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Preface

Forced vibrations of the system are, usually, theoretically considered under influence
of a periodical force whose frequency and amplitude are constant. The force is
assumed to be absolutely independent of the motion of the system. The source of this
force is called ‘ideal’, and the vibrating system is ‘ideal’. However, in the real
system, the action of the excitation force, which is produced by a particular motor
energy source (for example), may depend on the motion of the oscillating system.
For that case, the excitation force is the function of the parameters of oscillatory
motion. The force and energy source is called ‘nonlinear’ while the oscillator–
non-ideal source system is named ‘non-ideal’. The study of non-ideal vibrational
systems, where the excitation source is influenced by the dynamics of the driven
nonlinear system behavior, has been considered a great challenge in the theoretical
and practical research in engineering science. It is worth to be said that the model of
non-ideal vibrating system is closer to real situations encountered in practice. Only
such a non-ideal model can eliminate the non-correspondence between theoretical
predictions of motion with observed properties of the oscillating system. Generally,
in the system the power supply is limited and it causes the behavior of the vibrating
systems to depart from the case of ideal power supply. For this kind of non-ideal
dynamic system, an equation that describes the interaction of the power supply with
the driven system must be added. Thus, the non-ideal vibrating systems have one
degree of freedom more than the corresponding ideal system.

In this book, dynamics of the non-ideal oscillatory system in which the exci-
tation is influenced by the response of oscillator is considered. Various types of
non-ideal systems are investigated: linear and nonlinear oscillators with one or more
degrees of freedom interacted with one or more energy sources. For example:
oscillating system excited by an elastic connection which is deformed by a crank
driven by a rotating motor, system excited by an unbalanced rotating mass which is
driven by a motor, system of parametrically excited oscillator and an energy source,
frictionally self-excited oscillator and an energy source, energy harvesting system,
portal frame–non-ideal source system, non-ideal rotor system, planar mechanism–

non-ideal source interaction. For the systems the regular motion and irregular
motion are tested. The effect of self-synchronization is discussed. Chaos and
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methods for suppressing chaos in non-ideal systems are considered. In the book,
various types of motion control are suggested. The most important property of the
non-ideal system connected with the jump-like transition from a resonant state to a
non-resonant one is discussed. The so-called Sommerfeld effect, when the resonant
state becomes unstable and the system jumps into a new stable state of motion,
which is above the resonant region, is deeply explained. Mathematical model of the
system is solved analytically and numerically. Approximate analytical solving
procedures are developed. The obtained results are numerically proved. Besides, the
simulation of the motion of the non-ideal system is presented. The obtained results
are compared with those for the ideal case. Significant difference is evident.

This book aims to present the already known results and to increase the literature
in non-ideal vibrating systems. Besides, the intention of the book is to give a
prediction of the effects for a system where the interaction between an oscillator and
the energy source exists. This book is recommended for engineers and technicians
dealing with the problem of source–machine system, and also for Ph.D. students
and researchers interested in nonlinear and non-ideal problems.

Budapest, Hungary Livija Cveticanin
Novi Sad, Serbia Miodrag Zukovic
São José dos Campos, Brazil Jose Manoel Balthazar
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Chapter 1
Introduction

In the real coupled system, which contains an energy source and a system which is
supplied with power from that source, the energy source acts on the system but the
system supplied with power from the source also affects the motion of the source.
Such systems in which there is the interaction in motion between the energy source
and the working element, for example an oscillator, is named ‘non-ideal system’
(Nayfeh and Mook 1979). The source which is influenced by the response of the
system to which it supplies power is the ‘non-ideal source’. Examples of non-ideal
sources are brushed DC electric motors, induction motors, drives with dissipative
couplings or any kind of load dependent slip, etc. Most often, we find that drives
are assumed to be ideal. Such ideal drive assumption is influenced by two factors:
a motive to simplify the problem or the assumption that the operating range of the
system is so limited that there is sufficient power available from the drive and thus,
the drive remains uninfluenced (or marginally influenced) by the system’s dynamics.
Nevertheless, most forced vibrating systems are non-ideal. The dynamic behavior
of a non-ideal system may significantly differ from the corresponding idealized case
when the power supply to the system becomes limited. Our aim is to consider the
non-ideal vibrating systems.

The study of non-ideal vibrational systems, where the excitation source is influ-
enced by the dynamics of the driven nonlinear system behavior, has been considered
a great challenge in the theoretical and practical research in engineering science.
When the excitation is not influenced by this behavior, such systems are known as
ideal systems or systems with ideal power supply. The behavior of ideal systems is
very well known in recent literature, but there are fewer results devoted to non-ideal
systems. A revision of non-ideal problems has been published in Balthazar et al.
(2003, 2004a), Balthazar and Pontes (2005), Cveticanin (2010). For this kind of
non-ideal dynamic system an equation that describes the interaction of the power
supply with the driven system must be added. In comparison, therefore, a non-ideal
system has one more degree of freedom. Moreover, the differential equations of
the non-ideal system become strongly non-linear. Although we find the non-ideal

© Springer International Publishing AG 2018
L. Cveticanin et al., Dynamics of Mechanical Systems with Non-Ideal Excitation,
Mathematical Engineering, DOI 10.1007/978-3-319-54169-3_1
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2 1 Introduction

supposition to be a more realistic viewpoint, there is not so a large number of studies
on non-ideal systems (Sommerfeld 1902; Kononenko 1964; Nayfeh andMook 1979;
Alifov and Frolov 1990).Most of those deal with the dynamics of a system composed
of an unbalanced electric motor placed on a flexible support or its different variations
(Sommerfeld 1902; Kononenko 1964; Blekhman 2000).

The study of interaction between motors and structure is not new. Probably the
first notice about dynamics of motor - structure system was given by A Sommerfeld
in Sommerfeld (1902). He proposed an experiment of a motor mounted on a flexible
wooden table and observed that the energy supplied to themotor was converted in the
form of table vibration instead of being converted to increase angular velocity of the
motor. This observation was used to explain a class of motors called non-ideal energy
sources. Later, Laval was the first to perform an experiment with a steam turbine to
observe that quick passage through critical speed would reduce significantly the
levels of vibration when compared to steady state excitation. It has been shown that
under certain conditions, the structural vibration of the system, which is excited
by a non-ideal drive, may act like an energy sink, i.e. instead of the drive energy
being spent to increase the drive speed, a major part of that energy is diverted to
vibrate the structure. This is formally known as the Sommerfeld effect. Usually,
the Sommerfeld effect concerns the dynamics of a system, which is composed of
an unbalanced electric motor placed on a flexible support. As the energy supply to
the motor in this system is gradually increased, the rotational speed of the motor
increases until it approaches the frequency of foundation and thereafter it remains
stuck there for some more increase in power input. Upon exceeding a critical limit
of power input, the rotational speed of the motor suddenly jumps to a much higher
value and the amplitude of structural vibration jumps to a much lower value. Similar
phenomena are observed when the power is gradually reduced. However, when the
power is gradually reduced, the transition points are not the same as those observed
during gradual increase of the power input. Therefore, the formof the resonance curve
depends on the direction of the gradual variation of the frequency of the excitation
and it is impossible to realize certain motor speeds near the resonance frequency.
Detailed studies on these characteristic jump-phenomena are given byBalthazar et al.
(2002), Dantas and Balthazar (2003), Bolla et al. (2007) and Felix and Balthazar
(2009). Sommerfeld effect is also observed in rotor dynamics. This is because of
the dependence of the flexural vibrations (due to the unbalance forces or circulatory
forces) on the motion of the energy source. This dependence is manifested as a
coupling between the differential equations of whirling motion of the rotor–shaft
system and the spin rate of rotor–shaft connected to the source (Balthazar et al.
2004a). In such a paradigm, under certain conditions, the energy supplied by the
source to the flexible spinning shaft is spent to excite the bending modes rather than
to increase the drive speed (Vernigor and Igumnov 2003). The unbalance force and
the circulatory force (the force produced due to rotating internal damping) depend
on the speed of the motor and thus both these forces load the drive, i.e., they draw
power from the source. The power supply to a non-ideal system becomes limited
when the motor speed approaches the resonance frequency or the stability threshold.
While it is impossible to pass through the stability threshold, the driving power of



1 Introduction 3

motor decides whether it is possible to pass through the resonance. Sometimes the
passage through resonance requires more input power than that can be provided by
the source. As a consequence, the vibrating system cannot pass the resonance and
remains stuck in the resonance conditions. If the motor power is insufficient then
as the motor speed approaches resonance during the coast up operation, the power
transmission to the structural vibrations increases and the motor cannot accelerate
sufficiently which is why the system gets stuck in resonance. On the other hand,
if there is sufficient motor power to cross the resonance then a jump phenomenon
occurs from near resonance speed to a much higher motor speed (Balthazar et al.
2004b). A detailed study on such non-ideal problems concerning passage through
resonance was presented also in Timoshenko (1961) and further results have been
reported by Balthazar et al. (2001, 2003, 2004a). Depending upon the motor power,
one may get almost smooth passage, passage with a temporary slowdown followed
by acceleration, and complete capture at the resonance (Dimentberg et al. 1997).
Various other known systems exhibit similar phenomena (see Hübner 1965; Frolov
and Krasnopolskaya 1987; Rand 1992; Ryzhik et al. 2001; Zukovic and Cveticanin
2007).However, themotor speed cannot exceed the stability threshold. This is another
kind of Sommerfeld effect where it is possible that a strong interaction results in
fluctuating motor speed and large vibration amplitudes (Mukherjee et al. 1999). At
the stability threshold, any extra power supplied to the motor is spent in exciting the
structure, i.e., increasing the amplitude of the structural vibrations.

Finally, the jump phenomena in the vibration amplitude and the increase of the
power required by the source to operate next to the system resonance are both man-
ifestations of a non-ideal problem. This phenomenon suggests that the vibratory
response of the non-ideal system emulates an ‘energy sink’ in the regions next to the
system resonance, by transferring the power from the source to vibrates of the sup-
port structure, instead of the speeding up the driver machine. In other words, one of
the problems confronted by mechanical engineers is how to drive a system through a
system resonance and avoid this ‘disappearance of energy’. Considering a DCmotor,
usually the angular velocity increases according to the power supplied to the source.
However, near the resonance, with additional energy the mean angular velocity of
the DC motor remains unchanged until it suddenly jumps to a much higher value
upon exceeding a critical input power. Simultaneously, the amplitude of oscillations
of the excited system jumps to a much lower value. Before the jump, the non-ideal
oscillating system can not pass through the resonance frequency of the system or
requires an intensive interaction between the vibrating system and the energy source
to be able to do so (Goncalves et al. 2014).

The Sommerfeld effect is studied also in the two degrees-of-freedom systems next
to the 1:1 resonance by Tsuchida et al. (2003). Using the linear and nonlinear curves
of a DC torque motor, they have observed an increase of the vibration amplitude
of a two degrees-of-freedom mechanical structure excited by an eccentric mass in
the motor axis. The same phenomenon was also observed near the 1:2 subharmonic
resonance (Tsuchida et al. 2005). In these works the Sommerfeld effect occurs due
to the nonlinearity of the non-ideal coupling between the structure and the driver
motor, resulting in large vibration of the structure supporting the motor. Zniber and
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Quinn (2006) investigated the dynamic behavior of a two-degree-of-freedom oscilla-
tor connected with a non-ideal source for 1:1 resonance not only analytically but also
experimentally. An investigation on the influence of the two orthogonal resonance
frequencies is presented. Considering the previous analysis of such systems, Palacios
et al. (2002) applied the Bogoliubov averaging method to study of the vibrations of
an elastic foundation, forced by a non-ideal energy source. Goncalves et al. (2016)
studied the dynamics of complex structure consisting of a portal frame coupled to
a non-ideal unbalanced motor. The planar portal frame supporting a direct current
motor with limited power was with quadratic nonlinearity and the case of internal
resonance 1:2 was analyzed.

Quinn (1997) presented a complete study of the conditions of resonance capture
in a three degree-of-freedom system modeling the dynamics of an unbalance rotor
subject to a small constant torque supported by orthogonal, linearly elastic supports
which is constrained to move in the plane. In the physical system the resonance
exists between translational motions of the frame and the angular velocity of the
unbalanced rotor.

In the literature the non-ideal excitation in continual systems is also treated. Thus,
in terms of continuous systems with coupled motors, Krasnopolskaya (2006) studied
an infinite plate immersed in an acoustic medium. The plate was subject to a point
excitation by an electric motor of limited power supply and it was shown that chaos
might occur in the system due to the feedback influence of waves in the infinite
hydro-elastic subsystem in the regime of motor shaft rotation.

The highly nonlinear interactions make it difficult to perform analytical studies on
transient behavior due to non-ideal vibrations.Moreover,most of studies ondynamics
of non-ideal systems are based on approximate solutions and numerical studies.
Numerical studies show that in these nonlinear system chaotic motion may appear.
Belato et al. (2001) obtained this phenomena for certain conditions in a vertical
pendulum, whose base is actuated horizontally through a slider crank mechanism,
where the crank is driven through a DC motor. Investigations on the properties of
the transient response of this nonlinear and non-ideal problem showed that near
the fundamental resonance region, the system may exhibit multi-periodic, quasi-
periodic, and chaotic motion. It was later shown that the loss of stability occurs
by a sequence of events, which include intermittence and crisis, when the system
reaches a chaotic attractor. A characteristic boundary-crisis feature in the bifurcation
diagram of this system has been attributed to the non-ideal supposition made in the
mathematical model (Belato et al. 2005).

A group of researchers treated the problem of suppressing chaotic motion (Souza
et al. 2005) and has been also focused on control of the passage through resonance
with a non-ideal source (Eckert 1996;Wauer and Suherman 1997). Thus, Samantaray
et al. (2010) show that direct or external damping and the rotating internal damping
significantly influence the dynamics of non-ideal systems. To mitigate the effects of
chaos and to damp the nonlinear vibrations, several authors have proposed the use of
passive and active control methods. In Felix et al. (2005) a nonlinear control method
is studied based on the phenomenon of mode saturation which is applied to a portal
frame support and unbalancedmotor with limited power. A passive control scheme is
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proposed. Using a tuned liquid column damper, a special type of damper relying on
the internal motion of a column of liquid in a U-tube container is forced to counteract
the forces acting on the structure. These authors obtained good results, controlling
the structural vibrations in the resonant regions and showing that the successes of
the damper applications depends on the variation of fluid resistance and inertness.
Active control methods include the use of a linear and nonlinear electromechanical
vibration absorber (Felix and Balthazar 2009) as controlled damping devices. The
application of nonlinear damp control has been effective to reduce the vibration
amplitude of the non-ideal system, showing a considerable reduction of the jump
and resonance capture phenomena. Castao et al. (2010) use a semi-active method to
mitigate the Sommerfeld effect in non-ideal systems by nonlinear controlled damping
with magnetorheological fluids. The non-ideal system consists of a mass connected
to a support by a nonlinear controlled spring and a magnetic rheological damper.
The block mass supports a DC motor that is powered by a continuous current source
with an eccentric mass in its axis. The non-ideal behavior of the system is due to the
interaction between the block and the DC motor.

The book has six chapters. After the introduction, in the Chap. 2 the dynamics of
a linear oscillator driven with a nonlinear energy source is considered. The oscilla-
tors with constant and variable mass are investigated. The system is mathematically
modeled. An analytical procedure for solving of the equations is developed. The con-
ditions of steady-state motion are determined and the stability of motion is discussed.
The Sommerfeld effect is also explained. In this chapter the numerical simulation
to the problem is done. Analytical and numerical solutions are compared. As a spe-
cial problem the dynamics of the oscillator with clearance excited with a non-ideal
source is investigated. The transient motion is clarified. The attention is given to
deterministic chaos in the system and to chaos control.

In the Chap.3 the dynamics of the nonlinear oscillator - non-ideal energy source
system is investigated. Beside linear, the influence of the nonlinear torque on the
motion of the system is considered. The Sommerfeld effect and its suppression are
explained. As a special type of nonlinear oscillators, the Duffing oscillator with
cubic nonlinearity is assumed. For the Duffing oscillator - non-ideal energy system
the Sommerfeld phenomena, chaos and chaos control are presented. Besides, the
properties of the bistable Duffing oscillator coupled with non-ideal source is con-
sidered. Semi-trivial solutions and quenching of amplitude is discussed. Non-trivial
solutions are obtained and their stability is analyzed. In this chapter the motion of the
pure nonlinear oscillator excitedwith torquewhich is a linear or nonlinear function of
the angular velocity is presented. The resonant motion is considered. Using the ana-
lytical averaging solving procedure the characteristic values for Sommerfeld effect
is obtained. Procedures for suppressing chaos are shown. Some numerical examples
are calculated. The chapter ends with an appendix about the Ateb functions (inverse
Beta functions) which are themathematical solutions of the pure nonlinear equations.

The considerations given for the one degree-of-freedom oscillator are extended
to two degree-of-freedom oscillator in the Chap.4. Analytical and numerical solving
procedures are developed. Steady state solutions are obtained and their stability is
discussed. We considered two special cases: (a) resonant frequencies in orthogonal

http://dx.doi.org/10.1007/978-3-319-54169-3_2
http://dx.doi.org/10.1007/978-3-319-54169-3_3
http://dx.doi.org/10.1007/978-3-319-54169-3_4
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directions are equal and (b) resonance frequency in one direction is half of the
resonance frequency in other direction.

As it is well known, the effect of non-ideal source is evident in real machines and
mechanism. It is the reason that in Chap.5 we investigate the dynamics of a polymer
sheets cutting mechanism. Various structures of mechanism are compared: the sim-
ple, eccentric and the slider-crank mechanism. Kinematics and dynamics analysis of
the ideally and non-ideally forced systems supported with rigid and flexible supports
is investigated. Advantages and disadvantages of systems are presented.

In Chap.6, the non-ideal energy harvester with piezoelectric coupling is inves-
tigated. The mathematical model of the non-ideal energy harvester is given. The
harvester system with ideal and non-ideal excitation is considered. Electric power is
harvested from the mechanical component. The harvester is with linear or nonlinear
piezoelectricity. Harvester is of beam type or in the form of a portal frame. Analytical
and numerical consideration of the system is introduced. Both, linear and nonlinear
harvesting systems are evident. Besides the steady state motion, chaotic motion is
realized. The motion of the system has to be controlled. The non-ideal portal frame
energy harvester is suggested to be controlled with a pendulum.

All of the chapters end with the reference list.
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Chapter 2
Linear Oscillator and a Non-ideal
Energy Source

In the non-ideal oscillator-motor system there is an interaction between the motions
of the oscillator and of the motor: the motor has an influence on the oscillator and
vice versa the motion of the oscillator affects the motion of the motor. It is in contrary
to the ideal system, where only the motor has an influence on the oscillator motion
and the influence of the oscillator on the motor is negligible (Kononenko 1969,
1980; Nayfeh and Mook 1979). In this chapter the linear oscillator coupled to a non-
ideal energy source is considered. A significant number of researches in dynamics
of linear oscillator coupled with the non-ideal energy source is already done (see
overviews Balthazar et al. 2003; Cveticanin 2010; References given in these papers
and, recently published papers Souza et al. 2005a, b; Dantas and Balthazar 2007;
Felix et al. 2009, 2011; Samantaray 2010; Kovriguine 2012; Tusset et al. 2012a, b
etc). In the non-ideal system with linear oscillator the connection of the system with
the fixed element is with an elastic element with linear property. Usually, a motor is
supported on a cantilever beamwhich has linear properties or amotor is settled on the
linear foundation (Dimentberg et al. 1997; Warminski et al. 2001). In the literature
the vibration of the system is determined analytically and the result is compared
with numerically obtained value. Discussing the results the special attention is given
to the phenomenon called ‘Sommerfeld effect’ which is a property of the non-ideal
systems.

The chapter is divided into three sections where three types of oscillator-motor
systems are considered: the one degree-of-freedom linear oscillator connected with a
non-ideal energy source, oscillator with variable mass excited with anon-ideal source
and the oscillator with clearance.

In the Sect. 2.1, a motor supported on a cantilever beam with linear elastic prop-
erties is considered. The system is modelled and an analytical solving procedure
is developed for obtaining of the approximate solutions. The steady-state motion
in the resonant working regime is given and the Sommerfeld effect is explained.
An analog mechanical model is introduced for better explanation of the problem

© Springer International Publishing AG 2018
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(Goncalves et al. 2014). Conditions for motion stability of the non-ideal system with
linear oscillator are determined.

In the Sect. 2.2, the oscillator with variable mass with non-ideal excitation is
investigated. The system is described with two coupled equations with time variable
parameters. The analytical and numerical solution of the problem is considered. The
influence of the parameter variation on the behavior of the system is discussed.

Section2.3 deals with an oscillator with clearance forced with a non-ideal source.
The elastic force in the spring is discontinual and it causes some additional distur-
bances in the motion of the system. Both, the transient and the steady-state motion
of the system are investigated. In this system beside regular motion, chaotic motion
is evident (Lin and Ewins 1993). Conditions for chaos are obtained and a method for
chaos control is developed (Zukovic and Cveticanin 2009).

2.1 Simple Degree of Freedom Oscillator Coupled
with a Non-ideal Energy Source

Let us consider a motor settled on a table where it is supposed that the motor is a
non-ideal energy source while the support represents an oscillator. The model of a
motor - support system is usually modelled as a cantilever beam with a concentrated
mass positioned at its free end (see Fig. 2.1).

The beam is made of steel and its properties are defined by Young’s modulus E ,
density ρ, the length L , the cross-sectional area S and the second moment of area
I . The beam bending stiffness is k = 3E I/L3, and its mass is mb = ρSL . If Mc

represents the mass of the electric motor, the total concentrated mass at the end of
the beam is m1 = Mc + 0.23mb (Goncalves et al. 2014). The motor has moment
of inertia J . It is known that the rotor of the motor suffers from unbalance. Rotor
is never perfectly balanced and the unbalance mass is m2 = mb that rotates at a
distance d from the motor shaft center. For low amplitudes of oscillation when the
higher order modes are neglected, it is possible to write an expression for the first
bending natural frequency ω0 of the beam with concentrated mass as

ω0 =
√

3E I

L3(m1 + m2)
. (2.1)

Fig. 2.1 Cantilever beam
with a concentrated mass and
an unbalanced motor
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Fig. 2.2 Model of a
spring-mass-damper
oscillator and a motor with
unbalanced mass

Due to rigidity and damping properties of the beam, it can bemodified as a spring-
mass-damper oscillator. Then, the cantilever beam - motor system is represented as
a cart with mass m1, connected with a spring and damper to the fixed plane, and
coupled with unbalanced mass (Fig. 2.2).

The system has two degrees of freedom. The cart displacement is defined by x
and the motor angular position is represented by ϕ. The kinetic energy of the system
T is

T = m1

2
ẋ2 + J

2
ϕ̇2 + m2

2
v2
2, (2.2)

where v2 is the velocity of the unbalance mass. For position coordinates of the motor
unbalanced mass m2: x2 = x + d cosϕ and y2 = d sinϕ, the velocity follows as

v2 =
√
ẋ22 + ẏ22 =

√
ẋ2 + d2ϕ̇2 − 2dẋϕ̇ sinϕ. (2.3)

Substituting (2.3) into (2.2) we obtain

T = 1

2
(m1 + m2)ẋ

2 + 1

2
(J + m2d

2)ϕ̇2 − m2dẋϕ̇ sinϕ. (2.4)

If the gravity potential energy is neglected, the systems potential energy is

U = 1

2
kx2. (2.5)
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Equations of motion of the system are obtained by using the Lagrange’s differential
equations of motion

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
= Qϕ, (2.6)

where Qx and Qϕ are generalized forces. The non-conservative force in x direction is
the damping force Qx = −cẋ with the damping coefficient c, while the generalized
force Qϕ corresponds to the torque M(ϕ̇) applied to motor.

Using relations (2.4)–(2.6) and the generalized force, the cart equation ofmotion is

(m1 + m2) ẍ + cẋ + kx = m2d
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.7)

and the motion of the motor shaft is given by

(
J + m2d

2) ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.8)

Equations (2.7) and (2.8) are autonomous and nonlinear.

2.1.1 Analytical Solving Procedure

Let us introduce the dimensionless length and time variables

y = x

d
, (2.9)

τ = ωt, (2.10)

and parameters

εζ1 = c√
k (m1 + m2)

, ε = m2d

X (m1 + m2)
,

εη1 = m2dX

J + m2d2
, M (

ϕ′) = M (ϕ̇)

ω2
(
J + m2d2

) . (2.11)

Dimensionless differential equations of motion of the oscillatory system follow as

y′′ + y = −2εζ1y
′ + ε

(
ϕ′′ sinϕ + ϕ′2 cosϕ

)
,

ϕ′′ = εη1y
′′ sinϕ + ε M (

ϕ′) , (2.12)
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where

ω =
√

k

m1 + m2
, (2.13)

is the frequency of the system, (′) ≡ d/dτ and X is the length characteristic of
the amplitude of the motion of the motor Nayfeh and Mook (1979). Assuming that
the parameter ε is small, Eq. (2.12) are with small nonlinear terms. For computa-
tional reasons it is convenient to rewrite (2.12) into a system of first order equations.
Accordingly, we let

y = a cos(ϕ + ψ), (2.14)

where a, ϕ and ψ are functions of τ . Generally, it cannot be expected that the
frequency of the rectilinear motion (ϕ′ + ψ′) to be the same as the angular speed of
the rotor ϕ′. Hence, ψ is included in the argument.

We are considering the motion near resonance and it is convenient to introduce a
detuning parameter � as follows

ϕ′ = 1 + �. (2.15)

Henceψ is used to distinguish between the speed of the rotor and the actual frequency
of the rectilinear motion, while � is used to distinguish between the speed of the
rotor and the natural frequency of the rectilinear motion.

Using the method of variation of parameters, we put

a′ cos(ϕ + ψ) − a(� + ψ′) sin(ϕ + ψ) = 0, (2.16)

so that

y′ = −a sin(ϕ + ψ), (2.17)

and

y” = −a′ sin(ϕ + ψ) − a(1 + � + ψ′) cos(ϕ + ψ). (2.18)

Substituting (2.15), (2.17) and (2.18) into (2.12) leads to

−a′ sin(ϕ + ψ) − a(� + ψ′) cos(ϕ + ψ) (2.19)

= ε�′ sinϕ + ε(1 + �)2 cosϕ + 2εζ1a sin(ϕ + ψ),

and

�′ = −εη1
(
a′ sin(ϕ + ψ) + εa(1 + � + ψ′) cos(ϕ + ψ)

)
sinϕ + εM (2.20)
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where M = M (
ϕ′) . Solving (2.16) and (2.19) for a′ and ψ′ produces

a′ = ε�′ sinϕ − ε(1 + �)2 cosϕ − 2εζ1a sin(ϕ + ψ) sin(ϕ + ψ), (2.21)

ψ′ = −�− ε

a
�′ sinϕ− ε

a
(1+�)2 cosϕ−2εζ1 sin(ϕ+ψ) cos(ϕ+ψ). (2.22)

Equations (2.20)–(2.22) are equivalent to the system (2.12). No approximations have
beenmadeyet. These equations show that�′ anda′ areO(ε).Werestrict our attention
to a narrow band of frequencies around the natural frequency

� = εσ. (2.23)

� and �′ are O(ε), and it follows from (2.22) that ψ′ is also O(ε). As a first
simplification we neglect all terms O(ε2) appearing in (2.20)–(2.22) and we obtain

�′ = ε (M − η1a cos(ϕ + ψ) sinϕ) , (2.24)

a′ = −ε (cosϕ + 2ζ1a sin(ϕ + ψ)) sin(ϕ + ψ), (2.25)

ψ′ = −� − ε

a
(cosϕ + 2ζ1 sin(ϕ + ψ)) cos(ϕ + ψ). (2.26)

To solve the Eqs. (2.24)–(2.26) in exact analytical form is not an easy task. The
approximate solution is obtainedby applyingof the averagingprocedure.Weconsider
a, σ and ψ to be constant over one cycle and average the equations over one cycle.
The result is

�′ = ε

(
M + 1

2
η1a sinψ

)
, (2.27)

a′ = −ε

(
1

2
sinψ + aζ1

)
, (2.28)

ψ′ = −ε

(
σ + 1

2a
cosψ

)
. (2.29)

At this point, let us mention the difference between ideal and non-ideal systems. For
the ideal system relation (2.27) is not a governing equation asσ is specified and (2.28)
and (2.29) are solved for a and ψ. For the non-ideal system the Eqs. (2.27)–(2.29)
are solved for a, � and ψ withM as a control setting.

2.1.2 Steady-State Solution and Sommerfeld Effect

For steady-state responses, a′, �′ and ψ′ are zero, i.e., Eqs. (2.27)–(2.29) transform
into
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M + 1

2
η1a sinψ = 0, (2.30)

1

2
sinψ + aζ1 = 0, (2.31)

σ + 1

2a
cosψ = 0. (2.32)

Combining (2.31) and (2.32) yields

a = 1

2
√

ζ21 + σ2
, (2.33)

while combining (2.30) and (2.31) gives

M = η1ζ1a
2. (2.34)

The phase is given by

ψ = cos−1(−2aσ) = sin−1(−2aζ1). (2.35)

Recalling the definitions of the dimensionless variables, we rewrite these results in
terms of the original physical variables as

Xa = ωm2d√
c2 + 4(ω − ϕ̇)2(m1 + m2)2

, (2.36)

ψ = tan−1

(
−2(m1 + m2)(ω − ϕ̇)

c

)
, (2.37)

and

M(ϕ̇) = cωkm2dX

2
(
c2 + 4(ω − ϕ̇)2(m1 + m2)2

) , (2.38)

where (Xa) is the physical amplitude of the motion and according to (2.35),−π/2 <

ψ < 0. The solving procedure is as it follows: first, the (2.38) is solved for ϕ̇ and
then, the amplitude and phase from (2.36) and (2.37) are obtained.

To solve the Eq. (2.38) it is necessary to know the torque function of the motor.
Namely, the torque of the motor contains two terms: the characteristic of the motor
L (ϕ̇) and the resisting moment H (ϕ̇) due primarily to windage of the rotating parts
outside the motor

M (ϕ̇) = L (ϕ̇) − H (ϕ̇) .
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Generally, L (ϕ̇) and H (ϕ̇) are determined experimentally. Various types of math-
ematical description of the motor property are suggested. One of the most often
applied and the simplest one is the linear mode which is a function of the angular
velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.39)

and depends on two constant parameters M0 and �0 which define the limited source
of power as the angular velocity increases. The expression (2.39) defines the char-
acteristic curve of the motor shown in Fig. 2.3, where for angular velocities greater
than �0 the torque reduces to zero and when the angular velocity is zero the torque
is maximum. Figure2.3 is an illustrative example in which Eq. (2.39) is valid for
positive values of torque and angular velocity.

In this section the calculation is done for the linear torque function (2.39). Solving
(2.36)–(2.38) with (2.39) the frequency - response relation is obtained. In Fig. 2.4 the
corresponding diagram is plotted. For the ideal linear system the frequency-response
diagram is a continual curve presented with a solid line in Fig. 2.4. For the non-ideal
system the curves are obtained by allowing the system to achieve a steady-state
motion while the control was fixed. Then the amplitude of the steady-state response
was calculated. The control was then changed very slightly and held in the new
position until a new steady state was achieved. For increasing of angular frequency
the amplitude increases up to T and jumps toH andmoves in right-hand side direction
along the amplitude curve. For the decreasing frequency the amplitude increases up
to R and suddenly jumps to P and decreases continually along the solid line curve.
We note that there are gaps where no steady-state response exists. The gaps are not
the same in the two directions but there is some overlap. The arrows indicate the
change brought about by slowly increasing or decreasing the control setting in a

Fig. 2.3 Motor torque
characteristic curve
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Fig. 2.4 Frequency-
response curves for ideal
system (_ _ _ _) and non-ideal
system (→→) (Nayfeh and
Mook 1979)

non-ideal system. We note that the non-ideal system cannot be made to respond at a
frequency between T andH by simply increasing the control setting form a low value.
In contrast, the ideal system can respond also at frequencies between T and H.When
the control setting is continually decreased, the system cannot be made to respond
between R and P. In other words, the right side of the resonance spike between T
and R cannot be reached by either continually increasing or continually decreasing
the control setting. Though the system is linear, the non-ideal source causes a jump
phenomenon to occur.

At the left-hand side of the frequency-response curve the input power is relatively
low. As the input power increases, the amplitude of the response increases noticeably
while the frequency changes only slightly, especially along the portion of the curve
between P and T. Here a relatively large increase in power causes a relatively large
increase in the amplitude and practically no change in the frequency.

At T the character of the motion suddenly changes. An increase in the input power
causes the amplitude to decrease and the frequency to increase considerably. This
phenomenon is called Sommerfeld effect. It was discovered by Arnold Sommerfeld
in 1902, commented in a book of Kononenko (1969) and described in the book of
Nayfeh andMook (1976). The jumpphenomena in the amplitude-frequency curve for
the non-ideal system is remarked during passage through resonance. In this working
regime special properties of the non-ideal source are caused. Namely, in the region
before resonance as the power supplied to the source increases, the RPM of the
energy source (motor) increases accordingly. But, the closed motor speed moves
toward the resonance frequency the more power the source requires to increase the
motor speed. Near resonance it appears that additional power supplied to the motor
will only increase the amplitude of the response with little effect on the RPM of
the motor, and the amplitude of vibration increases. In non-ideal vibrating systems
the passage through resonance requires more input power than is available. As a
consequence the vibrating system cannot pass through resonance or requires an
intensive interaction between the vibrating system and the energy source to be able



18 2 Linear Oscillator and a Non-ideal Energy Source

to do it. Strong interaction leads to fluctuating motor speed and fairly large vibration
amplitudes appear. The motor may not have enough power to reach higher regimes
with low energy consumption as most of its energy is applied to move the structure
and not to accelerate the shaft. In fact, the vibrating response provides a certain
energy sink.

2.1.3 Model Analogy and Numerical Simulation

To explain the motion in non-ideal system a model analogy is introduced. Let us
consider the Eq. (2.38). Substituting (2.39) into (2.8) it is

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M0

(
1 − ϕ̇

�0

)
. (2.40)

Discussion of (2.40) follows.
Let us consider a motor mounted on a rigid base. Motion of the cart is eliminated

(ẍ = 0) and according to (2.40) the mathematical model is

(
J + m2d

2
)
ϕ̈ = M0

(
1 − ϕ̇

�0

)
. (2.41)

The physical model which corresponds to (2.41) is a wheel climbing on a ramp.
The slope of the ramp is related to the motor inertia defining the rate of the angular
velocity.

For a motor with no resistive torque when M = M0, the angular acceleration
is constant and therefore, the angular velocity of the wheel increases by a constant
rate (see Fig. 2.5a). The motor torque should be switched off as the desired angular
velocity �0 is achieved.

When considering the motor with resistive torque, the angular acceleration is no
longer constant and decreases as the angular velocity increases. The system shown in

Fig. 2.5 Analogy by a wheel climbing a ramp: a a motor with no resistive torque, b a motor with
resistive torque (Goncalves et al. 2014)
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Fig. 2.5b is used to represent the motor with resistive torque where it is more difficult
to reach the energy level �0. The rate of velocity changing is no longer linear.

When the motor is mounted on a flexible base, its motion is described with
Eq. (2.40). It is clear that the angular acceleration is also a function of the cart motion
x .Besides, themotion of the cart is a function of the acceleration and angular velocity
of the motor (2.7). In Fig. 2.6 a system which is analog with the motor mounted on
a flexible base is represented. Similar to Fig. 2.5a, wheel must climb a ramp to reach
the level of energy defined by �0. In this case the ramp path is modified by the cart
resonance frequency ω0.

The resonance frequency is represented by the valley in the ramp path. The deep
and the width of the valley in the ramp are related to the amplitude of the motion of
the cart and in some cases the wheel can get stuck inside the valley in the ramp path.
Numerical simulation is done for frequencies around the cart resonance frequency
ω0. Figure2.7 shows that when�0 is slightly bigger thanω0 the angular velocity does
not increase. Setting�0 = 1.1ω0 themotor does not reach the angular velocity 1.1ω0,

instead it will oscillate with angular velocity ω0. As a consequence, the additional
energy increases the amplitude of the displacement of the cart.

Fig. 2.6 Analogy of the
resonance frequency in the
ramp path (Goncalves et al.
2014)

Fig. 2.7 The angular
velocity as a function of
motor constant �0
(Goncalves et al. 2014)
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Fig. 2.8 Root mean square
acceleration as a function of
the motor constant �0
(Goncalves et al. 2014)

Fig. 2.9 The analogy of a
wheel climbing a ramp with
the influence of a resonance
frequency (Goncalves et al.
2014)

In Fig. 2.8 the cart root mean square (RMS) magnitude of the acceleration as a
function of the oscillation frequency rate�0/ω0 is plotted. Based on plots in Figs. 2.7
and 2.8 it is noted that there is a region between C and D without data points. This
region corresponds to a jump phenomenon described by Sommerfeld. The wheel
climbing a ramp is used to explain the jump using the sketch in Fig. 2.9.

The system passing through resonance frequency is represented by the wheel
inside the valley and oscillating between points ABC. There is a region in the ramp
path between points C and D where the wheel does not have grip. The system cannot
stay in energy levels in the region as it will fall in the valley. The width and the
depth of the valley ABC are controlled by the resonance amplitude. The higher the
damping, the shallower the valley.
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2.1.4 Stability Analysis

For a given setting of control there can be one, two or three steady state solutions (see
Fig. 2.4). To determinewhich of these steady-state solutions actually corresponds to a
realizable motion, we need to consider the stability of motion. Namely, we determine
the stability of the steady-state solutions by determining the nature of the singular
points which are the solutions of (2.27)–(2.29). To accomplish this, we let

a = aS + a1, ψ = ψS + ψ1, � = �S + �1. (2.42a)

Substituting (2.42a) into (2.27)–(2.29) and neglecting all but the linear terms in a1,
ψ1 and �1, we obtain

�′
1 = ε

(
dM
dϕ′ ϕ′

S�1 + 1

2
η1a1 sin(ψS) + 1

2
η1aSψ1 cos(ψS)

)
,

a′
1 = −ε

(
1

2
ψ1 cos(ψS) + a1α1

)
,

ψ′
1 = −ε

(
σ1 + 1

2

(
a1
a2S

)
cos(ψS) − 1

2aS
ψ1 sin(ψS)

)
, (2.43)

where εσ1 = �1. Linear equation (2.43) have a solution in the form

(a1,ψ1,�1) = (a10,ψ10,�10) exp(λt),

i.e.,

a1 = a10 exp(λt), ψ1 = ψ10 exp(λt), �1 = �10 exp(λt), (2.44)

where λ is the eigenvalue coefficient matrix and a10,ψ10,�10 are constants. Substi-
tuting (2.44) into (2.43) the characteristic determinant is obtained as

∣∣∣∣∣∣∣∣
εϕ′

S(
dM
dϕ′ )ϕ′

S
− λ ε

2η1 sin(ψS)
ε
2η1aS cos(ψS)

0 λ + εα1
1
2ε cos(ψS)

1 ε
2a2S

cos(ψS) λ − ε
2aS

sin(ψS)

∣∣∣∣∣∣∣∣
= 0,

and the characteristic equation is a cubic one

0 = λ3 + λ2

[
εα1 − ε

2aS
sin(ψS) − εϕ′

S

(
dM
dϕ′

)
ϕ′
S

]



22 2 Linear Oscillator and a Non-ideal Energy Source

−λ

[
ε2α1

2aS
sin(ψS) + ε2

4a2S
cos2(ψS) +

(
εα1 − ε

2aS
sin(ψS)

)
εϕ′

S

(
dM
dϕ′

)
ϕ′
S

−ε

2
η1aS cos(ψS)

]

+
(

εϕ′
S

(
dM
dϕ′

)
ϕ′
S

[
ε2α1

2aS
sin(ψS) + ε2

4a2S
cos2(ψS)

]

+ε2

2
η1α1aS cos(ψS) − ε2

8
η1 sin(2ψS). (2.45)

The solutions are stable and hence the corresponding motions realizable, if the real
part of each eigenvalue is negative or zero. Without solving the Eq. (2.45) and using
the Routh–Hurwitz principle we can determine the conditions for the stable solution
up to the small value O(ε2)

[
α1 − ϕ′

S

(
dM
dϕ′

)
ϕ′
S

]
aS sin(ψS) − 1

4
sin(2ψS) − ϕ′

0

(
dM
dϕ′

)
ϕ′
S

η1a
3
S cos(ψS) > 0.

(2.46)

Analyzing the relation (2.46) it turns out that the solutions between T and R are
unstable, while all those outside this region are stable (Fig. 2.4). As (2.43)1 indicates
the parameter, that gives the influence of the motor on the stability, is the slope of
the characteristic.

2.2 Oscillator with Variable Mass Excited with Non-ideal
Source

There is a significant number of equipment and machines which can be modelled
as one degree-of-freedom oscillators with time variable mass. Let us mention some
of them: centrifuges, sieves, pumps, transportation devices, etc. For all of them it
is common that their mass is varying slowly during the time. The mass variation
is assumed to be continual. The excitation of the motion of the equipment is ideal
(the excitation force is a harmonic function and the influence of the oscillator on the
source is negligible) or non-ideal, where not only the energy source has an influence
on the oscillator, but vice versa. In this chapter the oscillator with non-ideal excitation
is considered. First the model of the one-degree-of-freedom oscillator with non-ideal
excitation is formed. It is a system of two coupled differential equations with time
variable parameters. Vibrations close to the resonant regime are considered. For the
case when the mass variation is slow the amplitude and frequency of vibration are
determined. The Sommerfeld effect for the system where the parameters depend
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on the slow time is discussed. Analytical solutions are compared with numerically
obtained ones.

2.2.1 Model of the System with Variable Mass

In Fig. 2.10 the model of an oscillator with time variable mass m1 connected with a
motor which is a non-ideal energy source is plotted. The motor is settled on a cart
whose mass m1 is varying in time due to leaking of the contain with velocity u. It is
supposed that the mass variation is slow in time. The connection of the oscillating
cart to the fixed element has the rigidity k and damping c.

The motor has the moment of inertia J, unbalance m2 and eccentricity d. The
excitation torque of the motor, M (ϕ̇), is the function of the angular velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.47a)

where �0 is the steady-state angular velocity. This mathematical model corresponds
to asynchronous AC motor (Dimentberg et al. 1997).

To describe the motion of the system, let us assume the two generalized coor-
dinates: the displacement of the oscillator x and the rotation angle of the motor ϕ.
Variation of the mass of the oscillator is assumed to be slow and to be the function
of the slow time τ = εt , where ε << 1 is a small constant parameter. Equations of
motion of the system with time variable mass is in general (Cveticanin 2015)

Fig. 2.10 Model of the
non-ideal mass variable
system
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d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
= Qx + QR,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
= Qϕ, (2.48)

where Qx and Qϕ are generalized forces and QR is the generalized reactive force
caused by mass variation. If the mass is added or separated with the absolute velocity
u in x direction, the generalized reactive force is the product of the velocity u and
mass variation dm1/dt , i.e.

QR = dm1

dt
u. (2.49)

The non-conservative force in x direction is the damping force Qx = −cẋ with the
damping coefficient c, while the generalized force Qϕ corresponds to the torque
M(ϕ̇) applied to motor. The kinetic energy of the system is according to (2.4)

T = 1

2
[m1(τ ) + m2]ẋ2 + 1

2
(J + m2d

2)ϕ̇2 − m2dẋϕ̇ sinϕ. (2.50)

and the potential energy of the system is according to (2.5)

U = kx2

2
. (2.51)

Using (2.50) and (2.51) and also (2.49) equations of motion are due to (2.48)

[m1(τ ) +m2]ẍ + cẋ + kx = dm1(τ )

dt
(u − ẋ) +m2d

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.52)

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.53)

Assuming that the velocity u is zero, the Eqs. (2.52) and (2.53) transform into

[m1(τ ) + m2]ẍ + cẋ + kx = −dm1(τ )

dt
ẋ + m2d

(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
, (2.54)

(
J + m2d

2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) . (2.55)

Let us rewrite (2.52) and (2.53) into

ẍ + ω2(τ )x = −εζ(τ )ẋ − ε

m1(τ ) + m2

dm1(τ )

dτ
ẋ (2.56)

+ εμ(τ )
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,

ϕ̈ = εηẍ sinϕ + εγM (ϕ̇) , (2.57)
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where

ω2(τ ) = k

m1(τ ) + m2
, εζ(τ ) = c

m1(τ ) + m2
, εγ = 1

J + m2d2

εμ(τ ) = m2d

m1(τ ) + m2
, εη = m2d

J + m2d2
. (2.58)

In the Eqs. (2.56) and (2.57) the right-hand side terms are of the order of small
parameter ε. Analyzing the dimensionless parameters (2.58) it is obvious that the
dimensionless frequency ω , damping ζ and excitation γ are functions of slow time.
Namely, the mass variation affects these values.

2.2.2 Model of the System with Constant Mass

Let us consider the system with constant mass when m1 = const . Then the dimen-
sionless values ω, ζ and γ in (2.58) are also constant. Assuming that the mass of the
system is constant and omitting the terms with the second and higher order of the
small parameter ε, relations (2.56) and (2.57) simplify into

ẍ + ω2x = −εζ ẋ + εμϕ̇2 cosϕ, (2.59)

ϕ̈ = εηẍ sinϕ + εγM (ϕ̇) . (2.60)

Solution of (2.59) and (2.60) is

x = a cos(ϕ + ψ), (2.61)

with time derivatives

ẋ = −aω sin(ϕ + ψ). (2.62)

and

ϕ̇ = �, (2.63)

where a is the amplitude of vibration, ψ is the phase angle and � is the time deriv-
ative of the solution ϕ. Substituting (2.61)–(2.63) and after some modification the
Eqs. (2.59) and (2.60) are rewritten into first order differential equations of motion
in new variables a, ψ and �

ȧ = −εζa sin2(ϕ + ψ) − εμ
�2

ω
sin(ϕ + ψ) cosϕ, (2.64)
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ψ̇ = (ω − �) − εμ
�2

aω
cos(ϕ + ψ) cosϕ

− εζ
sin 2(ϕ + ψ)

2
, (2.65)

�̇ = εγM (�) − εηaω2 cos(ϕ + ψ) sinϕ. (2.66)

Equations (2.64)–(2.66) are three coupled strong nonlinear equations.

Averaging Procedure

For simplicity, let us introduce the averaging over the period of the trigonometric
function ϕ for the period 2π. After averaging it is

ȧ = −1

2
εζa − 1

2
εμ

�2

ω
sinψ, (2.67)

ψ̇ = (ω − �) − εμ�2

2aω
cosψ, (2.68)

�̇ = εγM (ϕ̇) + 1

2
εηaω2 sinψ. (2.69)

For the steady state motion, when ȧ = 0, ψ̇ = 0 and �̇ = 0, the Eqs. (2.67)–(2.69)
transform into

εμ�2

2ω
sinψ = −1

2
εζa, (2.70)

εμ�2

2ω
cosψ = (ω − �)a, (2.71)

1

2
εηaω2 sinψ = −εγM (ϕ̇) . (2.72)

Using relations (2.70) and (2.71) the amplitude -frequency relation is obtained

a = εμ�2

ω
√

(εζ)2 + 4(ω − �)2
. (2.73)

Eliminating ψ in the Eqs. (2.70) and (2.72), we have

(εη)(εζ)ω3

2εμ�2
a2 = εγM (ϕ̇) ≡ εγM0

(
1 − �

�0

)
. (2.74)
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2.2.3 Comparison of the Systems with Constant
and Variable Mass

Let us compare the properties of the systems with various values of mass. The char-
acteristic points, which represent the intersection of curves (2.73) and (2.74), will be
analyzed. In Fig. 2.11 the points of intersection of amplitude-frequency and charac-
teristic curve are presented: in Fig. 2.11a the intersection of an amplitude-frequency
curve and various characteristic curves and in Fig. 2.11b for one characteristic curve
and amplitude-frequency curves for various values of mass are plotted.

In Fig. 2.11a the intersection of the amplitude-frequency diagram for m1 = m10

and various values of motor torque are plotted. It can be seen that there may be one or
three points of intersection: two of them are stable and one is unstable. In Fig. 2.11b
only one motor characteristic for m1 = m10 is plotted.

Namely, the influence of the small mass variation on the motor characteristic is
negligible. The intersection of this motor characteristic and of amplitude-frequency
diagrams obtained for various values of mass m1 is plotted in Fig. 2.11b It is seen
that for m1 = m10 there are three intersection points. If the mass is higher than m10,
i.e., m1 = 1.1m10, the amplitude-frequency diagram is moved to left the number of
intersections decreases from three to only one. If the mass is smaller than m10, i.e.,
m1 = 0.9m10, the amplitude-frequency diagram is moved to right in comparison to
the previous one. There exists only one steady state position. It can be concluded that
the value ofmass has an influence on the number and position of characteristic points.
Besides, it can be seen that the maximal amplitude depends on the non-dimensional
damping coefficient, as it is affected with mass value: for the higher value of mass
the maximal amplitude of vibration is smaller than for m10. Otherwise, the smaller
the mass, the higher the value of the maximal amplitude.

In Fig. 2.12a–c the influence of mass increase on the position of the characteristic
point with small amplitude and high frequency is plotted. The amplitude of steady
state position decreases from 1 to 3, while the frequency increases.

Fig. 2.11 a Intersection of the amplitude-frequency diagram and various values of motor torque;
b Intersection of the motor torque and amplitude-frequency diagrams for various values of masses
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Fig. 2.12 The motion of the lower intersection point for increasing mass: a m1 = m10, b m1 =
1.03m10, c m1 = 1.06m10

Fig. 2.13 The motion of the upper intersection point for increasing mass: a m1 = m10, b m1 =
1.03m10, c m1 = 1.06m10

Fig. 2.14 Mass-time
diagrams

The second characteristic point which corresponds to the steady state motion also
moves due to mass increase (see Fig. 2.13a–c). First the intersection point moves
toward higher amplitude and smaller frequency (point 2) and then jumps to the
position 3 with small amplitude and high frequency.

In Fig. 2.14 the mass-time diagrams are plotted: for t ∈ [0, 200] the mass is
constant, while for t > 200 mass is increasing (ε > 0) of decreasing (ε < 0). In
Fig. 2.15 the displacement and frequency time history diagrams for mass increase
are plotted.
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Fig. 2.15 a Frequency-time diagram for upper steady state position, b Displacement-time dia-
gram for upper steady state position, c Frequency-time diagram for lower steady state position,
dDisplacement-time diagram for lower steady state position. Mass is constant (gray line) and mass
is increasing (black mass)

In Fig. 2.15a the frequency-time diagram for upper steady state position is plotted.
For the constant mass after the transient motion the frequency is constant. If the
mass is increasing the frequency increase, too. In Fig. 2.15b the displacement-time
diagram for upper steady state position and constant mass is the gray line. Increasing
the mass the amplitude decreases with mass increase. The same tendency of motion
is evident for the lower steady state position (Fig. 2.15c, d). In Fig. 2.16 the case
when the mass is decreasing is plotted. For the case when the mass is constant the
displacement-time (gray line) and frequency-time diagrams are constant, while for
decreasing mass the frequency-time diagrams decrease (Fig. 2.16a, c). Decrease of
mass causes the displacement-time diagram (black line) for the upper position to
decrease (Fig. 2.16b) while for the lower position to increase (Fig. 2.16d).

Finally, it can be concluded that the mass variation is suitable to be applied as a
method for control of motion in non-ideal systems.
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Fig. 2.16 a Frequency-time diagram for upper steady state position, b Displacement-time dia-
gram for upper steady state position, c Frequency-time diagram for lower steady state position,
d Displacement-time diagram for lower steady state position. Mass is constant (black line) and
mass is decreasing (gray mass)

2.3 Oscillator with Clearance Coupled with a Non-ideal
Source

In the previous sections we discussed the cases when the connection between the
oscillator and the fixed element is continual. Introducing the clearance in the con-
nection between the oscillator and the fixed element, the discontinual elastic force
acts. It has to be mentioned that the elastic property is a linear displacement func-
tion, but due to discontinuity the system may be treated as the nonlinear one. The
mathematical model of the system is given with two coupled nonlinear differential
equations. For the case of small nonlinearity the asymptotic methods are applied for
determining of the transient and steady-state motion and their stability. In the system
the Sommerfeld effect occurs. Beside the regular, the chaotic motion in non-ideal
mechanical systems with clearance exists. It is of interest to obtain conditions for
transformation of the chaotic motion into periodic motion (Zukovic and Cveticanin
2009).
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Fig. 2.17 Model of the
non-ideal mechanical system
with clearance

2.3.1 Model of the System

The non-ideal system with clearance is modeled as an oscillatory system with unbal-
anced motor (Fig. 2.17).

The mechanical model contains the oscillatory mass m1 and the motor with
moment of inertia J, unbalancem2 and eccentricity d. The connection of the oscilla-
tor to the fixed element has the rigidity k, damping c and clearance vk . The excitation
torque of the motor, M (ϕ̇), is the function of the angular velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (2.75)

where �0 is the steady-state angular velocity. This mathematical model corresponds
to asynchronous AC motor (Dimentberg et al. 1997).

For the generalized coordinates: the displacement of the oscillator x and the
rotation angle of the motor ϕ, the motion of the system is described with a system
of two coupled non-linear differential equations

(m1 + m2) ẍ + cẋ + Fk = m2d
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,(

J + m2d
2
)
ϕ̈ = m2dẍ sinϕ + M (ϕ̇) , (2.76)

where Fk is the elastic force in the spring. The weight of the elements is neglected
as the motion of the system is in horizontal plane.

For the clearance vk , the spring has not an influence on the motion of the system
as the elastic force Fk is zero (Fig. 2.18a).

For the case of spring extension it is assumed that the elastic force is the linear
displacement function

Fk (x) = kx + fk = kx +
⎧⎨
⎩

−k vk
2 if x > vk

2−kx if − vk
2 ≤ x ≤ vk

2
k vk

2 if x < − vk
2

. (2.77)
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Fig. 2.18 Properties of the system: a elastic force distribution, b motor-torque characteristics

where kx is the linear part of the force and fk is different in the interval in front of
and beyond clearance and also in the clearance.

By introducing the dimensionless displacement

y = x

d
, (2.78)

and dimensionless time

τ = ωt, (2.79)

and also (2.77) into (2.76), the dimensionless differential equations of motion of the
oscillatory system are obtained

y′′ + y = −ζ y′ − κ fk + μ
(
ϕ′′ sinϕ + ϕ′2 cosϕ

)
,

ϕ′′ = ηy′′ sinϕ + ξ M (
ϕ′) , (2.80)

where ω =
√

k
m1+m2

is the eigenfrequency of the system, (′) ≡ d/dτ and

ζ = c√
k (m1 + m2)

, κ = 1

dk
, μ = m2

(m1 + m2)
,

η = m2d2(
J + m2d2

) , ξ = 1

ω2
(
J + m2d2

) . (2.81)
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The dimensionless elastic force is

κ fk (y) =
⎧⎨
⎩

− Vk
2 if y > Vk

2−y if − Vk
2 ≤ y ≤ Vk

2
Vk
2 if y < − Vk

2

, (2.82)

where Vk = vk
d is the dimensionless clearance. In dimensionless coordinates the

torque is the function of the dimensionless angular velocity ϕ′

M (
ϕ′) = M0

(
1 − ϕ′

ν0

)
(2.83)

where ν0 = �0
ω
. The parameter M0 has a significant influence on the gradient of the

curve (see Fig. 2.18b): for higher values of parameter the gradient is higher and tends
to vertical position when the power is unlimited and the system is ideal.

2.3.2 Transient Motion of the System

The motion of the system, with small nonlinearity and energy supply close to ideal,
is considered. Due to real properties of the system it can be concluded that the
parameters α, μ, κ, η and ξ in (2.80) are small. The parameters are described as

ζ = εζ1, μ = εμ1, η = εη1, ξ = εξ1, (2.84)

where ε << 1 is a small parameter.
For (2.84) the differential equations of motion (2.80) are transformed into

y′′ + y = −εα1y
′ + εμ1

(
ϕ′′ sinϕ + ϕ′2 cosϕ

) − κ fk,

ϕ′′ = εη1y
′′ sinϕ + εξ1M

(
ϕ′) , (2.85)

where (′) ≡ (d/dτ ) and (′′) ≡ (d2/dτ 2). After some simplification and neglecting
the second order small values in (2.85) the following system of differential equations
of motion is obtained

y′′ + y = −εζ1y
′ + εμ1ϕ

′2 cosϕ − κ fk,

ϕ′′ = −εη1y sinϕ + εξ1M
(
ϕ′) . (2.86)

Substituting (2.82) and (2.83) into (2.86), neglecting the damping term and assuming
that the clearance is small, i.e., y ≷ εVk

2 , it follows
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y′′ + y = εμ1ϕ
′2 cosϕ ± εVk

2
,

ϕ′′ = −εη1y sinϕ + εξ1M0

(
1 − ϕ′

ν0

)
f or y ≷ εVk

2
. (2.87)

Analyzing the first relation in (2.87), it is concluded that for

−εVk

2
≤ y ≤ εVk

2
,

the deflection y is of order O(ε) and that the first term on the right side of the second
equation is a small value of order O(ε2). Neglecting the second order small values,
it follows

y′′ = εμ1ϕ
′2 cosϕ,

ϕ′′ = εξ1M0

(
1 − ϕ′

ν0

)
f or − εVk

2
≤ y ≤ εVk

2
. (2.88)

Introducing the series expansion

y = y0 + εy1 + · · · , ϕ = ϕ0 + εϕ1 + · · · , (2.89)

into (2.87), and separating the terms with the same order of small parameter ε the
following system of differential equations is obtained

ε0 : y′′
0 + y0 = 0, ϕ′′

0 = 0, (2.90)

ε1 : y′′
1 + y1 = μ1

(
ϕ′
0

)2
cosϕ0 ∓ Vk

2
, (2.91)

ϕ′′
1 = −η1y0 sinϕ0 + ξ1M0

(
1 − ϕ′

0

ν0

)
,

...

with initial conditions

ε0 : y0(τ0) = Y0, y′
0(τ0) = Y ′

0, ϕ0(τ0) = �0, ϕ′
0(τ0) = �′

0,

(2.92)

ε1 : y1(τ0) = 0, y′
1(τ0) = 0, ϕ1(τ0) = 0, ϕ′

1(τ0) = 0, (2.93)

...

The solution of (2.90) is

y0 = A0 cos(τ + α0), ϕ0 = B0τ + C0, (2.94)
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and of (2.91)

y1 = A1 cos(τ + α1) ∓ Vk

2
+ μ1B2

0

1 − B2
0

cos(B0τ + C0), (2.95)

ϕ1 = (1 − B0)
2

2
η1A0 sin[(1 − B0)τ + (α0 − C0)]

+ (1 + B0)
2

2
η1A0 sin[(1 + B0)τ

+ (α0 + C0)] + ξ1M0

(
1 − B0

ν0

)
τ 2

2
+ B1τ + C1, (2.96)

where A0, B0, C0 and α0 are integrating constants which have to be determined
according to (2.92), and A1, B1, C1 and α1 according to (2.93). In general, the
solution in the first approximation for the case when the elastic force acts is

y = A0 cos(τ + α0) + εA1 cos(τ + α1)

∓εVk

2
+ εμ1B2

0

1 − B2
0

cos(B0τ + C0), (2.97)

ϕ = (B0 + εB1)τ + (C0 + εC1) + εξ1M0

(
1 − B0

ν0

)
τ 2

2

+ εη1A0

2(1 − B0)2
sin[(1 − B0)τ + (α0 − C0)] (2.98)

+ εη1A0

2(1 + B0)2
sin[(1 + B0)τ + (α0 + C0)],

and

y′ = −A0 sin(τ + α0) −
[
εA1 sin(τ + α0) + εμ1B3

0

1 − B2
0

sin(B0τ + C0)

]
, (2.99)

ϕ′ = B0 + εB1 + εξ1M0

(
1 − B0

ν0

)
τ + εη1A0

2(1 − B0)
cos[(1 − B0)τ + (α0 − C0)]

+ εη1A0

2(1 + B0)
cos[(1 + B0)τ + (α0 + C0)]. (2.100)

For the deflection y = (∓εVk/2) using (2.97) the value of time τV is calculated.
Substituting this value of time τV into (2.98)–(2.100) the position and velocities
ϕ(τv), y′(τv) and ϕ′(τv) are determined. The values

y(τv) = ∓εVk/2, y′(τv), ϕ(τv), ϕ′(τv), (2.101)
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are the initial conditions for themotion of the systemwithout elastic force. According
to (2.88)

ϕ = K0 + ν0τ + ν2
0K1

εξ1M0
exp

(
−εξ1M0τ

ν0

)
(2.102)

≈
(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ ,

ϕ′ = ν0 − ν0K1 exp

(
−εξ1M0τ

ν0

)
≈ ν0(1 − K1) + K1εξ1M0τ , (2.103)

y = −εμ1 cos

[(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ

]
+ K2τ + K3, (2.104)

y′ = K2 + εμ1ν0(1 − K1) sin

[(
K0 + ν2

0K1

εξ1M0

)
+ ν0(1 − K1)τ

]
, (2.105)

where the constants K0, K1, K2 and K3 depend on the initial conditions (2.101). The
elastic force acts when y = (±εVk/2) and the motion functions are (2.97)–(2.100)
with initial conditions which correspond to τ and (2.103)–(2.105) at that displace-
ment position.

In Fig. 2.19 the y − τ , y′ − τ , ϕ − τ and ϕ′ − τ time history diagrams for ζ1 = 0,
μ1 = 1, η1 = 1, ξ1 = 0.5, ν0 = 1.1, ε = 0.1. and initial conditions y(0) = 0.5,

Fig. 2.19 Time-history diagrams: a y − τ , b y′ − τ , c ϕ − τ , d � − τ , for Vk = 0.1, μ1 = 1,
η1 = 1, ξ1 = 0.5, ν0 = 1.1, ε = 0.1 and initial conditions y (0) = 0.5, y′ (0) = 0, ϕ (0) = 0,
ϕ′ (0) = 1
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y′(0) = 0, ϕ(0) = 0, ϕ′(0) = 1 are plotted. Analytical solutions obtained by solving
Eqs. (2.87) and (2.88) are shown. Due to small parameter values and a short time
period the differences between the solutions are negligible.

2.3.3 Steady-State Motion of the System

The system of non-linear equations (2.86) is approximately solved by applying of
the well known Krylov–Bogolyubov method of slow variable amplitude and phase
(Bogolyubov and Mitropolskij 1974). For ε = 0 the solution is

y = a cos(ϕ + ψ), ϕ′ = � = const., (2.106)

where a, ϕ and ψ are the amplitude, frequency and phase of vibration and � is the
constant angular velocity. Based on (2.106) the approximate solution is

y (τ ) = a(τ ) cos (ϕ(τ ) + ψ(τ )) , ϕ′ = �(τ ), (2.107)

where the amplitude a = a (τ ), phase ψ = ψ (τ ) and excitation frequency ϕ′(τ ) are
functions of slow time τ . The first time derivative of (2.107) is

y′ (τ ) = −a sin (ϕ + ψ, ) (2.108)

when

ψ′ = (1 − �) + a′

a

cos (ϕ + ψ)

sin (ϕ + ψ)
. (2.109)

The time derivative of (2.108) is

y′′ = −a′ sin (ϕ + ψ) − a� cos (ϕ + ψ) − aψ′ cos (ϕ + ψ) . (2.110)

Substituting (2.107)–(2.110) into (2.86) the differential equations with new vari-
ables A, ψ and � are obtained

a′ = −
(
εζ1a sin (ϕ + ψ) + εμ1�

2 cosϕ
)
sin (ϕ + ψ) + ε κ1 fk sin (ϕ + ψ) ≡ gA,

ψ′ = (� − 1) − cos (ϕ + ψ)

a

(
εζ1a sin (ϕ + ψ) + εμ1�

2 cosϕ
)

+ cos (ϕ + ψ)

a
εκ1 fk

≡ gψ,

�′ = −εη1a cos (ϕ + ψ) sinϕ + εξ1 M (�) ≡ g�. (2.111)
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To solve the systemof coupled equations (2.111) is not an easy task.Due to the fact
that the functions gA, gψ and g� are periodical, the averaging procedure is introduced.
The averaged differential equations (2.111) are

a′ = 1

2π

2π∫
0

gAdϕ = −1

2

(
εζ1a + εμ1�

2 sinψ
) + GA,

ψ′ = 1

2π

2π∫
0

gψdϕ = 1 − � − εμ1

2a
�2 cosψ + Gψ, (2.112)

�′ = 1

2π

2π∫
0

g�dϕ = 1

2
εη1a sinψ + εξ1M (�) .

For a > Vk/2

GA = 1

2π

2π∫
0

(ε (sin (ϕ + ψ)) (κ1 fk)) dϕ = 0,

Gψ = 1

2π

2π∫
0

(
ε
1

a
(cos (ϕ + ψ)) (κ1 fk)

)
dϕ (2.113)

= 1

π

⎛
⎝−Vk

2a

√
1 −

(
Vk

2a

)2

+ arccos
Vk

2a

⎞
⎠ +

(
−1

2

)
,

and for a ≤ Vk/2 when the elastic force is zero

GA = 0, Gψ = −1

2
. (2.114)

For the steady-state motion, when a = const., ψ = const. and � = const., the
differential equations (2.112) simplify to

εζ1a + εμ1�
2 sinψ = 0, (2.115)(

1 − � − εμ1

2a
�2 cosψ

)
+ Gψ = 0, (2.116)

1

2
εη1a sinψ + εξ1M (�) = 0. (2.117)
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From (2.115) and (2.116) the A - � relation is obtained

A = εμ1�
2√

ε2α2
1 + 4

(
1 − � + Gψ

)2 . (2.118)

For a > Vk/2 the amplitude-frequency function depends on the clearance, i.e.,

a = εμ1�
2√

ε2ζ21 +
(
1 − 2� − Vk

aπ

√
1 − ( Vk

2a

)2 + 2
π
arccos Vk

2a

)2
. (2.119)

For a = Vk/2, the amplitude-frequency function is

a = εμ1�
2√

(1 − 2�)2 + ε2ζ21

. (2.120)

The relation is independent on the value of the clearance.
The amplitude has the extreme value for

� = 1 − p

4

⎛
⎝3 ±

√
1 − 8ε2ζ21

(1 − p)2

⎞
⎠ , (2.121)

where

p = 2

π
arccos

Vk

2a
− Vk

aπ

√
1 −

(
Vk

2a

)2

. (2.122)

If a = Vk/2 and

� = 1

4
(3 ±

√
1 − 8ε2ζ21 ), (2.123)

the maximal amplitude is

a = εμ1

(5 − 3
√
1 − 8ε2ζ21 − 4ε2ζ21 )

4

√
2 − 2

√
1 − 8ε2ζ21 − 4ε2ζ21

≈ εμ1
1 + 4ε2ζ21
4
√
2ε2ζ21

. (2.124)

The maximal amplitude depends on the damping properties of the system and mass
distribution in the system. For extremely small ζ1, when the damping is negligible,
the maximal value of the amplitude a tends to infinity for � = 1/2.
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Fig. 2.20 Amplitude-
frequency curves for various
values of clearance

Fig. 2.21 Frequency-
response curve and
characteristics of the motor:
stable (——) and unstable
(- - -) solutions

In Fig. 2.20 the amplitude-frequency diagrams for various values of clearance Vk

are plotted. The parameters of the system are εζ1 = 0.02, εμ1 = 0.1, εη1 = 0.1,
εξ1 = 0.05, ν0 = 1.1 and ε = 0.1.

Using the characteristics of the motor (2.83) and the relations (2.115) and (2.117),
we obtain the following relation

M0

(
1 − �

ν0

)
�2 = 1

2

ζ1η1

μ1ξ1
a2. (2.125)

Solving the Eqs. (2.118) and (2.125), we obtain the approximate values of the
steady-state amplitude a and angular velocity of motor �.

In Fig. 2.21, for parameter values ζ1 = 0.2, μ1 = 1, η1 = 1, ξ1 = 0.5, ν0 = 1.1,
ε = 0.1 and Vk = 0.1, the frequency-response curve is plotted. The intersection
between the motor characteristic (A, B, C) and the curve defines the number of the
steady-state motions. For the two boundary curves A and C the number of steady-
state solutions is two. Inside the boundary curves A and C there are three steady-
state solutions (for example for the curve B). Outside the boundary curves only one
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steady-state solution exists: for small values of M0 (below the curve A), and for very
high values of M0 (above curve C).

Which of steady-state motion will be realized depends on the stability and initial
conditions. For stability analysis the perturbed amplitude, phase and frequency, a =
aS +a1,ψ = ψS +ψ1 and� = �S +�1, are considered, where aS ,ψS and�s are the
steady-state values and a1, ψ1 and �1 the perturbations. The linearized differential
equations with perturbed values are

a′
1 = −1

2
εζ1a1 − 1

2
εμ1�

2
S cos(ψS)ψ1 − εμ1�S sin(ψS)�1,

ψ′
1 =

(
1

2
εμ1�

2
S

cos(ψS)

a2S
+

(
∂Gψ

∂a

)
S

)
a1 + 1

2

ε

aS
μ1�

2
S sin(ψS)ψ1

+
(
−1 − εμ1

a
�S cos(ψS)

)
�1,

�′
1 = a1

2
εη1 sin(ψS) + ψ1

2
εη1aS cos(ψS) + εξ1�1

(
∂M (�)

∂�

)
S

, (2.126)

where ∂Gψ

∂a = 1
π
Vk
a2

√
1 − ( Vk

2a

)2
and ∂M(�)

∂�
= −M0

ν0
, and (·)S is the notation for steady-

state condition. Using the Routh–Hurwitz procedure the stability is investigated. In
Fig. 2.21, the stability regions in frequency-response diagram are plotted. The dot
line is used for the unstable solutions.

To prove the correctness of the previous mentioned analytical procedure the
approximate analytical solutions are compared with ‘exact’ numerical solutions.
The system of two differential equations (2.80) is transformed into four first order
differential equations

y′
1 = y2,

y′
2 = 1(

1 − μη sin2 y3
) (−y1 − ζ y2 + μ

(
ξM (y4) sin y3 + y24 cos y3

) − κ fk
)
,

y′
3 = y4, (2.127)

y′
4 = η sin y3

(−y1 − ζ y2 + μ
(
ξM sin y3 + y24 cos y3

) − κ fk
)

(
1 − μη sin2 y3

) + ξ M,

where y1 = y, y2 = y′, y3 = ϕ, y4 = ϕ′ and M = M (y4) . The system of
differential equations (2.127) is numerically solved by applying the Runge–Kutta
method. The analytical and numerical solutions are plotted in Fig. 2.22.

It can be seen that the system cannot be made to respond at a frequency between
�T and �H (grey points) and also �R and �P (black points) by increasing and
decreasing of the control parameter M0, respectively. This phenomena is called the
Sommerfeld effect.
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Fig. 2.22 Comparison of
numerical (o o o) and
analytical (______)
frequency-response curves
for increasing and
decreasing �

2.3.4 Chaotic Motion

Changing the control parameter M0 the influence of motor properties on the system
motion are numerically analyzed. The constant parameters of the system are: ζ =
0.04, μ = .9375, η = 0.1, ξ = 0.5, ν0 = 0.2 and Vk = 0.01.

For M0 = 0.35 the motion of the system is periodical with period equal to exci-
tation period (Fig. 2.23a). For control parameter M0 = 0.43 the motion is periodic
with period equal to double excitation period (Fig. 2.23b). Increasing the control
parameter M0 causes periodic motions with period doubling, as shown in bifurcation
diagram (Fig. 2.24).

The multiplied bifurcations give the chaotic motion. It is concluded that for high
values of control parameter (M0 > 75), when the system tends to ideal one, the
motion is chaotic. In Fig. 2.25 the phase plane for M0 = 100 is plotted.

Fig. 2.23 Periodic motion: a period 1, b period 2
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Fig. 2.24 Bifurcation
diagram for control
parameter M0

Fig. 2.25 Phase portrait for
M0 = 100: before chaos
control (grey line) and after
chaos control (black line)

To prove the existence of the chaotic motion the Lyapunov exponent is calculated.
Using the procedures suggested by Wolf (1984) and Wolf et al. (1985), and also by
Sandri (1996) the maximal Lyapunov exponent for chaotic motion is λ = 0.0284
(see Fig. 2.26).

The parameter k represents the number of periods of vibrations.
For the casewhen the control parameter is the clearanceVk the bifurcation diagram

is plotted (see Fig. 2.27).
The parameters of the system are: α = 0.04, μ = .9375, η = 0.1, ξ = 0.5,

ν0 = 0.2 and M0 = 10. For the small values of clearance (Vk � 0.005) and for high
values of clearance (Vk � 0.2) the period one motion occurs. In some regions of the
interval 0.005 < Vk < 0.2 even chaotic motion appears.



44 2 Linear Oscillator and a Non-ideal Energy Source

Fig. 2.26 Distribution of
Lyapunov exponent

Fig. 2.27 Bifurcation
diagram for control
parameter Vk

2.3.5 Chaos Control

Based on the known methods of chaos control (Ott et al. 1990; Pyragas 1992, 1996;
Alvarez-Ramirez et al. 2003; Tereshko et al. 2004; Balthazar and Brasil 2004), the
following control function is introduced

g
(
y′) = −h tanh

(
χ y′) , (2.128)

where y′ is dimensionless velocity of oscillator, h is the amplitude and χ the gradient
of the control function.

Solving the systemof coupled differential equations ofmotion (2.80)with addition
of the control function (2.128)

y′′ + y = −αy′ − κ fk + μ
(
ϕ′′ sinϕ + (

ϕ′)2 cosϕ
)

− h tanh
(
χ y′) ,

ϕ′′ = ηy′′ sinϕ + ξ M (
ϕ′) , (2.129)

the properties of the controlled system are obtained. The black line in Fig. 2.25 shows
the motion of the system after chaos control. The chaotic attractor is transformed
into periodic attractor for χ = 0.15 and h = 0.02.
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Fig. 2.28 Bifurcation
diagram after chaos control

It is worth to say that the applied control function is not an unique one, i.e., the
chaos control is possible for various parameters of control function. In Fig. 2.28,
the bifurcation diagram for the constant value of parameter value χ = 0.15 and
variable value of parameter h is plotted. It is obvious that the control of chaos and its
transformation to periodic solution is possible for h > 0.014, and to periodic motion
with period 1 for h > 0.019.

2.4 Conclusion

The most important results of the chapter can be expressed as:

1. In the non-ideal mechanical system which contains a non-ideal source and a
linear oscillator or an oscillator with clearance the Sommerfeld effect is evident.
In amplitude-frequency diagram the jump phenomena occurs. For certain values of
frequencies there are no steady-state positions.

2. In spite of the fact that the elastic force is linear, the clearance causes the bending
of the amplitude-frequency curve: the higher the value of the clearance, the bending
is more significant.

3. Due to clearance the motion is continual but divided into intervals with and
without elastic force. It causes the disturbance of the periodic motion.

4. For certain system parameters chaotic motion occur. The type of the steady-
state motion depends not only on the torque but also on the value of the clearance in
the system.

5. The chaos control based on the function which depends on the velocity of oscil-
lator vibration is very convenient for non-ideal mechanical systems with clearance.
The control is directed onto the oscillator and not on the motor as it is usually done.

6. Analog model is very appropriate to give an explanation of the dynamics of the
resonance capture effect and can help students and young researchers to understand
this phenomenon.
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Chapter 3
Nonlinear Oscillator and a Non-ideal Energy
Source

In this chapter the motion of the non-ideal system which contains a nonlinear one
degree-of-freedom oscillator and a non-ideal energy source is considered. In such
a non-ideal oscillator-motor system there is an interaction between motions of the
oscillator and of the motor as it was already explained in the previous chapter. How-
ever, due to nonlinear properties of the oscillator in the non-ideal system beside the
Sommerfeld effect some additional phenomena are evident. Depending on the para-
meter properties of the oscillator the motion is regular or irregular. Results on motion
of the non-ideal systems with nonlinear oscillators are published in Dimentberg et al.
(1997), Warminski et al. (2001), Warminski and Kecik (2006) Dantas and Balthazar
(2007), Felix et al. (2009a), Zukovic and Cveticanin (2007, 2009), Nbendjo et al.
(2012), Cveticanin and Zukovic (2015a, b) etc.

This chapter is divided into five sections. In Sect. 3.1, a generalization of themodel
of the non-ideal oscillator-motor is done: a strong nonlinear oscillator is coupledwith
a motor with nonlinear torque property. The model of the structure-motor system is
generalized by assuming that the driving torque is a nonlinear function of the angular
velocity and the oscillator is with strong nonlinearity. The oscillator-motor system
is assumed as a non-ideal one where not only the motor affects the motion of the
oscillator but also vibrations of the oscillator have an influence on the motor motion.
The model of the motor-structure system is described with two coupled strong non-
linear differential equations. An improved asymptotic analytic method based on the
averaging procedure is developed for solving such a system of strong nonlinear
differential equations. The steady state motion and its stability is studied. Results
available the discussion of the Sommerfeld effect. A new procedure for determina-
tion of parameters of the non-ideal system for which the Sommerfeld effect does
not exist is developed. For these critical values of the parameter the Sommerfeld
effect is suppressed. In Sect. 3.2, the suggested theoretical consideration is applied
for pure nonlinear oscillator driven by a motor with nonlinear torque characteristics.
As a special case the pure nonlinear oscillator where the order of the nonlinearity is
a positive rational number is investigated. The influence of the order of nonlinearity
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on the dynamic properties of the system is also analyzed. The numerical simulation
is done for the motor oscillator system, where the motor torque is a cubic function of
the angular velocity and the oscillator is with pure nonlinearity. The obtained results
are compared with those obtained analytically (Cveticanin and Zukovic 2015b). In
Sect. 3.3, a pure strong nonlinear oscillator which is coupled to a non-ideal source
whose torque is a linear function of the angular velocity is considered. An analytical
solving procedure based on averaging is developed. The approximate solution has
the form of the Ateb function. The resonant case is considered. Steady-state solution
and characteristic points are determined. Special attention is given to suppression of
the Sommerfeld effect. The section ends with some numerical examples (Cveticanin
and Zukovic 2015a). In Sect. 3.4 the non-ideal system with the Duffing oscillator
of cubic type is analyzed. The hardening Duffing oscillator with one stable fixed
point which is coupled to a non-ideal energy source is mathematically modelled
and analytically solved. Approximate solution of the problem is calculated. Condi-
tion for the steady-state motion are obtained. Stability of motion is investigated and
phenomena of jump in the amplitude-frequency diagram is treated. Using the numer-
ical simulation the chaotic motion is detected. A procedure for controlling chaos is
introduced (Zukovic and Cveticanin 2007). Finally, in Sect. 3.5, the non-ideal system
with bistableDuffing oscillator, which has three fixed points, is considered. The semi-
trivial and non-trivial solutions are determined. Based on the semi-trivial solutions
the conditions for quenching of the amplitude of the mechanical system are obtained.
In this chapter the stability of non-trivial solutions is investigated. Based on the signs
of the Lyapunov exponents (Lyapunov 1893) regions of chaos and hyperchaos are
determined (Nbendjo et al. 2012).

3.1 Nonlinear Oscillator Coupled with a Non-ideal Motor
with Nonlinear Torque

In the previous chapter the systems which have the following limitations are
considered:

• the elastic force of the structure is assumed to be linear (Zukovic and Cveticanin
2009), or with small nonlinearity (Dimentberg et al. 1997; Warminski et al. 2001;
Dantas and Balthazar 2006; Felix et al. 2009b),

• the torque property of the motor is assumed to be a linear function of the angular
velocity (Dantas and Balthazar 2003; Tsushida et al. 2003 and 2005; Souza et al.
2005a and 2005b; Castao et al. 2010).

In this section a generalization to the model of motor-structure system is done.
It is assumed that the elastic property of the system need not be linear or with a
small nonlinearity but with a strong nonlinearity of any order, described with any
positive rational exponent of the displacement. The motor torque is assumed to be a
nonlinear function of angular velocity. No limitation to the form of the forcing torque
is introduced. Such a generalization gives us an opportunity to give a more realistic
view of the dynamics of the system.
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In general, the model of the non-ideal system is an oscillator-motor one which
has two degrees of freedom. The motion is described with a system of two coupled
differential equations (see Felix et al. 2009b)

mẍ + f̂1(x) = f̂2(x, ẋ) + F̂(ϕ, ϕ̇, ϕ̈, q̂), I ϕ̈ = M(ϕ̇) + R̂(ϕ, ϕ̇, ẍ, q̂), (3.1)

where x and ϕ are generalized coordinates of the system (displacement and angu-
lar position), f̂1 is the deflection function of the oscillator, f̂2 is the function
which describes other properties of the oscillator (damping, relaxation, hysteresis...),
F̂ and R̂ are coupling functions of the oscillator and the motor, m is the mass of the
oscillator, I is the moment of inertia of the rotating part of the motor and q̂ is the
measure of the unbalance of the rotor. The deflection function of the oscillator f̂1(x)
is usually assumed to be linear or weakly nonlinear, while the function f̂2 is supposed
to be a small one. In general, the torque of the electro-motor is

M(ϕ̇) = L(ϕ̇) − H(ϕ̇), (3.2)

where ϕ̇ is the angular velocity of the motor and L(ϕ̇) and H(ϕ̇) are driving and
resisting torques. The torque property of the motor is usually assumed to be a linear
function of the angular velocity

M(ϕ̇) = V ∗
m − C∗

mϕ̇, (3.3)

where C∗
m and V ∗

m are characteristics of the motor (Felix et al. 2009b). Comparing
the real motor torque with the (3.3) it is evident that the assumed model represents
the first approximation of the real one.

The aim is to make the generalization of the problem on non-ideal systems con-
sidering the whatever any nonlinear oscillator and the improved version of the motor
torque model. The function f̂1(x) in (3.1) need not to be a small nonlinear function,
but may be a strong nonlinear one. The elastic force in the oscillator is the function
of any rational order of the displacement (integer or non-integer). Besides, the motor
torque (3.2) need not to be a linear velocity function (3.3), but it may be a nonlinear
one.

3.1.1 Nonlinear Motor Torque Property

As it is stated by Nayfeh and Mook (1979), for determination of the influence of
the motion on the motor properties it is necessary to know the characteristics of
the motor. Kononenko and Korablev (1959) plotted experimentally obtained torques
as a function of the frequency or angular velocity of rotor for various types of DC
motors, for an asynchronous and a synchronousmotor. For themost of thementioned
characteristics it is common that they are nonlinear.
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Fig. 3.1 Torque curves for various values of control parameter Vm and constant parameter n:
a linear property (n = 1), b cubic property (n = 3)

The DC series wound motor, which is considered in this section, has a net of
nonlinear characteristics for various constant control or regulator parameters (see
Kononenko 1969). Mathematical model of the motor characteristics is assumed in
the form

M(ϕ̇) = (V ∗
m − C∗

mϕ̇)n, (3.4)

where V ∗
m and C∗

m are constant parameters and n = 2, 3, 4, . . . is a positive integer.
It should be mentioned that the relation (3.4) includes the linear model (3.3) for
n = 1. The DC series wound motor develops a large torque and can be operated at
low speed. It is a motor that is well suited for starting heavy loads. Because of that
it is often used for industrial cranes and winches, where very heavy loads must be
moved slowly and lighter loads moved very rapidly. Introducing the dimensionless
time parameter τ , the relation (3.4) transforms into

�(�) = (Vm − Cm�)n, (3.5)

where �(�) is the dimensionless driving torque with dimensionless parameters Vm

and Cm and angular velocity �.
In Fig. 3.1 the torque curves for various values of control parameter Vm and con-

stant parameter n are plotted: (a) linear property (n = 1), (b) cubic property (n = 3).
It can be concluded that for increasing of the control parameter Vm the curves move
to right in the �(�) − � plane. For the arbitrary value of the motor frequency, the
higher the control parameter Vm , the higher the value of the torque �(�). In Fig. 3.2,
the torque curves for constant value of parameter Vm and various values of the order
of nonlinearity is plotted. Increasing the order of nonlinearity n the curves move to
the left in the �(�) − � plane.

Namely, for a certain constant frequency, the motor torque is higher if the order of
nonlinearity n is smaller. Nevertheless, the driving torque is zero and independent on
the order n for the angular velocity � = Vm/Cm . The higher the control parameter
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Fig. 3.2 Torque curves for
various values of the
nonlinearity order n and
constant control
parameter Vm

Vm , the higher the value of the angular velocity � for which the driving torque is
zero.

3.1.2 Solution Procedure in General

Introducing the motor characteristics (3.5) into (3.1) and after some modification
dimensionless differential equations follow as

y” + f1(y) = f2(y, y
′) + F(ϕ,ϕ′,ϕ”, q), (3.6)

ϕ” = �(ϕ′) + R(ϕ,ϕ′, y”, q), (3.7)

where y and ϕ are the dimensionless generalized coordinates, q is the dimension-
less unbalance measure, f1, f2, F , R and � are the functions of the dimensionless
coordinates and parameters and (′) =d/dτ , (”) =d2/dτ 2 with dimensionless time τ .

To classify the ‘small’ and ‘arge’ values in the system (3.6), (3.7), we introduce a
small parameter ε << 1. Due to the physical sense of the problem the functions f2,
F , R and � are small and we have

y” + f1(y) = ε f2(y, y
′) + εF(ϕ,ϕ′,ϕ”, q), (3.8)

ϕ” = ε2�(ϕ′) + ε2R(ϕ,ϕ′, y”, q). (3.9)

The terms on the right side of Eqs. (3.8) and (3.9) are small values of the first and
second order, respectively, but different from zero. It must be mentioned that, in this
paper, we analyze the system with small foundation damping and in the Eq. (3.8) the
damping term is of order ε.

In the previous investigation it was assumed that the function f1(y) is a linear one,
and the Eq. (3.8) is with small perturbed terms on the right-hand side of the equation.
In this paper the generalization of the problem is done, as the function f1(y) need not
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be linear. The suggested mathematical procedure is based on the method described
for the perturbed linear differential equation.

If ε = 0 the Eqs. (3.8) and (3.9) simplify into two uncoupled differential equations

y′′ + f1(y) = 0, ϕ′′ = 0. (3.10)

For the case when f1(y) is the linear deflection function, the differential equation
(3.10) is a linear one and has the exact solution in the form of the trigonometric func-
tion. Otherwise, the trigonometric function represents only the approximate solution
of the nonlinear differential equation (3.10). In the papers (Cveticanin 2009; Cveti-
canin 2009; Cveticanin and Pogany 2012) it is already shown that the approximate
solution of trigonometric type is very close to the numerical solution of (3.10) and
represents a satisfactory asymptotic solution. It gives as the opportunity to assume
the asymptotic solution to (3.10) in the form

y = a cos(ω(a)t + ψ), ϕ′ = �, (3.11)

where a, ψ and � are arbitrary constants which satisfy the initial conditions. It is
worth to say that the frequency of vibration ω of the nonlinear differential equation
(3.10) depends on the amplitude a and has to satisfy exactly or approximately the
relation

− aω2 cos(ωt + ψ) + f1(a cos(ωt + ψ)) ≈ 0. (3.12)

It is of special interest to consider the resonant case (see Cveticanin 1995), when
the difference between the frequency of vibration of the structure ω(a) and of the
driving frequency � is small. Due to the fact that ω depends on a, there is a trace of
frequencies which have to satisfy the relation

� − ω(a) = (εσ)2, (3.13)

where εσ << 1. The solution of (3.11) and its first time derivative for the resonant
case are

y = a cos(ϕ + ψ), y′ = −a� sin(ϕ + ψ). (3.14)

The method suggested in this paper requires the solution of (3.8) and (3.9) to
be close to (3.14) which is the solution of (3.11). Namely, the solution of (3.8) is
the perturbed version of (3.14), where the parameters are time variable. Using the
procedure given by Kononenko (1969) and Cveticanin (1992) the solution of (3.8)
is suggested in the form

y = a(τ ) cos(ϕ(τ ) + ψ(τ )) ≡ a cos(ϕ + ψ), (3.15)

and
y′ = −a(τ )�(τ ) sin(ϕ(τ ) + ψ(τ )) ≡ −a� sin(ϕ + ψ). (3.16)
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The first time derivative of (3.15) is

y′ = a′ cos(ϕ + ψ) − a(�′ + ψ′) sin(ϕ + ψ). (3.17)

Comparing (3.17) with (3.16), it follows

a′ cos(ϕ + ψ) − aψ′ sin(ϕ + ψ) = 0. (3.18)

Substituting the solution (3.15) and the corresponding first (3.16) and second time
derivative of (3.16) into (3.8), we obtain

−a′� sin(ϕ + ψ) − a�(� + ψ′) cos(ϕ + ψ) − a�′ sin(ϕ + ψ)

+ f1(a cos(ϕ + ψ))

= ε f2(a cos(ϕ + ψ),−aω sin(ϕ + ψ)) + εF(ψ,�,�′, q), (3.19)

where according to (3.11) the differential equation (3.9) transforms into two first
order differential equations

�′ = ε2�(�) + ε2R, (3.20)

ϕ′ = �, (3.21)

with
R = R(ϕ,�,−a�2 cos(ϕ + ψ), q).

Using the relation (3.12) and neglecting termswith the second order small parame-
ter O(ε2), the relation (3.18) with (3.19) gives two first order differential equations

a′ = − ε

�
(F + f2) sin(ϕ + ψ) + a(�2 − ω2) sin(ϕ + ψ) cos(ϕ + ψ)(3.22)

aψ′ = −a
�2 − ω2

�
cos2(ϕ + ψ) − ε(F + f2)

�
cos(ϕ + ψ) (3.23)

where

F = F(ϕ,�,�′, q), f2 = f2(a cos(ϕ + ψ),−a� sin(ϕ + ψ)).

Equations (3.20)–(3.23) are four first order differential equations which correspond
to two second order differential equations (3.8) and (3.9). Our task is to solve and
analyze these equations.

Averaging procedure

Due to complexity of Eqs. (3.20)–(3.23) it is a heavy task to solve them. This is
the reason that the approximate solution procedure for the system of differential
equations (3.20)–(3.23) is introduced. In order to eliminate all resonances for the
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dynamic system described with (3.22) and (3.23), we define the resonant surface by
rewriting the relation (3.13) into

�(τ ) − ω(a) = (εσ)2,

with a = a(τ ). Now, we perform the averaging over the slow varying variables and
apply the standard averaging procedure (see Zhuravlev andKlimov 1988; Cveticanin
1993, 2003). Averaging Eqs. (3.20)–(3.23) over the period of vibration gives

a′ = − 1

�
(F̄(ψ,�, q) + f̄2(a)), (3.24)

aψ′ = −a
�2 − ω2

2�
− (F̄∗(ψ,�, q) + f̄ ∗

2 (a)), (3.25)

�′ = �(�) + R̄(ψ,�, a, q), (3.26)

where F̄ , F̄∗, f̄2, f̄ ∗
2 and R̄ are averaged functions F , f2 and R, respectively. Equa-

tions (3.24) and (3.25) give variations of the amplitude and initial phase of vibration
of the oscillator, while (3.26) describes the variation of the averaged angular velocity
of the motor. Solving these equations we obtain a − t , ψ − t and � − t relations
for various values of parameter. Equations describe the non-stationary motion of the
system and give us very objective qualitative analysis of the problem.

It is of special interest to study the influence of the motion of the motor on the
oscillator, but also of the oscillator on themotor. It requires the analysis of the coupled
system of differential equations (3.24)–(3.26). Solutions a − t and � − t have to be
compared with corresponding relations for the case when there is not an interaction
between the support and the motor. Then, F̄ = R̄ = 0 and the Eqs. (3.24)–(3.26)
simplify into

a′ = − f̄2(a)

ω(a)
, ξ′ = f̄ ∗

2 (a)

a
, (3.27)

�′ = �(�). (3.28)

Separating variables in Eqs. (3.27)1 and (3.28) and after some calculation, we have

s(a0) − s(a) = τ , (3.29)

�1(�) − �1(�0) = τ , (3.30)

where

s(a) =
∫

f̄2(a)

ω(a)
da, �1(�) =

∫
d�

�(�)
,

a0 is the initial amplitude of the oscillator vibration and �0 is the initial angular
velocity of the motor. Based on (3.27)2 and (3.29) the ψ − a and ψ − τ relations,
for the initial phase of vibration of the oscillator, are calculated.
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Comparing Eqs. (3.24)–(3.26) and (3.27), (3.28), it is evident that the most sig-
nificant difference in amplitude and angular velocity is for the resonant case when
the difference between the angular velocity of the motor � and the eigenfrequency
of the oscillator ω is quite small.

3.1.3 Steady-State Motion and Its Stability

The steady state motion of the coupled oscillator-motor system is described with the
system of three algebraic equations

F̄(ψ,�, q) + f̄2(a) = 0, (3.31)

a
�2 − ω2

2�
+ F̄∗(ψ,�, q) + f̄ ∗

2 (a) = 0, (3.32)

�(�) + R̄(ψ,�, a, q) = 0, (3.33)

which represent right-hand sides of Eqs. (3.24)–(3.26). Eliminating the parameter ξ
by combining Eqs. (3.31) and (3.32), and also (3.31) and (3.33), a system of two
algebraic equations is obtained

Q1(a,�, q) = 0, Q2(a,�, q, Vm) = 0, (3.34)

where equations give a − � relations for various values of q and parameter Vm of
the driving torque (see Eq. (3.3)). Algebraic equations (3.34) are nonlinear and very
complex. The solution of (3.34) gives the amplitude of oscillator vibration and the
angular velocity of motor for the steady state motion. Very often, the solution of
(3.34) is analyzed graphically by plotting of the frequency-response curves a − �

for the oscillator (relation (3.34)1) and the motor (relation (3.34)2). The intersection
of the curves give us the steady-state parameters of the system.

To analyze the stability of the steady-state solution the Jacobi determinant is
formed

J =

⎡
⎢⎢⎣

d f̄2(a)

da
∂ F̄
∂ψ

∂ F̄
∂�

�2−ω2

2� − aω
�

dω
da + f̄ ∗

2 (a)

da
∂ F̄∗
∂ψ

∂ F̄∗
∂�

− a
∂ R̄
∂a

∂ R̄
∂ψ

∂ R̄
∂�

+ d�
d�

⎤
⎥⎥⎦ . (3.35)

The characteristic equation is

J3λ
3 + J2λ

2 + J1λ + J0 = 0, (3.36)

where
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J3 = 1, J2 = −
(
d f̄2(a)

da
+ ∂ F̄∗

∂ψ
+ ∂ R̄

∂�
+ d�

d�

)
, J0 = − det(J ),

J1 =
(
d f̄2(a)

da
+ ∂ F̄∗

∂ψ

)(
∂ R̄

∂�
+ d�

d�

)
+ d f̄2(a)

da

∂ F̄∗

∂ψ

+∂ F̄

∂ψ

(
�2 − ω2

2�
− aω

�

dω

da
+ f̄ ∗

2 (a)

da

)

−∂ F̄

∂�

∂ R̄

∂a
− ∂ R̄

∂ψ

(
∂ F̄∗

∂�
− a

)
. (3.37)

Using the Routh–Hurwitz criteria it can be concluded that the stability for the steady-
state solution (3.31)–(3.33) is satisfied if

J0 > 0, J1 > 0, J2 > 0, J1 J2 − J0 J3 > 0. (3.38)

3.1.4 Characteristic Points on the Steady State Curves

Let us determine the locus of characteristic points and characteristic control para-
meter in the frequency-response curve (3.34)1 where the jump phenomena appears
(see Fig. 3.3). The criteria is that at these points P and R the both curves given with
(3.34) have the same direction of the joint tangent. Namely, for

dQ1 = ∂Q1

∂�
d� + ∂Q1

∂a
da = 0, dQ2 = ∂Q2

∂�
d� + ∂Q2

∂a
da = 0, (3.39)

the equality of the direction of the tangents of the curves (3.34)1 and (3.34)2 in P is

Fig. 3.3 Characteristic
points
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da

d�
≡ −

(
∂Q1
∂�

∂Q1
∂a

)

�P ,aP ,VmP

= −
(

∂Q2
∂�

∂Q2
∂a

)

�P ,ap,Vmp

. (3.40)

Solving algebraic equations (3.40) and also (3.34), values �P , aP , VmP for a peak
point are obtained. The frequency �P corresponds to the amplitude aP and gives the
control parameter for motor torque VmP . Using the value of the control parameter
VmP , Eq. (3.34) give us the additional pair of (�Q, aQ) values due to the fact that
system of algebraic equations is nonlinear. Points P and Q correspond to the same
value of control parameter VmP .

The same procedure is applied for determining the�R, aR, VmR and also (�S, aS)
which corresponds to VmR . The critical frequency �R with correspondent amplitude
aR gives the value of the control parameter VmR for which the jump phenomena to
the point S appears during decreasing of the control parameter Vm . In the region
between VmP and VmR in the amplitude-frequency diagram a gap exists.

To eliminate the Sommerfeld effect the control parameter Vm has to be beyond the
interval (VmP , VmR). The number of stable steady-state solutions outside this interval
is only one.

3.1.5 Suppression of the Sommerfeld Effect

The Sommerfeld effect does not appear if, for all of values of the driving torque, only
one steady-state response of the oscillator exists. Then, the intersection between the
amplitude-frequency curves of the oscillator and of the motor has only one unique
solution. Using this criteria the parameters of the system have to be calculated. For
technical reasons we suggest an approximate analytical method for determination of
the parameters of the non-ideal system where Sommerfeld effect does not exist. The
basic requirement of the method is that the bone curve Q3(a,�) of the amplitude-
frequency characteristic of the oscillator (3.34)1 and the amplitude-frequency curve
of the motor (3.34)2 have the equal gradient for the extreme steady-state position
(a∗,�∗). Namely, the following relations have to be satisfied

Q1(a
∗,�∗, q∗) = 0, Q2(a

∗,�∗, q∗, V ∗
m) = 0, Q3(a

∗,�∗) = 0,

da

d�
≡ −

(
∂Q1
∂�

∂Q1
∂a

)

�∗,a∗,V ∗
m ,q∗

= −
(

∂Q3
∂�

∂Q3
∂a

)

�∗,a∗,V ∗
m ,q∗

. (3.41)

Solving the system of algebraic equations (3.41) the parameter q∗ is obtained, for
which only one solution for �∗, a∗ and V ∗

m exists. Due to the fact that for either
value of the control parameter Vm the amplitude-frequency curve (3.34)2 remains
parallel to Q2(a,�, q∗, V ∗

m) = 0 and also to the bone curve Q3(a,�) = 0 it can be
concluded that there is only one intersection between any Q2(a,�, q∗, Vm) = 0 and
the amplitude-frequency curve Q1(a,�, q∗) = 0.
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Remark 1 Using the same relations (3.41) instead of q∗ another critical parameter
of the system can be calculated (for example C∗

m).

3.1.6 Conclusion

Analyzing the results the following is concluded:

1. The generalized non-ideal mechanical system contains the nonlinear oscillator
of any order and a motor with the driving torque which need not to be the linear
function of the angular velocity.

2. The approximate solution procedure of the problem suggested in the text is suit-
able for the near resonant case and gives the results which are possible to be
used for the stability analysis and discussion of the characteristic properties of
the system.

3. The approximate value of the control parameter for the non-ideal source is ana-
lytically calculated applying the method of equating the gradient of the both
amplitude-frequency curves (of the oscillator and of the motor) in the intersec-
tion points. The criteria for the Sommerfeld effect is obtained.

4. It can be concluded that the method developed in the text gives the parameter
values for which the Sommerfeld effect is suppressed. For these parameters there
exists only one steady-state response of the oscillator for all values of the driving
torque.

5. The suitable choice of non-ideal system parameters available the motion without
jumps.

6. The analytically obtained results show a good agreement with numerically
obtained ones. It proves the correctness of the analytic procedures.

3.2 Pure Nonlinear Oscillator and the Motor
with Nonlinear Torque

Let us consider a motor-structure system shown in Fig. 3.4.
A motor with an unbalance is connected to a viscoelastic structure with nonlinear

properties. The motion occurs in a horizontal plane and is constrained so that the
motor executes a rectilinearmotion along the x -axis. The elastic force of the structure
is assumed as a pure nonlinear displacement function

Fe = kx |x |α−1 , (3.42)

where α ≥ 1 and α ∈ R is a positive rational number (integer or non-integer) which
represents the order of nonlinearity and k is the coefficient of rigidity. Experimental
investigation on a significant number of materials, for example: aluminum, titanium
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Fig. 3.4 Model of the
motor-structure non-ideal
system

and other aircraft materials (Prathap and Varadan 1976), copper and copper alloys
(Lo and Gupta 1978), aluminum alloys and annealed copper (Lewis and Monasa
1982), wood (Haslach 1985), ceramic materials (Colm and Clark 1988), hydrophilic
polymers (Haslach 1992; Pilipchuk 2010), composites (Chen and Gibson 1998),
polyurethane foam (Patten et al. 1998), felt (Russell and Rossing 1998), etc., show
that the stress-strain properties of the material are nonlinear. The nonlinear depen-
dence of the restoring force on the deflection is a polynomial whose exponent is of
positive integer or non-integer order. For most of these materials the damping prop-
erties are also nonlinear. However, for the mentioned metallic materials and their
alloys the order of nonlinearity in the damping force is small and the linear damping
force model gives a good approximation. Thus, the damping force-velocity function
is

Fd = cẋ, (3.43)

where c is the damping constant. Mass of the system is M , the moment of inertia
of the motor rotor is J , mass of the rotor unbalance is m and the length of the
rotor unbalance is d. The considered non-ideal system has two degrees-of-freedom,
represented by the generalized coordinates x and ϕ and the motion is described with
two Lagrange differential equations

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (3.44)

where T is the kinetic energy,U is the potential energy, � is the dissipative function
and Qx and Qϕ are the generalized forces. The kinetic energy, potential energy and
the dissipation function are expressed by

T = 1

2
Mẋ2 + 1

2
m(ẋ − dϕ̇ cosϕ)2 + 1

2
m(dϕ̇ sinϕ)2 + 1

2
J ϕ̇2, (3.45)
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U = k

α + 1
xα+1, � = 1

2
cẋ2, (3.46)

where ε << 1 and a dot denotes differentiation with respect to time t . For the driving
torque (3.2) the generalized forces are

Qx = 0, Qϕ = M(ϕ̇). (3.47)

Equations of motion (3.44) have the form

ẍ(M + m) + kx |x |α−1 + cẋ − md(ϕ̈ cosϕ − ϕ̇2 sinϕ) = 0,

(J + md2)ϕ̈ − mdẍ cosϕ = M(ϕ̇), (3.48)

and the initial conditions are

x(0) = x0, ẋ(0) = 0, ϕ(0) = 0, ϕ̇(0) = ω0. (3.49)

It is convenient to normalize the coordinates and time according to

x −→ y = x/ l, t −→ τ = �∗t, (3.50)

where l is the initial length of the non-deformed spring and �∗ is the synchronous
angular velocity of the rotor. By introducing (3.50) the differential equations (3.48)
transform into

y” + εζ1y
′ + p2y |y|α−1 = εμ1(ϕ” cosϕ − ϕ′2 sinϕ),

ϕ” = ε2[η2y” cosϕ + M(ϕ′)], (3.51)

with non-dimensional initial conditions

y(0) = A, y′(0) = 0, ϕ(0) = 0, ϕ′(0) = ω0

�∗ = ω, (3.52)

where

p = ω∗

�∗ , ω∗2 = klα−1

M + m
, A = x0

l
, ε = m

M + m
,

εμ1 =
(

m

M + m

)(
d

l

)
, ε2η2 =

(
d

l

)
ml2

(J + md2)
,

εζ =
(

m

M + m

)
c

�∗m
, ε2M(ϕ′) = M(�∗ϕ′)

(J + md2)�∗2 , (3.53)

�∗ is the synchronous angular velocity (Dimentberg et al. 1997) and prime denotes
differentiation with respect to τ . It is worth to say that ε << 1 is a small positive
parameter. Using the expression (3.51) we have



3.2 Pure Nonlinear Oscillator and the Motor with Nonlinear Torque 63

y” + p2y |y|α−1 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.54)

ϕ” = ε2[M(ϕ′) − η2 p
2y |y|α−1 cosϕ]. (3.55)

The Eqs. (3.54) and (3.55) represent the system of two coupled differential equa-
tions which describe the motion of the non-ideal system given in Fig. 3.4. Comparing
(3.54) and (3.55) with (3.8) and (3.9) we have

f1 = p2y |y|α−1 , f2 = −ζ1y
′, F = −μ1ϕ

′2 sinϕ, R = −η2 p
2y |y|α−1 cosϕ.

(3.56)
Now, the differential equations (3.54) and (3.55) have to be solved.

3.2.1 Approximate Solution Procedure

For the case when the small parameter ε tends to zero, the differential equations
(3.54) and (3.55) transform into

y” + p2y |y|α−1 = 0, ϕ” = 0. (3.57)

The two differential equations (3.57) are uncoupled and can be solved independently
but according to the initial conditions (3.52). Equation (3.57)1 is a second order pure
nonlinear differential equation with rational order of nonlinearity. The approximate
analytical solution of the (3.57)1 is assumed in the form of a harmonic function
(3.11)1 with the frequency (see Cveticanin 2009; Cveticanin and Pogany 2012)

ω = ωα

√
p2a(α−1)/2, (3.58)

where

ωα =
√

α + 1

2

√
π�( 3+α

2(α+1) )

�( 1
α+1 )

, (3.59)

and � is the gamma function (Gradstein and Rjizhik 1971). The relation (3.58) is
the exact analytically obtained frequency of vibration of the nonlinear elastic struc-
ture (3.57)1. The asymptotic solution (3.11)1 approximately satisfies the differential
equation (3.57)1, i.e.,

− aω2 cos(ωt + ψ) + p2aα cosα(ωt + ψ) ≈ 0. (3.60)

Using the generalized procedure given in Sect. 3.3 and substituting the approxi-
mate solution with time variable parameters (3.15) and the corresponding derivatives
into (3.54) it follows
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−a′� sin(ϕ + ψ) − a�(� + ψ′) cos(ϕ + ψ) (3.61)

+p2aα cosα(ϕ + ψ)

= −εμ1�
2 sinϕ + εζ1a� sin(ϕ + ψ),

where for the resonant condition (3.13) and using the relation (3.60), the differential
equation (3.61) simplifies into

−a′� sin(ϕ + ψ) − a(�2 − ω2 + �ϕ′) cos(ϕ + ψ) = εμ1�
2 sin φ + εζ1a� sin(ϕ + ψ).

(3.62)
The relations (3.18) and (3.62) are the two first order differential equations which

correspond to the second order differential equation (3.54). Solving the Eqs. (3.18)
and (3.62) for a′ and ψ′ the relations (3.22) and (3.23) for (3.116) follow

a′ = εμ1� sinϕ sin(ϕ + ψ) − εζ1a sin
2(ϕ + ψ)

−a
�2 − ω2

�
sin(ϕ + ψ) cos(ϕ + ψ), (3.63)

aψ′ = −a
�2 − ω2

�
cos2(ϕ + ψ) − εμ1� sinϕ cos(ϕ + ψ)

+εζ1a sin(ϕ + ψ) cos(ϕ + ψ). (3.64)

Substituting the solution (3.15) into the differential equation (3.55) and using the
relations (3.56) and (3.60) we obtain (3.20) with (3.21), i.e.,

�′ = ε2M(�) − ε2η2aω2 cos(ϕ + ψ) cosϕ, ϕ′ = �. (3.65)

Equations (3.63)–(3.65) represent the four first order differential equations which
correspond to the second order differential equations (3.54) and (3.55). After aver-
aging equations transform into

a′ = −ζ1a

2
+ μ1�

2
cosψ, (3.66)

ψ′ = −�2 − ω2

�
+ μ1�

2a
sinψ, (3.67)

�′ = M(�) − η2a�2

2
cosψ. (3.68)

Equations (3.66)–(3.68) describe the non-stationary motion of the system.

3.2.2 Steady-State Motion and Its Properties

If there is no interaction between the oscillator and the motor the amplitude of
vibration of the oscillator decreases exponentially from the initial amplitude A (due
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Fig. 3.5 � − τ curves for
various values of the
nonlinearity order n: n = 2
(full line), n = 3 (dotted line)

to viscous damping) as a = A exp(−γτ/2), and the variation of the angular velocity
of the motor satisfies the relation

� = Vm

Cm
− Vm

Cm

1

(1 + CmV
n−1
m (n − 1)τ )1/(n−1)

. (3.69)

In Fig. 3.5, � − τ curves for various values of parameter n are plotted.
Namely, for Vm = 1 and Cm = 1 the � − τ relations according to (3.69) are:

for n = 2

� = 1 − 1

1 + τ
, (3.70)

for n = 3

� = 1 − 1

(1 + 2τ )1/2
. (3.71)

Analyzing the relations (3.69) i.e., (3.70) and (3.71), it is obvious that for any value
of parameter n, the angular velocity is zero for τ = 0, and tends to the constant
steady-state value Vm/Cm . The smaller the value of the parameter n, the steady-state
value is achieved in a shorter time.

For the steady-state respons, Eqs. (3.66)–(3.68) have the form

ζ1a

2
= μ1�

2
cosψ, (3.72)

�2 − ω2

�
a = μ1�

2
sinψ, (3.73)

M(�) = η2a�2

2
cosψ. (3.74)

Solving the algebraic equations (3.72)–(3.74), the steady-state properties of the sys-
tem are determined.

Eliminating ξ from (3.72) and (3.73) and also from (3.72) and (3.74) following
two a − � relations are obtained
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(μ1�)2 = a2
(

ζ21 + 4

(
�2 − ω2

�

)2
)

, (3.75)

ζ1a
2� = 2

μ1

η2
M(�), (3.76)

i.e., after substituting (3.58) and (3.4) it follows

(μ1�)2 = a2
(

ζ21 + 4

(
�2 − ω2

α p
2a(α−1)

�

)2
)

, (3.77)

ζ1a
2� = 2

μ1

η2
(Vm − Cm�)n. (3.78)

The solution of the system of algebraic equations (3.75) and (3.76) depends on the
motor torque function but also on the order of nonlinearity of the oscillator. Solving
algebraic equations (3.77) and (3.78) for a and �, the steady-state phase angle ψ is
calculated. Namely, the relation for phase is

2
�2 − ω2

�ζ1
= tanψ, (3.79)

and is obtained by dividing Eqs. (3.72) and (3.73).

3.2.3 Characteristic Points

According to the procedure given in Sect. 3.3, characteristic points in amplitude-
frequency curves can be calculated. Solving the system of algebraic equations (3.77)
and (3.78) and also the relation

da

d�
≡ 2μ2

1�
3 − �a2ζ21 − 8a2

(
�2 − ω2

)
�

aζ21�
2 + 4a

(
�2 − ω2

)2 − 4(α − 1)a
(
�2 − ω2

)
ω2

= −ζ1a2 + 2nCm
μ1

η2
(Vm − Cm�)n−1

2ζ1a�
,

where ω is given as (3.58), the parameters aP , �P and VmP of the characteristic point
P are obtained.

Due to complexity to the suggested calculation an approximate solution procedure
is recommended. Using the fact that the locus of the point P is near the position of
the point P’, where solutions of the Eq. (3.77) bifurcate from one to two, i.e., from
three to two real solutions, it is suggested to consider the characteristics of P’ instead
of P. Thus, for
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�P ′ = ωp′ = ωαa
(α−1)/2
p′

√
p2, (3.80)

the relation (3.77) gives the peak amplitude

aP ′ =
(

ζ1

ωαμ1

√
p2

) 2
α−3

. (3.81)

Substituting (3.81) into (3.80), the locus �P ′ for aP ′ is obtained

�P ′ =
(

ζ1

μ1

) α−1
α−3 (

ωα

√
p2
) 2

3−α

. (3.82)

Equations (3.81) and (3.82) with (3.78) give the value of a control parameter VmP ′

of the motor torque

VmP ′ = Cm

(
ζ1

μ1

) α−1
α−3 (

ωα

√
p2
) 2

3−α +
(η2

2

) 1
n

(
ζ1

μ1

) 2α
n(α−3) (

ωα

√
p2
) 6

n(3−α)

.

(3.83)
For this approximate value of the control parameter VmP ′ the Sommerfeld effect has
to appear. Analyzing the relation (3.77) it is obvious that the position of the extreme
point P’ is on a line

a = μ1

ζ1
�.

The gradient of the line does not depend on the order of nonlinearity α, but only on
the parameters μ1 and ζ1.

3.2.4 Suppression of the Sommerfeld Effect

As it is previously shown Eqs. (3.81)–(3.83) give us values �P ′ and aP ′ of the point
P’ and also the corresponding control parameter VmP ′ , which forces the amplitude-
frequency torque curve through the point P’. If the amplitude-frequency torque curve
and the backbone curve (3.80) have the equal gradients in the P’ i.e.,

da

d�
≡ 2

ωα(α − 1)
√
p2a

α−3
2

= −ζ1a2 + 2nCm
μ1

η2
(Vm − Cm�)n−1

2ζ1a�
, (3.84)

the additional condition for suppression of the Sommerfeld effect in the system is
obtained. Namely, solving the system of four algebraic equations (3.81)–(3.83) and
(3.84) four unknown values are obtained: a∗, �∗, V ∗

m and also α∗, ζ∗
1 , μ∗

1, η∗
2 or

C∗
m . The forth mentioned parameter is the control parameter for elimination of the

Sommerfeld effect.
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The left side of the Eq. (3.84) is the gradient of the backbone curve in the point
P’. Using (3.81) the gradient is

(
da

d�

)
P ′

= 2μ1

ζ1(α − 1)
.

It depends on the order of nonlinearity α: for α < 1 it is negative, for α > 1 it is
positive, while for α = 1 it represents an orthogonal direction. The bending is higher
for α significantly higher or smaller than 1.

Using relations (3.81)–(3.83), Eq. (3.84) is rewritten as

4ζ1
1 − α

= γ + Cmnμ1

(
2

η2

) 1
n
(

ζ1

μ1

) 2
n ((n−1)+ n−3

α−3 ) (
ωα

√
p2
) 2(n−3)

(3−α)n
. (3.85)

If the order of nonlinearity α and parameters n, γ, μ1 and η2 are known, solving
the relation (3.85), for example, for the parameter C∗

m , we have

C∗
m = 3 + α

1 − α

1

n

(η2

2

) 1
n

(
ζ1

μ1

)1− 2
n ((n−1)+ n−3

α−3 ) (
ωα

√
p2
) 2(n−3)

(α−3)n
. (3.86)

Substituting (3.86) into (3.87) the control parameter V ∗
m is

V ∗
m =

(
3 + α

1 − α

1

n
+ 1

)(η2

2

) 1
n

(
ζ1

μ1

) 2α
n(α−3) (

ωα

√
p2
) 6

(3−α)n
. (3.87)

It can be concluded that for parameter values (3.86) and (3.87) in the non-ideal
system with known order of nonlinearity α the jump phenomena is excluded.

3.2.5 Numerical Examples

In this section, numerical examples of electro-motors connected with pure nonlin-
ear elastic structures are considered. As is shown in the previous section, there are
numerous materials whose elastic properties are strong nonlinear. We choose two
of them: the copper alloy with α = 4/3 and aluminium alloy with α = 5/3 (Jutte
2008). The corresponding elastic forces are

Fe1 = kx |x |1/3 , Fe2 = kx |x |2/3 . (3.88)

If the motor-structure system is driven with the motor torque of cubic type

M(ϕ̇) = (V ∗
m − C∗

mϕ̇)3. (3.89)
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differential equations of motion are:
for α = 4/3

y” + p2y |y|1/3 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.90)

ϕ” = ε2[(Vm − Cmϕ′)3 − η2 p
2y |y|1/3 cosϕ], (3.91)

for α = 5/3

y” + p2y |y|2/3 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′), (3.92)

ϕ” = ε2[(Vm − Cmϕ′)3 − η2 p
2y |y|2/3 cosϕ]. (3.93)

Corresponding averaged differential equations of motion obtained analytically are

a′ = −ζ1a

2
+ μ1�

2
cosψ, (3.94)

ξ′ = −�2 − ω2
α p

2a(α−1)

�
+ μ1�

2a
sinψ, (3.95)

�′ = (Vm − Cm�)3 − η2a�2

2
cosψ, (3.96)

where dependently on the order α the frequency constants are ω4/3 = 0.96916 and
ω5/3 = 0.940 81 (see Cveticanin 2009). For μ1 = 0.15, η2 = 0.05, p2 = 1, Cm = 1
and ζ1 = 0.1 the steady-state amplitude-frequency relations (3.77) for these systems
are:
for α = 4/3

0.0225�2 = a2
(
0.01 + 4

(
�2 − 0.93927a1/3

�

)2
)

, (3.97)

for α = 5/3

0.0225�2 = a2
(
0.01 + 4

(
�2 − 0.885 12a2/3

�

)2
)

, (3.98)

while the relation (3.78) for the motor is

0.1a2� = 6(Vm − �)3. (3.99)

In Fig. 3.6, amplitude-frequency steady-state diagrams for various values of con-
trol parameter Vm and order of nonlinearity α are plotted.

Analytically obtained (full line) curves (3.97)–(3.99) are compared with numeri-
cally (3.90)–(3.93) ones, obtained by increasing (circle) and decreasing (squares) of
the control parameterVm .Numerical solutions are obtained applying theRunge–Kutta
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Fig. 3.6 Frequency-response curves for variousα obtained: a analytically (full line), b numerically
(circles - for the increasing of the Vm , squares - for decreasing of the Vm)

Table 3.1 Coordinates of
peak in the ap-�p diagram
for control parameter VmP
and certain value of α

α aP ′ �P ′ VmP ′ VmP

4/3 1.5667 1.0445 1.3941 1.4000

5/3 1.6764 1.1176 1.4917 1.4970

procedure. We note that there is a hysteresis in diagrams in the region P-Q-R-S (see
Fig. 3.6), where two stable steady-state responses exist. This phenomena, called Som-
merfeld effect, depends on the orders of nonlinearity α.

Using relations (3.81)–(3.83) coordinates of peaks (aP ′ ,�P ′) in the diagram (3.77)
and corresponding control parameters VmP ′ are calculated and shown in Table 3.1.
Approximate values VmP ′ are compared with the exact numerically obtained value
VmP . It can be seen that they are in good agreement.

For the value of the control parameter VmP the amplitude-frequency curve (3.78)
represents the boundary for which the Sommerfeld effect exists.

The question is whether the Sommerfeld effect in this non-ideal system can be
suppressed. Using the procedure given in this section, the value of the parameter α
for which the Sommerfeld effect is suppressed can be calculated. For the driving
torque with cubic nonlinearity (n = 3) the relation (3.85) simplifies to

4ζ1
1 − α

= ζ1 + 3Cmμ1

(
2

η1

) 1
3
(

ζ1

μ1

) 4
3

. (3.100)

Substituting the previously mentioned parameter values and Cm = 1 into (3.100) we
obtain the critical value of the order of nonlinearity

α∗ = 0.59851. (3.101)
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Fig. 3.7 Time history
diagrams for α = 5/3:
a non-stationary diagram for
Vm = 1.2; b, c Steady-state
diagrams for Vm = 1.2;
d non-stationary motion for
Vm = 1.4

For α = α∗ the Sommerfeld effect is suppressed. It means, that for all values of
α ≥ 1 the Sommerfeld effect exists.

To prove the correctness of analytically and numerically obtained results, let
us plot curves for the steady-state and of the non-stationary motion. In Fig. 3.7,
amplitude-frequency diagrams of the oscillator with nonlinearity order α = 5/3 for
the control parameter Vm = 1.2 (non-stationary motion in Fig. 3.7a and two steady-
state motions in Fig. 3.7b, c) and for the control parameter Vm = 1.4 (non-stationary
motion in Fig. 3.7d) are shown. Comparing these diagrams with values shown in
Fig. 3.7, it can be seen that they are in good agreement.

Based on the obtained results, it can be concluded that the methods developed
for the general type of the non-ideal system (mentioned in the previous sections) are
applicable for the pure nonlinear oscillator coupled with a non-ideal source excited
with the nonlinear torque.

3.3 Pure Strong Nonlinear Oscillator and a Non-ideal
Energy Source

Let us consider a non-ideal energy source which is settled on a foundation which is a
nonlinear oscillator (Fig. 3.4) The elastic characteristic of the oscillator is pure non-
linear and described with an elastic force which is proportional to the displacement
x with the positive rational exponent α ∈ R (integer or noninteger)
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Fe = kx |x |α−1 , (3.102)

where k is the rigidity constant. The damping property of the system is supposed to
be a linear velocity function and is given with the damping force

Fd = cẋ, (3.103)

where c is the damping coefficient.
The oscillator is driven by a motor which has an unbalancem which is on the dis-

tance d to the rotor shaft. Position of the unbalance is varying in time and is described
with the angle ϕ. As it is suggested in Dantas and Balthazar (2003), Tsuchida et al.
(2003, 2005), Souza et al. (2005a, b), Felix et al. (2009a), Castao et al. (2010), the
motor torque is a linear function of angular velocity

M(ϕ̇) = Vϕm − Cϕmϕ̇, (3.104)

where Cϕm and Vϕm are constant values and ϕ̇ is the angular velocity of the motor.
The system executes a rectilinear motion and the displacement is given with the
variable x . This motion has an effect on the rotation of the rotor of the motor.

The suggested oscillator-motor systemhas two-degrees-of-freedom. The two gen-
eralized coordinates are x and ϕ. In general, the Lagrange differential equations of
motion for the system are

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (3.105)

where T is the kinetic energy,U is the potential energy, � is the dissipation function
and Qx and Qϕ are the corresponding generalized forces.

The kinetic energy, potential energy and the dissipation function are, respectively,

T = 1

2
Mẋ2 + 1

2
m(ẋ − dϕ̇ cosϕ)2 + 1

2
m(dϕ̇ sinϕ)2 + 1

2
J ϕ̇2, (3.106)

U = k

α + 1
xα+1, � = 1

2
cẋ2, (3.107)

where a dot denotes differentiation with respect to time t , M is mass of the oscillator,
J is the moment of inertia of the motor rotor, m is mass of the rotor unbalance and
d is the length of the rotor unbalance. The virtual work of the motor torque is

δA = M(ϕ̇)δϕ, (3.108)

and the generalized forces
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Qx = 0, Qϕ = M(ϕ̇). (3.109)

Substituting (3.106)–(3.109) into (3.105), the mathematical model of the system is
obtained (Cveticanin 2009)

ẍ(M + m) + kx |x |α−1 + cẋ − md(ϕ̈ cosϕ − ϕ̇2 sinϕ) = 0,

(J + md2)ϕ̈ − mdẍ cosϕ = M(ϕ̇). (3.110)

In this case the effect of gravitational force is omitted. The model (3.110) represents
a system of two coupled strong nonlinear second order differential equations. To
find the exact (closed form) solution of (3.110) is even impossible. An approximate
solving procedure for the resonant motion of the system is suggested. It is based
on the averaging procedure adopted for the system (3.110). The influence of the
nonlinearity order on the Sommerfeld effect is discussed. A method for suppress-
ing Sommerfeld effect is developed. The critical parameters for the Sommerfeld
phenomena are approximately determined. As examples the steady-state resonant
motions of the oscillators with non-integer order driven by a non-ideal force are
considered.

3.3.1 Model of the System

It is convenient to normalize the coordinates and time in (3.110) according to

x −→ y = x/ l, t −→ τ = �∗t, (3.111)

where l is the initial length of the non-deformed spring and �∗ is the synchronous
angular velocity of the rotor (see Dimentberg et al. 1997). By introducing (3.111)
and the notation φ → ψ1, the differential equations (3.110)) transform into

y” + ζ y′ + p2y |y|α−1 = μ(ϕ” cosϕ − ϕ′2 sinϕ),

ϕ” = ηy” cosϕ + (V ∗
m − C∗

mϕ′), (3.112)

where

p2 = klα−1

�∗2(M + m)
, ζ =

(
c

M + m

)
1

�∗ , μ = dm

l(M + m)
,

η = dml

J + md2
, V ∗

m = Vϕm

(J + md2)�∗2 , C∗
m = Cϕm

(J + md2)�∗ , (3.113)

and (′) ≡(d/dτ ), (”) ≡(d2/dτ 2). After some modification, we have
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y”(1 − μη cos2 ϕ) + p2y |y|α−1 + ζ y′ = μ
[
(V ∗

m − C∗
mϕ′) cosϕ − ϕ′2 sinϕ

]
,

ϕ”(1 − μη cos2 ϕ) + μηϕ′2 cosϕ sinϕ = −η(ζ y′ + p2y |y|α−1) cosϕ

+(V ∗
m − C∗

mϕ′). (3.114)

Due to the physical properties of the system, it can be concluded that the parameters
μ and η are small in comparison to 1 and can be treated as the product of a small
parameter ε and constants μ1 and η1, i.e., μ = εμ1 and η = εη1. The same is valid for
V ∗
m and C∗

m , and also the damping parameter ζ, i.e., we have V ∗
m = εVm , C∗

m = εCm

and ζ = εζ1. Then, the system of differential equations (3.114) is simplified into

y” + p2y |y|α−1 = −ε(μ1ϕ
′2 sinϕ + ζ1y

′),
ϕ” = −εη1 p

2y |y|α−1 cosϕ + εVm(1 − Kmϕ′), (3.115)

where ε << 1 is a small positive parameter and Km = Cm/Vm . In (3.115) the small
terms of the second order are neglected. The Eq. (3.115) represent the system of two
coupled differential equations which describe the motion of the non-ideal system
given in Cveticanin and Zukovic (2015a).

3.3.2 Analytical Solving Procedure

Let us rewrite the differential equations (3.115) into a system of four first order
differential equations

y′ = z,

z′ = −p2y |y|α−1 + εF1,

ϕ′ = �,

�′ = εF2, (3.116)

where

F1 = −(μ1�
2 sinϕ + ζz), F2 = Vm(1 − Km�) − η1 p

2y |y|α−1 cosϕ.

(3.117)
For ε = 0, the Eq. (3.116) transform into

y′ = z, z′ = −p2y |y|α−1 , ϕ′ = �, �′ = 0. (3.118)

The first two differential equations describe themotion of a pure integer or noninteger
order nonlinear oscillator (see Cveticanin et al. 2012; Cveticanin and Pogany 2012).
The exact analytical solution of (3.118) is
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y = aca(α, 1, νt), z = −2ha(α+1)/2

α + 1
sa(1,α, νt),

ϕ = C1t + C2, � = C1, (3.119)

where

ν = ha(α−1)/2, h = |p|
√

α + 1

2
, (3.120)

C1 andC2 are constants of integration, A is an arbitrary constant and ca(α, 1, νt) =ca
and sa(1,α, νt) = sa are the cosine and sine Ateb-functions given by Droniuk et al.
(1997, 2010), Droniuk and Nazarkevich (2010) (see Appendix). Namely, (3.119) is
the generating solution of the generating Eq. (3.118). Based on that solution, the trial
solution for (3.116) is introduced.

Let us express y, z, ϕ and � as functions of new variables a, ψ, ϕ and �, i.e.

y = aca(α, 1,ψ) ≡ aca(ψ),

z = − 2h

α + 1
a(α+1)/2sa(1,α,ψ) ≡ − 2h

α + 1
a(α+1)/2sa(ψ), (3.121)

and ψ2 → �. According to the expressions for the derivatives of Ateb functions
(A22) and (A23) (see Appendix), the first time derivatives of (3.121) follow

y′ = a′ca(ψ) − 2ψ′

α + 1
asa(ψ),

z′ = −ha(α−1)/2A′sa(ψ) − 2hψ′

α + 1
a(α+1)/2caα(ψ). (3.122)

Substituting (3.122) into (3.116) and using the relations (A21) (see Appendix) and
(3.120), the modified equations of motion are

ψ′ = ha(α−1)/2 − εF1
α + 1

2h
a−(α+1)/2ca(ψ),

a′ = −εF1

h
a(1−α)/2sa(ψ),

ϕ′ = �,

�′ = εF2, (3.123)

where

F1 = −μ1�
2 sinϕ + ζ1

2h

α + 1
a(α+1)/2sa(ψ),

F2 = Vm(1 − Km�) − η1 p
2aca(ψ) |aca(ψ)|α−1 cosϕ.



76 3 Nonlinear Oscillator and a Non-ideal Energy Source

Equation (3.123) are the four first order differential equations which in the first
approximation correspond to (3.166). In these equations the trigonometric and Ateb
periodic functions exist. It is well known that the period of trigonometric functions
sinϕ and cosϕ is 2π, while of the Ateb functions sa(ψ) and ca(ψ) is 2�α, where the
expression for �α is given in Appendix (see Eq. (A14))

�α = B

(
1

α + 1
,
1

2

)
, (3.124)

and B is the beta function (Abramowitz and Stegun 1964). Introducing the new
variable

ψ = �α

2π
ψ̄, (3.125)

we obtain the Ateb functions sa(�α

2π ψ̄) and ca(�α

2π ψ̄) whose period is also 2π as is
for the trigonometric functions sinϕ and cosϕ. Substituting (3.125) into (3.123), it
follows

ψ̄′ =
(
2π

�α

)
ha(α−1)/2 − εF1

α + 1

2h

(
2π

�α

)
a−(α+1)/2ca

(
�α

2π
ψ̄

)
,

a′ = −εF1

h
a(1−α)/2sa

(
�α

2π
ψ̄

)
,

ϕ′ = �,

�′ = εF2, (3.126)

where

F1 = −μ1�
2 sinϕ + ζ1

2h

α + 1
a(α+1)/2sa

(
�α

2π
ψ̄

)
,

F2 = Vm (1 − Km�) − η1 p
2Aca

(
�α

2π
ψ̄

) ∣∣∣∣aca
(

�α

2π
ψ̄

)∣∣∣∣
α−1

cosψ. (3.127)

Differential equations (3.126) represent the mathematical model of the non-ideal
system for the non-resonant case which is not of a significant interest. Much more
important case is the resonant one.

3.3.3 Resonant Case and the Averaging Solution Procedure

Let us introduce the new variable θ which satisfies the relation

ψ̄ = θ + ϕ, (3.128)
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with time derivative
ψ̄′ = θ′ + �. (3.129)

Substituting (3.129) and (3.128) into (3.126), differential equations with variables
A, θ, ϕ and � follow as

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εF1

α + 1

2h

(
2π

�α

)
a−(α+1)/2ca

(
�α

2π
(θ + ϕ)

)
,

a′ = −εF1

h
a(1−α)/2sa

(
�α

2π
(θ + ϕ)

)
,

ϕ′ = �,

�′ = εF2, (3.130)

where

F1 = −μ1�
2 sinϕ + γ

2h

α + 1
a(α+1)/2sa

(
�α

2π
(θ + ϕ)

)
,

F2 = Vm(1 − Km�) − η1 p
2aca

(
�α

2π
(θ + ψ1)

) ∣∣∣∣aca
(

�α

2π
(θ + ϕ)

)∣∣∣∣
α−1

cosϕ.

(3.131)

For the case when (
2π

�α

)
ha(α−1)/2 − � = εσ, (3.132)

the condition of nonlinear resonance is satisfied. Thus, according to (3.130)1, θ′ is
of the order ε. For θ′ of the order O(ε), the relation (3.129) yields the difference
between the frequencies (ψ̄′ − ϕ′) ≡ (ψ̄′ − �) to be also of the ε order.

To solve the system of differential equations (3.130) is not an easy task. It is
the reason the averaging procedure suggested by Zhuravlev and Klimov (1988) is
adopted for this special case. The averaging is done over the period 2π of the variable
ϕ. The averaged differential equations are

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εF̄1θ

α + 1

2h

(
2π

�α

)
a−(α+1)/2,

a′ = −εF̄1A

h
a(1−α)/2,

ϕ′ = �, � = εF̄2, (3.133)
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where

F̄1A = −μ1�
2 f̄1 + ζ1

2h

α + 1
a(α+1)/2 f̄2,

F̄1θ = −μ1�
2 f̄3 + ζ1

2h

α + 1
a(α+1)/2 f̄4,

F̄2 = Vm(1 − Km�) − η1 p
2Aα f̄5, (3.134)

and

f̄1 = 1

2π

2π∫

0

sinϕsa

(
�α

2π
(θ + ϕ)

)
dϕ, f̄2 = 1

2π

2π∫

0

sa2
(

�α

2π
(θ + ϕ)

)
dϕ,

f̄3 = 1

2π

2π∫

0

sinϕca

(
�α

2π
(θ + ϕ)

)
dϕ,

f̄4 = 1

2π

2π∫

0

sa

(
�α

2π
(θ + ϕ)

)
ca

(
�α

2π
(θ + ϕ)

)
dϕ,

f̄5 = 1

2π

2π∫

0

cosϕca

(
�α

2π
(θ + ϕ)

) ∣∣∣∣caα−1

(
�α

2π
(θ + ϕ)

)∣∣∣∣ dϕ. (3.135)

Being the sine and cosine Ateb periodic functions, they are suitable for Fourier series
expansion. The finite Fourier approximation of the functions is according to Droniuk
et al. (2010, 2010)

sa(1,α,ψ) = a0
2

+
∞∑
n=1

an sin
πnψ

�α
,

ca(α, 1,ψ) =
∞∑
n=1

bn cos
πnψ

�α
, (3.136)

where the coefficient in the series are

a0 = 2

�α

�α∫

0

sa(1,α,ψ)dψ, an = 2

�α

�α∫

0

sa(1,α,ψ) sin
πnψ

�α
dψ,

bn = 2

�α

�α∫

0

ca(α, 1,ψ) cos
πnψ

�α
dψ (3.137)

and ψ ≡ �α

2π (θ + ϕ). In this calculation the Fourier series expansion of the function
ca(ψ)

∣∣caα−1(ψ)
∣∣ is also introduced as (see Mickens 2004; Cveticanin 2008)
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ca(ψ)
∣∣caα−1(ψ)

∣∣ =
∞∑
n=1

cn cos(nψ), (3.138)

with

cn = 4

π

π/2∫

0

ca(ψ)
∣∣caα−1(ψ)

∣∣ cos(nψ)dψ. (3.139)

For practical reasons, it is suitable to determine the solution in the first approximation.
Then, using the first terms of the Fourier series (3.136), the expressions (3.134) and
(3.135) are transformed into

f̄1 = 1

2
a1 cos θ, f̄2 = 1

2
a21, f̄3 = −1

2
b1 sin θ, f̄4 = 0, f̄5 = 1

2
c1 cos θ,

(3.140)
and

F̄1A = −1

2
μ1a1�

2 cos θ + ζ1
h

α + 1
a(α+1)/2a21,

F̄1θ = 1

2
μ1b1�

2 sin θ, F̄2 = Vm(1 − Km�) − 1

2
η1 p

2aαc1 cos θ (3.141)

where a1, b1 and c1 are the coefficients calculated according to (3.137) and (3.139) for
n = 1. Substituting (3.141) into (3.133) the simplified averaged differential equations
are

θ′ =
[(

2π

�α

)
ha(α−1)/2 − �

]
− εμ1

2
b1�

2 α + 1

2h

(
2π

�α

)
a−(α+1)/2 sin θ,

A′ = −1

h
a(1−α)/2

(
−εμ1

2
a1�

2 cos θ + εζ1a
2
1

h

α + 1
a(α+1)/2

)
,

�′ = ε

(
Vm(1 − Km�) − 1

2
η1c1 p

2aα cos θ

)
. (3.142)

The equations describe the transient motion in the resonant case.

Steady - state solution

Equating the right side of the Eq. (3.142) to zero and after some modification the
steady-state equations up to the first order approximation are

εμ1�
2 sin θ = 1

b1

4h

α + 1

[
ha(α−1)/2 −

(
�α

2π

)
�

]
a(α+1)/2, (3.143)

εμ1�
2 cos θ = 2εζ1a1h

α + 1
a(α+1)/2, (3.144)
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η1c1 p
2aα cos θ = 2Vm(1 − Km�). (3.145)

Eliminating the variable θ in the Eqs. (3.143) and (3.144) the frequency - response
relation is as follows

1 = a(α+1)

�4μ2
1

⎛
⎝
(
2ζ1a1h

α + 1

)2

+
(
4h

εb1

ha(α−1)/2 − (
�α

2π

)
�

α + 1

)2
⎞
⎠ . (3.146)

Dividing Eqs. (3.144) and (3.145) the a − θ expression as a function of the control
parameter Vm is obtained

Vm(1 − Km�) = η1c1a1 p2

μ1(α + 1)

ζ1h

�2
a(3α+1)/2. (3.147)

Characteristic points

The characteristic point P for the curves (3.72) and (3.147) corresponds to the peak
amplitude and exists if the condition of the equality of the gradients da/d� for the
both curves is satisfied.Due to complexity of the expressions, it is suggested to use the
approximate procedure for obtaining of this point. Instead of the exact characteristic
point P, the point P’ is determined, in which the bifurcation of the solutions of the
Eq. (3.72) appears. It is known that the locus of these two points (P and P’) are quite
close to each other.

Let us assume that in (3.66) the left hand side of the equation is zero, i.e.,

ha(α−1)/2 −
(

�α

2π

)
� = 0. (3.148)

Substituting (3.148) into (3.72) the peak amplitude is obtained

aP =
(

1

μ1

(
�α

2πh

)2 (2ζ1a1h
α + 1

))2/(α−3)

. (3.149)

Substituting (3.149) into (3.148), the locus �P for aP is obtained

�P =
((

�α

2πh

)(α+1) ( 2ζ1a1h

μ1(α + 1)

)(α−1)
)1/(α−3)

. (3.150)

Equations (3.149) and (3.150) with (3.147) give the value of a control parameter
VmP ′ of the motor torque

VmP = q2c1a1 p2

μ1(α + 1)(1 − Km�P)

ζ1h

�2
P

a(3α+1)/2
P . (3.151)
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For this approximate value of the control parameter VmP the Sommerfeld effect has
to appear.

Analyzing the relations (3.149) and (3.150) it can be seen that the relations are
independent on the value of η1.

3.3.4 Suppression of the Sommerfeld Effect

As it is previously shown the Eqs. (3.149)–(3.151) give us the values aP ′ , �P ′ of the
point P’ and also the corresponding control parameter VmP for which the Sommerfeld
effect exists and the amplitude-frequency torque curve is forced through the point
P’. Our intention is to suppress the Sommerfeld effect which is evident for P’.

Let us calculate the gradient of the backbone curve (3.148) in the bifurcation
point P. Substituting aP given with the relation (3.149) into the first derivative
(da/d�) of the relation (3.148), the required gradient is obtained

(
da

d�

)
P

= α + 1

α − 1

μ1

ζ1a1

(
2π

�α

)
. (3.152)

The gradient is the function of the order of the nonlinearityα. Forα < 1 the direction
of the tangent is such to give an obtuse angle and for α > 1 a sharp angle. For α = 1
the tangent is orthogonal.

The gradient of the amplitude-frequency torque curve (3.147) for the bifurcation
point is also worth to be determined. The first derivative (d A/d�) for (3.147) is
calculated and the coordinates �P for aP given with relations (3.149) and (3.150)
have to be substituted

(
da

d�

)
P

= VmP
2(2 − 3Km�P)μ1

η1c1a1 p2ζ1h

α + 1

3α + 1

�P

(aP)(3α−1)/2
. (3.153)

Equating the gradients (3.152) and (3.153) in the P’ and assuming the condition
(3.151), we have

3α + 1

α − 1

μ1

ζ1a1

(
2π

�α

)
= 2(2 − 3Km�P)

(α + 1)(1 − Km�P)

aP

�P
. (3.154)

The relation (3.154) depends on the parameter of the torque Km , parameters of
eccentricity μ1, and also on the order of nonlinearity α. Due to the motor properties
(3.3) and the sign of the gradient of the Vm curve, it can be concluded that the relation
(3.154) is valid only for α < 1.

Let us solve the relation (3.154) for the driving parameter

K̃m = 2 − p1
(3 − p1)�P

, (3.155)
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where

p1 = (3α + 1)(α + 1)

α − 1

μ1

ζ1a1

(
π

�α

)
�P

aP
. (3.156)

Then the value Ṽm is the necessary one for elimination of the Sommerfeld effect. Sub-
stituting the value of K̃m (3.155) into the relation for VmP (3.151), the corresponding
control parameter Ṽm is obtained

Ṽm = (3 − p1)η1c1a1 p2

μ1(α + 1)

ζ1h

�2
P

a(3α+1)/2
P . (3.157)

Finally, the parameter C̃m is

C̃m = Ṽm

K̃m

= η1c1a1 p2(3 − p1)2

μ1(α + 1)(2 − p1)

ζ1h

�p
a(3α+1)/2
P . (3.158)

For the parameter value (3.158) i.e., (3.155) and (3.157) the jump phenomena in the
non-ideal system with known order of nonlinearity α is excluded. For all values of
the control parameter Vm there is always only one steady point in the a − � curve,
i.e., only one intersection point between Vm and a − � curve. Then, the Sommerfeld
effect does not exist.

3.3.5 Numerical Examples of Non-ideal Driven Pure
Nonlinear Oscillators

For physical interpretation, a motor-support system mounted in a soya extraction
plant is considered: mass of the system is (M + m) of 5 kg, radius of the motor
rotor is 0.120 m, measure of the unbalance is md = 0.0125 kgm, length l is 0.05 m,
moment of inertia of themotor rotor J = 0.698 × 10−3 kgm2, the synchronous speed
of the rotor is �∗ = 1450 rpm and the damping coefficient is c = 37. 961 kg/s. The
three types of nonlinearity are considered: one, with the order of nonlinearity α =
2/3 (smaller than 1) and coefficient of rigidity k = 0.42470 × 105 N/m2/3, second,
with α = 1 (linear case) and coefficient of rigidity k = 1. 152 8 × 105 N/m and with
the order of nonlinearity α = 5/3 (higher than 1) and coefficient of rigidity k =
8. 494 1 × 105 N/m5/3. Two values of the motor parameters are considered: Cϕm =
1.898Nm/s andCϕm = 18.98Nm/s. The corresponding non-dimensional parameters
are according to (3.53): ε = 0.1, μ1 = 0.5, η1 = 0.5, p2 = 1 and ζ1 = 0.5. Two
values for Cm are 1 and 10. Varying the control parameter Vm of the motor, the
steady-state properties of the system are analyzed. For Cm = 1 the initial control
parameter for the increasing case is Vm = 0.3 and for the decreasing case it is Vm =
1.2, while forCm = 10 it is Vm = 3 and Vm = 12, respectively. The analytical results
are obtained by solving the relations (3.72) and (3.147), and numerical ones by
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Fig. 3.8 Frequency-
response steady state curve
obtained analytically for
α = 5/3 and Cm = 10 with
characteristic points

integrating of the original differential equations of motion (3.48). For numerical
calculation the Runge–Kutta procedure is applied.

The numerical procedure is as follows: for a certain value of the control parameter
Vm the relations (3.48) are numerically solved and the amplitude and frequency are
computed. The amplitude of vibration is computed for the maximal disposition of
the oscillator from the equilibrium position, while the frequency of vibration is the
averaged value for ψ̇1 during the steady state motion. These values are the initial
values for the further numerical calculation. Increasing the control parameter Vm

for a small value, the new steady-state parameters are computed. The numerical
calculation is repeated for the new higher value of the control parameter and with
initial conditionswhich are the previous steady-state parameters. After the significant
repetition of the numerical process for increasing of the control parameter Vm , an
amplitude-frequency curve for increasing of the control parameter is obtained. In
contrary, if the same procedure is applied but the control parameter is decreased the
another amplitude-frequency curve is obtained which partly differs from the first
one.

If during the numerical solution of (3.48) the obtained amplitudes significantly
differ for the two infinitesimal close values of the control parameter Vm , it is evi-
dent that the jump phenomena occurs. It gives us the chance to “recognized” the
Sommerfeld effect during the numerical process.

In Figs. 3.8 and 3.9 the amplitude - frequency diagrams obtained analytically
by solving (3.72) and (3.147) and numerically by solving (3.48) for Cm = 10 and
α = 5/3 are plotted. The control parameter Vm is varied and the steady-state ampli-
tude - frequency values are obtained. The computation timewas 200 periods of vibra-
tion T . The steady-state numerical solution is reached after approximately 30T . The
period T is computed numerical. For the certain value of control parameter Vm the
steady state amplitude and frequency are calculated. These values were used as the
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Fig. 3.9 Frequency-
response curves for α = 5/3
and Cm = 10 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

initial conditions for computation of the steady-state values for the new value of the
control parameter Vm .

From the both figures it is obvious that for slow increasing of � and variation of
the motor parameter Vm , the amplitude of vibration increases up to the point P. Using
the relations (3.149)–(3.151) the parameters of the characteristic point are obtained:
aP = 0.9, �P = 0.92 and VmP = 9.42. Along the curve VmP the jump phenomena
from P to Q (aQ = 0.098, �Q = 0.94) occurs. For that position �Q > �P , but
the amplitude aQ is significantly smaller than aP . Further increase of the control
parameter Vm causes the further decrease of the amplitude of vibration for increase
of the frequency �. If the value of the control parameter Vm is decreased, the steady-
state locus in a − � plane moves to left along the a − � curve to the point R.
The frequency � decreases and the amplitude a increases slowly up to the value
of aR = 0.1 at the frequency �R = 0.6 (the values are obtained numerically). For
VmR = 6.01 a sudden change in the amplitude of vibration appears. The amplitude
jumps along the curve VmR to the value aS = 0.3with�S = 0.6. The further decrease

Fig. 3.10 Frequency-
response steady state curve
obtained analytically for
α = 5/3 and Cm = 1 with
characteristic points
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of the control parameter Vm produces amplitude and frequency decrease. The region
in the a − � plane bounded with the part SP and RQ of the a − � curves and also
RS and PQ parts of the Vm − � curves represent the hysteresis and the jump from P
to Q and R to S in the system is the so called Sommerfeld effect well known in the
non-ideal mechanical systems.

In Fig. 3.9 the values obtained numerically by solving of the original differential
equations of motion (3.48) for increasing of the control parameter Vm is plotted
with circles (o) and for decreasing of the control parameter with a filled squares
(�). Comparing the analytically obtained solutions (full line) with the numerically
obtained values it can be seen that the results are in a good agreement.

In Figs. 3.10 and 3.11 the frequency-response curve for the oscillator with order
of nonlinearity α = 2/3 and motor parameter Cm = 1 is plotted. The curves in
Fig. 3.10 are obtained by solving the approximate relations (3.72) and (3.147), while
in Fig. 3.11 numerically solved differential equations (3.48) are plotted. Both figures
show that for slow increasing of � and variation of the motor parameter Vm , the
amplitude of vibration increases up to the point P whose properties are aP = 0.9,
�P = 0.9 and VmP = 1.12.

Fig. 3.11 Frequency-
response curves for α = 5/3
and Cm = 1 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

Fig. 3.12 Frequency-
response steady state curve
obtained analytically for
α = 2/3 and Cm = 10 with
characteristic points
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Along the curveVmP the jumpphenomena fromP toQ (aQ = 0.055,�Q = 1.115)
occurs: the frequency �Q is higher than �P , and the amplitude aQ is smaller than
aP . During further increase of the control parameter Vm , the amplitude of vibra-
tion decreases while the frequency � increases. If the value of the control parame-
ter Vm is decreased, the steady-state locus in a − � plane moves to left along the
a − � curve to the point R. The frequency decreases to �R = 0.6 and the amplitude
increases to aR = 0.125 when VmR = 0.6. Then a sudden change in the amplitude
of vibration appears. The amplitude jumps along the curve VmR to the amplitude
aS = 0.3 and frequency �S = 0.585. The further decrease of the control parameter
Vm produces amplitude and frequency decrease. The bounded region SPQR repre-
sents the hysteresis plane. Comparing Figs. 3.8 and 3.10 it is seen that the Sommer-
feld effect occurs for lower values of the motor parameter Vm if Cm = 1 than if it is
Cm = 10.

In Fig. 3.11 the numerically obtained a − � diagrams are plotted: Vm is increased
(o), and Vm is decreased (�). These numerically obtained results by solving (3.48)
are compared with analytically obtained results (full line curves). The difference
between the analytical and numerical solutions is negligible.

In Figs. 3.12 and 3.13 the analytically and numerically obtained amplitude -
frequency curves for the oscillator with the order of nonlinearity α = 2/3 and motor
parameter Cm = 10 are plotted. The analytical solutions are obtained by solving
(3.72) and (3.147), and the numerical solutions by solving (3.48). The computation
procedure was the same to that made in the previous calculation.

First, the control parameter Vm was slowly increased. The steady-state frequency
and amplitude increase, too, up to P, when the control parameter has the value VmP =
12.45 and the amplitude and frequency are aP = 0.075, �P = 1.24. These values
are obtained analytically by solving the relations (3.149)–(3.151). For that value of
control parameter (VmP = 12.45) a sudden change in amplitude occurs for the almost

Fig. 3.13 Frequency-
response curves for α = 2/3
and Cm = 10 obtained
analytically (full line),
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)
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Fig. 3.14 Frequency-response steady state curve obtained analytically for α = 2/3 and Cm = 1 :
a with characteristic points, b for increasing of Vm , c for decreasing of Vm

the same frequency.Namely, there is the jump to the pointQwith the following values
of the amplitude and frequency: aQ = 0.475, �Q = 1.22. Increasing the value of
Vm gives decreasing of the amplitude a and increasing of �. If the control parameter
is Vm and the frequency � are decreased, the amplitude of vibration increases up to
aR = 1.0 for VmR = 10.55 and�R = 1.03. At that value of the control parameter the
jump to another steady state position occurs with amplitude aS = 0.02 and frequency
�S = 1.04. Further decrease of the control parameter gives also the decrease of the
amplitude and frequency. Finally, it can be concluded that the Sommerfeld effect and
the jump phenomena occur for VmP = 12.45 and VmR = 10.55.

Comparing the analytically obtained curve (full line) and the numerically obtained
curves for the case when the control parameter increases (o) and when it decreases
(�) it can be seen that the difference is negligible (see Fig. 3.13).

In Figs. 3.14 and 3.15 the frequency-response curve for the oscillator with order
of nonlinearity α = 2/3 and motor parameter Cm = 1 is plotted. The curves in
Fig. 3.14 are obtained by solving the approximate relations (3.72) and (3.147), while
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Fig. 3.15 Frequency-
response curves for α = 2/3
and Cm = 1 obtained
analytically (full line) and
numerically (circles - for the
increasing of Vm , squares -
for decreasing of Vm)

in Fig. 3.15 numerically solved differential equations (3.48) are plotted. In Fig. 3.14b
the steady-state motion for increasing value of the control parameter Vm is plotted.
The amplitude of vibration increases slowly with the frequency up to the point A1

with coordinatesaA1 = 0.1,�A1 = 1.24 for the control parameterVmA1 = 1.249. For
that value of the control parameter the other steady state motion is with the amplitude
aA2 = 0.875, and frequency �A2 = 1.04. For this value of the control parameter the
amplitude increases significantly, and the frequency decreases. For higher values of
the control parameter the tendency of increase but also decreasing of the frequency
is evident. For the control parameter VmA3 = 1.305 the peak amplitude aA3 = 1.025
for �A3 = 1.03 is reached. For this value of control parameter the another steady
statemotion iswith amplitude and frequency aA4 = 0.455,�A4 = 1.25, respectively.
Further increase of the control parameter Vm gives the decrease of the amplitude and
increase of the frequency.

In Fig. 3.14c the procedure is repeated but in the opposite direction: the control
parameter Vm is decreased. Decreasing Vm , the amplitude is increasing up to aB1 =
0.7and the frequency is decreased to �B1 = 1.13 for VmB1 = 1.261. At that value of
the control parameter a jump to the amplitude aB2 = 0.9 and frequency �B2 = 1.04
occurs. Further decrease of the control parameter causes decrease of the amplitude
but increase of the frequency to the boundary values aB3 = 0.475, �B3 = 1.12 for
VmB3 = 1.190. For that value of control parameter the other steady state motion is
with parameters aB4 = 0.025, �B4 = 1.19. Decreasing Vm the amplitude and fre-
quency decrease. In Fig. 3.14a the four values of the control parameter Vm for with the
amplitude - frequency curve of the motor is the tangent of the steady state curve are
shown. It means, that for� slowly increased two times the jump phenomena appear:
from A1 to A2 (the amplitude jumps to a higher value) and from A3 to A4 (the ampli-
tude jumps to a smaller value) as is shown in Fig. 3.14b. For slow decreasing of �

the amplitude jumps two times in the steady-state curve, too (see Fig. 3.14c) from
B1 to B2 (the amplitude jumps to a higher value) and from B3 to B4 (the amplitude
jumps to a smaller value).
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In Fig. 3.15 the numerically obtained a − � diagrams are plotted: Vm is increased
(o), and Vm is decreased (�). These numerically obtained results by solving (3.48)
are compared with analytically obtained results (full line curves). The difference
between the analytical and numerical solutions is negligible.

In Fig. 3.16 the influence of the control parameter Vm on amplitude-frequency
curve obtained analytically by solving (3.72) and (3.147) for the linear oscillator
α = 1 and motor parameter Cm = 1 is analyzed. In the diagram two values of the
control parameter for which the Sommerfeld effect occurs is obtained. For the case
of increasing frequency, the control parameter for which two steady state motions
P(aP = 1, �P = 1) and Q(aQ = 0.14, �Q = 1.24) exist is VmP = 1.251. For the
case of decreasing frequency, for the control parameter VmR = 1.101 the jump is
from R(aR = 425, �R = 1.06) to S(aS = 0.075, �S = 0.7).

In Fig. 3.17 we plot the case where the Sommerfeld effect is suppressed. The
parameters of the system are α = 2/3, ε = 0.1, μ1 = 0.5, η1 = 0.5, p2 = 1 and
ζ1 = 1.2. Two values of Cm are considered: Cm = 0.85 (Fig. 3.17a) and Cm = 5
(Fig. 3.17b) while Vm is varied. The first value for Cm is computed according to
(3.158) and the second value is an arbitrary one. It can be seen that for Cm = 5 the
Vm intersects the A-� curve in one, two or three points giving the Sommerfeld effect.

Fig. 3.16 Frequency-
response steady state curve
obtained analytically for
α = 1 and Cm = 1 with
characteristic points

Fig. 3.17 Frequency-
response steady state curve
obtained analytically for
α = 2/3 and: a Cm = 0.85,
and b Cm = 5
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ForCm = 0.85 only one intersection point of Vm with the amplitude frequency exists
and no amplitude jump exists. Thus, the Sommerfeld effect is eliminated.

Comparing the curves and the results plotted in Figs. 3.8, 3.9, 3.10, 3.11, 3.12,
3.13, 3.14, 3.15 and 3.16 the following is concluded:

1. The amplitude-frequency curve bends on right forα > 1 (Figs. 3.8 and 3.9), on the
left forα < 1 (Figs. 3.12, 3.13, 3.14 and 3.15) and is straight forα = 1 (Fig. 3.16).

2. For Cm = 10 the lines for Vm curves in Figs. 3.8, 3.9, 3.12 and 3.13 are closed to
the vertical direction and this case is close to the ideal system. For the ideal system,
the oscillator has no influence on the motion of the motor and there is no coupling
between these two motions. The ideal system has one-degree-of-freedom and the
motion of the oscillator is forced with a time periodical excitation force. The
mathematical model of the system is a second order differential equation. For
Cm = 10 (see Figs. 3.14, 3.15 and 3.16) the Vm curves are bent and the properties
of non-ideal system are highly significant. For Cm = 1 and α = 1 two charac-
teristic values of the control parameter Vm are evident (see Fig. 3.16), while for
Cm = 10 and α = 2/3 even four (Figs. 3.14 and 3.15).

3. In the system with order of nonlinearity α = 2/3 the Sommerfeld effect can be
eliminated by suitable assumption of the value of the parameterCm (see Fig. 3.17).
Namely, for Cm = 5 the effect of jump occurs (Fig. 3.14b), while for the critical
value Cm = 0.85 and any value of Vm , the Sommerfeld effect is eliminated.

3.3.6 Conclusion

Analyzing the results the following is concluded:

1. In the non-ideal system which contains a pure nonlinear oscillator (order of the
nonlinearity is integer or non-integer) and a motor with linear torque properties
(a non-ideal source) for certain parameter values the resonant phenomena appears.

2. The approximate averaging procedure, based on the introduction of additional
slow variables, as it is assumed that the angular velocity and the frequency of the
structure are functions of these variables, is appropriate for analytical analysis of
the problem. The suggested averaging procedure gives the equations which are
suitable for analysis of the near resonant case. Results which are obtained are
applicable for the analysis of the characteristic properties of the system:

(a) The amplitude-frequency curve bends on right for the nonlinearity of the
order higher than 1, i.e., the order is a positive rational number higher than
1. The amplitude-frequency curve bends on the left, if the nonlinearity is
a positive rational number smaller than 1. For the linear case,the backbone
curve of the amplitude-frequency steady state curve is straight.

(b) The approximate value of the control parameter for the non-ideal source
is analytically calculated applying the method of equating the gradient of
the both amplitude-frequency curves (of the oscillator and of the motor) in
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the intersection points. The criteria for the Sommerfeld effect is analytically
obtained.

(c) The Sommerfeld effect occurs not only for the linear case and when the
nonlinearity is higher than 1 (as it is previously published), but also if the
nonlinearity is a positive rational number smaller than 1.

(d) The parameters of the energy source effect the steady-state properties of
the non-ideal mechanical system. The both parameters of the motor torque
(Vmφ and Cmφ) and also their rate determine the motion properties. Hence,
independently on the order of nonlinearity, the higher the value of Cmφ the
system tends to the ideal one.

(e) For the casewhen the nonlinearity is of the order smaller than 1, the amplitude
jump effect may occur two times during increase of the motor property Vmφ

and two times during its decrease. For certain motor property the characteris-
tic curve may be the tangent of the amplitude-frequency curve in two points
during increase of Vmφ and also during its decrease, and for these values
the jump effect occur. In the linear non-ideal oscillator and in the oscillator
with a nonlinearity higher than 1 the jump phenomena is evident once during
increasing and once during decreasing of Vmφ. Namely, the characteristic of
the motor is the tangent of the amplitude-frequency curve for one Vmφ during
increase, and for other value during decrease.

4. The method given in this text obtains motor torque parameters which can sup-
press the Sommerfeld effect in the non-ideal mechanical system with the positive
nonlinearity of order smaller than 1. The Sommerfeld effect and the jump phe-
nomena in the amplitude for non-ideal systemmay be suppressed by these critical
parameter values.

5. Comparing the analytical and numerical solutions it is evident that they are in a
good agreement independently on the order of nonlinearity.

3.4 Stable Duffing Oscillator and a Non-ideal
Energy Source

Let us consider a motor operating on a structure with strong cubic nonlinearity
(Fig. 3.18). Oscillator is of Duffing type and is connected with the motor with limited
power supply. The motor has an eccentric mass which is the part of the non-ideal
perturbation source. The driving of the system comes from the unbalanced rotor
linked to the oscillator fed by an electric motor. The driven system is taken as a
consequence of the dynamics of the whole system (oscillator plus rotor). Duffing
oscillator, connected with non-ideal energy source, is of hardening type with strong
cubic nonlinearity which was widely investigated by Krylov and Bogolubov (1943),
Ueda (1985), Fang and Dowell (1987), Pezeshki and Dowell (1988), Yuste and
Bejarano (1986, 1990), Cheng et al. (1991), Chen and Cheung (1996), Chen et al.
(1998), Gendelman and Vakakis (2000), Mickens (2001, 2006), Andrianov (2002),
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Fig. 3.18 Model of the
motor-structure non-ideal
system

He (2002), Hu andXiong (2003), Andrianov andAwrejcewicz (2003a, b), Amore and
Aranda (2005), Cveticanin (2004, 2006, 2011), Ozis and Yildirm (2007), Belendez
et al. (2007),Cveticanin et al. (2010),Kovacic et al. (2010) andothers. The structure of
mass M is connected to a fixed basement by a non-linear spring and a linear viscous
damper (damping coefficient c). The nonlinear spring stiffness is given by k1x +
k2x3, where x denotes the structure displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the structure is due to an
in-board non-ideal motor driving an unbalanced rotor. We denote by ϕ the angular
displacement of the rotor unbalance, and model it as a particle of mass m and radial
distance d from the rotating axis. The moment of inertia of the rotating part is J . For
the resonant case the structure has an influence on the motor input or output. The
forcing function is dependent of the system it acts on and the source is of non-ideal
type.

The non-ideal problem has two - degrees of freedom, represented by the general-
ized coordinates x andϕ. The kinetic energy T , potential energyU and the dissipative
function � are expressed by

T = 1

2
Mẋ2 + 1

2
m(ẋ2 + d2ϕ̇2 − 2dẋϕ̇ sinϕ) + 1

2
J ϕ̇2, (3.159)

U = 1

2
k1x

2 + 1

4
k2x

4 − (M + m)gx − mgd cosϕ, � = 1

2
cẋ2. (3.160)

A dot denotes differentiation with respect to time t . Lagrange’s equations of motion
for the system are in general

d

dt

(
∂T

∂ ẋ

)
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

(
∂T

∂ϕ̇

)
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ̇,

where Qx and Qϕ̇ are generalized forces.
The differential equations of motion have the form



3.4 Stable Duffing Oscillator and a Non-ideal Energy Source 93

ẍ(M + m) + cẋ − md(ϕ̈ sinϕ + ϕ̇2 cosϕ) + k1x + k2x
3 = (M + m)g,

(J + md2)ϕ̈ − mdẍ sinϕ + mgd sinϕ = M(ϕ̇), (3.161)

where M(ϕ̇) is the motor torque. The most often used model of the torque is the
linear moment-speed relation (see Dimentberg et al. 1997)

M(ϕ̇) = M0

(
1 − ϕ̇

�

)
, (3.162)

where M0 and � are constant values.
It is convenient to normalize the coordinates and time according to

x −→ y = �2

g
x, t −→ τ = �t, (3.163)

where g is the gravity constant. By introducing (3.163) the differential equations
(3.161) transform into

y” + ζ y′ + p2y + γy3 = 1 + μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ − η sinϕ + F(1 − ϕ′), (3.164)

where

p = ω∗

�
, ω∗2 = k1

M + m
, γ = k3g2

(M + m)�6
, ζ = c

�(M + m)
,

μ = m

M + m

d�2

g
, η = gmd

�2(J + md2)
, F = M0

�2(J + md2)
, (3.165)

and prime denotes differentiationwith respect to τ . The differential equations (3.164)
are non-linear and coupled.

3.4.1 Asymptotic Solving Method

In the regime near resonant the difference between the excitation frequency is close
to the natural frequency. For the near resonant case one can write

ϕ′ − p = εσ, (3.166)

where εσ is the detuning parameter with the small parameter ε << 1. Expressing
parameters of equations (3.165) by

ζ = εζ1, γ = εγ1, μ = εμ1, η = εη1, F = εF1, (3.167)
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the differential equations of motions have the form

z′′ + p2z = εμ1
(
ϕ′′ sinϕ + ϕ′2 cosϕ

)− εζ1z
′ − εγ1

(
z + 1

p2

)3
]

,

ϕ′′ = εη1z
′′ sinϕ − εη1 sinϕ + εF1(1 − ϕ′), (3.168)

where the new variable is

z = y − 1

p2
. (3.169)

Expressing z” and ϕ” from the Eq. (3.168) and assuming only the terms to O(ε2) we
obtain

z” + p2z = ε

[
μ1ϕ

′2 cosϕ − ζ1z
′ − γ1(z + 1

p
)3
]

+ ε2 . . . ,

ϕ” = ε
[
F1(1 − ϕ′) − η1(1 + p2z) sinϕ

]+ ε2.... (3.170)

Following the reference (Warminski et al. 2001)

z = a cos(ϕ + ψ), (3.171)

where a and ψ are the new coordinates. The first derivative is

z′ = −ap sin(ϕ + ψ), (3.172)

when
a′ cos(ϕ + ψ) − a(ω + ψ′ − p) sin(ϕ + ψ) = 0. (3.173)

Determining the second derivative of z and substituting (3.171) and (3.172) into
(3.170) we obtain

−a′ p sin(ϕ + ψ) − ap(ω + ψ′) cos(ϕ + ψ) + p2a cos(ϕ + ψ)

= εμ1ω
2 cosϕ + apεζ1 sin(ϕ + ψ) − εγ1

[
a cos(ϕ + ψ) + 1

p

]3
,

ω′ = εF1(1 − ω) − εη1[1 + ap2 cos(ϕ + ψ)] sinϕ. (3.174)

Equations (3.173) and (3.174) lead to the derivatives a′, ψ′,ϕ′ and ω′

a′ = − sin(ϕ + ψ)

{
εμ1

p
ω2 cosϕ + aεζ1 sin(ϕ + ψ)

− 1

p
εγ1

[
a cos(ϕ + ψ) + 1

p

]3}
,
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aψ′ = εσa − cos(ϕ + ψ)

{
εμ1

p
ω2 cosϕ + aεζ1 sin(ϕ + ψ)

− 1

p
εγ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

ω′ = εF1(1 − ω) − εη1[1 + ap2 cos(ϕ + ψ)] sinϕ, ϕ′ = ω. (3.175)

Unfortunately, the closed form analytical solution for (3.175) is complicate to be
obtained and the numerical methods are convenient.

3.4.2 Stability of the Steady State Solution and Sommerfeld
Effect

Introducing the averaging procedure (see Bogolyubov and Mitropolskij 1974)

a′ = ε

2π

2π∫

0

fadϕ, aψ′ = ε

2π

2π∫

0

fψdϕ, ω′ =
2π∫

0

fωdϕ, (3.176)

where

fa = − 1

p
sin(ϕ + ψ)

{
μ1ω

2 cosϕ + apζ1 sin(ϕ + ψ) − γ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

fψ = aσ − 1

p
cos(ϕ + ψ){μ1ω2 cosϕ + apζ1 sin(ϕ + ψ)

−γ1

[
a cos(ϕ + ψ) + 1

p

]3}
,

fω = F1(1 − ω) − η1[1 + ap2 cos(ϕ + ψ)] sinϕ, (3.177)

the differential equations (3.175) are transformed into

ω′ = ε

[
F1(1 − ω) + 1

2
η1ap

2 sinψ

]
,

a′ = −ε

2

(
aζ1 + μ1ω

2

p
sinψ

)
,

ψ′ = εσ − ε

2p

(
μ1ω

2

a
cosψ − 3γ1a2

4
− 3γ1

p2

)
. (3.178)

For the steady-state response, Eq. (3.178) have the form
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F1(1 − ωS) + 1

2
η1aS p

2 sinψS = 0,

aS + μ1ω
2
S

p
sinψS = 0,

σ − 1

2p

(
μ1ω

2
S

aS
cosψS − 3γ1a2S

4
− 3γ1

p2

)
= 0, (3.179)

where S denotes the steady state values. Combining the second and the third
Eq. (3.179) we obtain

a2S

{
ζ21
4

+
[
σ + 3γ1

2p

(
a2S
4

+ 1

p2

)]2}
=
(

μ1ω
2
S

2p

)2

, (3.180)

while combining the first and the second Eq. (3.179) yields

F1μ1ω
2
S(1 − ωS) = 1

2
ζ1η1a

2
S p

3. (3.181)

Expressing aS in (3.181) and substituting into (3.180) theωS(F1) function is obtained

8F1(1 − ωS)

⎧⎨
⎩

ζ21
4

+
[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]2⎫⎬
⎭− μ1ζ1η1 pω

2
S = 0.

(3.182)
The number of real solution is one, two or three and it depends on the control
parameter F1. To determine which of the solutions actually correspond to a realizable
motion, we need to consider the stability of the solutions. We determine the stability
by determining the nature of the singular points of (3.179). To accomplish this, we
let

a = aS + a1, ψ = ψS + ψ1, ω = ωS + ω1. (3.183)

Substituting (3.183) into (3.179) and neglecting all but the linear terms in a1,ψ1,ω1

we obtain

ω′
1 = ε

[
−F1ω1 + 1

2
η1a1 p

2 sinψS + ψ1

2
η1aS p

2 cosψS

]
,

a′
1 = −ε

2

(
a1ζ1 + ψ1

μ1ω
2
S

p
cosψS + 2

μ1ωSω1

p
sinψS

)
,

ψ′
1 = −ω1 − ε

2p

(
2
μ1ωSω1

aS
cosψS − a1

μ1ω
2
S

a2S
cosψS (3.184)

−ψ1
μ1ω

2
S

aS
sinψS − 3γ1aSa1

2

)
.

Equations (3.184) are linear and have the solution in the form
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(a1,ψ1,ω1) = (a10,ψ10,ω10) exp(λτ ),

where λ is an eigenvalue of the coefficient of matrix. The solutions are stable and
hence corresponding motions reliable, if the real part of each eigenvalue is negative
or zero.

For the parameter values

ε = 0.1, ζ1 = 0.2, γ1 = 0.1, η1 = 1.0, μ1 = 0.5, (3.185)

using the relations (3.180) and (3.181), i.e., (3.182) the response-control parameter F1

and the frequency of vibration-control parameter F1 diagrams are plotted (Fig. 3.19).
In Fig. 3.20 the frequency-response curves obtained numerically and analytically

by solving the Eqs. (3.180) and (3.181) are plotted. Comparing the solutions it can
be concluded that the difference between “exact” numerical solution and approxi-
mate analytical solution is negligible. Analyzing the obtained curves and the relation
(3.181) it is evident that the curve depends on the control parameter F1. ForωS = 2/3
the maximal response

Fig. 3.19 Jump effect for: a amplitude-control parameter curve, b frequency-control parameter
curve

Fig. 3.20 Frequency-response curve obtained: a analytically, b numerically
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aSmax = 2

3p

√
2μ1

3ζ1η1 p
F1,

is a function of F1, but is not dependent on the parameter of non-linearity γ1.
Figures3.19 and 3.20 show the characteristic points in the diagrams: point R

and point T. Between these points the solution is unstable while all those out-
side this region are stable. Point R is the peak in aS − ωS , aS − F1 and F1 − ωS

diagrams. Analyzing the relation (3.182) and equating the first derivative to zero
(dF1/dωS = 0)

0 = −8F1

{
ζ21
4

+
[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]2}

+2F1(1 − ωS)

[
ωS − p + 3γ1

2p5

(
μ1ω

2
S F1(1 − ωS)

2ζ1η1 p
+ 1

)]

[
1 + 3γ1

2p5
μ1F1(2ωS − 3ω2

S)

2ζ1η1 p

]
− 2μ1ζ1η1 pωS.

the peak is obtained. The locus of the peak (point R) is according to (3.180)

ωSR = p − 3εγ1
2p

(
a2SR
4

+ 1

p2

)
, (3.186)

and the amplitude is aSR = μ1ω
2
SR/α̃p. Substituting (3.186) into the relation (3.181)

we obtain the value of the control parameter for the peak amplitude

F1R = η1 pμ1ω
2
SR

2ζ1(1 − ωSR)
. (3.187)

Substituting the parameter values (3.185) into (3.187) the numeric value of the con-
trol parameter is F1R = 18.246. For that calculated value of the control parameter
and the known value of the parameter of nonlinearity (γ1 = 0.1) the amplitude and
frequency of Q are obtained by solving the relations (3.180) and (3.181). For the con-
trol parameter F1T = 4.57 two stable solutions are obtained: T with aST and ωST and
P with aSP and ωSP . We note that there are gaps in the diagrams (see Figs. 3.19 and
3.20) where no steady state response exists. The gaps are not the same for increasing
and decreasing the control parameter F1. Increasing the control parameter causes the
increase of the amplitude and frequency of vibrations to R. Then the effect of jump to
smaller amplitude and higher frequency in Q appears. Decreasing the control para-
meter ξ1 decreases the frequency and increases the amplitude to T and then jump into
P with higher amplitude and smaller frequency occurs. The same hysteresis is seen
in Fig. 3.20. This phenomena of jump is called the Sommerfeld effect in non-ideal
systems.
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To eliminate the Sommerfeld effect for the certain value of the control parameter
F1R the parameter of nonlinearity has to be calculated. The Eq. (3.180) indicates the
peak amplitude

aSR = μ1

ζ1 p
ω2
SR . (3.188)

The function aSR(ωSR) is independent on the parameter of non-linearity γ1. The
relation (3.181) gives the dependence of amplitude aS on ωS for various values of
control parameter ξ1. Using (3.188) and (3.181) we obtain

F1R(1 − ωSR) − 1

2
η1

μ1

ζ1
ω2
SR p = 0. (3.189a)

ωSR is the solution of (3.189a) for the control parameter F1R . Substituting ωSR into
(3.188) the amplitude aSR is calculated. Introducing the so obtained values ωSR and
aSR into (3.180) the value of nonlinear parameter γ1R is determined

γ1R = 8

3

p3

a2SR p
2 + 4

(p − ωSR). (3.190)

For γ1 < γ1R only one stable solution exists for the control parameter F1R and the
motion is without jump.

In Fig. 3.21 the aS − F1 curve for two values of parameter of nonlinearity γ1
is shown. It is seen that for γ1 = 0.1 the bending of the curve is smaller than for
γ1 = 0.15. For F1R = 42.1 and γ1R = 0.15 two real values of amplitude exist and for
γ1 = 0.1onlyone. It canbe concluded that for the real systemwith parameters (3.185)
which works with control parameter F1R = 42.1 the parameter of non-linearity of
the structure has to be γ1 < 0.15. Then, the Sommerfeld effect is eliminated.

Fig. 3.21 Frequency-control
parameter curve for various
values of parameter of
non-linearity
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3.4.3 Numerical Simulation and Chaotic Behavior

To prove the analytically obtained results the numerical experiment is done. The
system (3.51) is rewritten in the form

y′
1 = y2,

y′
2 = 1

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1

+μ sin y3(μy
2
4 cos y3 − η sin y3 + F(1 − y4))),

y′
3 = y4, (3.191)

y′
4 = η sin y3

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1 + μy24 cos y3

+μ sin y3 (−η sin y3 + F(1 − y4)))

−η sin y3 + F(1 − y4).

Anumber of numerical simulations are done for various control parameter F . Apply-
ing the Runge–Kutta numerical procedure with the fixed step length the system of
four first order differential equations (3.191) is solved. The results are plotted in
Fig. 3.22. The phase space of the system has out of four dimensions, but we were
chiefly interested in position of the oscillator itself. We also plotted the Poincaré map
which represents the surface of section (y1(τn),y2(τn)). The points (y1(τn),y2(τn))

Fig. 3.22 Trajectories in the
phase space for various
values of the control
parameter: a periodic
solution with period 1, b
periodic solution with period
2, c periodic solution with
period 3, d periodic solution
with period 4, e periodic
solution with period 5, f
periodic solution with period
9, g, h chaotic solution
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are captured for τn = nT , where n = 1, 2, . . ., with period T = 2π/�̄. The angular
velocity � is obtained numerically

� = ϕ (τ1) − ϕ (0)

τ1
= y3 (τ1) − y3 (0)

τ1
, (3.192)

where τ1 is a long time period for numerical calculation.
For the parameter values of the system, mentioned in the previous section, and

the control parameter F = 7.0 the trajectory in the phase space and the Poincaré
map are plotted (Fig. 3.22a). The motion is periodic with period 1 and frequency
� = 0.999. For F = 15 the periodic motion is with period 2 (Fig. 3.22b) and for
F = 21 with period 3 (Fig. 3.22c). Increasing the value of the control parameter
the motion is periodic but the period number increases, too (see Fig. 3.22d–f). For
high values of control parameter (F = 80 and F = 10000) the strange attractor is
obtained (Fig. 3.22g, h). The existence of strange attractor signifies chaos which is
evident only if the certain criteria for the maximal (local) Lyapunov exponent are
satisfied. For computational reasons the vector notation for the system of Eq. (3.191)
is introduced

Y ′ = G(Y, P), (3.193)

where Y = [y1, y2, y3, y4]T is the state space vector, G = [g1, g2, g3, g4], P(p,α,

η,μ, F) is set of parameters and [...]T is denoting transpose. The equations for small
deviations δY from the trajectory Y (t) are

δY ′ = Li j (Y (t))δY, i, j = 1, 2, . . . 4, (3.194)

where Li j = ∂gi/∂y j is the Jacobian matrix of derivatives

L11 = L13 = L14 = 0, L12 = 1,

L21 = − p + 3αy21
1 − μη sin2 y3

, L22 = − ζ

1 − μη sin2 y3
,

L23 = −μy24 sin y3 + μη(1 − y4) cos y3
1 − μη sin2 y3

− Q1

(1 − μη sin2 y3)2
,

L24 = 2μy4 cos x3 − μη sin y3
1 − μη sin2 y3

, L44 = μηy4 sin(2y3) − F

1 − μη sin2 y3
,

L31 = L32 = L33 = 0, L34 = 1,

L41 = −η p sin y3 + 3ηγy21 sin y3
1 − μη sin2 y3

, L42 = − ζη sin y3
1 − μη sin2 y3

,

L43 = μηy24 cos(2y3) − η cos x3(ζ y2 + py1 + γy31)

1 − μη sin2 y3

+ Q2

(1 − μη sin2 y3)2
, (3.195)
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Fig. 3.23 Positive Lyapunov exponent for the control parameters: a F = 80 and b F = 10000

where

Q1 = −μη sin(2y3)[ζ y2 + py1 + γy31 − μy24 cos y3 − μF(1 − y4) sin y3],
Q2 = μη sin(2y3)[F(1 − y4) + 0.4μηy24 sin(2y3) − η sin y3(ζ y2 + py1 + γy31)].

(3.196)

The maximal Lyapunov exponent of the system is then as defined by Wolf et al.
(1985)

λ = lim
1

t
log

‖δY (t)‖
‖δY (0)‖ . (3.197)

In Fig. 3.23 we present the local Lyapunov exponent for the control parameters F =
80 and F = 10000. For the both parameter values the positive Lyapunov exponent is
calculated. As it is discussed byWolf et al. (1985), if the system contains at least one
positive Lyapunov exponent the motion is chaotic. The two initially nearby orbits (or
trajectories) diverge from each other and the separation of two nearby trajectories
increases exponentially with time due to sensitive dependence on initial conditions.

The transition from periodic motion to chaos is by periodic doubling. In Fig. 3.24
the y1 − F bifurcation diagram is plotted. The bifurcation diagram is obtained for
the long time integration of the differential equations (3.191) of the motion. After
decay of transient motion a steady state motion is established. The fixed values of the
parameters areα = 0.1, γ = 9, p = 1, μ = 8.373, η = 0.05 and the control parame-
ter we choose to work with is F . By increasing parameter F we found sequences of
period doubling bifurcations (Fig. 3.24). Diagram starts from F = 6 where periodic
motion with period n = 1 exists. This periodic solution bifurcates on F ≈ 8 onto
period 2T . Further period doubling bifurcation (period 4, 8, 16,...) leads to chaotic
motion for F ≈ 20. After this interval of chaos the periodic motion with period 3
exists. Further increase of parameter F leads to the new period doubling bifurcation
with periods 5, 9, ... and finally to chaos for F ∈ [28, 33]. The next regions of chaotic
motion are for F ∈ [40, 56] and F > 62.
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Fig. 3.24 Period doubling
bifurcation diagram

Comparing the bifurcation parameter values in Fig. 3.24with the results of numer-
ical experiment (see Fig. 3.22) it can be concluded that for the control parameter
F = 80 chaotic motion exists.

3.4.4 Chaos Control

It is of interest to control the chaos in the motion of the system (3.191) and spe-
cially of oscillator. There are many methods for chaos control. Dantas and Balthazar
(2003) show that if we use an appropriate damping coefficient the chaotic behavior
is avoided. The method of Pyragas (1992, 1995) is based on the addition of a special
kind of time-continuous perturbation (external force control), which does not change
the form of the desired unstable periodic solution, but under certain conditions can
stabilize it. The method of Pyragas was applied in the paper. For the external force
�(t) the model (3.191) becomes

y′
1 = y2 + �(t),

y′
2 = 1

1 − μη sin2 y3
{−ζ y2 − py1 − γy31 + 1 + μ sin y3[μy24 cos y3

−η sin y3 + F(1 − y4)},
y′
3 = y4,

y′
4 = η sin y3

1 − μη sin2 y3
(−ζ y2 − py1 − γy31 + 1 + μy24 cos y3

+μ sin y3 (−η sin y3 + F(1 − y4))) − η sin y3 + F(1 − y4). (3.198)

The external force �(t) is defined as

�(t) = K [yup(t) − y1(t)], (3.199)
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Fig. 3.25 The two-periodic
solution: before stabilization
(−) and after stabilization (–)

Fig. 3.26 External
force-time history diagram

where K is an adjustable weight of the perturbation �(t) and yup(t) is a component
of the unstable periodic solution of (3.191) which we wish to stabilize. The function
yup(t) is time periodical with period T . For �(t) zero the system has a strange
attractor.

However, by selecting the constant K one can achieve the desired stabilization.
Using the shootingmethod suggested byVanDooren and Janssen (1996) the unstable
two periodic unstable solution is detected (Fig. 3.25). Varying the value of the con-
stant K in the interval [0.1, 2] it is concluded that for K ∈ [0.3, 2] the stabilization
is achieved (Fig. 3.25).

For K = 2 the function �(t) tends to a very small value (Fig. 3.26) and the
component y1, which is the solution after control, is very close to yup(t).
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3.4.5 Conclusion

During passage through resonance of the motor-structure system which is modeled
as a stable Duffing oscillator with non-ideal excitation severe vibrations appear.
The energy of the system is not used for increasing of the rotation velocity, but is
spent for vibrations which are harmful. Very often in the motion of the system near
resonance the jump phenomena occurs: at the same value of the control parameter
of the motor the amplitude of vibration skips to a higher value with lower frequency
or to smaller amplitude with higher frequency. The manifestation depends on the
direction of variation of the control setting. The jump phenomena and the increase
in power required by a source operating near resonance are manifestations of a non-
ideal energy source and are referred to as Sommerfeld effect. The Sommerfeld effect
contributes to transform a regular vibration to an irregular chaotic one. It is concluded
that in spite of the fact that the structure is modeled as the stable Duffing oscillator
chaos appears. In the system the chaos is achieved by period doubling bifurcation.
From engineering point of view it is necessary to eliminate the jump effect and
the chaotic motion. The elimination of the jump phenomena for the certain control
parameter is achieved by using the structure with coefficient of nonlinearity which
is smaller than the critical value (3.190). Chaos is controlled using the external force
control procedure where the added force does not change the form of the desired
unstable periodic solution, but under certain conditions can stabilize it.

Comparing the results obtained applying the approximate analytic methods with
those obtained numerically it is concluded that the difference is negligible. It proves
the correctness of the used analytic procedure.

3.5 Bistable Duffing Oscillator Coupled with a Non-ideal
Source

The model, shown in Fig. 3.27, represents an one degree-of-freedom cart connected
to a fixed frame by a nonlinear spring and a dashpot (Warminski et al. 2001). Motion
of the cart is due to a non-ideal motor with unbalanced rotor. In the absolute reference
frame x denotes the cart displacement and ϕ denotes the angular displacement of the
rotor. Elastic force of the spring is a cubic function of cart position x .

Motion of the system is describedwith the following equations (Kononenko 1976)

ẍ(M + m) + cẋ − md(ϕ̈ sinϕ + ϕ̇2 cosϕ) − k1x + k2x
3 = 0,

(J + md2)ϕ̈ − mdẍ sinϕ = M(ϕ̇), (3.200)

where M(ϕ̇) is the motor torque. For further consideration, let us introduce the
dimensionless length and dimensionless time
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Fig. 3.27 Model of the
system

y = x

d
, τ = ωt, (3.201)

where d is the distance of the unbalanced mass to the shaft center and

ω =
√

k1
m + M

. (3.202)

Using (3.201) and (3.202), the dimensionless equations of motion are

y” + ζ y′ − y + γy3 = m

M + m
(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + M(ϕ′), (3.203)

where

ζ = c

ω(M + m)
, γ = d2k2

ω2(M + m)
, μ = m

M + m
,

η = md2

(J + md2)
, M (

ϕ′) = M (ϕ̇)

ω2
(
J + m2d2

) , (3.204)

and (′) = d/dτ , (”) = d2/dτ 2, ζ is the damping coefficient, γ is the nonlinear para-
meter of the potential, while μ and η are physical characteristics of the system. The
torque is assumed to be linear, i.e.,

M(ϕ′) = E1 − E2ϕ
′, (3.205)

with voltage or the strength of the motor E1 and with characteristic parameter of the
motor E2. For (3.205) the equations of motion are

y” + ζ y′ − y + γy3 = μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + E1 − E2ϕ
′. (3.206)
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If this system has a principal parametric resonance 2:1, we assume that the oscillator
vibrates with frequency �, but the frequency of non-ideal force is equal to �/2. As
the voltage source is alternated, E1 is periodic and has the form

E1 = u0 cos
(υ0

2
τ
)

, (3.207)

where u0 is the amplitude of the voltage source and υ0 = �/ω. Substituting (3.207)
into (3.206) we obtain

y” + ζ y′ − y + γy3 = μ(ϕ” sinϕ + ϕ′2 cosϕ),

ϕ” = ηy” sinϕ + u0 cos
(υ0

2
τ
)

− E2ϕ
′. (3.208)

Due to the strong nonlinearity there is no exact analytical solution for (3.208). Let
us assume the approximate solution in the form

y = A0 + A1 cos(υ0τ ) + A2 sin(υ0τ ),

ϕ = B0 + B1 cos
(υ0τ )

2
+ B2 sin

(υ0τ )

2
, (3.209)

where A0 is the amplitude of the structure, B0 is the amplitude of the rotor at rest, A =√
A2
1 + A2

2 is the amplitude of oscillator and B =
√
B2
1 + B2

2 is the rotor amplitude.
To obtain approximate solutions we expand the nonlinear function sinϕ and cosϕ in
theTaylor series until third order around the lower steady state forϕ = 0. Substituting
(3.209) into (3.208), balancing the harmonics and neglecting the derivatives of the
second order and terms having derivatives in a power higher than one, the set of first
order approximate differential equations follows as

0 = ζA′
1 + 2ωA′

2 − υ0μ(B2B
′
1 + B1B

′
2)

(
1 − B2

1

4
− B2

2

12
+ 5

4
B2
0

)
+ ζυ0A2

+
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A1 + υ2

0

4
μ

(
1 − B2

0

2

)
(B2

1 − B2
2 ),

0 = γA′
2 + 2ωA′

1 + υ0μ(B1B
′
1 − B2B

′
2)

(
1 − B2

1

6
− B2

0

2

)
− ζυ0A1

+
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A2 + υ2

0

2
μB1B2

(
1 − B2

0

2

)
,
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0 = ωε2B2(A
′
1 + υ0

2
A2)

(
1 − B2

1

4
− B2

2

12
− B2

0

2

)
+ E2B

′
1

+υ0B
′
2 + υ0

2
E2B1 − υ2

0

4
B1 − u0

+υ0η(B1A
′
2 + υ0

2
A1B1)

(
1 − B2

1

6
− B2

0

2

)
,

0 = υ0ηB1(A
′
1 + υ0

2
A2)

(
1 − B2

2

4
− B2

1

12
− B2

0

2

)
+ E2B

′
2

−υ0B
′
1 − υ0

2
E2B1 − υ2

0

4
B2

−υ0η(B2A
′
2 + υ0

2
A1B2)

(
1 + B2

2

6
− B2

0

2

)
,

0 = A0

(
3

2
γ(A2

1 + A2
2) + γA2

0 − 1

)
,

0 = υ2
0

8
ηB0

(
A1(B

2
2 − B2

1

)− 2A2B1B2). (3.210)

Relations (3.210)5 and (3.210)6 are satisfied for

γA2
0 = 1 − 3

2
γA, B0 = 0. (3.211)

Besides, let us assume for small oscillations that B2 = 0.Using this assumption and
(3.211) the Eqs. (3.210)1–(3.210)4 give the steady states when

A′
1 = 0, A′

2 = 0, B ′
1 = 0, B ′

2 = 0,

as

0 = ζυ0A2 +
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A1 + υ2

0

4
μ(B2

1 − B2
2 ),

0 = −ζυ0A1 +
(

−1 − υ2
0 + 3

4
γ(A2

1 + A2
2) + 3γA2

0

)
A2 + υ2

0

2
μB1B2,

u0 = η
υ2
0

2
(A1B1 + A2B2) + υ0

2
E2B2 − υ2

0

4
B1 − η

υ2
0

8
A2B2B

2
1 ,

0 = −ηB1
υ2
0

8
A2B

2
2 − υ0

2
E2B1 − υ2

0

4
B2 − η

υ2
0

2
(A1B2 − A2B1). (3.212)
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Equation (3.212) represent the set of four coupled equations. According to some
specific considerations the system of Eq. (3.212) have semi-trivial and non-trivial
solutions.

3.5.1 Semi-trivial Solutions and Quenching of Amplitude

The semi-trivial solution means physically that one part of the system is oscillating
while the other one is at rest. This gives the condition for quenching of amplitude
of oscillation of one part of the system: of the mechanical part and of the non-ideal
force.

Quenching of amplitude in the mechanical part satisfies the following require-
ments

A1 = A2 = 0, B1 �= 0, B2 �= 0. (3.213)

For these values the mechanical part of the system does not vibrate. This case can be
used as a technique of controlwhose objective is to cancel vibration of themechanical
system. According to (3.210) the condition of quenching phenomenon in the space
of the parameters of the system is derived and given as

B = 2u0

υ0

√
E2
2 + ( υ0

2 )2
. (3.214)

In Fig. 3.28, the amplitude of non-ideal force B as function of the frequency υ0, given
with (3.211), is plotted. For numerical purposes, the following set of parameters
(Souza et al. 2005a, b) is considered

ζ = 0.02, γ = 0.1, μ = 0.1, η = 0.25, E2 = 1.5.

Analytical solution is compared with numerical solution of (3.210) using the fourth-
order Runge Kutta algorithm (see Fig. 3.28).

Fig. 3.28 Amplitude-
frequency curve of non-ideal
system for semi-trivial case.
(Nbendjo et al. 2012)
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It appears that the amplitude of the non-ideal force decreases as the frequency
increases. To analyze the stability of this semi-trivial solution, the amplitude modu-
lation equations are given by

Ȧ1 = f1(A1, A2, B1, B2),

Ȧ2 = f2(A1, A2, B1, B2),

Ḃ1 = f3(A1, A2, B1, B2),

Ḃ2 = f4(A1, A2, B1, B2). (3.215)

Perturbing the solution A1, A2, B1 and B2 with δA1, δA2, δB1 and δB2 and sub-
stituting into (3.215), after linearization a set of differential equations is obtained.
Stability conditions are based on the eigenvalues of the Jacobian (Warminski and
Kecik 2006). If the solution is complex, and the real part of the eigenvalue is always
negative, the system is stable.

Quenching of amplitude of the non-ideal force occurs for

B1 = 0, B2 = 0, A1 �= 0, A2 �= 0. (3.216)

This situation represents the case where the non-ideal forces does not swing and
the structure vibrates. Using the set of differential equations for steady-state motion
(3.212) and assuming the stationarity of solutions leads after some calculations to
the following non-linear equation of the amplitude

A =
√√√√ ( 154 γ)2 + ζ2υ2

0 + (2 − υ2
0)

2

15
2 γ(2 − υ2

0)
. (3.217)

Analyzing of this equation shows the evidence of mechanical part which is at equi-
librium and thus the system remains stable.

3.5.2 Non-trivial Solutions and Their Stability

Non-trivial solutions represent the case where both systems vibrate and

A1 �= 0, A2 �= 0, B1 �= 0, B2 �= 0. (3.218)

Analytically, we were supposed to use the set of Eq. (3.210) and to derive the
amplitude of both systems. Unfortunately, the system is strongly nonlinear and it is
quite impossible to obtain an analytical expression of amplitude.

Moreover, to deal with such a question, we solved directly the base equations
(3.208) numerically using the fourth-order Runge–Kutta algorithm and discuss the
amplitude resonance curves. Afterwards, we explore the stability of the system using
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Fig. 3.29 a Amplitude of the mechanical part as function of the frequency; b Amplitude of the
non-ideal source as function of the frequency (Nbendjo et al. 2012)

Fig. 3.30 a Lyapunov
spectrum and b bifurcation
diagram as function of υ0 for
u0 = 1 (Nbendjo et al. 2012)

Lyapunov spectrum and bifurcation sequences. The frequency response curve is
thus obtained from (3.208) and presented in Fig. 3.29a for the evaluation x and in
Fig. 3.29b for evaluation of ϕ for u0 = 1.

Figure3.29a reveals a set of subharmonic resonances instead of the internal reso-
nance 2:1 as expected. Concerning the amplitude of non-ideal forces, it decreases as
frequency increases and the effect of internal resonance is visible by their appearance.

Focusing on the stability of the system allows one to display the Lyapunov spec-
trum as function of frequency for the specify value of u0 = 1.

It appears, for example in Fig. 3.30a, that the Lyapunov spectrum is positive for
certain values of frequencywhich is necessary for the presence of chaos in the system.
On the other hand, for another set of frequencies, Fig. 3.30a shows more than one
positive Lyapunov exponent, indicating hyperchaos on the system. These effects
are confirmed via the corresponding bifurcation diagram (see Fig. 3.30b). Setting
υ0 = 1.5 allows one to observe the stability of the system as u0 increases.

It appears in Fig. 3.31a that the system shows a transient from periodicity to qua-
siperiodicity and later to chaos. To view how these transient arise, the corresponding
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Fig. 3.31 Lyapunov
spectrum and corresponding
bifurcation diagram as
function of u0 for υ0 = 1.5
(Nbendjo et al. 2012)

Fig. 3.32 Region in
parameter space of (u0, υ0)
where hyperchaos is detected
(Nbendjo et al. 2012)

bifurcation diagram is presented in Fig. 3.31b, which confirms the results obtained
from the Lyapunov spectrum. It shows that for u0 = 0.36 there is a crisis in which
sudden change in chaotic attractors occurs. Summarizing, it is concluded that there
are regions in which all Lyapunov exponents are less or equal to zero for periodic or
quasiperiodic orbits. If one of the Lyapunov exponents is positive, chaos is evident.
If more than one positive Lyapunov spectrum exists, the presence of the hyperchaos
for a specific set of parameters is indicated (Fig. 3.32).

Based on these consideration it can be concluded that the stability of the systems
deeply depends on the voltage of the energy source.

3.5.3 Conclusion

Alternating strength of the voltage of the source may be the reason for the lim-
ited power supply for the bistable Duffing oscillator. Thus, in the oscillator - non-
ideal source system for certain parameters quenching phenomena occurs: quenching
of amplitude in the mechanical part or quenching of amplitude of the non-ideal
force. Besides, in the system an explosion of resonances 2:1 to a set of subharmonic
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resonances is revealed. Based on stability analysis of the non-trivial solutions we
concluded that the periodicity of the voltage source perturbs the limited power sup-
ply and increases the possibility of the appearance of chaos and hyperchaos of the
systems. Consequently, when the voltage source is alternated, if the choice of the
characteristic is bad, the system can become unstable.

Appendix: Ateb Functions

Sine Ateb Function

The incomplete Beta function is defined as (see Abramowitz and Stegun 1964, 1979)

Bx (p, q) =
0≤x≤1∫

0

t p−1(1 − t)q−1dt, (A1)

while for the case x = 1, the complete Beta function is obtained

B(p, q) =
1∫

0

t p−1(1 − t)q−1dt, (A2)

where p and q are real numbers. For the positive integrands in (A1) and (A2), the
interval for the incomplete beta function is

0 ≤ Bx (p, q) ≤ B(p, q). (A3)

For the functions B(p, q) and Bx (p, q) the following identities are evident

B(p, q) = B(q, p), Bx (p, q) = B(p, q) − By(p, q), (A4)

where x + y = 1.
Let us determine the inverse of the half of the incomplete beta function (A1)

x → 1

2
Bx (p, q) = 1

2

0≤x≤1∫

0

t p−1(1 − t)q−1dt. (A5)

Introducing the notation (Cveticanin 2014)

1

2
Bx (p, q) = w, (A6)



114 3 Nonlinear Oscillator and a Non-ideal Energy Source

the half of the incomplete beta function is

1

2

0≤x≤1∫

0

t p−1(1 − t)q−1dt = w. (A7)

For the the new variables
t = v̄1/p, x = v1/p, (A8)

the boundary of integration 0 ≤ x ≤ 1 transforms into 0 ≤ |v| ≤ 1 and the integral
(A7) has the forms

1

2p

0≤v≤1∫

0

(1 − v̄1/p)q−1d v̄ = w,
1

2p

−1≤v≤0∫

0

(1 − v̄1/p)q−1d v̄ = w. (A9)

Let us consider the first integral in (A9). For v = 0 the integral is zero, and for v = 1
it is according to (A5)

1

2p

1∫

0

(1 − v̄1/p)q−1d v̄ = 1

2
B(p, q). (A10)

Thus, the value of the function w (A9) is bounded

0 ≤ w ≤ 1

2
B(p, q), (A11)

as B(p, q) is finite. Now, the inverse for the integral (A9) is constructed. This inverse
depends on the three parameters p, q andw.With notation given byRosenberg (1963,
1966) we have

v = sa

(
1 − p

p
,
1 − q

q
, w

)
, (A12)

The second integral in (A9) gives

− v = sa

(
1 − p

p
,
1 − q

q
,−w

)
. (A13)

It follows that sa( 1−p
p ,

1−q
q , w) is the inverse of (A9) on the interval − 1

2 B(p, q) ≤
w ≤ 1

2 B(p, q). Formula (A9) defines w uniquely as a function of v in this inter-
val. Using the odd property (A13) of inverse of (A9), Rosenberg (1963) named the
function ’sine Ateb function’ and noted as sa.
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The period of the function is

2�(p, q) = 2B(p, q). (A14)

Cosine Ateb Function

The change of variables

t = 1 − ū1/q , x = 1 − u1/q , (A15)

transforms the interval 0 ≤ x ≤ 1 into 0 ≤ |u| ≤ 1. Substituting (A15) into (A7), for
1 ≥ u ≥ 0, it yields

− 1

2q

0≤u≤1∫

1

(1 − ū1/q)p−1dū = w. (A16)

Due to the property of the beta function (A4), we have

− 1

2q

0≤u≤1∫

0

(1 − ū1/q)p−1dū + 1

2q

1∫

0

(1 − v̄1/q)p−1dū = w, (A17)

i.e.,

− 1

2q

0≤u≤1∫

0

(1 − ū1/q)p−1dū = −1

2
B(p, q) + w. (A18)

Using the notation of the inverse function (A12) i.e. (A13) and the period�(p, q) =
B(p, q) we obtain

u = ±sa

(
1 − q

q
,
1 − p

p
,
1

2
�(p, q) ∓ w

)
. (A19)

The inverse function u Rosenberg (1963) called ‘cosine Ateb function’ and noted it
with ca:

ca

(
1 − q

q
,
1 − p

p
, w

)
= sa

(
1 − p

p
,
1 − q

q
,
1

2
�(p, q) ± w

)
. (A20)

The ca function is an even function (see Senik (1969a, b), Drogomirecka (1997))
with period 2�(p, q) given with (A14).
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Properties of Ateb Functions

The relation which satisfy the sa and the ca Ateb functions is (Gottlieb 2003, Gricik
and Nazarkevich 2007)

sa2
(
1 − p

p
,
1 − q

q
, w

)
+ caα+1

(
1 − q

q
,
1 − p

p
, w

)
= 1. (A21)

The first derivatives of sa and ca functions are

d

dw
sa

(
1 − p

p
,
1 − q

q
, w

)
= caα

(
1 − q

q
,
1 − p

p
, w

)
, (A22)

d

dw
ca

(
1 − q

q
,
1 − p

p
, w

)
= − 2

α + 1
sa

(
1 − p

p
,
1 − q

q
, w

)
. (A23)

The Fourier series expansion of the ca Ateb function (Gricik et al. 2009) is as follows

ca

(
1 − q

q
,
1 − p

p
, w

)
=

∞∑
n=1

an cos
πnw

�(p, q)
, (A24)

where a0 = 0 and

an = 2

�(p, q)

�(p,q)∫

0

ca

(
1 − q

q
,
1 − p

p
, w

)
cos

πnw

�(p, q)
dw. (A25)

Namely, the coefficient is enough to be calculated for w ∈ [0,�(p, q)/2].
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Chapter 4
Two Degree-of-Freedom Oscillator
Coupled to a Non-ideal Source

In this chapter the two degree-of-freedom structure excited with a non-ideal source is
considered. Themodel corresponds to real energyharvester system (Felix et al. 2009),
centrifugal vibration machine (Dantas and Balthazar 2006), tuned liquid column
damper mounted on a structural frame (Felix et al. 2005a), portal frame (Felix et al.
2013) and portal frame foundation type shear building (Felix et al. 2005b), rotor-
structure system which moves in-plane (Quinn 1997), etc. These systems are usually
modelled as two mass systems with visco-elastic connection and excited with non-
ideal motor. The main attention is given to resonance capture (Balthazar et al. 2001)
in the presence of a 1:1 (Zniber and Quinn 2006) and 1:2 (Tsuchida et al. 2005)
frequency ratio. However, we suggest to model the aforementioned real systems as
an one-mass systemwith two degrees-of-freedom in two orthogonal directions as the
mass moves in-plane. Suchmodel is given in the paper of Goncalves et al. (2016) and
treated numerically and experimentally. The model consists of a concentrated mass
which is supported by a set of linear springs and dampers positioned in twoorthogonal
direction, such that the mass can move horizontally and vertically in a plane. A non-
ideal motor is attached to the mass such that the phenomena of resonance capture
can occur. In the paper of Goncalves et al. (2016) it is concluded that the resonance
can occur in both directions, in only one direction or can not occur. Limits between
these cases are determined in Cveticanin et al. (2017). The system is described with
the set of three coupled second order differential equations: two of them describing
the vibrations of the structure in two directions and one, which gives the motion of
the motor. An analytical procedure for solving the equations is developed and the
constraints for resonance are given.

The chapter is divided into six sections. InSect. 4.2, themotionof the systemwhich
contains amass supported in two directions and excited with non-ideal energy source
is modeled. Mathematical model of the system is solved analytically in Sect. 4.3.
The steady-state solution and the stability conditions for solutions are determined.
In Sect. 4.4, two special cases are considered: first, the case when the frequencies
of the system in x and y directions are equal and then, the case when the frequency

© Springer International Publishing AG 2018
L. Cveticanin et al., Dynamics of Mechanical Systems with Non-Ideal Excitation,
Mathematical Engineering, DOI 10.1007/978-3-319-54169-3_4
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in y direction is two times higher than that in x direction. The resonant motions
are investigated. The influence of vertical and horizontal stiffness on the regions of
double resonance motion are considered. The obtained results are compared with
numerical results in Sect. 4.5. The chapter ends with conclusions.

4.1 Model of the System

The system considered in this paper consists of a mass M supported by springs and
viscous dampers in two orthogonal directions (x and y). The spring constants are
defined with kx and ky , while the damping coefficients are cx and cy . The subscripts
x and y indicate the displacement directions. To the mass M a motor is attached with
unbalanced mass m at the distance d from the center of the motor shaft (Fig. 4.1).

The motor shaft has moment of inertia defined by J . The motor - structure system
shown in Fig. 4.1 has three degrees-of-freedom defined with three generalized coor-
dinates x , y and ϕ.where the first two define the motion in two orthogonal directions
and the third is the angle position of the unbalance. Equations of motion of such
system are in general

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ ẏ
− ∂T

∂y
+ ∂U

∂y
+ ∂�

∂ ẏ
= Qy,

Fig. 4.1 Model of a
two-degree-of-freedom
oscillator coupled with a
non-ideal unbalanced motor



4.1 Model of the System 123

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (4.1)

where T andU are the kinetic and potential energy of the system,� is the dissipative
function and Qx , Qy and Qϕ are generalized forces.

Motion of the system is excited with the motor torque M which depends on the
angular velocity of the rotor ϕ̇. For the DCmotor the motor torque model is assumed
to be a linear function of ϕ̇, i.e.,

M(ϕ̇) = M′

(
1 − ϕ̇

�0

)
, (4.2)

where M0 and �0 are constant values. Then the generalized force due to motor
torque is

Qϕ = M(ϕ̇). (4.3)

For the model given in Fig. 4.1 the kinetic energy is

T = 1

2
M(ẋ2 + ẏ2) + 1

2
J ϕ̇2 + 1

2
m(ẋ22 + ẏ22 ), (4.4)

where the position of unbalance mass m is

xm = x + d cosϕ, ym = y + d sinϕ. (4.5)

Substituting the time derivative of (4.5) into (4.4), we have

T = 1

2
(M + m)(ẋ2 + ẏ2) + 1

2
(J + md2)ϕ̇2 + mdϕ̇(ẏ cosϕ − ẋ sinϕ). (4.6)

If the gravity potential energy is neglected, the potential energy of the system is

U = 1

2
kx x

2 + 1

2
ky y

2. (4.7)

The dissipative function of the system is

� = 1

2
cx ẋ

2 + 1

2
cy ẏ

2. (4.8)

Substituting (4.3)–(4.6) into (4.1), we obtain the cart’s equations in x and y direction

(M + m)ẍ + kx x + cx ẋ = md(ϕ̇2 cosϕ + ϕ̈ sinϕ), (4.9)

(M + m)ÿ + ky y + cy ẏ = md(ϕ̇2 sinϕ − ϕ̈ cosϕ), (4.10)
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and the equation of motion of the unbalanced mass

(J + md2)ϕ̈ = md(ẍ sinϕ − ÿ cosϕ) + M(ϕ̇). (4.11)

Using the parameter values

ωx =
√

kx
M + m

, ωy =
√

ky
M + m

, η = md

J + md2
,

ζx = cx
M + m

, ζy = cy
M + m

, μ = md

M + m
, ε = 1

J + md2
, (4.12)

Equations (4.9)–(4.11) are rewritten as

ẍ + ω2
x x + ζx ẋ = μ(ϕ̇2 cosϕ + ϕ̈ sinϕ),

ÿ + ω2
y y + ζy ẏ = μ(ϕ̇2 sinϕ − ϕ̈ cosϕ),

ϕ̈ = η(ẍ sinϕ − ÿ cosϕ) + εM(ϕ̇). (4.13)

It has to be mention that the parameter ε is a small one, i.e., ε << 1 and the input
motor torque is small. Our aim is to solve the Eq. (4.13).

4.2 Analytical Solution

Let us give the equations of motion (4.13) in terms of uncoupled accelerations

ẍ = −ε
μM(ϕ̇) sinϕ

μη − 1
+ μη sin(2ϕ)(μϕ̇2 sinϕ − Fy)

2(μη − 1)

+ (μη cos2 ϕ − 1)(μϕ̇2 cosϕ − Fx )

μη − 1
, (4.14)

ÿ = ε
μM(ϕ̇) cosϕ

μη − 1
+ μη sin(2ϕ)(μϕ̇2 cosϕ − Fx )

2(μη − 1)

+ (μη sin2 ϕ − 1)(μϕ̇2 sinϕ − Fy)

μη − 1
, (4.15)

ϕ̈ = −εM(ϕ̇)

μη − 1
+ η cosϕ(μϕ̇2 sinϕ − Fy)

μη − 1

−η sinϕ(μϕ̇2 cosϕ − Fx )

μη − 1
, (4.16)
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where

Fx = xω2
x + ζx ẋ, Fy = yω2

y + ζy ẏ. (4.17)

For the case when the parameters ζx , ζy,μ and η are small, i.e.,

ζx = εζx1, ζy = εζy1, μ = εμ1,

η = εη1, (4.18)

where ε << 1 is a small parameter, Eq. (4.13) transform into the form

(ε2μ1η1 − 1)ẍ = −ε2μ1M(ϕ̇) sinϕ

+ ε2μ1η1 sin(2ϕ)(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ)

2
+ (ε2μ1η1 cos

2 ϕ − 1)(εμ1ϕ̇
2 cosϕ − xω2

x − εζx1 ẋ), (4.19)

(ε2μ1η1 − 1)ÿ = ε2μ1M(ϕ̇) cosϕ + ε2μ1η1 sin(2ϕ)(μϕ̇2 cosϕ − xω2
x − εζx1 ẋ)

2
+ (ε2μ1η1 sin

2 ϕ − 1)(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ), (4.20)

(ε2μ1η1 − 1)ϕ̈ = −εM(ϕ̇) + εη1 cosϕ(εμ1ϕ̇
2 sinϕ − yω2

y − εζy1 ẏ)

− εη1 sinϕ(εμ1ϕ̇
2 cosϕ − xω2

x − εζx1 ẋ). (4.21)

Eliminating the termswith the small parameter ε of higher order than one, i.e., O(ε2),
we have the following simplified equations

ẍ + ω2
x x = εμ1ϕ̇

2 cosϕ − εζx1 ẋ, (4.22)

ÿ + ω2
y y = εμ1ϕ̇

2 sinϕ − εζy1 ẏ, (4.23)

ϕ̈ = εM(ϕ̇) + εη1(yω
2
y cosϕ − xω2

x sinϕ). (4.24)

Using the notation

x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, � = ϕ̇, (4.25)

the Eqs. (4.22)–(4.24) are rewritten in the following system of first order differential
equations

ẋ1 = x2,

ẋ2 = −ω2
x x1 + εμ1�

2 cosϕ − εζx1x2,

ẏ1 = y2,

ẏ2 = −ω2
y y1 + εμ1�

2 sinϕ − εζy1y2,



126 4 Two Degree-of-Freedom Oscillator Coupled …

ϕ̇ = �,

�̇ = εM(�) + εη1(y1ω
2
y cosϕ − x1ω

2
x sinϕ), (4.26)

where according to (4.2) the motor torque is

εM(�) =M0

(
1 − �

�0

)
, (4.27)

where M0 and �0 motor constants. Equation (4.26) represent a system of coupled
differential equations whose solution is not easy to be obtained. For simplification,
let us introduce the new variables

x1 = a1 cos(ϕ + ψ1),

x2 = −a1� sin(ϕ + ψ1),

y1 = a2 cos(ϕ + ψ2),

y2 = −a2� sin(ϕ + ψ2), (4.28)

where �, a1, a2, ψ1 and ψ2 are time dependent functions. Substituting (4.28) into
(4.26) and using the relation ϕ̇ = � we obtain

0 = ȧ1 cos(ϕ + ψ1) − a1ψ̇1 sin(ϕ + ψ1),

− ȧ1� sin(ϕ + ψ1) − a1�ψ̇1 cos(ϕ + ψ1)

− a1�̇ sin(ϕ + ψ1) = −ω2
xa1 cos(ϕ + ψ1) + a1�

2 cos(ϕ + ψ1)

+ εμ1�
2 cosϕ + εζx1a1� sin(ϕ + ψ1),

0 = ȧ2 cos(ϕ + ψ2) − a2ψ̇2 sin(ϕ + ψ2),

−ȧ2� sin(ϕ + ψ2) − a2�̇ sin(ϕ + ψ2)

−a2�ψ̇2 cos(ϕ + ψ2) = −ω2
ya2 cos(ϕ + ψ2) + a2�

2 cos(ϕ + ψ2)

+ εμ1�
2 sinϕ + εζy1a2� sin(ϕ + ψ2),

�̇ = εη1[a2 cos(ϕ + ψ2)ω
2
y cosϕ − a1 cos(ϕ + ψ1)ω

2
x sinϕ]

+ εM(�), (4.29)

and after some modification

ȧ1 + a1
�̇

�
sin2(ϕ + ψ1) = ω2

x − �2

2�
a1 sin 2(ϕ + ψ1)

− εμ1� cosϕ sin(ϕ + ψ1)

−εζx1a1 sin
2(ϕ + ψ1),

a1

(
ψ̇1 + 1

2

�̇

�
sin 2(ϕ + ψ1)

)
= ω2

x − �2

�
a1 cos

2(ϕ + ψ1)

− εμ1� cosϕ cos(ϕ + ψ1)
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− 1

2
εζx1a1 sin 2(ϕ + ψ1),

ȧ2 + a2
�̇

�
sin2(ϕ + ψ2) = ω2

y − �2

2�
a2 sin 2(ϕ + ψ2)

− εμ1� sinϕ sin(ϕ + ψ2)

− εζy1a2 sin
2(ϕ + ψ2),

a2

(
ψ̇2 − �̇

2�
sin 2(ϕ + ψ2)

)
= ω2

y − �2

�
a2 cos

2(ϕ + ψ2)

− εμ1� sinϕ cos(ϕ + ψ2)

− 1

2
εζy1a2 sin 2(ϕ + ψ2),

�̇ = εη1[a2 cos(ϕ + ψ2)ω
2
y cosϕ

− a1 cos(ϕ + ψ1)ω
2
x sinϕ]

+ εM(�). (4.30)

The Eq. (4.30) are the first order differential equations which correspond to second
order equations (4.22)–(4.24). The system of equations (4.30) has to be solved for
�, a1, a2, ψ1 and ψ2.As the Eq. (4.30) are coupled, to find the solution is not an easy
task. It is at this moment where the simplification is done. Averaging the equations
over the period 2π of the function ϕ, we obtain the averaged equations

ȧ1 + a1
�̇

2�
= −1

2
εμ1� sinψ1 − 1

2
εζx1a1,

a1ψ̇1 = ω2
x − �2

2�
a1 − 1

2
εμ1� cosψ1,

ȧ2 + a2
�̇

2�
= −1

2
εμ1� cosψ2 − 1

2
εζy1a2,

a2ψ̇2 = ω2
y − �2

2�
a2 + 1

2
εμ1� sinψ2,

�̇ = εM(�) + 1

2
εη1

(
a2ω

2
y cosψ2 + a1ω

2
x sinψ1

)
. (4.31)

4.2.1 Steady-State Motion

It is of interest to analyze the steady-state motion when ȧ1 = 0, ȧ2 = 0 and �̇ = 0
and the corresponding Eq. (4.31) are

0 = μ�S sinψ1S + ζxa1S,

0 = ω2
x − �2

S

�S
a1S − μ�S cosψ1S, (4.32)
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0 = μ�S cosψ2S + ζya2S,

0 = ω2
y − �2

S

�S
a2 + μ�S sinψ2S, (4.33)

0 = εM(�) + 1

2
η

(
a2Sω

2
y cosψ2S + a1Sω

2
x sinψ1S

)
. (4.34)

Eliminating ψ1S in Eq. (4.32) the steady-state amplitude a1S as the function of � is
obtained

a1S = μ�S√
(ζx )2 + (

ω2
x−�2

S
�S

)2
. (4.35)

Using the same procedure and eliminating ψ2S in Eq. (4.33) the steady-state ampli-
tude a2S as the function of � yields

a2S = μ�S√
(ζy)2 + (

ω2
y−�2

S

�S
)2

. (4.36)

Dividing equations in (4.32) and (4.33) the phase angles in the both directions of
motion are obtained

tanψ1S = ζx�S

�2
S − ω2

x

, tanψ2S = ω2
y − �2

S

ζy�S
. (4.37)

Comparing the amplitudes a1S and a2S we obtain the condition for which the motion
is out of resonance and also when the resonance occurs in one or both directions
of motion. For ωx �= �S and ωy �= �S the motion is out of resonance regime. The
amplitude of vibration in x and y direction depends on the damping properties of
the system and on the difference between the angular velocity of the motor and the
frequency of the system ωx and ωy, respectively. However, it is of interest to analyze
the motion when resonances appear.

Substituting (4.35)–(4.37) into (4.34), it is

0 = εM(�) + ζyμ�Sηω2
y

2(ζ2y + (
ω2
y−�2

S

�S
)2

+ ζxμ�Sηω2
x

2(ζ2x + (
ω2
x−�2

S
�S

)2
. (4.38)

For the torque property (4.27) the relation (4.38) transforms into

εM0(1 − �S

�0
) = −ημ�3

S

2

[
ζxω

2
x

(ζx�S)2 + (ω2
x − �2

S)
2

+ ζyω
2
y

(ζy�S)2 + (ω2
y − �2

S)
2

]
.

(4.39)
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The Eq. (4.39) gives the relation between the angular velocity � and parameter �0.

Let us rewrite (4.39) as

�0 = f (�S) = �S

1 + ημ�3
S

2εM0

[
ζxω

2
x

(ζx�S)2 + (ω2
x − �2

S)
2

+ ζyω
2
y

(ζy�S)2 + (ω2
y − �2

S)
2

] .

(4.40)

Calculating the first derivative d�0/d�S and equatingwith zero,we obtain the values
of �S which give the extreme values of �0, i.e., �0min(�S) and �0max(�S).

4.2.2 Stability Analysis

Using the results of steady-state motion (4.32)–(4.34) the perturbed amplitudes,
phases and angular velocities are

a1 = a1S + ξ1, a2 = a2S + ξ2,

ψ1 = ψ1S + θ1, ψ2 = ψ2S + θ2,

� = �S + �. (4.41)

where ξ1, ξ2, θ1, θ2 and � are small perturbation functions. Substituting (4.41) into
(4.31) and after linearization the system of coupled first order differential equations
follows

2ξ̇1�S + a1S�̇ = −(ζxa1S + 2μ�S sinψ1S)�

− ζx�Sξ1 − (μ�2
S cosψ1S)θ1,

2a1S θ̇1�S = −2�S(a1S − μ cosψ1S)�

+ (ω2
x − �2

S)ξ1 + (μ�2
S sinψ1S)θ1,

2ξ̇2�S + a2S�̇ = −(ζya2S + 2μ�S cosψ2S)�

− (ζy�S)ξ2 + (μ�2
S sinψ2S)θ2,

2a2S θ̇2�S = −2�S(a2S − εμ1 sinψ2S)�

+ (ω2
y − �2

S)ξ2 + (μ�2
S cosψ2S)θ2,

2�̇ = −2εM0

�0
�

− (ηa2Sω
2
y sinψ2S)θ2 + (ηω2

y cosψ2S)ξ2

+ (ηω2
x sinψ1S)ξ1 + (ηa1Sω

2
x cosψ1S)θ1. (4.42)
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Assuming the solution of (4.42) in the form

ξ1 = A1 exp(λt), ξ2 = A2 exp(λt),

θ1 = A3 exp(λt), θ2 = A4 exp(λt),

� = A5 exp(λt), (4.43)

and substituting into (4.42), the system of linear algebraic equations is obtained

0 = −(2λ�S + ζx�S)A1 − (μ�2
S cosψ1S)A3

−(a1Sλ + ζxa1S + 2μ�S sinψ1S)A5

0 = (ω2
x − �2

S)A1 + (μ�2
S sinψ1S − 2a1Sλ�S)A3

−2�S(a1S − μ cosψ1S)A5,

0 = −(2�Sλ + εζy1�S)A2 + (μ�2
S sinψ2S)A4

− (a2Sλ + ζya2S + 2μ�S cosψ2S)A5,

0 = (ω2
y − �2

S)A2 + (μ�2
S cosψ2S − 2a2Sλ�S)A4

−2�S(a2S − μ sinψ2S)A5

0 = (ηω2
x sinψ1S)A1 + (ηω2

y cosψ2)A2

+ (ηa1ω
2
x cosψ1S)A3 − (ηa2ω

2
y sinψ2S)A4

−(2λ + 2εM0

�0
)A5. (4.44)

The system has the nontrivial solution if the determinant is zero. The determinant of
the system is a fifth order algebraic equation. Solving the equation and applying the
Routh-Hurwitz criteria, the stability of the solutions is determined.

4.3 Special Cases

Two special cases are considered: one, when the resonance frequencies in both
orthogonal directions are equal, and the second, when the resonance frequency in
one direction is defined by half of the resonance frequency in the other direction.

4.3.1 Resonance Frequencies in Orthogonal Directions
Are Equal

For the special case when the frequencies in both direction are equal, i.e.,ωx = ωy =
ω, the steady state amplitudes of vibration are
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a1S = μ�S√
ζ2x + (

ω2−�2
S

�S
)2

, a2S = μ�S√
ζ2y + (

ω2−�2
S

�S
)2

,

while the corresponding phases are

tanψ1S = ζx�S

�2
S − ω2

, tanψ2S = ω2 − �2
S

ζy�S
.

For the resonant case when
�S = ω − �, (4.45)

and the detuning function is � = εσ, the equations transform into

a1S = μ�S√
(ζ2x + 4(εσ)2

, a2S = μ�S√
ζ2y + 4(εσ)2

,

tanψ1S = − ζx

2εσ
, tanψ2S = 2εσ

ζy
,

i.e.,

a1S = μ�S√
ζ2x + 4(ω − �S)2

, (4.46)

a2S = μ�S√
ζ2y + 4(ω − �S)2

, (4.47)

while the phase angles in the both directions of motion are

tanψ1S = ζx

2(ω − �S)
, tanψ2S = 2(ω − �S)

ζy
. (4.48)

Substituting (4.46)–(4.48) into (4.34) it is

εM(�) = −1

2
ημ�3

S[
ζy

ζ2y + 4(εσ)2
+ ζx

ζ2x + 4(εσ)2

]
, (4.49)

i.e.,
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εM(�S) = −1

2
ημ�3

S[
ζy

ζ2y + 4(ω − �S)2
+ ζx

εζ2x + 4(ω − �S)2

]
. (4.50)

The influence of the detuning parameter on the motor torque is evident. For the
torque property (4.2) the relation (4.50) transforms into

εM0

(
1 − �S

�0

)
= −1

2
ημ�3

S[
ζy

ζ2y + 4(ω − �S)2
+ ζx

ζ2x + 4(ω − �S)2

]
. (4.51)

If the damping properties in both direction are equal, i.e., for ζx = ζy = ζ1, the
resonance occurs in both directions and the amplitude in both directions are the same

a1S = a2S = μ�S√
ζ21 + 4(εσ)2

= μ�S√
ζ21 + 4(ω − �S)2

= aS. (4.52)

For this assumption the angular velocity as the function of frequency �0 is obtained
as

εM0

(
1 − �S

�0

)
= − ημω3ζ1

ζ12 + 4(ω − �S)2
. (4.53)

In Fig. 4.2 according to (4.53) the evolution of the angular velocity is plotted.
The parameter values are: M = 0.064, m = 0.0021, J = 10−7, d = 0.005 and

Fig. 4.2 Angular velocity as the function of the parameter �0: a resonant case, b extrem angular
velocities
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M0 = 0.005, the damping coefficient is ζ1 = 0.006ω where ω = 30π. The motor
is accelerated from rest to a fixed velocity by changing the parameter �0 and the
(�0/ω) − (�S/ω) curve is shown. As it can be seen only one resonant case appears.

Let us rewrite the relation (4.53) into

�0 = �S

[
1 + ημω3ζ1

ζ12 + 4(ω − �S)2

1

εM0

]−1

. (4.54)

Equating the first time derivative d�0
d�S

with 0, the condition for existence of extreme
values for �0 is obtained

0 = 16(ω − �S)
4 + 4ζ1

[
2ζ1 − ημω3

εM0

]
(ω − �S)

2 − 8ημω4ζ1

εM0
(ω − �S)

+ ζ41 + ημω3 1

εM0
ζ31 . (4.55)

Solving the algebraic equation (4.55) for �S two real values are obtained for which
the extreme angular velocities exist (see Fig. 4.2b). For the assumed parameter values
the extreme values are:

(
�0min

ω
,
�S

ω

)
P

= (1.03117, 1.0206400) ,

(
�0max

ω
,
�S

ω

)
Q

= (1.97570, 1.0000046) . (4.56)

From the Fig. 4.2b it is obvious that the number of solutions is one, two or three.
Between P and Q three solutions exist. To examine the stability properties of the
solutions the procedure suggested in previous section is applied. It is obvious that
the stability of the solution depends on the torque characteristics M0 and�0, charac-
teristics of the system μ, η and ς. In Fig. 4.2 it is shown that two solutions between P
andQ are stable and one is unstable. The stable solutions are shownwith the full-line,
while the unstable solution is given with dotted-line.

Based on (4.52) and (4.53) the steady state amplitude is rewritten as

a2S = εM0

ηω3ζ1

(
1 − �S

�0

)
μ�2

S. (4.57)

Using (4.53) and (4.57) the amplitude as the function of parameter �0 is plotted in
Fig. 4.3a, while in Fig. 4.3b the amplitude-frequency diagram (4.57) and the curves
which depend on the motor torque for various values of parameter �0 are shown.
In Fig. 4.3b) the curves are obtained for three various values of �0: 1. �0min/ω =
1.03117, 2. �0/ω = 1.5,3. �0max/ω = 1.97570. motor properties for three values
of angular velocity are presented.
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Fig. 4.3 a Amplitude as the function of parameter�0; bAmplitude-frequency diagram and curves
dependent on motor torque for: 1. �0min/ω = 1.03117, 2. �0/ω = 1.5,3. �0max/ω = 1.97570

The curves 1 and 3 are boundary ones which satisfy the extreme conditions (4.56).
The intersection of these curves and of the amplitude-frequency diagram gives the
steady-state solutions. For boundary conditions (1) and (3) two steady-state solutions
exist, while inside this interval there are three solutions (see intersection of (2) and
the amplitude-frequency curve). In the regions outside these boundary ones, only
one steady state solution exists.

4.3.2 Resonance Frequency in One Direction Is Half
of the Resonance frequency in Other Direction

If the resonance frequency ωx is defined by a half of the resonance frequency in the
y direction, i.e., for ωx = ω it is ωy = 2ωx = 2ω, the two resonance frequencies are
separated and two resonance features occur (Fig. 4.4).

For that case we obtain the steady state amplitudes (4.35) and (4.36) as

a1S = μ�2
S√

(ζ1�S)2 + (ω2 − �2
S)

2
,

a2S = μ�2
S√

(ζy�S)2 + (4ω2 − �2
S)

2
, (4.58)

while the steady state phases (4.37) are

tanψ1S = ζx�S

�2
S − ω2

, tanψ2S = 4ω2 − �2
S

ζy�S
. (4.59)
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Fig. 4.4 Frequency as a
function of the motor torque
parameter �0

The corresponding angular velocity - frequency relation (4.38) is

0 = εM(�S) + 2ηζyμ�3
Sω

2

(ζy�S)2 + (4ω2 − �2
S)

2

+1

2

ηζxμ�3
Sω

2

(ζx�S)2 + (ω2 − �2
S)

2
. (4.60)

i.e.,

0 = εM0

(
1 − �S

�0

)
+ 2ηζyμ�3

Sω
2

(ζy�S)2 + (4ω2 − �2
S)

2
. (4.61)

For numerical calculation the following numerical values are applied: M = 0.064,
m = 0.0021, J = 10−7, d = 0.005 and M0 = 0.005, damping coefficients ζx =
0.012ω and ζy = 0.024ω where ω = 30π.

Due to Fig. 4.4 it is evident that two resonances appear. In Fig. 4.5a, b the first and
the second resonances with extreme values are plotted.

The extreme values for the first resonance are
(

�0min

ω
,
�S

ω

)
P

= (1.02397, 1.01507) ,

(
�0max

ω
,
�S

ω

)
Q

= (1.06596, 1.00029) , (4.62)

and for the second
(

�0min

ω
,
�S

ω

)
R

= (2.07929, 2.05142) ,
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(a) (b)

Fig. 4.5 a First resonance, b Second resonance

(a) (b)

Fig. 4.6 aAmplitudes as functions of the parameter�0; bAmplitude-frequency curves with motor
characteristics for the extremal values of�0: 1 (�0min/ω)P = 1.02397, 2 (�0max/ω)Q = 1.06596,
3 (�0min/ω)R = 2.07929, 4 (�0max/ω)S = 2.65594

(
�0max

ω
,
�S

ω

)
S

= (2.65594, 2.00014) . (4.63)

The second resonant is more significant. In Fig. 4.6a the amplitudes of vibration as
functions of the parameter �0 of the motor torque and in Fig. 4.6b the amplitude-
frequency curve with motor characteristics for the extreme values of �0 are plotted.

For the both resonant regimes the Sommerfeld effect occurs. The amplitude solu-
tion between P and Q (Fig. 4.7a) and S and R (Fig. 4.7b) is unstable and the jump
phenomena occurs. From Fig. 4.7 it is evident that there are three steady state solu-
tions in the interval of curves (1) and (2) for the first resonance and in the interval
(3) and (4) for the second resonance. The solutions between P and Q and also R and
S are unstable.



4.4 Numerical Simulation 137

(a) (b)

Fig. 4.7 Amplitude-frequency diagram with motor characteristics for extrem angular velocities
for: a first resonance, b second resonance

4.4 Numerical Simulation

Let us rewrite the equations of motion (4.14)–(4.16) into six first order differential
equations

ẋ = x1, ẏ = y1, ϕ̇ = �, (4.64)

ẋ1 = −εμM(ϕ1) sinϕ

μη − 1
+ μη sin(2ϕ)(μϕ2

1 sinϕ − yω2
y − ζy y1)

2(μη − 1)

+ (μη cos2 ϕ − 1)(μ�2 cosϕ − xω2
x − ζx x1)

μη − 1
, (4.65)

ẏ1 = εM(�)μ cosϕ

μη − 1
+ μη sin(2ϕ)(μ�2 cosϕ − xω2

x − ζx x1)

2(μη − 1)

+ (μη sin2 ϕ − 1)(μ�2 sinϕ − yω2
y − ζy y1)

μη − 1
, (4.66)

�̇ = −εM(�)

μη − 1
+ η cosϕ(μ�2 sinϕ − yω2

y − ζy y1)

μη − 1

−η sinϕ(μ�2 cosϕ − xω2
x − ζx x1)

μη − 1
. (4.67)

withmotor torque function (4.27). Applying the fourth order Runge–Kutta procedure
the equations are solved numerically.
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(a) (b)

Fig. 4.8 Amplitude as the function of motor torque parameter �0 for: a speeding up, b slowing
down (analytical solution - full line, numerical solution in x direction - squares, numerical solution
in y direction - circles)

Numerical solution is obtained for ωx = ωy = ω = 30π and parameter values
M = 0.064, m = 0.0021, J = 10−7, d = 0.005, M0 = 0.005, ζ = 0.006ω and
plotted in Fig. 4.8.

The procedure to obtain the result shown in Fig. 4.8a is performed by slowly
increasing the parameter �0 of the DC motor and in Fig. 4.8b by slowly decreasing
the parameter �0 applied to the motor. The numerically obtained results are given
with squares in x direction andwith circles in y direction,while the analytical solution
with the full line. The numerical solution is compared with analytical one and shows
good agreement.

Let us consider the case whenωx = ω andωy = 2ω and the parameters of the sys-
tem areM = 0.064,m = 0.0021, J = 10−7, d = 0.005, M0 = 0.005, ζx = 0.012ω
and ζy = 0.024ω where ω = 30π. Using the suggested procedure the solution for
slow increase of the parameter�0 is plotted in Fig. 4.9. Two resonances occur: one in

(a) (b)

Fig. 4.9 Amplitude as the function of motor torque parameter �0 for slow increase of �0: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles
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(a) (b)

Fig. 4.10 Amplitude as the function of motor torque parameter �0 for slow decrease of �0: a first
resonance, b second resonance. Analytical solution - full line, numerical solution in x direction -
squares, numerical solution in y direction - circles

x direction (Fig. 4.9a) and the other in y direction (Fig. 4.9b). The same procedure is
applied for obtaining solutions during decreasing of the parameter�0.We obtain the
first resonance in x direction (Fig. 4.10a) and the second in y direction (Fig. 4.10b). In
the diagrams the jumps are observed when the system escapes resonance. Numerical
results given with squares in x direction and circles in y direction are compared with
analytical solution shown with full line. The numerical results are in good agreement
with the analytical results.

4.5 Conclusions

In this chapter we considered a discrete parameter spring-mass-damper whichmoves
in two orthogonal directions which is attached to a non-ideal rotatingmachine. Based
on the analysis the following is concluded:

1. The system behaves different according to the values of resonance frequencies in
the two orthogonal directions. Depending on the values of these frequencies the
resonance can occur in both directions, only in one direction or can not occur. In
the paper the limits between these cases are determined.

2. For the case when the frequencies of system in x and y direction are equal only
one resonance regime appears. If the damping in both directions are also equal,
the amplitudes of vibration in x and y direction are the same.

3. If the frequency of the system in y direction is two times higher than in x direction
two resonances occur: one, in x direction and other, in y direction.

4. In the mechanical two degrees-of-freedom system with non-ideal excitation the
Sommerfeld effect occurs. There is the jump in amplitude when the resonance
regime is escaped. For the case when the frequency of the system in x and y
directions are equal the Sommerfeld effect appears once time. If the frequency
in y direction is two times higher than that in x direction the jump phenomena
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occurs for two times for two different values of torque parameter. The procedure
for analytical calculation of angular velocities and the corresponding amplitudes
for which the jump occurs is suggested and the values are calculated for certain
numerical data. The analytical procedure predicts the appearance of Sommerfeld
effect for other relations between frequencies in two orthogonal directions, too.

5. Analytically obtained solutions are in good agreement with numerically obtained
ones.

6. The analytical solutions are compared with experimental results given in
Goncalves et al. (2016) and show good agreement.

7. The results published in this paper would be of special interest for engineers and
technicians in prediction of resonances and their elimination.
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Chapter 5
Dynamics of Polymer Sheets Cutting
Mechanism

In this Chapter the theory of a non-ideal mechanical system, presented in previous
chapters, is applied for solving of the problem of dynamics of polymer sheets cutting
mechanism. Great variety of mechanisms, tools and devices are made for cutting
throughout of materials based on specific requirements connected with the properties
of the cutting object, its dimensions and form, strength and elasticity, etc., but also
on the characteristics of the cutting tool and driving motor (Artobolevskij 1971).
Most of these tools are analyzed and discussed and shown in the textbooks for
mechanical engineers and technicians. For all of them it is common that have a
simple construction. For example, for cutting of the parts of strings, rods or bands,
which represent the continual cutting object, the cutting mechanism may be based
on the four-bar one (see Cveticanin and Maretic 2000).

In this chapter a mechanism for throughout cutting of the polymer sheet, which
represents the discontinual cutting object, is considered. Due to elastic properties
of the polymer sheet and its tendency to crumple, and also to sheet dimensions,
it was required the cutting to be done with an one direction cutting force. It was
possible to be realized by a translator motion of the cutting tool. As the driving
was with an electro motor, the mechanism had to transform the rotating motion of
the leading element into the translator motion of the leaded element. Mechanism
which transforms the rotation into straight motion is the slider-crank mechanism.
This mechanism and its modification have been widely analyzed and applied for the
internal combustion engines and other various purposes (see for example Metallidis
and Natsiavas 2003; Koser 2004; Ha et al. 2006; Erkaya et al. 2007). There are a
significant number of investigations done on a simple slider-crank mechanism as it is
the basic element of the internal combustion motor. The most of investigation refers
to mechanisms with rigid members whose crankshaft is supported rigidly and rotates
with a constant angular velocity (see for example Metallidis and Natsiavas 2003).
Most of these studies are analytical or numerical and investigate various mechanical
aspects of the dynamic response and stability of slider-crankmechanism (Goudas and
Natsiavas 2004). In the papers of Wauer and Buhrle (1997) and Goudas et al. (2004)
the extension of the problem is done by including the non-ideal forcing and flexible
supporting of the crankshaft. The two factors in conjunction with the kinematics
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nonlinearity, lead to themodel which is close to real mechanism. Due to its simplicity
the slider-crank mechanism is assumed as a basic one for the cutting device. Joining
together two slider-crank mechanisms an appropriate device is obtained which also
transforms the rotating motion of the leading element into translator motion of the
slider which is connected with a cutting tool. The idea of joining of two slider-crank
mechanisms is not a new one. The double-slider crank mechanisms are already used
in air compressors (Ogura andDaidoji 1982), two piston pumps (Wang et al. 2012), in
the cutting machine for elliptical cylinder (Komatsubara et al. 2007), in the two-side
piston engine (Kazimierski and Wojewoda 2011), in the haptic devices to generate
pulling or pushing motion (Amemiya et al. 2007) and (Amemiya and Maeda 2009),
in robotics (Masia et al. 2007; Xu and Wang 2008; Kim et al. 2008; Xu et al. 2011),
and also as a continuous casting mold oscillation device (Ren et al. 2009).

In Cveticanin et al. (2012) the dynamics of the double-slidermechanismwith rigid
elements and with non-ideal forcing is considered. It is assumed that the motion of
the leading element is with variable angle velocity which is caused by the constant
cutting force on the output slider. The cutting mechanism is settled on the rigid
support. Investigation of dynamics and vibration of the double-slider mechanism is
difficult to perform, due to inherent nonlinearity associatedwith its kinematics,which
is characterized by large rigid body rotations, but is necessary due to the practical
significance of the subject. A more realistic system is considered in Zukovic et al.
(2012): the mechanism is settled on the elastic support and the influence of the non-
ideal forcing on the system and cutting process is analyzed. Forcing is of non-ideal
type due to the requirement of the cutting force to be constant. As a consequence,
the history of the angular rotation of the crank is included in the set of coordinates
governing the dynamics of the mechanism. Direct integration technique gives the
description of the run-up and close-down response of the mechanism. Steady-state
periodic motions are obtained numerically, but also analytically for some special
cases. Motion is compared with that for the case of ideal forcing when the angular
velocity of the input element is constant. This result provides a basis for checking
the accuracy of results obtained for non-ideal forcing.

The Chapter is divided into five sections. In Sect. 5.1 the structural synthesis
of the cutting mechanism is considered. The advantages and disadvantages of the
cutting mechanism based on the two slider-crank mechanism in comparison to the
slider-crank mechanisms (simple and eccentric) are discussed. In Sect. 5.2 kinematic
properties of the cutting mechanism are analyzed. In Sect. 5.3 the dynamics of the
cutting mechanism settled on the rigid body is considered. Motion of the given
mechanism is mathematically described. An analytical approximate procedure is
developed for solving equations. Obtained solutions are compared with numerical
ones. In Sect. 5.4 dynamics of the cutting mechanism i.e. double-slider mechanism
with elastic support and non-ideal forcing is considered. Due to non-ideal forcing
the motion is described with a system of two coupled differential equations. Namely,
for ideal system only one differential equation is convenient to describe the motion.
If the forcing is non-ideal the system is extended with an additional differential
equation. The steady-state motion of the system with ideal and non-ideal forcing is
also analyzed. The chapter ends with conclusion.
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5.1 Structural Synthesis of the Cutting Mechanism

The structure of cutting mechanism is required to satisfy the following:

• the mechanism has to transform the input rotating motion into the translator one
• the cutting element has to move translatory
• the cutting process has to be duringmotion of the cutting element from up to down.

To fulfil these requirements, in this Chapter a device which contains two slider-
crank mechanisms is suggested (see Fig. 5.1). The system is designed to have an
eccentric O1AB and a simple O2DE slider-crank mechanism which are connected
with a rod BC . The leading element of the mechanism is the crankshaft O1A, while
the slider is the cutting tool at the point E . The suggested mechanism converts the
rotating motion of the crankshaft O1A into a straight-line motion of the slider E .

Mechanism has the following elements: O1A = a, AB = b, BC = c, O2C = r ,
O2D = g, DE = h.

The position of the slider B of the eccentric slider-crank mechanism O1AB (see
Fig. 5.1) is given with the coordinates

xB = a cosϕ + b cos θ = l, (5.1)

yB = −a sinϕ + b sin θ. (5.2)

Fig. 5.1 Model of the
cutting mechanism
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Eliminating θ in Eqs. (5.1) and (5.2) we obtain the position of the slider B as a
function of the leading angle ϕ

yB = −a sinϕ + b

√
1 −

(
l − a cosϕ

b

)2

. (5.3)

For the simple slider-crank mechanism O2DE (see Fig. 5.1) the translatory motion
of the slider is described as

O2E = g cos γ + h cosψ, (5.4)

where the relation between the angles γ and ψ is given with the expression

g sin γ = h sinψ. (5.5)

Substituting Eq. (5.5) into Eq. (5.4) we have

O2E = g cos γ + h

√(
1 − g2

h2

)
+ g2

h2
cos2 γ. (5.6)

which describes the position of the slider E as a function of the leading angle γ of
the slider-crank mechanism O2DE .

Let us make the connection between these two slider-crank mechanisms. Due
to the fact that after connection with the rod BC the two slider-crank mechanism
remains an one-degree-of-freedom system (as it was the case for the simple and
eccentric slider-crank mechanisms), we have to determine the relation between the
position of the slider E and leading angle ϕ of the crankshaft O1A.

From Fig. 5.1 it is evident that the position of the slider E in the coordinate system
xO1y is

yE = p + O2E . (5.7)

Moreover,

w = c cosχ + r sin γ, (5.8)

yB + c sinχ = p + r cos γ. (5.9)

Eliminating χ in Eqs. (5.8) and (5.9) the yB − γ i.e., ϕ − γ expression is obtained as

(
c2 − w2 − r2 − (p − yB)2 − 2r(p − yB) cos γ

)2 = 4w2r2(1 − cos2 γ),

(5.10)
i.e.,

A2 cos
2 γ − A1 cos γ + A0 = 0, (5.11)
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where

A = c2 − w2 − r2 − (p − yB)2,

A0 = A2 − 4w2r2, A1 = 4Ar(p − yB),

A2 = 4r2
(
(p − yB)2 + w2

)
, (5.12)

and p is a constant distance between fixed points O1 and O2 in y direction. Solving
the quadratic equation (5.11) for cosγ and substituting into Eqs. (5.7) with (5.6), the
y − ϕ relation follows.

5.1.1 Comparison of the Simple, Eccentric and Two
Slider-Crank mechanisms

In Fig. 5.2a the simple and in Fig. 5.2b the eccentric slider-crank mechanisms are
plotted. The mechanisms differ as the distance between the fixed point O and the
piston position is different.

In Fig. 5.3 the displacement-angle relations for: (a) simple (5.6), (b) eccentric
(5.3) and (c) two slider-crank (5.7) mechanisms are plotted. It is assumed that for the
simple and eccentric slider-crankmechanism the length of the leading shaft and of the
connecting rod are equal for the both mechanisms. The dimensions of the two joined
slider-crank mechanisms are: a = 0.08, b = 0.32, c = 0.14, r = 0.20, g = 0.24,
h = 0.18, l = 0.20, p = 0.12, w = 0.16 and the cutting depth is δ = 0.12. In our
consideration the common assumption used for comparing the three mechanisms is
that the cutting depth has to be equal and the cutting angle is calculated from the
lowest position of the slider. In Fig. 5.2 the full line indicates the motion of the slider
in the sheet (where the shaded area is for cutting) and the dotted line shows the

Fig. 5.2 Slider-crank
mechanisms: a simple,
b eccentric
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Fig. 5.3 yB − ϕ diagrams
for a simple slider-crank
mechanism (Fig. 5.2a),
b eccentric slider-crank
mechanism (Fig. 5.2b), and c
yE − ϕ diagram for
two-joined slider-crank
mechanism (Fig.5.1) with
following notation: shaded
area - cutting, dotted line -
slider in the sheet, full
line-slider out of sheet

motion of the slider out of the sheet. Comparing the diagrams in Fig. 5.3, it can be
concluded:

1. Cutting lasts more longer with the simple and eccentric slider-crank mechanism
than with the two joined slider-crank mechanism.

2. The interval in which the slider (cutting tool) is above the cutting object is much
longer for the two joined slider-crankmechanism than for the simple and eccentric
one. During this period the manipulation with the cutting sheet is possible to be
finished. It is not the case for the simple and eccentric slider-crank mechanisms.
Namely, the ‘resting’ period for the simple and eccentric slider-crankmechanisms
is extremely short and does not give the opportunity to finish the manipulation
with the sheet: setting and its removing from the machine.

It is the reason that the joined two-slider-crank mechanism is introduced and
assumed for the cutting process. During one period of motion of the two-joined
slider-crank mechanism the manipulation with the polymer sheet and also the
cutting process is possible to be finished.

5.2 Kinematics of the Cutting Mechanism

Let us determine the velocity vE of the cutting tool as a function of the angular
velocity ϕ̇ of the leading crankshaft. Using the relations (5.6) and (5.7) the velocity
of the cutting tool is

vE = ẏE = −γ̇
gvE sin γ

yE − g cos γ
. (5.13)

The time derivative of (5.10) gives γ̇(ẏB) as

γ̇r(w cos γ − (p − yB) sin γ) = (p − yB + r cos γ)ẏB, (5.14)
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where according to (5.3)

ẏB = −aϕ̇
yB cosϕ + l sinϕ

yB + a sinϕ
. (5.15)

Substituting (5.14) with (5.15) into (5.13) the velocity of the slider as the function
of the angular velocity of the leading crankshaft is obtained

vE = aϕ̇ f (ϕ), (5.16)

f (ϕ) = g

r

yE sin γ

yE − g cos γ

p − yB + r cos γ

w cos γ − (p − yB) sin γ

yB cosϕ + l sinϕ

yB + a sinϕ
. (5.17)

Function f (ϕ) is a periodical with a period of 2π.

5.3 Dynamic Analysis of the Mechanism with Rigid
Support

Dynamics of a cutting mechanism with rigid support is analyzed. Mechanism con-
tains two slider-crank mechanisms described in previous section. The cutting force
in the cutting tool is required to be constant. Due to this assumption the input angular
velocity of the driven element has to be controlled. Variation of the angular velocity
of the driving motor are necessary to be calculated. The results are widely discussed
in Cveticanin et al. (2012).

5.3.1 Mathematical Model of the Mechanism

The considered two slider-crank mechanism has one degree of freedom and the gen-
eralized coordinate is the angleϕ of the leading crank O1A. TheLagrange differential
equation of motion of the mechanism for the generalized coordinate ϕ is in general

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (5.18)

where T is the kinetic energy of the mechanism, � is the dissipative function and
Qϕ is the generalized force.

It is assumed that the mass of the cutting tool is m and the moment of inertia of
the leading element is J. The inertial properties of other elements in mechanism can
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be omitted in comparison to the previous. Then, the kinetic energy of the mechanism
is a sum of the kinetic energy of the cutting tool and of the leading element

T = 1

2
J ϕ̇2 + 1

2
mv2

E , (5.19)

where vE is the velocity of cutting tool given with (5.16). Substituting (5.16) into
(5.19) we obtain

T = 1

2
J ϕ̇2 + 1

2
ma2ϕ̇2 f 2, (5.20)

where the kinetic energy is the function of the angular velocity ϕ̇ and f = f (ϕ)

given with (5.17). Since all the mechanism members are rigid, the elastic energy of
the system is zero.

The mechanism is driven by an electro motor whose characteristics is that the
driving torque M is the function of the velocity ϕ̇, (Sandier 1999),

M = M0

(
1 − ϕ̇

ω0

)
, (5.21)

where M0 = const . and ω0 is the synchronal angular velocity of the motor. Thereby,
the driving load is expressed as a function of the angular coordinate describing the
crank rotation. Physically it means that themotion of themechanism has an influence
on the motor torque. Such mechanism is subjected to non-ideal forcing (see Nayfeh
and Mook 1979; Zukovic and Cveticanin 2007; Zukovic and Cveticanin 2009).

The cutting process is required to be during motion of the cutting tool from up to
down in the angle interval [ϕK ,ϕM ] where ϕM corresponds to the lowest position
of the cutting tool which satisfies the relation dy(ϕM)/dϕ = 0 and ϕK is the angle
position for which the cutting starts and has to be adopted to the thickness of the sheet
δ: y(ϕK ) = y(ϕM)+δ. In this interval the cutting force is required to be constant and
sufficiently strong to provide the cutting without folding of the sheet. Otherwise, the
cutting force is assumed to be zero. Mathematically, for ϕ ∈ [ϕK ,ϕM ] the constant
force is F = F0 and for ϕ ∈ [0,ϕK ) ∪ (ϕM , 2π] it is F = 0.

As the cutting process is periodical, the cutting force is modeled as a UnitStep
function

F = F(ϕ) = F0 F̄(ϕ) = F0(Unit Step(mod(ϕ, 2π) − ϕK )

−Unit Step(mod(ϕ, 2π) − ϕM)), (5.22)

where the unit step function is defined as Unit Step(x) =
{ 1, x ≥ 0
0, x < 0

. The force

distribution is plotted in Fig. 5.4 (ϕK = 2.06379, ϕM = 2.55591, δ = 0.03).The
driving torque M and the cutting force F give the virtual works for virtual angle and
displacement variations, respectively, i.e.,
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Fig. 5.4 y − ϕ and F̄ − ϕ
diagrams of the cutting tool

δA = Mδϕ + Fδy. (5.23)

According to (5.16) the variation of the variable y is

δy = a f δϕ. (5.24)

Substituting (5.24) into (5.23) we obtain δA = Qϕδϕ where the generalized force is

Qϕ = M + a f F. (5.25)

During the cutting the damping force acts. For energy dissipation during the slider
motion through various materials of the polymer sheet, the damping force is assumed
to be proportional to the velocity of the cutting tool, i.e.,

Fw = −qvE . (5.26)

The corresponding dissipative function is

� = 1

2
qv2

E , (5.27)

where q is the damping coefficient. According to (5.16), the dissipative function
(5.24) is

� = 1

2
qa2 f 2ϕ̇2. (5.28)

The derivatives of kinetic energy function (5.20) suitable for Lagrange equation
(5.18) are

∂T

∂ϕ
= a2m f

d f

dϕ
ϕ̇2, (5.29)
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∂T

∂ϕ̇
= J ϕ̇ + a2 f 2ϕ̇, (5.30)

d

dt

∂T

∂ϕ̇
= J ϕ̈ + a2(2 f ḟ ϕ̇ + f 2ϕ̈), (5.31)

where (·) = d/dt . The time derivative of the function f expressed with (5.17) is

ḟ = d f

dt
= ϕ̇

d f

dϕ
. (5.32)

As f explicitly and implicitly depends on the angle ϕ the total derivative of f is

d f

dϕ
= ∂ f

∂ϕ
+ ∂ f

∂yB

dyB
dϕ

+
(

∂ f

∂yE

dyE
dγ

+ ∂ f

∂γ

)
dγ

dϕ
. (5.33)

Introducing the notation

s1 = yE sin γ, s2 = yE − g cos γ, s3 = yB cosϕ,

s4 = yB + a sinϕ, s5 = p − yB + r cos γ,

s6 = w cos γ − (p − yB) sin γ, (5.34)

and substituting into (5.17), the function f is

f (ϕ) = g

r

s1
s2

s3
s4

s5
s6

. (5.35)

The corresponding derivatives of (5.35) according to (5.33) are

∂ f

∂ϕ
= g

r

s1
s2

s5
s6

∂

∂ϕ

(
s3
s4

)
,

∂ f

∂yE
= g

r

s2 sin γ − s1
s22

s3s5
s4s6

,

∂ f

∂γ
= g

r

s3
s4

∂

∂γ

(
s1
s2

s5
s6

)
,

∂ f

∂yB
= g

r

s1
s2

∂

∂yB

(
s3
s4

s5
s6

)
, (5.36)

∂s3
∂ϕ

= −yB sinϕ + l cosϕ,
∂s6
∂yB

= sinϕ,

∂s1
∂γ

= yE cos γ,
∂s2
∂γ

= sin γ,
∂s5
∂γ

= −r sin γ,

∂s4
∂ϕ

= a cosϕ,
∂s6
∂γ

= −(p − yB) cos γ − w sin γ,

∂s3
∂yB

= cosϕ,
∂s4
∂yB

= − ∂s5
∂yB

= 1. (5.37)
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For (5.3), (5.6) and (5.10) the derivatives in angle ϕ are

∂yB
∂ϕ

= −a
s5
s6

,
∂yB
∂γ

= −g
s1
s2

,
∂γ

∂ϕ
= a

r

s3
s4

s5
s6

. (5.38)

Substituting (5.38) and the also (5.3), (5.6) and (5.10) into (5.33) the (d f/dϕ) relation
is calculated. Substituting into (5.18) the relations (5.15), (5.20) and (5.28) and the
corresponding derivatives calculated inAppendix, the differential equation ofmotion
is obtained

(J + ma2 f 2)ϕ̈ + ma2 f
d f

dϕ
ϕ̇2 + qa2 f 2ϕ̇ = M(ϕ̇) + a f F(ϕ), (5.39)

where f and (d f/dϕ) are ϕ - periodical functions with period of 2π. (see Eqs. (5.17)
and (5.33)).

According to (5.17) and (5.33), the functions f (ϕ) − ϕ, (d f/dϕ) − ϕ and
f (ϕ)(d f (ϕ)/dϕ) − ϕ are plotted in Fig. 5.5.
Introducing the dimensionless values

τ = ω0t, I = Jω2
0

M0
, λ = F0a

M0
, Q = qa2ω0

M0
, μ = ma2ω2

0

M0
, (5.40)

the differential equation (5.39) transforms into

(I + μ f 2)ϕ” + μ f
d f

dϕ
(ϕ′)2 + Q f 2ϕ′ = (1 − ϕ′) + λ f F̄(ϕ), (5.41)

whereϕ′ = dϕ/dτ andϕ” = d2ϕ/dτ 2,μ is dimensionlessmass of the cutting tool, I
is dimensionless moment of inertia of the leading crank O1A, Q is the dimensionless
damping coefficient,λ is dimensionless cutting force and τ is the dimensionless time.
Equation (5.41) is strongnonlinear.Only for some special parameter values the closed

Fig. 5.5 f (ϕ) − ϕ,
(d f/dϕ) − ϕ and
f (ϕ)(d f (ϕ)/dϕ) − ϕ curves
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form analytical solution is possible to be obtained. Otherwise, (5.41) has to be solved
numerically using the Runge–Kutta procedure.

5.3.2 Numerical Simulation

Solving (5.41) for various values of F̄(ϕ) the influence of the cutting force on the
angular velocity of the motor is obtained. In Fig. 5.6 the ϕ′ − τ curves for various
values of F̄(ϕ) are plotted. (Dimensionless parameters are λ = 0.033, I = 1.4557
10−4, μ = 1.051 10−3, Q = 0.00134 and the initial conditions ϕ(0) = 0 and
ϕ′(0) = 1).

Analyzing the curves in Fig. 5.5 it can be concluded:

1. For the case when the cutting force is zero, F̄(ϕ) = 0, and the motion of the
mechanism is without loading, the angular velocity of the leading crank O1A
varies as it is shown in Fig. 5.5 (curve I). Variation of the angular velocity is
periodical.

2. If it is assumed that the mechanism is loaded with a force F̄(ϕ) = 1 for all
positions of the leading crank, the influence of the force on the angular velocity
of the motor motion is extremely high (see curve II in Fig. 5.5).

3. For the case when the cutting process is discontinual and the cutting force has the
form (5.22) there is a jump in the angular velocity curve (see curve III, Fig. 5.5).
For this case the influence of the cutting parameter λ on the ϕ′ − τ is evident (see
Fig. 5.6). The higher the cutting force the higher the velocity variation.

Fig. 5.6 ϕ′ − τ curves for
various values of F̄(ϕ):
I − F̄(ϕ) = 0,
I I − F̄(ϕ) = 1,
I I I −Unit Step function
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5.3.3 Analytical Consideration

Let us consider the case when M0 is significantly larger than the parameters I , μ, Q
and λ which for the small parameter ε << 1 have the form

I = εI1, μ = εμ1, Q = εQ1, λ = ελ1. (5.42)

Substituting (5.42) into (5.41) we have

(1−ϕ′) = ε(I1+μ1 f
2(ϕ))ϕ”+εμ1 f (ϕ)

d f (ϕ)

dϕ
ϕ′2+εQ1 f

2(ϕ)ϕ′−ε f (ϕ)λ1 F̄(ϕ).

(5.43)

Using the series expansion of the variable ϕ and its time derivatives up to the first
order of the small parameter, we obtain

ϕ = ϕ0 + εϕ1 + . . . , ϕ′ = ϕ′
0 + εϕ′

1 + . . . ,

ϕ” = ϕ0” + εϕ1” + . . . , F̄(ϕ) ≈ F̄(ϕ0),

f (ϕ) = f (ϕ0 + εϕ1) ≈ f (ϕ0) + ε f ′(ϕ0)ϕ1,

d f (ϕ)

dϕ
= d f (ϕ0 + εϕ1)

dϕ
≈

(
d f (ϕ)

dϕ

)
ϕ0

+ εϕ1

(
d2 f (ϕ)

dϕ2

)
ϕ0

. (5.44)

Substituting (5.44) into (5.43) and separating the terms with the same order of small
parameter ε up to the small value of second order, the system of equations follows

ε0 : 0 = 1 − ϕ′, (5.45)

ε1 : ϕ′
1 = f (ϕ0)λ1 F̄(ϕ0) − Q1 f

2(ϕ0)ϕ
′
0

− (I1 + μ1 f
2(ϕ0))ϕ0” − μ1 f (ϕ0)

(
d f (ϕ)

dϕ

)
ϕ0

ϕ′2
0 . (5.46)

Solution of (5.45) is ϕ′
0 = 1 = const. which after integration gives

ϕ0 = τ . (5.47)

Substituting (5.47) into (5.46) we obtain

ϕ′
1 = −μ1 f (ϕ0)

(
d f (ϕ)

dϕ

)
ϕ0

− Q1 f
2(ϕ0) + f (ϕ0)λ1 F̄(ϕ0). (5.48)

According to (5.47), (5.48) and (5.44) the first order approximate analytical solution
is
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Fig. 5.7 ϕ′ − τ curves for various values of λ

Fig. 5.8 Comparison of the
analytical and numerical
ϕ′ − τ functions

ϕ′(τ ) = 1 +
(

−μ f (τ )

(
d f (ϕ)

dϕ

)
τ

− Q1 f
2(τ ) + f (τ )λ1 F̄(τ )

)
. (5.49)

Influence of mass and damping parameters, and also of the cutting force on the
angular velocity of the leading element is obtained.

In Fig. 5.7 the analytical result (5.49) is compared with numerical one which is
valid for differential equation (5.43). The difference between the results is negligible
(Fig. 5.8).
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5.3.4 Comparison of Analytical and Numerical Results

Equation (5.43) and the analytically obtained solution (5.49) yield:

1. For the mechanism with omitted mass of the leading crank and of the cutting
tool, the angular velocity variation is ϕ′ = (1+λ f F̄(ϕ))/(1+ Q f 2). For higher
values of coefficient of damping the angular velocity is smaller. The influence of
the cutting force λ on the angular velocity ϕ′ is significant: the higher the cutting
force, the larger the angular velocity variation.

2. If the mass of the cutting tool and the damping coefficient during cutting and are
omitted, the differential equation is Iϕ” = (1 − ϕ′) + λ f F̄(ϕ). It depends on
the moment of inertia I of the leading crankshaft and on the cutting force λ.

3. For the case when damping is neglected and the cutting force is zero, for the
initial angular velocity ϕ′

0 the angular velocity of the leading element varies as
ϕ′ = 1 + (ϕ′

0 − 1) exp(−τ/I ). For the steady state motion when time τ tends
to infinity, the angular velocity of the leading element tends to a constant value:
ϕ′ = 1 = const.

4. If the dimensionless driving torque M0 is significant in comparison to other
parameters of the mechanism, the angular velocity in the first approximation
is obtained as ϕ′ ≈ 1 + εϕ′

1, where ϕ′
1 = −μ f (d f/dϕ) − Q1 f 2 + λ f F̄ . For

certain parameter values the analytically obtained result is compared with exact
numerical one (see Fig. 5.7). The difference between the results is negligible.

Based on the previous results, the following is concluded:

1. The damping during cutting has a significant influence on the angular velocity of
the leading element of the cutting mechanism. If mass of the leading crank and of
the cutting tool are quite small it is obvious that for higher values of the damping,
the angular velocity of the leading crank is smaller.

2. The influence of the cutting force on the angular velocity is also significant: the
higher the cutting force, the larger is the angular velocity variation.

3. The angular velocity variation effects the stability of motion and also the quality
of cutting process. Namely, for high values of angular velocity variation of the
leading element, the motor can get from the steady state stable motion into the
unstable one. Besides, the higher the cutting force, the cutting process is retard
due to the fact that the averaged velocity is smaller.

5.4 Dynamics of the Cutting Mechanism with Flexible
Support and Non-ideal Forcing

Dynamics of a cutting mechanism, which is a double-slider one where one of the
sliders represents the cutting tool, is investigated in Zukovic et al. (2012).Mechanism
is subjected to non-ideal forcing. The constant cutting force requires the driving
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torque to be the function of the angular velocity of the driving crank. Mechanism
examined involves rigid elements but elastic support. The cutting mechanism with
the elastic support is modelled as a two-degree-of-freedom system whose motion is
described with two coupled second order nonlinear differential equations. For the
non-ideal case the steady-state dynamics of the system is examined by introducing
the approximate analytical solution of the averaged differential equations of motion
for the case of primary resonance. Parameters of the system are varied and their
influence on the motion is tested. The analytically obtained solution is compared
with exact numerical one and shows a good agreement. The ideal forcing case, when
the motion of the mechanism is with constant angular velocity, is also analyzed. For
this case the steady-state motion is obtained analytically, too.

5.4.1 Mathematical Model of Motion of the Cutting
Mechanism

Cutting mechanism connected with the support is shown in Fig. 5.9.
The considered mechanism contains two slider-crank mechanisms O1AB and

O2DE connectedwith a rod BC . Rotation of the driving element O1A is transformed
into the straightforward motion of the slider E which represents the cutting tool.
During the contact between the slider E and the object in G, the cutting tool cuts

Fig. 5.9 Model of the
cutting mechanism on the
elastic support
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the sheet in G. The kinematic properties of the mechanism are widely discussed in
previous section. In order to obtain the more realistic description of the dynamics
of the mechanism it is necessary to include its interaction with the support. Namely,
the mechanism has an influence on the support, but also the support influences the
dynamics of the cutting process. The mechanism-support system has two-degrees-
of-freedom and the two generalized coordinates are the angle position of the driving
element due to the rotation, givenwith generalized coordinateϕ, and thedisplacement
of the support due to its straightforward motion, given with the other independent
generalized coordinate S. Then, the Lagrange’s differential equations of motion are
in general

d

dt

∂T

∂ Ṡ
− ∂T

∂S
= −∂V

∂S
− ∂�

∂ Ṡ
+ QS,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
= −∂V

∂ϕ
− ∂�

∂ϕ̇
+ Qϕ, (5.50)

where T is the kinetic energy, V is the potential energy, � is the dissipative function
of the system, while QS and Qϕ are the generalized forces.

We assume that the massm2 of the slider E and of the supportm1 are significantly
higher than the masses of the other elements in the mechanism. If the mass moment
of inertia of motor is J , the kinetic energy of the mechanism has three terms: kinetic
energy of the motor (due to rotation), Tm , kinetic energy of the support, T1, and of
the slider, T2, respectively,

T = Tm + T1 + T2, (5.51)

i.e.,

T = 1

2
J ϕ̇2 + 1

2
m1 Ṡ

2 + 1

2
m2v

2
E , (5.52)

where vE is the velocity of the slider E . To determine the velocity vE some geometric
properties of the mechanism have to be considered.

Let us determine the coordinate yE as a function of the generalized coordinates
ϕ and S. From Fig. 5.9. the coordinate yE in the fixed coordinate system x ′Oy′ is

yE = S + p + g cos γ + h cosψ, (5.53)

where the lengths of the elements are g = O2D and h = DE . Using the geometric
properties of the mechanism O2DE we have

g sin γ = h sinψ. (5.54)
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The relation (5.53) transforms into

yE = S + p + g cos γ + h

√
1 −

(
g sin γ

h

)2

. (5.55)

For the known distances l and w we have

cos θ = l − a cosϕ

b
≤ 1, (5.56)

and

cosχ = w − r sin γ

c
≤ 1, (5.57)

where a = O1A, b = AB, r = O2C , c = BC . Using the relation

b sin θ − a sinϕ = p + r cos γ − c sinχ, (5.58)

with (5.56) and (5.57), we obtain

b

√
1 −

(
l − a cosϕ

b

)2

−a sinϕ = p+r cos γ−c

√
1 −

(
w − r sin γ

c

)2

. (5.59)

After some transformation we obtain the equation

4r2(A2 + w2) cos2 γ + 4ABr cos γ + (B2 − 4w2r2) = 0, (5.60)

whose solutions are

cos γ =
−K1(K 2

1 + K2) ± w

√
4r2(w2 + K 2

1 ) − (K 2
1 + K2)2

2r(w2 + K 2
1 )

, (5.61)

where |cos γ| ≤ 1 and 4r2(w2 + K 2
1 ) − (K 2

1 + K2)
2 ≥ 0 for K2 = r2 − c2 + w2 and

K1(ϕ) = K1 = a sinϕ + p − √
b2 − (l − a cosϕ)2.

Substituting the solution (5.61) into (5.55) we obtain

yE = S + p + a f1(ϕ), (5.62)
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where

f1(ϕ) =

√√√√√√h2 − g2

a2
+ g2

a2

⎛
⎝−K1(K 2

1 + K2) ± w

√
4r2(w2 + K 2

1 ) − (K 2
1 + K2)2

2r(w2 + K 2
1 )

⎞
⎠

2

+ g

a

−K1(K 2
1 + K2) ± w

√
4r2(w2 + K 2

1 ) − (K 2
1 + K2)2

2r(w2 + K 2
1 )

. (5.63)

Relation (5.62) with (5.63) gives the coordinate of E as a function of S and ϕ.
Using the yE (ϕ) relation (5.62) given in Appendix, the velocity of the slider is

vE = dyE
dt

= Ṡ + a f (ϕ)ϕ̇, (5.64)

where f (ϕ) = f = d f1(ϕ)

dϕ
and ϕ̇ = dϕ

dt . Substituting (5.64) into (5.52) the kinetic
energy of the mechanism is

T = 1

2
(J + m2a

2 f 2)ϕ̇2 + 1

2
(m1 + m2)Ṡ

2 + m2a f ϕ̇Ṡ. (5.65)

Since only the support has elastic property, the potential energy of the system is

V = 1

2
k1S

2, (5.66)

where k1 is the coefficient of rigidity. In the system the energy dissipation is due to
cutting and due to damping properties of the support. Then, the energy dissipation
is expressed as

� = 1

2
q1 Ṡ

2 + 1

2
q2v

2
E , (5.67)

where q1 and q2 are the damping coefficients of the support and of the cutting tool,
respectively. Substituting (5.64) into (5.67), it yields

� = 1

2
(q1 + q2)Ṡ

2 + q2a f Ṡϕ̇ + 1

2
q2a

2 f 2ϕ̇2. (5.68)

The mechanism is driven with a motor torque M and produces the cutting force F .
For the purpose of the suggested mechanism the torque appears in the form

M = M(ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (5.69)
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where M0 is the fixed moment and �0 is the synchronous angular velocity of the
motor. As the force F is required to be constant during the cutting (F = F0 = const .
for ϕ ∈[ϕK , ϕM ]) and otherwise to be zero (F = 0 for ϕ ∈ [0,ϕK ) ∪ (ϕM , 2π]), it
is modeled as a UnitStep function:

F = F(ϕ) = F0 F̄(ϕ), (5.70)

where

F̄(ϕ) = F0(Unit Step(mod(ϕ, 2π) − ϕK ) −Unit Step(mod(ϕ, 2π) − ϕM)).

(5.71)

Using (5.69) and (5.70), the expression of the virtual work of the force and the torque
in the system is

δA = Mδϕ + F(δyE − δyG), (5.72)

where δyE is the variation of the coordinate yE , (see Eq. (A.10)), and δyG is the
variation of the coordinate yG . From Fig. 5.9 it is evident that yG = S + p + (O2G)

and (O2G) is a fixed distance. Substituting the variation of the coordinates δyE and
δyG :

δyE = δS + a f δϕ, δyG = δS,

into (5.72) we have

δA = (M + Fa f (ϕ))δϕ. (5.73)

The generalized forces of the system are according to (5.73)

Qϕ = M + Fa f (ϕ), (5.74)

QS = 0. (5.75)

Employing the relations (5.65)–(5.67), (5.74) and (5.75) the Lagrange’s equations
(5.50) yield the equations of motion of the mechanism in the form

0 = (m1 + m2)S̈ + m2a f ϕ̈ + (q1 + q2)Ṡ + m2a f
′ϕ̇2 + q2a f ϕ̇ (5.76)

+ k1S,

(J + m2a
2 f 2)ϕ̈ + m2a f S̈ + m2a

2 f f ′ϕ̇2 + q2a f Ṡ + q2a
2 f 2ϕ̇

= M(ϕ̇) + a f F0 F̄(ϕ), (5.77)
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where

f ′ = d f

dτ
, τ = ω0t, ω0 =

√
k1

m1 + m2
. (5.78)

For computational reason, let us introduce beside (5.78) the following non-
dimensional variables

s = S

a
, μ = m2

m1 + m2
, Q1 = q1√

k1
√
m1 + m2

, Q2 = q2√
k1

√
m1 + m2

,

κ = m2a2

J
, λM = M0

Jω2
0

, λF = aF0

Jω2
0

, ν0 = �0

ω0
, M̄(ϕ′) = 1 − ϕ′

ν0
. (5.79)

Substituting them into (5.76) and (5.77) the following system of two coupled non-
linear differential equations is obtained

s” + (Q1 + Q2)s
′ + s = −μ

d f

dϕ
ϕ′2 − μ f ϕ” − Q2 f ϕ

′, (5.80)

(1 + κ f 2)ϕ” = λM M̄(ϕ′) + λF f F̄(ϕ) − κ f s”

−κQ2

μ
f (s ′ + f ϕ′) − κ f

d f

dϕ
ϕ′2, (5.81)

where (’) = d
dτ

, (") = d2

dτ 2 .

TheEqs. (5.80) and (5.81) are nonlinear.Besides, as the driving torque is a function
of the crank rotation, the mechanical system examined with the equations is put into
the class of non-ideal dynamic systems (Kononenko 1969; Nayfeh and Mook 1979;
Balthazar et al. 2002, 2003; Zukovic andCveticanin 2007, 2009), with consequences
that will be encountered and discussed in the following sections. Before solving the
complete set of equations ofmotion (5.80) and (5.81) of themechanismmodels, some
typical results are first presented for the special case where the angular velocity �

of the crank-shaft O1A is constant. In Sect. 5.3, the ideal forcing conditions are
discussed. In Sect. 5.4. the more realistic model of the system examined is based on
expressing both the external torque and cutting force as a function of the motion of
the mechanism.

5.4.2 Ideal Forcing Conditions

For the special case when angular velocity � of the crank-shaft is constant, that is
when ϕ” = 0, ϕ′ = �, ϕ = �τ , the Eqs. (5.80) and (5.81) simplify to
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s” + (Q1 + Q2)s
′ + s = −μ�2

(
d f

dϕ

)
ϕ=�t

− Q2 f �, (5.82)

λF F̄(�τ ) = κs” + κQ2

μ
s ′ − λM M̄(�)

f

+κ� f Q2

μ
+ κ�2

(
d f

dϕ

)
ϕ=�t

. (5.83)

Equation (5.82) can be solved independently to yield the support lateral displace-
ment s. The equation describes the forced vibrations of the support. For the linear
system the exact analytical solution of (5.82) has the form

s = sh + sp = C exp(−δτ ) cosψ + f ∗(�τ ), (5.84)

where δ = Q1+Q2
2 , ψ = τ

√
1 − δ2 + θ, and C and θ are arbitrary constants which

satisfy the initial conditions s(0) = s0, θ(0) = θ0.
Besides, f ∗(�τ ) = sp is the known particular solution of (5.82). Substituting the

obtained solution (5.84) into (5.83) the external forcing necessary for creating and
sustaining this type of motion is obtained

λF F̄(�τ ) = κC exp(−δτ )

((
δ2 −

√
1 − δ2 − Q2δ

μ

)
cosψ

+
(
2δ − Q2

μ

)√
1 − δ2 sinψ

)
+ κ f Q2�

μ
− λM M̄(�)

f

+κ

(
�2 + Q2

μ

) (
d f

dϕ

)
ϕ=�τ

+ κ

(
d2 f

dϕ2

)
ϕ=�τ

. (5.85)

For the steady-state motion, when the transient terms disappear, the cutting force is

λF F̄(�τ ) = κ f Q2�

μ
− λM M̄(�)

f

+κ

(
�2 + Q2

μ

) (
d f

dϕ

)
ϕ=�τ

+ κ

(
d2 f

dϕ2

)
ϕ=�τ

, (5.86)

which depends not only on the angular velocity � but also on the input torque and
damping properties of the system. For the case when the support of the machine is
rigid, Eq. (5.86) transforms into

λF F̄(�τ ) = κ f Q2�

μ
− λM M̄(�)

f
+ κ�2

(
d f

dϕ

)
ϕ=�τ

. (5.87)
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Fig. 5.10 Cutting force –
angle position curves for
various values of angular
velocity

The dimensional cutting force is

F = m2a�2

(
d f

dϕ

)
ϕ=�τ

+ q2a f � − M

a f
. (5.88)

In Fig. 5.10 the cutting force as a function of the angle position of the driving element
for various values of the velocity � is plotted.

It can be seen that for the case of constant angular velocity of the driving element
the cutting force is not constant, as it is required: the cutting force increases with
increase of the angle of the driving element. This phenomenon is more expressed in
the systems with higher values of the angular velocity of the driving element: the
higher the angular velocity, the increase of the force is higher.

To satisfy the requirement for the constant cutting force, the driving torque of
the motor has to be varied during the cutting process. Then the cutting force affects
the motor properties i.e., the motor angular velocity and torque. Such a mechanical
system is of non-ideal type.

5.4.3 Non-ideal Forcing Conditions

If the non-linearity is small, the system of Eqs. (5.80) and (5.81) can be rewritten in
the form

s” + s = ε fs(s, s
′,ϕ,ϕ′,ϕ”), (5.89)

(
1 + κ f 2(ϕ)

)
ϕ” = ε fϕ(s ′, s”,ϕ,ϕ′), (5.90)

where

ε fs(s, s
′,ϕ,ϕ′,ϕ”) = −(Q1 + Q2)s

′ − μ
d f

dϕ
ϕ′2 − μ f ϕ” − Q2 f ϕ

′, (5.91)
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ε fϕ(s ′, s”,ϕ,ϕ′) = λM M̄(ϕ′) + λF f F̄(ϕ) − κ f s”

−κQ2

μ
f (s ′ + f ϕ′) − κ f

d f

dϕ
ϕ′2. (5.92)

We seek approximate solutions which are uniformly valid for small ε. Thus we are
considering the case in which m2 is small compared with m1. If the damping force
is small in comparison with the restoring force of the support, the damping term
appears to be of the same order as the nonlinearity and the excitation.

Let us concern with a relative narrow band of frequencies which encloses the
natural frequency of the system (unity in the dimensionless variables). Accordingly
we let

ϕ′ = � ≈ 1 + ε�, (5.93)

where ε� is used to distinguish between the speed of the driving element and the
unit natural frequency of the rectilinear motion. Frequency of the rectilinear motion
is expected to differ for the value ξ′ on the angular speed of the driving element ϕ′.
Accordingly, we let

s = A cos(ϕ + ξ). (5.94)

First and the second time derivatives of (5.94) are, respectively,

s ′ = −A sin(ϕ + ξ), (5.95)

with

A′ cos(ϕ + ξ) − A(ε�′ + ξ′) = 0, (5.96)

and

s” = −A′ sin(ϕ + ξ) − A(1 + ε� + ξ′) cos(ϕ + ξ). (5.97)

Substituting (5.94) and (5.97) into (5.90) and (5.91), and using the relation (5.93),
leads to

−A′ sin(ϕ+ξ)−A(ε�+ξ′) cos(ϕ+ξ) = ε fs(A cos(ϕ+ξ),−A sin(ϕ+ξ),ϕ,�, 0),
(5.98)

(
1 + κ f 2(ϕ)

)
ε�′ ≡ (

1 + κ f 2(ϕ)
)
�′ = ε fϕ(−A sin(ϕ+ ξ),−A� cos(ϕ+ ξ),ϕ,�).

(5.99)

Solving (5.98) and (5.96), and using the relation (5.93) we obtain

A′ = −ε fs(A cos(ϕ + ξ),−A sin(ϕ + ξ),ϕ,�, 0) sin(ϕ + ξ), (5.100)
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Aξ′ = (1 − �)A − ε fs(A cos(ϕ + ξ),−A sin(ϕ + ξ),ϕ,�, 0) cos(ϕ + ξ).
(5.101)

Adding the relations (5.93) and (5.99) to (5.100) and (5.101), the system of four
coupled first order differential equations is obtained, where A, ϕ, � and ξ are the
new functions dependent on the variable τ . The system of equations (5.93), (5.99)–
(5.101), represents the transformed version of the differential equations (5.80), (5.81)
into the new variables. To solve this system of differential equations is not an easy
task. It is at this point when the averaging procedure is introduced. Using the aver-
aging procedure of (5.99)–(5.101) and integrating the equations in the interval from
0 to 2π, it follows

A′ = − 1

2π
(πA(Q1 + Q2) − cos ξ(−μ�2 I1 + Q2�I2) − sin ξ(μ�2 I2 + Q2�I1),

(5.102)

Aξ′ = (1 − �)A − 1

2π
(− cos ξ(μ�2 I2 + Q2�I1) − sin ξ(μ�2 I1 − Q2�I2),

(5.103)

(
1 + κ

I3
2π

)
�′ = λM M̄(�) + λF

I4
2π

− κQ2

μ
� f

I3
2π

+ 1

2π
cos ξ

(
κA�I1 + κQ2

μ
AI2

)

+ 1

2π
sin ξ

(
−κA�I2 + κQ2

μ
AI1

)
, (5.104)

where

I1 =
2π∫
0

f (ϕ) cosϕdϕ = −
2π∫
0

f ′(ϕ) sinϕdϕ,

I2 =
2π∫
0

f (ϕ) sinϕdϕ =
2π∫
0

f ′(ϕ) cosϕdϕ,

I3 =
2π∫
0

f 2(ϕ)dϕ, I4 =
2π∫
0

f (ϕ)F̄(ϕ)dϕ. (5.105)

It is of special interest to analyze the steady-state motion.

Steady-state motion

For the steady-state motion, when A′ = ξ′ = 0 and �′ = 0, the relations (5.102)–
(5.104) transform into
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πA(Q1 + Q2) = cos ξ(−μ�2 I1 + Q2�I2) + sin ξ(μ�2 I2 + Q2�I1), (5.106)

− 2π(1 − �)A = cos ξ(μ�2 I2 + Q2�I1) + sin ξ(μ�2 I1 − Q2�I2), (5.107)

λM M̄(�) + λF
I4
2π

− κQ2

μ
� f

I3
2π

)

= − 1

2π
cos ξ

(
κA�I1 + κQ2

μ
AI2

)
− 1

2π
sin ξ

(
−κA�I2 + κQ2

μ
AI1

)
.

(5.108)

Using (5.106) and (5.107) we eliminate the variable ξ

tan ξ = I1(4Q1Q2 + 4Q2
2 − 8μ�(1 − �) + I2(Q2(8 + 4�(μ − 2)) + 4Q1μ�)

I2(4Q1Q2 + 4Q2
2 − 8μ�(1 − �) − I1(Q2(8 + 4�(μ − 2)) + 4Q1μ�)

,

and the amplitude-frequency relation

A =
μ�2

(√
I 21 +I 22
π

√
1 +

(
Q2
μ�

)2
)

√
(Q1 + Q2)2 + 4(1 − �)2

,

i.e., the amplitude-frequency curve is obtained

f A�1(A,�) = A −
μ�2

(√
I 21 +I 22
π

√
1 +

(
Q2
μ�

)2
)

√
(Q1 + Q2)2 + 4(1 − �)2

= 0. (5.109)

Eliminating ξ in (5.108) the characteristic curve f A�2(A,�) = 0 is obtained. Along
this curve the control or regulator parameter ν0 is constant. The steady-state posi-
tion (A,�) is obtained as the intersection of the curves f A�1(A,�) = 0 and
f A�2(A,�) = 0. Dependently on the value of the parameter ν0, one, two ore three
real solutions exist.

In Figs. 5.11 and 5.12, the amplitude-frequency (thick line) and the characteristic
curves (thin lines) for various values of the control parameter and cutting proper-
ties of the mechanism without and with cutting force, respectively, are plotted. The
parameters of the system are: a = 0.08, b = 0.32, c = 0.14, r = 0.20, g = 0.24,
h = 0.18, l = 0.20, p = 0.12, w = 0.16, μ = 0.15, Q1 = 0.1, Q2 = 0.01,
λF = 0.8, λM = 0.5, κ = 0.1. The cutting interval is ϕK = 2.063785512 to
ϕM = 2.55590711. As the special case the characteristic curves which are tangents
to the amplitude-frequency curve are plotted (see Figs. 5.11b and 5.12b). It can be
concluded that for the fixed driving properties of the motor, frequency of vibration
is smaller if the cutting is included. Besides, for the values where the characteristic
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Fig. 5.11 Amplitude-frequency curve for the case without cutting with: a characteristic curves for
various values of ν0 and b tangents of curves

Fig. 5.12 Amplitude-frequency curve for the case of cuttingwith: a characteristic curves for various
values of ν0 and b tangents of curves

curve touches the amplitude-frequency curve the stable motion (solid line) changes
into unstable (dashed line). In this paper the values for which the stability change
occurs are obtained numerically and the unstable region is plotted with the dashed-
line.

The characteristic curve which is the tangent of the amplitude-frequency diagram
gives us the points P and R and the other the points T and H during slow increasing
and decreasing of the control parameter. The system cannot be made to respond at
a frequency between �T and �H by simple increasing the control setting from a
low value. At T the characteristic of the motion suddenly changes. An increase in
the input power causes the amplitude to decrease considerably and the frequency to
increase. The phenomenon is called the Sommerfeld effect. The same phenomena
is registered if the control setting is continually decreased, and there is no response
for the interval �R and �p. In other words the right side of the resonance spike
between T and R cannot be reached by any continual change of control system. The
non-ideal source causes a jump phenomenon to occur.To prove the correctness of the
analytically obtained solutions the numerical integration of the differential equations
(5.99)–(5.101) is done. For the previously parameter values, the steady-state curves
for the case of cutting and without cutting are plotted in Fig. 5.13. Control parameter
ν0 is varied.

The solid lines show the response predicting by the theory and the black and
grey circles the results obtained numerically for the case of quasi-static close-down
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Fig. 5.13 Amplitude-frequency digrams obtained analytically (black line) and also numerically for
run-up (grey big circles) and for close-down (black small circles): a cutting force is zero, b constant
cutting force exists

and run-up, respectively. Figure5.13 shows that for the both cases (without and with
cutting force) there are gaps where no steady-state response exists. The gaps are not
the same for increasing or decreasing of � but there is some overlap. The points
labeled P , R, T and H correspond to those in Figs. 5.11 and 5.12.

5.4.4 Non-stationary Motion

If the non-stationary motion has to be analyzed the solution of the equations (5.99)–
(5.101) have to be determined for the initial conditions s(0) = ṡ(0) = 0, ϕ(0) =
ϕ̇(0) = 0.

In Fig. 5.14 the amplitude of vibration of the support and of the driving angular
velocity for the case with and without cutting are plotted. Namely, in Fig. 5.14a the
amplitude-frequency curve and the characteristic curves for the bothmentioned cases
and the constant control parameter ν0 are plotted. In Fig. 5.14b, c the time history
diagrams for the support vibration and for the driving speed are shown.

It can be seen that the interaction between the control parameter ν0 and cutting
process is significant. For the same value of control parameter the amplitude of vibra-
tion of the support increases or decreases if the cutting is on. Namely, for extremely
small value of the control parameter the amplitude of vibration is smaller during
cutting than for the case without cutting. For extremely high values of the control
parameter the situation is opposite in comparison to the previous: the amplitude of
vibration is higher for cutting than without cutting. Themost significant difference in
the amplitude of vibration is for the case when the characteristic curve is the tangent
of the amplitude-frequency one. Independently on the value of the control parameter,
the angular velocity of the mechanism decreases during cutting.
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Fig. 5.14 a Amplitude-frequency (solid black line) and characteristic curves for the case without
cutting (thin line) and with cutting (thick line), b s − τ diagram, c ϕ′ − τ (black line) and F̄ − τ
(grey line) diagrams
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5.5 Conclusion

The following can be concluded:

1. Introducing the constant cutting force into consideration, the input torque varia-
tion has to be calculated. Cutting mechanism-support system can be considered
as a non-ideal mechanical system where the cutting process has an influence on
the input torque. Mathematical model of such a system is given with two coupled
differential equations whose solution gives us the variation of the driving torque
and also of the driving angular velocity for the constant cutting force.

2. Amplitude of vibration of the system and also the angular velocity of the driving
element strongly depends on the synchronous angular velocity of the driving
motor. For small angular velocity of the motor, the amplitude of vibration of
the support is smaller during cutting than for the case of the free motion of the
mechanism. It is evident for the pre-resonant case. In contrary, for high angular
velocity of themotor, i.e., for the post resonance case, the amplitude of vibration of
the support is larger during cutting than for the freemotion of themechanism. The
higher the angular velocity of the motor in the post-resonance region, the motion
of the support becomes independent on the working conditions i.e., cutting force.
The conclusion is that the cutting has to be done in the regime far from the resonant
one.

3. In the near-resonant regime the following cases may appear: a) the amplitude
of vibration of the support increases during the cutting, b) decreases during the
cutting or c) remains unchangeable. The transient from one to another case is
based on the small change of the angular velocity. It is suggested to avoid cutting
in the near-resonant regime.

4. Angular velocity of the driving element depends on the cutting force. For all
values of the cutting force the angular velocity decreases in comparison to the
case without cutting.

5. In the cutting mechanism-support system the Sommerfeld effect appears. For
certain values of forcing during run-up or close-down the unstablemotion appears
where in spite of energy adding only the frequency of vibration varies, but the
amplitude of vibration is approximately constant. Region of unstable motion
depends on the driving motor properties and on the cutting force, too. Elimination
of the unstablemotion is realized by increasing of themotor power and decreasing
of the cutting force.

6. The analytically obtained solutions are in a good agreementwith ‘exact’ numerical
one, not only qualitatively, but also quantitatively. It means that the assumed
mathematical model is convenient to be applied for such problems.
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Chapter 6
Non-ideal Energy Harvester with
Piezoelectric Coupling

Advances in silicon electronics and MEMS technology reduced significantly the
power consumption of devices such as wireless sensors, portable and wearable elec-
tronics. A large number of the locations where those devices are used are either
remote or inaccessible. Most of these low-power devices rely heavily on electro-
mechanical batteries as a source of power. However, batteries have a limited life
span and number of recharging cycles. They are also constantly in need for recharg-
ing or replacement. For application such as wireless sensing and remote monitoring,
battery replacement or recharging can be expensive, challenging or impossible in
some cases. Another serious problem with batteries is the fact that they contain
hazardous chemical materials that are harmful to the environment if not recycled.

New technologies have triggered the needs to new energy sources, smaller and
more efficient, so the research about energy harvesting has increased substantially.
(The energy harvesting is the process of converting energy into electric energy.) The
low power design trends combinedwith self-sustainability needs presented an oppor-
tunity for researches to find alternative ways to power such devices and eliminate
or reduce dependency on batteries. Several energy harvesting approaches have been
proposed using solar, thermoelectric, electromagnetic, piezoelectric and capacitive
schemes. In the research about the energy harvesting devices, many researchers have
concentrated their efforts on finding the best configuration and optimization of its
power output. As the kinetic energy is a source of energy easily found in the envi-
ronment, devices that convert kinetic energy into electrical energy has been widely
studied. So, one promising avenue to achieve the goal of harvesting is to exploit
ambient vibration energy source. Vibration energy harvesting technology has been
making significant strides over the last few years as it aims to provide a continuous
and uninterrupted source of power for low-power electronic devices and wireless
sensors. While the idea of converting environmental vibration energy into electrical
energy has been used before, advances in micro-electronics and low power con-
sumption of silicon-based electronics and wireless sensors have given it an added
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significance. Finally, energy harvesting is an alternative to traditional power sources
such as batteries.

Nowadays, a special attention has been devoted to devices that use piezoelectric
elements as means of energy transduction. The conversion of the wasted mechanical
energy to electric energy is done using piezoelectric materials as a transducer. The
wasted mechanical energy is conversed into electrical energy using piezoelectric
materials.

Several different devices for energy harvesting have been developed. In all these
devices, a newway of harvesting energy is the use of piezoelectric material as a trans-
ducer To harvest energy from ambient mechanical vibrations many researchers have
recently applied the piezoceramics which is used as piezomagnetoelastic structure
(Stephen 2006; Erturk et al. 2009; Litak et al. 2012; Bendame et al. 2015). The reuse
of the wasted energy is explored that is very important nowadays to some applica-
tions, including renewable energy. Usually, it is assumed that the relation between
the strain and the electric field in the piezoceramic material is constant and inde-
pendent on strain. Then, the model of the energy harvesting is linear. Unfortunately,
such assumption gives us not a correct prediction of energy harvester performance.
Crawley and Anderson (1990) published the experimental results for the piezoelec-
tric constant on induced strain in thematerial. They claimed that the constant exhibits
a significant dependence on the induced strain. Such strain dependence introduces
nonlinear behavior in the energy harvesting. Using the constitutive laws of piezo-
electric materials, the role of nonlinearity in the electromechanical coupling in the
design of energy harvesting system is taken into account (Triplett and Quinn 2009).
The nonlinear coupling incorporates the more realistic effect of the piezoelements,
because of the constitutive laws of piezoelectric materials specifically the nonlinear
relationship between the strain and the electric field in the piezoceramic material.
In the papers of Tereshko et al. (2004); Iliuk et al. (2013c, 2014a, b); Daqaq et al.
(2014); Rocha et al. (2016) and Litak et al. (2016) energy harvesting using nonlinear
piezoelectric material is considered. The energy harvesting including nonlinearity
in the piezoelectric coupling and a non-ideal forces of excitation are considered by
Cveticanin et al. (2017). It is investigated how the power harvested was influenced
by the nonlinear vibrations of the structure as well as by the influence of the non-
linearities in the piezoelectric coupling.

The chapter is divided into 5 sections. In Sect. 6.1 the constitutive equation for the
piezoceramic material is given. In Sect. 6.2 the ideally excited harvesting system is
considered. Parameters of the constitutive equation of the piezomaterial are obtained
numerically. For these parameter values the averaged harvested energy is calculated.
Analytical approximative solution to equations which describe the harvester system
are obtained. Two special cases are analyzed: one, when the piezomaterial is with
linear properties and the other, when the properties are nonlinear. It has to be men-
tioned that the considered oscillator is of the Duffing type. In Sect. 6.3, harvester
with non-ideal excitation is considered. First the model of the system is formed. An
analytical procedure for solving equations is developed and the steady state solution
is determined. One of the most important value in harvesting is the power which cal-
culated. Based on the power distribution the averaging of the value is done. Finally,
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the analytically obtained results are compared with those obtained numerically. Two
types of piezoelectric material for harvesting are applied: the linear and the nonlinear
one. The influence of nonlinearity is discussed. In Sect. 6.4 harvesting in the non-ideal
systemwhere the torque function is exponential is considered. Numerical simulation
is introduced. Both, the linear and nonlinear energy harvesting is analyzed. For cer-
tain values of parameters of the system, chaos appears. Various methods for chaos
control are introduced. The passive control in the harvesting system is done with
the pendulum. In Sect. 6.5 dynamics of the system with control part is shown. The
calculation is numerical.

6.1 Constitutive Equation of the Piezoceramic Material

Let us consider the energy harvesting system which consists of a mass which is
attached to an excitation which is of ideal or non-ideal type and has a piezoelectric
coupling. On the mass a force, arising from the mechanical elasticity and damping,
as well as the electro-mechanical force from the piezoelectric coupling, acts. If the
displacement of the mass is represented by z(t) the piezoelectric coupling to the
mechanical component is given as (see Triplett and Quinn 2009)

�(z)

C
Q, (6.1)

where �(z) is a strain dependent coupling coefficient C is the piezoelectric capac-
itance and Q is the electric charge developed in the coupled circuit. The voltage V
across the piezoelectric material is described by an electromechanical constitutive
relation

V = −�(z)

C
z + Q

C
. (6.2)

For V = −RQ̇ the Eq. (6.2) transforms into

RQ̇ = �(z)

C
z − Q

C
, (6.3)

where R is electrical resistance. Based on the investigation given by Crawley and
Anderson (1990) it is concluded that the piezoelectric coupling coefficient is nonlin-
ear and is modeled as

�(z) = �lin(1 + �nl |z|), (6.4)

where �lin is a constant, while �nl |z| depends on z. In the following text the ideal
and non-ideal harvesting systems will be considered.
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6.2 Harvesting System with Ideal Excitation

In Fig. 6.1 the model of the vibration-based energy harvesting system is shown
Triplett and Quinn (2009).

Mass m is connected to the excited supporting base. The elastic force in the
connection has a linear and a nonlinear part and is described with a strong nonlinear
displacement function

Fe = kz(1 + a |z|s−1), (6.5)

where s ≥ 1 is the order of nonlinearity (a real integer of noninteger), k is the coef-
ficient of the linear stiffness and a of the nonlinear component. Damping coefficient
is c.

Using the momentum balance to the mass and the elastic (6.5), damping and
electromechanical forces (6.1), assuming that the base excitation is harmonic, i.e.,
the excitation force is a periodical trigonometric time function, we have

mz̈ + kz(1 + a |z|s−1) + bż = F0 sin�t + θ(z)

C
Q, (6.6)

where F0 and � are the amplitude and the frequency of the excitation force. Intro-
ducing the dimensionless coordinates and parameters

x = z

cx
, γ = cx F0C

c2q
, τ = t

√
k

m
, 2εζ = b√

km
, ρ = RC

√
k

m
,

εα = ac2x , ε =
(
cx
cq

)s−1 1

Ck
, q = Q

cq
, ω = �

√
m

k
, (6.7)

Fig. 6.1 Model of the
vibration-based energy
harvesting system
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the nondimensional equation of motion (6.6) is

ẍ + 2εζ1 ẋ + x(1 + εα |x |s−1) − ε�̂(x)q = εγ sin(ωτ ), (6.8)

where (·)= d
dτ

and �̂(x) =
(
cx
cq

)
�(cx x) is the non-dimensional piezoelectric cou-

pling coefficient. For (6.4) we have

�̂(x) = θ(1 + β |x |), (6.9)

where the coupling coefficients are

θ = cx
cq

�lin, β = cx�nl . (6.10)

Substituting (6.7) and (6.9) into (6.3) and (6.8), and assuming that the nonlinearity
is cubic, the nondimensional equations of motion follow as

ẍ + 2εζ1 ẋ + x(1 + εα |x |2) − εθ(1 + β |x |)q = εγ sin(ωτ ), (6.11)

ρq̇ − θ(1 + β |x |)x + q = 0. (6.12)

Analyzing (6.11) and (6.12) it can be seen that the behavior of the system depends
on a set of parameters ε, γ, α, θ, ψ and β. In the relation (6.9) due to nondimension-
alization two unspecified parameters cx and cq are introduced. Triplett and Quinn
(2009) suggested to choose these values and to eliminate the direct influence of two
non-dimensional parameters from the set (ε, γ, α, θ, ψ). For example, ε and γ are
fixed and the influence of α, θ, β are varied. Then, the influence of these parameters
on the response of the system is obtained. Based on ε and γ the appropriate values
of cx and cq are calculated. Using this conception, du Toit and Wardle (2007) cal-
culated the dimensional and nondimensional parameters of system for a = 0 and
�(x) = �lin = const (see Table6.1).

Table 6.1 System parameters for cq/cx = 4.57 × 10−3 N/V

Equivalent stiffness, k 4.59 ×103 N/m

Mechanical damping, c 0.218Ns/m

Equivalent mass, m 9.12 ×10−3 kg

Electrical resistance, R 105 ×103 �

Piezoelectric capacitance, C 8.60 ×10−8 F

Linear piezoelectric coefficient, �lin 4.57 ×10−3 N/V

ε 0.0528

ξ 0.3180

ρ 6.41

θ 1

For these parameter values the energy harvesting in the system is calculated
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The electrical power harvested from the mechanical component is V = RQ̇.

Rewriting the relation in the nondimensional form, it is

P = ρq̇2. (6.13)

It is of special interest to calculate the averaged value

Pavg = 1

T

T∫
0

P(t)dt. (6.14)

Using the result of numerical integration of (6.11) and (6.12) for zero initial condi-
tions and the parameter values

γ = 2.00, ε = 0.10, ζ = 0.25, α = 0.25,

ρ = 2.00, θ = 1.00, β = 1.00, ω = 1.00, (6.15)

we plot the x − t curve in Fig. 6.2a and the P − t curve in Fig. 6.2b.
In Fig. 6.3 the average power during a forcing cycle generated by the energy

harvesting system as a function of the excitation frequency is shown.

Fig. 6.2 a x − t diagram
and b P − t diagram with
average power harvested
(solid line) (Triplett and
Quinn 2009)
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Fig. 6.3 Average power
harvested versus frequency
(Triplett and Quinn 2009)

6.2.1 Analytical Procedure

For further analysis it is of interest to find the solution of the coupled equations (6.11)
and (6.12) of the harvesting system. The approximate solving procedure based on
the Lindstedt–Poincare perturbation method is developed (Triplett and Quinn 2009).
For the new time variable

τ ∗ = ωτ + φ, (6.16)

the corresponding derivatives are

d

dτ
= d

dτ ∗
dτ ∗

dτ
= ω

d

dτ ∗ ,

d2

dτ 2
= d

dτ
(ω

d

dτ ∗ ) = ω2 d2

dτ ∗2 , (6.17)

where φ is a phase angle. Substituting (6.16) and (6.17) into (6.11) and (6.12) we
have

ω2 d
2x

dτ ∗2 + x = εγ sin(τ ∗ − φ)

−2εζω
dx

dτ ∗ − εαx3 + εθ(1 + β |x |), (6.18)

ρω
dq

dτ ∗ − θ(1 + β |x |)x + q = 0. (6.19)

Let us assume the series expansion for x and q in the form

x = x0 + εx1 + ..., q = q0 + εq1 + ... (6.20)
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and the near resonant excitation

ω = 1 + εσ. (6.21)

Substituting (6.20) and (6.21) into (6.18) and separating the terms with the same
order of the small parameter it is

ε0 : d2x0
dτ ∗2 + x0 = 0, (6.22)

ε1 : d2x1
dτ ∗2 + x1 = γ sin(τ ∗ − φ) − 2σ

d2x0
dτ ∗2

− 2ζ1
dx0
dτ ∗ − αx30 + θ(1 + β |x0|)q0, (6.23)

...

while for (6.23), we have

ε0 : ρ
dq0
dτ ∗ − θ(1 + β |x0|)x0 + q0 = 0, (6.24)

...

Solution of (6.22) is
x0 = X0 sin τ ∗, (6.25)

in which the amplitude X0 is unknown. Substituting (6.25) into (6.24), we have

F(τ ) = 0, (6.26)

where

ρ
dq0
dτ ∗ + q0 = θ(1 + β

∣∣X0 sin τ ∗∣∣)X0 sin τ ∗ ≡ F(τ ∗). (6.27)

Equation (6.26) with (6.27) can be solved via convolution integral as

q0(τ
∗) = q0(0) exp(−τ ∗/ρ) + exp(−τ ∗/ρ)

ρ

τ∫
0

F(t) exp(t/ρ)dt. (6.28)

Requirement that the solution has to be periodic with 2π gives

q0(τ
∗) = exp(−τ∗/ρ)

ρ

⎛
⎝

τ∗∫

0

F(t) exp(t/ρ)dt + 1

exp(T/ρ) − 1

T∫

0

F(t) exp(t/ρ)dt

⎞
⎠ .

(6.29)
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Substituting (6.29) into (6.23) we obtain

d2x1
dτ ∗2 + x1 = γ sin(τ ∗ − φ) + 2σX0 sin τ ∗

− 2ζX0 cos τ ∗ − 1

4
αX3

0

(
3 sin τ ∗ − sin(3τ ∗)

)
+ θ(1 + β |x0|)q0. (6.30)

Basedon (6.25) and (6.29) the electromechanical coupling θ(1+β |x0|)q0 represented
in a Fourier expansion is

θ(1 + β |x0|)q0 = θ2X0

π

(a0
2

+
∑ (

ak cos(kτ
∗) + bk sin(kτ

∗)
))

, (6.31)

with

θ2X0

π
ai = 1

π

2π∫
0

θ(1 + β |x0|)q0 cos(kt)dt, (6.32)

θ2X0

π
bi = 1

π

2π∫
0

θ(1 + β |x0|)q0 sin(kt)dt. (6.33)

For the special case when the piezoelectric nonlinearity is x0 |x0|, using (6.31) the
Eq. (6.30) is

d2x1
dτ ∗2 + x1 = γ sin(τ ∗ − φ) + 2σX0 sin τ ∗

− 2ζX0 cos τ ∗ − 1

4
αX3

0

(
3 sin τ ∗ − sin(3τ ∗)

)

+ θ2X0

π

(a0
2

+ a1 cos τ ∗ + b1 sin τ ∗
)

, (6.34)

where a0, a1 and b1 are constants derived from the Fourier expansion. Separating
the secular terms from (6.34), we obtain

γ sin φ =
(

θ2a1(X0)

π
− 2ζ

)
X0,

γ cosφ = 3

4
αX3

0 −
(

θ2b1(X0)

π
+ 2σ

)
X0, (6.35)
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where

a1(X0) = −X2
0β

2

2

⎡
⎢⎣ πρ

1 + 4ρ2
+ 1 − exp(−π/ρ)(

1 + 1
4ρ2

)2
(1 + exp(−π/ρ))

⎤
⎥⎦

−4X0βρ

1 + ρ2
− πρ

1 + ρ2
, (6.36)

b1(X0) = −X2
0β

2

⎡
⎢⎣π(1 + 8ρ2)

4(1 + 4ρ2)
− ρ(1 − exp(−π/ρ))(

1 + 1
4ρ2

)2
(1 + exp(−π/ρ))

⎤
⎥⎦

+ 16X0β

3(1 + ρ2)
+ π

1 + ρ2
. (6.37)

Based on (6.35) the amplitude and phase for the stationary state are, respectively

γ2 =
(

θ2a1(X0)

π
− 2ζ1

)2

X2
0 +

[
3

4
αX3

0 −
(

θ2b1(X0)

π
+ 2σ

)
X0

]2

, (6.38)

and

tan φ = θ2a1(X0) − 2ζ1π

0.75αX2
0π − θ2b1(X0) − 2σπ

. (6.39)

Solving Eq. (6.38), we obtain X0. Substituting into (6.29) the charge q0(τ ∗) follows.
Further, two types of energy harvester will be considered: one, with piezoelement

with linear properties and the other, where the properties of the piezoelement are
nonlinear.

6.2.2 Harvester with Linear Piezoelectricity

If the piezoelectric coupling is linear and β = 0, the relation for amplitude of the
response (6.38) reduces to

γ2 =
(

θ2ρ

1 + ρ2
+ 2ζ1

)2

X2
0 +

[
3

4
αX2

0 −
(

θ2

1 + ρ2
+ 2σ

)]2

X2
0 . (6.40)

The relation (6.40) has the same form as the amplitude-frequency relation for the
forced Duffing oscillator.
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The averaged harvested power (6.14) is for amplitude Q0 of the charge q0(τ ∗)

Pavg = ρ

2
Q2

0 = X2
0

2

θ2ρ

1 + ρ2
. (6.41)

For further analysis, let us introduce the parametric variable s as

2s = 3

4
αX2

0 −
(

θ2

1 + ρ2
+ 2σ

)
. (6.42)

The detuning parameter is then

σ = 3

8
αX2

0 − s − θ2

2(1 + ρ2)
,

and the amplitude

X0 = γ√(
θ2ρ
1+ρ2

+ 2ζ1
)2 + (2s)2

. (6.43)

For s = 0, the maximum amplitude is

X0max = γ

2(ζ1 + ζeq)
, (6.44)

while the maximum average power is

Pmax = 1

8
(
ζ1 + ζeq

)2 θ2ργ2

1 + ρ2
, (6.45)

at

σmax = 3

32

αγ2

(
ζ1 + ζeq

)2 − θ2

2(1 + ρ2)
, (6.46)

where the parameter of electromechanical coupling is given as an equivalent damping

ζeq = 1

2

θ2ρ

1 + ρ2
. (6.47)

In Fig. 6.4 the average nondimensional power harvested as a frequency function
for β = 0 (linear piezoelectricity), γ = 2.00, ζ = 0.25, ρ = 1.00 is plotted. In
Fig. 6.4a the system with linear stiffness (α = 0) and in Fig. 6.4b with nonlinear
stiffness (α = 0) and various values of θ is plotted.

From Fig. 6.4a is evident that increase of θ broadens the frequency-amplitude
response andmoves the peak to left. Besides, the peak value increaseswith increasing
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Fig. 6.4 Average power harvested versus frequency for: a α = 0, and b α = 0.25, and θ = 0.50
(____), θ = 1.0 (- - - black), θ = 1.50 (- - - gray), θ = 2.0 (.... gray), θ = 3.00 (-. -. .- gray)
(Triplett and Quinn 2009)

Fig. 6.5 a Maximum power harvested versus θ, b Maximum power harvested versus σmax for
α = 0.00 (—) and α = 0.25 (- - -) (Triplett and Quinn 2009)

of θ up to a maximal value and than decreases. The behavior is similar as for the
oscillator with damping. In Fig. 6.4b it is shown that the nonlinearity with positive
stiffness gives the effect of hardening and the curves are bending on right.

From (6.45) it is evident that the maximal power harvested is independent on
the parameter of nonlinearity α. In Fig. 6.5a the Pmax − θ curve and in Fig. 6.5b the
Pmax − θmax curve, according to (6.45) and (6.46), for β = 0, γ = 2.00, ζ = 0.25,
ρ = 1.00 are plotted. The largest power is harvested for θ = 2ζ1(1+ρ2)

ρ
and has the

value

P = γ2

4ζ1
. (6.48)

This value depends on the nondimensional electrical parameter ρ.
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6.2.3 Harvester with Nonlinear Piezoelectricity

For β �= 0 the amplitude equation (6.38) is

γ2 =
(

θ2a1(X0)

π
− 2ζ1

)2

X2
0 + (2s)2X2

0, (6.49)

which occurs at detuning frequency

σ = 3

8
αX2

0 − s − θ2b1(X0)

2π
. (6.50)

The relations depend on a1(X0) and b1(X0) given with (6.36) and (6.37).
For s = 0 the maximum amplitude is

X0max = γ
θ2a1(X0)

π
− 2ζ1

, (6.51)

for

σ = 3

8
αX2

0 − θ2b1(X0)

2π
. (6.52)

The influence of the nonlinearity in the coupling coefficient is investigated through
the harvested power. Solutions of (6.49) and (6.50) with (6.36) and (6.37) are deter-
mined numerically.

In Fig. 6.6 based on these values the averagedpower harvested - frequencydiagram
for θ = 1.00, ω = 1 + εσ and various values of β is plotted. It is seen that the
increase of θ broadens the frequency-amplitude response and moves the peak to left.
Besides, the peak value increases with increasing of θ up to a maximal value and
than decreases.

Fig. 6.6 Average harvested
versus frequency: β = 0.00
(___), β = 0.50 (- - -),
β = 1.00 (-.-.-), β = 2.00
(. . .) (Triplett and Quinn
2009)
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Fig. 6.7 Maximum power
harvester versus nonlinear
coupling coefficient β:
analytical (___), numerical
(- - -). Marked points
correspond to the power
frequency curves shown in
previous figure (Triplett and
Quinn 2009)

Fig. 6.8 Maximum power
harvested versus coupling
coefficient θ: β = 0.00
(___), β = 0.50 (- - -),
β = 1.00 (-.-.-), β = 2.00
(. . .) (Triplett and Quinn
2009)

In Fig. 6.7 the trend in Pmax as a function of the nonlinear piezoelectric coefficient
β is treated for θ = 1.00, γ = 2.00, α = 0.25, ζ = 0.25, ρ = 1.00. It is shown that
for β < 0.5 the maximum of power harvester increases with β, but for β > 0.5 the
increase of β causes the decrease of the maximum of the power harvester.

In Fig. 6.8 the maximum power harvested versus the coupling coefficient θ for
various values of β and γ = 2.00, α = 0.25, ζ = 0.25, ρ = 1.00 is plotted.

For certain value of β the increase of θ causes the sharp increase of the maximum
of the power harvester and after that the power harvester decreases with θ. Power
harvester reaches its optimum for relatively low values of θ.

Remark 2 The analytically obtained results are valid only for small nonlinear piezo-
electricity. If we include the electromechanical coupling with strong nonlinearity we
cannot predict the power harvester with high accuracy. Then, improvement of the
model is necessary.
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6.3 Harvesting System with Non-ideal Excitation

In this section the piezoelectric harvesting in a real mechanical system which con-
tains an unbalanced motor settled on a clamped beam is considered (see Crawley and
Anderson 1990). The system is non-ideal, i.e., the motion of the motor has an influ-
ence on the beam motion, but also the vibration of the beam affects the rotor rotation
(Cveticanin 2010; Cveticanin and Zukovic 2015a; Cveticanin and Zukovic 2015b).
The effect of the piezo element is incorporated as nonlinear, because the constitutive
laws of piezoelectric materials specify the nonlinear relationship between the strain
and the electric field in the piezoceramic material (Triplett and Quinn 2009). Due to
nonlinear properties of the oscillator and of the piezoelectric material the model of
the system is strong nonlinear.

In this section the influence of nonlinear properties of the oscillator and of the
piezoelement on energy harvesting in a non-ideal system is investigated. The paper is
divided into 5 subsections. In the Sect. 6.3.2, the model of the one degree-of-freedom
non-ideal system with piezoelectric element is formed. The system is described with
a system of three coupled differential equations where two of them correspond to
the non-ideal motor-structure system and the third to the energy harvesting. In the
Sect. 6.3.3, an analytical method for solving the equations for the resonant case is
developed. The averaging procedure is modified for solving the problem. The steady-
state solution is considered. The jump phenomena the so called ‘Sommerfeld effect’
are discussed. The special attention is given to calculation of the harvesting power.
The influence of the nonlinear properties of the oscillator and of the piezoelectric
material on the power harvesting is discussed. In Sect. 6.3.4 the analytically obtained
solutions are compared with numerically obtained ones. The results are given in
Cveticanin et al. (2017).

6.3.1 Model of the Non-ideal Mechanical System
with Harvesting Device

The non-ideal energy harvester consists of a cantilever beam, covered with piezo-
electric layers on the both sides, and a direct current (DC) electric motor attached at
the free end of the beam. The rotor has an unbalanced mass. On the clamped end,
piezoelectric elements are connected via electrodes to an electrical load, for example,
a resistor (Fig. 6.9). Model of the system is shown in Fig. 6.10.

The cantilever beam whose mass ism1 is covered with piezoelectric layers P1 and
P2 on the both sides. A direct current (DC) electric motor is attached at the beamwith
nonlinear cubic rigidity and linear damping properties. The rotor has an unbalance
mass m2. The piezoelectric elements are connected via electrodes to an electrical
load, for example, a resistor R (Fig. 6.10).

Mass of the system (M = m1 + m2) is moving oscillatory in x direction. On
the mass a force arising from the mechanical elasticity and damping, as well as, the
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Fig. 6.9 Non-ideal energy
harvester (Iliuk et al. 2013a)

Fig. 6.10 Model of the one
degree-of-freedom non-ideal
system with piezoelectric
harvester

electromechanical force from the piezoelectric coupling act. The elastic force in the
spring is assumed to be of stable hardening Duffing type with potential energy

U = 1

2
k1x

2 + 1

4
k3x

4, (6.53)

where k1 and k3 are coefficients of linear and cubic rigidity. The dissipative function
due to viscous damping is

� = 1

2
cẋ2, (6.54)

where c is the damping coefficient.
As alreadymentioned in the Sect. 6.1, the piezoelectric coupling to themechanical

component is given as (see Triplett and Quinn 2009)

�(x)

C
Q, (6.55)

where �(x) is a strain dependent coupling coefficient, C is the piezoelectric capac-
itance and Q is the electric charge developed in the coupled circuit. The voltage V
across the piezoelectric material is described by an electromechanical constitutive
relation (du Toit and Wardle 2007)
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V = −�(x)

C
x + Q

C
. (6.56)

For V = −RQ̇ the Eq. (6.56) transforms into

RQ̇ = �(x)

C
x − Q

C
, (6.57)

where R is electrical resistance. Based on the investigation given by Crawley and
Anderson (1990) it is concluded that the piezoelectric coupling coefficient is nonlin-
ear and is modeled as

�(x) = �lin(1 + �nl |x |), (6.58)

where �lin is a constant, while �nl |x | depends on x . In the following text the non-
ideal harvesting systems will be considered. Namely, the rotor of the motor whose
moment of inertia is J has an unbalance m2 which is settled on the distance d to the
center of the rotor shaft. Position of the unbalance mass is defined with the angle
position ϕ. The motor-structure system has two degrees-of-freedom given with two
generalized coordinates x and ϕ. Lagrange’s equations of motion in general form
are

d

dt

∂T

∂ ẋ
− ∂T

∂x
+ ∂U

∂x
+ ∂�

∂ ẋ
= Qx ,

d

dt

∂T

∂ϕ̇
− ∂T

∂ϕ
+ ∂U

∂ϕ
+ ∂�

∂ϕ̇
= Qϕ, (6.59)

where T is the kinetic energy, and Qx and Qϕ are generalized forces. The kinetic
energy of the system is

T = 1

2
(m1 + m2)ẋ

2 + 1

2
J ϕ̇2 + 1

2
m2v

2
2,

where M = m1 + m2 is the total mass of the system and v2 is the velocity of
unbalance. For position coordinates

x2 = x + d cosϕ, y2 = d sinϕ,

the velocity follows as

v2 =
√
ẋ22 + ẏ22 =

√
ẋ2 + d2ϕ̇2 − 2dẋϕ̇ sinϕ. (6.60)

Substituting (6.60) into (6.53) we obtain

T = 1

2
(m1 + m2)ẋ

2 + 1

2
(J + m2d

2)ϕ̇2 − m2dẋϕ̇ sinϕ. (6.61)
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Themotion of the system is excitedwith themotor torque. The torque of themotor
contains two terms: the characteristic of the motor L (ϕ̇) and the resisting moment
H (ϕ̇) due primarily to windage of the rotating parts outside the motor

M (ϕ̇) = L (ϕ̇) − H (ϕ̇) .

Generally, L (ϕ̇) and H (ϕ̇) are determined experimentally. Various types of math-
ematical description of the motor property are suggested. One of the most often
applied and the simplest one is the linear mode which is a function of the angular
velocity ϕ̇

M (ϕ̇) = M0

(
1 − ϕ̇

�0

)
, (6.62)

and depends on two constant parameters M0 and �0 which define the limited source
of power as the angular velocity increases. The expression (6.62) defines the char-
acteristic curve of the motor, where for angular velocities greater than �0 the torque
reduces to zero and when the angular velocity is zero the torque is maximum. The
Eq. (6.62) is valid for positive values of torque and angular velocity. Based on (6.55)
and for the suggested motor torque functions the generalized forces are

Qx = �(x)

C
Q, Qϕ = M(ϕ̇). (6.63)

Substituting (6.53), (6.54), (6.61) and (6.63) into (6.59) andusing (6.57) the following
system of equations is obtained

(m1 + m2)ẍ + k1x + k3x
3 + cẋ − �(x)

C
Q (6.64)

= m2d(ϕ̈ cosϕ − ϕ̇2 sinϕ),

(J + m2d
2)ϕ̈ = m2dẍ cosϕ + M(ϕ̇), (6.65)

RQ̇ = �(x)

C
x − Q

C
. (6.66)

The equations are valid if the gravity potential energy is neglected. The Eqs. (6.64)–
(6.66) are coupled and nonlinear. In this paper the calculation for the linear torque
function (6.62) is done.

Introducing the dimensionless functions

z = x

d
, τ = ωt, (6.67)
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and parameters

ω2 = k1
m1 + m2

, εζ1 = c

(m1 + m2)ω
, εμ1 = m2

m1 + m2
, ρ = RωC,

q = Q

C
, θ = d�lin, εθn = d�nl , ε = C

d2ω2
,

εkz = k3d2

k1
, εη1 = m2d2

J + m2d2
, εM(ϕ′) = M(ϕ̇)

(J + m2d2)ω2
. (6.68)

into Eqs. (6.64)–(6.66) we have

z′′ + z = −εkzz
3 − εζ1z

′ + εθ(1 + εθn |x |)q (6.69)

+εμ1(ϕ
′′ cosϕ − ϕ′2 sinϕ),

ϕ′′ = εη1z
′′ cosϕ + εM(ϕ′), (6.70)

ρq ′ + q = θ(1 + εθn |z|)z. (6.71)

For (6.62) the dimensionless motor torque is

εM(ϕ′) = εM0

(
1 − ω

�0
ϕ′

)
, (6.72)

where εM0 = M0
(J+m2d2)ω2 . Neglecting the terms with the second order small para-

meter O(ε2) the Eqs. (6.69)–(6.72) are transformed into

z′′ + z = −εkzz
3 − εζ1z

′ + εθq − εμ1ϕ
′2 sinϕ, (6.73)

ϕ′′ = εη1z
′′ cosϕ + εM0

(
1 − ω

�0
ϕ′

)
, (6.74)

ρq ′ + q = θ(1 + εθn |z|)z. (6.75)

Introducing the new variables

z1 = z, z2 = z′, ϕ′ = �,

the Eqs. (6.73)–(6.75) are transformed into five coupled first order differential equa-
tions

z′
1 = z2,

z′
2 = −z1 − εkzz

3
1 − εζ1z2 + εθq − εμ1�

2 sinϕ,

ϕ′ = �,

�′ = εη1z
′
2 cosϕ + εM0

(
1 − ω

�0
�

)
,

ρq ′ + q = θ(1 + εθn |z1|)z1. (6.76)

Our aim is to solve the system of Eq. (6.76).
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6.3.2 Analytical Solving Procedure

For simplicity let us rewrite the Eq. (6.76) by introducing the new variables a and ψ
which satisfy the relations

z1 = a cos(ϕ + ψ), (6.77)

and

z2 = −a� sin(ϕ + ψ), (6.78)

where a and ψ are time dependent functions. Comparing the assumed relation (6.78)
with the first time derivative of (6.77) the following constraint exists

a′ cos(ϕ + ψ) − aψ′ sin(ϕ + ψ) = 0. (6.79)

Substituting (6.77), (6.78) and its time derivative into (6.76)1 it follows

−a′� sin(ϕ + ψ) − a�ψ′ cos(ϕ + ψ) − a�2 cos(ϕ − ψ)

= −a cos(ϕ + ψ) − εζ1a sin(ϕ + ψ) − εkza
3 cos3(ϕ + ψ)

−εμ1�
2 sinϕ + εθq. (6.80)

After some modification of (6.79) and (6.80) the Eq. (6.76)1,2 are transformed into
two coupled first order equations

a′ = a
1 − �2

�
sin(ϕ + ψ) cos(ϕ + ψ) − εζ1a sin

2(ϕ + ψ)

+εkza3

�
cos3(ϕ + ψ) sin(ϕ + ψ)

+εμ1� sinϕ sin(ϕ + ψ) − εθ

�
q sin(ϕ + ψ), (6.81)

ψ′ = 1 − �2

�
cos2(ϕ + ψ) − εζ1 sin(ϕ + ψ) cos(ϕ + ψ)

+εkza2

�
cos4(ϕ + ψ)

+εμ1�

a
sinϕ cos(ϕ + ψ) − εθ

a�
q cos(ϕ + ψ). (6.82)

Further, eliminating the terms with small values O(ε2) and higher, the Eq. (6.76)3−5

are
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ϕ′ = �,

�′ = −εη1a�2 cosϕ cos(ϕ + ψ) + εM0

(
1 − ω

�0
�

)
,

q ′ = −1

ρ
q + θ

ρ
(1 + εθn |a cos(ϕ + ψ)|)a cos(ϕ + ψ). (6.83)

Analyzing the five Eqs. (6.81)–(6.83) it is evident that for the near resonant case
when � ≈ 1 and (1 − �) = O(ε) the variables a′, ψ′ and �′ are of the order
O(ε). For simplification, the averaging procedure over the period of the function ϕ
is introduced. The averaged Eqs. (6.81)–(6.83) are

a′ = −1

2
εζ1a + 1

2
εμ1� cosψ − εθ

�
〈q sin(ϕ + ψ)〉 , (6.84)

ψ′ = 1 − �2

2�
+ 3

8

εkza2

�
− 1

2

εμ1�

a
sinψ − εθ

a�
〈q cos(ϕ + ψ)〉 , (6.85)

ϕ′ = �, (6.86)

�′ = −1

2
εη1a�2 cosψ + εM0

(
1 − ω

�0
�

)
, (6.87)

q ′ = −1

ρ
q + θ

ρ
(1 + εθn |a cos(ϕ + ψ)|)a cos(ϕ + ψ). (6.88)

where 〈•〉 = 1
2π

2π∫
0

(•) dϕ.

6.3.3 Steady-State Motion

For a′ = 0, ψ′ = 0 and �′ = 0, the steady state motion is

a = aS = const., ψ = ψS = const., � = �S = const., (6.89)

and

ϕ = �St. (6.90)

Substituting the conditions for the steady-state motion (6.89) and (6.90) into (6.88)
we have

q ′ = −1

ρ
q + θ

ρ
(1 + εθn |aS cos(�St + ψS)|)aS cos(�St + ψS). (6.91)
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Analyzing the relation (6.91) it is obvious that the harvesting function q is periodical
and depends on the amplitude of vibration of the system. Using the Fourier series
expansion

|cos(�St + ψS)|) cos(�St+ψS) = 8

3π
cos(�St+ψS)+ 8

15π
cos(3(�St+ψS))+...

(6.92)

and introducing the first term into (6.92), we obtain

q ′ = −1

ρ
q +

(
θ

ρ
aS + εθn

8

3π2

θ

ρ
a2S

)
cos(�St + ψS). (6.93)

The particular solution of (6.93) is

q = qS = D cos(�St + ψS + δ), (6.94)

where

D = θaS(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

, tan δ = −ρ�S. (6.95)

Introducing (6.94) into the steady-state equations (6.84), (6.85) and (6.87)

−1

2
εζ1aS + 1

2
εμ1�S cosψS − εθ

�
〈q sin(�St + ψS)〉 = 0,

1 − �2
S

2�S
+ 3

8

εkza2S
�S

− 1

2

εμ1�S

aS
sinψS − εθ

aS�S
〈q cos(�St + ψS)〉 = 0,

−1

2
εη1aS�

2
S cosψS + εM0

(
1 − ω

�0
�S

)
= 0,

it is

− 1

2
εζ1aS + 1

2
εμ1�S cosψS − εθ

2�S
D sin δ = 0,

1 − �2
S

2�S
+ 3

8

εkza2S
�S

− 1

2

εμ1�S

aS
sinψS − εθ

aS�S
D cos δ = 0,

−1

2
εη1aS�

2
S cosψS + εM0

(
1 − ω

�0
�S

)
= 0. (6.96)

From (6.96) it is evident that the harvester has an influence on the system through
parameters D and δ. Vibrations depend on the linear and nonlinear coefficients of
the piezoelectric element.
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Using (6.95) the relations (6.96) yield

− εζ1aS + εμ1�S cosψS − εθ2ρ
aS(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

= 0,

1 − �2
S

�S
+ 3

4

εkza2S
�S

− εμ1�S

aS
sinψS − εθ2

�S

(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

= 0,

−1

2
εη1aS�

2
S cosψS + εM0

(
1 − ω

�0
�S

)
= 0. (6.97)

Relations (6.97) are three coupled algebraic equations which give us the steady state
amplitude aS , phase ψS and angular velocity �S . Eliminating the variable ψS in
(6.97)1 and (6.97)2, we have the amplitude -frequency characteristic

(εμ1�S)
2 =

(
εζ1aS + ερθ2

aS(3π + 8εaSθn)

3π(1 + ρ2�2)

)2

+
⎛
⎝1 − �2

S

�S
aS + 3

4

εkza3S
�S

− εθ2

�S

aS(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

⎞
⎠

2

. (6.98)

The phase angle is obtained according to (6.97)1 and (6.97)2 as

ψS = tan−1

1 − �2
S

�S
aS + 3

4

εkza3S
�S

− εθ2

�S

aS(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

εθ2ρ
aS(3π + 8aSεθn)

3π
√
1 + ρ2�2

S

+ εζ1aS

. (6.99)

From Eq. (6.97)1 and (6.97)3 it is

εM0(1 − ω

�0
�S) = εη1�Sa2S

2εμ1

[
εζ1 + ερθ2

(3π + 8εaSθn)

3π(1 + ρ2�2)

]
. (6.100)

The Eq. (6.100) gives the relation between aS , �S and �0. For the certain value of
�0 the Eqs. (6.98) and (6.100) give the aS −�S relation. In Fig. 6.11 the steady-state
amplitude - frequency diagram (thick line) and the intersecting curves which take
into consideration the properties of the motor (thin line) are plotted. The numerical
data are:

ε = 0.1, kz = 0.025, η1 = 1, μ1 = 1, ς1 = 1, ρ = 1, ω = 1, M0 = 2.
(6.101)
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Fig. 6.11 a Amplitude - frequency diagram (thick line) and motor property curves (thin line),
b Notation of the number of intersections between curves (1, 2 and 3)

In Fig. 6.11b the number of intersections between the curves is signed. It can be seen
that the Eqs. (6.98) and (6.100) have one, two or three solutions.

6.3.4 Harvested Energy

The harvested power from the mechanical component is V 2/R. Using the non-
dimensional values the harvested power is given as

P = ρq ′2. (6.102)

According to (6.94) the steady-state power - time function is

P = ρD2�2
S sin

2(�St + ψS + δ),

where D and δ correspond to (6.95). After elimination of the transient of the system
response the averaged harvested power is

Pavg = 1

T

T∫
0

P(τ )dτ = ρD2�2
S

1

2π/�S

2π/�S∫
0

sin2(�St + ψS + δ)dt

= 1

2
ρD2�2

S, (6.103)

i.e., due to (6.95)1

Pavg = ρ�2
S

θ2a2S(3π + 8aSεθn)2

18π2(1 + ρ2�2
S)

.
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For the case of linear harvester, the averaged power is

Pavgl = ρ�2
Sθ

2a2S
2(1 + ρ2�2

S)
. (6.104)

Comparing the averaged powers for the nonlinear and linear harvesters it is

Pavg

Pavgl
=

(
1 + 8εθnaS

3π

)2

. (6.105)

It is obvious that the ratio of powers depend on the steady state amplitude of vibra-
tions and on the nonlinear coefficient of the piezoelectric element. However, the
steady state amplitude of vibration is the function of properties of vibrating sys-
tems, angular velocity of rotation and the motor torque properties, but also of the
linear and nonlinear piezoelectric constants. The higher the value of the steady-state
amplitude of vibration, the higher is the value of the harvested power of the nonlinear
piezoelectric element in comparison to the linear one. The relation is quadratic.

6.3.5 Comparison of the Analytical and Numerical Solutions

Introducing the new variables

x1 = z, x2 = z′, x3 = ϕ, x4 = ϕ′, x5 = q, (6.106)

the Eqs. (6.73)–(6.75) in the state space are

x ′
1 = x2,

x ′
2 = −x1 − εkzx

3
1 − εζ1x2 + εθ(1 + θn |x1|)x5 + εμ1

(
x ′
4 cos x3 − x24 sin x3

)
x ′
3 = x4,

x ′
4 = ε M (x4) + εη1x

′
2 cos x3,

x ′
5 = 1

ρ
(θ(1 + θn |x1|)x1 − x5) . (6.107)

This form is appropriate for numerical simulation of the problem. To analyze the
nonlinear dynamic of non-ideal system, we used the following values for the para-
meters

ε = 0.10, ζ1 = 1, kz = 0.025, η1 = 1, M0 = 2,

μ1 = 1, ρ = 1, θ = 0.5, θn = 0.1, ω = 1, (6.108)
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and the initial conditions

x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) = 0, x5(0) = 0. (6.109)

Based on (6.98) and (6.100) for the numerical data (6.101) the steady state ampli-
tude aS and frequency �S as functions of �0 are plotted (Fig. 6.12).

For �0 whose values are between 2a and 2b there are three solutions for steady
state amplitude and frequency, aS and �S , respectively. In Fig. 6.13 the aS − �0

diagrams obtained numerically by solving the Eq. (6.121) are plotted. In Fig. 6.13a
the linear piezoelement with θ = 0.5 and θn = 0 is considered, while in Fig. 6.13b
the nonlinear piezoelement with θ = 0.5 and θn = 0.5 is treated. Two regimes are
investigated: the case when �0 is increasing and when �0 is decreasing.

It canbe seen that there is an excellent agreement between analytical andnumerical
results not only for the linear but also nonlinear piezoelectric element. Comparing
Fig. 6.12 with Fig. 6.13 it is evident that only two of the three solutions in the region
bounded with 2a and 2b lines are stable. One of them is unstable.

Fig. 6.12 a aS − �0 curve with boundary values in 2a and 2b; b �S − �0 curve with boundary
values in 2a and 2b

Fig. 6.13 aS − �0 curve for: a θ = 0.5 and θn = 0; b θ = 0.5 and θn = 0.5. Thinline is the
analytical solution, square is the numerical solution for increasing of�0 and circle is the numerical
solution for decreasing of �0
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Comparing the curves in Fig. 6.13a, b it can be concluded that the maximal ampli-
tude is higher for the linear piezoelement than for the nonlinear one. The nonlinearity
decreases the maximal amplitude.

We separate the analysis of energy harvesting in two cases: linear energy harvest-
ing and energy nonlinear harvesting. We seek the maximal amplitude of vibration
in the graph of the resonance curve for different values of the control parameter �0.
The power harvested was obtained by Eq. (6.101).

6.3.6 Linear Energy Harvester

In Fig. 6.14 the properties of the linear energy harvester as the function of �0 are
plotted. The linear coefficient θ in linear harvesting has various values, while the
coefficient of nonlinearity is zero θn = 0.

In Fig. 6.14 the amplitude D of electric charge and the averaged harvested energy
as functions of control parameter �0 are plotted. The resonance curves of the ampli-
tude were obtained as follows: for each value of the control parameter the maximal
amplitudes of oscillations are captured. For the linear energy harvester it is evident
that the maximal amplitude of electric charge and also the maximal averaged har-
vested energy are higher for higher values of parameter θ. The system reaches the
maximum amplitude D and the maximum power harvested for the same value of
�0. For the control parameter the response of the system is stable in the region of
pre-resonance with a power harvested slightly less than the power harvested in the
resonance region. In the region of post-resonance the amplitude D is smaller and a
considerable reduction in power is captured.

Fig. 6.14 Linear energy harvester: a D − �0 curves; b Pavgl − �0 curves, for θ = 0.25, 0.5, 1
and θn = 0.
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Fig. 6.15 Nonlinear energy harvester: a D−�0 curves; b Pavg −�0 curves, for θn = 0.25, 0.5, 1
and θ = 0.5

6.3.7 Nonlinear Energy Harvesting

Let us consider the nonlinear harvesting where the nonlinear piezoelectric coupling
parameter θn has various values (θn = 1, θn = 3 and θn = 5) and the linear coef-
ficient is θ = 0.5. In Fig. 6.15 the amplitude of electric charge D and the averaged
harvester energy Pavg for a nonlinear system as function of control parameter �0 is
plotted. Fromfigure it can be seen that for higher values of the nonlinear piezoelectric
parameter, the value of the maximal amplitude of electric charge and of the averaged
harvested energy is higher. Namely, by increasing of the nonlinear coupling para-
meter, the maximum power harvested increases. Furthermore, the behavior of the
system remains stable in the region of pre-resonance and in the region of resonance.
The position of maximal values move to higher values of �0 as the coefficient θn
decrease.

After passage through the resonance region the significant decrease of amplitude
D occurs for all values of θn. Consequently, the harvested power is also reduced. In
the post-resonance region the amplitude and energy harvested is small.

6.3.8 Conclusion

It can be concluded:

1. Through obtained results it is concluded that the limited energy source interacts
with system with piezoelectric coupling. Increasing the voltage in DC motor led the
system produce a good power response.

2.Mathematical model of the non-ideal energy harvester shows that a good energy
harvesting is achieved in the resonance region due to inclusion of nonlinearity prop-
erty of the piezoelectric material. The value of maximal energy harvester in the reso-
nant regimedepends on the values of the linear and coupling piezoelectric parameters.
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It is concluded that for higher values of both piezoelectric parameters the harvested
energy is higher.

3. In the post resonance regime when the amplitude of vibration is reduced, even
if stable, energy harvested is also decreased.

4. In the system the Sommerfeld effect occurs. Due to this phenomena beside
stable solutions in the system also instable solutions may exist. To reduce the region
of unstable solutions it is suggested to use piezoelectric element with extremely high
nonlinear parameter. Then, the region of unstable solutions is extremely narrow.

6.4 Harvester with Exponential Type Non-ideal Energy
Source

In this section the piezoelectric harvester presented in the previous section is consid-
ered. The physical properties of the system are as already described and the model is
given in Fig. 6.10. However, the model differs due to the type of the energy source.
Namely, the motor torque is assumed as an exponential function of the angular veloc-
ity of the motor

M(ϕ̇) = V1 exp(−V2ϕ̇), (6.110)

where V1 relates to voltage applied across the armature of the DC motor and V2 is
a constant for each model of considered DC motor. Parameter V1 is suitable to be
the control parameter of the system. The electric charge developed in the coupled
circuit is given by q and the term θ(x)

C q represents the piezoelectric coupling to the
mechanical component, where θ(x) is the strain-dependent coupling coefficient. The
voltage across the piezoelectric material is

V = −θ(x)

C
x + q

C
, (6.111)

and a linear function of electric intensity i = q̇

V = −Rq̇, (6.112)

where C is the piezoelectric capacitance. The governing equations of motion are

(m1 + m2)ẍ + cẋ + k1x + k3x
3 = m2d(ϕ̈ cosϕ − ϕ̇2 sinϕ) + θ(x)

C
q,

(J + m2d
2)ϕ̈ = m2dẍ cosϕ + V1 exp(−V2ϕ̇),

Rq̇ − θ(x)

C
x + q

C
= 0. (6.113)
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Let us introduce the following non-dimensional parameters

ζ1 = c√
k1 (m1 + m2)

, ε = m2

m1 + m2
,

υ = q

q0
, μ1 = V1 (m1 + m2)

k1(J + m2d2)
, μ2 = V1 (m1 + m2)

k1(J + m2d2)
,

M(ϕ′) = μ1 exp(−μ2ϕ
′), β = k1

Mω2
= 1, β1 = k2d2

k1
,

δ1 = m2

m1 + m2
, δ2 = m2k1

(m1 + m2)
2 ,

η1 = m2d2

J + m2d2
, ρ = RC

√
k1

m1 + m2
, (6.114)

and the dimensionless length and the time variable

y = x

d
, (6.115)

τ = ωt, (6.116)

where

ω =
√

k1
m1 + m2

. (6.117)

Based on the result of Crawley and Anderson (1990), the piezocoupling coefficient
is

d(x) = θlin(1 + �nel |x |),

where θlin is the linear and �nel |x | the nonlinear part. The dimensionless piezoelec-
tric coupling coefficient, suggested by Triplett and Quinn (2009) is

d̂(y) = θ(1 + � |y|), (6.118)

where the piezoelectric coefficient is represented by a linear part θ and a nonlinear
part defined by �. The governing equations of motion reduce to

y′′ + y + εβ1y
3 − εθ(1 + � |y|)υ = −εζ1y

′ + ε
(
δ1ϕ

′′ cosϕ − δ2
(
ϕ′)2 sinϕ

)
,

ϕ′′ = εη1y
′′ cosϕ + ε M (

ϕ′) ,

ρυ′ − θ(1 + � |y|)y + υ = 0. (6.119)
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Introducing the new variables

x1 = y, x2 = y′, x3 = ϕ, x4 = ϕ′, x5 = υ, (6.120)

the Eq. (6.119) are rewritten in state space representation

x ′
1 = x2,

x ′
2 = −x1 − εβ1x

3
1 − εζ1x2 + εθ(1 + � |x1|)x5 + ε

(
δ1x

′
4 cos x3 − δ2x

2
4 sin x3

)
x ′
3 = x4,

x ′
4 = ε M (x4) + εη1x

′
2 cos x3,

x ′
5 = (θ(1 + � |x1|)x1 − x5) /ρ. (6.121)

The equations are numerically solved by Iliuk et al. (2013a). The system response,
the beam displacement-time relation, the time variation of the angular velocity and
the harvested power, calculated from the mechanical component V 2/R (see Triplett
andQuinn 2009) and according to the relation for the non-dimensional electric power
harvested

P = ρυ′2, (6.122)

are presented in following figures.

6.4.1 Numerical Simulation Results

Parameter values, used to analyze the nonlinear dynamics of non-ideal system, are:

ε = 0.10, εζ1 = 0.10, εβ1 = 0.25, εη1 = 0.60,

εδ1 = εδ2 = 0.40, ρ = 1, μ2 = 1.50, (6.123)

and the initial conditions

x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) = 0, x5(0) = 0. (6.124)

The resonance curves of the amplitude were obtained as follows: for each value
of the control parameter the maximal amplitudes of oscillations are captured. Thus,
for μ1 = 0.690 the region of resonance is reached and the amplitude of vibration of
the system has maximal value.

Figure6.16 illustrates the response of the systemwithout energy harvesting,where
the both piezoelectric coupling parameters are zero: linear parameter θ = 0.00 and
nonlinear � = 0.00.
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Fig. 6.16 System response without piezoelectric coupling θ = 0.00 and � = 0.00: a resonance
curve, b displacement of the beam, c maximum power harvested, d angular velocity (Iliuk et al.
2013a)

We separate the analysis of energy harvesting in two cases: linear energy harvest-
ing and energy nonlinear harvesting. We seek the maximal amplitude of vibration
in the graph of the resonance curve for different values of the control parameter μ1.
The power harvested was obtained by Eq. (6.122).

6.4.2 Linear Energy Harvesting

In Fig. 6.17 the system response, when the piezoelectric coupling is linear with cou-
pling parameters θ = 0.50 and � = 0.00, is considered. For the value of the control
parameter μ1 = 0.640 the resonance region is reached (see Fig. 6.17).

Maximum amplitude of displacement and the maximum power harvested are
determined. It is seen that for the control parameter μ1 = 0.512 the response of the
system in the region of pre-resonance is stable but the power harvested is slightly
less than the power harvested in the resonance region. For the control parameter
μ1 = 0.768 the system response in the region of post-resonance has a small amplitude
of vibration and a considerable reduction in power is captured, demonstrating that
for this region the system begins to lose the stability.
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Fig. 6.17 System response with linear piezoelectric coupling θ = 0.50 and� = 0.00: a resonance
curve, b displacement of the beam, c maximum power harvested, d angular velocity (Iliuk et al.
2013a)

6.4.3 Nonlinear Energy Harvesting

In Figs. 6.18, 6.19 and 6.20 the system response for linear piezoelectric parameter θ =
0.50 and various values of nonlinear piezoelectric coupling parameter (� = 0.50,
� = 1.00 and � = 1.50, respectively), is plotted.

Analyzing the obtained results it can be concluded that by increasing of the non-
linear coupling parameter, the maximum power harvested increases. Furthermore,
the behavior of the system remains stable in the both regions: in the region of pre-
resonance and in the region of resonance. Themaximum power harvested is obtained
for � = 1.50 when the resonance region is reached for a lower value to the control
parameter μ1(see Figs. 6.18c, 6.19c and 6.20c).

After passage through the resonance region the significant decrease of vibration
amplitude occurs for all values of �. Consequently, the harvested power is also
reduced (Figs. 6.18a, 6.19a and 6.20a). In Figs. 6.18b, 6.19b and 6.20b the maximal
amplitudes of the beam are plotted. In the post-resonance region the small amplitude
is blue. In Figs. 6.18d, 6.19d and 6.20d, the angular velocity of the DC motor for
various values of the control parameter is shown.
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Fig. 6.18 System response with nonlinear piezoelectric coupling θ = 0.50 and � = 0.50: a res-
onance curve, b displacement of the beam, c maximum power harvested, d angular velocity (Iliuk
et al. 2013a)

If the control parameter is increased for 20% to the nominal value, the system
passes the resonance region, reaches higher angular velocity but vibration amplitude
is diminished.

6.4.4 Chaos in the System

For the linear piezoelectric coupling parameter θ = 0.10 and nonlinear piezoelectric
coupling parameter � = 0.50, chaotic behavior occurs (Fig. 6.21a, d). The simula-
tion is done in 50,000 points.

In Fig. 6.21b the Sommerfeld effect and the region of instability after the resonant
regime is detected. In Fig. 6.21c it is shown that for the mentioned parameter values
positive Lyapunov exponent exists. It confirms the chaotic behavior.
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Fig. 6.19 System response with nonlinear piezoelectric coupling θ = 0.50 and � = 1.00: a res-
onance curve, b displacement of the beam, c maximum power harvested, d angular velocity (Iliuk
et al. 2013a)

6.4.5 Control of the System

A control technique has to be developed to transform the chaotic motion into the
asymptotically stable periodic orbit motion. The control u is introduced in the system
(6.121):

x ′
1 = x2,

x ′
2 = −x1 − εβ1x

3
1 − εζ1x2 + εθ(1 + � |x1|)x5

+ε
(
δ1x

′
4 cos x3 − δ2x

2
4 sin x3

) + u,

x ′
3 = x4,

x ′
4 = ε M (x4) + εη1x

′
2 cos x3,

x ′
5 = (θ(1 + � |x1|)x1 − x5) /ρ. (6.125)

The control function has the form

u = −κ tanh(η1x
′), (6.126)
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Fig. 6.20 System response with nonlinear piezoelectric coupling θ = 0.50 and � = 1.50: a res-
onance curve, b displacement of the beam, c maximum power harvested, d angular velocity (Iliuk
et al. 2013a)

where κ and η1 are positive parameters. After applying the proposed control tech-
nique, the dynamic response of the system is shown in Fig. 6.22.

The control keeps the system stable with one periodic solution. To compare the
controlled and the uncontrolled systems, according to (6.122) the average power is
calculated. After elimination of the transient of the system response the averaged
harvested power is

Pavg = 1

T

T∫
0

P(τ )dτ . (6.127)

Results plotted in Fig. 6.23 show the efficiency of the proposed control to bring the
system which is vibrating along a chaotic trajectory to a stable periodic orbit.

The control responses are significant but the stabilized orbits are small. The aver-
age power of the controlled system is approximately 10% of the average power of
the controlled system.
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Fig. 6.21 System response with nonlinear piezoelectric coupling θ = 0.10 and � = 0.50: a phase
portrait, b displacement of the beam, c Lyapunov exponent (λ1 = 0.001214, λ2 = −0.001945),
d displacement of the beam (Iliuk et al. 2013a)

6.4.6 Conclusion

Mathematical model of the non-ideal energy harvester shows that a good harvesting
is achieved in the resonance region becoming stable due to inclusion of nonlinearity
of the piezoelectric material. Based on numerical results it is concluded that the lim-
ited energy source interacts with system with piezoelectric coupling. Increasing the
voltage in DC motor led the system to produce a good power response, especially
in high-energy orbits in the resonance region. The Sommerfeld effect occurs in the
system and a chaotic behavior was found in the post-resonance region. The power
harvested along the time decreases because it causes loss of energy due to interac-
tion between energy source and structure. Keeping the energy harvested constant
over time is essential to make possible the use of energy harvesting systems in real
applications. However, in the system chaotic motion is also possible. To achieve the
requirement of constant energy harvested a control technique to stabilize the chaotic
system in a periodic stable orbit is developed. The advantage of the presented control
technique is that it does not require to find the analytical solution of the problem ini-
tially for obtaining of stable energy harvesting. However, due to reduced amplitude of
vibration, even if stable, energy harvested is also decreased. The main advantage of
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Fig. 6.22 Dynamic response of the system after applying the control technique: a displacement
of the beam after control, b displacement with and without control, c phase portrait after control,
d phase portrait before and after control, e maximum power harvested after control, f maximum
power harvested before and after control (Iliuk et al. 2013a)

using a control technique to stabilize the system is in reducing the need for complex
filters rectifiers in the output of energy harvesting system (Iliuk et al. 2013a).
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Fig. 6.23 Comparison between average power harvested controlled and uncontrolled system. Left
The maximum and average power harvested; Right Average power harvested (Iliuk et al. 2013a)

6.5 Non-ideal Portal Frame Energy Harvester Controlled
with a Pendulum

A simple portal frame structure can be used as energy harvester. The procedure is as
follows: A DC motor with limited power supply is mounted on a nonlinear structure
with piezoelectric coupling. For some values of parameters the system has chaotic
behavior. Varying the certain parameters of system the averaged power changes and
transforms the chaotic motion into periodic orbit. It gives the energy harvesting. The
control is passive and is realized with a pendulum.

The energy harvester contains a simple portal frame structure represented by the
non-ideal bistable Duffing oscillator (Fig. 6.24) coupled with piezoelectric material.

The nonlinear piezoelectric coupling, assumed according to Triplett and Quinn
(2009), gives the mechanical strain in the axial direction, while the voltage is in
perpendicular direction. A pendulum is connected with the structure and represents
a passive control which regulate the energy harvesting.

Fig. 6.24 Portal frame for
passive control (Iliuk et al.
2013b)
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Fig. 6.25 Model of the
oscillator with passive
control (Iliuk et al. 2013b)

Portal frame, non-ideal system coupled with piezoelectric material and a pendu-
lum for passive control is shown in Fig. 6.24. Physical model of the controlled energy
harvester is a nonlinear mass-spring-dashpot oscillator with piezoelectric coupling
and a mathematical pendulum (Fig. 6.25). Mass of the system is M = m1+m2+m3,
where m1 is the mass of the frame with motor, m2 is the unbalance mass of the pen-
dulum andm3 is the unbalance mass of the DCmotor. Eccentricity of the unbalanced
mass is d. Length of the pendulum is l. Moment of inertia of the motor’s rotor is
I = J + m3d2. The system has three-degrees-of-freedom. The generalized coordi-
nates are the axial position coordinate x , the rotation angle of the DC motor ϕ and
the angle position of the pendulum φ. The elastic force is assumed to be of bistable
Duffing type: −k1x + k3x3, where k1 and k3 are coefficients of linear and cubic
rigidity. The torque of the motor is assumed to be of linear form

M(ϕ̇) = V1 − V2ϕ̇,

where V1 relates to voltage applied across the armature of the DC motor and V2

is a constant which depends on the model of DC motor. According to Triplett and
Quinn (2009) the piezoelectric coupling to the mechanical system is θ(x)

C q where q is
the electric charge, C is the piezoelectric capacitance and θ(x) is a strain-dependent
coupling coefficient. The voltage is represented with

V = −θ(x)

C
q + q

C
, (6.128)

i.e., in rewritten form

V = −Rq̇. (6.129)
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Mathematical model of the system shown in Fig. 6.25 is

(m1 + m2 + m3)ẍ + cẋ − k1x + k3x
3 = m2d(ϕ̈ sinϕ + ϕ̇2 cosϕ) + θ(x)

C
q

+m3lφ̇
2 sin φ − m3lφ̈ cosφ, (6.130)

(J + m2d
2)ϕ̈ = m2dẍ sinϕ + V1 − V2ϕ̇,

m3l
2φ̈ + m3 ẍl cosφ + m3gl sin φ = −bφ̇, (6.131)

Rq̇ − θ(x)

C
x + q

C
= 0. (6.132)

Let us introduce the following non-dimensional parameters

ζ1 = c√
k1 (m1 + m2 + m3)

, ε = m2

m1 + m2
,

υ = q

q0
, μ1 = V1 (m1 + m2)

k1(J + m2e2)
, μ2 = V1 (m1 + m2)

k1(J + m2d2)
,

M(ϕ′) = μ1 exp(−μ2ϕ
′), β = k1

Mω2
= 1, β1 = k2d2

Mω6
,

δ1 = m2ω
2

M
, δ2 = m2lk1

(m1 + m2 + m3)
2 ,

ρ2 = V1

(J + m2d2)ω2
, ρ3 = V2

(J + m2d2)ω
,

η1 = m2d2

(J + m2d2)ω2
, ρ = RC

√
k1

m1 + m2
,

ρ4 = m2ω
2

d
, ρ5 = m2g

ω2
, ρ6 = b1

lω
, ε = 1

m2l
. (6.133)

and the normalized coordinate and the time variable are

y = dx

ω2
, (6.134)

τ = ωt, (6.135)

where

ω =
√

k1
m1 + m2 + m3

, (6.136)

and ε is the control variable which directly depends on mass and the length of the
pendulum. Based on the result of Crawley and Anderson (1990), the piezocoupling
coefficient is
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θ(x) = θlin(1 + �nel |x |),

where θlin is the linear and �nel |x | the nonlinear part. The dimensionless piezoelec-
tric coupling coefficient, suggested by Triplett and Quinn (2009) is

θ̂(y) = θ(1 + � |y|), (6.137)

where the piezoelectric coefficient is represented by a linear part θ and a nonlinear
part defined by �. The governing equations of motion reduce to

y′′ − y + β1y
3 − θ(1 + � |y|)υ = −ζ1y

′ + δ1ϕ
′′ sinϕ − δ1ϕ

′2 cosϕ

−δ2ϕ
′′ cosϕ + δ2φ

′2 sin φ,

ϕ′′ = η1y
′′ sinϕ + ρ2 − ρ3ϕ

′,
φ′′ = −ερ4y

′′ cosφ − ερ5 sin φ − ερ6φ
′,

ρυ′ = θ(1 + � |y|)y − υ. (6.138)

Introducing the new variables

x1 = y, x2 = y′, x3 = ϕ, x4 = ϕ′, x5 = υ, (6.139)

the equations are rewritten in state space representation

x ′
1 = x2,

x ′
2 = x1 − βx31 − ζx2 + εθ(1 + � |x1|)x7 + δ1x

′
4 sin x3 − δ1x

2
4 cos x3

+ δ2x
2
6 sin x5 − δ2x

′
6 cos x5 (6.140)

x ′
3 = x4,

x ′
4 = ηx ′

2 sin x3 + ρ2 − ρ3x4, (6.141)

x ′
5 = x6,

x ′
6 = −εη1x

′
2 cos x5 − ερ5 sin x5 − ερ6x6, (6.142)

x ′
7 = (θ(1 + � |x1|)x1 − x7) /ρ. (6.143)

The power harvested from the mechanical component is calculated according to
(6.122) and eliminating the transient of the system response, the averaged power is
calculated as (6.127).

6.5.1 Numerical Simulation

To analyze the nonlinear dynamic of non-ideal system, in the paper of Iliuk et al.
(2013b) the following values for the parameters
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ε = 0.10, ζ1 = 0.10, β1 = 0.20, η1 = 0.05,

δ1 = δ2 = 8.373, ρ = 1, μ2 = 1.50, ρ2 = 100,

ρ3 = 200, ρ4 = 2.254, ρ5 = 0.23, ρ6 = 0.4,

θ = 0.20, � = 0.60, 0 ≤ ε ≤ 1, (6.144)

and initial conditions

x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) = 0, x5(0) = 0, (6.145)

are used.
The numerical simulation is carried out in the dimensionless time range

0 ≤ τ ≤ 500.
In Fig. 6.26 the phase portrait of the chaotic strange attractor, the time history

diagram of the voltage, the Poincare map of the strange attractor and the maximum
dimensionless power harvest for the casewithout control and piezoelement is plotted.

In Fig. 6.27 the bifurcation diagram and the average harvested power for the
control parameter ε in the interval [0,1] are plotted. For ε = 0 the system is without
passive control. From the bifurcation diagram, given in Fig. 6.27a, the periodic and
chaotic behavior are evident. Using the results presented in Fig. 6.27, the control
strategy is defined. From Fig. 6.27b it is evident that the maximum average power is

Fig. 6.26 Portal framewithout pendulum and piezoelectric element: a Phase portrait, bTheoretical
voltage, c Poincare map, d Maximum power harvester (Iliuk et al. 2013b)
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Fig. 6.27 a Bifurcation diagram versus control parameter, b Average power versus control para-
meter (Iliuk et al. 2013b)

Fig. 6.28 aDisplacement - time diagram for ε = 0.42,bDisplacement - time diagram for ε = 0.70,
c Voltage - time diagram for ε = 0.42, d Voltage - time diagram for ε = 0.70 (Iliuk et al. 2013b)

obtained for ε = 0.42, while for ε = 0.7 the motion is periodical and the average
power is without reduction.

In Fig. 6.28 the result of passive control is shown: (a) and (c) displacement and
voltage diagrams for ε = 0.42, (b) and (d) displacement and voltage diagrams for
ε = 0.70. Finally, in Fig. 6.29 the harvested power distribution for uncontrolled
(ε = 0) and controlled systems (for ε = 0.42 and ε = 0.7) are compared. The
calculated average power values are: P(ε = 0) = 1.547, P(ε = 0.42) = 15.7 and
P(ε = 0.70) = 3.662.

The instantaneous energy exchange between the non-ideal system and the pen-
dulum is defined as

E∗
N I Si = EN I S

EN I S + Ep
,
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Fig. 6.29 Power harvester for uncontrolled and controlled system (Iliuk et al. 2013b)

Fig. 6.30 Time history diagrams for instantaneous energy for: a ε = 0.42, b ε = 0.70 (Iliuk et al.
2013b)

Fig. 6.31 Average power
harvester for various values
of ζ (Iliuk et al. 2013a)

and

E∗
pi = Ep

EN I S + Ep
,

where

EN I S = x22 + x24
2

, Ep = x26
2

.
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The calculated values are plotted in Fig. 6.30. It is of special interest to investigate
whether the damping and nonlinear stiffness coefficients have an influence on vibra-
tional energy harvesting.

In Fig. 6.31 the influence of the damping coefficient ζ on the average power is
plotted. It can be seen that the averaged power is sensitive on the variation of damping,
but the maximal value is achieved for the control parameter ε = 0.42.

6.5.2 Conclusion

From the previous text it is obvious:

1. The energy harvesting may be improved by introducing of the passive control.
Namely,with proper choice of the value of the control variable ε the energy harvesting
is optimized.

2. The main advantage of the technique of passive control is that it does not need
any electronic component to control the system. The attached mechanical element,
i.e., the pendulum, acts as the control device.

3. The suggested control system available to suppress the chaotic motion and to
transform it into a periodical orbital motion.

4. The suggested control provides a way to regulate the energy captured to a
desired operating frequency.
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Chapter 7
Instead Conclusions: Emergent Problems
in Nowadays and Future Investigation

Nowadays the majority of engineering systems have, at least, one electromechani-
cal sub-system in their composition. These systems fall into three groups: the con-
ventional electromechanical systems, the micro electromechanical systems and the
nano electromechanical systems. Note that micro and nano electromechanical sys-
tem technologies are still in their infancies, with global research and development
actively under way. Often many practical electromechanical devices are discussed
in the context of simple lumped mechanical masses, electric and magnetic circuits.
However, the interest is to discuss the existence of a full interaction betweenmechan-
ical and electrical field quantities and to investigate the relevant dynamics, in order
to predict the structural response due to the excitations, in macro and micro scales.
In general, all of the studies, involving electromechanical vibrating systems, were
based on assumptions that the external excitations are produced by an ideal source of
power, with prescribed time history, magnitude, course and frequency, or in random
problems with prescribed characteristics. However, the fact is that the excitation
sources are non-ideal: they have always limited power supply, limited inertia and
their frequencies vary according to the instantaneous state of vibrating (oscillating)
system. The behavior of the vibrating systems departs from the ideal case, as power
supply becomes more limited. It is noted that, in non-ideal systems, near resonance,
an increase of power will usually be accompanied by an increase of amplitude of
oscillations, without significant increase in frequency. Only after the amplitude of
oscillation reaches the maximum there will be a significant change in frequency.
The dynamic process is called Sommerfeld effect. There is a problem of passage
through resonance of unbalanced equipment: the need of power may not be able to
be supplied with an operational speed higher than the lower frequencies of vibration
of the supporting structure. Hence, for this property, a large part of its energy is used
in shaking the structure and not in accelerating the rotation of the shaft. Thus, the
introduction of real torque–speed curves for non-ideal motors yields the system as
nonlinear and capable of multiple steady-state periodic motions whose stability must
be assessed: that is the vibrations provide an “energy sink”. In summary, it may be
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said that jump phenomena and the increase of power required by a source operating
near resonance are manifestations of a non-ideal energy source. This referenced phe-
nomenon suggests that the vibrational responses provide an energy sink, and thus
vibrating the structure rather than to operate the machinery. One of problems often
faced by designers is how to drive a system through resonance and avoid this kind
of energy sink.

In this book, main properties of non-ideal systems have been reviewed, such as
the Sommerfeld effect, i.e., jump phenomena and the increase in power required
by a source operating near resonance; the possibility of occurrence of saturation
phenomenon, i.e., a transfer of energy to low frequency high amplitude mode; and
the existence of regular (periodic)motion and irregular (chaotic) behavior, depending
on the value of control parameters (voltage of a DC motor). The purpose of the book
is twofold: in one hand to give the explanation formotion in non-ideal systemsmainly
concentrated in non-ideal vibrations and in the other hand to provide an overview
of the main engineering applications, analyzing both physical phenomena involved
and the adequate methodologies to deal with them.

In this chapter the novelties in considering non-ideal vibrating systems are
presented.

Nowadays, instead of the DC electric motors which affect the base-excitation, the
motion is obtained by electro-mechanical shakers with limited power supply. It is
concluded that the electromechanical shaker has the same dynamic properties as the
DC motor, i.e., non-ideal energy source. Already a flexible portal frame excited by
an electrodynamic shaker was considered. The electro-mechanical device consists of
an electric system magnetically coupled to a mechanical structure. In the system the
occurrence of the dynamic jump is verified, which is an important characteristic of
nonlinear dynamic system. Besides, an important point associated with the proposed
system is the energy transfer between the shaker and the vibrating structure. Using
this property of the system, the electro-mechanical shaker may be included into
new type of micro electro-mechanical systems (MEMS) such as, micro-gyroscopes,
electrostatic transducers and into some energy harvesters.

One of devices with electro-mechanical shaker is the tuning fork gyroscope. In
the tuning fork micro-gyroscope energy recovery or capture occurs. The gyroscope
is assumed to consists of two vertical posts embedded on a mass of suspension
excited by an electrodynamic shaker driven by a sinusoidal voltage. The tuning fork
beam is modeled by two inverted pendulums. If the beams oscillate in phase, the
excitation can lead to vibration. Due to internal resonance between the vibration
modes the energy transfer occurs from vertical toward horizontal direction. Future
investigation of the tuning fork gyroscope properties is necessary.

As it is presented in Chap.6, in the last years, it has been seen a need of an energy
source smaller than the usual and more efficient, for design of vibrating systems
based on new technologies. With that, the research about energy harvesting has
increasing substantially. To build energy harvesting devices, many researchers have
concentrated their efforts on finding the best configuration for these systems and to
optimize its power output. In the process of energy harvesting, the electrical energy
is obtained through the conversion of mechanical energy created by an ambient
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vibration source by a type of transduction, for example, as a piezoceramic thin
film. Based on the results given in Chap. 4 for two degrees-of-freedom structure
it is concluded that the energy harvesting is possible to be achieved applying the
saturation phenomena which is evident for the two-to-one internal resonant case.
When the excitation frequency reaches near resonance conditions with the natural
frequency 2, the amplitude of this mode grows up to a certain level and then it
saturates, transferring the surplus of vibrating energy, as it “spilled over”, to the
othermode,which experiences a sudden increase in its amplitude.Namely, the energy
pumped into the system through one of the modes is partially transferred to the other
mode. Energy is transformed from low amplitude high frequency motion into high
amplitude low frequency motion. This is the so-called saturation phenomenon. The
most recent investigation show that the phenomenon of saturation is suitable for
harvesting. One of the most promising device to harvest energy is the piezoelectric
material. If in the two degree-of-freedom portal frame support structure, considering
a nonlinear piezoceramic coupled to a column, the vertical motion of the mid-span
of the beam possesses its natural frequency twice of the column natural frequency,
and if is based-excited in the vertical direction with same frequency of the beam,
saturation phenomenon occurs, transferring the surplus energy of the beam vibration
to the column, acquiring higher amplitude than in the beam. Further investigation
are suggested.

A constantly sustained energy harvesting is essential for using harvester devices
in real applications; for this, a control strategy is required. In the non-ideal systems
usually the control is introduced to suppress the vibrations and to reduce the transient
responses.

The saturation phenomena may be applied in the nonlinear control technique in
non-ideal systems, as it is suitable to suppress the high amplitude of the first-mode
vibration. A two-to-one internal resonance condition is maintained between the plant
and the controller. In this case, energy is transferred completely from one part of the
combined system to the other. Thus, when the plant is forced at resonance, this energy
transfer mechanism limits the response of the plant.

Usually the passive control specified through energy pumping is applied. The
passive control is obtained by means of a nonlinear substructure with properties of
nonlinear energy-sink. It is known that passive control leads the non-ideal oscillatory
system to a stable periodic orbit, allowing a more efficient energy harvesting due to
the higher peak-to-peak amplitude of oscillation mean value. Besides, it eliminates
the need of an active micro-controller to stabilize the system in a periodic orbit,
improving the energy budget (harvested vs. expended). The application of passive
control is successful through the suppression of the chaotic motion, leading the
system to a periodic orbit with stable amplitude of vibration, without damaging the
structure.

Considering nonlinear energy sink as vibration absorber, it is possible to reduce
drastically the amplitudes of oscillations of the system and reduce the Sommerfeld
effect in the passage resonance region. Furthermore, the proposed absorber of non-
linear type is quite effective to reduce amplitude, Sommerfeld effect and jump phe-
nomenon of non-ideal system while the linear absorber is not. Namely, based on
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an extension of the ideal system and taking into account that in a vibrating system
with small low viscous dissipation the energy initially imparted from the primary
sub-system can be transferred to the nonlinear energy-sink, reducing the ampli-
tudes of vibrations of the system and eliminating or reducing the occurrence of the
Sommerfeld effect, inside and outside resonance regions, respectively, it is suggested
to develop a strong nonlinear vibration absorber. Vibration absorption in resonance,
nonlinear and chaotic motions have to be analyzed for a simple portal frame excited
by a non-ideal power source connected to a device, which renders descriptions that
are close to engineering situations encountered in practice.

Recently, a wide group of newmaterials are developed. Functionally gradedmate-
rials and other composites, shape memory alloys, magneto rheological materials,
dielectric elastomers, polymers and thin-films have shown great potential for appli-
cations in all engineering fields. They may form intelligent and adaptive material
systems and structures whose fundamental characteristic is their ability of adapt-
ing to environmental conditions. One of the new class of materials with promising
applications in structural and mechanical systems is the shape memory alloy. Shape
memory alloy consist of a group of metallic materials that demonstrate the ability to
return to some previously defined shape or size when subjected to the appropriate
thermal procedure. A shape memory alloy may represent the connection between
the mass and the rigid support in the non-ideal system. It is believed that the shape
memory alloy part may turn around a fixed point in structures, i.e., to rotate around an
axis. This kind of motion is called slewing motion. At the moment, slewing motions
are present in many applications in aerospace and industrial robots. In this kind of
systems it is evident that the lighter the structure, the better is the efficiency of the
system. This is the case in satellite appendages and aerospace robotic manipulators,
for example. It is expected that the shape memory alloy may be incorporated into an
actuator for active control of vibrations of the flexible structural beam driven by a
DC motor, i.e., in the non-ideal system.

Recently, the tendency is the various types of active control systems developed for
ideal systems to be adopted for non-ideal ones. The active control with tuned liquid
column dampers is suggested for practical application. Dampers are U-tubes filled
with some liquid, acting as an active vibration damper in structures of engineering
interest like buildings and bridges. The damper may be mounted on the structural
portal frame which contains a horizontal beam and two identical columns with an
unbalanced DC motor of limited power supply (non-ideal source). It is necessary to
analyze the control of vibration with the tuned liquid column damper.

Another type of active controller is the so called magneto-rheological damper
which is suitable to bring the system into the desired orbit. It is possible to control the
force of the magneto-rheological damper by controlling the applied electric current
in the coils of the damper. Namely, the control force of the damper is a function of the
electric current applied in the coil of the damper, which is based on the force given by
the controller and on the velocity of the damper piston displacement. The attenuation
of the jump phenomena, associated with the Sommerfeld effect introduced by the
nonlinearity of a magnetic rheological damper, is expected in a non-ideal vibrational
system, excited by a DC motor modeled as limited power source.
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In spite of positive results obtained in passive and active control separately, it
is suggested to use a combination of passive control (energy pumping) and active
control. It is predicted that the strategy of combining the two control techniques
seems to be more effective in suppressing oscillations of the main system than using
each of the strategies separately. It remains to be proved.

In order to improve the design of previously mentioned structures and devices
and to predict the structural response due to the excitations further investigation in
dynamics of non-ideal systems is necessary. A lot of vibrating phenomena of real
systems are not explained yet. Using the linear theory a significant number of real
system properties is neglected and omitted. It is important to introduce nonlinear
characteristics into the mathematical models of these systems. For example, many
different electromechanical coupling mechanisms have been developed for harvest-
ing devices and because of the constitutive laws of piezoelectric materials, the role
of nonlinearity, in the electromechanical coupling of the design of energy harvesting
system must be taken into account. Despite of great advances of the vibrating (oscil-
latory) theory, some kind of vibrations that are still met cannot be well explained by
the current vibration theory.

Finally, the mentioned emergent and actual problems in non-ideal systems have to
be studied and solved in near future. New phenomena and emergent areas addressed
to structures supporting unbalanced machines capable of a limited power output and
systems with electromechanical shakers need to be investigated. Research on the full
interaction between non-ideal sources and their supports is eligible. Based on these
results the direction of future investigation in the non-ideal vibration systems has to
be defined.



Index

A
Active control, 224
Amplitude-frequency function, 26, 39
Analytical solving procedure, 34
Asymptotic solution

first approximation, 54
Asynhronous AC motor, 23
Ateb function

cosine, 115
Fourier expansion, 78

period, 76, 115
properties, 116
sine, 114

Fourier expansion, 78
Averaging procedure, 14, 26, 56, 73

B
Beta function, 76

complete, 113
incomplete, 113, 114

Bifurcation diagram, 42, 111, 112, 215

C
Chaos

control
in harvester, 207

Chaos control, 44
Chaotic motion, 43, 102, 112

control, 103
nonlinear harvester, 206

Characteristic point, 58, 66, 80, 98
Control

active, 5
passive, 4, 213, 216

Cutting force, 148, 152, 163

Cutting mechanism, 141
structure, 143
with elastic support, 155
with ideal forcing, 161
with non-ideal forcing, 163
with rigid support, 147

D
DC series wound motor, 52
Discontinual elastic force, 31
Dissipation function, 61
Dissipative function, 92, 157, 188

for two degree-of-freedom, 123
of cutting mechanism, 147

E
Electro-mechanical force, 175
Electro-mechanical shaker, 222
Electro-mechanical system

conventional, 221
micro, 221, 222
nano, 221

Energy exchange, 216
Energy harvester

linear, 174, 197, 204
nonlinear, 174, 197, 205
on vibration, 218

Energy harvesting, 173
device, 222, 223

Energy sink, 3, 18, 221, 223

G
Generalized force, 12, 24, 147, 157

of motor torque, 190

© Springer International Publishing AG 2018
L. Cveticanin et al., Dynamics of Mechanical Systems with Non-Ideal Excitation,
Mathematical Engineering, DOI 10.1007/978-3-319-54169-3

227



228 Index

Generalized reactive force, 24

H
Harmonic balance method, 107
Harmonic excitation, 176
Harvested energy

averaged, 183
Harvested power, 178, 196, 205

averaged, 178, 196
Harvesting system

model, 187
History diagram, 215

J
Jump phenomena, 3

K
Kinetic energy, 61

Duffing oscillator
linear motor torque, 92

for two degree-of-freedom system, 123
mass variable system, 24
of cutting mechanism, 147

on elastic support, 157
of harvesting system, 189
of one degree-of-freedom system, 11

L
Lagrange equation, 92
Lagrange’s equation of motion, 189
Linear oscillator

linear non-ideal source, 9
Linstedt–Poincare method, 179
Lyapunov exponent, 43, 102, 111
Lyapunov spectrum, 111

M
Magneto-rheological damper, 224
Motor torque, 190

exponential, 201
linear, 15, 72, 106, 212
nonlinear, 51
of cubic type, 68
virtual work, 72

Motor-oscillator system, 11

N
Non-ideal

continual system, 4
in three degrees-of-freedom system, 4
one degree-of-freedom system, 2
two degrees-of-freedom systems, 3

Non-ideal source, 1
Non-ideal system, 1
Non-ideal vibrating system, 1
Non-stationary motion, 56

in cutting mechanism, 168

O
Order of nonlinearity, 60, 71
Oscillator

bistable Duffing, 105
Duffing, 91
pure nonlinear, 60, 71
with clearance, 30
with strong nonlinearity, 51

Oscillator with variable mass, 22

P
Passive control, 223
Period doubling bifurcation, 102
Phase portrait, 215
Phase space, 100
Physical analogy, 18
Piezoelectric element, 174
Piezoelectric material

constitutive equation, 175
non-dimensional model, 177

Piezoelectricity
linear, 182
nonlinear, 185

Piezoelement
linear, 198
nonlinear, 198

Poincare map, 100, 215
Portal frame

in energy harvester, 211
Potential energy

Duffing oscillator
linear motor torque, 92

for two degree-of-freedom, 123
of cutting mechanism

on elastic support, 157
of nonlinear system, 188
of one degree-of-freedom system, 11
of pure nonlinear oscillator, 61

Q
Quenching of amplitude, 110



Index 229

R
Resonance

primary, 3
principle parametric, 107
subharmonic, 3

Resonance frequency
in two orthogonal direction, 134

equal, 130
Resonant case, 54

S
Saturation phenomenon, 223
Shape memory alloy, 224
Slewing motion, 224
Slider-crank mechanism

double, 142, 145
eccentric, 145
simple, 141, 145

Solution
non-trivial, 110
semi-trivial, 109

Solution in the form of Ateb function, 74
Sommerfeld effect, 2, 17, 41, 67, 73, 85, 196

criteria, 60
pure nonlinear oscillator

linear motor torque, 81
motor torque of cubic type, 70

suppression, 59, 68, 70, 82, 99
two degrees-of-freedom system, 3

Stability analysis, 57
Stability of motion, 21
Steady state

amplitude, 65, 128, 182, 195
equation, 79
phase, 66, 128, 182, 195

Steady state motion, 127, 193
in cutting mechanism, 165
stability

two degree-of-freedom, 129
Steady state solution, 14, 21, 57, 65, 95

stability, 96
system with clearance, 38

Strange attractor, 215

T
Transient motion, 33, 214

first approximation, 55
in resonant case, 79

Tuning fork gyroscope, 222

U
U-tube damper, 224
UnitStep function, 148


	Preface
	Contents
	1 Introduction
	References

	2 Linear Oscillator and a Non-ideal  Energy Source
	2.1 Simple Degree of Freedom Oscillator Coupled with a Non-ideal �
	2.1.1 Analytical Solving Procedure
	2.1.2 Steady-State Solution and Sommerfeld Effect
	2.1.3 Model Analogy and Numerical Simulation
	2.1.4 Stability Analysis

	2.2 Oscillator with Variable Mass Excited with Non-ideal Source
	2.2.1 Model of the System with Variable Mass
	2.2.2 Model of the System with Constant Mass
	2.2.3 Comparison of the Systems with Constant  and Variable Mass

	2.3 Oscillator with Clearance Coupled with a Non-ideal Source
	2.3.1 Model of the System
	2.3.2 Transient Motion of the System
	2.3.3 Steady-State Motion of the System
	2.3.4 Chaotic Motion
	2.3.5 Chaos Control

	2.4 Conclusion
	References

	3 Nonlinear Oscillator and a Non-ideal Energy Source
	3.1 Nonlinear Oscillator Coupled with a Non-ideal Motor �
	3.1.1 Nonlinear Motor Torque Property
	3.1.2 Solution Procedure in General
	3.1.3 Steady-State Motion and Its Stability
	3.1.4 Characteristic Points on the Steady State Curves
	3.1.5 Suppression of the Sommerfeld Effect
	3.1.6 Conclusion

	3.2 Pure Nonlinear Oscillator and the Motor  with Nonlinear Torque
	3.2.1 Approximate Solution Procedure
	3.2.2 Steady-State Motion and Its Properties
	3.2.3 Characteristic Points
	3.2.4 Suppression of the Sommerfeld Effect
	3.2.5 Numerical Examples

	3.3 Pure Strong Nonlinear Oscillator and a Non-ideal Energy Source
	3.3.1 Model of the System
	3.3.2 Analytical Solving Procedure
	3.3.3 Resonant Case and the Averaging Solution Procedure
	3.3.4 Suppression of the Sommerfeld Effect
	3.3.5 Numerical Examples of Non-ideal Driven Pure Nonlinear Oscillators
	3.3.6 Conclusion

	3.4 Stable Duffing Oscillator and a Non-ideal  Energy Source
	3.4.1 Asymptotic Solving Method
	3.4.2 Stability of the Steady State Solution and Sommerfeld Effect
	3.4.3 Numerical Simulation and Chaotic Behavior
	3.4.4 Chaos Control
	3.4.5 Conclusion

	3.5 Bistable Duffing Oscillator Coupled with a Non-ideal Source
	3.5.1 Semi-trivial Solutions and Quenching of Amplitude
	3.5.2 Non-trivial Solutions and Their Stability
	3.5.3 Conclusion

	References

	4 Two Degree-of-Freedom Oscillator  Coupled to a Non-ideal Source 
	4.1 Model of the System
	4.2 Analytical Solution
	4.2.1 Steady-State Motion
	4.2.2 Stability Analysis

	4.3 Special Cases
	4.3.1 Resonance Frequencies in Orthogonal Directions  Are Equal
	4.3.2 Resonance Frequency in One Direction Is Half  of the Resonance frequency in Other Direction

	4.4 Numerical Simulation
	4.5 Conclusions
	References

	5 Dynamics of Polymer Sheets Cutting Mechanism
	5.1 Structural Synthesis of the Cutting Mechanism
	5.1.1 Comparison of the Simple, Eccentric and Two Slider-Crank mechanisms

	5.2 Kinematics of the Cutting Mechanism
	5.3 Dynamic Analysis of the Mechanism with Rigid Support
	5.3.1 Mathematical Model of the Mechanism
	5.3.2 Numerical Simulation
	5.3.3 Analytical Consideration
	5.3.4 Comparison of Analytical and Numerical Results

	5.4 Dynamics of the Cutting Mechanism with Flexible Support �
	5.4.1 Mathematical Model of Motion of the Cutting Mechanism
	5.4.2 Ideal Forcing Conditions
	5.4.3 Non-ideal Forcing Conditions
	5.4.4 Non-stationary Motion

	5.5 Conclusion
	References

	6 Non-ideal Energy Harvester with Piezoelectric Coupling
	6.1 Constitutive Equation of the Piezoceramic Material
	6.2 Harvesting System with Ideal Excitation
	6.2.1 Analytical Procedure
	6.2.2 Harvester with Linear Piezoelectricity
	6.2.3 Harvester with Nonlinear Piezoelectricity

	6.3 Harvesting System with Non-ideal Excitation
	6.3.1 Model of the Non-ideal Mechanical System  with Harvesting Device
	6.3.2 Analytical Solving Procedure
	6.3.3 Steady-State Motion
	6.3.4 Harvested Energy
	6.3.5 Comparison of the Analytical and Numerical Solutions
	6.3.6 Linear Energy Harvester
	6.3.7 Nonlinear Energy Harvesting
	6.3.8 Conclusion

	6.4 Harvester with Exponential Type Non-ideal Energy Source
	6.4.1 Numerical Simulation Results
	6.4.2 Linear Energy Harvesting
	6.4.3 Nonlinear Energy Harvesting
	6.4.4 Chaos in the System
	6.4.5 Control of the System
	6.4.6 Conclusion

	6.5 Non-ideal Portal Frame Energy Harvester Controlled with a Pendulum
	6.5.1 Numerical Simulation
	6.5.2 Conclusion

	References

	7 Instead Conclusions: Emergent Problems  in Nowadays and Future Investigation
	Index



