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Abstract. Multi-objective optimization problems with more than three
objectives, which are also termed as many objective optimization prob-
lems, play an important role in the decision making process. For such
problems, it is computationally expensive or even intractable to approx-
imate the entire set of optimal solutions. An alternative is to compute
a subset of optimal solutions based on the preferences of the decision
maker. Commonly, interactive methods from the literature consider the
user preferences at every iteration by means of weight vectors or refer-
ence points. Besides the fact that mathematical programming techniques
only produce one solution at each iteration, they generally require first
or second derivative information, that limits its applicability to certain
problems. The approach proposed in this paper allows to steer the search
into any direction in the objective space for optimization problems of dis-
crete nature. This provides a more intuitive way to set the preferences,
which represents a useful tool to explore the regions of interest of the
decision maker. Numerical results on multi-objective multi-dimensional
knapsack problem instances show the interest of the proposed approach.

Keywords: Many objective optimization · Multi-criteria decision
making · Discrete optimization · Knapsack · Evolutionary computation

1 Introduction

In many real-world applications from engineering or finance, one has to face the
issue that several objectives have to be optimized concurrently. If more than
three objectives are involved, the resulting problem is often termed a many
objective optimization problem (MaOP) in the literature. Though the treatment
of MaOPs is a relatively young research field (so far, mainly problems with two
or three objectives have been studied) it is a very important one as the decision
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making processes are getting more and more important nowadays. One impor-
tant characteristic of MaOPs is that its solution set, the so-called Pareto set,
does typically not consist of one single solution as for ‘classical’ scalar optimiza-
tion problems (SOPs, i.e., one objective is considered). Instead, the Pareto set
of a continuous MaOP typically forms a (k − 1)-dimensional object, where k is
the number of objectives involved in the problem. For discrete MaOPs, as we
will consider here, the magnitude of the solution set typically grows exponen-
tially with k [16]. Specialized evolutionary algorithms have caught the interest
of many researchers over the last decades; see, e.g., [11,12,32] and references
therein. Reasons for this include that these algorithms are applicable to a wide
range of problems, are of global nature and hence in principle do not depend on
the initial candidate set (i.e., the initial population). Further, due to their set-
based approach, they compute a limited-size representation of the entire Pareto
set in a single run of the algorithm. Most of these specialized algorithms, called
MOEAs (multi-objective evolutionary algorithms) are designed for the treat-
ment of problems with just few objectives (say, 2 to 4). However, more and more
algorithms are proposed that deal with many objectives. For instance the use of
MAOPs with large population size (e.g. 10,000 individuals) [20], the Dynami-
cal Multi-objective Evolutionary Algorithm (DMOEA) [34] and the Grid-Based
Evolutionary Algorithm (GrEA) [31]. However, due to their huge magnitude, the
Pareto sets of MaOPs can typically not be computed efficiently, and further on,
these sets cannot be visualized adequately. Thus, even with the aid of evolution-
ary algorithms, if the number of objectives is high, one cannot expect that the
solution selected by the decision maker (DM) is in fact the preferred solution of
the given MaOP with respect to the given setting.

In this paper, we argue that a fine tuning of a selected optimal solution makes
sense. More precisely, we propose an approach where, starting from a given
initial solution x0, further solutions xi, i = 1, . . . , N , are generated such that
the sequence of the candidate solutions performs a movement into user-specified
directions. Numerical results on different scenarios will show the benefit of the
novel approach. We stress that the idea to steer the search along the Pareto
set/front into a given user-specified direction is not new. The Directed Search
Descent Method [28] and the Pareto Tracer [23] are capable of performing such a
search. However, they are both restricted to continuous optimization problems,
and they cannot be extended to discrete domains as gradient information is
required. Moreover, several specialised MOEAs to solve MaOPs have surged in
recent years, for instance in [3] a method which employ the hypervolume for this
purpose is proposed and a posteriori method to deal with MaOPs is considered
in [7].

The remainder of this paper is organized as follows: in Sect. 2, we will shortly
present the required background and will discuss the related work. In Sect. 3,
we propose a method for the fine tuning of a given solution from the considered
MaOP, and we compare possible realizations of this framework. In Sect. 4, we
present some numerical results with a selected approach, and finally, we will
conclude and give paths for future research in Sect. 5.



Local Exploration of Discrete Many Objective Optimization 137

2 Background

2.1 Definitions

From a mathematical point-of-view, a multi-objective optimization problem
(MOP) can be defined as follows:

max
x∈Ω⊂Rn

F (x), s.t. g(x) ≤ 0 and h(x) = 0, (1)

where F : D → R
k is a vector function mapping the feasible set D := {x ∈ Ω |

g(x) ≤ 0 and h(x) = 0} to its image Z := {F (x) = (f1(x), . . . , fk(x)) | x ∈
D} ⊆ R

k, where fi : Ω → R stands for the i-th objective. In the combinatorial
case, feasible solutions forms a discrete set D. In a maximization context, an
objective vector z ∈ Z is dominated by an objective vector z′ ∈ Z, denoted by
z ≺ z′, iff ∀i ∈ {1, 2, . . . , k}, zi � z′

i and ∃i ∈ {1, 2, . . . , k} such that zi < z′
i.

Similarly, a solution x ∈ D is dominated by a solution x′ ∈ D, denoted by
x ≺ x′, iff F (x) ≺ F (x′). A solution x� ∈ D is said to be Pareto optimal, if
there does not exist any other solution x ∈ D such that x� ≺ x. The set of
all Pareto optimal solutions is called the Pareto set (PS), and its mapping in
the objective space is called the Pareto front (PF). One of the most challenging
task in multi-objective optimization is to identify a minimal complete Pareto
set, i.e., one Pareto optimal solution for each point from the Pareto front. In
the combinatorial case, generating a complete Pareto set is often infeasible for
two main reasons [16]: (i) the number of Pareto optimal solutions is typically
exponential in the size of the problem instance, and (ii) deciding if a feasible
solution belongs to the Pareto set may be NP-complete. Therefore, the overall
goal is often to identify a good Pareto set approximation. For this purpose,
heuristics in general, and evolutionary algorithms in particular, have attracted a
lot of attention from the optimization community since the late eighties [10,12].

One of the most studied NP-hard problem from combinatorial optimization is
the multi-objective (multi-dimensional) 0–1 knapsack problem (MOKP). Given a
collection of n items and a set of k knapsacks, the MOKP seeks a subset of items
subject to capacity constraints based on a weight function vector w : {0, 1}k×n,
while maximizing a profit function vector p : {0, 1}k×n. More formally, it can be
stated as:

max
∑n

j=1 pij · xj i ∈ {1, . . . , k}
s.t.

∑n
j=1 wij · xj � ci i ∈ {1, . . . , k}

xj ∈ {0, 1} j ∈ {1, . . . , n}
where pij ∈ N is the profit of item j on knapsack i, wij ∈ N, is the weight of item j
on knapsack i, and ci ∈ N is the capacity of knapsack i. For the MOKP, the
cardinality of the Pareto set can grow exponentially with the problem size [16],
which makes this problem very appealing to investigate. Notice however, that
the proposed approach is not specific to the MOKP and could be applied for
other combinatorial problems as well.
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2.2 Literature Overview

The success of MOEAs can be essentially attributed to the fact that they do not
require special features or properties from the objective functions, by relying on
stochastic search procedures that are able to deal with complex MOPs and a
large variety of application domains. MOEAs are in fact inspired by the basic
principles of the evolutionary process on a population (a set of individuals or
solutions), by means of the so-called evolutionary operators. Considering the
wide variety of MOEAs, and the different principles guiding their design, e.g.,
Pareto dominance [14], indicator-based [5], aggregation-based [32] methods, a lot
of progress have been made to better harness the complexity of solving MOPs
using an evolutionary process and to better understand the main challenges one
has to face. In particular, the dimensionality of the objective space is believed
to be one of the main difficult challenges one has to address. In fact, several
researchers have pointed out different issues on the use of MOEAs to solve
problems having 4 or more objectives [17,21,27]. These issues are essentially
related to the fact that, as the number of objectives increases, the proportion of
non-dominated elements in the population grows. An expression for the portion
e in a k-dimensional criteria domain, such that the dominance concept classifies
as equivalent solutions is given by e = 2k−2

2k
[17].

In recent years, approaches for improving the behavior and the performance
of EMO algorithms in order to deal with so-called MaOPs have received a grow-
ing interest. We can classify them in two groups: (i) Methods using alterna-
tive preference relations, and (ii) Methods transforming the original MaOP
into a SOP. In the first group, different preference relations were reported
such as, to cite a few, the so-called Preference Ordering [15], a generalization
of Pareto optimality which uses two more stringent definitions of optimality,
or fuzzy relations [17] based on the number of components which are bigger,
smaller or equal between two objective vectors. In the second group, different
algorithmic approaches can be found such as those based on indicators (e.g.,
hypervolume [4]), those based on dimensional reduction techniques (e.g., the
so-called Pareto Corner Search Evolutionary Algorithm [29]) or those based on
space partitioning (e.g., the so-called ε Ranking-Evolutionary Multi-objective
Optimizer [1]).

It is important to remark that the rationale behind any MOEA is the com-
putation of a representative set of solutions from which the DM can eventually
pick one or some. However, and apart from difficulties inherent to the optimiza-
tion/solving process itself, taking the DM requirements into account is a chal-
lenging issue when tackling a MaOP. This is essentially because a MOEA might
actually fail in providing high-quality solutions in the regions of interest for the
DM, or also to entirely cover the Pareto front due to the high dimensionality
of MaOPs. For this purpose, taking the DM preferences into account is a hot
issue that is being increasingly addressed in the evolutionary multi-objective
optimization and multi-criteria decision making communities; see, e.g., [6,9].
Although reviewing all the literature on the subject is beyond the scope of this
paper, we can still comment on three classes that one might encounter [9,24],
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namely, (i) a priori approaches that aim at guiding the evolutionary process
through pre-defined regions of interest provided by the decision maker, e.g., [22],
(ii) interactive approaches [26] where the decision maker preference(s) is itera-
tively and progressively refined during the evolutionary search procedure until
the decision maker is satisfied, and (iii) a posteriori approaches, e.g., [18], taking
into account the preference of the decision makers solely after the evolutionary
process has ended up with a reasonable approximation set.

The work presented in this paper falls at the crossroads of interactive and
a priori approaches. In fact, on the one hand, the proposed approach allows
the DM to refine a given solution iteratively by providing a direction where to
steer the evolutionary search process. On the other hand, we use a reference
point approach to transform the direction provided by the decision maker into
a reference-point SOP, which is solved using a multi-objective search process. It
is to notice that there exist some work in line with our proposal. For instance,
Cheng et al. [8], and Deb and Jain [13] proposed different methods that allow
the decision maker to attain preferred solutions using reference vectors. However,
that methods depart from our proposal in several aspects. First, it falls into the
a posteriori class of approaches. More importantly, it aims at providing the
decision makers with additional preferred solutions that map different preferred
objective regions, whereas we aim at allowing the decision maker to navigate
through the Pareto front and to locally explore nearby solutions, hence refining
his/her preferences and eventually discovering new preferred solutions. This is
similar to the so-called NIMBUS system [25], but our approach allows to include
the preferences of the DM modeled using a direction in the objective space more
explicitly.

3 Fine Tuning Method and Application to Knapsack

3.1 Basic Idea and Motivations

In the following, we introduce the design principles of the proposed method.
Basically, the motivations of our proposal is to allow the DM to navigate along
the Pareto front by starting from a given initial solution x0, possibly coming
from the output of any available optimization technique. This initial solution x0

is to be viewed as a departure point in the objective space from where the
DM can refine his/her preferences by discovering on-line the vicinity of x0, and
eventually finding new preferred points in the objective space. Consequently,
we shall provide the DM with the necessary tools in order to explore a whole
path of solutions being as near as possible to the Pareto front and to locally
explore the landscape of Pareto optimal solutions in an iterative manner, i.e.,
from one solution to a nearby one. For this purpose, the DM is required to
provide a direction in the objective space, in which the search process shall be
steered. Informally speaking, steering the search along the given direction means
providing the DM with a sequence of candidate solutions xi, i = 1, . . . , N , that
can be viewed as forming a path in the objective space and such that every
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solution xi is improving the previous solution xi−1 with respect to the direction
given by the DM in the objective space.

In order to effectively set up this idea for combinatorial MOPs, we need to
precisely define the role of the direction provided by the DM and the meaning of
improving a given solution according to this direction. Before going further, let us
comment that specifying a direction with respect to a starting solution can easily
be thought by the DM in many different ways and for different purposes. For
the sake of illustration, let us consider a MOP with three objectives (f1, f2, f3)
and the following scenario: the DM has an optimal solution for this problem
that he/she is not fully satisfied with, e.g., he/she would like to minimize the
value of f2 as much as possible. However, a lot of options can be considered
for the above example. For instance, the vector d1 = (1,−1, 0) can refer to a
direction (in the objective space) aiming at reducing the second objective, while
increasing the first one. Similarly, the direction d2 = (0,−1, 1) would imply a
reduction of the second objective together with a growth on the third objective.
In both cases, we could obtain the minimum value for f2, but following the
direction d1 or d2 typically produces different paths that can be associated with
different DM preferences. By defining a direction, the DM can actually decides
which objectives to improve and which ones to “sacrifice” in order to refine
his/her preferences. Performing such local movements in the objective space
while following a whole path of Pareto optimal solutions with respect to the
preferred direction of the DM is the goal of the proposed framework.

For the target framework to work, it is important to keep in mind the notion
of Pareto optimality when performing a movement in the objective space. For
instance, assuming that the starting solution is a Pareto optimal solution, then
it is obviously not possible to improve all the objectives simultaneously. Con-
sequently, the DM can still define a direction which does not involve an opti-
mal movement, because no prior knowledge on the shape of the Pareto front is
assumed. In the rest of this section, we provide a step-by-step description of the
proposed framework and the necessary algorithmic components for its proper
realization. This shall also allow us to better highlight the different issues one
has to address in such context.

3.2 Framework for the Fine Tuning Method

As mentioned above, the fine tuning method proposed in this paper is based on
the assumption that the DM has a preferred direction d in the objective space.
More formally, given an initial solution x0, we assume that the DM is interested
in a solution x1 which is in the vicinity of x0 such that the following holds:

F (x1) ≈ F (x0) + td, (2)

where t > 0 is a given (typically small) step size.
As it is very unlikely that such a point x1 exists where the exact equality

in Eq. (2) holds (note also that the Pareto front around F (x0) is not known),
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Algorithm 1. Fine Tuning Framework
Require: starting point x0

Ensure: : sequence {xi} of candidate solutions
for i = 1, 2, . . . do

Let d ∈ R
m
+ � Direction for search in objective space

Let δ ∈ R+ � Step size in objective space
Zi = RefPoint(xi−1, d) � Reference point in step i
SOPi = G(Zi) � Next single objective problem to solve
xi = Emo Optimizer(SOPi) � evolutionary search for the next solution

end for

we propose to consider a ‘best approximation’ using an ‘approximated’ reference
point Z1 as follows:

Z1 := F (x0) + t̄d, (3)

where t̄ > 0 is a given, fixed (problem dependent) step size. Then, we propose
to compute the ‘closest’ Pareto optimal solution to the reference point Z1 in the
objective space, which will hence constitute the next point x1 to be presented
to the DM. Notice that we still have to define a metric specifying the closeness
of optimal points with respect to the reference point – this will be addressed
later. Once x1 is computed, the DM can consequently change his/her mind or
not, by providing a new direction or by keeping the old one. The framework then
keeps updating the sequence of reference points and providing the DM with the
corresponding closest optimal solutions in an interactive manner. The proposed
framework is hence able to provide the DM with a sequence of candidate solu-
tions such that the respective sequence of objective vectors (ideally) performs a
movement in the specified direction d.

In Algorithm 1, we summarize the high-level pseudo code of the proposed
method. We first remark that the procedure RefPoint implements the idea of
transforming the direction d provided by the DM into a reference point, which
we simply define as follows:

Zi = F (xi−1) + δd, (4)

where xi−1 is the previous (starting) solution and δ a parameter specifying the
magnitude of the movement in the objective space. Actually, δ can be viewed as
the preferred Euclidian distance between two consecutive solutions ‖F (xi−1) −
F (xi)‖ in the objective space. It hence defines the preferred step size of the
required movement, which is kept at the discretion of the DM. Notice also that
both the direction d and the step size δ can be changed interactively by the DM,
which we do not include explicitly in the framework of Algorithm1 for the sake
of simplicity.

Given this reference point, one has to specify more concretely which solu-
tion should be sought for the decision maker. This is modeled by function
G, which takes the current reference point into account and output a (single-
objective) scalar optimization problem (SOP) to be solved. At last, the procedure
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Fig. 1. Illustrative example

Emo Optimizer refers to the (evolutionary) algorithm that effectively computes
the next solution to be presented to the DM. At this stage of the presentation, it
is still not fully clear how to define function G and how to effectively implement
the evolutionary solving procedure, which is at the core of this paper. Before
going into the technical details of these crucially important issues, let us com-
ment on Fig. 1 showing two hypothetical scenarios in the two-objective case,
chosen for the sake of a better visualization. For F (x0), the reference point Z1 is
feasible when choosing the direction d = (1,−1)T . That is, there exists a point x
such that F (x) = Z1. We want a function G(Z1) that prevents x to be actually
chosen. Instead, the solution x1 should be a natural candidate since it is a Pareto
optimal solution where F (x1) is the closest element to Z1 in the Pareto front.
The second scenario is for a given point x0 such that Z1 is infeasible. Here it is
clear that the solution of G(Z1) must be a Pareto optimal solution whose image
F (x1) is the closest to the given reference point. Notice that in both cases, the
Pareto Front is not known when defining function G(Z).

In the following, we propose a possible answer for the definition of G, as
well as some alternative (single- and multi-objective) evolutionary procedures
for solving the corresponding SOP.

3.3 Framework Instantiation

Defining the Next Single-Objective Problem to Be Solved. Since the
direction provided by the DM could be arbitrary, and given that we do not
assume any prior knowledge neither about the Pareto front, nor on the initial
solution from where to steer the search, we propose the following modeling of
function G(x|Z), defining the next point to be computed by our framework. We
rely on the so-called Wierzbicki’s achievement scalarizing function (WASF) [30].
More precisely, let λ ∈ R

m be a weighting coefficient vector (which is different
from the direction d provided by the DM). Given a reference point Z, the WASF
is defined as follows:
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g(x|Z, λ) := max
i=1,...,k

{λi(fi(x) − Zi)} + ρ

k∑

i=1

λi(fi(x) − Zi), (5)

where the parameter ρ is the so-called augmentation coefficient, that must be
set to a small positive value. The motivation of using such a function is that the
optimal solution to Problem (5) is a Pareto optimal solution [24], independently
of the choice of the reference point. This is an interesting property of the WASF
that allows us to deal with reference points that might be defined on the feasible
or the infeasible region of the objective space. Notice that this is to contrast to
other scalarizing functions, such as the widely-used Chebychev function, that
constraint the reference point to be defined beyond the Pareto front.

In our framework, the WASF is intended to capture the DM preferences,
expressed by the reference point computed with respect to the DM preferred
direction. However, the weighting coefficient vector still has to be specified. It is
known that for a given reference point, the solutions generated using different
weight vectors are intended to produce a diverse set of solution in the objective
space. We here choose to set the weight vector λ as (1/k, 1/k, . . . , 1/k), which
can be viewed as one empirical choice implying a relative fairness among the
objectives while approaching the reference point.

The Evolutionary Solving Process. In order to solve the previously defined
SOP, we investigate two alternative evolutionary approaches.

The first one consists in using a standard Genetic Algorithm (GA). More pre-
cisely, and with respect to the experimented knapsack problem, we use the same
evolutionary mechanisms and parameters than [2], i.e., a parent selection via a
random binary tournament with probability 0.7, an elitist replacement strategy
that keeps the best individual, a binary crossover operator with probability 0.5,
a single point mutation, and an improve and repair procedure [2] for handling
the capacity constraints. However, the initial population of the GA is adapted
with respect to the iterations of our proposed framework as follows. Each time
the SOP defined by the WASF and the corresponding reference point is updated,
we initialize the population with 1/4 of the best individuals from the previous
iteration, that we complement with randomly generated individuals. In the first
iteration of our framework, the initial population is generated randomly. In our
preliminary experiments, this was important in order to obtain a good trade-
off between quality and diversity within the evolutionary process. Actually, this
observation leads us to consider the following alternative evolutionary algorithm,
where population diversity is maintained in a more explicit manner, by using an
MOEA for solving the target SOP.

More precisely, our second alternative solving procedure is based on an adap-
tation of the MOEA/D framework [32]. We recall that MOEA/D is based on
the decomposition of a given MOP into multiple subproblems using different
weight vectors, which are then solved cooperatively. In contrast to the original
algorithm, where the entire Pareto front is approximated using an ideal reference
point and a diverse set of weight vectors, typically generated in a uniform way
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in the objective space; we are here interested in a single solution with respect to
the target reference point. Hence, we still consider a set of uniformly-distributed
weight vectors, but we use the WASF where the reference point is fixed in order
to focus the search process on the region of interest for the DM. At the end of the
MOEA/D search process, we output the best-found solution for the weight vector
λ = (1/k, 1/k, . . . , 1/k), which precisely corresponds to the target SOP defined
with respect to the DM preferred direction. Similarly to the GA, our preliminary
experiments revealed that the choice of the initial population for MOEA/D has
an important impact on the quality of the target solution. Accordingly, apart
from the first iteration where the initial population is generated at random,
we choose to systematically initialize MOEA/D with the population obtained
with respect to the previous reference point. Due to the explicit diversity of the
MOEA/D population, this initialization strategy revealed a reasonable choice in
our initial experiments.

Illustrative Scenarios. To exemplify the possible scenarios, we experiment
in the following the tuning method on the MOKP with different assumptions.
This is in order to highlight the behavior of the framework under some possible
representative scenarios and to identify the main raised issues.

We define the exemplary scenarios changing the input values of the fine tun-
ing method, i.e., the initial optimal solution F (x0), the direction in objective
space d and the step size δ. For each investigated scenario, we provide plots
rendering the computed reference points, the projection of the selected solu-
tions (xi) in the objective space, and the final population of each of the two
considered evolutionary algorithms, together with the best-known PF approxi-
mation. This is reported in Fig. 2 for a bi-objective MOKP instance from [33].
Notice that, since we are interested in the impact of the input parameters, we
assume that the initial solution x0 could be optimal or not, which implies that
the first-obtained reference point can also be optimal or not. Thus, by simplicity
we omit the first update of the reference point, and we consider that Z1 = F (x0).
At last, we consider 10 iterations of the proposed method, a population size of
150, and 7, 500 function evaluations when running the solving procedure in each
iteration.

In Fig. 2 (left), we consider a Pareto optimal solution as a starting point and a
fixed direction vector (provided by the DM) corresponding to the scenario where
the second objective is to be refined repeatedly. We can clearly see that running
the proposed framework is able to gradually improve the output solutions and
to effectively steer the search along the desirable input direction. However, the
output solutions are not necessary optimal, which we clearly attribute to the rel-
atively few amount of computational effort used when running the evolutionary
solving procedure. Interestingly, using the MOEA/D algorithm as a solving pro-
cedure (bottom) for the single-objective reference point target problem appears
to work much better than the single-objective GA (top). We clearly attribute
this to the diversity issues that the evolutionary process is facing when trying to
find Pareto optimal solutions. This is confirmed in our second scenario depicted
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Fig. 2. Illustrative scenarios on a bi-objectives. The best-known PF approximation
is in thin black points. Reference points are shown in red squared points. The output
solutions are in shown as circled black point. The population is depicted using a variable
color scale. δ = 500. (Color figure online)

in Fig. 2 (middle), where the initial solution is chosen to be a non-optimal one.
This second scenario also demonstrates that the proposed approach behaves in a
coherent manner even if the solution considered in each iteration is not optimal.
Notice that these two scenarios consider the same preferred direction, which is
actually pointing to regions where there exist some non-dominated points. In
Fig. 2 (right), we instead consider the scenario where a non-optimal direction
d = (−1, 0) is provided, that is a direction that points towards a dominated
region of the objective space. This leads to the critical situation where the com-
puted reference point might be dominated. Again, we notice that the proposed
approach can handle this situation properly and that the MOEA/D-based solv-
ing procedure performs better than the GA.

4 Numerical Results

In this section, we present some numerical results of our approach using the
modified (fine tuning) MOEA/D as a solver, since it was shown to provide bet-
ter performance than the fine tuning GA. In order to appreciate the behavior of
the proposed method, we consider to compare it against the original MOEA/D
algorithm. However, since the original MOEA/D is intended to compute an
approximation of the whole PF, a special care has to be taken. First, the pro-
posed method enables to only output a path of solutions based on the computed
reference points. Hence, we consider a modification of the Inverted Generational
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Distance (IGDZ) [19], which allows us to work with a set of reference points.
More specifically, given the set Z of reference points and a reference set archive A,
the distance of Z toward F (A) is measured as follows:

IGDZ(F (A), Z) :=
1

|Z|
∑|Z|

i=1
min

j=1,...,|A|
dist(Z∗

i , F (aj)), (6)

where Z∗
i denotes the point from the PF which is closest to Zi, i.e., ‖Zi −

Z∗
i ‖ = dist(Z,F (PQ)). Hereby, dist measures the distance between point and

set and between two sets as dist(u,A) = infv∈A ‖u − v‖ and dist(B,A) =
supu∈B dist(u,A), where u and v denote points from sets A and B. Like this,
the optimal IGDZ value is always zero. Notice, however, that the evaluation of
the IGDZ value requires the knowledge of the exact PF. Instead, we use the
best-available PF approximations.

The value of IGDZ can be straightforwardly computed for our approach
using the set of reference points computed at each iteration. For the original
MOEA/D, we consider to first extract from the archive maintained by MOEA/D
the nearest solutions (in the objective space) to the same reference points com-
puted by our approach. Then, these solutions are considered in order to compute
an IGDZ value for the original MOEA/D. By comparing the IGDZ values for
our method as well as for the original MOEA/D, our intent is to highlight the
benefits that can be expected when locally steering the search along a preferred
direction in an interactive way, against computing a global approximation set
form which we steer the search a posteriori. It is however worth-noticing that
such a comparison is only conducted for the sake of illustrating the accuracy of
our approach and its effective implementation which should not be considered
as an alternative to existing (global) multi-objective optimization algorithms.

In the following, we consider some benchmark instances of the considered
MOKP1, as specified in Table 1, which also summarizes the different parame-
ter setting used for the proposed method. MOEA/D was experimented using
the same setting than in the original paper [32]. Notice that, overall, the same
number of function evaluations are used for both the original MOEA/D and the
proposed method. Table 2 shows the obtained results for the consider scenarios
over 20 independent runs for each instance and algorithm.

We notice that, for k = 2, the original MOEA/D is able to obtain better
results than the proposed Fine Tuning method. This is because MOEA/D can
generate points close to the entire PF when the number of objectives is limited.
However, we can observe that, the larger the number of objectives, the better the
Fine Tuning approach. This is because MOEA/D requires more approximation
points and function evaluations in order to cover the entire PF as the dimension-
ality grows, while the Fine Tuning approach is able to naturally focus on certain
regions of the PF. We remark that this fact also improves the execution time,
because the Fine Tuning approach does not require any external archive, while
for MOEA/D to output a high-quality global PF approximation, an archive is
actually used for the MOKP.
1 http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/.

http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/
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Table 1. Parameter setting of the fine tuning method for numerical results. Number of
knapsacks (KS), items, population size (P), maximal number of functions evaluations
for each reference point (ZEvs), number of considered reference points (|Z|), step size
δ, initial reference point Z0 and desirable direction dk.

KS Items P ZEvs |Z| δ Z0 dk

2 250 150 7500 10 300 (10000, 8000) (0, 1)

2 500 200 10000 10 300 (16000, 19000) (1, 0)

3 100 351 17600 10 200 (4056, 3314, 3228) (0, 1, 1)

3 100 351 17600 10 200 (4056, 3314, 3228) (0, 0, 1)

4 500 455 17500 10 300 (13643, 14224, 16968, 16395) (1, 1, 0, 0)

4 500 455 17500 10 300 (16716, 16867, 14178, 13234) (0, 0, 1, 1)

Table 2. Numerical results. Number of knapsacks (KS), items, population size (P),
maximal number of functions evaluations (Ev), and IGDZ ; minimum, average, stan-
dard deviation (in small font) and maximum of 20 independent runs are presented for
IGDZ .

KS Items P Ev IGDZ

Finite Tuning Original MOEA/D

2 250 150 75000 69.86 80.73 (7.02) 90.22 40.34 47.51 (4.73) 59.01

2 500 200 100000 241.45 271.04 (15.34) 291.85 153.12 173.79 (10.89) 192.08

3 100 351 176000 35.84 41.62 (3.56) 47.93 34.05 46.82 (5.13) 57.03

3 100 351 176000 24.10 30.85 (4.82) 41.29 25.63 32.54 (4.35) 40.79

4 500 455 175000 184.73 228.05 (26.95) 289.81 365.29 494.72 (66.79) 577.90

4 500 455 175000 144.85 198.48 (20.12) 231.05 311.34 463.83 (70.58) 589.30

5 Conclusions and Future Work

In this work, we addressed a decision making tool for discrete many objective
optimization problems, where we used the multidimensional multi-objective 0–1
knapsack problem as demonstrator. Since the number of non-dominated solu-
tions grows (even exponentially) with the number of objectives k, it becomes
difficult or even intractable to compute an approximation of the entire Pareto
set for k � 4. Instead, it is likely that each of the chosen solutions obtained
by a solver does not represent the most-preferred one from the set of given
optimal alternatives. In order to overcome this issue, we proposed a local fine
tuning method that allows the search process to be steered from a given solu-
tion along the Pareto front in a user-specified direction. More precisely, we pre-
sented a framework and two possible realizations of it: one by means of a GA for
directly solving the dynamic reference point problem, and another one based on
MOEA/D that focuses on a region of the Pareto front delimited by the reference
point. Given that only a particular segment of the Pareto front is computed, one
retrieves a much more accurate search efficiency compared against the classical
method (i.e., aiming to compute all Pareto optimal solutions), which we have
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demonstrated on several benchmark problems. We think that this method can
be used as a post-processing step to all existing many objective optimization
solvers, and that this will actually help the decision maker to identify his/her
most-preferred solution.

Though this work demonstrates as proof-of-principle the application of the
novel approach, there is still much to be done. First of all, the tuning of the
method is an issue to guarantee in order to get better solutions in lower time,
as well as other solvers might be interesting to consider. Next, we think that the
tuning method can be extended by other approaches to steer the search along
the Pareto front. Finally, it would be interesting to apply the novel method on
many objective optimization problems derived from real-worlds applications in
order to appreciate its impact on the decision making process.
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