)3
]

,

ϕ′′ = εη1z
′′ sinϕ − εη1 sinϕ + εF1(1 − ϕ′), (3.168)

where the new variable is

z = y − 1

p2
. (3.169)

Expressing z” and ϕ” from the Eq. (3.168) and assuming only the terms to O(ε2) we
obtain

z” + p2z = ε

[
μ1ϕ

′2 cosϕ − ζ1z
′ − γ1(z + 1

p
)3
]

+ ε2 . . . ,

ϕ” = ε
[
F1(1 − ϕ′) − η1(1 + p2z) sinϕ

]+ ε2.... (3.170)

Following the reference (Warminski et al. 2001)

z = a cos(ϕ + ψ), (3.171)

where a and ψ are the new coordinates. The first derivative is

z′ = −ap sin(ϕ + ψ), (3.172)

when
a′ cos(ϕ + ψ) − a(ω + ψ′ − p) sin(ϕ + ψ) = 0. (3.173)

Determining the second derivative of z and substituting (3.171) and (3.172) into
(3.170) we obtain

−a′ p sin(ϕ + ψ) − ap(ω + ψ′) cos(ϕ + ψ) + p2a cos(ϕ + ψ)

= εμ1ω
2 cosϕ + apεζ1 sin(ϕ + ψ) − εγ1

[
a cos(ϕ + ψ) + 1

p

]3
,

ω′ = εF1(1 − ω) − εη1[1 + ap2 cos(ϕ + ψ)] sinϕ. (3.174)

Equations (3.173) and (3.174) lead to the derivatives a′, ψ′,ϕ′ and ω′

a′ = − sin(ϕ + ψ)

{
εμ1

p
ω2 cosϕ + aεζ1 sin(ϕ + ψ)

− 1

p
εγ1

[
a cos(ϕ + ψ) + 1

p

]3}
,
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aψ′ = εσa − cos(ϕ + ψ)

{
εμ1

p
ω2 cosϕ + aεζ1 sin(ϕ + ψ)

− 1

p
εγ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

ω′ = εF1(1 − ω) − εη1[1 + ap2 cos(ϕ + ψ)] sinϕ, ϕ′ = ω. (3.175)

Unfortunately, the closed form analytical solution for (3.175) is complicate to be
obtained and the numerical methods are convenient.

3.4.2 Stability of the Steady State Solution and Sommerfeld
Effect

Introducing the averaging procedure (see Bogolyubov and Mitropolskij 1974)

a′ = ε

2π

2π∫

0

fadϕ, aψ′ = ε

2π

2π∫

0

fψdϕ, ω′ =
2π∫

0

fωdϕ, (3.176)

where

fa = − 1

p
sin(ϕ + ψ)

{
μ1ω

2 cosϕ + apζ1 sin(ϕ + ψ) − γ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

fψ = aσ − 1

p
cos(ϕ + ψ){μ1ω2 cosϕ + apζ1 sin(ϕ + ψ)

−γ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

fω = F1(1 − ω) − η1[1 + ap2 cos(ϕ + ψ)] sinϕ, (3.177)

the differential equations (3.175) are transformed into

ω′ = ε

[
F1(1 − ω) + 1

2
η1ap

2 sinψ

]
,

a′ = −ε

2

(
aζ1 + μ1ω

2

p
sinψ

)
,

ψ′ = εσ − ε

2p

(
μ1ω

2

a
cosψ − 3γ1a2

4
− 3γ1

p2

)
. (3.178)

For the steady-state response, Eq. (3.178) have the form
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F1(1 − ωS) + 1

2
η1aS p

2 sinψS = 0,

aS + μ1ω
2
S

p
sinψS = 0,

σ − 1

2p

(
μ1ω

2
S

aS
cosψS − 3γ1a2S

4
− 3γ1

p2

)
= 0, (3.179)

where S denotes the steady state values. Combining the second and the third
Eq. (3.179) we obtain

a2S

{
ζ21
4

+
[
σ + 3γ1

2p

(
a2S
4

+ 1

p2

)]2}
=
(

μ1ω
2
S

2p

)2

, (3.180)

while combining the first and the second Eq. (3.179) yields

F1μ1ω
2
S(1 − ωS) = 1

2
ζ1η1a

2
S p

3. (3.181)

Expressing aS in (3.181) and substituting into (3.180) theωS(F1) function is obtained

8F1(1 − ωS)

⎧⎨
⎩

ζ21
4

+
[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]2⎫⎬
⎭− μ1ζ1η1 pω

2
S = 0.

(3.182)
The number of real solution is one, two or three and it depends on the control
parameter F1. To determine which of the solutions actually correspond to a realizable
motion, we need to consider the stability of the solutions. We determine the stability
by determining the nature of the singular points of (3.179). To accomplish this, we
let

a = aS + a1, ψ = ψS + ψ1, ω = ωS + ω1. (3.183)

Substituting (3.183) into (3.179) and neglecting all but the linear terms in a1,ψ1,ω1

we obtain

ω′
1 = ε

[
−F1ω1 + 1

2
η1a1 p

2 sinψS + ψ1

2
η1aS p

2 cosψS

]
,

a′
1 = −ε

2

(
a1ζ1 + ψ1

μ1ω
2
S

p
cosψS + 2

μ1ωSω1

p
sinψS

)
,

ψ′
1 = −ω1 − ε

2p

(
2
μ1ωSω1

aS
cosψS − a1

μ1ω
2
S

a2S
cosψS (3.184)

−ψ1
μ1ω

2
S

aS
sinψS − 3γ1aSa1

2

)
.

Equations (3.184) are linear and have the solution in the form
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(a1,ψ1,ω1) = (a10,ψ10,ω10) exp(λτ ),

where λ is an eigenvalue of the coefficient of matrix. The solutions are stable and
hence corresponding motions reliable, if the real part of each eigenvalue is negative
or zero.

For the parameter values

ε = 0.1, ζ1 = 0.2, γ1 = 0.1, η1 = 1.0, μ1 = 0.5, (3.185)

using the relations (3.180) and (3.181), i.e., (3.182) the response-control parameter F1

and the frequency of vibration-control parameter F1 diagrams are plotted (Fig. 3.19).
In Fig. 3.20 the frequency-response curves obtained numerically and analytically

by solving the Eqs. (3.180) and (3.181) are plotted. Comparing the solutions it can
be concluded that the difference between “exact” numerical solution and approxi-
mate analytical solution is negligible. Analyzing the obtained curves and the relation
(3.181) it is evident that the curve depends on the control parameter F1. ForωS = 2/3
the maximal response

Fig. 3.19 Jump effect for: a amplitude-control parameter curve, b frequency-control parameter
curve

Fig. 3.20 Frequency-response curve obtained: a analytically, b numerically
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aSmax = 2

3p

√
2μ1

3ζ1η1 p
F1,

is a function of F1, but is not dependent on the parameter of non-linearity γ1.
Figures3.19 and 3.20 show the characteristic points in the diagrams: point R

and point T. Between these points the solution is unstable while all those out-
side this region are stable. Point R is the peak in aS − ωS , aS − F1 and F1 − ωS

diagrams. Analyzing the relation (3.182) and equating the first derivative to zero
(dF1/dωS = 0)

0 = −8F1

{
ζ21
4

+
[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]2}

+2F1(1 − ωS)

[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]

[
1 + 3γ1

2p5
μ1F1(2ωS − 3ω2

S)

2ζ1η1 p

]
− 2μ1ζ1η1 pωS.

the peak is obtained. The locus of the peak (point R) is according to (3.180)

ωSR = p − 3εγ1
2p

(
a2SR
4

+ 1

p2

)
, (3.186)

and the amplitude is aSR = μ1ω
2
SR/α̃p. Substituting (3.186) into the relation (3.181)

we obtain the value of the control parameter for the peak amplitude

F1R = η1 pμ1ω
2
SR

2ζ1(1 − ωSR)
. (3.187)

Substituting the parameter values (3.185) into (3.187) the numeric value of the con-
trol parameter is F1R = 18.246. For that calculated value of the control parameter
and the known value of the parameter of nonlinearity (γ1 = 0.1) the amplitude and
frequency of Q are obtained by solving the relations (3.180) and (3.181). For the con-
trol parameter F1T = 4.57 two stable solutions are obtained: T with aST and ωST and
P with aSP and ωSP . We note that there are gaps in the diagrams (see Figs. 3.19 and
3.20) where no steady state response exists. The gaps are not the same for increasing
and decreasing the control parameter F1. Increasing the control parameter causes the
increase of the amplitude and frequency of vibrations to R. Then the effect of jump to
smaller amplitude and higher frequency in Q appears. Decreasing the control para-
meter ξ1 decreases the frequency and increases the amplitude to T and then jump into
P with higher amplitude and smaller frequency occurs. The same hysteresis is seen
in Fig. 3.20. This phenomena of jump is called the Sommerfeld effect in non-ideal
systems.
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To eliminate the Sommerfeld effect for the certain value of the control parameter
F1R the parameter of nonlinearity has to be calculated. The Eq. (3.180) indicates the
peak amplitude

aSR = μ1

ζ1 p
ω2
SR . (3.188)

The function aSR(ωSR) is independent on the parameter of non-linearity γ1. The
relation (3.181) gives the dependence of amplitude aS on ωS for various values of
control parameter ξ1. Using (3.188) and (3.181) we obtain

F1R(1 − ωSR) − 1

2
η1

μ1

ζ1
ω2
SR p = 0. (3.189a)

ωSR is the solution of (3.189a) for the control parameter F1R . Substituting ωSR into
(3.188) the amplitude aSR is calculated. Introducing the so obtained values ωSR and
aSR into (3.180) the value of nonlinear parameter γ1R is determined

γ1R = 8

3

p3

a2SR p
2 + 4

(p − ωSR). (3.190)

For γ1 < γ1R only one stable solution exists for the control parameter F1R and the
motion is without jump.

In Fig. 3.21 the aS − F1 curve for two values of parameter of nonlinearity γ1
is shown. It is seen that for γ1 = 0.1 the bending of the curve is smaller than for
γ1 = 0.15. For F1R = 42.1 and γ1R = 0.15 two real values of amplitude exist and for
γ1 = 0.1onlyone. It canbe concluded that for the real systemwith parameters (3.185)
which works with control parameter F1R = 42.1 the parameter of non-linearity of
the structure has to be γ1 < 0.15. Then, the Sommerfeld effect is eliminated.

Fig. 3.21 Frequency-control
parameter curve for various
values of parameter of
non-linearity



100 3 Nonlinear Oscillator and a Non-ideal Energy Source

3.4.3 Numerical Simulation and Chaotic Behavior

To prove the analytically obtained results the numerical experiment is done. The
system (3.51) is rewritten in the form

y′
1 = y2,

y′
2 = 1

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1

+μ sin y3(μy
2
4 cos y3 − η sin y3 + F(1 − y4))),

y′
3 = y4, (3.191)

y′
4 = η sin y3

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1 + μy24 cos y3

+μ sin y3 (−η sin y3 + F(1 − y4)))

−η sin y3 + F(1 − y4).

Anumber of numerical simulations are done for various control parameter F . Apply-
ing the Runge–Kutta numerical procedure with the fixed step length the system of
four first order differential equations (3.191) is solved. The results are plotted in
Fig. 3.22. The phase space of the system has out of four dimensions, but we were
chiefly interested in position of the oscillator itself. We also plotted the Poincaré map
which represents the surface of section (y1(τn),y2(τn)). The points (y1(τn),y2(τn))

Fig. 3.22 Trajectories in the
phase space for various
values of the control
parameter: a periodic
solution with period 1, b
periodic solution with period
2, c periodic solution with
period 3, d periodic solution
with period 4, e periodic
solution with period 5, f
periodic solution with period
9, g, h chaotic solution
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are captured for τn = nT , where n = 1, 2, . . ., with period T = 2π/�̄. The angular
velocity � is obtained numerically

� = ϕ (τ1) − ϕ (0)

τ1
= y3 (τ1) − y3 (0)

τ1
, (3.192)

where τ1 is a long time period for numerical calculation.
For the parameter values of the system, mentioned in the previous section, and

the control parameter F = 7.0 the trajectory in the phase space and the Poincaré
map are plotted (Fig. 3.22a). The motion is periodic with period 1 and frequency
� = 0.999. For F = 15 the periodic motion is with period 2 (Fig. 3.22b) and for
F = 21 with period 3 (Fig. 3.22c). Increasing the value of the control parameter
the motion is periodic but the period number increases, too (see Fig. 3.22d–f). For
high values of control parameter (F = 80 and F = 10000) the strange attractor is
obtained (Fig. 3.22g, h). The existence of strange attractor signifies chaos which is
evident only if the certain criteria for the maximal (local) Lyapunov exponent are
satisfied. For computational reasons the vector notation for the system of Eq. (3.191)
is introduced

Y ′ = G(Y, P), (3.193)

where Y = [y1, y2, y3, y4]T is the state space vector, G = [g1, g2, g3, g4], P(p,α,

η,μ, F) is set of parameters and [...]T is denoting transpose. The equations for small
deviations δY from the trajectory Y (t) are

δY ′ = Li j (Y (t))δY, i, j = 1, 2, . . . 4, (3.194)

where Li j = ∂gi/∂y j is the Jacobian matrix of derivatives

L11 = L13 = L14 = 0, L12 = 1,

L21 = − p + 3αy21
1 − μη sin2 y3

, L22 = − ζ

1 − μη sin2 y3
,

L23 = −μy24 sin y3 + μη(1 − y4) cos y3
1 − μη sin2 y3

− Q1

(1 − μη sin2 y3)2
,

L24 = 2μy4 cos x3 − μη sin y3
1 − μη sin2 y3

, L44 = μηy4 sin(2y3) − F

1 − μη sin2 y3
,

L31 = L32 = L33 = 0, L34 = 1,

L41 = −η p sin y3 + 3ηγy21 sin y3
1 − μη sin2 y3

, L42 = − ζη sin y3
1 − μη sin2 y3

,

L43 = μηy24 cos(2y3) − η cos x3(ζ y2 + py1 + γy31)

1 − μη sin2 y3

+ Q2

(1 − μη sin2 y3)2
, (3.195)
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Fig. 3.23 Positive Lyapunov exponent for the control parameters: a F = 80 and b F = 10000

where

Q1 = −μη sin(2y3)[ζ y2 + py1 + γy31 − μy24 cos y3 − μF(1 − y4) sin y3],
Q2 = μη sin(2y3)[F(1 − y4) + 0.4μηy24 sin(2y3) − η sin y3(ζ y2 + py1 + γy31)].

(3.196)

The maximal Lyapunov exponent of the system is then as defined by Wolf et al.
(1985)

λ = lim
1

t
log

‖δY (t)‖
‖δY (0)‖ . (3.197)

In Fig. 3.23 we present the local Lyapunov exponent for the control parameters F =
80 and F = 10000. For the both parameter values the positive Lyapunov exponent is
calculated. As it is discussed byWolf et al. (1985), if the system contains at least one
positive Lyapunov exponent the motion is chaotic. The two initially nearby orbits (or
trajectories) diverge from each other and the separation of two nearby trajectories
increases exponentially with time due to sensitive dependence on initial conditions.

The transition from periodic motion to chaos is by periodic doubling. In Fig. 3.24
the y1 − F bifurcation diagram is plotted. The bifurcation diagram is obtained for
the long time integration of the differential equations (3.191) of the motion. After
decay of transient motion a steady state motion is established. The fixed values of the
parameters areα = 0.1, γ = 9, p = 1, μ = 8.373, η = 0.05 and the control parame-
ter we choose to work with is F . By increasing parameter F we found sequences of
period doubling bifurcations (Fig. 3.24). Diagram starts from F = 6 where periodic
motion with period n = 1 exists. This periodic solution bifurcates on F ≈ 8 onto
period 2T . Further period doubling bifurcation (period 4, 8, 16,...) leads to chaotic
motion for F ≈ 20. After this interval of chaos the periodic motion with period 3
exists. Further increase of parameter F leads to the new period doubling bifurcation
with periods 5, 9, ... and finally to chaos for F ∈ [28, 33]. The next regions of chaotic
motion are for F ∈ [40, 56] and F > 62.
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Fig. 3.24 Period doubling
bifurcation diagram

Comparing the bifurcation parameter values in Fig. 3.24with the results of numer-
ical experiment (see Fig. 3.22) it can be concluded that for the control parameter
F = 80 chaotic motion exists.

3.4.4 Chaos Control

It is of interest to control the chaos in the motion of the system (3.191) and spe-
cially of oscillator. There are many methods for chaos control. Dantas and Balthazar
(2003) show that if we use an appropriate damping coefficient the chaotic behavior
is avoided. The method of Pyragas (1992, 1995) is based on the addition of a special
kind of time-continuous perturbation (external force control), which does not change
the form of the desired unstable periodic solution, but under certain conditions can
stabilize it. The method of Pyragas was applied in the paper. For the external force
�(t) the model (3.191) becomes

y′
1 = y2 + �(t),

y′
2 = 1

1 − μη sin2 y3
{−ζ y2 − py1 − γy31 + 1 + μ sin y3[μy24 cos y3

−η sin y3 + F(1 − y4)},
y′
3 = y4,

y′
4 = η sin y3

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1 + μy24 cos y3

+μ sin y3 (−η sin y3 + F(1 − y4))) − η sin y3 + F(1 − y4). (3.198)

The external force �(t) is defined as

�(t) = K [yup(t) − y1(t)], (3.199)
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Fig. 3.25 The two-periodic
solution: before stabilization
(−) and after stabilization (–)

Fig. 3.26 External
force-time history diagram

where K is an adjustable weight of the perturbation �(t) and yup(t) is a component
of the unstable periodic solution of (3.191) which we wish to stabilize. The function
yup(t) is time periodical with period T . For �(t) zero the system has a strange
attractor.

However, by selecting the constant K one can achieve the desired stabilization.
Using the shootingmethod suggested byVanDooren and Janssen (1996) the unstable
two periodic unstable solution is detected (Fig. 3.25). Varying the value of the con-
stant K in the interval [0.1, 2] it is concluded that for K ∈ [0.3, 2] the stabilization
is achieved (Fig. 3.25).

For K = 2 the function �(t) tends to a very small value (Fig. 3.26) and the
component y1, which is the solution after control, is very close to yup(t).
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3.4.5 Conclusion

During passage through resonance of the motor-structure system which is modeled
as a stable Duffing oscillator with non-ideal excitation severe vibrations appear.
The energy of the system is not used for increasing of the rotation velocity, but is
spent for vibrations which are harmful. Very often in the motion of the system near
resonance the jump phenomena occurs: at the same value of the control parameter
of the motor the amplitude of vibration skips to a higher value with lower frequency
or to smaller amplitude with higher frequency. The manifestation depends on the
direction of variation of the control setting. The jump phenomena and the increase
in power required by a source operating near resonance are manifestations of a non-
ideal energy source and are referred to as Sommerfeld effect. The Sommerfeld effect
contributes to transform a regular vibration to an irregular chaotic one. It is concluded
that in spite of the fact that the structure is modeled as the stable Duffing oscillator
chaos appears. In the system the chaos is achieved by period doubling bifurcation.
From engineering point of view it is necessary to eliminate the jump effect and
the chaotic motion. The elimination of the jump phenomena for the certain control
parameter is achieved by using the structure with coefficient of nonlinearity which
is smaller than the critical value (3.190). Chaos is controlled using the external force
control procedure where the added force does not change the form of the desired
unstable periodic solution, but under certain conditions can stabilize it.

Comparing the results obtained applying the approximate analytic methods with
those obtained numerically it is concluded that the difference is negligible. It proves
the correctness of the used analytic procedure.

3.5 Bistable Duffing Oscillator Coupled with a Non-ideal
Source

The model, shown in Fig. 3.27, represents an one degree-of-freedom cart connected
to a fixed frame by a nonlinear spring and a dashpot (Warminski et al. 2001). Motion
of the cart is due to a non-ideal motor with unbalanced rotor. In the absolute reference
frame x denotes the cart displacement and ϕ denotes the angular displacement of the
rotor. Elastic force of the spring is a cubic function of cart position x .

Motion of the system is describedwith the following equations (Kononenko 1976)

ẍ(M + m) + cẋ − md(ϕ̈ sinϕ + ϕ̇2 cosϕ) − k1x + k2x
3 = 0,

(J + md2)ϕ̈ − mdẍ sinϕ = M(ϕ̇), (3.200)

where M(ϕ̇) is the motor torque. For further consideration, let us introduce the
dimensionless length and dimensionless time
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Fig. 3.27 Model of the
system

y = x

d
, τ = ωt, (3.201)

where d is the distance of the unbalanced mass to the shaft center and

ω =
√

k1
m + M

. (3.202)

Using (3.201) and (3.202), the dimensionless equations of motion are

y” + ζ y′ − y + γy3 = m

M + m
(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + M(ϕ′), (3.203)

where

ζ = c

ω(M + m)
, γ = d2k2

ω2(M + m)
, μ = m

M + m
,

η = md2

(J + md2)
, M (

ϕ′) = M (ϕ̇)

ω2
(
J + m2d2

) , (3.204)

and (′) = d/dτ , (”) = d2/dτ 2, ζ is the damping coefficient, γ is the nonlinear para-
meter of the potential, while μ and η are physical characteristics of the system. The
torque is assumed to be linear, i.e.,

M(ϕ′) = E1 − E2ϕ
′, (3.205)

with voltage or the strength of the motor E1 and with characteristic parameter of the
motor E2. For (3.205) the equations of motion are

y” + ζ y′ − y + γy3 = μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + E1 − E2ϕ
′. (3.206)
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If this system has a principal parametric resonance 2:1, we assume that the oscillator
vibrates with frequency �, but the frequency of non-ideal force is equal to �/2. As
the voltage source is alternated, E1 is periodic and has the form

E1 = u0 cos
(υ0

2
τ
)

, (3.207)

where u0 is the amplitude of the voltage source and υ0 = �/ω. Substituting (3.207)
into (3.206) we obtain

y” + ζ y′ − y + γy3 = μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + u0 cos
(υ0

2
τ
)

− E2ϕ
′. (3.208)

Due to the strong nonlinearity there is no exact analytical solution for (3.208). Let
us assume the approximate solution in the form

y = A0 + A1 cos(υ0τ ) + A2 sin(υ0τ ),

ϕ = B0 + B1 cos
(υ0τ )

2
+ B2 sin

(υ0τ )

2
, (3.209)

where A0 is the amplitude of the structure, B0 is the amplitude of the rotor at rest, A =√
A2
1 + A2

2 is the amplitude of oscillator and B =
√
B2
1 + B2

2 is the rotor amplitude.
To obtain approximate solutions we expand the nonlinear function sinϕ and cosϕ in
theTaylor series until third order around the lower steady state forϕ = 0. Substituting
(3.209) into (3.208), balancing the harmonics and neglecting the derivatives of the
second order and terms having derivatives in a power higher than one, the set of first
order approximate differential equations follows as

0 = ζA′
1 + 2ωA′

2 − υ0μ(B2B
′
1 + B1B

′
2)

(
1 − B2

1

4
− B2

2

12
+ 5

4
B2
0

)
+ ζυ0A2

+
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A1 + υ2

0

4
μ

(
1 − B2

0

2

)
(B2

1 − B2
2 ),

0 = γA′
2 + 2ωA′

1 + υ0μ(B1B
′
1 − B2B

′
2)

(
1 − B2

1

6
− B2

0

2

)
− ζυ0A1

+
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A2 + υ2

0

2
μB1B2

(
1 − B2

0

2

)
,
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0 = ωε2B2(A
′
1 + υ0

2
A2)

(
1 − B2

1

4
− B2

2

12
− B2

0

2

)
+ E2B

′
1

+υ0B
′
2 + υ0

2
E2B1 − υ2

0

4
B1 − u0

+υ0η(B1A
′
2 + υ0

2
A1B1)

(
1 − B2

1

6
− B2

0

2

)
,

0 = υ0ηB1(A
′
1 + υ0

2
A2)

(
1 − B2

2

4
− B2

1

12
− B2

0

2

)
+ E2B

′
2

−υ0B
′
1 − υ0

2
E2B1 − υ2

0

4
B2

−υ0η(B2A
′
2 + υ0

2
A1B2)

(
1 + B2

2

6
− B2

0

2

)
,

0 = A0

(
3

2
γ(A2

1 + A2
2) + γA2

0 − 1

)
,

0 = υ2
0

8
ηB0

(
A1(B

2
2 − B2

1

)− 2A2B1B2). (3.210)

Relations (3.210)5 and (3.210)6 are satisfied for

γA2
0 = 1 − 3

2
γA, B0 = 0. (3.211)

Besides, let us assume for small oscillations that B2 = 0.Using this assumption and
(3.211) the Eqs. (3.210)1–(3.210)4 give the steady states when

A′
1 = 0, A′

2 = 0, B ′
1 = 0, B ′

2 = 0,

as

0 = ζυ0A2 +
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A1 + υ2

0

4
μ(B2

1 − B2
2 ),

0 = −ζυ0A1 +
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A2 + υ2

0

2
μB1B2,

u0 = η
υ2
0

2
(A1B1 + A2B2) + υ0

2
E2B2 − υ2

0

4
B1 − η

υ2
0

8
A2B2B

2
1 ,

0 = −ηB1
υ2
0

8
A2B

2
2 − υ0

2
E2B1 − υ2

0

4
B2 − η

υ2
0

2
(A1B2 − A2B1). (3.212)
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Equation (3.212) represent the set of four coupled equations. According to some
specific considerations the system of Eq. (3.212) have semi-trivial and non-trivial
solutions.

3.5.1 Semi-trivial Solutions and Quenching of Amplitude

The semi-trivial solution means physically that one part of the system is oscillating
while the other one is at rest. This gives the condition for quenching of amplitude
of oscillation of one part of the system: of the mechanical part and of the non-ideal
force.

Quenching of amplitude in the mechanical part satisfies the following require-
ments

A1 = A2 = 0, B1 �= 0, B2 �= 0. (3.213)

For these values the mechanical part of the system does not vibrate. This case can be
used as a technique of controlwhose objective is to cancel vibration of themechanical
system. According to (3.210) the condition of quenching phenomenon in the space
of the parameters of the system is derived and given as

B = 2u0

υ0

√
E2
2 + ( υ0

2 )2
. (3.214)

In Fig. 3.28, the amplitude of non-ideal force B as function of the frequency υ0, given
with (3.211), is plotted. For numerical purposes, the following set of parameters
(Souza et al. 2005a, b) is considered

ζ = 0.02, γ = 0.1, μ = 0.1, η = 0.25, E2 = 1.5.

Analytical solution is compared with numerical solution of (3.210) using the fourth-
order Runge Kutta algorithm (see Fig. 3.28).

Fig. 3.28 Amplitude-
frequency curve of non-ideal
system for semi-trivial case.
(Nbendjo et al. 2012)
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It appears that the amplitude of the non-ideal force decreases as the frequency
increases. To analyze the stability of this semi-trivial solution, the amplitude modu-
lation equations are given by

Ȧ1 = f1(A1, A2, B1, B2),

Ȧ2 = f2(A1, A2, B1, B2),

Ḃ1 = f3(A1, A2, B1, B2),

Ḃ2 = f4(A1, A2, B1, B2). (3.215)

Perturbing the solution A1, A2, B1 and B2 with δA1, δA2, δB1 and δB2 and sub-
stituting into (3.215), after linearization a set of differential equations is obtained.
Stability conditions are based on the eigenvalues of the Jacobian (Warminski and
Kecik 2006). If the solution is complex, and the real part of the eigenvalue is always
negative, the system is stable.

Quenching of amplitude of the non-ideal force occurs for

B1 = 0, B2 = 0, A1 �= 0, A2 �= 0. (3.216)

This situation represents the case where the non-ideal forces does not swing and
the structure vibrates. Using the set of differential equations for steady-state motion
(3.212) and assuming the stationarity of solutions leads after some calculations to
the following non-linear equation of the amplitude

A =
√√√√ ( 154 γ)2 + ζ2υ2

0 + (2 − υ2
0)

2

15
2 γ(2 − υ2

0)
. (3.217)

Analyzing of this equation shows the evidence of mechanical part which is at equi-
librium and thus the system remains stable.

3.5.2 Non-trivial Solutions and Their Stability

Non-trivial solutions represent the case where both systems vibrate and

A1 �= 0, A2 �= 0, B1 �= 0, B2 �= 0. (3.218)

Analytically, we were supposed to use the set of Eq. (3.210) and to derive the
amplitude of both systems. Unfortunately, the system is strongly nonlinear and it is
quite impossible to obtain an analytical expression of amplitude.

Moreover, to deal with such a question, we solved directly the base equations
(3.208) numerically using the fourth-order Runge–Kutta algorithm and discuss the
amplitude resonance curves. Afterwards, we explore the stability of the system using
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Fig. 3.29 a Amplitude of the mechanical part as function of the frequency; b Amplitude of the
non-ideal source as function of the frequency (Nbendjo et al. 2012)

Fig. 3.30 a Lyapunov
spectrum and b bifurcation
diagram as function of υ0 for
u0 = 1 (Nbendjo et al. 2012)

Lyapunov spectrum and bifurcation sequences. The frequency response curve is
thus obtained from (3.208) and presented in Fig. 3.29a for the evaluation x and in
Fig. 3.29b for evaluation of ϕ for u0 = 1.

Figure3.29a reveals a set of subharmonic resonances instead of the internal reso-
nance 2:1 as expected. Concerning the amplitude of non-ideal forces, it decreases as
frequency increases and the effect of internal resonance is visible by their appearance.

Focusing on the stability of the system allows one to display the Lyapunov spec-
trum as function of frequency for the specify value of u0 = 1.

It appears, for example in Fig. 3.30a, that the Lyapunov spectrum is positive for
certain values of frequencywhich is necessary for the presence of chaos in the system.
On the other hand, for another set of frequencies, Fig. 3.30a shows more than one
positive Lyapunov exponent, indicating hyperchaos on the system. These effects
are confirmed via the corresponding bifurcation diagram (see Fig. 3.30b). Setting
υ0 = 1.5 allows one to observe the stability of the system as u0 increases.

It appears in Fig. 3.31a that the system shows a transient from periodicity to qua-
siperiodicity and later to chaos. To view how these transient arise, the corresponding
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Fig. 3.31 Lyapunov
spectrum and corresponding
bifurcation diagram as
function of u0 for υ0 = 1.5
(Nbendjo et al. 2012)

Fig. 3.32 Region in
parameter space of (u0, υ0)
where hyperchaos is detected
(Nbendjo et al. 2012)

bifurcation diagram is presented in Fig. 3.31b, which confirms the results obtained
from the Lyapunov spectrum. It shows that for u0 = 0.36 there is a crisis in which
sudden change in chaotic attractors occurs. Summarizing, it is concluded that there
are regions in which all Lyapunov exponents are less or equal to zero for periodic or
quasiperiodic orbits. If one of the Lyapunov exponents is positive, chaos is evident.
If more than one positive Lyapunov spectrum exists, the presence of the hyperchaos
for a specific set of parameters is indicated (Fig. 3.32).

Based on these consideration it can be concluded that the stability of the systems
deeply depends on the voltage of the energy source.

3.5.3 Conclusion

Alternating strength of the voltage of the source may be the reason for the lim-
ited power supply for the bistable Duffing oscillator. Thus, in the oscillator - non-
ideal source system for certain parameters quenching phenomena occurs: quenching
of amplitude in the mechanical part or quenching of amplitude of the non-ideal
force. Besides, in the system an explosion of resonances 2:1 to a set of subharmonic
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resonances is revealed. Based on stability analysis of the non-trivial solutions we
concluded that the periodicity of the voltage source perturbs the limited power sup-
ply and increases the possibility of the appearance of chaos and hyperchaos of the
systems. Consequently, when the voltage source is alternated, if the choice of the
characteristic is bad, the system can become unstable.

Appendix: Ateb Functions

Sine Ateb Function

The incomplete Beta function is defined as (see Abramowitz and Stegun 1964, 1979)

Bx (p, q) =
0≤x≤1∫

0

t p−1(1 − t)q−1dt, (A1)

while for the case x = 1, the complete Beta function is obtained

B(p, q) =
1∫

0

t p−1(1 − t)q−1dt, (A2)

where p and q are real numbers. For the positive integrands in (A1) and (A2), the
interval for the incomplete beta function is

0 ≤ Bx (p, q) ≤ B(p, q). (A3)

For the functions B(p, q) and Bx (p, q) the following identities are evident

B(p, q) = B(q, p), Bx (p, q) = B(p, q) − By(p, q), (A4)

where x + y = 1.
Let us determine the inverse of the half of the incomplete beta function (A1)

x → 1

2
Bx (p, q) = 1

2

0≤x≤1∫

0

t p−1(1 − t)q−1dt. (A5)

Introducing the notation (Cveticanin 2014)

1

2
Bx (p, q) = w, (A6)
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the half of the incomplete beta function is

1

2

0≤x≤1∫

0

t p−1(1 − t)q−1dt = w. (A7)

For the the new variables
t = v̄1/p, x = v1/p, (A8)

the boundary of integration 0 ≤ x ≤ 1 transforms into 0 ≤ |v| ≤ 1 and the integral
(A7) has the forms

1

2p

0≤v≤1∫

0

(1 − v̄1/p)q−1d v̄ = w,
1

2p

−1≤v≤0∫

0

(1 − v̄1/p)q−1d v̄ = w. (A9)

Let us consider the first integral in (A9). For v = 0 the integral is zero, and for v = 1
it is according to (A5)

1

2p

1∫

0

(1 − v̄1/p)q−1d v̄ = 1

2
B(p, q). (A10)

Thus, the value of the function w (A9) is bounded

0 ≤ w ≤ 1

2
B(p, q), (A11)

as B(p, q) is finite. Now, the inverse for the integral (A9) is constructed. This inverse
depends on the three parameters p, q andw.With notation given byRosenberg (1963,
1966) we have

v = sa

(
1 − p

p
,
1 − q

q
, w

)
, (A12)

The second integral in (A9) gives

− v = sa

(
1 − p

p
,
1 − q

q
,−w

)
. (A13)

It follows that sa( 1−p
p ,

1−q
q , w) is the inverse of (A9) on the interval − 1

2 B(p, q) ≤
w ≤ 1

2 B(p, q). Formula (A9) defines w uniquely as a function of v in this inter-
val. Using the odd property (A13) of inverse of (A9), Rosenberg (1963) named the
function ’sine Ateb function’ and noted as sa.
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The period of the function is

2�(p, q) = 2B(p, q). (A14)

Cosine Ateb Function

The change of variables

t = 1 − ū1/q , x = 1 − u1/q , (A15)

transforms the interval 0 ≤ x ≤ 1 into 0 ≤ |u| ≤ 1. Substituting (A15) into (A7), for
1 ≥ u ≥ 0, it yields

− 1

2q

0≤u≤1∫

1

(1 − ū1/q)p−1dū = w. (A16)

Due to the property of the beta function (A4), we have

− 1

2q

0≤u≤1∫

0

(1 − ū1/q)p−1dū + 1

2q

1∫

0

(1 − v̄1/q)p−1dū = w, (A17)

i.e.,

− 1

2q

0≤u≤1∫

0

(1 − ū1/q)p−1dū = −1

2
B(p, q) + w. (A18)

Using the notation of the inverse function (A12) i.e. (A13) and the period�(p, q) =
B(p, q) we obtain

u = ±sa

(
1 − q

q
,
1 − p

p
,
1

2
�(p, q) ∓ w

)
. (A19)

The inverse function u Rosenberg (1963) called ‘cosine Ateb function’ and noted it
with ca:

ca

(
1 − q

q
,
1 − p

p
, w

)
= sa

(
1 − p

p
,
1 − q

q
,
1

2
�(p, q) ± w

)
. (A20)

The ca function is an even function (see Senik (1969a, b), Drogomirecka (1997))
with period 2�(p, q) given with (A14).
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Properties of Ateb Functions

The relation which satisfy the sa and the ca Ateb functions is (Gottlieb 2003, Gricik
and Nazarkevich 2007)

sa2
(
1 − p

p
,
1 − q

q
, w

)
+ caα+1

(
1 − q

q
,
1 − p

p
, w

)
= 1. (A21)

The first derivatives of sa and ca functions are

d

dw
sa

(
1 − p

p
,
1 − q

q
, w

)
= caα

(
1 − q

q
,
1 − p

p
, w

)
, (A22)

d

dw
ca

(
1 − q

q
,
1 − p

p
, w

)
= − 2

α + 1
sa

(
1 − p

p
,
1 − q

q
, w

)
. (A23)

The Fourier series expansion of the ca Ateb function (Gricik et al. 2009) is as follows

ca

(
1 − q

q
,
1 − p

p
, w

)
=

∞∑
n=1

an cos
πnw

�(p, q)
, (A24)

where a0 = 0 and

an = 2

�(p, q)

�(p,q)∫

0

ca

(
1 − q

q
,
1 − p

p
, w

)
cos

πnw

�(p, q)
dw. (A25)

Namely, the coefficient is enough to be calculated for w ∈ [0,�(p, q)/2].
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