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Abstract In this study, we assessed the evolution of diffusion MRI (dMRI) derived
markers from different white matter models as progressive neurodegeneration
occurs in transgenic Alzheimer rats (TgF344-AD) at 10, 15 and 24 months.
We compared biomarkers reconstructed from Diffusion Tensor Imaging (DTI),
Neurite Orientation Dispersion and Density Imaging (NODDI) and Mean Apparent
Propagator (MAP)-MRI in the hippocampus, cingulate cortex and corpus callosum
using multi-shell dMRI. We found that NODDI’s dispersion and MAP-MRI’s
anisotropy markers consistently changed over time, possibly indicating that these
measures are sensitive to age-dependent neuronal demise due to amyloid accu-
mulation. Conversely, we found that DTI’s mean diffusivity, NODDI’s isotropic
volume fraction and MAP-MRI’s restriction-related metrics all followed a two-step
progression from 10 to 15 months, and from 15 to 24 months. This two-step pattern
might be linked with a neuroinflammatory response that may be occurring prior to,
or during microstructural breakdown. Using our approach, we are able to provide—
for the first time—preliminary and valuable insight on relevant biomarkers that may
directly describe the underlying pathophysiology in Alzheimer’s disease.
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1 Introduction

Diffusion MRI (dMRI) allows us to non-invasively study microstructural changes
caused by neuropathology. Among these pathologies, gaining understanding of
Alzheimer’s disease (AD) is of particular importance, affecting over one in nine
people age 65 and above in the U.S. alone [1]. Traditionally, dMRI studies have used
Diffusion Tensor Imaging (DTI) [2] to model the grey and white matter structure
abnormalities in AD patients. Only recently, more complex white matter models
like Neurite Orientation Dispersion and Density Imaging (NODDI) [3] have been
explored to classify AD, and have shown greater discriminative power than DTI [4].
This reinforces the importance of exploring white matter models that provide more
detailed microstructural information than DTI.

In human studies, it is hard to relate dMRI derived metrics to corresponding
microstructural changes for lack of histological validation. As a solution, animal
models provide a way to gain understanding on the underlying pathophysiology of
AD by allowing dMRI in addition to histological measurements. Mouse models
of human tauopathy (rTg4510) have been previously studied at various time
points using DTI [5, 6], and at a single time point comparing DTI with NODDI
metrics [7]. In this latter study, NODDI derived metrics once again appeared more
discriminative than those derived from DTI. Further efforts focusing on multi-
shell dMRI analysis of transgenic Alzheimer rats (TgF344-AD) have shown that
dMRI measurements at higher gradient strengths aid the classification of AD-like
pathology [8]. However, only anisotropy measures of DTI and hybrid diffusion
imaging (HYDI) [9] were explored.

In this study, we compare the evolution of dMRI-derived markers from dif-
ferent white matter models as progressive neurodegeneration occurs in transgenic
Alzheimer rats (TgF344-AD). In particular, we study the patterns of alteration
across three time points in the hippocampus, cingulate cortex and corpus callosum—
areas known to be affected in AD. The two grey matter areas were previously shown
to manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis and
apoptotic loss of neurons [10], making these cortical regions extremely relevant for
understanding the underlying mechanisms in AD. We compare biomarkers derived
from DTI, NODDI and Mean Apparent Propagator (MAP)-MRI [11] using multi-
shell data. To the best of our knowledge, this is the first study that investigates
multi-shell biomarkers at different time points in AD animal models.

The paper is structured as follows: we first describe the diffusion MRI data and
the metrics we derive in Sect. 2. We provide the results in Sect. 3 and discuss them
in Sect. 4. We finally provide our conclusions in Sect. 5.
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2 Materials and Methods

In this section, we first detail the diffusion MRI data acquisition, preprocessing and
region of interest selection of the AD rats. We then give a brief overview of the
methods we use and their metrics of interest. We detail the fractional anisotropy
(FA) and mean diffusivity (MD) of classical DTI, the orientation dispersion index
(ODI), neurite density index (NDI) and isotropic volume fraction (IsoVF) of the
multi-compartment NODDI model, and finally the formulation of several q-space
indices of the MAP-MRI functional basis. We estimated the DTI and MAP-MRI
metrics using the diffusion imaging in python (dipy) open source software [12] and
the NODDI metrics using the NODDI toolbox [3].

2.1 Processing of Transgenic Alzheimer Rat Data Sets

We use multi-shell dMRI data of three ex-vivo transgenic Alzheimer rats (line
TgF344-AD) [10], also previously analyzed by Daianu et al. [8]. The rats were
euthanized at 10, 15 and 24 months, fixed brains were prepared as described in [8],
and scanned using a 7 Tesla Bruker Biospin MRI scanner at California Institute of
Technology. A high-resolution fast low angle magnetic shot (FLASH) anatomical
image with a mix of T1 and T2 weighting (375 � 224 � 160 matrix; voxel size:
0:08 � 0:08 � 0:08 mm3) was used. The diffusion MRI data were sampled on 5

shells with b-values f1000; 3000; 4000; 8000; 12;000g s=mm2, all with the same 60
directions and 5 b0 measurements. Other parameters were ı=� D 11=16 ms and
TE=TR D 34=500 ms. The voxel dimensions were 0:15 � 0:15 � 0:25 mm3.

During preprocessing, extra-cerebral tissue was removed using the “skull-
stripping” Brain Extraction Tool from BrainSuite (http://brainsuite.org/), for both
the anatomical images and the DWIs. We corrected for eddy current distortions
using the “eddy correct FSL” tool (www.fmrib.ox.ac.uk/fsl) for which a gradient
table was calculated to account for the distortions. As an image processing step,
DWIs were up-sampled to the resolution of the anatomical images (with isotropic
voxels) using FSL’s flirt function with 9 degrees of freedom; the gradient direction
tables were rotated accordingly after each linear registration. For our study, we draw
regions of interest (ROIs) in the cingulate cortex, hippocampus and corpus callosum
as shown in Fig. 1.

2.2 DTI Metrics

The classical DTI model [2] assumes that the measured diffusion signal belongs
to the set of Gaussian distributions. While DTI has well-known limitations with
respect to the modeling of crossing tissue configurations and restricted diffusion,

http://brainsuite.org/
www.fmrib.ox.ac.uk/fsl
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Fig. 1 Regions of interest for biomarker estimation on the registered FA map of rat 1. We mark
the cingulate cortex (green), corpus callosum (blue) and hippocampus (red)

its derived metrics FA and MD have been found useful to classify AD patients [4].
Using signal attenuation E.b/ D S.b/=S.0/, the DTI model describes the diffusion
signal as E.b/ D exp.�bgTDg/ with D a 3 � 3 symmetric positive-definite matrix
and g the gradient direction. Estimating the eigenvalues of D as f�1; �2; �3g the FA
and MD are given as

FA D
r

1

2

p
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2q

�2
1 C �2

2 C �2
3

MD D �1 C �2 C �3

3
(1)

In accordance with DTI’s Gaussian diffusion assumption, we only use the b0 and
b D 1000 s=mm2 data when fitting DTI. The FA and MD in our slice of interest are
shown in Fig. 2.

2.3 NODDI Metrics

The more advanced multi-compartment NODDI model [3] separates the signal
contribution of different tissues by fitting a combination of intra-cellular, extra-
cellular and free-water models.

E D .1 � �iso/.�icEic.ODI/ C .1 � �ic/ � Eec/ C �isoEiso (2)

The intra-cellular signal Eic is modeled as a set of dispersed sticks, i.e., cylinders
of zero radius, to capture the highly restricted nature of diffusion perpendicular to
neurites and unhindered diffusion along them. The amount of dispersion is given by
the orientation dispersion index (ODI), which is defined by a Watson distribution.
The extra-cellular signal Eec is described as a dispersed mixture of Gaussian
anisotropic diffusion, and an isotropic Gaussian compartment Eiso represents free
diffusion. Similarly as in [7], we study the ODI, the neurite density index NDI D
.1 � �iso/�ic and the isotropic volume fraction IsoVF D �iso.

In accordance with NODDI’s recommended acquisition scheme [3], we fit
NODDI only using the b0 and b D f1000; 3000g s=mm2 data. Furthermore, as
water diffusivity changes in ex-vivo tissue, we set the intra-cellular and isotropic
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Fig. 2 Illustrations of a DTI and NODDI metrics in the same coronal slice for the three time points

diffusivity to 0.6�10�9m2s�1 and 2.0�10�9m2s�1 [13]. An illustration of the ODI,
NDI and IsoVF can be seen in Fig. 2.

2.4 MAP-MRI Metrics

The MAP-MRI approach [11] uses a functional basis to represent the 3D diffusion
signal with as little assumptions as possible. It then analytically reconstructs the
3D diffusion propagator by only assuming the short gradient pulse approximation
(ı � 0). In this way, it accurately estimates the diffusion propagator in the presence
of both non-Gaussian diffusion and crossing tissue configurations.
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MAP-MRI represents the discretely measured signal attenuation E.q/ using
a set of continuous orthogonal basis functions representing the space OE.qI c/,
where the signal is now represented in terms of basis coefficients c and the q-
space wave vector q D jqjg with g the gradient direction is related to the
b-value as jqj D p

b=.� � ı=3/=2� . Without going into the formulation of MAP-
MRI’s basis functions, we detail the estimation of basis coefficients c in Eq. (3).
In short, we regularize the fitting of c such that OE.qI c/ smoothly interpolates
between the measured q-space points by using Laplacian regularization [14], where
regularization weight � is set using voxel-wise generalized cross-validation. We also
constrain the estimated diffusion Propagator OP.RI c/ to be positive using quadratic
programming [11].

argminc

Data Fidelity‚ …„ ƒZ
R3

h
E.q/ � OE.qI c/

i2

dqC

Smoothness‚ …„ ƒ
�

Z
R3

h
r2 OE.qI c/

i2

dq

subject to OP.RI c/ > 0 with OP.RI c/ D IFT
� OE.qI c/

� (3)

Once c is known, the MAP-MRI basis simultaneously represents the 3D dMRI
signal and 3D diffusion propagator. We estimate the q-space indices Return-To-
Origin, Return-To-Axis and Return-To-Plane Probability (RTOP, RTAP and RTPP),
which in theory are related to the volume, surface and length of a cylindrical
pore [11]. We also estimate the non-Gaussianity (NG), which describes the ratio
between the Gaussian and non-Gaussian volume of the signal. Finally we estimate
the propagator anisotropy (PA), which is a normalized metric that describes the
anisotropy of the 3D diffusion propagator. As MAP-MRI is designed to represent
the entire 3D diffusion signal, we estimate all metrics using the entire 5 shell data
up to a b-value of 12;000 s=mm2, using a radial order of 6, resulting in 50 estimated
coefficients. We illustrate these metrics in Fig. 3.

3 Results

In Fig. 4 we show the evolution of the mean with 0:5 standard deviation of all
dMRI-derived metrics in the ROIs shown in Fig. 1. We use the same colors for
the hippocampus (red), corpus callosum (blue) and cingulate cortex (green). The
only metric that consistently increases over time is NODDI’s ODI and consistently
decreases is MAP-MRI’s PA, with the exception of the cortex. It is also apparent that
FA, NDI, RTOP, RTAP and RTPP follow a different, 2-step pattern, first decreasing
and then slightly increasing. Inversely, for MD, IsoVF and NG we first find an
increase and then a decrease. We provide the raw data values in Table 1. We also
produce correlation plots for dispersion and anisotropy measures in Fig. 5 and for
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Fig. 3 Illustrations of MAP-MRI’s q-space indices in the same coronal slice for the three time
points. To visualize RTOP, RTAP and RTPP in the same unit (mm�1) we show the cubed root of
RTOP and squared root of RTAP

the 2-step metrics in Fig. 6. It can be seen that ODI is negatively correlated with FA
and PA, and that IsoVF is positively correlated with MD and negatively with RTOP.

4 Discussion

In this work, we have shown that different metrics of DTI, NODDI and MAP-MRI
appear to be sensitive to different processes as age-dependent cerebral amyloidosis
manifests in both grey and white matter in the Alzheimer rats.
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Fig. 4 DTI, NODDI and MAP-MRI metrics for the same time points in the hippocampus (red),
corpus callosum (blue) and cingulate cortex (green)

DTI findings: We find a significant drop in FA in all ROIs from 10 to 15 months
and a small increase from 15 to 24 months. This corresponds with previous findings
in the hippocampus using data up to b D 1000 s=mm2 [8]. While a comparison
of using different b-values in the DTI estimation was outside of the scope of this
study, it was shown that when higher b-values are included, the FA trend consistently
decreases over time [8]. Nonetheless, it has been argued that compared to FA, MD
lends itself better to the assessment of cortical and subcortical grey matter, where
net diffusion may not be expected to conform to any one specific direction [15].
When we assess MD, we consistently find an increase from 10 to 15 months and a
decrease from 15 to 24 months. This may suggest that FA and MD are sensitive to
different processes taking place in AD.

NODDI findings: Several studies have suggested that NODDI metrics, in particu-
lar ODI, have better AD classifying potential due to NODDI’s ability to delineate
signal contributions from different tissue compartments [4, 7]. While we cannot do a
classification study using our data, we find that ODI consistently increases in areas
where tau pathology increases in our rat model [10]; the hippocampus, cingulate
cortex and corpus callosum. We also find that IsoVF shows an increase from 10 to 15
months and a decrease from 15 to 24 months in all areas, following the same trend as
DTI’s MD. Though, it should be mentioned that fitting NODDI requires presetting
the intra-cellular and isotropic diffusivity, which influences obtained metric values.
Fitting NODDI on the selected bmax D 3000 s=mm2 or the full data does not
significantly impact our findings.

MAP-MRI findings: To the best of our knowledge, this is the first study that
estimates MAP-MRI metrics on data from an AD model. We find that all metrics
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Table 1 Mean and standard deviation of DTI, NODDI and MAP-MRI metrics for the three time
points in each region of interest

DTI metrics Age

Metric ROI 10 months 15 months 24 months

FA Hippocampus 0.29˙0.08 0.19˙0.05 0.20˙0.06

C. Callosum 0.51˙0.15 0.27˙0.08 0.30˙0.09

C. Cortex 0.28˙0.08 0.20˙0.05 0.22˙0.08

MD (�103) Hippocampus 0.32˙0.02 0.39˙0.03 0.29˙0.02

C. Callosum 0.19˙0.05 0.30˙0.05 0.21˙0.02

C. Cortex 0.31˙0.04 0.49˙0.06 0.23˙0.04

NODDI metrics Age

Metric ROI 10 months 15 months 24 months

ODI Hippocampus 0.39˙0.11 0.48˙0.10 0.55˙0.11

C. Callosum 0.39˙0.08 0.48˙0.09 0.53˙0.09

C. Cortex 0.44˙0.11 0.47˙0.10 0.63˙0.10

NDI Hippocampus 0.46˙0.03 0.45˙0.04 0.54˙0.05

C. Callosum 0.93˙0.09 0.86˙0.07 0.93˙0.08

C. Cortex 0.58˙0.04 0.60˙0.10 0.74˙0.10

IsoVF Hippocampus 0.03˙0.02 0.11˙0.03 0.03˙0.01

C. Callosum 0.02˙0.03 0.11˙0.05 0.02˙0.02

C. Cortex 0.08˙0.05 0.28˙0.06 0.02˙0.03

MAP-MRI Metrics Age

Metric ROI 10 months 15 months 24 months

RTOP (�107) Hippocampus 0.68˙0.08 0.45˙0.10 0.76˙0.14

C. Callosum 1.03˙0.12 0.85˙0.10 0.94˙0.10

C. Cortex 1.04˙0.27 0.90˙0.27 1.58˙0.56

RTAP (�105) Hippocampus 0.38˙0.03 0.31˙0.04 0.41˙0.05

C. Callosum 0.93˙0.09 0.86˙0.07 0.93˙0.08

C. Cortex 0.51˙0.08 0.45˙0.08 0.65˙0.12

RTPP (�103) Hippocampus 0.16˙0.01 0.15˙0.01 0.17˙0.01

C. Callosum 0.21˙0.02 0.22˙0.02 0.23˙0.02

C. Cortex 0.18˙0.01 0.17˙0.01 0.21˙0.02

NG Hippocampus 0.43˙0.03 0.49˙0.02 0.45˙0.02

C. Callosum 0.51˙0.02 0.55˙0.01 0.52˙0.01

C. Cortex 0.51˙0.03 0.57˙0.02 0.49˙0.02

PA Hippocampus 0.27˙0.09 0.2˙0.07 0.15˙0.06

C. Callosum 0.78˙0.11 0.64˙0.11 0.53˙0.13

C. Cortex 0.30˙0.12 0.33˙0.16 0.17˙0.10
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Fig. 5 Scatter plots of FA, ODI and PA for the rats of ages 10 months (blue), 15 months (green)
and 24 months (red) in the hippocampus. It can be seen that ODI is negatively correlated with both
FA and PA

except PA follow a two-stage progression pattern similar to DTI’s MD. The
decrease-increase of return-to-origin, return-to-axis and return-to-plane probability
(RTOP, RTAP and RTPP) makes sense with the increase-decrease of MD, as an
increased diffusivity means that spins are able to move away farther, reducing the
chance they return to their origin, axis or plane. Interestingly, this does not make the
signal more Gaussian, as the Non-Gaussianity follows an increase-decrease pattern
in all ROIs. The exception to this trend is the RTPP in the corpus callosum, which
increases monotonically, indicating a steady increase in restriction parallel to the
axon direction. Finally, PA consistently decreases in all areas except the cortex,
where a small increase is found, followed by a larger decrease. This decreasing trend
in anisotropy measures when using higher gradients strengths was also reported with
DTI’s FA or HYDI’s NQA [8]. We note that while we fitted MAP-MRI to the full
data with 300 DWIs, it was shown that its metrics are stable under subsampling to
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Fig. 6 Scatter plots of MD, IsoVF and RTOP for the rats of ages 10 months (blue), 15 months
(green) and 24 months (red) in the hippocampus. It can be seen that IsoVF is positively correlated
with MD and negatively with RTOP

less than 100 DWIs [14] or could even be fitted directly on a NODDI acquisition
scheme.

Biological explanation for biomarker trends: The trends of all derived metrics
can be divided into two groups: those that consistently decrease or increase and
those that show a ‘decrease-increase’ or ‘increase-decrease’ pattern.

The first group could point towards the accelerating cerebral amyloidosis as
age increases in these rats [10]. Over time, this “amyloid burden” results in age-
dependent neuronal demise that is likely owed to oligomeric Aˇ accumulation. In
turn, this neuronal demise could result in a more dispersed, less anisotropic diffusion
signal. This corresponds with the observed correlations between dispersion and
anisotropy measures in Fig. 5.

The second group may indicate an inflammatory response to amyloid accumula-
tion, occurring prior to (or coincident with and obscuring) the onset of microstruc-
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tural breakdown and macrostructural atrophy [16]. At 15 months TgF344-AD rats
have heavy plaque burden and strong neuroinflammation, whereas by 24 months
most of the inflammatory reaction to the plaques has passed. This corresponds to
what we see when MD and IsoVF increase-decrease and RTOP, RTAP and RTPP
decrease-increase (except RTPP at corpus callosum). The correlations between MD,
IsoVF and RTOP in Fig. 6 therefore makes sense. Though, the increase-decrease
in NG indicates that while the inflammatory response increases diffusivity, it also
increases the non-Gaussian portion of the signal at higher b-values.

Difficulties of comparing our findings with previous animal studies: There have
been several previous dMRI studies using Alzheimer animal models. However,
different species and disease expressions make comparisons of dMRI metrics
difficult. For instance, our TgF344-AD rat model was made to drive cerebral
amyloid and downstream tauopathy and neuronal loss, also known as the “amyloid
cascade hypothesis” of John Hardy [17]. In contrast, the Tg4510 mouse model used
by Colgan et al. [7] was developed to only assess tauopathy; and not the amyloid
cascade hypothesis. For this reason, it is hard to make claims about differences in
biomarker trends found between this study and theirs.

Limitations of the study: As we did not have healthy rats to statistically test for
changes with disease progression—which means there is room for improvement—
we used the youngest rat (10 months old) as a control subject to compare against
suggestive changes at later time points. Another limitation is the low number of
experimental subjects that also prevents us from statistically differentiating between
the disease stages of the transgenic Alzheimer rat model.

5 Conclusion

We presented a unique study on transgenic Alzheimer rats at 10, 15 and 24
months, comparing DTI, NODDI and MAP-MRI-derived metrics, in grey and
white matter areas known to manifest age-dependent cerebral amyloidosis that
precedes neurofibrillary tangles and apoptotic loss of neurons. We found that
NODDI’s ODI and MAP-MRI’s PA metrics uniformly changed over time, likely
indicating that they are sensitive to age-dependent neuronal demise due to amyloid
accumulation. It is relevant to note that both of these metrics require b-values
higher than 1000 s=mm2. Conversely, we found that DTI’s MD, NODDI’s IsoVF
and MAPMRI’s RTOP, RTAP, RTPP and NG all follow a two-step progression
from 10 to 15 to 24 months—either an increase-decrease or a decrease-increase—
likely indicating sensitivity to the neuroinflammatory response at 15 months and
potentially, atrophy of the microstructure at 24 months. While this study does
not have enough subjects to statistically differentiate between the different disease
stages, it does provide valuable insight on which biomarkers and models come
closest to explaining the biological changes in the cerebral tissue.
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