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Abstract Microstructural measures from diffusion MRI have been used for classi-
fication purposes in neurodegenerative and psychiatric conditions. Novel diffusion
reconstruction models can lead to better and more accurate measures of tissue
properties: each measure provides different information on white matter microstruc-
ture in the brain, revealing different signs of disease. The diversity of computable
measuresmakes it necessary to develop novel classification procedures to capture all
of the available information from each measure. Here we introduce a multichannel
regularized logistic regression algorithm that classifies individuals’ diagnostic status
based on several microstructural measures, derived from their diffusion MRI
scans. With the aid of a TV-L1 prior, which ensures sparsity in the classification
model, the resulting linear models point to the most classifying brain regions
for each of the diffusion MRI measures, giving the method additional descriptive
power. We apply our regularized regression approach to classify Alzheimer’s
disease patients and healthy controls in the ADNI dataset, based on their diffusion
MRI data.
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1 Introduction

Diffusion MRI (dMRI) reveals a number of properties of white matter (WM)
microstructure. Its sensitivity to water diffusion in living tissue allows us to compute
numerous summary measures that relate to neural fiber integrity and architecture in
the brain. Based on certain assumptions, each can quantify different aspects of WM
microstructure. One of the most basic measures—fractional anisotropy (FA)—is
based on the diffusion tensor model (DTI) [1], and continues to be popular despite
its known limitations, which include its ambiguity at fiber crossings. Other models
overcome some limitations of DTI, includingmulti-tensormodels, such as the tensor
distribution function (TDF) [2], q-ball imaging and the orientation distribution
function (ODF) [3], constrained spherical deconvolution [4], neurite orientation
dispersion and density imaging (NODDI) [5], and freewater index (FW) [13] among
others. Each model leads to its own set of scalar microstructural measures and
many offer a richer understanding of WM microstructure than FA does. Which
combination of measures best characterizes brain disease remains an open question,
and depends on the disease examined, and the spectral and angular resolution of the
available data. This question may have a different answer in different parts of the
brain depending on the underlying changing pathology (e.g., pathological changes
in gray/white matter interfaces or more central white matter tracts).

At the time of writing, around 20 microstructural measures have been proposed
for single-shell dMRI. Microstructural measures derived from new dMRI models
may carry even more information on WM microstructure including the geometry of
diffusion anisotropy, diffusivity, complexity, estimated number of distinguishable
fiber compartments, number of crossing fibers and neurite dispersion. Combining
these in a classification task is challenging, and requires proper regularization.
Here, we use a Total Variation-Lasso or TV-L1 regularization as a prior term in a
logistic regression framework. The channel-wise TV term leads to linear models that
are approximately spatially piecewise constant, giving the weight maps descriptive
power to suggest both the regions and measures that are helpful in a disease
classification task, while considering multiple measures together. We build on prior
work with TV-L1 regularizers in neuroimaging; they have been used successfully
for fMRI decoding and in electrophysiological studies [6].

The classification task examined here is to discriminate Alzheimer’s disease
patients (AD) and healthy aging controls (NC), based on their dMRI data, by
merging information from a range of complementary indices. A discriminative
model in this setting may be useful as a disease biomarker, for drug trial enrichment
and to help identify those most likely to decline in the future. In view of this, many
studies describeWMmicrostructural differences between AD and NC [7], and some
exploit WM metrics for classification [8–10]. By combining several measures in a
classification task, we hope to generate a biomarker of disease that is “greater than
the sum of its parts.”
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2 Methods

2.1 Data Acquisition and Preprocessing

Baseline MRI, dMRI, and clinical data were downloaded from the ADNI database
(adni.loni.usc.edu). Here we performed an analysis of dMRI data from 102 partic-
ipants: 53 healthy controls (CN; mean age: 72.4 ˙ 6.0 years; 24 M/29 F), and 49
AD patients (mean age: 74.9 ˙ 8.7 years; 29 M/20 F).

All subjects underwent whole-brain MRI scanning on 3T GE Medical Sys-
tems scanners at 14 acquisition sites across North America. Anatomical T1-
weighted SPGR (spoiled gradient echo) sequences (256 � 256 matrix; voxel
size D 1.2 � 1.0 � 1.0 mm3; TI D 400 ms; TR D 6.98 ms; TE D 2.85 ms; flip
angle D 11ı), and dMRI (128 � 128 matrix; voxel size: 2.7 � 2.7 � 2.7 mm3;
TR D 9000ms; scan time D 9 min were acquired; 46 separate images were acquired
for each dMRI scan: 5 images with no diffusion sensitization (b0 images) and 41
diffusion-weighted images (DWI; b D 1000 s/mm2).

Images were preprocessed as in [7]. To summarize, raw dMRI images were cor-
rected for motion and eddy current distortions, and T1-weighted images underwent
inhomogeneity normalization. Extra-cerebral tissue was removed from both scan
types. Each T1-weighted anatomical image was linearly aligned to a standard brain
template (the down-sampled Colin27 [11]): 110 � 110 � 110, with 2-mm isotropic
voxels). The diffusion images were linearly and then elastically registered [12] to
their respective T1-weighted structural scans to correct for echo-planar imaging
induced susceptibility artifacts. The gradient tables were corrected to account for
the linear registration of the DWI images to the structural T1-weighted scan.

2.2 DMRI Reconstruction Models, Scalar Maps,
and Spatial Normalization

For each subject, dMRI microstructural measures were computed from four dif-
ferent reconstruction models: DTI, TDF, NODDI and FW. Five measures were
extracted from these models: FA and mean diffusivity (MD) from DTI, fractional
anisotropy from TDF (FA-TDF), the orientation dispersion index (OD) from
NODDI and the free water index (FW). We will not describe the well known DTI
based FA and MD here, but will briefly describe the other three models:

The Tensor Distribution Function (TDF) represents the diffusion profile as
a probabilistic mixture of tensors [2] allowing the reconstruction of multiple
underlying fibers per voxel, together with a distribution of weights. We compute the
voxel-wise TDF as the probability distribution function P(D) defined on all feasible
3D Gaussian diffusion processes in tensor space D:

S .q/ D P .D/ e.�tqTDq/dD; (1)
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where S is the measured intensity signal, q D rıG, where r, ı, and G are the
gyromagnetic ratio, the duration of the diffusion sensitization, and the applied
magnetic gradient vector, respectively. The number of detected peaks is estimated
by examining the local maxima of the tensor orientation distribution (TOD), defined
in the unit sphere along directions � :

TOD .�/ D
Z

�

P .D .�; �// d�; (2)

where � are the eigenvalues. The TDF-averaged eigenvalues of each fiber were
calculated by computing the expected values along the principal direction of the
fiber. From these eigenvalues a scalar TDF anisotropy (FA-TDF) is calculated as an
extension of the standard FA formula:

FA TDF D
Z

TOD .�/ � FA .�/ d�

D
s

.�0

1.�/��0

2.�//
2C.�0

1.�/��0

3.�//
2C.�0

2.�/��0

3.�//
2

2
h
�0

1.�/
2C�0

2.�/
2C�0

3.�/
2
i

�0
i .�/ D

R
P .D .�; �// �id�R
P .D .�; �// d�

(3)

The Neurite Orientation Dispersion and Density Imaging (NODDI) is a
composite model that takes into account three compartments that affect water
diffusion in the brain: the intracellular compartment, the extracellular compartment,
and the cerebrospinal fluid (CSF) [5]. The intracellular compartment is modeled as
cylinders with a radius of zero that represent the axons and dendrites of the brain
tissue, which are jointly called neurites. The ODF of the intracellular compartment
is modeled as a Watson distribution that can capture the dispersion orientation of
coherent central white matter bundles as well as the incoherent neurites of the grey
matter. The normalized intracellular compartment Aic is modeled as:

Aic D
Z

S2

f .n/ e�bdk.q�n/2

dn (4)

Here, q represents the gradient directions, b the b-value of the diffusion
weighting, n are the orientations of the cylinders with parallel diffusivity djj along
which the signal is attenuated and f .n/ is the Watson distribution, which has two
parameters (�, K) and is defined as:

f .n/ D M

�
1

2
;

3

2
;K

��1

eK.��n/2

(5)

Here, the distribution tends to be symmetric around the mean orientation �, and
M is Kummer’s confluent hypergeometric function. K is called the concentration
parameter. For K > 0, as K increases the density along � tends to concentrate.
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Once K is estimated the orientation dispersion index (OD) is calculated as:

OD D 1

�
arctan

�
1

K
�

(6)

OD goes from 0 to 1, the higher the value the more dispersed the neurites in a
particular voxel. In our analyses below we used only the OD maps. The intracellular
and extracellular volume fractions as well as the isotropic CSF volume fraction
are not taken into account in our analyses. Zhang et al. demonstrated that the
latter measures require more than one shell in order to be reliable, whereas the
OD can be computed reliably with single shell data even with standard clinical
acquisition b-values of b D 1000 s/mm2 [5]. OD may be more informative than
DTI, in areas with less organized patterns such as areas of multiple fiber crossings
as well as towards the gray/white matter boundaries.

Free-Water Imaging (FW) estimates the contribution of freely diffusing water
molecules to the diffusion signal with a bi-tensor model [13]. The first component
of the model is the so-called tissue compartment that represents either grey matter
or a bundle of the white matter. The second component reflects the free-water
compartment, which is said to be proportional to the amount of CSF contamination,
especially in areas of the white matter that are close to the ventricles. The free-water
component is also expected to increase with neuroinflammation due to edema. The
full model is defined as:

Sq .D; f / D fe.�bqTDq/ C .1 � f / e.�bdw/; (7)

where S is the attenuated signal, q are the applied diffusion gradient directions,
b is the b-value of the diffusion weighting, D is the diffusion tensor and f is the
fractional volume of the tissue compartment (0 < f � 1). The second term is a fully
isotropic tensor, where dw is the bulk diffusivity of water, which is constant at body
temperature (3 � 10�3 mm2/s).

Voxel-wise maps of all five measures—FA, MD, FA-TDF, OD, and FW—were
created for all 102 subjects; all subjects’ maps were spatially normalized to a custom
ADNI- derivedminimal deformation template (MDT). Template creation and spatial
normalization was performed according to previously published voxelwise ADNI-
DTI analyses [7].

2.3 Regularized Logistic Regression Classification

In general, the linear logistic regression model has the following classification
function

y D f .X;w; b/ D F .Xw C b/ (8)
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Here X 2 Rn�p, n is the number of samples (subjects) and p is the number of
features. As all the computations were performed within the MDT mask (193,586
�200,000 voxels), p is the number of voxels times the number of diffusion measures
(five in this case). The parameters to be estimated are w and b, where w 2 Rp is a
p-dimensional vector, b 2 Rn is the intercept and y2 f�1, 1g is the class label, in
our case, to be the subject diagnosis. The regularized cost to be optimized is:

bw D arg min L .y;F .Xw C b// C �J .w/ ; � � 0 (9)

where L is the logistic loss function, J .w/ is the regularization term and � is the
Lagrange multiplier. The intercept b is not regularized, and only depends on the loss
function. We will simplify L .y;F .Xw C b// to L .w/. In our case, the standard
TV-L1 norm cost becomes:

J .w/ D .1 � ˛/ kwk1 C ˛
XNm

jD1
TV

�
wj

�
; TV.y/ D kryk ; (10)

where the first term is the LASSO or L1 cost, TV is the Total Variation penalty [6],
wj is the weight map of a microstructural measure j, Nm (D5 here) is the number
of measures used and ˛ is a constant that sets the desired tradeoff between L1
and TV terms. The L1 penalty encourages sparsity in the model, by setting most
coefficients to zero. This penalty function suffers from some limitations when there
is a large number of parameters p to fit, and few observations n, as LASSO selects at
most n variables before it saturates. Further, if there is a group of highly correlated
variables, then LASSO tends to select one variable from a group and ignores the
others. On the other hand, the TV is defined as the L1 norm of the image gradient,
which allows for sharp edges, encouraging the recovery of a smooth, piecewise
constant weights map. This in turn allows us to interpret the weight maps as they
may highlight clusters that can resemble anatomical regions.

We used the FISTA procedure [6] to find bw (the estimated value for w). As the
L1 terms are not smooth, a naïve gradient descent may not always converge to a
good minimum. For this convex optimization, smooth and non-smooth terms are
considered separately. The logistic loss and the logistic gradient are the smooth
terms:

L .w/ D 1

n

Xn

iD1
log

�
1 C e�yi.XT

i w/
�

(11)

rL .w/ D �1

n

Xn

iD1

yiXi

1 C eyi.X
T
i w/

(12)

We used an eightfold nested cross-validation to tune the parameters ˛ and �.
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3 Results

We were able to classify individuals into diagnostic groups (AD vs. NC) with an
accuracy of 76.2%. We ran a parallel test by using only one measure (FA-DTI) and
the prediction accuracy was 50%. As expected, the resulting maps of significant
predictors showed cohesive regional patches of stable coefficients, a property that is
favored by the TV regularization term. Figure 1 shows the resulting map for each of
the five measures.

FW and MD showed similar predictive properties, with large regions of negative
coefficients in the frontal lobes (both hemispheres). FA-DTI and FA-TDF also
showed a similar pattern, but FA-TDF showed larger and more cohesive regions in
the frontal white matter, especially in areas with fiber crossings. OD showed some
similarities with the MD map although the regions with the larger coefficients (both
positive and negative) tended to be smaller and more widespread. Many of these
observations are in line with what is expected for each measure. The direction of the
coefficients is also important to note. It is expected that the anisotropy of the white
matter tends to decrease in AD compared to healthy aging controls, but MD, FW
and OD on the other hand tend to increase with white matter disruption.

A. B. C.

D. E.

1.2x10-4

-1.2x10-4

2x10-4

-2x10-4

4.3x10-5

-4.3x10-5
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6x10-5

-6x10-5

Fig. 1 Regularized maps of useful diagnostic predictors, based on measures computed from
diffusion MRI. (a) FA-DTI, (b) FA-TDF, (c) MD-DTI, (d) OD, (e) FW. Color bars show the value
of the coefficients, from negative (blue) to positive (red), with zero in green
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4 Discussion

In this article, we evaluated the utility of the TV-L1 prior logistic regression
to assess the ability of multiple dMRI reconstruction methods to simultaneously
distinguish alterations in WMmicrostructure between people with AD and matched
healthy controls. We computed five dMRI derived microstructural measures from
four different reconstruction models that were used together in a regularized
classification framework and we were able to successfully classify AD from healthy
controls and to derive spatially coherent discrimination patterns across the entire
brain for each measure.

AD pathology includes disturbances in the brain’s WM pathways including loss
of axons, myelin sheaths, and oligodendroglial cells, which may not all be detected
by using DTI based descriptors alone. Machine learning for classification based on
dMRI features has been focused mainly on DTI derived measures; although HARDI
derived measures have also been explored [19, 20]. Volumetric measures, including
hippocampal volume, gray matter volume from voxel-based morphometry, and
cortical thickness [14–16, 18], have effectively classified AD patients, but few
studies have used dMRI-derived biomarkers for classification purposes. Most of
these studies have used DTI based measures: several used voxel-wise features
from DTI maps, using methods such as Pearson correlation and ReliefF for feature
reduction [8–10], reporting classification accuracies of >90%. In [17], tractography-
based connectivity metrics based on fiber count, FA-DTI, and diffusivity were used
for SVM classification, reporting an accuracy of 88%. Clearly, these accuracies
depend on the problem and dataset used, and are not directly comparable with one
another. Spatial and anatomical regularization for classification purposes have also
been tested on AD discrimination against controls by Cuingnet et al. [18]. Here
they achieved improved classification accuracies by using this type of regularization
on cortical features and producing discriminatory parcellated maps of the cortex
highlighting the brain regions traditionally compromised in AD.

Here we evaluated 102 subjects and were able to reach a relatively high
classification accuracy for a white matter study of AD. Although our approach
did not necessarily “beat” prior classification results, our goal was to compare the
relative utility of multiple metrics for classification, which leads to some insight on
how the disease may affect different fiber properties. Moreover, it was important
to see if these measures might complement and add to the information provided
by DTI measures—particularly in regions outside the coherent WM. Many dMRI
measures are correlated with each other to some extent, but each captures the
microstructure slightly differently, and at the various spatial locations, there may
be greater sensitivity to detecting subtle changes with one measure versus another.

In conclusion, different reconstructionmodels and their respective scalar descrip-
tors provide distinct micro-anatomical features, which differ in classification value
by brain region. Together these estimates may improve brain-wide classification
and may overcome the need to compute localized statistically determined regions
of interest, and allow us to observe microstructural changes in the entirety of the
brain. We made use of the main functionality of the TV prior, namely its denoising
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and smoothing capabilities across the image. This is essential in this context since
single voxels prove to be very noisy and neighboring anatomy is presumably similar.
Future work should compare other classification methods and improve estimates
by incorporating tissue volume differences. We will also test if dMRI metrics
can contribute to leading classification approaches based on biomarkers such as
hippocampal volume, amyloid deposition, and tensor-based morphometry.

Acknowledgment This work is partially supported by an NIH U54 grant to the ENIGMA Center
for Worldwide Medicine, Imaging & Genomics.

References

1. Basser, P.J., et al.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267
(1994)

2. Leow, A.D., et al.: The tensor distribution function. Magn. Reson. Med. 61(1), 205–214 (2009)
3. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)
4. Tournier, J.D., et al.: Direct estimation of the fiber orientation density function from diffusion-

weighted MRI data using spherical deconvolution. Neuroimage. 23, 1176–1185 (2004)
5. Zhang, H., et al.: Axon diameter mapping in the presence of orientation dispersion with

diffusion MRI. Neuroimage. 56(3), 1301–1315 (2011)
6. Gramfort, A., et al.: Identifying predictive regions from fMRI with TV-L1 prior. In: 3rd

International Workshop on Pattern Recognition in Neuroimaging, Philadelphia, PA, 2013,
pp. 17–20 (2013)

7. Nir, T., et al.: Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease,
MCI, and normal aging. Neuroimage Clin. 3, 180–195 (2013)

8. Graña, M., et al.: Computer aided diagnosis system for Alzheimer disease using brain diffusion
tensor imaging features selected by Pearson’s correlation. Neurosci. Lett. 502(3), 225–229
(2011)

9. Haller, S., et al.: Individual prediction of cognitive decline in mild cognitive impairment using
support vector machine-based analysis of diffusion tensor imaging data. J. Alzheimers Dis.
22(1), 315–327 (2010)

10. O’Dwyer, L., et al.: Using support vector machines with multiple indices of diffusion for
automated classification of mild cognitive impairment. PLoS One. 7(2), e32441 (2012)

11. Holmes, C.J., et al.: Enhancement of MR images using registration for signal averaging. J.
Comput. Assist. Tomogr. 22(2), 324–333 (1998)

12. Leow, A.D., et al.: Statistical properties of Jacobian maps and the realization of unbiased large-
deformation nonlinear image registration. IEEE Trans. Med. Imaging. 26(6), 822–832 (2007)

13. Pasternak, O., et al.: Free water elimination and mapping from diffusion MRI. Magn. Reson.
Med. 62(3), 717–730 (2009)

14. Klöppel, S., et al.: Automatic classification of MR scans in Alzheimer’s disease. Brain. 131(3),
681–689 (2008)

15. Lerch, J.P., et al.: Automated cortical thickness measurements from MRI can accurately
separate Alzheimer’s patients from normal elderly controls. Neurobiol. Aging. 29(1), 23–30
(2008)

16. Magnin, B., et al.: Support vector machine-based classification of Alzheimer’s disease from
whole-brain anatomical MRI. Neuroradiology. 51(2), 73–83 (2009)

17. Wee, C.Y., et al.: Enriched white matter connectivity networks for accurate identification of
MCI patients. Neuroimage. 54(3), 1812–1822 (2011)



166 J.E. Villalon-Reina et al.

18. Cuingnet, R., et al.: Spatial and anatomical regularization of SVM: a general framework for
neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 682–696 (2013)

19. Bloy, L., et al.: HARDI based pattern classifiers for the identification of white matter
pathologies. Med. Image Comput. Comput. Assist. Interv. 14(2), 234–241 (2011)

20. Nagy, Z., et al.: Using high angular resolution diffusion imaging data to discriminate cortical
regions. PLoS One. 8(5), e63842 (2013)


	Using Multiple Diffusion MRI Measures to Predict Alzheimer's Disease with a TV-L1 Prior
	1 Introduction
	2 Methods
	2.1 Data Acquisition and Preprocessing
	2.2 DMRI Reconstruction Models, Scalar Maps, and Spatial Normalization
	2.3 Regularized Logistic Regression Classification

	3 Results
	4 Discussion
	References


