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Preface

This volume offers a valuable starting point for anyone interested in learning
computational diffusion MRI and mathematical methods for brain connectivity
while also sharing new perspectives and insights on the latest research challenges
for those currently working in the field.

Over the last decade, interest in diffusion MRI has virtually exploded. The
technique provides unique insights into the microstructure of living tissue and
enables in vivo connectivity mapping of the brain. Computational techniques are key
to the continued success and development of diffusion MRI and to its widespread
transfer into the clinic, while new processing methods are essential to addressing
issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction,
modeling and model fitting, image processing, fiber tracking, connectivity mapping,
visualization, group studies, and inference.

These papers from the 2016 MICCAI Workshop “Computational Diffusion
MRI” which was intended to provide a snapshot of the latest developments within
the highly active and growing field of diffusion MRI cover a wide range of topics,
from fundamental theoretical work on mathematical modeling to the development
and evaluation of robust algorithms and applications in neuroscientific studies
and clinical practice. The contributions include rigorous mathematical derivations;
a wealth of rich, full-color visualizations; and biologically or clinically relevant
results. As such, they will be of interest to researchers and practitioners in the fields
of computer science, MR physics, and applied mathematics.

Eindhoven, The Netherlands Andrea Fuster
London, UK Aurobrata Ghosh
London, UK Enrico Kaden
Boston, MA, USA Yogesh Rathi
Freiburg, Germany Marco Reisert
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The MR Physics of Advanced Diffusion Imaging

Matt G. Hall

Abstract Over the last decade, the number of models used to analyse and interpret
diffusion MRI data has increased dramatically. Exponentials and biexponentials
have been joined by stretched exponentials, HARDI methods, compartment-based
microstructure models and effective medium theories. At the same time, the field
has experienced a cultural shift away from MR physics and towards computer
science, emphasising Bayesian statistics and Machine Learning. This has meant
that understanding imaging methodology whilst still keeping in mind the underlying
physical assumptions can be challenging.

This chapter reviews the Diffusion MR modelling literature from the point of
view of the underlying physics. We show how the Bloch-Torrey equation can
be derived, and then how different physical assumptions and formulations lead
to different models. The intention is to show the different assumptions made in
different models, to aid understanding and model selection.

1 Introduction

The manipulation of spin magnetic moments is central to NMR and MRI. Via a
wide variety of mechanisms, it is possible to excite signals of various kinds from
samples placed in the scanner’s magnetic field by applying controlled RF pulses and
magnetic field gradients. Since the behaviour of spins is affected by the chemical
and physical environment they experience, NMR and MRI measurements provide
a vector for analysing the chemical make-up and physical structure of objects or
living organisms.

The Bloch equation describes the change in magnetisation of a continuum of
spins in a field B, assuming that spins are stationary. It is an effective theory
which captures smaller-scale effects like spin-spin and spin-lattice interaction via
decay constants. In many situations, however, it is useful to consider the effects of
diffusive motion on spin magnetisation, which can have an important effect on NMR
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2 M.G. Hall

measurements. Spin diffusion was first incorporated by Torrey [40], who included
an additional additive diffusion term.

Torrey’s derivation assumes that spins have only a very small drift velocity, but
in more recent literature it is common to also include a linear flow term. The full
form is

dM
dt
D �M � B � MxOiCMyOj

T2
� Mz �M0

T1
Ok� r � .DrM/ � r � uM (1)

where M D .Mx;My;Mz/
T is the local magnetisation, M0 is the equilibrium

magnetisation, Oi, Oj, Ok are unit vectors defining the lab frame, B is the static
scanner field, T1 and T2 are relaxation constants related to spin-lattice and spin-
spin interactions respectively, and � is the gyromagnetic constant for the medium,
D describes the local diffusivity, and u is a vector describing coherent flow.

The Bloch-Torrey equation led to the development of various pulse sequences
which allow the diffusive term to be quantified (see, e.g. [11, 39]), which in turn has
lead to the development of diffusion-weighted imaging (DWI).

Diffusive motion encodes information about the environment experienced by dif-
fusing particles. This encoding, however, is non-trivial and extracting environmental
information from measurements of diffusion, particularly when it happens in the
presence of microstructure, is hugely challenging. Nevertheless, the fact that the
length scales of diffusive motion over the timescale of a typical MR pulse sequence
are orders of magnitude smaller than a typical scan voxel has led to considerable
research effort into how best to analyse diffusion-weighted measurements. This in
turn has lead to a large number of models and approaches to diffusion imaging
which can be confusing to someone new to the field.

All of diffusion imaging is ultimately grounded in the Bloch-Torrey equation—
different solutions provide the models used to analyse diffusion-weighted data. This
chapter reviews how the Bloch-Torrey equation is derived, and shows how a minor
and straightforward generalisation of the transport term provides a useful unifying
principle which we can use to reveal the relationships between different models.

The Bloch-Torrey equation treats magnetisation as a continuum. The presence of
the spatial derivative requires that M be smoothly varying in space. Similarly, the
time derivative assumes that the continuum is changing smoothly with time. This
is compatible with the concept of magnetisation as a vector field rather than being
defined discretely on separate, point-like particles. We can think of this as a “local
magnetisation”—the magnetisation per unit volume—given by

Mnet D
NX

iD1
�i '

•

V

MdV (2)

where �i are individual magnetisation vectors due to point charges in the applied
field B, V is a small control volume over which the derivatives are smooth, and
M is a smooth continuum approximating the underlying discrete magnetisation
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distribution. This can be derived by considering the conservation of mass as applied
to a vector quantity via the continuity equation. Note that V is not typically
associated with a scan voxel—it is a theoretical volume over which the continuum
approximation holds. For experimental purposes it may be regarded as vanishingly
small.

We will review diffusion MRI models starting with a derivation of the continuity
equation for a vector quantity, showing how this leads to the Bloch-Torrey equation.
We then show how different models can be seen as choices of transport mechanism,
and then explore generalisations to multiple continua and models with boundary
conditions. The aim is to give a comprehensive overview of the diffusion MRI
modelling literature whilst also providing a physical basis for the assumptions made
in each one.

2 The Continuity Equation for Vector-Valued Quantities

Conservation laws and conserved quantities are familiar concepts to every physicist.
The idea is that the total amount of a particular quantity is constant. Whilst
conservation is very general and useful, in many situations it is helpful to require that
the distribution of the conserved quantity is smooth. The presence of jumps means
that derivatives are not defined, and hence approaches to studying dynamics that rely
on differential equations, such as the Bloch-Torrey equation, will fail. This extension
of conservation to include local smoothness is called Continuity. Continuity is a
widespread approach in physics. The first usage was probably by Euler who used
the idea as early as 1757 [3]. This section describes how continuity is formalised for
the vector-valued quantities of interest in MR physics.

We can think about this by considering the amount of a quantity in a particular
control volume V . Let M.r/ be the density of some vector quantity at a point r in
space. The total amount in an arbitrary volume V at time t is then

Mnet.t/ D
•

V

M.r; t/dV: (3)

Unlike a global conservation law, this quantity is not guaranteed to be constant. In
fact, its rate of change can be readily defined as

dMnet.t/

dt
D d

dt

•

V

M.r; t/dV D
•

V

@M.r; t/
@t

dV: (4)

This change can also be expressed in terms of the processes that cause it. The change
in the total amount of a quantity in the volume V is given by the net amount of the
quantity entering and leaving the volume, and also by the intrinsic change in the
amount of quantity present due to its creation and destruction. Figure 1 illustrates
these two processes—a process transferring a quantity into (or out of) a region is
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S

V

J

R

(a)

(b)

Fig. 1 The two mechanisms by which the amount of a quantity of interest in a region V can
change. (a) Transport in or out via a flux process J, or (b) intrinsic changes in the quantity itself
via a source/sink process R. Black particles decay away (dotted circles), and new particles emerge
(ringed circles)

known as a flux (a). A quantity may also change in the absence of movement (b)
for example chemical reactions can occur or radioactive decay may transform one
quantity into another. Let J.r; t/ be the net flux of M in to/out of a point r and time
t, and define the net intrinsic change in the quantity in the volume at time t as †.t/.
This means we can write the net change in Mnet.t/ as

dMnet.t/

dt
D
—

S

J.r; t/dS �†.t/ (5)

where S is the surface that bounds V . The source and sink process is described by
a net additive vector, but the flux term is more subtle. In the scalar case the flux is
a vector, but here we need to describe the transport of a vector quantity in a vector
direction, necessitating a rank-two object. We will write this as J.M/, giving

dMnet.t/

dt
D
—

S

J.M/dS �†.t/ (6)

Equating Eqs. (4) and (6) we have

•

V

@M.r; t/
@t

dV D
—

S

J.M/dS �†.t/: (7)
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With a small amount of manipulation we can put this in a more convenient form. A
generalisation of the divergence theorem using tensor contraction [4] gives

—

S

J.M/dS D
•

V

r � J.M/dV (8)

and the source term can be written in terms of a local density

†.t/ D
•

V

� .r; t/dV: (9)

Substituting these into Eq. (7) gives

•

V

@M.r; t/
@t

dV D
•

V

r � J.M/dV �
•

V

� .r; t/dV: (10)

Notice now that all three terms now contain volume integrals over V . Since V is
arbitrary, the only way in which Eq. (10) can hold is if the integrands are equal, i.e.

@M
@t
D r � J.M/ � � .r; t/ (11)

This is the continuity equation for a vector quantity. It captures the changes in a
conserved quantity in the presence of a flux, J and a source and sink process � . This
is a very general equation, describing local conservation of a continuum tagged
with a vector quantity which is not strongly coupled to the flux motion. As yet,
we have made no assumptions about the nature of this quantity other than the fact
that it is a vector. In MR physics we are interested in particles tagged with a vector
quantity: Magnetisation. We shall see that looking at diffusion MRI through the lens
of continuity is a powerful unifying principle which reveals different assumptions
made in different models.

3 Continuity of Magnetisation: The Bloch-Torrey Equation

We will now show that the Bloch and Bloch-Torrey equations, which are fundamen-
tal to NMR and MRI experiments may be derived from the continuity of a vector
quantity, and are in fact both particular cases of the continuity of magnetisation in
the presence of a strong applied field.

3.1 The Bloch Terms as Sources and Sinks

The source and sink terms of the continuity equation describe the evolution of
the quantity of interest that occurs independently of transport in the medium. A



6 M.G. Hall

vector quantity may change not only magnitude but also orientation. In the present
context, they capture the interaction between a spin’s magnetisation and the local
magnetic field—exactly the role of the terms of the Bloch equation. We may
therefore consider the Bloch equation as a set of source and sink terms for our
vector continuity equation and write Eq. (11) as

dM
dt
D �M � B � MxOiCMyOj

T2
� Mz �M0

T1
Ok � r � J.M/: (12)

We can immediately see the similarity between Eq. (12) and the traditional form of
the Bloch-Torrey equation. Equation (12) describes the change in magnetisation of a
continuous quantity in an applied magnetic field with an arbitrary transport process
given by J.M/. This is, of course, the same approach used by Torrey in deriving
his equation in the first place. The difference being that Torrey does not start from
the general form with an unspecified J.M/ but instead proceeds directly to the drift-
diffusion case [40].

We note that Eq. (12) employs unit vector notation. This is perfectly valid, but
obscures the essentially simple nature of the equation. We can re-write the T1 and
T2 terms in matrix form as

Mx
OiCMy

Oj
T2

� Mz �M0

T1
Ok!

0

BBB@

� 1
T2

0 0 0

0 � 1
T2

0 0

0 0 � 1
T1

M0

T1
0 0 0 1

1

CCCA

0
BB@

Mx

My

Mz

1

1
CCA : (13)

The Bloch terms also contain a precessional term, which takes the form of a cross
product with the applied field. A cross product can also be written in matrix form.
Adding this to Eq. (13) gives

0
BBB@

dMx
dt
dMy

dt
dMz
dt
1

1
CCCA D

0
BBB@

� 1
T2
��Bz �By 0

�Bz � 1
T2
��Bx 0

��By �Bz � 1
T1

M0

T1
0 0 0 1

1
CCCA

0
BB@

Mx

My

Mz

1

1
CCA D RM: (14)

Thus the Bloch equation can be expressed as a single matrix multiplication. This
notation also allows us a layer of abstraction with regards coordinate system. The
matrix R can be written in the lab frame, as here, or can be transformed into the
rotating frame. By writing our systems (and solutions) in terms of R we are free to
specify what coordinate frame we use separately. Equation (12) then becomes

@M
@t
D RM � r � J.M/: (15)
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Table 1 Flux term choices and corresponding diffusion models

Flux Form Technique

0 � T1 and T2 weighting

uM Rz.u � qt/ Velocity-weighted phase contrast

�DrM e�qDqt Diffusion tensor imaging

�D @ˇ

@jxjˇM e�Djqj

ˇC1t Stretched exponential

DrM �

1
3 DrKr � DrMt e�qDqt e

�

1
6 qDqKqDqt

2 Diffusion Kurtosis Imaging

3.2 The Flux Terms: Transport Processes

Different choices of flux lead to different solutions of Eq. (15), and in many cases
to different specific MR imaging techniques. We will give solutions in terms of the
q-space approximation, assuming a Fourier relationship between spatial variables x
and displacement spatial frequencies q D �ıG. In most cases solutions are found
via the Fourier-Laplace method applied to the Bloch-Torrey equation in question.

This section reviews the diffusion MRI modelling literature in the context
of the theoretic framework developed above. We will show how many existing
techniques stem from choices of flux terms of generalised Bloch-Torrey equations
and demonstrates that the framework acts as a unifying principle across what can
otherwise appear a bewildering maze of different models. We will also see that the
common assumption that the phase information is not important is only valid in
particular special cases (The different combinations are summarised in Table 1).

3.3 T1- and T2-Weighted Imaging

The simplest example is one where there is no flux present in the system, and only
the Bloch terms contribute. In this case the equation reduces to the Bloch equation.
In the vector form developed above, this is

@M
@t
D RM: (16)

The solution is a the matrix exponential in R. This can be written as

M.t/ DM0

0

BBBB@

e� t
T2 0 0 0

0 e� t
T2 0 0

0 0
�
1 � e� t

T1

�
0

0 0 0 1

1

CCCCA
(17)

which contains the familiar expressions describing T1 and T2 decay.
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3.4 Diffusion Tensor Imaging

The next simplest case is Diffusion Tensor Imaging [7]. DTI is directly related to
the canonical form of the Bloch-Torrey equation, which has a flux defined by the
tensor version of Fick’s law for the local magnetisation i.e.

J.M/ D �DrM: (18)

where D is the diffusion tensor.
The solution of the Bloch-Torrey equation with a tensorial Fickian flux is

m.t/ D m0e
Rte�qDqt: (19)

It is common not to write the decay term explicitly and simply call the Bloch
equation pre-factor S0 and the measured signal S. S is related to M via an
integral over the local spin phase distribution, which is also implicit in the q-space
approximation [33]. Determining the elements of D requires several measurements
of this attenuation term. This is usually performed by formulating and inverting a
linear system, the structure of which is derived from this solution (see, e.g. [30]).

From this we can see that the diffusion tensor follows simply from the flux.
The form of the expression is the result of this assumption and the q-space
approximation—an inverse Fourier Transform leads us back to a Gaussian spin
displacement and time dependence. We also note that diffusion terms enter this
equation entirely via the magnitude of the signal. Diffusion attenuates via a scalar
term, rather than as an additional transformation on its orientation.

3.5 Velocity-Weighted Phase Contrast

Another straightforward case is coherent flow. This is equivalent to velocity-
weighted imaging. Although a drift term was originally considered by Torrey [40],
coherent flow effects are not traditionally considered alongside diffusion-weighted
methods.

Coherent flow is described locally by a vector u, giving us

J.M/ D uM: (20)

where the uM is the dyadic product of the two vectors. Substituting this into Eq. (15)
yields the following solution

m.t/ D m0Rx.q � ut/eRt: (21)
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where Rz.�/ is a rotation in the transverse plane by an angle � . The angle of rotation
is given by the dot product of the local flow and the q vector, manifesting as a phase
shift without a change in magnitude.

The combination of coherent flow and diffusion is equivalent to an advection-
diffusion equation where spins both flow and diffuse but the two processes are
essentially uncoupled.

3.6 Stretched-Exponentials and Space-Fractional
Super-Diffusion

The physical interpretation of the stretched-exponential is sometimes a little myste-
rious. This section will show that they can be seen as modelling a particular form of
transport process: the Lévy walk. Particles executing Lévy walks make many short
steps with occasional much longer displacements. They are characterised by random
walk-like processes with a power-law distribution of step lengths. i.e. step length `
follows

p.`/ / `�ˇ: (22)

Just as a Brownian random walk leads to a Fickian flux, a similar calculation shows
that a Lévy walk leads to a flux with a fractional-order derivative (see Appendix for
derivation). Fractional derivatives are derivatives of non-integer order. They have
been extensively applied to transport theory. Whilst not providing a unique link to
the microstructural details of the system, fractional approaches nonetheless provide
access to systems in which diffusion-like transport it not well-described by Gaussian
diffusion processes derived from the usual form of Fick’s law.

For mathematical simplicity, we will assume an isotropic process and treat
diffusion in one dimension. In this case the flux is written as

J.M/ D �D @ˇ

@jxjˇM (23)

where D is a constant and 0 < ˇ < 1 is the order of the derivative and step
distribution and @ˇ

@jxjˇ is the Reisz fractional derivative [29]. The derivation of the
fractional form of Fick’s law is given in the appendix.

The solution of the Bloch-Torrey equation with a fractional flux is

m D m0e
Rte�DjqjˇC1t: (24)

This form of spin transport is known as super-diffusion, so-called because the
mean squared-displacement of particles increases faster than linear with time. The
stretched exponential in this form is thus a model of super-diffusion.
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Stretched exponentials have been employed by several authors [9, 12, 16],
although the form chosen varies. The form derived here has the stretching exponent
on the q terms only, although authors often apply the stretching exponent to both q
and t. The model has been criticised on the grounds that the exponent is difficult
to interpret physically, but the derivation here illustrates that it can be directly
associated with the statistics of the underlying random walk: the fitted exponent
is related to transport, not structure.

3.7 Diffusion Kurtosis Imaging

Diffusion Kurtosis Imaging (DKI) seeks to provide a better approximation of
non-Gaussian spin displacements by expanding the expression to the fourth-order
moment of the distribution, Kurtosis (odd orders are assumed to be zero in the
absence of net coherent transport) [24]. This approach has the advantage that
it makes no strong assumptions about what is causing the non-Gaussianity, but
nonetheless quantifies it in a well-understood way. Indeed, non-zero excess Kurtosis
is often described as being a signature of restriction [44] but is has also been shown
to be special case of fractional diffusion models [20]

DKI can be derived from both physical and statistical arguments, but we will
concentrate on the former. Here the Fickian flux from DTI is extended to include a
fourth-order term which adds additional degrees of freedom. The fourth order flux is

J.M/ D �DrM � 1
3
DrKr � DrMt (25)

where K is the fourth order Kurtosis tensor which modifies the Gaussian flux
process. The factor of t is required to correct the dimensionality of the kurtosis
term. Substituting this into Eq. (15) and solving yields the following solution

m.t/ D m0e
RMe�qDqte� 1

6 qDqKqDqt
2

(26)

which is the 3D form of the usual diffusion kurtosis solution. As with DTI, this can
be used to construct a linear system over several measurements that can be inverted
to find the elements of the diffusion and kurtosis tensors.

3.8 Multiple Continua

So far we have considered models with only a single, well-mixed continuum present
in the sample. There is still a large class of models in the diffusion MR literature
which we have not covered. To go beyond this we need to introduce the idea of
multiple continua. The idea is that instead of a single Bloch-Torrey equation, we
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have a system of two or more. Here we have equations with their own relaxation
process, their own fluxes, and potentially also exchange between them. A two-
continuum system might be written as

@M1.t/

@t
DR1M1 Cr � J1.M1/ � E12M1 C E21M2 (27a)

@M2.t/

@t
DR2M2 Cr � J2.M2/ � E21M1 C E12M2 (27b)

where Mi is the magnetisation in compartment i, Ji and Ri describe the flux and
relaxation processes in each one and Eik defines the rate of exchange between
compartments. Conservation of total number of spins also means we have that

Trace.E/ D 1: (28)

The overall magnetisation of the system is the sum of the two components

M D f1M1 C .1 � f1/M2: (29)

where fi defines the relative sizes of the compartments. This formulation can be
readily extended to three or more compartments. This version of the system is quite
general, but the solutions can be difficult to work with in practice. For example, there
is a degeneracy between the different relaxation constants and the volume fractions
which prevent unique fitting without fixing one or the other.

The simplest assumption is zero flux and zero exchange. This leads to a bi- or
multi-exponential model of T1 and T2 decay, which is often applied in T2 imaging
when more than one tissue type in present in a voxel. A more common approach
in diffusion imaging, however, is to assume a common relaxation process in all
compartments and to concentrate on flux.

Assuming zero exchange, (i.e. E is diagonal) we can immediately construct the
two-tensor model in which we have a common relaxation process, separate Fickian
fluxes and no exchange.

@M1.t/

@t
DRM1 Cr � D1rM1 (30a)

@M2.t/

@t
DRM2 Cr � D2rM2; (30b)

The solution of which is a superposition of two exponentials of tensors. This was
a common model in the early days of HARDI methods, and also covers Behrens’
Ball and Stick model [8], in which we restrict the eigenvalues of the tensors such
that one has all three equal and the other has only one non-zero.

The most general version of this model with a closed-form solution is two Fickian
compartments with non-zero exchange. This is the Kärger model [28], which models
a pair of well-mixed fluids with a Poisson exchange process. The Kärger model can
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Table 2 Relaxation, flux,
and exchange choices

R J E Model

Compartmental 0 N Multicomp. T2
Uniform Fickian N Multiexp./multitensor

Uniform Fickian Y Kärger

Uniform Fractional N Multi-stretched exp.

be shown to be equivalent to a bi-exponential model with diffusivities transformed
by the exchange process [15].

Assuming no exchange and the same relaxation terms in all compartments,
multiple continua models allow descriptions of the diffusion signal to be built
up additively from different components. Since we are free to choose any flux
terms we like we can potentially describe multiple exponentials (or tensors), or
potentially less common choices such as mixtures of stretched exponentials [17].
We summarise which choices lead to which models in Table 2.

3.9 Models with Boundary Conditions

The idea of multiple, non-exchanging continua can be extended to include assump-
tions about geometry. By imposing boundary conditions on the fluxes in each
compartment it is possible to impose hard boundaries with certain shapes and
orientations. Solutions for Fickian fluxes can be constructed over a unit interval,
from which we can construct expressions for geometries such as cylinders, spherical
shells, and parallel planes. These can be combined together with models such as the
tensor in multi-compartment models which can then be fitted to the signal [36].

These models are solutions of multiple Bloch-Torrey equations with uniform
relaxation and without exchange. Each compartment has a chosen boundary con-
dition which is expressed parametrically in the expression for the signal. Super-
positions of expressions for diffusion in multiple compartments with different
geometries provides expressions for the signal which can be fitted to diffusion-
weighted measurements. Of course, there is no guarantee that the combination of
geometries chosen is appropriate for the tissue being measured, so care is required
in both construction and interpretation of results.

Distributions as Compartments If we fix the relaxation terms across all the
system, it is mathematically possible to add more and more compartments without
limit—provided there is enough data to support all the parameters. In this case the
signal can be written as

S D S0

KX

kD1
fkSk (31)
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where fk is the volume fraction of the kth compartment, with signal Sk and subject to
the constraint that

PK
kD1 fk D 1. This represents K non-exchanging compartments

with any chosen geometry, all with the same T2. This approach can be extended to
give access to a new class of compartment: one with a continuous distribution of
compartments. The approach is to let K !1 and change the sum to an integral,

S D S0

Z
f .x; y/R.y/dy: (32)

In this case the signal has a contribution from a continuous set of compartments
with a weight function describing the contribution from each member of the set.
Here R.y/ is the response function of an individual component compartment and
f .x; y/ is an unknown function describing their distribution. Different approaches
make different assumptions about the form of this integral, although in some cases
this is not immediately obvious.

Spherical Deconvolution

The first approach of this type in the literature was Tournier’s Spherical Decon-
volution [25, 41, 42], used to infer the orientations of multiple populations of
white matter fibres—part of a class of methods known as High Angular Resolution
Diffusion Imaging (HARDI). Here the signal is modelled by assuming that the mea-
sured signal is a convolution of the single fibre response function and an unknown
fibre orientation distribution (FOD) function. This is equivalent to assuming that
f .x; y/ D f .x � y/, i.e. a function of displacement only, and explicitly integrating
out the radial direction. The approach deconvolves the unknown FOD, assuming or
measuring some form for the single fibre response function. Spherical deconvolution
approaches have been highly successful in multi-fibre tractography, largely because
the technique provides very sharp and informative FOD estimates using fast, linear
formulations for the deconvolution process itself. An interesting extension of this
approach is by Kaden et al. [27] who allow parameters of the kernel to be fitted
alongside the FOD.

Interestingly, it has been shown that other HARDI methods such as PAS-MRI
[21] and Q-ball imaging [1, 43] can be shown to be forms of deconvolution,
illustrating the power of the convolution formulation of the signal.

Continuous Parametric Compartments The convolution methods assume the
form of the fibre response kernel, but nothing about the FOD. Other approaches
make different and stronger assumptions, however, leading to a parametric represen-
tation. Given an assumption for the form of a particular compartment, a continuous
version can be constructed by assuming a distribution over one or more parameters.
The result is a distributed compartment with distribution parameters which can be
fitted to the data.



14 M.G. Hall

A simple example of this approach is Jbabdi’s model of distributed diffusivities
[22]. Here we assume that rather than a single free diffusion compartment, there is a
continuum of non-exchanging compartments with diffusivities given by a gamma
distribution. The resulting model has a closed form, with the shape and scale
parameters of the gamma distribution taking the place of the single diffusivity in
the single compartment version. This is similar to an argument made by Bennett [9]
in relation to the stretched exponential, although the final form is quite different.

A related assumption is made in the CHARMED model [5], and other similar
approaches such as AxCalibre [6] and ActiveAx [2], in which compartments are
constructed from cylinders with gamma-distributed radii. In this case care must be
taken to weight the cylinders’ contributions by volume fraction in the distributed
compartment: larger cylinders take up more space than smaller ones and hence each
one has a larger volume fraction and a larger contribution to the signal.

Another common variant of this approach is to assume a distribution of ori-
entations on some directed geometry. Models such as VERDICT [37] assume a
uniform distribution of orientation in cylinders or sticks. Between the limiting
cases of completely parallel orientation and uniform orientation distribution lies
orientation distributions with some finite width distribution. NODDI [45] makes use
of a compartment in which the orientations of a continuum of sticks is described by
a Watson distribution, which provides directional analogues to a mean and standard
deviation. NODDI interprets the standard deviation as an estimate of fibre dispersion
in the voxel.

The above makes it clear that NODDI is a combination of continuous and non-
continuous compartments without exchange, making strong assumptions on the
form of each of them. In the current context, it is worth emphasising that it is
therefore a solution of a quite artificial set of Bloch-Torrey equations. It also fixes
intrinsic diffusivity and requires it to be equal across all compartments. Recent work
has pointed out that this set of assumptions is flawed [26], and that the resulting
model can lead to misleading conclusions [34], and well as highly biased parameter
estimates [23].

Both NODDI and VERDICT combine continuous compartments with other
compartments without distributions, such as spherical shells or tensors. They also
restrict the parameters describing different compartments to have the same values.
Table 3 summarises compartment choices in different microstructure models.

One difficulty with constructing compartment-based models is the sheer number
of possible combinations to choose from. Ten to twelve possible compartments
with various different constraints lead to hundreds of potential two compartment

Table 3 Compartment
combinations in
microstructure models

Compartments Model

Tensor, gamma-cylinders, ball CHARMED [5]

Ball, astrosticks, sphere VERDICT [37]

Tensor, cylinder, dot ActiveAx [2]

Tensor, Watson-sticks, dot NODDI [45]
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models and thousands of possible three compartment models. Comparing these
combinations is a significant and time-consuming undertaking, and although such
comparisons have been undertaken [13, 37], strictly a model selection step is
necessary in each individual application. Making a priori choices about tissue
geometry also requires prior information, for example from histology, and intuition
about how to relate underlying biological complexity to the very simple geometries
for which explicit expressions for compartments are possible.

Another important caveat is packing. Multi-compartment models make no
explicit assumption about how geometric compartments are arranged in space.
Packing is captured indirectly via volume fractions and a tortuosity assumption in
the extra cellular space. This can be important since these approximations may be
more or less valid in different volume fraction regimes.

3.10 Other Models

This section describes models which take a slightly different approach to that
considered so far. The continuity and Bloch-Torrey approach is fundamental to
diffusion MRI, but can be formulated under slightly different assumptions than those
so far. Here we consider two further cases.

Random Permeable Barriers

This model assumes a single, effective medium-level description of a population of
diffusing spins in a compartment containing randomly oriented permeable barriers
[35]. This description is on a length scale long enough that the contributions of
the barriers can be treated as an spatial average, and that the central limit theorem
applies locally, but still much shorter than the size of a typical scan voxel. This
means that care is required during the derivation of he Bloch-Torrey equations to
step upwards in scale from the microscopic, disordered regime to the intermediate,
ensemble average. The authors employ a renormalisation group approach, and show
that diffusion at this scale is described by a diffusivity with a power-law time
dependence, specifically

Dinst.t/ ' D1 C A � t�� (33)

where D1 is the asymptotic, long time diffusivity, A is a constant, and � is an
exponent defining the time dependence.

This approach is powerful, identifying different universality classes in temporal
scaling which contain information about environmental disorder. The exponent
value differentiates between disorder classes. � D 0:5 corresponding to long-range
order and � D d

2
for the short-range order case of dimension d. The short time limit
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is also related to the surface area to volume ratio experienced by spins and has been
used to estimate surface area to volume ratio in tissue [38].

The approach requires measurements over a wide range of diffusion times to
infer critical exponents, and is often used in conjunction with oscillating gradient
acquisitions, which provide access to shorter diffusion times than the more common
PGSE. Fitting is typically performed in the frequency domain. This model has been
applied to imaging in brain [10] and muscle [14].

Fractional Diffusion

We have already seen that the stretched exponential can be derived from the
assumption of a space-fractional process. A more general form of this approach is to
consider time-fractional transport as well. Here, the transport process makes use of a
Continuous-time Random Walk (CTRW) model, in which spins have a waiting time
associated with successive steps in their random walks. This model describes a more
general class of transport processes than conventional Fickian approaches, including
subdiffusion, in which mean squared-displacement of diffusing spins increases more
slowly than linearly with time. The CTRW model predicts a signal curve described
by the Mittag-Leffler function

S.q; �/ D S.0/
1X

kD0

��D˛;ˇqˇ�˛
�k

� .˛kC 1/ (34)

where � .�/ is the gamma function and ˛ and ˇ are temporal and spatial scaling
exponents respectively. Note that when ˛ D 1 this reduces to the series expression
for the exponential.

Again, this model assumes a single continuum and make no strong assumptions
about tissue geometry. The continuous time random walk provides a very flexible
model of an effective diffusion process and describes the observed signal in very few
parameters, but making microstructural inferences from the model is more difficult.
Strictly speaking, this model requires measurements over a range of diffusion times,
although additional assumptions make it possible to apply to multiple b-values at a
single diffusion time. This model has been applied to rat and human brain [19, 31,
46] and also in muscle [18].

4 Discussion

The Bloch-Torrey equation is a lens through which different models in the diffusion
MRI literature can be compared. We have attempted here to lay out the relationships
between different approaches in terms of the underlying physics, avoiding discus-
sion of inverse problems, machine learning, and other technical aspects which are
commonly the focus elsewhere in the literature.
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We can see that models assume different numbers of compartments and (often
implicitly) different transport processes. We can also see that it is not possible to
identify one particular approach as being superior to all others. In some cases we
may wish to approach the signal with as few assumptions as possible, in others
we may have extensive prior knowledge that it may be helpful to include in our
models. Clinical constraints may enforce very short acquisition times or preclude
more advanced acquisitions or processing and therefore require simpler methods.

In choosing a model or developing a new one it may be helpful to consider
how natural a set of assumptions is. Although features such as direction anisotropy
can be readily extracted from measurements, diffusion decay curves are extremely
featureless. Although diffraction patterns are an exception to this, these patterns are
only visible under very specific circumstances in which tissue geometry is highly
regular. In more realistic situations tissue heterogeneity means that decay curves
are very smooth, and we are faced with a problem of model degeneracy: given a
sufficiently dense sampling of data we can, in principle, fit any (reasonably well-
posed) model we choose. This makes model selection all the more important. We
hope that looking at different models in terms of the physical assumptions is a useful
aid.

Appendix: Fractional Fick’s Law

We assume a Lèvy walk-type process, which is fractional in space but not time. We
start with the distribution of step lengths

P.jx � x0j � �X/ D 1

� .1 � ˇ/ jx � x0j�ˇ (35)

The derivative with respect to x gives the probability density function,

p.jx � x0j/ D ˇ

� .1 � ˇ/ jx � x0j�ˇ�1: (36)

where in both cases the gamma function is a necessary normalising factor [32]. We
assume that spins are displaced in either direction with equal probability, which
gives the total flux through a point x as

J.M/ D 1

2
D

�Z x

�1
P.x � x0/M.x0/dx0 C

Z 1

x
P.x0 � x/M.x0/dx0

�
: (37)
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By substitution from Eq. (35), the first term in the above becomes

Z x

�1
P.x � x0/M.x0/dx0 D 1

� .1 � ˇ/
Z x

�1
.x � x0/

�ˇM.x0/dx0: (38)

which is the definition of the RHS (or positive-x) Weyl fractional derivative of M of
order ˇ with respect to x [29]. We denote this operator WDˇ

xC.
Similarly, substituting Eq. (35) into Eq. (37) gives

Z 1

x
P.x0 � x/M.x0/dx0 D 1

� .1 � ˇ/
Z 1

x
.x0 � x/�ˇM.x0/dx0; (39)

which is the definition of the LHS Weyl derivative, WDˇ
x�. Equation (37) then

becomes

J.M/ D �1
2
D
h
WDˇ

xC C WDˇ
x�
i
M: (40)

Finally, the Reisz-Weyl fractional derivative is defined as

@ˇ

@jxjˇ D �
1

2

h
WDˇ

xC C WDˇ
x�
i

(41)

which means Eq. (40) becomes

J.M/ D �D @ˇ

@jxjˇM: (42)
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Noise Floor Removal via Phase Correction
of Complex Diffusion-Weighted Images:
Influence on DTI and q-Space Metrics

Marco Pizzolato, Rutger Fick, Timothé Boutelier, and Rachid Deriche

Abstract The non-Gaussian noise distribution in magnitude Diffusion-Weighted
Images (DWIs) can severely affect the estimation and reconstruction of the true
diffusion signal. As a consequence, also the estimated diffusion metrics can be
biased. We study the effect of phase correction, a procedure that re-establishes
the Gaussianity of the noise distribution in DWIs by taking into account the
corresponding phase images. We quantify the debiasing effects of phase correction
in terms of diffusion signal estimation and calculated metrics. We perform in silico
experiments based on a MGH Human Connectome Project dataset and on a digital
phantom, accounting for different acquisition schemes, diffusion-weightings, signal
to noise ratios, and for metrics based on Diffusion Tensor Imaging and on Mean
Apparent Propagator Magnetic Resonance Imaging, i.e. q-space metrics. We show
that phase correction is still a challenge, but also an effective tool to debias the
estimation of diffusion signal and metrics from DWIs, especially at high b-values.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is inherently a low
Signal to Noise Ratio (SNR) technique [1]. More diffusion weighting—globally
encoded by a larger b-value—leads to lower signal intensities and consequently
to a poorer SNR. In such a low SNR regime, the magnitude of the complex DW
signal can be dominated by a bias, namely noise floor, which is due to the non-
Gaussian distribution of the noise. This generally falls within the non-central �2

family, depending on the adopted MR acquisition strategy (number of coils, multi-
coil reconstruction, acceleration, etc.) [2]. However, some diffusion MRI techniques
require the acquisition of Diffusion-Weighted Images (DWIs) at relatively high b-
values [3–5], where the Noise Floor affects the signal estimation and consequent
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parameter calculations. A strategy for removing the Noise Floor from the magnitude
DWIs, is phase correction [6]. This method consists on estimating the true phase
from the complex DWIs to transfer the image content—which is split between
real (rDWI) and imaginary (iDWI) parts—into the real part only, such that the
rDWIs contain the signal corrupted by Gaussian distributed noise. In this work, we
quantify the influence of phase correction in terms of unbiased signal estimation
and reconstruction. In the latter case, we focus on two popular signal-driven
representations of the diffusion process, such as Diffusion Tensor Imaging (DTI) [7]
and Mean Apparent Propagator Magnetic Resonance Imaging (MAP) [3], and we
quantify the effects of phase correction on the corresponding scalar parameters. We
present in silico experiments based on a MGH Human Connectome Project (HCP)
dataset and on a digital phantom.

The noise floor causes a signal overestimation that is more important at high
b-values and when diffusion is less restricted, i.e. when the signal is low. This
introduces a bias that leads to the distortion of the estimated quantitative diffusion
metrics, such as the underestimation of the Apparent Diffusion Coefficient (ADC) in
DTI [1]. This affects the principal diffusivity (PD), i.e. the amplitude of the tensor’s
eigenvector aligned to the least restricted direction, which is underestimated. Similar
considerations hold for other DTI metrics, such as the fractional anisotropy (FA).
Moreover, since MAP signal reconstruction typically requires high b-values, we
also expect some of the derived q-space metrics to be biased. In this scenario, phase
correction is a promising tool to calculate unbiased metrics.

Phase correction exploits the phase images associated with the magnitude DWIs.
Some advantages of using the phase of the DW signal, to perform a reconstruction
directly in the complex domain, have been previously reported [8], while assuming
phase coherence among q-space samples. However, in actual DW-MRI acquisitions
the phase images are subject shot-wise variations that are mainly dominated by
movements, cardiac pulsation, blood circulation or field inhomogeneity. Thus,
coherent phase contributions related to the diffusion process, e.g. asymmetries due
to tissue configurations or experimental setups [9–11], are hardly observable and are
not explicitly accounted in noise floor removal via phase correction.

Recent phase corrections for noise floor removal consist on filtering the real and
imaginary images, i.e. the rDWI and iDWI, to obtain a low-frequency version of
the DWI’s phase, which is used to complex-rotate the rDWI and iDWI such that
the former contains signal plus Gaussian distributed noise, and the latter only noise
(which will be discarded). The filtering is typically performed via a convolution
procedure [12, 13] or complex total variation [14]. However, the correct estimation
of the low-frequency phase depends on the correct choice of the convolution kernel
(and its size) or regularization parameter. Therefore, the effectiveness of phase
correction on signal debiasing and diffusion parameters estimation, such as DTI
and MAP metrics, needs to be assessed.

In this work, we implement a phase correction procedure based on total variation
[14]. We first apply it to in silico complex DWIs, created by processing a HCP
dataset, in order to assess the effectiveness of the phase correction in a realistic sce-
nario, for different diffusion weightings, i.e. b-values, and SNRs. At the same time,
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we assess the amount of noise floor bias in typical magnitude DWIs (jDWIj)—based
on signal probability distribution metrics—and the corresponding improvement
after phase correction. In second place, we assess the influence of phase correction
on DTI and q-space metrics. Particularly, we apply phase correction to complex
DWIs produced by using a modified version of Phantom˛s [15], while accounting
for different total variation regularizations and for typical acquisition setups, i.e.
single-shell at b 2 f1000; 2000; 3000gs=mm2 (DTI), and multi-shell (DTI, MAP).

2 Methods

In this section we describe the implemented phase correction procedure, and
illustrate the generation of the data used for the experiments, such as the acquisition
setup, the generation of a synthetic phase, and the SNR convention.

The phase correction takes into account a complex DWI

DWIxy D rDWIxy C j � iDWIxy (1)

where x and y represent the pixel coordinates, r and i indicate the real and imaginary
parts, and j is the imaginary unit. If 1DWI xy is a good estimation of the phase, then
the phase-corrected image is obtained via complex rotation

DWIpcxy D jDWIjxyej
�

DWI xy�1DWI xy

	

(2)

where DWI xy and jDWIjxy are the original noisy phase and magnitude. The real
part of the phase-corrected complex DWI, <.DWIpcxy/, contains the signal (tissue
contrast) plus Gaussian distributed noise, whereas the imaginary part, =.DWIpcxy/,
only contains noise. Henceforth, any classical diffusion modeling and reconstruction
taking into account additive Gaussian noise can be performed on <.DWIpcxy/, where
the noise floor is absent.

The effectiveness of phase correction clearly depends on the quality of the phase
estimation. In this work we implement a total variation method, known to better
preserve discontinuities in the images [14]. Particularly, for each complex DWI
image u0 2 rDWIxy; iDWIxy defined on coordinates x 2 X; y 2 Y, we find the image
u such that it is the minimizer of

inf
u2C�

Z

X;Y
.u0 � u/2dxdyC

Z

X;Y
jrujdxdy (3)

where � is the regularization parameter expressing the attachment to data. The
estimates of rDWIxy and iDWIxy obtained with Eq. (3) are then used to compute
1DWI xy and perform the complex rotation in Eq. (2).
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2.1 Simulation and Diffusion Signal Reconstruction

The complex DWIs have in all cases been created by generating a synthetic phase
image, ˚xy, associated with a magnitude image, Mxy. The phase images are created
in order to mimic the outcome of subject movements. We assume a bi-dimensional
sinusoidal wave oriented along the direction v D .vx; vy/ with frequencies fx; fy and
initial shifts �x; �y

˚.x; y/ D 	 � sin
�
2	

vx

jjvjj fx
x

wx
C �x C 2	 vy

jjvjj fy
y

wy
C �y

	
(4)

where wx;wy are scale parameters: in this case they correspond to the width of
the image along the corresponding direction (wx D card.X/, wy D card.Y/).
Eventually, constant phase patches are added. Assuming to have the ground-truth
images of magnitude Mxy and phase ˚xy, the latter resulting from Eq. (4), then

rDWIxy D Mxy � cos.˚xy/C 
rxy
iDWIxy D Mxy � sin.˚xy/C 
ixy

(5)

where 
rxy; 

i
xy 2 N.0; �2/. The noise is added with a value of � calculated according

to the DW-MRI convention � D
�
cardŒ�.X � Y/�1

P
x;y �.x; y/M

bD0
xy

�
=SNR0,

where SNR0 is defined on the magnitude image without diffusion weighting MbD0
xy ,

and � 2 f0; 1g is a mask defined on the pairs .x; y/, e.g., a mask of the tissue-related
signal like the brain mask. The Rician magnitude jDWIjxy and the phase DWI xy
are calculated from the real and imaginary parts in Eq. (5).

The data used for the experiments is a HCP brain dataset corrected for eddy
currents where we selected DWIs of interest for b 2 Œ0; 1000; 3000 s=mm2. Other
experiments use Phantom˛s [15] to obtain the ground-truth magnitude images, Mxy.
This software requires input with a geometrical description of tissue structures
and fiber bundles. We used the well known geometry produced for the HARDI
reconstruction challenge 2013.1 We generated DWIs for a 3-shells scheme with
b 2 f1000; 2000; 3000gs=mm2, 51 samples per shell, with samples uniformly
distributed within and among shells [16].

The phase-corrected real DWIs can contain negative values: the noise is zero-
mean Gaussian and the noise floor is absent. Therefore, the DTI reconstruction is
performed by non-linearly en forcing signal positivity, and MAP is performed with
Laplacian regularization imposing positivity on the recovered Ensemble Average
Propagator [17].

1http://hardi.epfl.ch/static/events/2013_ISBI/,https://github.com/ecaruyer/phantomas/blob/master/
examples/isbi_challenge_2013.txt.

http://hardi.epfl.ch/static/events/2013_ISBI/
https://github.com/ecaruyer/phantomas/blob/master/examples/isbi_challenge_2013.txt
https://github.com/ecaruyer/phantomas/blob/master/examples/isbi_challenge_2013.txt
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3 Experiments and Results

We perform three experiments with two objectives: first, quantifying the effect of
phase correction on signal debiasing, by processing real data from a HCP dataset;
second, assessing the debiasing on diffusion metrics, calculated with DTI and MAP
reconstructions, on a digital dataset generated for typical scenarios such as DTI at
b-value 1000, 2000, 3000 s=mm2 and DTI and MAP multi-shell.

In the first experiment, we clustered a HCP dataset to obtain typical signal
values at b-value 1000 and 3000 s=mm2. Particularly, for each b-value we applied
k-means to divide the signal intensities of the DWIs—accounting for all the gradient
directions—into four clusters. We used the centroid of each cluster to define
respectively background, low, medium, and high mean signal values. Based on
these, we created a ground-truth synthetic magnitude image—Mxy in Eq. (5)—
composed of three circles each containing, from left to right, low, medium and high
signal respectively. Outside the circles we added background signal. A synthetic
phase was generated and the noisy complex DWI was created. After calculating
the average b D 0 signal (S.0/avg D 758 a:u:) in the HCP dataset, noise was
added as in Eq. (5) in low SNR regime: SNR0 D 10. Figure 1 shows, for each
b-value, the noisy magnitude jDWIjxy and the estimated phase-corrected real part
<.DWIpcxy/ (� set to 0:75 after visual inspection). In addition, an effective SNR
map is present along with histograms of the magnitude and phase-corrected real
signals for each circle. We conclude that in both cases the phase-corrected real
image presents more contrast with the background compared to the magnitude. This
is more evident at low SNR values—left circle at b D 1000 s=mm2, left and central
circles at b D 3000 s=mm2—that are more likely with high b-values. The<.DWIpcxy/
shows darker colors, i.e. lower signal intensities, as highlighted by the histograms:
the magnitude (green line) has a Rician distribution for low SNRs (typically below
SNR D 5) whereas the estimated real part (blue line) always shows a Gaussian
distribution, thus including negative signal intensities. We point out that since this is
an experiment grounded on real data, the centroid of the clusters—especially at low
signal values—are based on Rician data and might overestimate the actual (noise-
free) ones. This means that the Rician bias in histograms (green line) might be an
underestimation of the true one.

In the second experiment, we use the HCP dataset to create a mean ground-truth
magnitude DWI, Mxy, in order to quantify the Rician bias, i.e. the distance from
Gaussianity. We calculate the mean b D 0 image S.0/xy, for a slice of interest,
by averaging the 40 non-diffusion-weighted images in the dataset. Since the SNR
is very high, the averaging procedure is not biased. Then, we select all the DWIs
corresponding to b D 1000 s=mm2 and perform DTI to obtain the mean diffusivity
map, MDxy. At this point, we obtain a ground-truth magnitude DWI at any b-value
by extrapolating with Mxy D S.b/xy D S.0/xy exp.�b �MDxy/. Although we assume
Gaussian isotropic diffusion, this phantom represents an average description of a
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Fig. 1 The signal contrast and distributions for synthetic complex DWIs, at b D 1000,
3000 s=mm2, created from clustering a real HCP dataset (SNR0 D 10). In the rectangular frames
from left to right: the SNR map, the Rician magnitude (Mg) and the phase-corrected estimated
real image (Re). Below, the histograms of the signal intensities corresponding to the circles with
low, medium, and high signal/SNR, for Mg (green) and Re (blue). Background SNR: 21:5 for
b D 1000 s=mm2 and 3:2 for b D 1000 s=mm2. *: s=mm2

magnitude DWI. After generating a synthetic phase image, as described in Sect. 2,
we calculate the noisy complex DWI for each b-value, as in Eq. (5). Figure 2 shows
the b D 0 magnitude and the phase used for the phantom (left column). We then
calculate the Rician magnitude jDWIjxy and the phase-corrected real part<.DWIpcxy/
(� D 0:75). Additionally, we calculate a magnitude image with Gaussian distributed
noise jDWIjGxy, by adding Gaussian noise (with the same SNR0) to Mxy. This will be
used as reference for Gaussianity measures. We generate 1000 noise occurrences
and calculate, for each pixel of the images, the signal intensities histogram (as in
Fig. 1). For each pixel we generate three histograms: one for the Rician jDWIjxy,
one for the phase-corrected <.DWIpcxy/, and one for the Gaussian jDWIjGxy. The
hypothesis is that, for each pixel, the phase-corrected signal distribution should be
closer to that of the Gaussian magnitude image than the Rician magnitude one. As
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Fig. 2 The distance from Gaussianity of complex DWIs obtained by processing a HCP dataset
and a synthetic phase image. In the first column the b D 0 magnitude image obtained from real
data, and the generated phase. In the columns from the second to the fourth, the distance from the
Gaussianity measured with Eq. (6) for the Rician magnitude (first row) and the phase-corrected real
part (second row), at different b-values (columns). Contrarily to the case of the Rician magnitude,
the distance from Gaussianity remains visually unchanged as the diffusion-weighting increases. *:
s=mm2

a distance from Gaussianity, we use the discrete Hellinger distance [18]

H.P;Q/ D 1p
2
jjpP �pQjj2 (6)

where P and Q are two discrete probability distributions, and 0 � H.P;Q/ � 1

where 1 means maximum distance. In columns 2–4, Fig. 2 shows the maps of
Hellinger distance from the Gaussian magnitude, for the Rician magnitude (first
row) and the phase-corrected real part (second row), at b-value 1000, 2000 and
3000 s=mm2.

We see that the Rician magnitude shows more bias (higher H), especially in
regions where MD is high. As expected, at higher b-values (from left to right) the
signal intensity is lower and the bias occurs in a larger number of pixels. Conversely,
the phase-corrected real part does not show a clear change.

In the third experiment, we quantify the bias on the estimated DTI and MAP
metrics for the Rician magnitude, and we quantify the debiasing power of phase
correction by looking at the change in the distributions of such metrics compared
to the Gaussian noise case. We generate complex DWIs with Phantom˛s [15] as
described in Sect. 2. For each gradient direction g D .gx; gy; gz/, the synthetic
phase image is oriented towards v D .gx; gy/ [see Eq. (4)] with constant phase
shifts between slices (along the z direction). Figure 3 shows the original noisy
data (Rician magnitude, phase, real and imaginary parts) and the one after phase
correction for a reference slice (b D 1000 s=mm2). For each SNR0 2 f10; 20; 30g
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Fig. 3 A slice of data generated with the digital phantom for SNR0 D 10, b D 1000 s=mm2.
On the left: the original noisy data calculated with a ground-truth magnitude image obtained
with Phantom˛s [15] and a synthetic phase. On the right: the phase-corrected real and imaginary
parts (� D 0:75); the signal information is almost entirely contained in the real part, whereas the
imaginary part mainly contains Gaussian noise

we generate the Rician magnitude data and, as for the second experiment, the
Gaussian DWI image to be used as reference. In this experiment we also investigate
the effect of the regularization parameter � of the total variation filtering in
Eq. (3). Therefore, for each SNR0 we generate six phase-corrected datasets, for
� 2 f0:25; 0:5; 0:75; 1; 2; 5g. For each combination of SNR0 and type of data—
Rician, Gaussian and the six phase corrections—we fit DTI with single-shell
scheme at b-value 1000, 2000 and 3000 s=mm2, and DTI and MAP with multi-
shell scheme. For DTI, we calculate the mean diffusivity (MD), the principal
diffusivity (PD), and the fractional anisotropy (FA). We calculate q-space metrics
based on closed formulas derived for MAP. These are the return to origin (RTOP),
axis (RTAP) and plane (RTPP) probabilities [3], the mean squared displacement
(MSD) and the q-space inverse variance (QIV) [17]. We create a mask of voxels
within fibers, based on the noise-free dataset, by considering only the voxels where
RTOP 2 Œ0:5e6; 0:7e6 (range chosen based on visual inspection). For each value
of � and for each calculated DTI and q-space metric, we compute the probability
distribution inside the mask. So we do for the Rician and Gaussian data. Figure 4
illustrates the influence of the regularization parameter � (decreasing along the
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Fig. 4 Histograms of the principal diffusivity (PD)—for DTI at 1000, 2000 s=mm2—and return to
plane probability (RTPP)—for MAP—estimated on Gaussian DWI (“Ga”, red), Rician magnitude
(“Mg”, green), and phase-corrected real part (“Re”, blue), SNR0 D 10. While the red and green
histograms remain unchanged along the rows, the blue histograms change as function of the
regularization parameter � [see Eq. (3)]. As the attachment to data decreases (from top to bottom)
the phase-corrected histograms overlap more with the red Gaussian ones. *: s=mm2
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rows) on the recovered metric’s probability distribution. The figure shows the
Gaussian (red line), Rician (green line), and phase-corrected (blue line) probability
distributions (SNR0 D 10) of PD (DTI at 1000, 2000 s=mm2) and RTPP (MAP).
The results confirm the underestimation of PD that increases with the b-value,
i.e. the green histograms are left to the red ones. Consequently, also MD (see
Sect. 1) is underestimated [1]. Inverse analogous considerations hold for RTPP. We
observe that � has a great influence on the phase correction results. Particularly,
a large � implies strong attachment to data, resulting in a poor phase-correction
since the estimated low-frequency phase is very similar to the original noisy one,
1DWI xy � DWI xy in Eq. (2). Indeed, the blue histograms (phase-corrected) in the
first row of Fig. 4 almost entirely overlap the green ones (Rician magnitude data). As
the attachment to the data decreases (from top to bottom), the blue phase-corrected
histograms move towards the (red) Gaussian based distributions, visually reducing
the distance from Gaussianity. As in the second experiment, we quantify the distance
from Gaussian metrics by using Hellinger’s formula in Eq. (6). Figure 5 illustrates
the variation of the H distance for the phase-corrected data as function of �, for each
acquisition setup, reconstruction method (DTI, MAP), and diffusion metric. In each
image, the dashed lines represent the distance of the metric calculated on Rician
magnitude data from the corresponding Gaussian one, whereas the solid lines report
the distance from Gaussianity for metrics calculated on phase-corrected data, which
varies with � (abscissa). Color codes indicate the SNR0 value. We observe that phase
correction leads to metric distributions that are closer to the Gaussianity (H distance
close to 0) than the Rician magnitude ones, for specific ranges of �. In general, phase
correction debiases the metric distributions up to a great extent. The improvement
over the Rician magnitude is clearly correlated with the combination of acquisition
scheme—especially the maximum b-value—and SNR0 as also indicated by the
signal intensities experiments illustrated in Figs. 1 and 2. Indeed, at high b-values
the signal is low—especially along the less restricted diffusion direction—which,
in combination with a poor SNR0, causes the effective SNR to fall well below 5

where a Rician distribution diverges from a Gaussian one. Therefore, the best �
value (highlighted with a dot in Fig. 5) also depends on these factors. We point out
that in some cases, as for DTI at b D 1000 s=mm2, too much filtering (small �)
causes the phase-corrected metric distributions to be more distant from Gaussianity
compared to those based on the Rician magnitude (dashed lines). The best � also
seems to have a dependence on the considered metric. For instance, at SNR0 D 30

the best � for RTPP is 0:75 whereas for RTAP is 2. This can be associated to the
fact that metrics that are highly related to signal measured along the less restricted
diffusion direction (low intensity signal), such as PD and RTPP, benefit more than
others of phase correction. See Table 1 for a comprehensive summary.
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4 Conclusion

We investigated the effects of phase correction of DWIs in terms of signal debiasing
and Noise Floor removal. We quantitatively assess that phase correction has the
potential of rendering nearly unbiased DTI and q-space metrics. Indeed, the noise
distribution transformation, from Rician to Gaussian, allows compliance with the
assumptions required to use standard least squares methods for signal estimation,
thus avoiding noise floor related signal overestimation. In this work, we illustrate
the importance of accurate phase estimation of complex DWIs, necessary condition
for a good phase correction. We plan to extend this work to other diffusion signal
metrics, such as those derived from NODDI [5]. We believe that phase correction
is a still challenging but promising tool for boosting the estimation of diffusion
metrics.

Acknowledgements Data for this project was provided by the MGH-USC Human Connectome
Project. This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant
agreement No 694665 : CoBCoM).

Marco Pizzolato expresses his thanks to Olea Medical and the Provence-Alpes-Côte d’Azur
(PACA) Regional Council for providing grant and support for this work.

References

1. Jones, D.K., Basser, P.J.: Squashing peanuts and smashing pumpkins: how noise distorts
diffusion-weighted MR data. Magn. Reson. Med. 52(5), 979–993 (2004)

2. Aja-Fernández, S., Tristán-Vega, A.: A review on statistical noise models for magnetic
resonance imaging. LPI, ETSI Telecomunicacion, Universidad de Valladolid, Technical Report
(2013)

3. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C.,
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Regularized Dictionary Learning with Robust
Sparsity Fitting for Compressed Sensing
Multishell HARDI

Kratika Gupta, Deepali Adlakha, Vishal Agarwal, and Suyash P. Awate

Abstract This paper presents a new compressed sensing framework for multishell
HARDI. Unlike methods that model diffusion signals using analytical bases, we
learn a dictionary of multishell diffusion signals, with a proposed regularization
term to handle low signal-to-noise ratios at high b values. We combine the dictionary
model for diffusion signals together with a multiscale (wavelet-based) spatial model
on images for compressed sensing. To control overfitting of the dictionary to tracts
with unknown orientations, we use a strong non-sparsity penalty that behaves close
to the desirable L0 pseudo-norm. Our framework allows undersampling gradient
directions, shells, and k-space. The results show improved reconstructions from our
framework, over the state of the art.

1 Introduction and Related Work

Multishell high angular resolution diffusion imaging (HARDI) [1, 20] acquires
diffusion weighted (DW) magnetic resonance (MR) images using a large number of
gradient directions over multiple shells (i.e., b values). Multishell HARDI combines
(1) higher signal-to-noise ratio (SNR) at lower b values with (2) the greater ability
to resolve tract directions and narrow-angle crossings at larger b values [19], at the
cost of scan time.

We propose a novel compressed sensing framework that allows undersampling
gradient directions, shells, and k-space. The key approach for speeding up HARDI
scans is, indeed, undersampling the set of gradient directions and the results in
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the paper focus on that practical scenario. Nevertheless, the framework is general
and allows to explore reconstructions involving undersampling in shells or k-space.
In some DW MRI applications involving a small number of diffusion-encoding
directions, k-space undersampling can be preferred, as shown for diffusion tensor
MRI in [13]; our framework is applicable, in principle, to such scenarios as well.
Unlike methods [6, 7, 10, 15, 18] that model diffusion signals using analytical bases
(e.g., spherical harmonics or ridgelets) for each shell independently, we propose to
learn a dictionary of multishell diffusion signals, exploiting correlations between
multiple shells. In addition to the dictionary, we use an overcomplete wavelet
frame for multiscale spatial regularization; others works use total-variation (TV)
regularization [15, 17] or no spatial regularization [2, 11]. Our approach is similar
to the one in [3] for dynamic MRI.

Some works [2, 4, 11, 14] use dictionaries based on tensor or parametric mod-
els to reconstruct diffusion signals from single-shell HARDI with undersampled
directions. Some methods [9, 11] use positivity constraints on the dictionary atoms
through nonnegative sparse coding, which relates to our approach. To handle
unknown tract orientations in practice, while [11] expands the dictionary to include
rotated atoms at the risk of overfitting, [2, 4] explicitly optimize each atom’s rotation
at a high computational cost and the risk of local optima with corrupted data. In
contrast, we (1) fit the dictionary to arbitrarily oriented tracts while controlling
overfitting at low computational cost by modifying the non-sparsity penalty to
give sparser dictionary fits and (2) reconstruct multishell HARDI directly from
undersampled noisy k-space data.

In this paper, we propose a new method for learning a dictionary of multishell
diffusion signals, employing a spherical-domain regularization on the estimated
atoms to counter the low SNR at higher b values. Our formulation leads to a convex
optimization problem in each variable (atoms or coefficients), which can be solved
efficiently. We propose a new framework for compressed sensing that employs the
learned dictionary together with multiscale spatial regularity using wavelets. While
the learned dictionary is expanded to handle arbitrary tract orientations, we control
overfitting by a strong non-sparsity penalty that behaves close to the desirable
L0 pseudo-norm [8] and leads to an efficient majorization minimization (MM)
algorithm performing convex optimization iteratively. Our compressed sensing
framework reconstructs DW MR images directly from undersampled noisy k-
space data. In this way, the framework allows exploration of application-specific
acquisition optimization regarding the choice of (1) number of shells, (2) gradient
directions in each shell, and (3) undersampling in q-space and k-space. Results show
the advantages of our framework over the state of the art.

2 Methods

This section describes our methods for regularized dictionary learning, strongly
sparse fitting, and compressed sensing multishell HARDI directly from k-space
data.
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2.1 Dictionary Learning for Multishell HARDI

Using a HARDI image dataset, we collect multishell signals at voxels in regions
that have a single tract passing through them, e.g., corpus callosum and lateral
corticospinal tract, where the strongly anisotropic diffusion leads to higher contrast-
to-noise ratios in the signal. To factor out arbitrary differences in (1) imaging
coordinate-frame origins and poses across individuals, (2) orientations of a specific
tract across individuals, and (3) orientations of different tracts within an individual,
we reorient each diffusion signal to align it with a fixed diffusion signal that
models prolate-tensor diffusion along a fixed direction (Œ0; 0; 1>). The alignment
entails interpolation, on the spherical domain of the diffusion-signal function, using
Barycentric coordinates and geodesic distances on the sphere S2. We align two real-
valued functions, i.e., diffusion signals, defined on the spherical domain of gradient
directions. The underlying deformation is rotation. The registration gives aligned
signals defined on the same gradient directions (for each shell). We divide each
aligned signal by the voxel value in the corresponding b0 image.

Because diffusion signal values are modeled as non-negative real [20], we learn
atoms with non-negative values from magnitude HARDI images. We constrain
coefficients to be non-negative real to ensure that the fits lie in the same space as
the data. For multishell diffusion signals, shells with larger b values lead to drastic
reductions in SNR. To counter the noise, during dictionary learning, we propose
to enforce a smoothness prior on the atom over the spherical domain of gradient
directions. We use a robust penalty to reduce noise while preserving contrast over
the spherical domain.

Let the HARDI acquisition employ S shells, with shell s comprising Ns gradient
directions fgsn 2 R

3 W kgsnk2 D 1gNs
nD1. In a training dataset of I aligned multishell

diffusion signals, let the i-th signal be f i. Let f isn 2 R�0 be the signal value from
shell s for gradient direction gsn. Let the dictionary matrix D comprise K multishell
diffusion signals (atoms) dk as columns. Let dksn 2 R�0 be the atom value from shell
s for gradient direction gsn. Let ci be the vector of non-negative coefficients used to
represent f i. We propose the optimal dictionary as the solution to

min
D;c
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nD1
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wsmnH.d
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sn � dksm; ı/

!

undertheconstraints W8.k; s; n/ W dksn � 0; kdkk2 � 1; and8.i; k/ W cik � 0; (1)

where H.�; ı/ is the Huber loss function [12] (a smooth approximation to the
L1 penalty) with parameter ı, ˛ > 0 controls the sparsity prior strength, ˇs >
0 controls the strength of the robust smoothness prior H.�; �/ for shell s of
each atom’s diffusion signal, wsmn 2 Œ0; 1 weights the roughness penalty for
the deviation between atom values between directions gsn and gsm; wsmn WD
exp.�0:5j arccos.gsn; gsm/j2=.	=12/2/.

We use iterative optimization to alternatingly optimize atoms dk and coefficient
vectors ci, while fixing the other, in each case solving a convex optimization
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problem. We use K-means to initialize dk to the K cluster centers. Fixing atoms
fdkgKkD1, the optimization problem for each coefficient vector ci has a quadratic
objective function and a linear (positive) constraint; the global minimum has a
closed form. Fixing coefficient vectors fcigIiD1, because we chooseH.�; ı/ as convex,
the optimization problem for each atom dk is convex; we find the global minimum
via projected gradient descent with adaptive step size. To the learned dictionary, we
add constant atoms dKCs, one for each shell s, to better model isotropic diffusion in
the fluid and gray matter.

2.2 Compressed Sensing Multishell HARDI

We formulate the problem of reconstructing multishell HARDI image u from
undersampled data z (complex valued vector). Let the anatomical image comprise
V voxels. Let the HARDI acquisition employ S shells, with shell s comprising
Ns gradient directions. The matrix u is of dimension V � .PS

sD1 Ns/. Let usn
be the spatial image of diffusion signal values for shell s and gradient direction
gsn. Let uv be the multishell diffusion signal at voxel v. Let zsn be the vector of
undersampled data for shell s and gradient direction gsn. Let operator bF sn represent
the undersampled Fourier transform (vectorized output) related to the k-space data
acquisition corresponding to image usn. bF sn can model undersampling in gradient
directions, shells, and k-space; skipping direction gsn corresponds to bF sn not
sampling any data in k-space. Let W be an operator representing a wavelet transform
(vectorized output) applied on a spatial image. We enforce a prior on uncorrupted
images u such that each spatial image usn has a sparse wavelet representation, by
penalizing the L1 norm of the vector of wavelet coefficients.

We use the dictionary D learned in Sect. 2.1, using orientation-aligned multishell
diffusion signal data, to create another dictionary D‚ for use during compressed
sensing. To enable fits to tracts with unknown orientations, we build an expanded
dictionary D‚ by using each atom dk in D to create multiple copies fdk�jgJjD1 by
reorienting the diffusion signal dk along a large set of directions f�jgJjD1 spread
roughly uniformly over the hemisphere. For simplicity, we model the set of �j to
be same as the gradient directions gsn for the shell s that acquired the maximum
number of directions Ns.

Let D‚ be a dictionary of KJ atoms representing the multishell diffusion signals
(real valued, non-negative) at any voxel in the anatomy. Let cv be the vector of
coefficients used for representing the multishell diffusion signal uv at voxel v. We
constrain coefficients cvm to be real non-negative. We design a prior on uncorrupted
images u such that, at each voxel v, uv has a sparse representation in dictionary D‚.

While this multiplicity results in a large increase in the number of atoms (KJ �
K) in D‚, we know that very few of these should be needed for a fit; e.g., a voxel
involving a single tract would probably use only 1 of the reoriented atoms (the one
matching the tract orientation), a voxel involving two crossing tracts would probably
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use only 2 of such reoriented atoms (the ones matching the orientations of the two
crossing tracts), etc. To ensure such sparse fits, we use a strong sparsity prior by
penalizing the logarithm of the L1 norm of each coefficient vector cv . We choose
this logarithm function because it penalizes non-sparsity more strongly compared
to the Lp norms for p close to 1; indeed, the log-L1 penalty behaves similar to the
Lp-to-power-p penalty for p close to 0, thereby mimicking the desirable L0 pseudo-
norm [5, 8]. Furthermore, we propose an efficient optimization scheme for sparse
coding dealing with this logarithmic form.

The formulation naturally models u as complex valued. We use the corresponding
magnitude image for visualization. While the image u is a complex-valued matrix,
the proposed dictionary can model only real-valued diffusion signals. Hence, to
model the complex phase of the signal uv, at each voxel v, we introduce a complex-
valued vector �v that is of the same length as uv and each component of which has
unit magnitude.

We propose the optimal reconstruction u� as the solution to

min
u;c;�
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sD1

NsX

nD1

kWusnk1 C .1 � �/
VX

vD1

h
kuv � �v ˇD‚cvk22 C �

K0X

iD1

log.jcvij C �/
i!

suchthat8v; s; n;m W cvm � 0; j�vsnj D 1; andkbF snusn � zsnk2 � 
sn; (2)

where � 2 Œ0; 1 balances the strengths of the priors enforcing wavelet-based and
dictionary-based sparsity,ˇ represents component-wise multiplication of 2 vectors,
� > 0 controls the sparsity of coefficients, 
sn is the noise norm, and � D 10�4
avoids numerical issues. We propose to alternatingly optimize variables u, c, and �.
We initialize usn  bF�

snzsn, where .�/� is the Moore-Penrose pseudo inverse.

Optimizing Phase ¥ Fixing u, we can optimize � by independently optimizing
�vsn at each voxel v, shell s, and gradient direction gsn. The optimization problem
reduces to ��

vsn WD arg min�vsn juvsn � �vsnxvsnj2, where xv is any fit given by the
dictionary. When uvsn > 0, this has a closed-form solution ��

vsn D uvsn=juvsnj,
independent of xv . When uvsn equals 0, we set ��

vsn D 1.

Optimizing Coefficients c Fixing u and �v , we optimize cv independently at each
voxel v. The optimization problem reduces to c�

v WD arg mincv kuv��vˇD‚cvk22C
�
PK0

iD1 log.jcvijC�/ under the positivity constraint on the coefficient values. Having
chosen the optimal �v as the complex phase of uv, we optimize the coefficient vector
cv so that the dictionary fits to the magnitude vectoreuv , whereeuvsn D juvsnj. Thus,
the objective function reduces to keuv �D‚cvk22 C �

PK0

iD1 log.jcvij C �/.
We optimize using MM. Within each iteration, we majorize the objective

function by exploiting (1) the positivity of the coefficients and (2) the concavity of
the log function. We use the first-order Taylor-series approximation to majorize the
log function, evaluated only on the positive orthant, by its tangent hyperplane at the
current estimatebcv. The majorized objective function is keuv�D‚cvk22C�k!ˇcvk1,
where the weight vector components are !m WD 1=.bcvm C �/. Compared to the
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unweighted case, the weights !sn promote a sparser fit by increasing (relatively) the
penalty on non-zero coefficients cvm for those atoms for which the current coefficient
estimatebcvm is smaller.

To solve this problem, we substituteecv WD !ˇ cv D �cv , where� is a diagonal
matrix whose diagonal elements are in the same order as those in the vector !. This
substitution reduces the problem toec�

v WD arg minecv keuv � D‚��1ecvk22 C �kecvk1,
under positivity constraints on ecv . This is a non-negative sparse coding problem
using the modified dictionary D‚��1 that scales each atom dm in the dictionary
D‚ by the current coefficient estimatesbcvm C �. This reweighting promotes sparser
fits because it scales down (relatively) those atoms that correspond to smaller
coefficientsbcvm in the current estimate, thereby effectively increasing (relatively)
the penalty on their coefficients in the new optimal estimate cvm, leading to even
smaller coefficients. This sparse coding problem, within each iteration of the MM
algorithm, has a quadratic objective function and a convex (positive) constraint; we
find the global minimum in closed form. The optimal estimateec�

v gives the desired
optimal estimate c�

v WD ��1ec�
v .

Optimizing Multishell HARDI Image u Fixing c and �, the objective function
for u reduces to �kWuk1 C .1 � �/ku � yk22, where yv WD �v ˇ xv . The constraint
set for u comes from the fidelity constraints kbF snusn � zsnk2 � 
sn. We propose to
solve this (large) convex optimization problem for u using an efficient algorithm for
non-smooth convex optimization [16] that significantly improves the typical bounds
on the number of iterations required for convergence for gradient-based algorithms.

3 Results and Conclusion

We evaluate the proposed framework on simulated and human brain HARDI images.
The parameters �, ˛, ˇs, and � need to be tuned empirically using cross-validation.

Regularized Dictionary Learning for Brain HARDI While we learn a multishell
dictionary for compressed sensing later, we first show the utility of the smoothness
prior via single-shell learning. From the brain dataset, we obtained 1000 high-
variance diffusion signals for b = 1000 s/mm2 as “clean” and learned a dictionary
of ten atoms from that (two examples in Fig. 1a); we show the diffusion signal
values, colormapped, at the corresponding gradient directions on a unit hemisphere.
We then used the corresponding 1000 diffusion signals from the shell with b =
3000 s/mm2, corrupted it with noise, and learned two dictionaries, one using the
smoothness prior and one without. Atoms learned without the smoothness prior
undesirably exhibited more noise/random perturbations (examples in Fig. 1b) than
atoms learned with the prior (examples in Fig. 1c). The relative root mean squared
error (RRMSE) between the fitted diffusion signals a and the reference signal b is
ka � bk=kbk. The regularized atoms, expectedly, produced better fits to noisy data,
which were qualitatively smoother (example in Fig. 2c, e) and quantitatively having



Compressed Sensing Multishell HARDI: Regularized Dictionary, Strongly Sparse Fits 41

Fig. 1 Regularized dictionary learning. Two example atoms learned: (a) using clean data at b =
1000 s/mm2 (considered as baseline), (b) using noisy data at b = 3000 s/mm2, without smoothness
prior (ˇs D 0), and (c) using noisy data at b = 3000 s/mm2, with smoothness prior (ˇs > 0)
(proposed). Dot locations � gradient direction vectors; colors � diffusion signal values

Fig. 2 Regularized dictionary learning. Example fit to noisy data at b = 3000 s/mm2 using a
dictionary learned: (a) using clean data (reference), (b) using noisy data, without smoothness prior
(ˇs D 0), and (c) using noisy data, with smoothness prior (ˇs > 0) (proposed). (d)–(e) Residuals
for (b)–(c), respectively

Fig. 3 Dictionary modeling of human brain HARDI. (a) Baseline (high quality) GFA image,
averaged over shells. (b) GFA of the image resulting from fitting the dictionary to the baseline
image. (c) Magnitude of the difference between per-voxel GFA in image (a) and (b). (d) Per voxel
RRMSEs between baseline and dictionary-fitted diffusion signals

about half the RRMSE, as compared to the atoms learned without regularization
(example in Fig. 2b, d).

Figure 3 evaluates the utility of the proposed dictionary learning framework in
modeling brain HARDI. The GFA of the baseline HARDI signals (Fig. 3a) and
the GFA of the dictionary-fitted HARDI signal (Fig. 3b) are very similar, with
differences (Fig. 3c) almost always being less than half percent or less. The per-
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Fig. 4 Compressed sensing simulated HARDI. (a1)–(a2) Ground truth diffusion signals, for 2
shells, in simulated phantom. We simulated 16X undersampling in gradient directions and SNR-7
noise (see text). (b) Proposed method’s performance with different weights � for the dictionary
and wavelet prior. (c1)–(c2) True signal (zoomed in 2 � 2 patch boxed red � in (a)–(b)), for both
shells. Reconstructions with: (d1)–(d2) dictionary and wavelet, � D 0:6, RRMSE 0:02 (proposed)
which is near perfect; (e1)–(e2) sliding window, RRMSE 0:44; (f1)–(f2) dictionary, � D 0,
RRMSE 0:17; (g1)–(g2) wavelet (3D overcomplete), � D 1 (RRMSE 0:94); (h1)–(h2) dictionary
and TV, optimized � (RRMSE 0:05)

voxel RRMSEs (Fig. 3d) between the dictionary fit and the baseline image are
almost always less than 1%.

Compressed Sensing Simulated HARDI We use a simulated phantom; 16 �
16 voxel matrix, 81 gradient directions, 2 shells) comprising 2 crossing tracts,
1 horizontal and 1 vertical (Fig. 4(a1), (a2)). We simulate 16X undersampling
in gradient directions, acquiring only 5 of the 81 directions, per shell, spread
roughly uniformly over the hemisphere that resulted in small magnitudes of the
inner-product between pairs of selected directions. We introduce independent and
identically distributed zero-mean complex Gaussian noise of variance �2 in k-
space such that the SNR, defined as the largest signal magnitude among all DW
images divided by � , equals 7 that mimics a realistic clinical acquisition scenario.
The proposed framework gives results [Fig. 4(d1), (d2)] that are near perfect, as
compared to other approaches. The best performance occurs when both multishell-
dictionary- and wavelet-based models are used, i.e., � roughly midway between 0
and 1 (Fig. 4c). The simple sliding window reconstruction [Fig. 4(e1), (e2)], where
we replace the missing k-space data by the acquired data for the same location in k-
space but in the nearest direction in the same shell, fails to enforce any regularity on
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the reconstruction in space or directions. The dictionary model alone gives results
with poor spatial regularity [Fig. 4(f1), (f2)]. An analytical wavelet basis jointly for
space and directions/shells does poorer because the proposed approach uses a dictio-
nary that is adapted to multishell diffusion signals [Fig. 4(g1), (g2)]. The dictionary
model with a spatial TV prior cannot model multiscale spatial regularity, unlike
wavelet transforms [Fig. 4(h1), (h2)]; a spatial TV prior can be easily incorporated
in our framework by replacing the wavelet transform with a linear transform that
takes one-sided spatial derivatives along each dimension of the image.

Compressed Sensing Brain HARDI We used ten fully-sampled high-quality
2-shell HARDI images with 90 gradient directions, treated as baselines, and
performed retrospective undersampling and noise corruption (mimicking SNR 7).
We performed 6X undersampling of directions (15 out of 90 directions acquired
roughly uniformly over the hemisphere, for each shell) and 1.3X undersampling of
k-space (undersampled frequency encodes), corresponding to a reduction in scan
time by a factor slightly larger than 6. The reconstructions (Figs. 5 and 6) from our
approach of using the learned multishell dictionary model combined with a spatial
regularity model (wavelet or TV) are of significantly higher quality than the other

Fig. 5 Compressed sensing brain HARDI (slice I). (a) Baseline (high quality) GFA images,
averaged over shells. We simulated 6X undersampling of directions and 1.3X undersampling of
k-space for each direction acquired, introducing noise to get SNR 7 (see text). GFA images of
reconstructions with: (b) dictionary and wavelet, � D 0:7, RRMSE 0:12 (proposed); (c) dictionary
and TV with optimized �, RRMSE 0:12; (d) dictionary, � D 0, RRMSE 0:23; (e) sliding window,
RRMSE 0:23; (f) wavelet (3D overcomplete), � D 1, RRMSE 0:91
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Fig. 6 Compressed sensing brain HARDI (slice II). (a) Baseline (high quality) GFA images,
averaged over shells. We simulated 6X undersampling of directions and 1.3X undersampling of
k-space for each acquired direction, introducing noise to get SNR 7 (see text). GFA images of
reconstructions with (b) dictionary and wavelet, � D 0:7, RRMSE 0:12 (proposed); (c) dictionary
and TV with optimized �, RRMSE 0:12; (d) dictionary, � D 0, RRMSE 0:23; (e) sliding window,
RRMSE 0:22; (f) wavelet (3D overcomplete), � D 1, RRMSE 0:9

Fig. 7 Compressed sensing brain HARDI (slice I). Images of per-voxel RRMSE (multishell) for
reconstructions in Fig. 5 with (a) dictionary and wavelet, RRMSE 0:12 (proposed); (b) dictionary
and TV, RRMSE 0:12; (c) dictionary, RRMSE 0:23; (d) sliding window, RRMSE 0:23

approaches. The approach using the dictionary alone failed to reproduce spatial
regularity in the reconstructed image, and instead produced noisy reconstructions
with about twice as much RRMSE. The sliding window approach lead to a similar
lack of regularity and much larger RRMSE. The approach using the wavelet frame
only, coupled in space and directions, performed the worst because, compared to the
dictionary, the wavelets are unable to effectively model the regularity for this class
of signals. The images of RMS errors (Figs. 7 and 8) clearly show that our coupled
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Fig. 8 Compressed sensing brain HARDI (slice II). Images of per-voxel RRMSE (multishell) for
reconstructions with (a) dictionary and wavelet, RRMSE 0:12 (proposed); (b) dictionary and TV,
RRMSE 0:12; (c) dictionary, RRMSE 0:23; (d) sliding window, RRMSE 0:22

Fig. 9 Compressed sensing brain HARDI (region I: corpus callosum) (a) Baseline diffusion
signals, for b = 1000 s/mm2. Reconstructed diffusion signals with (b) dictionary and wavelet,
(c) dictionary and TV, (d) dictionary, (e) sliding window, (f) wavelet (3D overcomplete)

approach, dictionary in addition to spatial regularization (wavelet or TV), yields the
lowest errors.

We now show the reconstruction in two regions: a 3� 3 voxel patch in the corpus
callosum in Fig. 9, and another 3 � 3 voxel patch in a fiber-crossing region of the
corpus callosum and the lateral corticospinal tract in Fig. 10. In the corpus callosum
(Fig. 9), while the dictionary-only reconstruction underfits to the data, the wavelet-
only and sliding-window reconstructions are noisy and erroneous. In the crossing
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Fig. 10 Compressed sensing brain HARDI (region II: fiber crossing) (a) Baseline diffusion
signals, for b = 1000 s/mm2. Reconstructed diffusion signals with (b) dictionary and wavelet,
(c) dictionary and TV, (d) dictionary, (e) sliding window, (f) wavelet (3D overcomplete)

Fig. 11 Box plots of RRMSEs for ten randomly selected coronal brain MRI slices

region (Fig. 10), the dictionary-only reconstruction has modified the directions of
the individual tracts; at each voxel, the blue area shifts from the bottom right to the
bottom left. Our approach of using the dictionary coupled with spatial regularization
(wavelet or TV) gives the best results. We experimented with ten different coronal
slices from brain HARDI images and found (Fig. 11) that our approach of using the
dictionary along with a spatial prior (wavelet or TV) outperforms other approaches.

Conclusion We present a new compressed sensing framework for multishell
HARDI. We propose a regularized dictionary learning method for multishell signals,
to handle low SNR at high b values and show its advantages in getting improved
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fits to human brain HARDI. To control overfitting of the dictionary to tracts with
unknown orientations, we propose a strong non-sparsity penalty similar to the
L0 pseudo-norm. Our framework reconstructs images directly from HARDI data
undersampled in gradient directions, thereby allowing an acquisition speedup of the
same factor as the gradient-direction undersampling factor. We propose efficient
optimization schemes and show results that improve the state of the art.
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Denoising Diffusion-Weighted Images Using
Grouped Iterative Hard Thresholding
of Multi-Channel Framelets

Jian Zhang, Geng Chen, Yong Zhang, Bin Dong, Dinggang Shen,
and Pew-Thian Yap

Abstract Noise in diffusion-weighted (DW) images increases the complexity of
quantitative analysis and decreases the reliability of inferences. Hence, to improve
analysis, it is often desirable to remove noise and at the same time preserve
relevant image features. In this paper, we propose a tight wavelet frame based
approach for edge-preserving denoising of DW images. Our approach (1) employs
the unitary extension principle (UEP) to generate frames that are discrete analogues
to differential operators of various orders; (2) introduces a very efficient method
for solving an `0 denoising problem that involves only thresholding and solving
a trivial inverse problem; and (3) groups DW images acquired with neighboring
gradient directions for collaborative denoising. Experiments using synthetic data
with noncentral chi noise and real data with repeated scans confirm that our
method yields superior performance compared with denoising using state-of-the-art
methods such as non-local means.
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1 Introduction

Diffusion MRI is a powerful neuroimaging technique due to its unique ability to
extract microstructural information by utilizing restricted and hindered diffusion to
probe compartments that are much smaller than the voxel size. One important goal
of diffusion MRI is to estimate axonal orientations, tracing of which will allow one
to gauge connectivity between brain regions and will provide in vivo information
on white matter pathways for neuroscience studies involving development, aging,
and disorders [1–5]. In order to capture orientation information, the brain has to be
scanned using a range of diffusion-sensitizing gradient directions that are ideally
distributed uniformly on the unit sphere.

As shown in Fig. 1, DW images that are scanned with similar gradient directions
share a lot of commonalities. However, these commonalities diminish very quickly
if the difference between the gradient directions increases. As can also be seen
from the figure, the images are typically very noisy and can benefit greatly from
denoising. Denoising performance can be improved by borrowing information
between images scanned at similar gradient directions; however, images scanned
at a very different direction have to be avoided in this process to reduce artifacts.

In this paper, we take advantage of the correlation between DW images scanned
with neighboring gradient directions in a group `0 minimization denoising frame-
work that is based on tight wavelet frames. The power of tight wavelet frames
lies in their ability to sparsely approximate piecewise smooth functions and the
existence of fast decomposition and reconstruction algorithms associated with them.
In contrast, total-variation (TV) based methods are effective in restoring images
that are piecewise constant, e.g., binary or cartoon-like images. They will, however,
cause staircasing effects in images that are not piecewise constant [6].

Instead of the more conventional `1 regularization, which has been shown in
the theory of compressed sensing [7] to produce sparse solutions, we opted to use
`0 regularization. In [8], both iterative soft and hard thresholding algorithms were
adopted and the latter was found to achieve better image quality. In [9], wavelet
frame based `0 regularization also shows better edge-preserving quality compared

Reference Neighboring Direction Distant Direction

Fig. 1 Diffusion-weighted images scanned at different gradient directions. The left and middle
images were scanned with similar gradient directions. The right image was scanned at a nearly
perpendicular gradient direction with respect to the reference
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with the conventional `1 regularization. In contrast to previous works, we propose a
group version of `0 minimization to take advantage of the correlation between DW
images.

Evaluations performed using synthetic data with noncentral chi noise distribution
as well as real data with repeated scans indicate that the proposed method is superior
to its `1 counterpart and non-local means denoising.

2 Approach

We will first provide a brief introduction to framelets, followed by details on
how framelets can be incorporated into an `0 minimization framework for DWI
denoising.

2.1 Tight Framelets

A system X 	 L2.R/ is called a tight wavelet frame of L2.R/ if

f D
X

g2X
h f ; gig; 8f 2 L2.R/; (1)

where h�; �i is the inner product of L2.R/. It is clear that an orthonormal basis is
a tight frame, since the identity hold for arbitrary orthonormal bases in L2.R/.
Tight frames are generalization of orthonormal bases with greater redundancy—a
property central to sparse representation and often desirable in applications such as
denoising [10].

Given a set of generators ‰ WD f 1; : : : ;  Rg 	 L2.Rd/, which are desirably
(anti)symmetric and compact functions, the corresponding quasi-affine system
X.‰/ generated by ‰ is the collection of dilations and shifts of ‰: X.‰/ D f l;r;k W
1 � r � RI l; k 2 Zg, where  l;n;k is defined by

 l;r;k WD
(
2

l
2  r.2

l � �k/; l � J;

2
l�J
2  r.2

l � �2l�Jk/; l < J:
(2)

When X.‰/ forms an orthonormal basis of L2.R/, X.‰/ is called an orthonormal
wavelet basis. When X.‰/ forms a (tight) frame of L2.R/, each function  r ,
r D 1; : : : ;R, is called a (tight) framelet and the whole system X.‰/ is called a
(tight) wavelet frame system. A tight wavelet frame is also called a Parseval frame.
Note that in the literature, the affine (or wavelet) system, which corresponds to the
decimated wavelet (frame) transforms, is commonly used. The quasi-affine system,
introduced and analyzed in [11], corresponds to the undecimated wavelet (frame)
transforms and essentially over samples the wavelet frame system starting from level
J � 1 and downwards. In this paper, we focus on the quasi-affine system because it
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has been shown to work better in image restoration [12]. We set J D 0 and consider
only l < 0.

The construction of‰ is usually based on a multiresolution analysis (MRA) [12]
that is generated by some refinable function � with refinement mask a0 2 `2.Z/
satisfying

� D 2
X

k2Z
a0Œk�.2 � �k/: (3)

The key is to find the masks ar 2 `2.Z/ that gives

 r D 2
X

k2Z
arŒk�.2 � �k/; r D 1; 2; : : : ;R: (4)

The finite sequences, a1; : : : ; aR are called wavelet frame masks, or the high pass
filters of the system. The refinement mask a0 is also known as the low pass filter.
The two equations above can be combined by defining  0 WD �.

The unitary extension principle (UEP) [11] provides a general theory for
constructing MRA-based tight wavelet frames. As long as fa1; : : : ; aRg are finitely
supported and their Fourier series satisfy

RX

rD0
jbar.�/j2 D 1 and

RX

rD0
bar.�/bar.� C �/ D 0; (5)

for all � 2 f0; 	g and � 2 Œ�	; 	, the quasi-affine system X.‰/ forms a tight frame
in L2.R/.

Consider the centered B-splines of order p, i.e.,

b�.�/ D e�ij �2

�
sin.�=2/

�=2

	p

; (6)

with j D 0 when p is even and j D 1 when p is odd. The corresponding refinement
mask is given as

ba0.�/ D e�ij �2 cosp.�=2/; (7)

and the p wavelet masks as

bar.�/ WD �ire�ij �2

s�
p
r

	
sinr.�=2/ cosp�r.�=2/; r D 1; 2; : : : ; p: (8)

It is straightforward to show that the UEP conditions (5) are satisfied. Wavelet frame
masks for p D 1; 2; 4 are shown in Table 1. It is worth noting that these masks
correspond to differential operators of various orders. For example, for piecewise
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Table 1 Wavelet frame masks

Piecewise constant, p D 1 Piecewise linear, p D 2 Piecewise cubic, p D 4

a0 D 1
2
Œ1; 1 a0 D 1

4
Œ1; 2; 1 a0 D 1

16
Œ1; 4; 6; 4; 1

a1 D 1
2
Œ1;�1 a1 D 1

4
Œ�1; 2;�1 a1 D 1

16
Œ1;�4; 6;�4; 1

a2 D
p

2

4
Œ1; 0;�1 a2 D 1

8
Œ�1; 2; 0;�2; 1

a3 D
p

6

16
Œ1; 0;�2; 0; 1

a4 D 1
8
Œ�1;�2; 0; 2; 1

linear B-spline, the masks a1 and a2 correspond to the first order and second order
difference operators respectively up to a scaling factor.

When a tight wavelet frame is used, the given data is considered to be sampled
as a local average uŒk D h f ; �.� � k/i. Noting that [12]

h f ;  l�1;r;ki D
X

k02Z
al;rŒk

0h f ;  l;0;kCk0i; (9)

where the dilated sequence is defined as

al;rŒk D
(
arŒ2lk; k 2 2�l

Z;

0; k 62 2�l
Z;

(10)

the decomposition and reconstruction down to level �L [12], i.e.,

P0 f D P�L f C
RX

rD1

�1X

jD�L

X

k2Z
h f ;  r;j;ki r;j;k; (11)

where

Pl f D
RX

rD1

X

j<l

X

k2Z
h f ;  r;j;ki r;j;k; (12)

can be realized with convolution using the masks. We denote by W the L-level
framelet decomposition, i.e.,

Wu D .: : : ;Wl;ru; : : :/
> for .l; r/ 2 BL; (13)

with BL WD f.1; 1/; .1; 2/; : : : ; .1;R/; .2; 1/; : : : ; .L;R/g [ f.L; 0/g, where the level
l and band r framelet decomposition is given by

Wl;ru D a�l;r ˝ a�lC1;0 ˝ � � � ˝ a0;0 ˝ u: (14)

If we use W> to denote the framelet reconstruction, we have W>W D I, i.e., u D
W>Wu.
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Given a 1-dimensional framelet system for L2.R/, the d-dimensional tight
wavelet frame system for L2.Rd/ can be easily constructed by using tensor products
of 1-dimensional framelets [12].

2.2 Problem Formulation

Given a vector-valued image f of an arbitrary dimension with pixel i 2 f1; : : : ;Ng
consisting of vector fi 2 R

M , we are interested in restoring its denoised counterpart
u by solving the following problem:

min
u

8
<

:�.u/ D ku � fk22 C
X

i;g;l;r

�g;l;r









sX

m

w2g;mk.Wl;ru.m//ik22








0

9
=

; : (15)

The regularization term is in fact a sum of G regularization terms, each of which
grouping a set of images. The gth grouping (with associated tuning parameter �g;l;r),
where g D f1; 2; : : : ;Gg, is defined according to a set of weights fwg;mg, where
m 2 f1; : : : ;Mg. Channels with wg;m ¤ 0 are included in the grouping and their
weighted framelet coefficients are jointly considered via `2-norm for penalization.
The different groupings can possibly overlap, implying each image can be at the
same time considered in different groups. This is in similar spirit as the overlapped

group LASSO [13]. We set �g;l;r D �
�P

m w2g;m
� 1
2 if l; r ¤ 0 or �g;l;r D 0 if

otherwise. Here � is a constant that can be set independent of the weights.

2.3 Optimization

Problem (15) can be solved effectively using penalty decomposition (PD) [14].
Defining auxiliary variables .vg;m;l;r/i WD wg;m.Wl;ru.m//i, this amounts to minimiz-
ing the following objective function with respect to u and v WD fvg;m;l;rg:

L�.u; v/ D ku � fk22 C
X

i;g;l;r

�g;l;r









sX

m

k.vg;m;l;r/ik22








0

C�
2

X

i;g;m;l;r

kwg;m.Wl;ru
.m//i � .vg;m;l;r/ik22:

(16)

In PD, we (1) alternate between solving for u and v using block coordinate descent
(BCD). Once this converges, we (2) increase � > 0 by a multiplicative factor that is
greater than 1 and repeat step (1). This is repeated until increasing � does not result
in further changes to the solution [14].
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First Subproblem

We solve for v in the first problem, i.e., minv L�.u; v/. This is a group `0 problem
and the solution can be obtained via hard-thresholding:

.vg;m;l;r/i D
(
wg;m.Wl;ru.m//i; .hg;l;r/i � 2�g;l;r

�

0; otherwise;
(17)

where

.hg;l;r/i D
X

m0

kwg;m0.Wl;ru
.m0//ik22: (18)

An `1 version of the algorithm can be obtained by using soft-thresholding instead.

Second Subproblem

By taking the partial derivative with respect to u.m/, the solution to the second
subproblem, i.e., minu L�.u; v/, is for each m

0

@I C �

2

X

g;l;r

w2g;mW
>
l;rWl;r

1

A u.m/ D f .m/ C �

2

X

g;l;r

wg;m W>
l;rvg;m;l;r; (19)

where we have dropped the subscript i for notation simplicity. Note that since we
have

P
l;r W

>
l;rWl;r D I, the the problem can be simplified to become

 
1C �

2

X

g

w2g;m

!
u.m/ D f .m/ C �

2

X

g;l;r

wg;m W>
l;rvg;m;l;r : (20)

Solving the above equation for u.m/ is trivial and involves only simple division.

2.4 Setting the Weights

In setting the weights fwg;mg, we note that the weights should decay with the
dissimilarity between gradient directions associated with a pair of diffusion-
weighted images. To reflect this, we let G D M and set for g;m 2 f1; : : : ;Mg
wg;m D e�Œ.�

>

m �g/
2�1 if j�>

m �gj < cos.�/ or 0 otherwise, where � � 0 is a parameter
that determines the rate of decay of the weight. The exponential function is in
fact modified from the probability density function of the Watson distribution [15]
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with concentration parameter �. Essentially, this implies that for the gth diffusion-
weighted image acquired at gradient direction �g, there is a corresponding group of
images with associated weights fwg;mg. The weight is maximal at wg;g D 1 and is
attenuated when m ¤ g. To reduce computation costs, weights of images scanned
at gradient directions deviating more than � from �g are set to 0, and the respective
images are hence discarded from the group. We set � D 30ı.

3 Experimental Results

In all experiments, we used the piecewise linear tight wavelet frame and set the level
L to 2. The optimal � was chosen based on grid search.

3.1 Datasets

Synthetic Data A synthetic dataset of a spiral was generated for quantitative
evaluation. The parameters used for generating synthetic data simulation were
consistent with the real data described next: b D 2000 s=mm2, 48 gradient
directions, 64 � 64 � 16 voxels with resolution 2 � 2 � 2mm3. Three levels of 32-
channel noncentral Chi noise [16] was added: � D 5; 7:5; and 10, corresponding to
SNRD 30, 20, 10 with respect to the white matter non-diffusion-weighted signal.

Real Data The real datasets were acquired using Siemens 3T TRIO MR scanner
with the same gradient directions and b-value as the synthetic dataset. The imaging
protocol is as follows: 128 � 96 imaging matrix, voxel size of 2 � 2 � 2mm3,
TE=97ms, TR=11;300ms. Imaging acquisition was repeatedly performed on the
same subject for eight times. We averaged the eight sets of DW images and removed
the noncentral chi noise bias to obtain the ground truth for evaluation.

3.2 Results

The numerical results for the synthetic data, shown in Fig. 2, indicate that the
proposed `0 framelet denoising method gives the best performance for all noise
levels, showing improvements over `1 framelet denoising and the non-local means
(NLM) algorithm [17]. The DW images, shown in Fig. 3, indicate that both `1 and
`0 give sharper edges compared with NLM. Noise, however, is not totally removed
for the case of `1 denoising. Only `0 denoising is able to effectively remove noise
and preserve edges. Note that, for both synthetic and real data, noncentral chi bias
was removed using the method described in [16]. The best tuning parameters for
both `1 and `0 were selected based on grid search.
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Fig. 2 Performance comparison between NLM and our method using synthetic data

Noise Free Noisy NLM

�1 �0

Fig. 3 Comparison of denoised DW images given by different methods (� D 5)

For the real data, we used the average image as the ground truth for PSNR
computation. The results, shown in Fig. 4, are consistent with Fig. 2, indicating that
`0 gives the best performance. The visual results in Fig. 5 indicate that the results
given by `0 is closest to the ground truth. In contrast, NLM over-smooths the image
and edge information is hence lost.
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Fig. 4 Performance comparison between NLM and our method using real data
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Fig. 5 Comparison of denoised DW images using the real data

4 Conclusion

In this paper, we have proposed a denoising method by using multi-channel framelet
grouped iterative hard thresholding, which not only takes advantage of inter-image
correlations but yields good edge-preserving property. Experiments on synthetic
data with noncentral chi noise and real data with repeated scans confirm that the
proposed method outperforms state-of-the-art methods such as non-local means.
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Diffusion MRI Signal Augmentation: From
Single Shell to Multi Shell with Deep Learning

Simon Koppers, Christoph Haarburger, and Dorit Merhof

Abstract High Angular Resolution Diffusion Imaging makes it possible to capture
information about the course and location of complex fiber structures in the human
brain. Ideally, multi-shell sampling would be applied, which however increases the
acquisition time. Therefore, multi-shell acquisitions are considered infeasible for
practical use in a clinical setting. In this work, we present a data-driven approach that
is able to augment single-shell signals to multi-shell signals based on Deep Neural
Networks and Spherical Harmonics. The proposed concept is evaluated on synthetic
data to investigate the impact of noise and number of gradients. Moreover, it is
evaluated on human brain data from the Human Connectome Project, comprising
100 scans from different subjects. The proposed approach makes it possible to
drastically reduce the signal acquisition time and performs equally well on both
synthetic as well as real human brain data.

1 Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is a technique that non-invasively
offers insight into the course and location of neural pathways in the human brain.
In order to employ dMRI in a clinical setting, Diffusion Tensor Imaging (DTI) [2]
marked the first breakthrough, modeling the diffusion signal with a single Gaussian
tensor. In order to fit the DTI model, images for at least six gradient directions have
to be acquired. However, assuming the diffusion to be Gaussian is not generally
applicable. Consequently, DTI fails to capture more complex fiber structures such
as crossing, fanning and kissing fibers, which occur in 60% to 90% of the white
matter voxels of the human brain [11].

In order to overcome the limitations of DTI, High Angular Resolution Diffusion
Imaging (HARDI) has been proposed [15]. In case of HARDI acquisitions, images
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for more than 30 and up to several hundred gradient directions are acquired to better
capture complex fiber configurations, which results in much higher acquisition
times, though.

Moreover, it has been shown that fitting Multi-Tensor-Models based on dMRI
signals acquired with a single diffusion weighting constant b, also known as single
shell acquisitions, is an underdetermined problem [13]. Measuring the signal on
several shells though additionally increases the scan time.

Despite the fact that HARDI offers a higher accuracy, DTI can still be considered
as clinical standard as HARDI acquisitions are infeasible in clinical practice.
Therefore, reducing the number of necessary gradient directions required for fitting
HARDI models is a highly desirable asset that is addressed in this work by
formulating the mapping between shells as a regression problem.

In general, classification with Deep Neural Networks (DNNs) has become
very popular recently, achieving remarkable results in image classification, speech
recognition and many other domains. While neural networks have been known for
decades, the novel interest in this domain is due to several advances such as efficient
training on GPUs, which makes it possible to use well-known training algorithms
in networks with many hidden layers that are referred to as deep. Apart from [1, 9],
where a Diffusion Kurtosis Tensor is fitted to a signal with less than the required
amount of gradient directions, the application of machine learning and especially
Deep Learning in Diffusion Imaging is still an open field of research.

According to [6], Spherical Harmonics (SH) adequately represent dMRI signals
in a non-sparse and compact way. The signals on several shells of HARDI
acquisitions are related by a non-linear transfer function [13, 15].

However, so far there are only a few approaches available for predicting another
shells without any prior knowledge about this individual shell [12].

Motivated by the Universal Approximation Theorem (UAT) [4], we propose an
approach based on DNNs to learn this non-linear mapping, which makes it possible
to augment existing shells by predicting further shells from those that have actually
been acquired. This novel approach is compared to the Mean Apparent Propagator
(MAP) algorithm, which is considered to be one of the newest state-of-the-art
algorithms [12].

In order to ensure the generalization of the non-linear mapping, we utilize data
from 100 subjects of the Human Connectome Project (HCP) for training and testing.
Additionally, the influence of SNR and number of gradients per shell is investigated
on synthetic data.

2 Material

For evaluation purposes, the following datasets are employed:
The first dataset is based on synthetic diffusion-weighted data for 10, 20, 40 and

80 gradient directions and b D 3000 s=mm2. It is simulated for different Rician
noise levels (SNR D 1

�
D f10;1g), which represent MRI scans with a high noise
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level and no noise, respectively. The signal is simulated based on the Multi-Tensor
Model [15]. Tensor eigenvalues are set according to real DW-MRI data [3], while
the number of compartments is chosen randomly between 1 and 3. Corresponding
volume fractions range from 0.2 to 1 and sum up to 1. The training set consists of
40;000 voxels and the test set of 10;000 voxels for which the signal was simulated
for each gradient set and noise level.

The second dataset contains data from 100 different uncorrelated healthy subjects
from the Human Connectome Project (HCP). From each subject, 5000 white matter
voxels were extracted randomly, resulting in 500;000 voxels in total. All three shells
(b D f1000; 2000; 3000g s=mm2), with 90 gradient directions each, are used in this
work, being either training data or target data for prediction. The dataset is split into
a training set containing 450;000 voxels from 90 subjects and a test set consisting of
50;000 voxels from 10 subjects, which ensures that each subject is included in either
the training or the test set. In order to create a subsampled dataset containing less,
but still equidistantly distributed gradient directions, SH are fitted to the signal and
subsampled by a new gradient set with 15 gradient directions. 15 gradient directions
are chosen because it is the minimum number of measurements that are required to
fit SH of order 4, if coefficients are calculated through matrix inversion [6].

3 Neural Network for Regression

Using DNNs for predicting the signal on an additional shell is motivated by the
UAT, which states that a feed forward neural network with one hidden layer and a
finite number of neurons can approximate any continuous function with arbitrary
accuracy [4, 10]. However, the UAT is rather related to function representation
with neural networks instead of learnability in practice. In order to ensure that the
network parameters (i.e. weights) can be learned from training data, a sufficiently
high number of training samples is required. For this reason, a large dataset
consisting of 100 subjects from the HCP database is employed in the learning
process.

The proposed DNN is designed to predict spherical harmonics coefficients
representing a HARDI signal on one shell from HARDI signals on one or more
other shells of the same voxel.

3.1 Spherical Harmonics

Spherical harmonics (SH) are an orthonormal basis for spherical functions that can
represent dMRI signals in a compact manner. In this work, we utilize the modified
SH basis as defined in [6], which restricts the SH basis to be real and symmetric. The
dMRI signal S in matrix form can be written as a linear combination of the modified
SH basis B and a SH coefficient vector C, i.e. S D BC. The SH coefficients C are
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Table 1 Topology of the
neural network

# Type Parameters

1 Input #neurons = #gradients

2 Fully-connected 100 neurons

3 ReLU –

4 Fully-connected 10 neurons

5 ReLU –

6 Fully-connected 200 neurons

7 Output #neurons = #SH coefficients

calculated for every shell using a least-squares fit with regularization

C D .BTBC �L/�1BTS (1)

with � D 0:006 as explained in [6].

3.2 Deep Neural Network

The DNN that predicts SH coefficients consists of an input layer which is fed
with dMRI signals, three hidden layers and an output layer comprising one neuron
for every SH coefficient. In contrast to the original formulation of the UAT, we
incorporate several hidden layers instead of one hidden layer only, as more recent
research related to deep learning suggests that deep networks represent functions
more efficiently than shallow networks [5]. The activation functions between hidden
layers are Rectifying Linear Units (ReLUs) with f .x/ D max.0; x/. With SH
coefficients ci for the corresponding shell and the predicted SH coefficients Qci as
the DNN output, we choose the loss function to be the mean squared error

L D 1

N

NX

iD1
.Qci � ci/

2; (2)

where N is the number of SH coefficients. The loss is minimized with the Adagrad
optimizer [7], which is an advancement of stochastic gradient descent with an
adaptive learning rate. An overview of the network’s topology is provided in Table 1.

4 Results

All computations are carried out on a PC with 3.4 GHz Intel i5-4670 processor,
32 GB RAM and NVIDIA GeForce GTX 980 Ti GPU. The DNN training and
prediction is implemented in TensorFlow and performed on the GPU.
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In order to evaluate the proposed approach, the following experiments are
performed. The impact of noise and the reduction of acquired gradient directions is
assessed on synthetic data, while the prediction of other shells can only be evaluated
on real human data. The DNN is compared to the MAP algorithm [12] (implemented
in Dipy [8]), which represents the diffusion signal analytically utilizing a series
expansion of basis functions that describe different diffusion geometries. The
corresponding radial order is chosen to be s D 2. To confirm this setting, a radial
moment order of s � 4 was evaluated and discarded due to instability issues if only
few gradient directions are available.

Prediction accuracy is quantified with the Normalized Mean Square Error
(NMSE), which is defined by

NMSE D


Strue � Spred



2
2

kStruek22
; (3)

where Strue represents the ground truth signal vector and Spred is the predicted signal
vector based on the same gradient scheme. The number of input neurons of the
DNN is adjusted according to the number of gradient directions, while the SH order
is chosen to be 8, which results in 45 output neurons.

4.1 Impact of Noise and Number of Gradients

The resulting impact of noise for a varying number of gradient directions is
quantitatively assessed in Fig. 1. In case of high noise, the DNN achieves a slightly
higher NMSE if many gradient directions are acquired. Moreover, the resulting

10 20 40 80
0

0.1

0.2

0.3

number of gradients

N
M

SE

MAP - SNR 10
MAP - SNR ∞
DNN - SNR 10
DNN - SNR ∞

Fig. 1 Resulting NMSE of the MAP approach and the DNN for 10, 20, 40 and 80 gradient
directions, SNR={10, 1}
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NMSE increases for the MAP algorithm if only few gradient directions are available,
but remains rather stable in case of the DNN.

In addition, it can be seen that both algorithms achieve a low NMSE if no noise
is added to the signal. Notably, the DNN achieves a lower NMSE for every gradient
set.

4.2 Prediction of Another Shell

In order to evaluate the performance of predicting other shells, Tables 2 and 3
contain the resulting prediction NMSEs for every combination of input and target
shells that can be generated based on the HCP dataset utilizing 15 and 90 gradient
directions. DNN training is performed for each combination individually. Moreover,
the resulting shell distance d between two shells is provided.

Table 2 Average NMSE for predicting the signal utilizing the DNN and the MAP approach based
on 90 gradient directions on each shell

Input shell Target shells (90 gradients)

Predicted 1st Shell Predicted 2nd Shell Predicted 3rd Shell

DNN MAP d DNN MAP d DNN MAP d

1st shell 1.03% 1.04% 0% 3.49% 18.06% 38.13% 5.63% 27.90% 66.21%

2nd shell 2.01% 8.08% 18.50% 2.28% 2.36% 0% 4.39% 17.81% 21.68%

3rd shell 3.58% 24.57% 33.41% 3.43% 25.99% 9.73% 3.45% 4.55% 0%

1st C 2nd shell � � � � � � 4.10% 14.97% �
1st C 3rd shell � � � 2.69% 16.91% � � � �
2nd C 3rd shell 1.53% 9.87% � � � � � � �

In addition, d represents the NMSE between two shells without any prediction, which is
comparable to a distance between two shells

Table 3 Average NMSE for predicting the signal utilizing the DNN and the MAP approach based
on 15 gradient directions on each shell

Input shell Target shells (15 gradients)

Predicted 1st shell Predicted 2nd shell Predicted 3rd shell

DNN MAP d DNN MAP d DNN MAP d

1st shell 1.18% 1.19% 0% 3.67% 18.32% 38.13% 5.98% 28.10% 66.21%

2nd shell 2.15% 8.13% 18.50% 2.58% 2.64% 0% 4.73% 18.09% 21.68%

3rd shell 3.89% 24.66% 33.41% 3.74% 26.11% 9.73% 3.95% 4.98% 0%

1st C 2nd shell � � � � � � 4.27% 20.70% �
1st C 3rd shell � � � 2.87% 15.46% � � � �
2nd C 3rd shell 1.72% 9.37% � � � � � � �

In addition, d represents the NMSE between two shells without any prediction, which is
comparable to a distance between two shells
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In addition, it should be noted that a prediction of the third shell will always
result in a higher NMSE than for the first shell, due to a smaller denominator (see
Eq. (3)), which is reflected in the d.

Considering both tables, it can be seen that both algorithms result in similar
NMSEs for 90 as well as for 15 gradient directions. Both algorithms achieve their
lowest NMSE if the fit is performed from a input to the same target shell.

If a shell is augmented to predict another shell, the DNN generally achieves
a more stable fit than the MAP algorithm. The inaccuracy grows with increasing
shell distance between input and target shell. Adding a second shell to the input
(i.e. predicting a third shell from two input shells) seems to stabilize the MAP
algorithm and decreases the NMSE of the resulting augmented shell. Nevertheless,
the DNN still achieves a much lower NMSE. In order to evaluate the results in
more detail, Figure 2 exemplifies the results using the 3rd shell as target shell for 90
gradient directions. Excluding the 3rd shell as input, the MAP algorithm performs
best utilizing two shells as input. In addition, its performance increases as shell

1st 2nd 3rd 1st + 2nd
0

2.5
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7.5

10

15

20

25

30

Input Shell

N
M

SE
(%

)

DNN Approach
MAP Approach

Fig. 2 Resulting NMSE of the MAP approach and the DNN utilizing only the 3rd shell as target
shell presented as a boxplot for 90 gradient directions
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distance between input and target shell decreases. The DNN shows similar results,
but outperforms the MAP for each input scenario.

5 Discussion

For the synthetic dataset, Fig. 1 suggests that the performance of both algorithms
strongly depends on the SNR, while the number of gradient directions exerts little
influence. Moreover, the MAP approach outperforms DNN in terms of the NMSE
for more than 30 gradient directions and a noisy signal, while its NMSE increases
for less gradients. In case of noise the DNN outperforms the MAP approach for
every number of gradient directions. This qualifies the DNN signal for describing
a single shell, even for settings with a limited number of gradient directions and in
case of high noise.

Considering the resulting real data NMSEs for the same input and target shell in
Tables 2 and 3, the same effect can be seen since both algorithms achieve similarly
good results, i.e. the performance is hardly influenced by the number of gradient
directions. Comparing the resulting augmented data, it can be observed that the
results of both algorithms diverge as the shell distance increases. In those cases, the
MAP approach results in a much higher NMSE than the DNN utilizing 90 as well
as 15 gradient directions. Moreover, the MAP approach completely fails in order to
predict the 2nd shell using the 3rd shell as input. In this case the NMSE is higher
than the NMSE of d without any prediction. Using two shells as input increases
the performance of the DNN for each combination, while the MAP algorithm only
improves if the 1st + 3rd shell or the 2nd + 3rd shell are used as input shell in case of
90 gradient directions. Though, the MAP approach only increases its performance
in order to predict the 2nd shell given the 1st + 3rd shell as input, if only 15 gradient
directions are available.

A similar behavior can be seen in Fig. 2. The variance is low if the input and
target shell are identical and increases as the distance between two shells grows.
As before, the MAP algorithm stabilizes if more shells are used as input since the
variance, median and quantile NMSE decrease. However, only three different shells
are available in the used HCP dataset.

Overall, it should be noted that only a subset of 15 gradient directions is needed
for augmentation as the NMSE is only slightly higher, which reduces the scan time
to 1

6
. For example, from data acquired with 15 gradient directions on the 2nd shell,

the 1st shell can be predicted with only 2:01% NMSE while the required scan time
is theoretically reduced to 50% or to 8:33% considering the original dataset with 90
gradient directions, respectively.

In terms of prediction speed, the DNN can predict one shell per voxel with
� 23;000 voxels per second, whereas the MAP algorithm achieves a maximum rate
of 150 voxels per second. Though, it should be considered that the MAP algorithm
utilizes the CPU, while the DNN is based on a GPU implementation. However, the
augmentation using the DNN requires less than one minute for a whole brain scan.
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A limitation of this work is that the prediction is only evaluated on the scanner
type that was used in the HCP. An augmentation on data from different scanners
may require training with a dataset from this specific scanner. Another approach
presented in [14] is to simulate individual synthetic data for a specific scan and
to re-train the network utilizing the synthetic dataset. Whether or to which extent
scanner-dependency is an issue will be investigated in future work.

6 Conclusion

We presented a method to augment single-shell dMRI signals to predict additional
shells via a spherical harmonics representation based on a DNN. Our evaluation on
both synthetic and human data shows that this augmentation is hardly influenced
by the number of gradient directions, but rather depends on the noise level. The
presented approach constitutes a first step towards multi-shell HARDI acquisitions
in clinical scenarios.
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Multi-Spherical Diffusion MRI: Exploring
Diffusion Time Using Signal Sparsity

Rutger H.J. Fick, Alexandra Petiet, Mathieu Santin, Anne-Charlotte Philippe,
Stephane Lehericy, Rachid Deriche, and Demian Wassermann

Abstract Effective representation of the diffusion signal’s dependence on diffusion
time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI).
We propose a functional basis approach that is specifically designed to represent
the dMRI signal in this four-dimensional space—varying over gradient strength,
direction and diffusion time. In particular, we provide regularization tools imposing
signal sparsity and signal smoothness to drastically reduce the number of measure-
ments we need to probe the properties of this multi-spherical space. We illustrate
a novel application of our approach, which is the estimation of time-dependent q-
space indices, on both synthetic data generated using Monte-Carlo simulations and
in vivo data acquired from a C57Bl6 wild-type mouse. In both cases, we find that our
regularization approach stabilizes the signal fit and index estimation as we remove
samples, which may bring multi-spherical diffusion MRI within the reach of clinical
application.

1 Introduction

Effective representation of the diffusion signal’s dependence on diffusion time is a
sought-after, yet still unsolved challenge in diffusion MRI (dMRI). Recent literature
is increasingly emphasizing the need for such a representation, where accounting for
the diffusion time dependence of the extra-axonal diffusion signal [1, 2] has already
resulted in a more accurate estimation of the axon density and diameter [3]. To
measure the four-dimensional dMRI signal it is necessary to go beyond a multi-
shell q-space acquisition—which only varies gradient strength and direction—and
also vary the diffusion time. This multi-spherical acquisition is hardly feasible in
a clinical setting due to a large number of sample points in this four-dimensional
space-time framework.
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To reduce the number of required samples, we propose to leverage the recently
proposed representation of the multi-spherical signal in terms of an orthogonal
functional basis inspired by Fick et al. [4]. Particularly, we will show that the multi-
spherical dMRI signal is sparse when represented in terms of this basis. Different
sparse signal reconstruction frameworks, e.g. [5, 6], have shown that signal sparsity
allows for a significant reduction in the number of acquired samples. Furthermore,
sparse signal reconstruction has been successfully used in different dMRI protocols,
see e.g. [7–10]. However, to the best of our knowledge, we are the first to facilitate
microstructural measurements by leveraging the sparsity of the spatial and temporal
dMRI signal using a novel functional basis. We demonstrate that we are able to
reduce the number of required samples for a multi-spherical dMRI acquisition and
derive time-dependent microstructural features on both simulated data and in-vivo
mouse data.

This paper is structured as follows: first, we present the theory behind our
estimation method in Sect. 2. We then describe our methods of generating in-silico
multi-spherical data and the parameters of our in vivo dMRI acquisition of C57Bl6
wild-type mouse in Sect. 3. In Sect. 4 we then show the results of our method, we
discuss our findings and present our conclusions in Sect. 5.

2 Theory

We first provide the relation between the measured multi-spherical diffusion signal
and the four-dimensional ensemble average propagator (EAP) in Sect. 2.1. We then
explain the properties that we would like our multi-spherical representation to have,
and provide the details on the functional basis representation and regularization
which are used to impose the desired properties in Sect. 2.2.

2.1 The Four-Dimensional Ensemble Average Propagator

In dMRI, the EAP describes the probability density that a spin diffuses a certain
distance in a given diffusion time. The EAP is estimated by obtaining diffusion-
weighted images (DWIs). A DWI is obtained by applying two sensitizing diffusion
gradients of pulse length ı to the tissue, separated by separation time �. The
resulting signal is ‘weighted’ by the average particle movements along the applied
gradient direction. When these gradients are considered infinitely short (ı ! 0),
which can only be approximated in practice, the relation between the measured
signal S.q; �/ and the EAP P.rI �/ is given by a Fourier transform [11] as

E.q; �/ D
Z

R3

P.RI �/e�2	 iq�rdR with q D �ıG
2	

and � D � � ı=3; (1)
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where E.q; �/ D S.q; �/=S0 is the normalized signal attenuation measured at
diffusion encoding position q, and S0 is the baseline image acquired without
diffusion sensitization (q D 0). We denote q D jqj, q D qu and R D Rr, where
u and r are 3D unit vectors and q, R 2 R

C. The wave vector q on the right side
of Eq. (1) is related to pulse length ı, nuclear gyromagnetic ratio � and the applied
diffusion gradient vector G.

The four-dimensional EAP has boundary conditions with respect to {q; �}:

– {q; � D 0}: When � D 0 the spins have no time to diffuse and the EAP is a spike
function at the origin, i.e., P.RI � D 0/ D ı.R/. Following Eq. (1), the signal
attenuation will not attenuate for any value of q, i.e., E.q; � D 0/ D 1.

– {q; lim�!1}: When lim�!1 E.q; �/ the signal attenuation is in the long dif-
fusion time limit and only signal contributions from restricted compartments
remain [12]. In this case, given infinite gradient strength and some assumptions
on tissue composition [13, 14], q-space indices such as the Return-To-Axis
Probability (RTAP) are related to the mean apparent axon diameter.

– {q D 0; �}: When q D 0 there is no diffusion sensitization so E.q D 0; �/ D 1.
With Fourier relationship in Eq. (1), this point also corresponds to the zeroth
harmonic of the EAP, which as a probability density integrates to one.

– {limq!1; �}: limq!1 E.q; �/ D 0, as even an infinitesimally small spin
movement will attenuate the signal completely.

2.2 Multi-Spherical Signal Representation

In dMRI, functional basis approaches have been used to efficiently represent the
diffusion signal with little assumptions on its shape. Following this methodology,
we represent the measured multi-spherical signal E.q; �/ in terms of a continuous
functional basis OE.q; � I c/, where the signal is now represented in terms of coeffi-
cients c 2 R

Nc . An effective representation OE.q; � I c/ should be able to

1. closely approximate the measured multi-spherical dMRI signal,
2. smoothly interpolate between and outside the measured fq; �g points,
3. have a sparse representation in c,
4. be able to reconstruct the EAP from the fitted signal.

Requirements 1–3 are described in Eq. (2), while the fourth will follow by choosing
a functional basis that is also a Fourier basis.

argminc

.1/Data Fidelity‚ …„ ƒ“ h
E.q; �/ � OE.q; � I c/

i2
dqd� C

.2/Smoothness‚ …„ ƒ“ h
r2 OE.q; � I c/

i2
dqd� C

.3/Sparsity‚…„ƒ
jjcjj1

subject to E.0; � I c/ D 1; E.q; 0I c/ D 1; OP.R; � I c/ D IFT
� OE.q; � I c/

�
(2)
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Note that the integrals over three-dimensionalq have limits Œ�1;1  and those over
� have limits Œ0;1. As stated in Sect. 2.1, the boundary constraints are important
to respect the Fourier relationship between the fitted signal attenuation and the EAP.

Functional Basis Signal Representation

We represent the multi-spherical signal using an orthogonal basis that allows for
the implementation of all our previously stated requirements. As we assume an
infinitely short gradient pulse (ı ! 0), we follow Callaghan et al.’s description
of time-dependent diffusion in pores and assume separability in the dependence of
the dMRI signal to q and � [12]. Following this hypothesis, we can independently
choose any representation for these two spaces. We represent the combined space
OE.q; � I c/ using the cross-product between the spatial basis˚.q/ and temporal basis
T.�/ as

OE.q; � I c/ D
NqX

i

N�X

k

cik ˚i.q/ Tk.�/; (3)

where Nq and N� are the maximum expansion order of each basis and cik weights
the contribution of the ikth basis function to OE.q; � I c/.

A plethora of functional bases to represent q have been proposed, e.g. [8, 9, 13,
15]. Of these bases, we use the Mean Apparent Propagator (MAP) basis [13] as
it neatly fulfills all four previously stated requirements; (1) being an orthogonal
basis, it can accurately represent any signal over q using few coefficients; (2)
it allows to impose smoothness using analytic Laplacian regularization [14]; (3)
the isotropic MAP implementation was successfully used to obtain sparse signal
representation [8] and (4) MAP is a Fourier basis. It is worth noting that this basis
is different than Fick et al.’s basis, who used the isotropic implementation (3D-
SHORE) to represent q [4].

MAP’s signal basis is a product of three orthogonal Simple Harmonic Oscillator-
based Reconstruction and Estimation (SHORE) functions �n.u/ [16]:

˚N.i/.q;A/ D �n1 .qx; ux/�n2 .qy; uy/�n3 .qz; uz/

with �n.q; u/ D i�n

p
2nnŠ

e�2	2q2u2Hn.2	uq/
(4)

with its Fourier transform, the EAP basis as

‰N.i/.R;A/ D  n1 .Rx; ux/ n2 .Ry; uy/ n3 .Rz; uz/

with  n.R; u/ D 1p
2nC1	nŠu

e�R2=.2u2/Hn.R=u/
(5)
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where H is a physicist’s Hermite polynomial of order n and u is a data-dependent
scale factor. As in MAP [13], before fitting, the data is rotated such that the DTI
eigenvectors are aligned with the coordinate axis and we can use the data-dependent
scaling matrix A D Diag.u2x ; u

2
y; u

2
z / to scale the MAP basis functions according to

the anisotropy of the data. The zeroth order is a purely Gaussian function while
higher orders use the Hermite to correct this approximation to the true shape of
the data. For a given radial order Nrad the number of coefficients is Nq D .Nrad C
2/.Nrad C 4/.2Nrad C 3/=24.

Our functional basis to describe � was introduced in Fick et al. [4]. As a limiting
case the diffusion signal dependence on � is exponential for pure Gaussian diffusion
and constant for diffusion in restricted geometries. To represent � we, therefore,
choose a product of the negative exponential and a Laguerre polynomial L, which
together form an orthogonal basis over �

Tp.�; ut/ D exp.�ut�=2/Lo.ut�/ (6)

with basis order p and temporal scaling factor ut. The zeroth order is a pure
exponential function and higher orders use the Laguerre polynomials to correct this
approximation to the true shape of the signal.

For the rest of this work we will linearize the ordering of our multi-spherical
basis such that we use one basis index i with notation

OE.q; � I c/ D
NcX

i

ci„i.q; �;A; ut/ D
NcX

i

ci˚N.i/.q;A/ Tp.i/.�; ut/ (7)

where the total number of fitted coefficients is Nc D .N�C1/.NqC2/.NqC4/.2NqC
3/=24. Using this notation, the fitted signal OE.q; � I c/ in the Data Fidelity term
in Eq. (2), with measured signal y 2 R

Ny and Ny the number of samples, can be
represented as Oy D ˚c with ˚ 2 RNy�Nc with values ˚ij D „j.qi; �i;A; ut/.

The multi-spherical EAP can be reconstructed using MAP’s Fourier proper-
ties [13]. The Fourier transform only concerns the q-space, so the EAP is found
simply by switching ˚.q;A/ in Eq. (7) by its Fourier transform in Eq. (5).

Analytic Laplacian Regularization

We impose smoothness in the multi-spherical signal reconstruction by using the
squared norm of the Laplacian of the reconstructed signal as a regularizer. We define
the Smoothness term in Eq. (2) as Laplacian functional U.c/ as

U.c/ D
“ h
r2 OE.q; � I c/

i2
dqd� (8)
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where, due to our choice of basis, the Laplacian of the reconstructed signal can
be estimated as r2Ec.q; �/ D P

i cir2„i.q; �;A; ut/. Equation (8) can be further
rewritten in quadratic form as U.c/ D cTUc with

Uik D
“
r2„i.q; �;A; ut/ � r2„k.q; �;A; ut/dq d� (9)

where the subscript ik indicates the ikth position in the regularization matrix. We
use the orthogonality of the basis functions (standard inner product on Œ0;1) to
compute the values of the regularization matrix to a closed form depending only on
the basis orders and scale factors. We provide U in Appendix.

Coefficient Estimation fromMulti-Spherical Data

We represent the multi-spherical signal E.q; �/ in terms of a sparse coefficient
vector c as y D ˚c C � with ˚ the observation matrix, y the signal values and
� the acquisition noise. We frame the numerical implementation of our approach in
the same way as we did continuously in Eq. (2):

argminc

.1/Data Fidelity‚ …„ ƒ
jjy � ˚cjj2 C

.2/ Smoothness‚ …„ ƒ
ˇjjcTUcjj2 C

.3/Sparsity‚…„ƒ
˛jjcjj1

subject to ˚ constraintsc D 1

(10)

where we described the Data Fidelity and Smoothness term in Sect. 2.2, and the
Sparsity term and constraints are imposed by framing our problem as a convex
optimization using the open-source package CVXPY [17]. We find optimal values
for regularization weights ˛ and ˇ using cross-validation and implemented the
surrounding code infrastructure inside the DiPy framework [18].

2.3 Estimation of �-Dependent q-Space Indices

Once coefficients c are known, our basis allows us to freely explore, for any
diffusion time, all previously proposed scalar metrics for the three-dimensional
EAP [13, 14], also known as q-space indices. We can do this because our basis
reduces to the MAP basis when the temporal basis is evaluated for a particular
diffusion time. In this work we illustrate this using the �-dependent Return-To-
Origin Probability (RTOP) and Mean Squared Displacement (MSD):

MSD.�/ ,
Z

R3

OP.R; � I c/R2dR and RTOP.�/ , OP.0; � I c/ (11)
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3 Data Set Specification

Acquisition Scheme We will use the same acquisition scheme for both our synthetic
and in vivo mouse experiments. An illustration of this scheme is given in Fig. 1. We
acquire 32 different “shells” with 21 uniformly spread DWIs and one b0 each using
pulse duration ı D 5ms. Over these shells, we measure four equispaced “�-shells”
� D f8:7; 12:2; 15:8; 19:4gms and eight approximately equispaced “gradient
shells” between f50 � 520gmT/m. The minimum b-value is bmin D 48 s/mm2 and
maximum b-value is bmax D 8590 s/mm2.

In Silico Data Sets with Camino We use Camino [19] to reproduce diffusion
signals originating from tissues containing realistic axon diameter distributions and
packings. As we illustrate in Table 1, we use five gamma distributions from Aboitiz
et al. [20] and six from Lamantia et al. [21]. Similarly as in Alexander et al. [22],
we simulate the overall diffusion signal from these 11 distributions from the same
distributions with doubled axonal diameters and two different packing densities,
resulting in a total of 44 distributions.

Mouse Acquisition Data A spin echo sequence was acquired from a C57Bl6 wild-
type mouse on an 11.7 T Bruker scanner. The data consists of 96� 160� 12 voxels
of size 110 � 110 � 500�m. We manually created a brain mask and corrected the
data from eddy currents and motion artifacts using FSL’s eddy_correct [23]. We then

Fig. 1 Acquisition scheme for multi-spherical acquisition. Every dot represents a shell with 21
DWIs and one b0 image. The contours represent b-value isolines, whose values are given in the
colorbar
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Table 1 Simulated Gamma
distributions, sorted by mean
axonal diameter hDi

Origin Shape (˛) Scale (ˇ) hDi (�m )

Aboitiz 3:2734 2:4563e�07 1:60

Aboitiz 2:8771 2:4932e�07 1:43

Aboitiz 4:8184 1:3008e�07 1:25

Aboitiz 3:5027 1:6331e�07 1:14

Aboitiz 5:3316 1:0242e�07 1:09

Lamantia 5:2051 1:0227e�07 1:06

Lamantia 5:2357 9:3946e�08 0:98

Lamantia 10:1960 3:6983e�08 0:75

Lamantia 8:5358 3:7369e�08 0:64

Lamantia 5:9242 5:3249e�08 0:63

Lamantia 16:2750 1:4282e�08 0:46

drew a region of interest consisting of 72 voxels in the middle slice in the corpus
callosum, see Fig. 4, where we know the tissue is reasonably coherent.

4 Experiments and Results

Radial and Temporal Order Fitting In this noiseless experiment, we find the
optimal choice of radial and temporal order to accurately fit the diffusion signal with
the lowest number of coefficients. We fit our multi-spherical basis to the Camino
data using different radial and temporal orders and calculate the mean squared error
(MSE) of the fitted signal to the original signal. We show the result in Fig. 2a. We
find that the mean absolute error of the signal over all distributions falls below 1%
at a radial order of 6 and temporal order of 2, resulting in 150 coefficients. We will
use this combination in our next experiments.

Comparison with DTI Approximation In Fig. 2b we compare the MSE of fitting
DTI, the basis of Fick et al. [4] and our multi-spherical approach to subsets of
the noiseless data with increasing maximum b-values. As the maximum b-value
increases, data with higher gradients strengths and diffusion times are included (see
Fig. 1). Our approach fits diffusion restriction over q and � best of the three methods
regardless of b-value.

Multi-Spherical Signal Reconstruction and q-Space Index Estimation To
reduce the number of measurements, we regularize the basis fitting with a
combination of imposing smoothness in the fitted signal and sparsity in the basis
coefficients. To study its effectiveness, we first add Rician noise to the Camino data
such that the signal-to-noise (SNR)-ratio is 20. We then randomly subsample, fit and
then recover the data from our model and estimate the MSE with the noiseless data.
The experiment for every chosen number of samples is repeated 50 times for all 44
voxels with each a different noise instance. The result can be seen in Fig. 3a, where
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MAE < 1%
150 coef

(a) MSE over basis order (b) DTI versus Multi-Spherical

Fig. 2 (a) Noise free fitting of Camino data set using different radial and time orders using our
multi-spherical basis. The color intensity shows the mean squared error and the green dots indicate
orders for which the mean absolute error of the reconstruction is smaller than 1% of the b0 value.
(b) Comparison of the fitting error between DTI, the approach of Fick et al. [4] and our multi-
spherical approach over maximum b-value

(a) Effect on MSE (b) Effect on MSD (c) Effect on RTOP

Fig. 3 Effect of random subsampling at SNR=20 on (a) mean squared error (MSE) for different
regularization techniques, (b) the time-dependent Return-To-Origin Probability (RTOP) and (c)
Mean Squared Displacement (MSD). (a) Our combined sparsity and Laplacian regularization
(yellow) has lower MSE than only Laplacian (green) and least squares (red). (b) and (c) show
the MSD and RTOP using 600 samples (green) to 100 samples (blue)

our combined approach (yellow) has the lowest MSE, followed by using only the
Laplacian (green) and the worst is least squares (red). We also show the effects of
using between 600 samples (green) and 100 samples (blue) on the estimation of the
Mean Squared Displacement (MSD) and the q-space index Return-To-Origin prob-
ability (RTOP) in Fig. 3b, c. We see that MSD increases as time increases, while its
profile does not change much until the profile flattens for 100 samples. In contrast,
we see that RTOP decreases over time and as the number of samples reduces, the
overall RTOP values decrease. Again for 100 samples, the profile flattens out.

Application to In-Vivo Mouse Acquisition Finally, we apply our method to in
vivo acquired data from a C57Bl6 wild-type mouse. The results are shown in Fig. 4.
First, we estimate MSD and RTOP for the whole data and show their values for
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Fig. 4 (top-left) Region of interest in mouse corpus callosum. (top-right) Maps of RTOP and MSD
for different diffusion times. (bottom) Histograms of the MSE (left), MSD (middle) and RTOP
(right) for different numbers of fitted points. The RTOP and MSD were calculated for � D 14ms

different diffusion times on the top left. RTOP decreases as time increases, which
corresponds with the in-silico experiments. In MSD we first find an overall increase,
after which a small decrease is seen. The latter phenomenon does not correspond
with what we previously found. We then again randomly subsample the data for all
voxels in the ROI and estimate the MSE, together with the MSD and RTOP for a
chosen diffusion time of � D 14ms. The trends for all markers correspond with
the synthetic data: MSE increases, RTOP decreases, and MSD stays the same as the
number of samples decreases.

5 Discussion and Conclusion

In this work, we proposed a novel functional basis to efficiently represent the
multi-spherical diffusion signal over both three-dimensional q-space and diffusion
time. We regularized this basis by imposing both smoothness in the fitted signal
using Laplacian regularization and sparsity in the fitted coefficients. Compared to
the work by Fick et al. [4], the main methodological differences are the q-space
representation, where we use the MAP basis instead of 3D-SHORE, and the sparsity
term. As Fig. 2b shows, using MAP allows us to fit the multi-spherical signal better
than [4] using the same number of coefficients. We remark that DTI fits the multi-
spherical signal worst as it cannot describe diffusion restriction over q or � . This
limitation becomes more apparent at higher b-values, which is exactly where the
diffusion signal is most characterizing of the underlying tissue.

This work is also the first to estimate and study the progress of three-dimensional
q-space indices over diffusion time. Our basis is especially well-suited for this
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exploration. For any evaluated diffusion time the basis reduces to MAP, which
allows us to calculate all of its previously proposed indices [13, 14]. For now,
we focused on the well-known Mean Squared Displacement (MSD) and Return-to-
Origin Probability (RTOP). We found that the recovered trends in synthetic data cor-
respond with what we expect from theory (Fig. 3b, c). As diffusion time increases,
spins get more time to diffusive, so MSD increases and RTOP decreases. Decreasing
the number of samples did not influence MSD trends so much, but RTOP trends did
lower, possibly related to removal of samples along the “restricted” direction in the
signal. Overall, a lower bound of reliable index estimation seems to be around 200
samples using random subsampling, as both profiles flatten out at this point.

Applying our method to real multi-spherical data from a mouse produces mostly
coherent results with the simulated data. Again we find that RTOP drops as diffusion
time increases, and lowering the number of samples decreases the RTOP and leaves
MSD mostly unaffected. As fewer samples were used, we found more negative
(infeasible) RTOP values. To avoid this, our framework could still be improved by
adding a positivity constraint like in Özarslan et al. [13].

Regardless, our multi-spherical basis is the first of its kind in being specifically
designed to represent the four-dimensional EAP and analyzing its properties. Our
proposed regularization allows us to significantly reduce the number of measured
samples, which may eventually bring multi-spherical diffusion MRI within the reach
of clinical application.
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Appendix: Analytic Laplacian Regularization

We provide the analytic form of the Laplacian regularization matrix in Eq. (9). As
our basis is separable in q and � , the Laplacian of our basis function„i is

r2„i.q; �; us; ut/ D
�r2q˚i.q; us/

�
Ti.�; ut/C˚i.q; us/

�r2�Ti.�; ut/
�

(12)

with r2q and r2� the Laplacian to either q or � . We then rewrite Eq. (9) as

Uik D
Z

R

.r2q˚i/.r2q˚k/dq
Z

R

TiTkd� C
Z

R

˚i˚kdq
Z

R

.r2�Ti/.r2�Tk/d�

C
Z

R

.r2q˚i/˚kdq
�Z

R

Ti.r2�Tk/d� C
Z

R

.r2�Ti/Tkd�
	 (13)

Equation (13) can be calculated to a closed form using the orthogonality of physi-
cists’ Hermite polynomials with respect to weighting function e�x2 on Œ�1;1.
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Let us first consider the integrals with respect to q, which all parts of the Laplacian
regularization functional of the MAP basis [14]. Writing the second order derivative
as a double apostrophe 00, the Laplacian of the spatial basis is given in terms of the
1D-SHORE functions as r2q˚i D �00

nx�ny�nz C �nx�00
ny�nz C �nx�ny�00

nz . The integral
of the product of two Laplacians therefore becomes a sum of nine terms, but can be
described using the following three equations:

Um
n .u/ D

Z

R

�00

n �
00

mdq D u32.�1/n	7=2
 
ımn 3.2n

2 C 2n C 1/C ımC4
n

p
nŠ=mŠ

C ımnC2 .6C 4n/
p
mŠ=nŠ C ımnC4

p
mŠ=nŠC ımC2

n .6C 4m/
p
nŠ=mŠ

!

Vm
n .u/ D

Z

R

�00

n �mdq D u.�1/nC1	3=2
�
ımn .1C 2n/ CımC2

n

p
n.n � 1/C ımnC2

p
m.m � 1/

	

(14)

Wm
n .u/ D

Z

R

�n�mdq D u�1ımn .�1/n=.2	1=2/

Using the functions in Eq. (14) we define the q-dependent parts of Eq. (13):
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For terms with � , we denote the operator Mx2
x1 D min.x1; x2/ for the minimal

value of x1; x2 and Hx the Heaviside step function with Hx D 1 iff x � 0.
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Sensitivity of OGSE ActiveAx
to Microstructural Dimensions
on a Clinical Scanner

Lebina S. Kakkar, David Atkinson, Rachel W. Chan, Bernard Siow,
Andrada Ianus, and Ivana Drobnjak

Abstract Axon diameter can play a key role in the function and performance of
nerve pathways of the central and peripheral nervous system. Previously, a number
of techniques to measure axon diameter using diffusion MR I have been proposed,
majority of which uses single diffusion encoding (SDE) spin-echo sequence. How-
ever, recent theoretical research suggests that low-frequency oscillating gradient
spin echo (OGSE ) offers benefits over SDE for imaging diameters when fibres are
of unknown orientation. Furthermore, it suggests that resolution limit for clinical
scanners (gradient strength of 60–80 mT/m) is � 6�m. Here we investigate the
sensitivity of OGSE to fibre diameters experimentally on a clinical scanner, using
microcapillaries of unknown orientation. We use the orientationally invariant OGSE
ActiveAx method to image microcapillaries with diameters of 5, 10 or 20�m. As
predicted by theory, we find that 5�m diameters are undistinguishable from zero.
Furthermore, we find accurate and precise estimates for 10 and 20�m. Finally,
we find that low frequency oscillating gradient waveforms are optimal for accurate
diameter estimation.

1 Introduction

Non-invasive estimation of axon diameter plays an important role in biomedical
imaging. For instance, the conduction velocity of signal transmission throughout
the nerve pathways in the central nervous system (CNS) [1] is directly influenced by
axon diameter. Thus, estimating this tissue feature can provide essential information
on the performance and function of white matter pathways [2]. Moreover, changes
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in axon diameter estimates can be used to study the effect of ageing [3], as well as
of various CNS diseases, such as amyotrophic lateral sclerosis [4], autism [5], and
schizophrenia [6], where axonal degeneration can lead to abnormal axon diameters.

A number of methods for estimating axon diameter using diffusion weighted
magnetic resonance imaging (DW-MRI) have been proposed. These include q-space
imaging (QSI) [7], double pulsed field gradient (dPFG) [8, 9], AxCaliber [10] and
ActiveAx [11]. The majority of these techniques are based on single diffusion
encoding (SDE) sequences. However, various authors suggest that oscillating
gradient spin echo (OGSE ) offers benefits over SDE for imaging fibre diameter
[12–15].

A common argument is that high-frequency OGSE sequences provide shorter
effective diffusion time than SDE and hence are able to probe smaller length scales.
This is clearly an advantage for measuring the free diffusivity in small fibres because
it minimises the effects of restriction [16, 17]. However, it is not clear whether it is
advantageous for measuring fibre diameter where contrast at the long diffusion time
limit may be more informative.

Recently, a thorough numerical approach has been used to compare directly
the sensitivity to axon diameter of SDE and OGSE sequences in a wide space
of clinically plausible sequence parameters [12]. The research showed that for
the simple case of diffusion gradient direction perfectly perpendicular to straight
parallel fibres, SDE with the longest gradient duration always gives maximum
sensitivity for small diameters. However, in real-world scenarios where fibres have
unknown and/or dispersed orientation, OGSE provides higher sensitivity. This
happens because the oscillating waveforms can achieve high sensitivity to fibre
diameters at a modest b-value, which in turn enables OGSE sequences to retain their
sensitivity by avoiding excessive signal attenuation from unrestricted displacements
along the fibre direction. These results were confirmed analytically in a recent study
by Nillson et al. [18]. Both groups also found diameter resolution limits for a
range of different gradient strengths and SNRs. Their results show that on typical
clinical scanners the limit is around 6�m, i.e. axon diameters below that limit are
undistinguishable from zero.

This study aims to explore experimentally, on a clinical scanner, the sensitivity
of OGSE sequences to fibre diameter in a phantom consisting of cylindrical micro-
capillaries with unknown orientation. We use water-filled micro-capillaries array
plates as a model for axons, and fit a single restricted component. We use a
rotationally invariant HARDI acquisition with 32 directions as we assume micro-
capillaries of unknown orientation. The micro-capillary diameters used here are 5,
10 or 20�m, which is within the limits of axon diameters in the body (0.2–20�m)
[2]. We use a trapezoidal OGSE with a range of frequencies for imaging and OGSE
ActiveAx [14, 19] for the estimation of microstructure parameters.
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2 Methods

2.1 Diffusion MR Model

We use a single restricted compartment of unknown orientation as a model for our
phantoms. All microcapillaries (representing axons) are parallel and non-abutting
cylinders, with equal radii and impermeable walls. The parameters of the model are
(1) intrinsic diffusivity, Di, (2) microcapillary diameter, a and (3) microcapillary
direction, n.

The restricted diffusion signal, Sr, can be written as the product of components
arising from displacements parallel, Srjj, and perpendicular, Sr?, to the long axis
of the microcapillary as described in [20]. The model for Sr? is calculated using
the Gaussian phase distribution approximation (GPD) [21] for a diffusion gradient
perpendicular to the microcapillary with strength jGj sin � , where � is the angle
between n and G. Srjj describes free diffusion with Di for a diffusion gradient
parallel to the microcapillary with strength jGj cos � , and is calculated using Srjj D
exp.�b cos2 �Di/, where the b-value for trapezoidal OGSE is from [22].

The total signal accounting for both components (Srjj and Sr?) is:

S D S0Sr D S0SrjjSr?: (1)

where S0 is the MR signal without diffusion weighting.

2.2 Phantom Experiments

Sample Preparation

The microcapillaries array plates (as shown in Fig. 1a) are thin square plates (each
of dimensions 20 mm � 20 mm � 1 mm) made up of borosilicate glass (Incom, inc).
The microcapillaries array plates will simply be referred to as ‘plates’ from here
onwards. Each plate consists of many microcapillaries. This study uses three pairs
of plates with nominal microcapillary diameters of 5, 10 or 20�m, and an open
area fraction between 60 and 65 % (Fig. 1b–d). The ground truth diameters of the
microcapillaries are provided by the manufacturer and these are the only available
sizes which broadly mimic the possible in vivo axon diameters that are encountered
in the central nervous system [2].

The three pairs of plates are slotted into a phantom holder containing distilled
water such that the microcapillaries are aligned parallel to the main magnetic field
in order to reduce susceptibility artefacts. They are soaked in the distilled water for
1 week to ensure that the microcapillaries are filled and to remove air bubbles at the
plate surface.
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Fig. 1 (a) Photograph of an example microcapillaries array plate with microcapillary diameters
of 5�m (plate 1). Each plate is vertically slotted into a phantom holder containing distilled water.
Magnified light microscopy images of (b) 5�m (plate 1), (c) 10�m (plate 1) and (d) 20�m
(plate 1), at the approximate point indicated by the red arrow, to show the cross-section of the
microcapillaries array plate

Image Acquisition

Trapezoidal OGSE diffusion sequences, as shown in Fig. 2, are implemented on
a Philips Achieva 3.0T TX MRI system (University College London Hospital,
London, UK). We choose trapezoidal OGSE waveforms with a fixed maximum
gradient strength as it has been shown previously that these are the most sensitive
to microcapillary diameters [19, 23]. The main user controlled parameters are
echo time (TE), pulse duration (ı), diffusion time (�) and number of half period
oscillations, referred to as ‘lobes’ (N). Gradient strength, G, and slew rate for
the trapezoid waveforms are fixed at 62 mT/m and 68.9 mT/m/ms, respectively, to
adhere to manufacturer set threshold for peripheral nervous stimulation (PNS). The
b-value for the OGSE sequences with trapezoidal gradient are calculated as in [22].

The plates are scanned during the same session using Philips SENSE Flex
Surface coils. A room temperature of 20 ıC is maintained throughout the exper-
iment. The diffusion protocol consists of nine HARDI shells with b-values 120–
20,000 s/mm2, each with 32 gradient directions and one b=0 s/mm2. The shells
have a fixed pulse duration (ı = 39 ms, � = 63 ms) but the number of lobes varies
from N = 1 to N = 9 (i.e. frequencies between 12.8–115 Hz), and consequently the
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Fig. 2 Schematic representation of the OGSE diffusion imaging protocols (left) and correspond-
ing plate example images (right). The protocol included (a) the single shot echo planar imaging
(SS-EPI) sequence containing the excitation, refocusing pulse and readout timings; and the OGSE
sequences with (b) N = 1, (c) N = 2 and (d) N = 9. The parameters depicted here are: echo time
(TE), pulse duration (ı), diffusion time (�), gradient strength (G) and number of lobes (N). The
example plate images show the 5�m pair (immersed vertically in water) scanned perpendicular to
the plane of the plate. (e) is the non-diffusion weighted image. (f), (g) and (h) display diffusion
weighted images for OGSE sequence shown in (b), (c) and (d) respectively. The diffusion weighted
images are in the parallel and two nearly perpendicular directions relative to the long axis of the
microcapillaries. These are only three example directions of the 32 gradient directions that were
used in this study. High signal attenuation is seen in the parallel gradient direction indicating
free diffusion of water along the long axis of the microcapillaries. Signal appears bright in the
perpendicular directions which comes from the restricted diffusion of water across the long axis of
the microcapillaries

b-values varied (see Fig. 2). An additional, standard SDE diffusion sequence (N = 1,
ı = 10 ms,�= 92 ms) with a b-value of 1860 s/mm2 is also included for comparison.

All diffusion protocols use single-shot-echo-planar imaging (SS-EPI). Each
acquired image has one slice of thickness 10 mm, which is orthogonal to the
plane of the plate (see Fig. 2). The imaging matrix is 76� 19 with a resolution
of 0.4� 1.6 mm, which is used to ensure at least one row of the voxels does not
contain partial volume effects. In order to obtain sufficient diffusion weighting for
all N, we extend the diffusion gradient duration by using a long echo time (in terms
of clinical scanning) TE = 120 ms for all shells. Other sequence parameters are: Half
Fourier = 0.8, TR = 3 s, repetitions = 1 and acquisition time per protocol = 1.75 min.
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2.3 Data Analysis

Data Processing

The acquired images are registered using FMRIB Software Library (FSL, FMRIB,
Oxford) rigid-body registration [24] to account for any potential vibrations from the
oscillating gradient waveforms. The SNR is calculated from the mean and standard
deviation across 9 b = 0 images per voxel. The region of interest (ROI) is chosen
from the b = 0 images by manually excluding edges of the plate to avoid voxels
affected by partial volume effect. The ROIs of all plates has a mean SNR > 45.
Additionally, as the direction of the microcapillaries, n, is assumed to be unknown,
n is estimated using OGSE diffusion tensor imaging and then is inputted into our
model fitting procedure described below.

ActiveAx Model Fitting

A voxel-wise two stage model fitting procedure, as defined in [11], is used to
estimate diameter and diffusivity of the plate samples. The procedure consists of an
initial grid search followed by a non-linear fitting of the model described in (1) to the
measured signal. The gradient descent optimisation is constrained with user-defined
limits for all parameters (lower and upper bound limits: a= 0.002 and 30.0�m, and
Di = 0.002 and 6.0�m2/ms, respectively) to speed up the fitting. The microcapillary
diameters and diffusivities are estimated for each voxel in the ROI, then the mean
and standard deviation of the parameters for each plate are calculated across the
chosen ROI.

3 Results

First we test whether the microcapillary diameter and the intrinsic diffusivity can be
estimated based on the entire trapezoidal OGSE imaging protocol in Fig. 2. We then
test which of the OGSE sequences out of those in Fig. 2 provide the most accurate
parameter estimates by analysing each shell separately, and we compare the results
with the parameters obtained from the standard SDE with long diffusion time.

Figure 3a, b display the parameter maps (diameter and diffusivity, respectively)
for the ROIs of our plates. Both pairs of 10 and 20�m plates have accurate and
precise (indicated by the homogeneous maps) estimates. The parameter maps for
the 5�m plates are partially inhomogeneous and they significantly underestimate
the diameter. Figure 3c, d reflect the accuracy and precision of the parameters,
displayed in Fig. 3a, b, as the mean and standard deviation of the estimated a
and Di calculated across the ROI. The figure also shows very similar parameter
estimates within each pair of plates suggesting that the results are reproducible. For
the first set of 5, 10 and 20�m plates, the estimates of mean˙standard deviation for
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Fig. 3 The (a) diameter, a, and (b) diffusivity, Di, maps, respectively, across the ROIs of the
5�m (plates 1 & 2), 10�m (plates 1 & 2) and 20�m (plates 1 & 2) plates. All images have
been cropped and magnified by the same amount for visual clarity. The graphs show the mean and
standard deviation of the (c) diameters of the microcapillaries (�m) and (d) intrinsic diffusivities
(�m2/ms), which are calculated over the ROIs. The diamond and triangle data points represent the
first and second set of plates, respectively. The dashed line represent the line of equality for (c),
and for (d) it represents the theoretical water diffusivity calculated using [25] for water at 20 ıC

[a,Di] are [1.5˙ 2.4�m, 2.0˙ 0.1�m2/ms], [10.1˙ 0.5�m, 2.0˙ 0.1�m2/ms]
and [19.8˙ 0.4�m, 2.0˙ 0.1�m2/ms], respectively. For the second set of 5, 10
and 20�m plates, the values of [a,Di] are: [0.7˙ 1.9�m, 1.9˙ 0.1�m2/ms],
[10.3˙ 0.2�m, 2.1˙ 0.1�m2/ms] and [19.8˙ 0.6�m, 2.0˙ 0.1�m2/ms], respec-
tively. We observe the highest accuracy and precision for 10�m plate pairs, and the
worst for 5�m plate pairs.

Figure 4 shows the quality of fit by comparing measurements with predictions
from the fitted model (dashed line) and the ground truth (solid line) in the
central voxel of each plate ROI. The ground truth curve was generated using the
manufacturer provided diameters and a diffusivity constant (2.0�m2/ms) calculated
for the free water compartment at 20 ıC [25]. The representative voxels chosen
here are typical for the ROIs. A good agreement can be observed between the
measurements and the fitted curve and the ground truth curve for 10�m and 20�m
plates. However, slight differences between the fitted curve and the ground truth
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Fig. 4 Plots of normalised signal from central voxel of each ROI in Fig. 3a against absolute
dot product between the gradient directions and the estimated direction of the microcapillaries;
signals from perpendicular gradient direction are towards 0 on the x-axis, and from parallel
directions towards 1. The measurements are represented by markers, while the solid (–) and
dashed (- -) lines show the predicted signal from the ground truth and estimated parameters,
respectively. The colours indicate the different N of the imaging protocol. The black dotted
lines show the b=0 measurements. All measurements are normalised by the averaged b0 signal
per voxel. The parameter estimates for the representative voxels here are: [a,Di] = [0.0�m,
2.0�m2/ms],[10.2�m, 2.0�m2/ms] and [20.1�m, 2.0�m2/ms] for the first pair of 5, 10 and
20�m plates, respectively. For the second pair, the respective [a,Di] are [0.0�m, 1.8�m2/ms],
[10.4�m, 2.1�m2/ms] and [20.5�m, 2.1�m2/ms]. (a) 5�m, plate 1; (b) 5�m, plate 2; (c) 10�m,
plate 1; (d) 10�m, plate 2; (e) 20�m, plate 1 (f) 20�m, plate 2
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curve can be observed in the second plates of 10 and 20�m. This can be due to
the overestimated diffusion constant caused potentially by partial volume effects.
For this central voxel, in the case of 5�m plates (Fig. 4a, b), some differences can
be seen between the measurements, the fitted curve and the ground truth curve. In
this case, due to the low signal attenuation for gradients almost perpendicular to the
fibre, measurement noise results in normalized signal values S/S0 > 1 which are not
well captured by the model. Moreover, the differences between signals predicted
using the known parameters [a,Di] = [5.0�m, 2.0�m2/ms] and model estimates [a,
Di] = [0.0�m, 2.0�m2/ms] for the first 5�m plate are small, despite the model
estimates of diameter being so different. The difference is slightly larger in the
second 5�m plate ([a,Di] = [0.0�m, 1.8�m2/ms]) but this is most likely due to
an underestimation in the diffusion constant. These results suggest the change in
measured signal is negligible for microcapillaries with diameters at or below 5�m,
i.e the measured signal is not very sensitive to diameters at or below 5�m.

Figure 5 shows the mean and standard deviation of the estimated diameter and
diffusivity obtained by separately analysing each individual shell with N lobes
(from Fig. 2). Here, results from a standard SDE sequence (N = 1, ı = 10 ms) are
also included for comparison. 10 and 20�m plate diameter estimates are close to
the ground truth values for the majority of N, whereas 5�m estimates are largely
underestimated for all N. Focusing on 10 and 20�m plates, N2 {2,3,4} perform
very well, while for N� 5, the estimates are progressively less accurate and precise
as N increases. This is due to insufficient diffusion weighting as N increases. At

Fig. 5 Mean diameter (a) and diffusivity (b) estimates calculated for each N from Fig. 2 (labelled
as 1–9 (39 ms), where ı = 39 ms) and also from the standard SDE sequence (labelled as 1 (10 ms),
where ı = 10 ms), for all plates. The same central row of voxels, as in Fig. 3, is used to calculate
the mean and the standard deviation. The dashed lines represents the real nominal diameters in (a),
and the calculated diffusivity from [25] in (b). N = 3 produces the best diameter and diffusivity for
both pairs of 10�m and 20�m plates
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low N (N = 1 (ı = 39 ms)), the fitting fails to correctly estimate the parameters for
20�m plates because of the strong diffusion attenuation, forcing the model to fit
to the noise floor. As a sanity check we compare the results to (N = 1,ı = 10 ms)
and find that diameter and diffusivity of microcapillaries with diameter of 20�m
are estimated accurately for this SDE sequence, however, 10�m plates are poorly
estimated. Hence, for this particular TE and diffusion gradient duration, we find that
N>1 gives better results overall.

N = 3 gives the best estimates for both 10 and 20�m plates. N = 3 outputs [a,Di]
of [9.7˙ 0.5�m, 2.0˙ 0.0�m2/ms] and [20.1˙ 0.5�m, 1.9˙ 0.1�m2/ms] for the
first pairs of 10 and 20�m plates, respectively. We also see consistency in our
estimates because the estimates ([a,Di]) for the second pair are [9.9˙ 0.3 �m,
2.1˙ 0.0�m2/ms] and [20.1˙ 0.8�m, 1.9˙0.1�m2/ms]. The diameter estimates
from N = 3 are close to the ground truth and are also within the confidence limits
of the estimates from the combined OGSE protocol shown in Fig. 3. The diffusivity
estimates have slightly higher accuracy and slightly lower precision for both pairs of
10 and 20�m plates in comparison to the combined OGSE protocol. The diffusivity
estimates are also very close to the estimates from the combined OGSE protocol.
These results suggest that, for the case of idealised systems, one OGSE shell can
perform similarly compared to a combination of OGSE shells.

4 Discussion

In this article we explore the sensitivity of OGSE to microstructural dimensions of
microcapillaries of unknown orientation on a clinical scanner. We find that 10 and
20�m micro-capillary diameters can be accurately and precisely estimated whereas
5�m estimates are neither accurate nor precise. We also find that low frequency
OGSE sequences give the best results and are optimal for parameter estimation. In
particular, N = 3 OGSE sequence can be used on its own to give estimates that are
very similar to those of the combined OGSE frequencies (N = 1 to N = 9).

Our observations support the theoretical findings in [12, 18] regarding the clinical
scanner diameter resolution limit which, based on their calculations, for gradient
strength of G = 62 mT/m, is approximately 6�m for SNR� 50. We get excellent
estimates for 10 and 20�m plates and can assume that the same would be true
for the diameters of microcapillaries within this range (a � [10,20]�m). On the
other hand, 5�m diameters cannot be estimated as they fall bellow the resolution
limit. In our study, we used idealised phantom plates (homogeneously and densely
packed with microcapillaries), which were imaged with a HARDI type acquisition,
pushed to the clinically feasible limits. We used a ‘long’ TE = 120 ms (in terms of
standard clinical settings) in order to allow for larger diffusion weighting which is
necessary to improve the sensitivity to the smaller diameter microcapillaries (5�m).
We also maximised SNR (� 45) on the clinical scanner by imaging the phantom
ensemble with a surface coil and using water as the substrate (long T2 relaxation
time� 1500 ms). Yet for a gradient strength of 62 mT/m, the diffusion weighted
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signal for the 5�m microcapillaries could not be differentiated from a diffusion
signal for 0�m microcapillaries. This highlights that diameters of 5�m cannot
be estimated on clinical scanners even under idealised conditions. On the other
hand, when we place the same 5�m plates in a pre-clinical scanner with 800 mT/m
gradients we estimate 5�m perfectly (data not shown), suggesting that the sole
reason for the results is the insufficient gradient strength.

Our analysis of individual OGSE sequences shows that there is an optimal
range of OGSE lobes, for estimation of diameters of microcapillaries and intrinsic
diffusivity. The optimal OGSE shells are with low number of lobes, (N2{2, 3, 4})
and their parameter estimates are accurate and precise, especially for N = 3. Our
experimental findings are consistent with the recent ActiveAx simulation study [12]
and spectroscopy study [17], which show that OGSE with lower N are optimal
for the measurement of fibre diameters. The result highlights the importance of
optimisation for microstructure indices estimation.

In this work we analysed the sensitivity of OGSE sequences to fibre diameter
in micro-capillaries. Based on theoretical studies which compare OGSE and SDE
sequences [12, 18], we do not expect SDE based techniques to provide better
diameter estimates, with the same gradient constraints. Although we have not
directly compared the sensitivity of other more complex sequences (e.g. NOGSE
[26]), similar conclusions hold, as the sensitivity and resolution limit is driven by
the maximum gradient strength and pulse duration [18].

The phantom we use in this study is much simpler than in vivo nerve tissue.
However, the purpose of this work is to test the innate sensitivity of OGSE sequences
to fibre diameters on a clinical scanner, which requires ideal diffusion substrates.
We expect that results for in vivo nerve tissue to be similar or worse. For instance,
resolution limit would be lower, i.e. since 5�m diameter can not be estimated in an
ideal phantom with extremely long T2 of pure water and simple parallel cylindrical
capillaries, then its potential to be estimated in vivo is further reduced. As for the
optimal frequency of the OGSE , the exact value would be different, however it is
predictable that it would be low frequency. The benefits of using physical phantoms
with known geometry and microstructural characteristics are numerous. They are
not degradable over time and are easy to use in validating microstructure imaging
protocols [27], even over multiple clinical trial sites. There are other ongoing
development of more complex phantoms such as biomimetic phantoms [28] being
developed for validating diffusion MR imaging. However, the simplicity of the
plates used in this study is also ideal for validation and calibration purposes. In
future, we plan to develop an integrated phantom with a more finely graded range
of microcapillary diameters to explore the resolution limit with more accuracy.

Overall, our results suggest that imaging axon diameters in vivo in the brain
using standard clinical scanners with gradient strength of 60–80 mT/m would be
very challenging. This work, combined with the theoretical work by Drobnjak et
al. [12] and Nillson et al. [18], provides further evidence for validity of models of
brain nerve tissue where axons are represented as sticks and not as cylinders [29].
On the other hand, our work also demonstrates that axon diameter mapping is still a
possibility in the peripheral nervous system, where axons are larger (1–8�m [30]).
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Axon diameter imaging of the peripheral nerves using clinical scanners can
potentially play a crucial role in the understanding of nerve tissue regeneration—
a mechanism unique to peripheral nerves and with correlation to axon diameters
[31].
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Groupwise Structural Parcellation
of the Cortex: A Sound Approach Based
on Logistic Models

Guillermo Gallardo, Rutger Fick, WilliamWells III, Rachid Deriche,
and Demian Wassermann

Abstract Current theories hold that brain function is highly related with long-
range physical connections through axonal bundles, namely extrinsic connectivity.
However, obtaining a groupwise cortical parcellation based on extrinsic connectivity
remains challenging. Current parcellation methods are computationally expensive;
need tuning of several parameters or rely on ad-hoc constraints. Furthermore, none
of these methods present a model for the cortical extrinsic connectivity. To tackle
these problems, we propose a parsimonious model for the extrinsic connectivity
and an efficient parcellation technique based on clustering of tractograms. Our
technique allows the creation of single subject and groupwise parcellations of the
whole cortex. The parcellations obtained with our technique are in agreement with
anatomical and functional parcellations in the literature. In particular, the motor and
sensory cortex are subdivided in agreement with the human homunculus of Penfield.
We illustrate this by comparing our resulting parcels with an anatomical atlas and
the motor strip mapping included in the Human Connectome Project data.

1 Introduction

The human brain is arranged in areas based on criteria such as cytoarchitecture or
axonal connectivity. Current hypotheses attribute specialized functions to several of
these areas. Hence, parcellating the cortex into such areas and characterizing their
interaction is key to understanding brain function. Diffusion MRI (dMRI) enables
the in vivo exploration of long-rage physical connections through axonal bundles,
namely extrinsic connectivity . Current theories hold that extrinsic connectivity
is strongly related to brain function, e.g. this has been shown in macaques [15].
Hence, parcellating the cortex based on its extrinsic connectivity can help to
understand the internal organization of the brain. However, obtaining a whole-cortex
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groupwise parcellation based on extrinsic connectivity remains challenging [9].
Current extrinsic connectivity parcellation methods are computationally expensive;
need tuning of several parameters or rely on ad-hoc constraints. For example,
Clarkson et al. [4] propose to iteratively refine an anatomical parcellation using
information from dMRI. This technique’s main drawback is the strong dependence
on the initial anatomical parcellation. Lefranc et al. [10] calculate the average
connectivity profile of regions using a watershed-driven dimension reduction, but
they work parcellating predefined gyri. Parisot et al. [14] estimate a consistent
parcellation across subjects using a spectral clustering approach, without averaging
subject’s connectivity profiles. Nevertheless, the method needs tuning of several
parameters, including the expected number of parcels specified a priori. Moreno-
Dominguez et al. [12] present a parcelling method based on hierarchical clustering
parcellation, in which it’s not necessary to set an a priori number of clusters.
However, they use the cosine distance to compare tractograms and the centroid of
tractograms to represent their union. This can lead to an erroneous parcellation since
the centroid criterion doesn’t minimize the cosine distance between points. These
examples show that an efficient groupwise parcelling technique alongside a sound
model for the extrinsic connectivity is still needed.

In this work we present a parsimonious model for the cortical connectivity and
an efficient parcelling technique based on it, both summarized in Fig. 1. Our model
assumes that the cortex is divided in patches of homogeneous extrinsic connectivity.

Fig. 1 Lower left corner: graphical model of the linear relationship between a tractogram (QTsp); the
intra-cluster (Q�c) and across-subject (Q�s) variability. We transform the tractograms into a vectorial
space while explicitly accounting for the variability, allowing us to propose a clustering technique
in accordance
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That is, nearby neurons in the cortex share approximately the same long-ranged
physical connections, we call this the local coherence criterion. Our assumption is
based on histological results in the macaque brain [19]. As in clustered data models
in statistics [16] we allow intra-patch variability and across-subject variability in the
patches.

Nowadays, the most common tool to estimate the extrinsic connectivity of a point
on the cortex in vivo is dMRI-based tractography [9] . To frame tractography within
our cortical connectivity model, we use Logistic Random Effects Models [19].
This allows us to explicitly denote the relationship between tractography and
the variability present in our model. Taking advantage of this, we propose an
efficient clustering technique to create single subject and groupwise parcellations
of the whole-cortex. Inspired by the method of Moreno-Dominguez et al.[12],
our technique creates a dendrogram: a structure that comprises different levels of
granularity for the same parcellation. We also create the dendrogram while imposing
the local coherence criterion using only one parameter: the minimum size of each
parcel. Then, by choosing cutting criteria, we can explore different parcellation
granularities without recomputing the dendrogram.

We validate our technique by taking advantage of the information available in the
Human Connectome Project (HCP). Using our technique, we create single-subject
and groupwise parcellations for 66 subjects. Then, we compare our purely structural
parcellations against an anatomical atlas [5] and responses to functional stimuli [2].
We show that our parcels subdivide some well-known anatomical structures in
accordance with functional responses on the cortex.

2 Methods

2.1 Data and Preprocessing

In this work we used 66 male subjects aged 31–35 from the group S500 of
the Human Connectome Project (HCP), all preprocessed with the HCP minimum
pipeline [7]. The main advantages of using this public data base are: each subject
possess a dense mesh representing their cortical surface, we use it to create seed-
points for tractography; all the mesh’s vertices are coregistered across subjects,
property that we use to create the groupwise parcellation; each subject possess
the Desikan Atlas [5] parcellation already computed over their cortical mesh; for
each cortical mesh there are also different z-score maps representing the response to
different stimuli obtained with functional MRI (fMRI) [2]. Finally, the group S500
contains z-score maps representing the average functional response to stimuli for
100 unrelated subjects (U100). These studies are used to validate our technique’s
results.
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2.2 Cortical Connectivity Model and Tractography

Our model assumes that the cortex is divided in clusters of homogeneous extrinsic
connectivity. That is, nearby neurons in the cortex share approximately the same
long-ranged physical connections, we call this the local coherence criterion. Our
assumption is based on histological results in the macaque brain [19]. As in clustered
data models in statistics [16] we allow intra-cluster and across-subject variability.
We formalize this concept as:

K D
k[

iD1
Ki;81�i;j�k; i ¤ j! Ki \ Kj D ; ^ conn.Ki/ ¤ conn.Kj/ (1)

where the set of points on the cortex K is the disjoint union of each cluster Ki

and conn.�/ is the extrinsic connectivity fingerprint of a cluster. We will make the
notion of variability explicit in Eq. (3). In this work, the connectivity fingerprint of
a seed-point in the brain is a binary vector denoting to which other seed-points it is
connected through axonal bundles. This is, the physical connections of a point p 2
Ki in the brain are represented by its connectivity fingerprint conn.p/ D conn.Ki/.

Nowadays, the most common tool for estimating the extrinsic connectivity
fingerprint of a point in vivo is probabilistic tractography [9]. Given a seed-point
in the brain, probabilistic tractography creates a tractogram: an image where each
voxel is valued with its probability of being connected to the seed through axonal
bundles. One way of calculating these probabilities is with a Monte Carlo procedure,
simulating the random walk of water particles through the white matter [3]. Each
one of these paths is known as a streamline. If we think these streamlines as
Bernoulli trials, were we get a value for the connection from our seed with other
points (1 if they connected by the streamline, 0 if not) [3], then we can model the
tractogram of the subject s in the seed-point p as:

Tsp D ŒP. QCspi D 1/1�i�n D Œ�spi1�i�n; QCspi 
 Bernoulli.�spi/ ; (2)

where QCspi is a Bernoulli random variable1 representing “the point p of the subject
s is connected to the voxel i”. Each Bernoulli’s parameter (�spi) represents the
probability of being connected, and is estimated as the proportion of success in
the Bernoulli trials of each seed.

To formulate the tractogram in accordance to our hypothesis of cortical connec-
tivity, we model a tractogram as a vector of random variables. In our model, each
element in a tractogram comes from a random variable depending of the point’s
cluster alongside its intra-cluster and across-subject variability:

p 2 Kc ! QTsp D ŒP. QCspi D 1j conn.Kc/; Q�ci; Q�si/1�i�n ; (3)

1For the sake of clarity we denote all random variables with a tilde, e.g. QC.
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in this case, the point p belongs to the cluster c; Q�ci represents the intra-cluster
variability and Q�si represents the across-subject variability for the connectivity to
voxel i in the cluster c.

Since each QCspi follows a Bernoulli distribution [Eq. (2)] it’s difficult to find
an explicit formulation for P. QCspi D 1j conn.Kc/; Q�ci; Q�si/ accounting for the
variabilities. For this, we use the generalized linear model (GLM) theory. In this
theory, the data is assumed to follow a linear form after being transformed with an
appropriate link function [11]. Using the following notation abuse:

logit. QTsp/ , Œlogit.P. QCspi D 1j conn.Kc/; Q�ci; Q�si/1�i�n; (4)

we derive from GLM a logistic random-effects model [16] for each point p:

logit. QTsp/ D ˇc C Q�c C Q�s 2 R
n; Q�c 
 N .0; �2c Id/; Q�s 
 N .0; �2s Id/; (5)

where �c and �s represent the intra-cluster and across-subject variability respectively.
According to GLM theory ˇc 2 R

n is the extrinsic connectivity fingerprint of cluster
Kc transformed:

logit�1.ˇc/ D E. QTsp/ D conn.Kc/ : (6)

The choice of logit as link function is based on the work of Pohl et al. [17]. There,
they show that the logit function’s codomain is a Euclidean space, which allows us
to transform and manipulate the tractograms in a well-known space.

2.3 Single Subject and Groupwise Parcelling Methodologies

In the previous section we hypothesised that the cortex is divided in clusters
with homogeneous extrinsic connectivity, alongside intra-cluster and across-subject
variability. In using the previous hypothesis, it is important to remark that we
don’t have a priori knowledge of the cluster’s location or their variability. But,
thanks to the proposed logistic random effects model, we formulated the problem
of finding these clusters as a well-known clustering problem. This is because, after
transforming the tractograms with the logit function as in Eq. (4) they will be in
a Euclidean space [17]. Even more, Eq. (5) states that the transformed tractograms
come from a mixture of Gaussian distributions. This is known as a Gaussian mixture
model.

To solve the Gaussian mixture model and find the clusters, we use a modified
Agglomerative Hierarchical Clustering (AHC) algorithm. This was inspired by the
method of Moreno-Dominguez et al. [12]. To enforce the local coherence criterion
we also modify the algorithm to accept one parameter: the minimum size of the
resulting clusters. Clusters smaller than this size are merged with neighbors, i.e.
physically close clusters in the cortex. As we are working in a Euclidean space,
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we use the Euclidean distance and the centroid as similarity and linkage functions,
improving performance. Our technique’s time complexity is O.n2log.n//, with n the
number of tractograms to cluster [13]. AHC creates a dendrogram: a structure that
comprises different levels of granularity for the same parcellation. This allows us to
explore different parcellation granularities by choosing cutting criteria, without the
need of recomputing each time.

The main advantage of the model we proposed in the previous section is that
it allows us to create a groupwise parcellation using linear operations. Assuming
direct seed correspondence across subjects, as in the HCP data set, our model lets us
remove the subject variability of each seed’s tractogram by calculating the expected
value across subjects:

Es.g. QTsp// D Es.ˇc C Q�c C Q�s/;D ˇc C Q�c C Es.Q�s/ D ˇc C Q�c: (7)

where the last equality is due to Es.Q�s/ D 0 [Eq. (5)]. This allows us to create
population-representative tractograms for each seed free of across-subject variabil-
ity, which then can be clustered to create a groupwise parcellation.

3 Experiments and Results

3.1 Reliability of the Clustering Algorithm for the Model

In the previous sections we presented a model for the cortical extrinsic connectivity
and a clustering technique to parcellate the brain. Our technique allows us to
create single subject and groupwise parcellations, encoded with different levels of
granularity in a dendrogram. However, is not immediate that the chosen clustering
algorithm (AHC) solves a Gaussian mixture model [Eq. 5] since it was not designed
for this particular case [13]. That is, it’s not immediate that the algorithm finds
the clusters if they are stated as in the model [Eq. 5]. Now we show that the
modified version of the algorithm (Sect. 2.3) to enforce the local coherence criterion
(Sect. 2.2), solves the model for reasonable levels of variability. Moreover, it
retrieves the right clusters using one of the simplest criterion to cut the dendrogram:
the horizontal cut, i.e. cutting the dendrogram just by choosing the cut’s height.

To test the technique, we started by creating synthetic data from the model
[Eq. (5)]. We randomly took ten subjects from our chosen set alongside their
extant Desikan parcellations. Then, we created synthetic connectivity fingerprints
representing the connections between their Desikan areas. Next, for each vertex in
their cortical surface we: replicated those fingerprints; transformed them with the
logit function and added cluster-specific variability and across-subject variability as
in our model. Finally, we grouped the vertex based on their connectivity using our
clustering technique.

If our parcelling technique is able to solve the model, then the Desikan Areas
should be encoded in the resulting dendrogram. To show that the Desikan areas
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were encoded in the resulting dendrogram, we calculated the best obtainable overlap
between each Desikan area and the clusters in the dendrogram using the Dice
coefficient. To evince the accuracy of the horizontal cut criterion, we compared
every obtainable parcellation through cutting our dendrogram in the average subject
case against the Desikan atlas using the corrected Rand index [8]. A Rand index of
1 means that the two parcellations were equal.

Figure 2-left shows the best dice coefficients obtained for every Desikan region
under different levels of variability. The Signal-to-Noise-Ratio (SNR) in the figure
represents the amount of variability added respect to the original variability of
the synthetic connectivity fingerprint. The result in Fig. 2-left shows that parcels
were retrieved and well-encoded inside the dendrogram for reasonable levels of
variability, specially in the average case (dark blue line) were we get ride of the
across-subject variability by averaging. Figure 2-right shows the best obtainable
rand index using horizontal cut on the dendrogram under different levels of
variability. The high Rand indices obtained show that we can solve our model by
simply using the horizontal cut criterion.

3.2 Parcelling Subjects From the Human Connectome Project

We next applied our parcellation technique to the HCP data. First, we performed
Constrained Spherical Deconvolution (CSD) based tractography [20] from a dense
set of points in the cortex. Then, we used our technique to parcellate the cortex by
clustering the tractograms. Specifically, since each subject has a surface representing
their gray-matter/white-matter interface, we used their vertices as seeds to create
tractograms. To avoid superficial cortico-cortical fibers [18], we shrank each of the
66 surfaces 3 mm into the white matter. For each subject, we fitted a CSD model [20]
to their diffusion data using Dipy (version 0.11) [6] and created 15,000 streamlines
per seed-voxel using the implementation of probabilistic tractography in Dipy.
Later, we created a tractogram as in [Eq. (2)] by calculating the fraction of particles
that visited each white-matter voxel. Then, we transformed each tractogram with the
logit function [17] as in Eq. (4). We clustered the tractograms of each subject using
the modified AHC algorithm while imposing a minimum cluster size of 3 mm2 in
the finest granularity.

To create the groupwise parcellation, we took advantage of the vertex correspon-
dence across subjects in the HCP data set. Since we are in a vectorial space we
calculated the average tractogram of each seed. Then, we created the groupwise
parcellation by clustering the average tractograms with our proposed technique
(Sect. 2.3). The resulting dendrogram for the groupwise case, alongside some of
the obtainable parcellations, are in Fig. 3.
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Fig. 3 Groupwise dendrogram created by our technique. We can retrieve different granularities of
the same parcellation by choosing cutting height, shown as a red dotted line. Motor and Sensory
cortex appear at coarse levels of granularity

3.3 Functional and Anatomical Comparison

Here we present a proof of concept that our resulting dendrograms encode parcella-
tions with both anatomical and functional meaning by comparing our results against
an anatomical atlas and a functional study. To make the comparisons we extracted a
parcellation from each subject’s dendrogram using the horizontal cut criterion since
it showed good accuracy in Sect. 3.1. We manually searched for parcellations with a
minimum of 36 parcels and a maximum of 150. This was made to get parcellations
with coarse granularity while having at least the amount of parcels in the anatomical
atlas of Desikan [5].

Anatomical Comparison

To assess if some anatomical structures were present in the dendrogram and if our
resulting parcels were subdividing them, we compared the extracted parcellation
with the Desikan atlas [5]. It’s important to remark that each subject in the HCP
already has this atlas computed. We projected the Desikan regions over our parcels
and then calculated: how many of our parcels were inside each projection and how
many of them had more than 90% of its area inside the projection. Comparisons
with eight regions of the Desikan atlas for the single-subject and the groupwise case
are in Figs. 4-left and 5 respectively. Table 1 shows the fraction of parcels inside of
each projections that were well contained. Our division of the inferior frontal cortex
differs from the Desikan’s [5] (regions 1 and 2 in Fig. 5). However, it’s similar to
that of Anwander et al. [1]. In particular, our orange and cyan parcels inside regions
1 and 2 correspond with their blue and green parcels in Fig. 4, panels I, II, IV and V
[1]. The Insula; Motor and Sensory cortex (regions 3, 4 and 5 in Fig. 5) were well
subdivided for both single subject and groupwise parcellations.
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Fig. 4 Single subject parcellations created with our technique, alongside both anatomical (left)
and functional (right) comparisons from Sect. 3.3. Motor and Sensory Cortex (regions 4 and 5)
appear to be found and their subdivision is consistent with the motor strip mapping in HCP

Functional Comparison

We studied if our parcels were related to brain function. To do so we calculated
their overlap with thresholded maps representing responses to functional stimuli [2].
These maps are also available for each subject in the HCP. Figure 4-right shows
the functional comparison for two single subject parcellations. Figure 6 shows a
projection from our groupwise parcels over averaged tFMRI activations. Each color
encodes the response to a different stimulus thresholded with a z-score > 5. The
comparison for the average-subject case was done against the average functional
responses in the Unrelated100 population from the HCP. Table 2 shows the highest
dice coefficient achieved by one of our regions for each task. Here it is important to
remark than, in general, each stimulus will generate a functional response in both
motor and sensory cortex. Our hypothesis is that this happens because, for example,
while a subject is moving the hand he’s also feeling it. Therefore, an overlapping of
0:5 suggests that at least one of our parcels in the motor or sensory cortex is having
a good overlapping with the functional response, as confirmed visually. Table 2
shows high dice coefficients for each subject, but shows even higher coefficients
for the average subject. We hypothesize that averaging tractograms in the Euclidean
space is removing the across-subject variability.
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Fig. 5 Relation between our pure extrinsic parcellation and the anatomical atlas of Desikan [5].
Some regions from Desikan projected over a parcellation with less than 150 parcels. Motor and
Sensitive cortex appears to be found

Table 1 Area proportion contained for parcels inside Desikan projections

Area proportion contained (see Fig. 4-left)

1 2 3 4 5 6 7 8 Variability

Single subj. 0:4 0:6 0:8 0:8 0:8 0:7 0:2 0:6 ˙0:1;min W 0:07;max W 0:16
Average subj. 0:0 0:3 0:9 0:8 0:8 0:3 0:2 0:6 N/A

4 Discussion and Conclusion

In this work we presented a parsimonious model for the long-range structural
connectivity. Our model assumes that the cortex is divided in patches of homoge-
neous extrinsic connectivity, with intra-patch and across-subject variability. Then,
using Logistic Random Effects Models we formulate tractography in accordance
to our model. This allowed us to transformed the tractograms into a Euclidean
space. Working within this sound framework enabled us to easily manipulate and
compare tractograms. Taking advantage of this we presented an efficient technique
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Fig. 6 Relation between our pure extrinsic parcellation and a functional study [2]. Some of our
groupwise parcels projected over responses to task-related functional activations. Our division of
the Motor and Sensitive cortex appears to be consistent with the motor strip mapping

Table 2 Best dice coefficient obtained for each functional task

Best dice coefficient for task (see Fig. 4-right)

Foot Hand Tongue Story Shape/face

Single subj. 0:54˙ 0:10 0:46˙ 0:09 0:50˙ 0:1 0:43˙ 0:09 0:56˙ 0:19

Average subj. 0:62 0:60 0:58 0:65 0:54

Our parcels are mostly contained inside one anatomical region and overlap well with the activations

to parcellate the whole cortex in single subject and groupwise cases. The groupwise
case assumes seed correspondence across-subject, we expect our model to account
errors in seeds coregistration as across-subject variability. Our technique creates a
dendrogram using only one comprehensive parameter: the minimum size of each
cluster. Then, different parcellation granularities can be obtained just by choosing at
which height to cut the dendrogram. Also, as a preliminary validation of our results
we showed that our pure structural parcellation had good agreement with anatomical
and functional parcellations.
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Robust Construction of Diffusion MRI Atlases
with Correction for Inter-Subject Fiber
Dispersion

Zhanlong Yang, Geng Chen, Dinggang Shen, and Pew-Thian Yap

Abstract Construction of brain atlases is generally carried out using a two-step
procedure involving registering a population of images to a common space and
then fusing the aligned images to form an atlas. In practice, image registration
is not perfect and simple averaging of the images will blur structures and cause
artifacts. In diffusion MRI, this is further complicated by the possibility of within-
voxel fiber misalignment due to natural inter-subject orientation dispersion. In this
paper, we propose a method to improve the construction of diffusion atlases in
light of inter-subject fiber dispersion. Our method involves a novel q-space (i.e.,
wavevector space) patch matching mechanism that is incorporated in a mean shift
algorithm to seek the most probable signal at each point in q-space. Our method
relies on the fact that the mean shift algorithm is a mode seeking algorithm that
converges to the mode of a distribution and is hence robustness to outliers. Our
method is therefore in effect seeking the most probable signal profile at each
voxel given a distribution of profiles. Experimental results confirm that our method
yields cleaner fiber orientation distribution functions with less artifacts caused by
dispersion.
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1 Introduction

Brain atlases [1, 2] capture the common features of image populations and play
crucial roles in the processing and analysis of brain images. They are widely used
for guiding brain tissue segmentation, normalization of images to a common space,
and brain labeling with regions of interest. Unlike atlases of T1-weighted images,
diffusion MRI atlases afford additional white matter microstructural information
that can be harnessed for tissue characterization and axonal tracing. To ensure that
the microstructural information captured at each voxel location is properly encoded
in the atlas, dedicated techniques are needed.

Atlas construction generally involves fusing a population of images that are
registered to a common space. However, in practice, perfect registration is difficult,
if not impossible. Averaging misaligned images to construct an atlas blurs structures
and introduces artifacts. In diffusion MRI [3], the problem is even more challenging,
since the alignment of gross anatomical structures does not necessarily guarantee
the alignment of the microstructural information captured in each voxel. In this
situation, it is unclear for example how signals characterizing fiber bundles of
varying orientations, which can occur naturally across subjects, should be fused
to form the atlas. Moreover, the commonly used simple averaging method is
sensitive to outliers. For instance, if the distribution of signal profiles of single-
directional fiber bundles is contaminated with a small number of signal profiles of
crossing fibers, simple averaging will result in a crossing profile, albeit with a small
secondary peak. This outcome apparently is not representative of the majority.

In this paper, we propose a novel q-space patch-matching mechanism that is
incorporated in a mean shift algorithm to seek the most probable signal at each
point in q-space. Mean shift is a versatile non-parametric iterative algorithm that
can be used for mode seeking [4]. Instead of the mean, our method employs the
mean shift algorithm to determine the mode of a distribution of signal profiles.
The mean shift algorithm uses a kernel to measure the distance between signals. To
increase robustness to noise, we measure the distance between signals using patches
defined in the q-space. Patch matching is key to the success of many state-of-the-art
denoising algorithms, such as non-local means [5]. We perform patch matching in
q-space with the help of azimuthal equidistant projection [6] and rotation invariant
features [7]. Experimental results confirm that our method yields diffusion atlases
with cleaner fiber orientation distribution functions and less artifacts caused by inter-
subject fiber dispersion.

2 Approach

Our method employs neighborhood matching in q-space for effective atlas
construction. For each point in the x-q space, .xi;qk/, where xi 2 R

3 is a voxel
location and qk 2 R

3 is a wavevector, we define a spherical patch, Pi;k, centered at
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qk with fixed qk D jqkj and subject to a neighborhood angle ˛p. The diffusion
measurements on this spherical patch are mapped to a disc using azimuthal
equidistant projection (AEP) before computing the rotation invariant features via
polar complex exponential transform (PCET) (Sect. 2.1) [7] for patch matching
(Sect. 2.2). The similarity weights resulting from patch matching will be used in the
mean shift algorithm (Sect. 2.3) to determine the most probable signal at each point
in q-space.

2.1 Patch Features

Azimuthal equidistant projection (AEP) [6] maps the coordinates on a sphere to
a plane where the distances and azimuths of points on the sphere are preserved
with respect to a reference point [6]. This provides a good basis for subsequent
computation of invariant features for matching. The reference point .�0; �0/, with �
being the latitude and � being the longitude, corresponds in our case to the center
of the spherical patch and will be projected to the center of a disc. Viewing the
reference point as the ‘North pole’, all points along a given azimuth, � , will project
along a straight line from the center of the disc. In the projection plane, this line
subtends an angle � with the vertical. The distance from the center to another
projected point is given as �. The projection can be described as q ! .q; �; �/.
Based on [6], distance � associated with a point .�; �/ on the sphere is computed as
the great circle distance between the point and the reference .�0; �0/ and is given by

cos� D sin �0 sin � C cos�0 cos� cos.� � �0/: (1)

The angle � is computed as the azimuth of the point in relation to the reference:

tan � D cos� sin.� � �0/
cos�0 sin� � sin �0 cos� cos.� � �0/ : (2)

Note that, since the diffusion signals are antipodal symmetric, we map antipodally
all the points on the sphere to the same hemisphere as the reference point prior to
performing AEP. After projection, the q-space spherical patch P is mapped to a 2D
circular patch bP .

After AEP, we proceed with the computation of rotation invariant features.
We choose to use the polar complex exponential transform (PCET) [7] for its
computation efficiency. PCET with order n, jnj D 0; 1; 2; : : : ;1, and repetition
l, jlj D 0; 1; 2; : : : ;1, of AEP-projected signal profile S.x; q; �; �/ is defined as

Mn;l.bP/ D 1

	

Z

.x;q;�;�/2bP
ŒHn;l.�; �/

�S.x; q; �; �/� d � d �; (3)
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where Œ�� denotes the complex conjugate and Hn;l.�; �/ is the basis function defined
as

Hn;l.�; �/ D ei2	n�
2

eil� : (4)

For each patch bP consisting of signal vector S.bP/, the associated PCET features
fjMn;l.bP/jg computed up to maximum order m (i.e., 0 � l; n � m) are concatenated
into a feature vector M.bP/.

2.2 Patch Matching

The similarity of a reference patch bP i;k with another patch bP j;l.d/ associated with
the d-th subject is characterized by weight

wi;kIj;l.d/ D 1

Zi;k
exp

(
�kM.

bP i;k/�M.bP j;l.d//k22
h2M.i; k/

)
exp

�
�kxi � xjk22

h2x

�
; (5)

where Zi;k is a normalization constant to ensure that the weights sum to one. Here
hM.i; k/ is a parameter that controls the attenuation of the exponential function. As

in [8], we set hM.i; k/ D
q
2ˇ O�2i;kjM.bP i;k/j, where ˇ is a constant [8] and O�2i;k is the

estimated noise standard deviation, which can be computed globally as shown in [9]
or spatial-adaptively as shown in [8]. The former is used in this paper. Parameter
hx D

p
2�x controls the attenuation of the second exponential function, where �x is

a scale parameter. jM.bP i;k/j denotes the length of the vector M.bP i;k/.
Given D subjects, a “mean” signal can be computed based on the weights

resulting from patch matching:

NS.xi;qk/ D

vuuut
DX

dD1

X

.xj;ql/2Vi;k

wi;kIj;l.d/S2.xj;qlI d/� 2�2; (6)

where S.xi;qkI d/ is the measured signal associated with the d-th subject at location
xi 2 R

3 with wavevector qk 2 R
3. Vi;k is a local x-q space neighborhood associated

with .xi;qk/, defined by a radius rs in x-space and an angle ˛s in q-space. Note
the bias associated with the Rician noise distribution is removed in this process [9].
� is the Gaussian noise standard deviation that can be estimated from the image
background [9]. Without patch matching, a “simple averaging” version of (6) is
given as

NS.xi;qk/ D
vuut 1

D

DX

dD1
S2.xi;qkI d/� 2�2: (7)
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2.3 Mean Shift

Given a set of diffusion signal profiles fS.xj;qlI d/ W .xj;ql/ 2 Vi;k; d D 1; : : : ;Dg,
we want to determine the modal profile QS.xi;qk/. This is achieved using a mean shift
algorithm [4] that is modified to take advantage of the patch matching mechanism
described above. Mean shift is a non-parametric algorithm for locating the maxima
of a density function and is hence a mode-seeking algorithm. It is an iterative
algorithm where the mean is progressively updated by using the mean computed
in the previous iteration as the reference for computing sample similarity.

We first note that the weights computed using (5) is dependent on the signal
vector S.bP/ of a patch bP . To explicitly express this dependency, we write

wi;kIj;l.d/ WD w
� NS.bP i;k/;S.bP j;l.d//

�
. Note that we have made here the mean signal

vector NS.bP i;k/ the reference for weight computation. Our implementation of the
mean shift algorithm involves the following steps. For iteration t D 1; 2; : : : ;T,

1. Update weights w.t/i;kIj;l.d/ D w
� NS.t�1/.bP i;k/;S.bP j;l.d//

�
based on (5).

2. Update the mean at each location .xi;qi/ using (6) with weights fw.t/i;kIj;l.d/g and
fS.xj;qlI d/g for .xj;ql/ 2 Vi;k.

3. Repeat steps above with t tC 1.

3 Experimental Results

Quantitative and qualitative experiments using synthetic and real data were per-
formed to evaluate the proposed method. In all experiments, we set rs D 2 voxels,
ˇ D 0:1, ˛p D 30ı, ˛s D 30ı, and m D 4. We use peak signal-to-noise ratio
(PSNR) as the metric for performance evaluation.

3.1 Synthetic Data

A synthetic dataset consisting of one- and two-directional fiber bundles was
generated for the quantitative evaluation of the proposed method. The dataset was
simulated with b D 1000 s=mm2 and 81 non-collinear gradient directions. In
order to simulate the dispersion of fiber orientations across subjects, we generate
a set of diffusion signal profiles of fiber bundles oriented according to the Watson
probability distribution function [10], which in modified form is given as

f .� j�/ / exp
��.1 � cos2.�//

�
; (8)
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where � is the angle of deviation from the ground truth direction and the concentra-
tion parameter � is defined as � D 2.1 � cos2.�T//

�1. Parameter �T determines
the degree of dispersion of the orientations of the fiber bundles. We set �T D
15ı; 30ı; 45ı. The fiber orientation distribution functions (ODFs) [11] of some dif-
fusion profiles are shown in Fig. 1. The “atlas” is computed using this distribution of
diffusion signal profiles and the outcome is compared with the ground truth without
deviation. Four levels of Rician noise (3%, 5%, 7% and 9%) were added to the
dataset. Rician noise was simulated by adding Gaussian noise [i.e. N .0; v.p=100//]
to the complex domain of the signal with noise variance determined by noise-level
percentage p and maximum signal value v (150 in our case).

As shown in Figs. 2 and 3, for the various noise levels, our method improves
the PSNRs over simple averaging for both cases of one- and two-directional fiber
bundles. The PSNR improvement is over 2 dB and sometimes even up to 3 dB. The
fiber ODFs of some representative results, shown in Fig. 4, indicate that simple
averaging causes artifacts and that the proposed method yields results that are very
close to the ground truth.

Fig. 1 Examples from the synthetic dataset simulating (top) one- and (bottom) two-direction fiber
bundles
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Fig. 2 PSNR comparison of results given by the mean, computed via simple averaging, and the
proposed method for the case of one-direction fiber bundles
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Fig. 3 PSNR comparison of results given by the mean, computed via simple averaging, and the
proposed method for the case of two-direction fiber bundles

Fig. 4 Comparison of fiber ODFs. (Left) Ground-truth ODFs. (Middle) ODFs given by simple
averaging. (Right) ODFs given by the proposed method. The results were generated using synthetic
dataset with 9% noise and �T D 45ı and 5% noise and �T D 15ı respectively for the one- and
two-direction cases

3.2 Real Data

All images were acquired using a Siemens 3T TRIO MR scanner following
a standard imaging protocol: 30 diffusion directions uniformly distributed on a
hemisphere, b D 1000 s=mm2, one image with no diffusion weighting, 128 � 128
imaging matrix, voxel size of 2 � 2 � 2mm3, TE=81ms, TR=7618ms.
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Fig. 5 Comparisons of white matter fiber ODFs given by the simple averaging method (columns
1 and 3) and our method (columns 2 and 4). The fractional anisotropy images at the top are shown
for reference. Visible differences between the methods are marked by arrows and boxes

As shown in Fig. 5, our method obtains ODFs that are more consistent and
exhibit stronger directionality. Visible differences are marked using arrows and
boxes. For simple averaging, the ODF glyphs are generally shorter, indicating
weaker directionality. In contrast, our method gives sharper and longer ODF glyphs,
indicating its superiority.
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4 Conclusion

In this paper, we propose a novel patch-based mean-shift algorithm for constructing
diffusion MRI atlases. Our method is less sensitive to outliers and is able to deal
with inter-subject fiber dispersion. Preliminary experimental results indicate that our
method yields improvements over the commonly used simple averaging method and
generates diffusion atlases with cleaner fiber orientations and less artifacts caused
by inter-subject orientation dispersion.
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Parcellation of Human Amygdala Subfields
Using Orientation Distribution Function
and Spectral K-means Clustering

Qiuting Wen, Brian D. Stirling, Long Sha, Li Shen, Paul J. Whalen,
and Yu-Chien Wu

Abstract Amygdala plays an important role in fear and emotional learning, which
are critical for human survival. Despite the functional relevance and unique circuitry
of each human amygdaloid subnuclei, there has yet to be an efficient imaging
method for identifying these regions in vivo. A data-driven approach without
prior knowledge provides advantages of efficient and objective assessments. The
present study uses high angular and high spatial resolution diffusion magnetic
resonance imaging to generate orientation distribution function, which bears distinc-
tive microstructural features. The features were extracted using spherical harmonic
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decomposition to assess microstructural similarity within amygdala subfields that
are identified via similarity matrices using spectral k-mean clustering. The approach
was tested on 32 healthy volunteers and three distinct amygdala subfields were
identified including medial, posterior-superior lateral, and anterior-inferior lateral.

1 Introduction

The amygdala, a subcortical structure in the human brain, is associated with fear
and emotional learning [1]; with such, it regulates social behavior and perception,
and memory consolidation in other brain regions [2]. These functionalities of
the amygdala, especially fear learning and conditioning, are critical for survival.
Functionally distinct subfields compose the whole amygdala, coarsely separated
into the lateral, basolateral, and centromedial nuclei [3]. The lateral and basolateral
nuclei receive afferent fibers that deliver highly processed sensory information from
cortices while the centromedial nuclei project efferent fibers to hypothalamus and
limbic nuclei. Conventionally, our knowledge of the amygdala and its subfields
has been derived from studies of compromised human brain using direct electrical
stimulation [4]. Thus, having an accessible approach for imaging the amygdala is
valuable for advancing amygdala research in vivo.

In vivo studies of function and structure of the human amygdala have been made
possible through neuroimaging, notably functional magnetic resonance imaging
(fMRI) and diffusion magnetic resonance imaging (dMRI). The whole amygdala
appears as a compact small region of grey matter in conventional magnetic
resonance T1-weighted (T1W) imaging. Finer granularity of amygdala subfields
may be parceled using ultra-high resolution T1W imaging [5], dMRI probability
tractography [6, 7], or combining tasked fMRI and diffusion tensor imaging (DTI)
streamline tractography [8]. These studies, however, require priori knowledge. The
ultra-high resolution T1W imaging segmentation requires manually tracing with
prior knowledge of amygdala histology; studies involving dMRI tractography call
for pre-defined amygdala-cortical projections.

Alternatively, a data-driven approach without prior knowledge provides advan-
tages of efficient and objective assessments. Spectral clustering algorithm has been
applied to DTI principle directions (i.e., major eigenvector of the diffusion tensor),
and yielded two directionally coherent subfields separated by a boundary called
septa [9]. However, in the DTI framework, the water diffusion is approximated by
an ellipsoid with a major eigenvector representing an overall direction of underlying
microstructural organization [10]. Thus, local complexity and important features of
microstructures may be lost in the simplified tensor model [11, 12]. To overcome
DTI limitations, orientation distribution function (ODF) was proposed [13–18].
Compared to DTI major eigenvector, which has only three vector components, ODF
describes a three-dimensional diffusion probability function defined on the surface
of a unit sphere. ODF elucidates complex microstructures with multiple crossing
fibers and their probability distributions and is believed to provide richer and more
complete information of diffusion directionality.
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In this study, ODF is used to parcel amygdala subfields that have similar
microstructural characteristics. Specifically, ODF is first decomposed to a com-
bination of spherical harmonics, from which features of the ODF surface will
be extracted. Similar to Fourier basis functions (i.e., a series of sinusoidal func-
tions), the spherical harmonic basis functions are orthogonal with each other, and
their coefficients describe distinctive features of the ODF surface. Coefficients
of spherical harmonics have been used to segment the brain into different levels
of microstructural complexity [19, 20]. Herein, we use the spherical harmonic
coefficients to assess similarity between imaging voxels within the amygdala.
Amygdala subfields are identified via similarity matrices using spectral k-mean
clustering [21]. We tested our approach on healthy volunteers who received high
angular and high spatial resolution diffusion imaging.

2 Material and Methods

2.1 Data Acquisition

MRI scans were performed on 32 healthy volunteers at a 3.0T Phililps Achieva
INTERA scanner with a 32-channel head coil. Written informed consent was
obtained from all participants in accordance with ethical approval from the Dart-
mouth College Internal Review Board.

High spatial resolution dMRI sequence was acquired with a single-shot spin-
echo echo-planer imaging sequence at an isotropic voxel size of 1.6 mm with
four repetitions (TE/TR D 79/3382 ms, FOV D 230 mm � 230 mm � 35.2 mm,
in-plane matrix size D 114 � 114, and 22 slices). Diffusion-weighted (DW)
images were acquired with one volume at b-value D 0 s/mm2 (b0) and 61
noncollinear DW directions at b-value D 1000 s/mm2 with a total acquisition
time of 45 min. Other imaging protocols included: A matched field-of-view (FOV)
gradient-echo sequence with 2-echo times (TE D 7 and 8 ms) to generate fieldmap
to correct for dMRI geometric distortion; and a whole brain T1W image using a
magnetization-prepared rapid acquisition gradient echo sequence (MP-RAGE) with
TE/TRD 3.72/8.18 ms, FOVD 224 mm � 224 mm � 220 mm, and isotropic voxel
size of 1 mm3.

2.2 Post-processing

Motion correction, eddy current correction and susceptibility distortion correction
were applied to each volume of the DW images before averaging over the four
repetitions using the toolbox in FSL (FMRIB Software Library, University of
Oxford, http://fsl.fmrib.ox.ac.uk/fsl/). Motion and eddy current distortions were
corrected using a linear registration to the b0 image (eddy_correct, FSL) for each
volume within each repetition. Susceptibility distortion was corrected by calculating

http://fsl.fmrib.ox.ac.uk/fsl/
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Fig. 1 The top panel shows simulated ODFs of a single fiber orientation (0ı , 30ı, 60ı, 90ı).
The ODFs were simulated with a single tensor with axial diffusivity of 1200 mm2/s and radial
diffusivity of 250 mm2/s at b D 2500 s/mm2. The middle panel shows magnitude components of
SH coefficients. The bottom panel shows phase components of SH coefficients. l and m are orders
of Legendre function in the spherical harmonic bases. For illustrating purpose, SH coefficients of
l D 0 to 4 and m D �l to l are shown here

the geometric distortion and signal loss from the field map and was compensated in
the DW images (fudge, FSL). A final motion correction was applied to all four rep-
etitions by rigidly registering the b0 images from each repetition before averaging.

In the diffusion space, the averaged DW images were then used to calculate the
structural ODF profiles of the amygdala using in-house MATLAB programs [22]
with a Q-ball Imaging (QBI) algorithm [14]. Spherical Harmonics (SH) coefficients
of each ODF profile were extracted up to an order of 6, i.e., lmax D 6. As a symmetric
ODF was assumed and odd orders contain only noise information, only coefficients
of even orders were kept [19, 20]. A total of 28 SH coefficient pairs (i.e., magnitude
and phase) that represent the shape and orientation of ODF in each voxel were
entered into the subsequent spectral clustering. Figure 1 shows simulated ODFs
of a single fiber orientation (0ı, 30ı, 60ı, 90ı) and their SH coefficients. Figure 2
shows simulated ODFs for crossing fibers with a rotating 2nd fiber (0ı, 30ı, 60ı,
90ı) and their SH coefficients. Consistent with observations described in [19], the
shape (e.g., number of crossing fibers) and the orientation (e.g., rotation angle) of
the ODFs are described by the combination of magnitude and phase components of
the SH coefficients.



Parcellation of Human Amygdala Subfields Using Orientation Distribution. . . 127

Fig. 2 The top panel shows simulated ODFs for crossing fibers with a rotating 2nd fiber (0ı,
30ı, 60ı, 90ı). The ODFs were simulated with two tensors at b D 2500 s/mm2. Each tensor has
axial diffusivity of 1200 mm2/s and radial diffusivity of 250 mm2/s. The middle panel shows the
magnitude components of the SH coefficients. The bottom panel shows the phase components of
the SH coefficients. l and m are orders of Legendre function in the spherical harmonic bases; and
the SH coefficients of l D 0 to 4 and m D �l to l are shown here

2.3 Amygdala Segmentation

A amygdala probability mask was first obtained from the Harvard-Oxford sub-
cortical structural atlas provided in FSL in the MNI 152 standard space. The
mask was then warped to the subject diffusion space through the transformation
achieved by aligning T1W of each subject to the T1W in MNI space using a
nonlinear registration algorithm (fnirt, FSL). A threshold of 50% was then applied
to the probability mask to exclude extraneous tissue. The resulting masks were
conservatively away from the edge to avoid alignment errors and partial voluming
effects.

2.4 Amygdala Parcellation: K-mean Spectral Clustering

For each voxel, 28 SH coefficient pairs (lmax D 6, even orders) were extracted to
describe the diffusion characteristics that reflect the underlying tissue microstruc-
ture. Voxels within the mask of the amygdala would be grouped together according
to the similarity of their SH coefficients.
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To prepare for the subsequent Laplacian transformation of Spectral Clustering,
the graph similarities (Sij) between two voxels i , j were computed by converting the
weighted pair-wise Pearson’s correlation coefficient, i.e., Cij of the SH coefficients
according to their spherical distance [21]. The weighting, Wij, is to adjust physical
(Euclidean) distance between voxels i , j. The dimension of the S matrix, M � M,
equals to the number of voxels within the segmented amygdala.

Sij D exp

0

@�sin2
0

@
cos�1

�
Wij � Cij

�

2

1

A =sigma2
1

A (1)

Sigma is a threshold parameter that deems the importance of cells in C where
values below sigma are penalized. Therefore, S is a sparser matrix than C, as
higher similarity Sij is achieved only when the two voxels i , j have similar SH
coefficients and are physically close to each other. The value of sigma was optimized
by iteratively incrementing sigma until minimum Fiedler Value of the Laplacian
matrix (see below or [21]) was achieved.

The graph similarity matrix (S) of each subject was then transformed into a
normalized symmetric graph Laplacian matrix, on which eigen decomposition was
performed. According to spectral clustering theory [21], the first few ordered eigen
values contain critical structural information regarding the data. To determine the
number of eigen values that best reflect the underlying structure, we tested the
eigen values against those generated from unstructured data. The unstructured data
were generated by randomizing the SH coefficients. The randomization process
was bootstrapped for 1200 iterations to create a null distribution of eigenvalues
of the unstructured Laplacian matrices. For each subject, eigenvalues of original
“structured” Laplacian matrix were tested against the null distribution using z-
scoring, and the number of significant eigenvalues were determined as the number
of clusters, denoted as N.

To perform k-mean clustering to classify the voxels within the amygdala, we
picked the N eigenvectors corresponding to the N eigenvalues starting from Fiedler
Value. Each eigen-vector has M elements that equals to the dimension of the
Laplacian and S matrix. Note that M also denotes the number of voxels within
the segmented amygdala. The N eigen-vectors were stacked up to form a N � M
matrix. Thus, the N �M matrix described N distinct features for M voxels. K-mean
clustering was performed across M voxels to yield a cluster label for each voxel. The
clustering would then be complete and yield N amygdala subfields for each subject
in the native space. In order to check the inter-subject variability, the individual
results were transformed to the template brain. Individual clusters were averaged
across subjects to generate a consistency map.
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3 Results

Consistently three eigenvalues of the Laplacian transformed similarity matrix were
found to be statistically significant across 32 subjects with p < 0.001. Such
significance indicated a consistent pattern whose optimal solution was related to the
three eigenvalues. Therefore, N D 3 was the optimal cluster number found for this
study. In addition, we found that this N was independent from the sigma during the
iterative optimization process where we found sigma D 0.55 gives minimal Fiedler
Value.

The ODF profiles of the right amygdala with various orientations, shapes, and
peaks are shown in Fig. 3. The ODFs were overlaid on the clustering results of
one subject on an axial slice. It can be seen that groups of amygdala voxels show
characteristically different orientations and shapes of the ODFs that were associated
with fiber structures.

The similarity matrix (S) calculated from the SH coefficients of the ODF profiles
of the same subject in Fig. 3 is shown in Fig. 4. Red suggests high similarity.
Three clusters are noticeable, which correspond to three regions with distinct ODF
characteristics. As the similarity matrix also contains voxel correspondence, it
demonstrates consistent region separations as well.

The 3D scatter plot of the center of masses of each cluster across subjects is
shown in Fig. 5. The coordinates are in voxels and were oriented to match with the
image in coronal view (top-left) in Fig. 6. The spatial distribution of the center of
masses may be a measure of across subject consistency. Alternatively, Fig. 6 shows
the consistency map of clusters across subjects overlaid on the T1W images for
the left amygdala. It clearly shows three clusters as the following subfields: medial
(red), posterior-superior-lateral (green), anterior-inferior-lateral (blue).

Fig. 3 Right amygdala (axial view) with ODF overlaid on T1W for one subject
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Fig. 6 Consistency map of the three clusters in the left amygdala across subjects in coronal (top-
left), axial (bottom), and sagittal (top-right) views

4 Discussion and Conclusions

This study demonstrates that with high angular and spatial resolution diffusion
imaging, the amygdala can be parceled into three subfields. The automated cluster-
ing uses only microstructural information within the amygdala and does not require
prior knowledge of histology or cortical functional projections of amygdaloid
subnuclei. The physical locations of the three subfields infer three subnuclei
including lateral, basolateral, and centromedial nuclei. However, further study is
warranted to validate their cortical projections by incorporating dMRI tractography
to link each cluster to functionally relevant cortical regions and to compare with
histologically defined subnuclei.
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Sparse Representation for White Matter Fiber
Compression and Calculation of Inter-Fiber
Similarity

Gali Zimmerman Moreno, Guy Alexandroni, Nir Sochen,
and Hayit Greenspan

Abstract Recent years have brought about impressive reconstructions of white
matter architecture, due to the advance of increasingly sophisticated MRI based
acquisition methods and modeling techniques. These result in extremely large sets
of streamelines (fibers) for each subject. The sets require large amount of storage
and are often unwieldy and difficult to manipulate and analyze. We propose to use
sparse representations for fibers to achieve a more compact representation. We also
propose the means for calculating inter-fiber similarities in the compressed space
using a measure, which we term: Cosine with Dictionary Similarity Weighting
(CWDS). The performance of both sparse representations and CWDS is evaluated
on full brain fiber-sets of 15 healthy subjects. The results show that a reconstruction
error of slightly below 2 mm is achieved, and that CWDS is highly correlated with
the cosine similarity in the original space.

1 Introduction

Recent advances in the field of magnetic resonance (MR) based imaging of white
matter (WM) have brought about the means to create extremely detailed 3D
representations of WM architecture. These include advanced imaging techniques
such as High Angular Resolution Imaging (HARDI) as well as sophisticated
modeling and tractography algorithms. Tractography creates sets of “fibers” (3D
streamlines), which represent the major pathways of neural connections. A full brain
fiber set often contains half a million or more fibers and results in extremely large
file (of the order of 1 GB). The storage problem is further exacerbated by the need
to save fiber-sets for multiple brain scans, as is often the case in many studies and
databases. There are several possible ways to approach this problem: smart coding
of the original data to optimize bit allocations, omission of part of the fibers to
minimize redundancies, which is a form of smart down-sampling of the dataset, or
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finding an alternative representation for the fibers themselves. Ultimately all three
elements need to be combined to create a complete compression scheme for WM
fiber sets. In recent years several works have addressed the issue of reducing the
number of fibers [1, 2]. A complete compression pipeline with fiber representation
and coding was presented in a work by Presseau et al. [3].

In this paper, we address the issue of compressing the fibers, or in other words
we seek a fiber representation that requires less storage, while still providing a
good approximation to the original fibers. This “compressed” representation is
intended to serve as part of a lossy compression scheme. In addition, we strive
to provide the means to evaluate similarities between fibers without explicitly
returning to the original, uncompressed format. Calculation of inter-fiber distances
or similarities is one of the frequently performed tasks in many algorithms for fiber
clustering, classification, or registration. Allowing such calculations to be completed
using the compressed representation will facilitate reduction in storage space and
computational complexity. We propose to use sparse representations for fibers in a
high dimensional space defined by overcomplete dictionary. This method of signal
decomposition was shown to be beneficial to compression in various applications
[4]. Inter-fiber similarity can then be calculated directly in the compressed space,
using sparse representations [5] and a specially tailored similarity measure—
Cosine with Dictionary Similarity Weighting (CWDS), which we define below. The
proposed method is shown in Sect. 2, followed by experimental validation in Sect. 3
and discussion and conclusions in Sect. 4.

2 Methods

A signal f 2 <d can be represented as a sparse linear combination of prototype
signals from an overcomplete dictionary , D 2 <d�K , K > d. These prototype
signals are the columns of D, usually termed “atoms”, and designated fajgKjD1. The
representation coefficients constitute the vector x 2 RK , so that for exact signal
representation f D Dx . We seek the sparsest representation of f, using the dictionary
D. This sparsest representation is the solution to the problem in Eq. (1). The solution
of Eq. (1) is an NP-hard problem. However as long as sparse enough solution exists,
its uniqueness can be verified [5].

The overcomplete dictionary D that leads to sparse representation can be chosen
in advance, or especially adapted to fit a training set of signal examples. This latest
approach is adopted here. The dictionary is trained using K-SVD algorithm [5],
which minimizes the following objective function [Eq. (2)].

min
x
kxk0 s:t: f D Dx (1)

min
D;x
kF �DXk2F s:t: 8i kxik0 6 T0 (2)



Compact Sparse Representation 135

where T0 is a predetermined number of non-zero entries in a coefficient vector and F
is a matrix of the size d�N, containingN original data points fi 2 Rd, as its columns.
X is a matrix of the size K � N, containing N coefficients vectors xi 2 RK , as its

columns. The notation kAkF stands for Frobenius norm, given by kAkF D
qP

ij A
2
ij.

K-SVD iteratively minimizes the function in Eq. (2), in two stages: first D is fixed
and the best coefficient matrix X is found using Orthogonal Matching Pursuit (OMP
[6]). This stage is termed the sparse coding stage. The second stage is the codebook
update stage. It searches for a better dictionary, by fixing all the columns of D but
one, and finding a new column and its updated coefficients such that the mean square
error, kF �DXk2F , is reduced.

In case of fibers, the matrix Fd�N contains the original fibers as its columns
and XK�N contains the sparse representations of the fibers as its columns. N is the
number of fibers, d is the length of original fiber representation and K is the length
of the sparse representation. A fiber, f , is represented as a sequence of m points in
a 3D space, sampled equidistantly: f D fx1; y1; z1; ; xm; ym; zmg,where m D 20 for
all fibers (d D 60). This choice of m was found to be a good compromise between
the representation length and representation precision [7]. Once the dictionary is
finalized, the fibers can be sparsely represented as a combination of dictionary
atoms. This step is termed sparse coding, or atom decomposition. The representation
coefficients x are found based on the given signal f and the dictionary D. It requires
solving the problem in stated in Eq. (1). OMP algorithm that is used is a greedy
algorithm that selects at each step the atom with the highest correlation to the current
residual. The signal is then orthogonally projected to the span of the previously
selected atoms and the residual is iteratively recomputed [5]. The compressed
fibers set will consist of the matrix X containing the new sparse representations
as its columns, and of the dictionary D. An approximate reconstruction of original
representation is achieved by

QF D D � X (3)

Instead of learning the dictionary on an entire fiber set, a representative sub-set
of fibers is used in order to reduce the learning time. Simple down-sampling of the
fiber set may compromise the outcome by randomly excluding parts of the fiber-
set that may be important. Here, we propose to employ the coreset concept [8] in
order to select a meaningful sub-set of fibers for learning the dictionary. Coresets are
an innovative paradigm in data science, useful in tasks requiring large computation
time and/or memory [8]. Selective reduction of large fiber-sets using coresets was
explored in our previous work [9]. A novel algorithm called Density Coreset (DS)
was proposed, that selects a subset of fibers using an iterative non-uniform sampling
process. In DS, the effective sampling rate is set to be inversely proportional to the
fibers density in brain space. This reduction process tends to choose representative
fibers, while omitting redundancies (which are the fibers nearly identical to the ones
selected). Feigin et al. [10] have shown that the optimization problem of learning
D can be solved on a coreset, which is much smaller, without sacrificing too much
accuracy.
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2.1 Inter-Fiber Similarity and Sparse Representation

There exist numerous similarity measures that can be used with fibers. Here we
focus on the cosine similarity measure which was shown in an earlier work to be
advantageous for fibers [10]:

simcos
�
fi; fj

� D
˝
fi; fj

˛

k fikk fjk (4)

where h�i stands for inner product and k�k for L2 norm. Since the new representation
basis is not orthogonal, we cannot use this measure directly with sparse vectors. We
propose to address the issue by modifying a cosine similarity measure in a way
that takes into account the non-orthogonality of the sparse basis. Assuming that the
reconstructed fibers Qf are similar enough to the originals, we can write

simcos
�
fi; fj

� Š simcos
� Qfi; Qfj

�
(5)

Since reconstructed fibers are found by multiplication of the sparse representation x
with the dictionary (3), the following relationship holds

simcos
�
fi; fj

� Š simcos
�
Dxi;Dxj

�
(6)

Using the definition of cosine similarity Eq. (4) we get

simcos
�
fi; fj

� Š hDxi;Dxji
kDxikkDxjk D

.Dxi/
T � Dxj

kDxikkDxjk D
xTi D

TDxj
kDxikkDxjk (7)

We define S as a K � K matrix, such that sij contains a similarity measure between
the atom ai and the atom aj in D. Since all atoms in D have a unit norm, this can be
written as

S D DTD I sij D hai; aji (8)

rewriting Eq. (7) using Eq. (8) we have

simcos
�
fi; fj

� Š xTi Sxj
kDxikkDxjk (9)

Notice that the norms in the denominator are in fact the norms of the fibers that
can be reconstructed using their sparse representation. However, we seek here
to perform the similarity computation without going back to the original space.
We therefore propose to substitute these norms by the norms of the original
fibers, which can be saved before the sparse coding phase and later saved as
part of the compressed data. That step would add one additional value to the
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representation, which will not have significant impact on the representation length,
while allowing to use the original fiber norm for similarity approximation. The
modified compressed representation bx will contain the value: normi D k fik,
concatenated to the sparse coefficients vector xi.

bx D fxi; normig (10)

Based on the above, we propose to use the following similarity measure in order to
calculate fiber similarities using compressed representations, termed Cosine With
Dictionary Similarity Weighting (CWDS):

simCWDS
�
bxi;bxj

� D xTi Sxj
knormikknormjk (11)

Algorithm

– Find a coreset C that contains a subset of N fibers from the original set F.
– Learn sparse dictionary Dd�K from that coreset using K-SVD, where K is the

length of the new sparse representation and d is the original length of fiber
representation.

– Find sparse representations xi for all fibers (OMP). Calculate k fik for each
fiber. The compressed representation of fi is given bybxi D fxi; normig.

– Calculate the feature similarity matrix S, Eq. (8), where sij represents how
similar is the dictionary word ai to dictionary word aj.

– Calculate the similarity between two compressed representations using CWDS
similarity, Eq. (11).

The dictionary can be learned for each fiber-set and saved along with the
compressed representation, or it can be learned from co-registered multiple fiber
sets. The latter is more computationally efficient and is in fact necessary for
calculating similarities between fibers originating from different brains.

3 Performance Evaluation

The proposed method was evaluated on MRI datasets of 15 healthy volunteers
from the Human Connectome Project (HCP), Wu-Minn1 database . The acquisition
protocol included three shells (b-values of 1000, 2000, 3000), 96 unique directions
for each, isotropic resolution of 1.25 mm and imaging matrix of 144 � 168 � 111
pixels [11]. The diffusion data were preprocessed using the HCP diffusion pipelines
[12], which included susceptibility, eddy-current and motion distortions correction,

1http://www.humanconnectome.org.

http://www.humanconnectome.org
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and registration to a common space. WM fibers were obtained using Q-Space
Diffeomorphic Reconstruction (QSDR) reconstruction and tractography by DSI-
Studio.2 Tractography was terminated upon reaching 1 M fibers. In this section we
evaluate the performance of the proposed scheme. There are three main aspects
we would like to explore: how well does the sparse representation approximate
the original fibers; how well is the original similarity measure approximated by
CWDS; and is it possible to use a common dictionary for different fiber-sets. The
experiments that are described next shed some light on these questions.

3.1 How Well Do the Sparse Representations Approximate the
Original Fibers

For each of the fiber-sets F, a dictionary D was learned as described in Sect. 2. The
dictionary learning was performed on a subset C of the fibers, which constitute a
coreset of F. The coreset size was set to 20,000 for all the experiments (reduction
by 50), in order to shorten the dictionary building times in Matlab. Dictionary sizes
of 500, 600, and 700 atoms were evaluated. The sparsity constraint, T0, was set to: 3,
5, 7. The complexity of calculating cosine similarity on the original space is O .D1/,
D1 being the dimension of the original representation. The complexity of CWDS
is O

�
D22
�
, where D2 is T0. Therefore in order not to increase the computational

requirements of CWDS, T0 needs to be kept below
p
D1, or in our case T0 < 7:7 (as

D1 D 60).
First, we calculate the representation error relatively to the coreset fibers, which

were used to train each dictionary. For each original coreset fiber, the reconstructed
fiber is found using Eq. (3) and a L2 distance is evaluated between the original and
the reconstructed fibers. Figure 1 presents the mean distance for all 15 brains for
different values of K and T0. The mean values over all 15 fiber-sets are summarized
in Table 1. In addition, we check whether the quality of sparse approximation
remains the same for the fibers in the sets which are not part of the coreset. Here the
reconstruction error is calculated for 10,000 fibers randomly selected from the full
fiber set. Mean values over all sets are summarized in Table 1.

As expected, the reconstruction error becomes smaller for higher T0. T0 D 7

achieves the lowest error which is stable around 2 mm. It is also important to note
that the error for random fibers is only a slightly higher than that of the coreset
fibers. The difference is of the order of magnitude of the standard deviations. This
can be seen as evidence that the coreset is a good enough subset for training the
dictionary.

2Developed by Fang-Cheng Yeh from the Advanced Biomedical MRI Lab, National Taiwan
University Hospital, Taiwan, and made available at http://dsi-studio.labsolver.org/Download/.

http://dsi-studio.labsolver.org/Download/
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Fig. 1 Mean reconstruction errors for coreset fibers; blue-T0=3, purple-T0=5, green-T0=7

Table 1 Mean reconstruction errors in mm and standard deviations (in parentheses)

Mean
�j f � Qf j� T0 D 3 T0 D 5 T0 D 7

Coreset, K D 500 9 .0:2/ 3:01 .0:15/ 1:92 .0:13/

Random set, K D 500 5:65 .0:24/ 3:31 .0:16/ 2:18 .0:15/

Coreset, K D 600 4:97 .0:2/ 2:81 .0:15/ 1:81 .0:12/

Random set, K D 600 5:28 .0:25/ 3:09 .0:18/ 2:05 .0:14/

Coreset, K D 700 4:65 .0:2/ 2:62 .0:13/ 1:7 .0:0:09/

Random set, K D 700 4:97 .0:23/ 2:91 .0:15/ 1:94 .0:11/

Figure 2 illustrates the reconstruction quality for one of the fiber sets. The
original and reconstructed fibers are shown in row 1. Rows (2–4) show examples
of single fibers and their reconstructed versions for different error magnitudes
(zoomed in).

3.2 How Well is the Original Similarity Measure Approximated
by CWDS

Our CWDS similarity measure is evaluated by comparing the distances between
the fibers in their original representation (measured by cosine similarity [Eq. (4)])
and the distances between the same fibers as calculated in the sparse representation
space using CWDS [Eq. (11)]. The distances were calculated using 10,000 randomly
selected fibers from each brain. Figure 3 presents plots of the original cosine vs.
CWDS for one of the brains and K = 500.

Mean differences between the two similarity measures were calculated for all
fiber-sets and different values of K and T0. The results are presented in Table 2.

Both Fig. 3 and Table 2 show that the differences in similarity measures are very
small for all tested values of K and T0, with the smallest being for T0 D 7, K D 700.
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Fig. 2 Reconstruction of fibers from their sparse representations (arbitrary chosen fiber set).
Here K = 700, T0 = 7. Row (1) two views of the same fiber set; blue-original fibers, green—
reconstructed. Rows (2), (3), (4) each shows three examples of fibers reconstructed with the error
of 1 mm, 2 mm, 3 mm, respectively
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Fig. 3 Original vs. CWDS similarities for one of the brains. K = 500; green is an identity line. (a)
T0 D 3, (b) T0 D 5, (c) T0 D 7

Table 2 Mean differences between the two similarity measures

Mean
�jSorig � CWDSj� T0 D 3 T0 D 5 T0 D 7

K D 500 0:0016
�
0:08 � 10�3

�
0:0004

�
0:04 � 10�3

�
0:00013

�
0:02 � 10�3

�

K D 600 0:0015
�
0:08 � 10�3

�
0:00037

�
0:04 � 10�3

�
0:00013

�
0:02 � 10�3

�

K D 700 0:0014
�
0:08 � 10�3

�
0:000035

�
0:03 � 10�3

�
0:000011

�
0:01 � 10�3

�

Table 3 Performance with common dictionary: mean reconstruction errors and mean differences
between the two similarity measures

T0 D 3 T0 D 5 T0 D 7

Mean rec. error 6:5 .0:23/ 3:85 .0:18/ 2:49 .0:12/

Mean
�jSorig � CWDSj� 0:0018

�
0:07 � 10�3

�
0:00048

�
0:03 � 10�3

�
0:00014

�
0:01 � 10�3

�

3.3 Representation of Different Fiber-Sets with Common
Dictionary

For this experiment, the coresets of all 15 brains were pooled into one huge mixed
set. This is possible due to the fact that the original brains are all preregistered to a
common space. The mixed set was downsampled by 3 to speed up the calculation
and a common dictionary was learned with K D 500, T0 D 3; 5; 7. The mean
reconstruction errors and mean differences between cosine similarity in original
space and CWDS in compressed space are shown in Table 3.

Here too, the lowest reconstruction error occurs at T0 D 7 and is only slightly
higher than the error received for individual dictionaries. The distances differences
remain as small as before.

4 Discussion and Conclusions

The results indicate that it is possible to use a sparse representation for fibers,
with mean reconstruction error slightly above 1.5 mm when using seven non-zero
coefficients per fiber. Furthermore, the size of the dictionary has much less impact
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on the reconstruction quality than T0. In addition, one common dictionary can be
used for a group of fiber-sets, which is more efficient and only slightly increase
the reconstruction error. The transition from initial 60 dimensional representation
to sparse representation with T0 D 7 reduces the number of non-zero values
by 87% (this includes the norm value saved for each fiber) and thus presents
significant reduction in memory requirements. If the fiber set is further compressed,
for example using Huffman coding, the sparse sets can achieve much higher
compression ratio than the original set, due to much lower entropies of the sparse
representations.

A very significant difference of our method from other fiber compression
techniques [3] is that it enables the estimation of inter-fiber similarity directly in
the compressed space, using our proposed CWDS measure. The calculation of
similarities (which can be converted into distances) is a necessary part of many
common analysis schemes (comparisons, classifications, etc.) often applied to fiber
sets. CWDS allows to perform these tasks without “decompression” of the data.

We have demonstrated the performance of the CWDS measure for both individ-
ual dictionaries learned for each fiber-set and for a common dictionary, which allows
for inter-set similarity calculations. The value of T0 was constrained to 7 in order to
achieve the same computational complexity as one can get using cosine similarity
in the original space. If more accuracy is needed, it may be achieved with higher
T0, of course with additional computational cost. The dictionary learning, although
a computationally intensive procedure in itself is performed offline and only once
for a group of fiber sets. The computational burden is reduced further by learning
from a corset and not the full fiber set.

Future work includes incorporating the presented concept into a full compression
pipeline, together with elimination of redundant fibers and additional coding with
adaptive bit allocation. We will also endeavor to lower the reconstruction error by
incorporating an error constraint into the sparsity framework and by addressing the
different fiber lengths during the dictionary learning process.
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An Unsupervised Group Average Cortical
Parcellation Using Diffusion MRI to Probe
Cytoarchitecture

Tara Ganepola, Zoltan Nagy, Daniel C. Alexander, and Martin I. Sereno

Abstract Cortical parcellations provide valuable localisation resources for other
neuroimaging modalities such as fMRI as well as insight into the structure-function
relationship of the brain. The venerable but now dated ex vivo Brodmann map is
currently being superseded by in vivo techniques that can better take into account
intersubject variability. One popular in vivo method focusses on myeloarchitecture
by measuring T1. This, however, probes only one aspect of cortical microstructure
and is less useful in regions of low myelination. In contrast, diffusion MRI (dMRI) is
sensitive to several additional microstructural features and can potentially provide a
richer set of information regarding the architecture of grey matter microcircuitry.
The following study used 3T HARDI data of multiple subjects to produce an
entirely unsupervised, hemisphere-wide, group-average, parcellation. A qualitative
assessment of the resulting cortical parcellation demonstrates several spatially
coherent clusters in areas corresponding to well known functional anatomical areas.
In addition, it exhibits some cluster boundaries that correlate with independently
derived myelin mapping data for the same set of subjects, whilst also providing
distinct clusters in areas (e.g., within MT+) where myelination is a less informative
measurement.
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1 Introduction

The cytoarchitecture of the cerebral cortex in humans and many other mammalian
species was first investigated in the early 1900s using histological sections of
post-mortem brains stained for cell bodies or myelinated fibers. Pioneers of this
era [1–3] discovered that the microstructure of the cortex was organised into six
layers, the columnar appearance of which varies throughout the cortical sheet.
Roughly homogeneous modules of variable size were observed and attributed to
functional specificity, starting with striate cortex whose border with V2 is easily
visible to the naked eye in hand-cut unfixed tissue. The hypothesis of a mosaic of
internally homogeneous areas prevails today and these classical parcellations have
been widely adopted in modern studies, for example, to localise activation foci in
functional imaging studies.

Despite their pervasiveness, it is evident that traditional cortical maps suffer
many methodological limitations. One limitation is observer dependant bias, [4].
Another problem is that histological methods are often restricted to a single cell stain
per specimen, thus requiring the observer to combine identified boundaries across
differently distorted adjacent sections. These limitations may explain the variability
in size, location and number of cortical areas reported by different such methods
[4–7]. The labour-intensive process of histological sectioning enforces further limits
on the sample size used to generate such cortical maps. Subsequent studies have
demonstrated a large degree of intersubject variability with regards to the exact
location and extent of several well-defined cortical areas. Given this, classical
maps derived from a small sample of cadaver brains, are unlikely to accurately
reflect boundary definitions for the entire population. Other considerations include
the introduction of artefacts from histological sectioning (e.g., including unique
nonlinear distortions in each section due to slide mounting and outright tears in
the tissue), which complicate registration of data back into undistorted 3D space.

Despite their lower resolution, in vivo methods have the potential to overcome
some of these limitations—in vivo analysis provides observer independent image
processing, much larger samples sizes, the possibility of multi-modal studies,
and completely avoids histology artefacts. Thus far, in vivo investigations of
cortical microstructure have focussed predominantly on myeloarchitectonics, via
quantitative T1 [8] and R1 (1/T1) mapping [9–11] mapping using multiple flip
angles, the ratio of T1-weighted over T2-weighted images [12, 13], and multiple
inversion times (MP2RAGE). However, myelination density provides only a partial
picture of cortical microstructure. More recently, Glasser et al. extended their
T1-weighted/T2-weighted methods into a multi-modal framework for cortical
mapping [14]. This approach combined myelin maps , resting state, and task-based
functional MRI measures of approximately 200 subjects with expert anatomical
knowledge and a complex processing pipeline to produce a semi-automated,
group-average, full-hemisphere, cortical parcellation. Nevertheless, the datasets in
that paper do not directly measure the fine-grained structural information that is
associated with the cyto- and myeloarchitecture of the cortex. For investigators
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wishing to acquire a detailed understanding of the structure-function relationship
in the cortex, it may be desirable to include measurements of additional features
that characterise grey matter (GM) micro-environments.

There is a growing body of evidence [15–22] to support the use of diffusion
MRI in cortical imaging facilitated by recent technological advancements, such
as multi-band excitation, magnetic field probes [23], and ultra high field imaging.
In particular, investigators have demonstrated changes in the dominant diffusion
direction between the primary somatosensory and motor cortices, via a measure
of radiality [20]. Others have shown the relationship between cortical gyrencephaly
and diffusion tensor metrics [21]. Nagy et al. demonstrated the in vivo individualised
discriminative power of a feature set derived from high angular resolution diffusion
imaging data by testing distinct fMRI-based regions of interest [22]. These findings
suggest that dMRI in grey matter may provide an additional informative modality
for replicating and possibly refining/redefining the boundary definitions of existing
cortical parcellation approaches.

The dMRI signal is sensitive to several microstructural features, including
but not limited to axon diameter, neurite density, and dominant fibre direction
and hence may offer additional structural information beyond bulk myelination
density alone. To test the idea that grey matter dMRI might provide a richer
description of cortical microenvironments, we used unsupervised, surface-normal-
based, group-average cortical parcellation derived from dMRI-based measures of
cytoarchitecture. We applied and refined the framework initially developed by Nagy
et al. [22] to a large group of subjects using surface-based and surface-referenced
cross-subject averaging of dMRI to obtain a hemisphere-wide map of grey matter
diffusion patterns from high resolution, 3T data. The resultant parcellation exhibits
several coherent clusters that correspond closely with the locations of well-known
cortical areas, despite the classifier having no prior information or non-local spatial
constraints of any kind.

2 Methods

2.1 Data and Pre-Processing

Imaging datasets for 17 unrelated subjects (10m, 7f aged 22–35) were randomly
selected from the minimally pre-processed, 500-Subjects release of the Human
Connectome Project (HCP). For a thorough description of the protocols and pre-
processing pipelines refer to the HCP documentation [24–26]. In brief, data were
collected on a Siemens 3T Skyra system. Each diffusion dataset comprised of 270
gradient directions, acquired evenly across three interleaved b-shells, b = 1000, 2000
and 3000 s/mm2. An additional eighteen b=0 images were interleaved throughout
the acquisition. The high angular and spatial (1.25 mm isotropic) resolution of the
HCP datasets lends itself to investigations of grey matter diffusion where, partial
volume effects and low anisotropy values are limiting factors.
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The HCP pre-processing steps conducted prior to data release, include eddy
current and motion correction, providing diffusion weighted images with good
alignment and without major distortions. Therefore, further corrections to this end
were not performed; however, HCP diffusion datasets suffer from subject specific
gradient nonlinearities that were corrected for during the fitting procedure of the
tissue model below.

2.2 Surface Reconstruction

In order to utilise the high resolution (0.7 mm isotropic) of the available structural
data we chose the HCP FreeSurfer pipeline over the standard recon-all
pipeline to generate cortical surface reconstructions for each subject. This improved
pipeline does not down-sample the T1w images to 1 mm isotropic resolution, and
incorporates the additional information available in the T2w scans to reduce surface
placement errors [25].

Following cortical surface reconstruction the diffusion datasets of each subject
were sampled at the midpoint between the white/grey matter (WM/GM) boundary
and the pial surface so as to reduce the likelihood of either WM or CSF contamina-
tion [20, 22].

2.3 Feature Space

In a similar procedure to that of Nagy et al. [22], a sixth order spherical harmonic
series (SHS) was fit to the dMRI signal in order to characterise the apparent diffusion
coefficient (ADC) profile of the cortical tissue. A SHS was fit separately in each b-
shell for each surface vertex of the right hemisphere of each subject. A subset of the
features presented in [22] were calculated from the ADC to obtain a [1�5] feature
vector per vertex, per b-shell. The features, as detailed below, characterise the ADC
profile in relation to the local surface normal, and therefore describe the GM tissue
irrespective of the orientation differences that result from cortical folding.

1. The value of the ADC profile along the surface normal.

f .n/

2. The mean of the ADC profile in the plane perpendicular to the surface normal,
i.e. parallel to the cortical sheet. C.n/ is the unit circle perpendicular to n.

Nf? D .2	/�1
Z

C.n/

f .x/dx
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3–5. The k=2,3 and 4 moments, respectively, of the ADC in the plane perpendicular
to the surface normal.

Mk;? D
Z

C.n/

Œ f .x/kdx

The group average of each of the 15 features was computed in turn using sulcus-
based surface averaging [27]. This approach allows an individual’s folding pattern
to be aligned to an average folding pattern, in this case on the fsaverage surface.
With this method, any given fsaverage vertex will combine data from individual
subject vertices that have surface normals in different directions. This makes it
possible to detect local-surface-geometry-dependent diffusion signatures of cortical
areas even though their local normal directions might differ from subject to subject.
This information would be compromised if the diffusion data were to be directly
averaged in 3D (folded) space. The transformation between each subject’s cortical
surface and the target brain space was applied to each of the cortical features in turn.
The mean across all subjects of each feature was then calculated for each vertex of
the fsaverage surface. Finally, the averaged features were recombined into a
[1�15] group average feature space for classification.

2.4 Classification

The unsupervised classification algorithm, k-means [28], was implemented to
parcellate the group average feature set. Several values of k were tested on a trial and
error basis, starting with k D 40, approximately the number of Brodmann areas. At
lower values, the parcellation produces large smooth clusters, and doesn’t provide
additional structural information to the myelin density map (see below). Results are
shown for a value of k D 150. At this value the parcellation displayed many more
area-like clusters than for lower values, whereas, increasing beyond this value did
not provide additional information in initial qualitative assessments. Furthermore,
k D 150 was the value after which decreases in the sum of total distances for the
clustering solution began to plateau, and the total runtime began to increase rapidly
(Fig. 1).

Since the clusters are numbered arbitrarily by the algorithm, we included an
additional ordering step whereby clusters were reordered by the similarity of cluster
centres, starting with the pairing which had the highest affinity. Here, similarity was
defined as the Euclidean distance between the mean feature vector of each cluster.
This additional ordering stage acts to smooth to the results when viewed on the
surface, compared to a completely randomised cluster order.

The resulting group average cortical parcellation was qualitatively compared to
a group average myelin map, estimated from the T1w/T2w ratio of the same set of
HCP subjects.
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Fig. 1 The tested values of k for the k-means algorithm against the best sum of total distances for
each clustering solution (blue) and the total runtime of the algorithm in seconds (orange)

3 Results

Figure 2 shows the lateral view of the group average diffusion MRI based parcella-
tion (right) alongside the group average myelin map (T1w/T2w) for the same set of
subjects (left) on the inflated fsaverage surface. Figure 4 shows the medial view
of the same. Figure 3 shows the distribution of myelin measurements within regions
of interest (ROI) selected from the dMRI parcellation.

41,42

3b 4

41,42

4

1.1 2.3

T1/T2

1 150

cluster ID

44 44

45

3b

MT+MT+

Fig. 2 The lateral view of the diffusion-based parcellation (right) and the group average myelin
map (left)
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A D

CB

Fig. 3 The distributions of myelin measurements corresponding to regions of interest from the
dMRI parcellation result. The histograms on the left show T1w/T2w distribution from regions
A and B within the central sulcus and are distinct in both modalities. The histograms on the
right correspond to regions C and D which appear distinct in the parcellation but have closely
overlapping myelin distributions. The outlines of the regions of interest from which the histogram
data were extracted are shown in the centre image

3.1 Central Sulcus

The most salient feature of the parcellation is the emergence of distinct and spatially
coherent clusters along the anterior (white cluster) and posterior (red cluster) banks
of the central sulcus. These have been provisionally labelled 3b and 4 due to their
consistency with the location and extent of Brodmann areas 3b and 4. These cortical
areas correspond to part of primary somatosensory cortex (S-I) and to primary motor
cortex (M-I), respectively. Comparison with the myelin map (left) indicates that
the white cluster ID correlates with an area of high myelination, whereas, the red
cluster correlates with a drop in myelination. Figure 3 confirms that both the myelin
and diffusion measurements discriminate these regions. However, the independently
derived diffusion based parcellation produces a more spatially coherent area along
the posterior bank of the central sulcus, when compared to the variability of the
myelin map in Fig. 2.

There are several factors that may have lead to the group average parcellation
exhibiting the closest agreement to the Brodmann map within the central sulcus.
The boundary between S-I and M-I represents one of the most prominent transitions
within the cortex [20, 29]. The input layers of S-I possess many small cell bodies
giving it a granular appearance. In contrast, long cortico-spinal projections in M-I
result in large pyramidal cell bodies known (in the foot representation) as Betz Cells,
giving an agranular appearance. S-I also exhibits highly myelinated tangential bands
of Baillarger, which are less prominent in M-I. Furthermore, in vivo studies at 7T
support the hypothesis that differences in the laminar composition between these
two regions are manifested in dMRI signal [20].

Another factor which may have improved the detection of these areas is that
they demonstrate relatively low intersubject variability. S-I occupies the posterior
bank of the central sulcus and extends back into the postcentral gyrus and M-I



152 T. Ganepola et al.

occupies anterior bank of the central sulcus, extending forwards into the precentral
gyrus, with their transition consistently located at the fundus of the central sulcus
[5, 29] near the location of area 3a, which receives predominant input from muscle
receptors. This is consistent with the location and extent of the red and white clusters
in the parcellation. Therefore, it is likely that architectural changes in these regions,
as characterised by their feature vectors, are reinforced by averaging across multiple
subjects.

3.2 Broca’s Region

Areas 44 and 45 are collectively referred to as Broca’s region , which has long
been implicated in the production and recognition of speech. We note that both
the parcellation and myelin map exhibit a distinct region that is consistent with the
location of area 44. This area emerged as a coherent patch despite it not having a
consistent relation to macroscopic landmarks in the majority of subjects [6].

In addition, anterior to area 44, we note the presence of a spatially coherent
purple/blue cluster, provisionally labelled area 45. It seems that area 45 has
no counterpart in the myelin map, supporting the notion that diffusion based
cortical imaging may be able to provide additional information to myelin mapping,
particularly in areas of lower myelination such as the premotor and prefrontal cortex.
This notion is further supported in Fig. 3 where it is clear that the distribution of
myelin values between area 45 and the adjacent ROI are very similar. In contrast,
these two regions could be differentiated in the diffusion based feature set. The
frontal lobe of the diffusion-based parcellation appears more like a patchwork of
distinct clusters, whereas the myelin map in this region appears more homogenous.

3.3 Auditory Areas

On the temporal lobe we note that both the myelin map and diffusion-based
parcellation exhibited distinct patches that roughly coincide with primary auditory
core and belt areas (BA 41 and 42). This suggests that some structural information
in the dataset is maintained despite Heschl’s gyrus exhibiting a markedly variable
folding pattern across subjects [30].

3.4 Occipital Areas

On the right hand side of Fig. 4 the posterior occipital lobe contained prominent
purple, blue, and red clusters, giving it a distinct appearance compared to much of
the rest of the medial cortical sheet, which was assigned predominantly to green and
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Fig. 4 The medial view of the diffusion-based parcellation (right) and the group average myelin
map (left)

white clusters. This generally correlates with the high myelination of this region,
seen in the T1/T2 data at the left of Fig. 4; however it is worth noting that the
region of apparent heavy myelination in V2 just below the tip of the “18” arrowhead
projected further in the superior direction than the purple region in the diffusion-
based result.

The black contours outline the inner and outer extents of area 18 from the
FreeSurfer probabilistic atlas, i.e the secondary visual area V2. The inner boundary
of this contour corresponds to the neighbouring primary visual cortex, V1 (area 17),
within the calcarine sulcus. Despite V1 possessing a prominent tangential band in
layer 4B that is lacking in extrastriate area V2 [5, 17], we did not observe distinct
coherent clusters corresponding to the full extent of these two areas in either the
T1/T2 data or the diffusion data. Instead the most salient feature of this region was
the red cluster, which is located near the upper vertical meridian of V1. It is unclear
why the boundary of V1 was characterised uniquely by the dMRI feature set, rather
than the entire region. However, the myelin map showed a significant decrease in
myelination in the same location that is not consistent with the underlying anatomy.
This suggests the presence of a systematic surface placement error that my have
resulted in CSF partial voluming in both data sets, which resulted in a region near
the upper and lower vertical meridian border between V1 and V2 standing out.

Finally, returning to the lateral surface (see Fig. 2) in the middle of the myelin-
dense region of MT+ it is possible to distinguish a border between a posterior
orange cluster and an anterior white/tan cluster. A study examining the relation
between quantitative T1 and retinotopy [11] surprisingly showed that the heavily
myelinated oval in the lateral occipital cortex does not directly correspond to MT;
instead, MT proper only accounts for the posterior part of that oval. The anterior part
may correspond to FST, which represents parts of the visual field already mapped
in MT, and which responds to the ipsilateral visual field unlike MT. Once again,
this suggests that diffusion data may help distinguish regions not easily separated
by using myelin density alone.



154 T. Ganepola et al.

3.5 Gyrification

The unlabeled black arrows on the right of Fig. 4 indicate curvature-like features in
the parcellation. These lines follow the fundus and crown of the cingulate sulcus
and gyrus respectively. The emergence of these macroscopic landmarks could be
associated with sampling errors at areas of high curvature, where partial voluming
is more prevalent. Alternatively, it may reflect a relationship between gyrification
and diffusion anisotropy, as suggested by several groups—e.g., [21]. Deeper cortical
layers appear to thin in sulci, which has been suggested to be a way of maintaining
equal local volume by folding-induced tangential stretching [31, 32]. By contrast,
upper cortical layers appear to puff out and become more myelinated on gyri. These
systematic folding-correlated effects may give rise to detectable differences in grey
matter diffusion patterns. The initial detection of a correlation between gyrification
and T1 was similarly initially dismissed as a depth-sampling artifact, but then
subsequently suggested to be partly due to real myelination differences between
sulcal and gyral cortex. An additional complication is that partial volume errors
may be detecting systematic differences in fiber direction near the grey/white matter
border; for example, the dominant diffusion direction is expected to be highly radial
in areas of high curvature, such as gyral crowns, and more tangential in along the
banks of gyri due to the angle at which u-fibres project into the cortex [20, 21].

4 Conclusion

We presented a parcellation result using dMRI data, demonstrating areal definitions
that reflect some well known architectonically defined regions without the use
of a training stage or any non-local spatial constraints. The population average
feature set is most discriminative in primary areas that are consistently located
across subjects, such as S-I and M-I, and heavily myelinated regions. However,
we also observe clusters that may correspond to non-primary areas such as area
44 and 45. Our results demonstrate that the higher-order, diffusion-based, feature
set may be distinguishing local differences in the texture and geometry of the
myelinated meshwork of the neocortex not all of which are visible in myelin density
maps. Incorporating this information is likely to improve the performance of non-
supervised multimodal parcellation schemes for cortical areas.
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Abstract Microstructural measures from diffusion MRI have been used for classi-
fication purposes in neurodegenerative and psychiatric conditions. Novel diffusion
reconstruction models can lead to better and more accurate measures of tissue
properties: each measure provides different information on white matter microstruc-
ture in the brain, revealing different signs of disease. The diversity of computable
measures makes it necessary to develop novel classification procedures to capture all
of the available information from each measure. Here we introduce a multichannel
regularized logistic regression algorithm that classifies individuals’ diagnostic status
based on several microstructural measures, derived from their diffusion MRI
scans. With the aid of a TV-L1 prior, which ensures sparsity in the classification
model, the resulting linear models point to the most classifying brain regions
for each of the diffusion MRI measures, giving the method additional descriptive
power. We apply our regularized regression approach to classify Alzheimer’s
disease patients and healthy controls in the ADNI dataset, based on their diffusion
MRI data.
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1 Introduction

Diffusion MRI (dMRI) reveals a number of properties of white matter (WM)
microstructure. Its sensitivity to water diffusion in living tissue allows us to compute
numerous summary measures that relate to neural fiber integrity and architecture in
the brain. Based on certain assumptions, each can quantify different aspects of WM
microstructure. One of the most basic measures—fractional anisotropy (FA)—is
based on the diffusion tensor model (DTI) [1], and continues to be popular despite
its known limitations, which include its ambiguity at fiber crossings. Other models
overcome some limitations of DTI, including multi-tensor models, such as the tensor
distribution function (TDF) [2], q-ball imaging and the orientation distribution
function (ODF) [3], constrained spherical deconvolution [4], neurite orientation
dispersion and density imaging (NODDI) [5], and freewater index (FW) [13] among
others. Each model leads to its own set of scalar microstructural measures and
many offer a richer understanding of WM microstructure than FA does. Which
combination of measures best characterizes brain disease remains an open question,
and depends on the disease examined, and the spectral and angular resolution of the
available data. This question may have a different answer in different parts of the
brain depending on the underlying changing pathology (e.g., pathological changes
in gray/white matter interfaces or more central white matter tracts).

At the time of writing, around 20 microstructural measures have been proposed
for single-shell dMRI. Microstructural measures derived from new dMRI models
may carry even more information on WM microstructure including the geometry of
diffusion anisotropy, diffusivity, complexity, estimated number of distinguishable
fiber compartments, number of crossing fibers and neurite dispersion. Combining
these in a classification task is challenging, and requires proper regularization.
Here, we use a Total Variation-Lasso or TV-L1 regularization as a prior term in a
logistic regression framework. The channel-wise TV term leads to linear models that
are approximately spatially piecewise constant, giving the weight maps descriptive
power to suggest both the regions and measures that are helpful in a disease
classification task, while considering multiple measures together. We build on prior
work with TV-L1 regularizers in neuroimaging; they have been used successfully
for fMRI decoding and in electrophysiological studies [6].

The classification task examined here is to discriminate Alzheimer’s disease
patients (AD) and healthy aging controls (NC), based on their dMRI data, by
merging information from a range of complementary indices. A discriminative
model in this setting may be useful as a disease biomarker, for drug trial enrichment
and to help identify those most likely to decline in the future. In view of this, many
studies describe WM microstructural differences between AD and NC [7], and some
exploit WM metrics for classification [8–10]. By combining several measures in a
classification task, we hope to generate a biomarker of disease that is “greater than
the sum of its parts.”
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2 Methods

2.1 Data Acquisition and Preprocessing

Baseline MRI, dMRI, and clinical data were downloaded from the ADNI database
(adni.loni.usc.edu). Here we performed an analysis of dMRI data from 102 partic-
ipants: 53 healthy controls (CN; mean age: 72.4 ˙ 6.0 years; 24 M/29 F), and 49
AD patients (mean age: 74.9˙ 8.7 years; 29 M/20 F).

All subjects underwent whole-brain MRI scanning on 3T GE Medical Sys-
tems scanners at 14 acquisition sites across North America. Anatomical T1-
weighted SPGR (spoiled gradient echo) sequences (256 � 256 matrix; voxel
size D 1.2 � 1.0 � 1.0 mm3; TI D 400 ms; TR D 6.98 ms; TE D 2.85 ms; flip
angle D 11ı), and dMRI (128 � 128 matrix; voxel size: 2.7 � 2.7 � 2.7 mm3;
TRD 9000 ms; scan timeD 9 min were acquired; 46 separate images were acquired
for each dMRI scan: 5 images with no diffusion sensitization (b0 images) and 41
diffusion-weighted images (DWI; bD 1000 s/mm2).

Images were preprocessed as in [7]. To summarize, raw dMRI images were cor-
rected for motion and eddy current distortions, and T1-weighted images underwent
inhomogeneity normalization. Extra-cerebral tissue was removed from both scan
types. Each T1-weighted anatomical image was linearly aligned to a standard brain
template (the down-sampled Colin27 [11]): 110 � 110 � 110, with 2-mm isotropic
voxels). The diffusion images were linearly and then elastically registered [12] to
their respective T1-weighted structural scans to correct for echo-planar imaging
induced susceptibility artifacts. The gradient tables were corrected to account for
the linear registration of the DWI images to the structural T1-weighted scan.

2.2 DMRI Reconstruction Models, Scalar Maps,
and Spatial Normalization

For each subject, dMRI microstructural measures were computed from four dif-
ferent reconstruction models: DTI, TDF, NODDI and FW. Five measures were
extracted from these models: FA and mean diffusivity (MD) from DTI, fractional
anisotropy from TDF (FA-TDF), the orientation dispersion index (OD) from
NODDI and the free water index (FW). We will not describe the well known DTI
based FA and MD here, but will briefly describe the other three models:

The Tensor Distribution Function (TDF) represents the diffusion profile as
a probabilistic mixture of tensors [2] allowing the reconstruction of multiple
underlying fibers per voxel, together with a distribution of weights. We compute the
voxel-wise TDF as the probability distribution function P(D) defined on all feasible
3D Gaussian diffusion processes in tensor space D:

S .q/ D P .D/ e.�tqTDq/dD; (1)
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where S is the measured intensity signal, q D rıG, where r, ı, and G are the
gyromagnetic ratio, the duration of the diffusion sensitization, and the applied
magnetic gradient vector, respectively. The number of detected peaks is estimated
by examining the local maxima of the tensor orientation distribution (TOD), defined
in the unit sphere along directions � :

TOD .�/ D
Z

�

P .D .�; �// d�; (2)

where � are the eigenvalues. The TDF-averaged eigenvalues of each fiber were
calculated by computing the expected values along the principal direction of the
fiber. From these eigenvalues a scalar TDF anisotropy (FA-TDF) is calculated as an
extension of the standard FA formula:

FA TDF D
Z

TOD .�/ � FA .�/ d�

D
s
.�0

1.�/��0

2.�//
2C.�0

1.�/��0

3.�//
2C.�0

2.�/��0

3.�//
2

2
h
�0

1.�/
2C�0

2.�/
2C�0

3.�/
2
i

�0
i .�/ D

R
P .D .�; �// �id�R
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(3)

The Neurite Orientation Dispersion and Density Imaging (NODDI) is a
composite model that takes into account three compartments that affect water
diffusion in the brain: the intracellular compartment, the extracellular compartment,
and the cerebrospinal fluid (CSF) [5]. The intracellular compartment is modeled as
cylinders with a radius of zero that represent the axons and dendrites of the brain
tissue, which are jointly called neurites. The ODF of the intracellular compartment
is modeled as a Watson distribution that can capture the dispersion orientation of
coherent central white matter bundles as well as the incoherent neurites of the grey
matter. The normalized intracellular compartment Aic is modeled as:

Aic D
Z

S2

f .n/ e�bd
k

.q�n/2dn (4)

Here, q represents the gradient directions, b the b-value of the diffusion
weighting, n are the orientations of the cylinders with parallel diffusivity djj along
which the signal is attenuated and f .n/ is the Watson distribution, which has two
parameters (�, K) and is defined as:

f .n/ D M

�
1

2
;
3

2
;K
	�1

eK.��n/2 (5)

Here, the distribution tends to be symmetric around the mean orientation �, and
M is Kummer’s confluent hypergeometric function. K is called the concentration
parameter. For K > 0, as K increases the density along � tends to concentrate.
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Once K is estimated the orientation dispersion index (OD) is calculated as:

OD D 1

	
arctan

�
1

K
	

(6)

OD goes from 0 to 1, the higher the value the more dispersed the neurites in a
particular voxel. In our analyses below we used only the OD maps. The intracellular
and extracellular volume fractions as well as the isotropic CSF volume fraction
are not taken into account in our analyses. Zhang et al. demonstrated that the
latter measures require more than one shell in order to be reliable, whereas the
OD can be computed reliably with single shell data even with standard clinical
acquisition b-values of b D 1000 s/mm2 [5]. OD may be more informative than
DTI, in areas with less organized patterns such as areas of multiple fiber crossings
as well as towards the gray/white matter boundaries.

Free-Water Imaging (FW) estimates the contribution of freely diffusing water
molecules to the diffusion signal with a bi-tensor model [13]. The first component
of the model is the so-called tissue compartment that represents either grey matter
or a bundle of the white matter. The second component reflects the free-water
compartment, which is said to be proportional to the amount of CSF contamination,
especially in areas of the white matter that are close to the ventricles. The free-water
component is also expected to increase with neuroinflammation due to edema. The
full model is defined as:

Sq .D; f / D fe.�bqTDq/ C .1 � f / e.�bdw/; (7)

where S is the attenuated signal, q are the applied diffusion gradient directions,
b is the b-value of the diffusion weighting, D is the diffusion tensor and f is the
fractional volume of the tissue compartment (0 < f � 1). The second term is a fully
isotropic tensor, where dw is the bulk diffusivity of water, which is constant at body
temperature (3 � 10�3 mm2/s).

Voxel-wise maps of all five measures—FA, MD, FA-TDF, OD, and FW—were
created for all 102 subjects; all subjects’ maps were spatially normalized to a custom
ADNI- derived minimal deformation template (MDT). Template creation and spatial
normalization was performed according to previously published voxelwise ADNI-
DTI analyses [7].

2.3 Regularized Logistic Regression Classification

In general, the linear logistic regression model has the following classification
function

y D f .X;w; b/ D F .XwC b/ (8)
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Here X 2 Rn�p, n is the number of samples (subjects) and p is the number of
features. As all the computations were performed within the MDT mask (193,586

200,000 voxels), p is the number of voxels times the number of diffusion measures
(five in this case). The parameters to be estimated are w and b, where w 2 Rp is a
p-dimensional vector, b 2 Rn is the intercept and y2 f�1, 1g is the class label, in
our case, to be the subject diagnosis. The regularized cost to be optimized is:

bw D arg min L .y;F .XwC b//C �J .w/ ; � � 0 (9)

where L is the logistic loss function, J .w/ is the regularization term and � is the
Lagrange multiplier. The intercept b is not regularized, and only depends on the loss
function. We will simplify L .y;F .XwC b// to L .w/. In our case, the standard
TV-L1 norm cost becomes:

J .w/ D .1 � ˛/ kwk1 C ˛
XNm

jD1TV
�
wj
�
; TV.y/ D kryk ; (10)

where the first term is the LASSO or L1 cost, TV is the Total Variation penalty [6],
wj is the weight map of a microstructural measure j, Nm (D5 here) is the number
of measures used and ˛ is a constant that sets the desired tradeoff between L1
and TV terms. The L1 penalty encourages sparsity in the model, by setting most
coefficients to zero. This penalty function suffers from some limitations when there
is a large number of parameters p to fit, and few observations n, as LASSO selects at
most n variables before it saturates. Further, if there is a group of highly correlated
variables, then LASSO tends to select one variable from a group and ignores the
others. On the other hand, the TV is defined as the L1 norm of the image gradient,
which allows for sharp edges, encouraging the recovery of a smooth, piecewise
constant weights map. This in turn allows us to interpret the weight maps as they
may highlight clusters that can resemble anatomical regions.

We used the FISTA procedure [6] to find bw (the estimated value for w). As the
L1 terms are not smooth, a naïve gradient descent may not always converge to a
good minimum. For this convex optimization, smooth and non-smooth terms are
considered separately. The logistic loss and the logistic gradient are the smooth
terms:

L .w/ D 1

n

Xn

iD1log
�
1C e�yi.XT

i w/
�

(11)

rL .w/ D �1
n

Xn

iD1
yiXi

1C eyi.X
T
i w/

(12)

We used an eightfold nested cross-validation to tune the parameters ˛ and �.
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3 Results

We were able to classify individuals into diagnostic groups (AD vs. NC) with an
accuracy of 76.2%. We ran a parallel test by using only one measure (FA-DTI) and
the prediction accuracy was 50%. As expected, the resulting maps of significant
predictors showed cohesive regional patches of stable coefficients, a property that is
favored by the TV regularization term. Figure 1 shows the resulting map for each of
the five measures.

FW and MD showed similar predictive properties, with large regions of negative
coefficients in the frontal lobes (both hemispheres). FA-DTI and FA-TDF also
showed a similar pattern, but FA-TDF showed larger and more cohesive regions in
the frontal white matter, especially in areas with fiber crossings. OD showed some
similarities with the MD map although the regions with the larger coefficients (both
positive and negative) tended to be smaller and more widespread. Many of these
observations are in line with what is expected for each measure. The direction of the
coefficients is also important to note. It is expected that the anisotropy of the white
matter tends to decrease in AD compared to healthy aging controls, but MD, FW
and OD on the other hand tend to increase with white matter disruption.

A. B. C.

D. E.

1.2x10-4

-1.2x10-4

2x10-4

-2x10-4

4.3x10-5

-4.3x10-5
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-2.6x10-5

6x10-5

-6x10-5

Fig. 1 Regularized maps of useful diagnostic predictors, based on measures computed from
diffusion MRI. (a) FA-DTI, (b) FA-TDF, (c) MD-DTI, (d) OD, (e) FW. Color bars show the value
of the coefficients, from negative (blue) to positive (red), with zero in green
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4 Discussion

In this article, we evaluated the utility of the TV-L1 prior logistic regression
to assess the ability of multiple dMRI reconstruction methods to simultaneously
distinguish alterations in WM microstructure between people with AD and matched
healthy controls. We computed five dMRI derived microstructural measures from
four different reconstruction models that were used together in a regularized
classification framework and we were able to successfully classify AD from healthy
controls and to derive spatially coherent discrimination patterns across the entire
brain for each measure.

AD pathology includes disturbances in the brain’s WM pathways including loss
of axons, myelin sheaths, and oligodendroglial cells, which may not all be detected
by using DTI based descriptors alone. Machine learning for classification based on
dMRI features has been focused mainly on DTI derived measures; although HARDI
derived measures have also been explored [19, 20]. Volumetric measures, including
hippocampal volume, gray matter volume from voxel-based morphometry, and
cortical thickness [14–16, 18], have effectively classified AD patients, but few
studies have used dMRI-derived biomarkers for classification purposes. Most of
these studies have used DTI based measures: several used voxel-wise features
from DTI maps, using methods such as Pearson correlation and ReliefF for feature
reduction [8–10], reporting classification accuracies of >90%. In [17], tractography-
based connectivity metrics based on fiber count, FA-DTI, and diffusivity were used
for SVM classification, reporting an accuracy of 88%. Clearly, these accuracies
depend on the problem and dataset used, and are not directly comparable with one
another. Spatial and anatomical regularization for classification purposes have also
been tested on AD discrimination against controls by Cuingnet et al. [18]. Here
they achieved improved classification accuracies by using this type of regularization
on cortical features and producing discriminatory parcellated maps of the cortex
highlighting the brain regions traditionally compromised in AD.

Here we evaluated 102 subjects and were able to reach a relatively high
classification accuracy for a white matter study of AD. Although our approach
did not necessarily “beat” prior classification results, our goal was to compare the
relative utility of multiple metrics for classification, which leads to some insight on
how the disease may affect different fiber properties. Moreover, it was important
to see if these measures might complement and add to the information provided
by DTI measures—particularly in regions outside the coherent WM. Many dMRI
measures are correlated with each other to some extent, but each captures the
microstructure slightly differently, and at the various spatial locations, there may
be greater sensitivity to detecting subtle changes with one measure versus another.

In conclusion, different reconstruction models and their respective scalar descrip-
tors provide distinct micro-anatomical features, which differ in classification value
by brain region. Together these estimates may improve brain-wide classification
and may overcome the need to compute localized statistically determined regions
of interest, and allow us to observe microstructural changes in the entirety of the
brain. We made use of the main functionality of the TV prior, namely its denoising
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and smoothing capabilities across the image. This is essential in this context since
single voxels prove to be very noisy and neighboring anatomy is presumably similar.
Future work should compare other classification methods and improve estimates
by incorporating tissue volume differences. We will also test if dMRI metrics
can contribute to leading classification approaches based on biomarkers such as
hippocampal volume, amyloid deposition, and tensor-based morphometry.
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Accurate Diagnosis of SWEDD vs. Parkinson
Using Microstructural Changes of Cingulum
Bundle: Track-Specific Analysis

Farzaneh Rahmani, Somayeh Mohammadi Jooyandeh, Mohammad
Hadi Shadmehr, Ahmad Shojaie, Farsad Noorizadeh, and Mohammad
Hadi Aarabi

Abstract SWEDD (scans without evidence of dopaminergic deficit) patients often
are misdiagnosed as having Parkinson disease (PD) but later prove to have distinct
features from PD. A commonly found symptom of these patients being focal and
unilateral dystonia. SWEDD patients do not respond to dopaminergic therapy and
may in turn benefit from management of adult onset dystonia, therefore early
differential diagnosis from PD is important in order to avoid over diagnosis of PD
and mismanagement of these patients. Along with a different pattern of tremor
from PD, SWEDD patients do not show the non-motor symptoms associated
with different stages of PD, do not exhibit cognitive deficit and depict a and
task specificity of the motor symptoms without any deterioration along time. We
hypothesized that the cingulum which is both functional in cognitive control and
task set performance and is structurally affected in early stages of PD and is
implicated in other non-motor symptoms of PD might be differentially affected in
PD and SWEDD group. The diffusion imaging data from 39 PD, 28 SWEDD and 21
normal subjects were reconstructed in the MNI space using q-space diffeomorphic
reconstruction (QSDR) to assess association of quantitative anisotropy (QA) and
generalized fractional anisotropy (GFA) of left and right cingulum with the PD and
SWEDD groups in the baseline level (diagnosis of PD or SWEDD) and age-sex
matched controls. We found significant difference between GFA and QA of the
left cingulum and QA of the right cingulum in SWEDD and control group versus
the PD group. These results suggest a diagnostic value for the cingulum in early

F. Rahmani • M.H. Shadmehr
Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN),
Tehran, Iran

S. Mohammadi Jooyandeh
Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany

A. Shojaie • F. Noorizadeh • M.H. Aarabi (�)
Basir Eye Health Research Center, Tehran, Iran
e-mail: Mohammadhadiarabi@gmail.com

© Springer International Publishing AG 2017
A. Fuster et al. (eds.), Computational Diffusion MRI, Mathematics
and Visualization, DOI 10.1007/978-3-319-54130-3_14

167

mailto:Mohammadhadiarabi@gmail.com


168 F. Rahmani et al.

PD/SWEDD and also reveal that the diffusion metric parameters of cingulum that
are not necessarily sensitive to axonal loss (GFA) might be a better indicator of
microstructural changes in early PD/SWEDD.

1 Introduction

SWEDD or (scans without evidence of dopaminergic deficit) are a group of
clinically diagnosed patients with Parkinson symptoms who reveal no evidence
of dopaminergic deficit on [123I] FP-CIT Single Photon Emission Computerized
Tomography (SPECT) which is identified as marker of disease progression [1, 2].
The true entity of patients with Parkinsonism as with SWEDD is still unknown.
While SWEDD patients were first identified following entrance and follow up DAT
Scanning of patients with assumed Parkinson disease (PD), there is propensity
to classify SWEDD patients as a distinct disorder in that they do not show
imaging progress toward PD and do not respond to classical levodopa treatment [3].
Additionally studies have shown that PD is clinically over diagnosed in uncertain
cases therefore misdiagnosis of this group might expire a golden time for initiation
of a proper treatment. In fact a longitudinal follow up of patients with DAT imaging
within normal range has revealed that in up to 44% of these patients the initial
diagnosis changes to other disorders not associated with DAT deficit or PD. These
patients also exhibit lower Unified Parkinson’s Disease Rating Scale (UPRDS)
score which remain relatively constant during the course of disease [4]. Another
study demonstrated that the arm tremor pattern in SWEDD group as well as
their response to PMS conditioning along with their minimal responsiveness to
dopaminergic therapy can clinically discriminate between them and PD patients [5].
The occurrence of focal or segmental dystonia and task specificity of dystonia. Lack
of true bradykinesia and absence of the non-motor symptoms of PD also favors
the diagnosis of SWEDD rather than PD [6]. Furthermore emerging evidence of
differential DAT scan quantification parameters and patterns in PD group vs. normal
and SWEDD group [7] are being provided whereas little data exist on the specific
regional involvement of extranigral or cortical areas that might help determine the
true nature of SWEDD group and facilitate clinical judgment between SWEDD and
PD group and adult onset dystonia which often exhibits overlapping clinical and
experimental features with SWEDD [5].

The cingulate gyrus is a major white matter tract with implications in emotion
formation and executive function and also plays a major role in cognitive control
of limbic lobe functions such as response initiation. Cingulate gyrus also works
in close functional and structural relation with prefrontal cortex and its adjacent
dorsal anterior cingulate cortex to maintain an intact executive function [8] and
connecting sites with known role in cognitive control. Decreased FA is observed in
cingulum of PD patients in both demented and early-stage non-demented patients.
Contrary to FA, the increase in mean diffusivity in early stages of PD compared to
normal controls is associated with better performance in semantic fluency and other
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cognitive tasks in newly diagnosed PD patients [9, 10]. The anterior and posterior
cingulum microstructure and function differ in which each convey different cortical
connections to the prefrontal and parieto-occipital cortices respectively [8]. This
can explain their role in task set/verbal memory loss (rostral part of cingulum) and
visuospatial memory impairment (parahippocampal Cingulum) in PD [11].

2 Procedure

2.1 Participants

Participants involved in this research were recruited from Parkinson’s Progression
Markers Initiative (PPMI) [12]. Participants were tested and confirmed negative
for any neurological disorders apart from PD. The participants’ PD status was
confirmed by Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) and the loss of dopaminergic neurons were observed in
DaTscans. Every participant involved in this research has signed informed written
consents in order to share their unidentified clinical data to investigators. DWI
images were obtained for 39 PD, 28 SWEDD and 21 normal age and sex matched
were available from the baseline visit (Table 1).

2.2 Data Acquisition

Data used in the preparation of this paper was obtained from Parkinson’s Pro-
gression Markers Initiative (PPMI) database (www.ppmi-info.org/data/) [12]. This
dataset was acquired on a 3 Tesla Siemens scanner, producing 64 DWI (repetition
time = 7748ms, echo time = 86ms; voxel size: 2:0� 2:0� 2:0mm3; field of view =
224� 224mm) at b = 1000 s=mm2 and one b0 image along with a 3D T1-weighted
structural scan (repetition time = 8:2ms, echo time = 3:7ms; flip angle = 8ı, voxel
size: 1:0� 1:0� 1:0mm3; field of view = 240mm, acquisition matrix = 240� 240).

Table 1 Baseline characteristics and clinical features in control and PD and SWEDD

Parkinson SWEDD Control

Sex ratio (male/female) 23/13 18/10 15/6

Age (years˙ SD) 63.11˙8.74 61.28˙9.73 61.38˙7.11

UPRDS score (˙ SD) 20.27˙8.87 15.51˙7.08 –

Hoehn & Yahr score (˙ SD) 1.66˙0.47 1.59˙0.50 –

MOCA score (˙ SD) 27.33˙2.05 26.82˙2.55 28.14˙1.1

www.ppmi-info.org/data/
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Fig. 1 Overview of method

2.3 Diffusion MRI Data Processing, Fibers Tractography
and Group Analysis

Diffusion MRI data were corrected for subject motion, eddy current distortions, and
susceptibility artefacts due to the magnetic field inhomogeneity using ExploreDTI
toolbox [13]. The diffusion data were reconstructed in the MNI space using q-space
diffeomorphic reconstruction to obtain the spin distribution function. A diffusion
sampling length ratio of 1.25 was used, and the output resolution was 2 mm [14]. A
seeding region was placed at whole brain. An ROI was placed in exactly the same
location as the rostral ROI and the second ROI was placed in the subgenual part of
the cingulum [15, 16]. The anisotropy threshold was 0.15. The angular threshold was
30ı. The step size was 1 mm. Tracks with length less than 300 mm were discarded. A
total of 1,000,000 seeds were placed. Quantitative anisotropy (QA) and generalized
fractional anisotropic (GFA) were derived for each participant. The analysis was
conducted using publicly available software DSI Studio (http://dsi-studio.labsolver.
org). Figure 1 shows the overview of method. Quantitative statistical comparison
of anisotropic parameters cingulum was conducted using analysis of variance
(ANOVA) (SPSS version 15: SPSS, Chicago, IL, USA).

3 Result

Herein we used Diffusion Tensor Imaging study to reveal changes in brain connec-
tivity associated with SWEDD or Parkinson group compared to control group.

One way ANOVA analysis revealed significant difference between QA and GFA
of left cingulum and QA of the right cingulum between groups. Tukey post-hoc test

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
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Table 2 Result of quantitative measurements of diffusion MRI in control, PD and SWEDD

PD SWEDD Normal

GFA of the left cingulum (mean˙SD) 0.55˙0.085 0.47˙0.091 0.45˙0.051

QA of left cingulum (mean˙SD) 0.102˙0.005 0.096˙0.006 0.101˙0.008

GFA of the right cingulum (mean˙SD) 0.49˙0.078 0.52˙0.102 0.51˙0.064

QA of the right cingulum (mean˙SD) 0.098˙0.006 0.102˙0.004 0.107˙0.007

Table 3 ANOVA and post hoc multiple comparisons of diffusion parameters of left and right
cingulum

Diffusion parameter of a
fibers

ANOVA
P-value

Post hoc multiple
comparisons

P-value after
Bonferroni
correction

GFA of the left cingulum 0.000 Controls vs. PD < 0:001

SWEDD vs. PD 0:002

QA of the left cingulum 0.007 SWEDD vs. PD 0:011

QA of the right cingulum 0.038 SWEDD vs. PD 0:031

Controls vs. PD < 0:001

SWEDD vs. Control 0:049

was used to analyses between groups difference. The mean˙ SD for each diffusion
parameter in each group is depicted in Table 2. Homogeneity of variances was met
for all tested variables using Leven’s test of homogeneity of variances, except for
QA of right cingulum which was further analyzed by the Welch ANOVA and post-
hoc Games-Howel test. For the ANOVA, a non-corrected p-value of < 0:05 was
considered significant. Conditional on a significant F-value, post hoc pairwise t-
tests were used and controlled with Bonferroni correction for multiple comparisons.
Table 3 shows significant results of analysis of QA and GFA of cingulum between
groups.

4 Conclusion

After the cingulum is implicated in many aspects of early PD manifestations includ-
ing attention deficit, verbal and episodic memory impairment and depression which
can also emerge as late consequences of PD [11]. Results of our study showed that
SWEDD and control group shared similar diffusion metric parameters which were
significantly different from those with Parkinson disease (Table 2). As demonstrated
by a previous study [4] the baseline severity of parkinsonian symptoms was lower in
SWEDD group compared to PD group (T-test P-valueD0.03). Meanwhile the H &
Y stage of PD patients and SWEDD group were not statistically different (T-test P-
valueD0.55), both implicating minimal unilateral motor involvement. The MOCA
score demonstrates absence of any detectable cognitive decline in any of the three
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groups. In fact all patients were enrolled from drug-naïve recently diagnosed PD
and SWEDD patients of the PPMI database whose PD or SWEDD status had been
confirmed by DAT SCAN. This difference in microstructural changes of cingulum
in PD and SWEDD group is in line with the absence of cognitive decline and non-
motor symptoms of any kind in SWEDD group. The difference in microstructural
parameter of Cingulum can be considered as novel biomarker for early differential
diagnosis of SWEDD from PD patients. The preponderance of GFA association but
not the QA of cingulum might suggest that nondegenerative processes not involving
axonal loss can better define or determine specific structural changes of PD vs.
SWEDD group in newly diagnosed patients.
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Colocalization of Functional Activity
and Neurite Density Within Cortical Areas

Achille Teillac, Sandrine Lefrance, Edouard Duchesnay, Fabrice Poupon,
Maite Alaitz Ripoll Fuster, Denis Le Bihan, Jean-Francois Mangin,
and Cyril Poupon

Abstract In this work, we investigated the link between the blood-oxygen-level
dependant (BOLD) effect observed using functional magnetic resonance imaging
(fMRI) and the neurite density inferred from the Neurite Orientation Dispersion and
Density Imaging (NODDI) model in some well-known lateralized cortical areas.
We found a strong colocalization between those two parameters in lateralized areas
such as the primary motor cortex, the language network, but also the primary visual
cortex, which might indicate a strong link between microstructure and functional
activity.

1 Introduction

Since the early twentieth century, neuroanatomists aim at disentangling the link
between the functional organization of the brain and the tissue microstructure at the
cellular scale. Brodmann was among the first to publish his cytoarchitectonic atlas
built from the observation of cortical histological slices using optical microscopy,
that is debated but still remains used today. Its construction relying on very
few subjects is a strong limitation since it prevents from investigating the inter-
subject variability and gives limited confidence about the boundaries separating the
established cortical areas. In addition, it prevents from any comparison with brain
functioning. Recently, the emergence of diffusion-based MR microscopy providing
quantitative features of the tissue microstructure such as the axon diameter and
density [1, 2] may open an avenue to the establishment of novel atlas of the
brain cytoarchitecture. It relies on in-vivo acquisition and therefore enables to look
at the variability of these features between subjects and to correlate them with
brain functions investigated using functional MRI. Moreover, the access to such
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quantitative features of the ultrastructure may bring valuable imaging markers of
brain diseases since most pathological mechanisms occur at the cellular level.

For this study, the NODDI model [3] has been chosen because of its relatively
easy use in clinical routine involving a multiple-shell diffusion-weighted MRI
protocol and because the underlying modeling of the tissue relies on the definition
of three compartments: a compartment corresponding to the CSF characterized by
a fast isotropic diffusion process mainly used to account for partial volume effects,
a restricted cylinder compartment corresponding to the part of water constrained
within the intra-dendritic and intra-axonal spaces represented by sticks, an hindered
compartment corresponding to the extracellular space characterized by a Gaussian
diffusion model. This extracellular model might not reflect the anatomical complex
organization because of the Gaussian assumption for all the components in the
extracellular compartment. However, the NODDI model has proven to be a useful
tool to explore the cortex in some pathological diseases such as the focal cortical
dysplasia as detailed in [4]. It comes with several metrics of interest such as the
intracellular fraction ( fintra) representing the local neurite density or the orientation
dispersion index (ODI) being very small in white matter where fibers present a high
degree of alignment and closer to 1 in the cortical ribbon where dendrites are almost
arbitrarily oriented in space.

In this work, we investigate the relation between microarchitectural features
measured using the NODDI model and the underlying functional activities observed
using fMRI. The Materials and methods section describes the acquisition protocol,
the preprocessing and computation of the NODDI maps, the pipeline to obtain the
intracellular fraction and how it has been correlated with the z-score maps stemming
from the fMRI; the Results section presents the obtained maps and describes more
explicitly the relationship between the neurite density and the functional activity for
cortical regions; the Discussion section summarizes the contribution and presents
the potential of the tools addressed in this paper.

2 Material and Methods

2.1 Acquisition

73 right-handed healthy volunteers were scanned on a 3T MRI (Siemens MAG-
NETOM Trio, Tim system) using a dedicated protocol [5] including: a MPRAGE
sequence for the T1-weighted anatomy (1 mm isotropic; TED2.98 ms; TRD2.3 s), a
multiple-shell diffusion-weighted SE-EPI sequence (1.7 mm isotropic; TED117 ms;
TRD14 s; 10 b-values from 300 to 3000 s/mm2 along 20 directions and 10 scans
at bD0 s/m2), an echo-planar sequence for the BOLD signal (3 mm isotropic;
TED2.4 ms; TRD30 ms) and a fieldmap calibration to remove distorsions. This
protocol originally designed in the frame of the CONNECT project remains relevant
according to the protocols presented in the NODDI paper by Zhang et al. [3]
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as the restricted number of directions has been counterbalanced with the high
number of shells. Moreover, the restricted number of direction was not a problem
to study the dendrites within the grey matter as they are isotropically distributed.
The experimental fMRI protocol [6] is freely accessible for a set of subjects (http://
brainomics.cea.fr/localizer). This localizer protocol is a 5-min fMRI sequence that
captures the cerebral bases of auditory and visual perception, motor actions, reading,
language comprehension and mental calculation at an individual level. In this work,
the functional contrasts which have been considered are: “right hand click minus left
hand click” and “left hand click minus right hand click” for hands motor activations,
“phrase video minus checkerboard” for reading activations and a visual contrast
combining “right video click, left video click, video calculation, video sentence
minus right audio click, left audio click, audio calculation, audio sentence”.

2.2 Individual NODDI Maps

Individual diffusion-weighted dataset were preprocessed using Connectomist [5]
to remove imaging artifacts (motion, eddy current, susceptibility. . . ), thus enabling
accurate matching of DW and T1-weighted data using rigid registration. Individual
NODDI maps were computed using an inhouse command included in the Connec-
tomist software as depicted on Fig. 1: the intracellular fraction ( fintra) referring to
the space bounded by the membranes of neurites, their orientation dispersion index
(ODI) which represents the angular variation of neurite orientation, the CSF fraction
( fiso) which quantifies the CSF volume fraction and the Watson concentration
parameter (� evolving at the opposite of the ODI). We verified that the ODI values
were close to 0 in the white matter where the axons orientation are parallel and close
to 1 in the grey matter where the dendrites distribution is more arbitrary.

Figure 1 shows all the individual NODDI maps merged with the corresponding
anatomical T1-weighted image for a better anatomical colocalization.

The NODDI model can be easily described using the three compartments Eq. (1)
below:

A D .1 � fiso/ � Œ fintraAintra C .1 � fintra/AextraC fisoAiso (1)

where A is the normalized diffusion attenuation resulting from the contribution
of the three compartments: the CSF (Aiso), the intracellular space (Aintra) and the
extracellular space (Aextra). fiso denotes the volume fraction of the isotropic diffusion
compartment and fintra denotes the volume fraction of the intracellular compartment.

The intra-axonal or intra-dendritic compartment was mathematically modeled
using a cylinder geometry. The initial parallel diffusivity was set to 1:7�10�3m2s�1
and the orientation dispersion of the cylinder direction was modeled using a Watson
distribution, the isotropic diffusivity was set to 3:0�10�3m2s�1 and the normalized
noise standard attenuation was measured equal to 0:03.

http://brainomics.cea.fr/localizer
http://brainomics.cea.fr/localizer
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Fig. 1 Individual NODDI quantitative maps merged with T1-weighted MRI

2.3 Pial and White Surfaces

Extraction of T1-weighted MR scans were processed using FreeSurfer [7] to obtain
individual pial and white matter surfaces. Homologue vertices between pial/white
surfaces and between individuals allow to easily navigate between subjects. Cortex
parcellation was done using the aparc.a2009s Destrieux’s atlas [8] defining 152
regions shown on Fig. 2 detailed in the next section.

2.4 Individual Quantitative Maps of Neurite Density

As displayed on Fig. 2, the correspondence of vertices allowed to extract a dis-
tribution of fintra for each vertex by sampling the matched fintra map along the
segment defined by each pair of corresponding (pial, white) vertices. Maps of local
distributions of fintra were computed and statistics were inferred to build maps of
average, standard deviation (stddev) and median of fintra at the vertex level. In order
to get fintra distributions at the scale of cortical areas, the vertex-wise distributions
included in the considered area were merged together providing a microstructural
signature of this area per subject. Figure 2 summarizes the cortical sampling pipeline
developed to extract quantitative features on the cortex at the individual level.
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Fig. 2 Cortical sampling pipeline for one subject

2.5 Co-localization of Neurite Density and Functional Activity

We used the same approach to map the z-scores stemming from BOLD fMRI data
of each individual onto its cortical surface. The z-scores were computed voxel-wise
and integrated at the scale of the cortical region. So, at the end of the two pipelines,
we get for each subject and for each vertex of the pial mesh, the integral of the
neurite density over the cortical thickness, as well as, for each functional contrast,
the integral of its z-scores over the same cortical thickness. A Gaussian smoothing
was then applied onto the pial surface in order to enhance the peaks of neurite
density and the peaks of functional activity. All the individual surface maps were
finally averaged together to better visualize the colocalization of those peaks at the
group level (see Fig. 3).

2.6 Sørensen–Dice Coefficient

In order to characterize the overlap between the fintra and z-score maps, we chose
the Sørensen–Dice coefficient defined by the Eq. (2).

DiceIndex D 2jA:Bj
jAj2 C jBj2 (2)
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Fig. 3 Group level average z-scores and fintra maps

For the computation of the binary textures A and B in the Eq. (2), we took the
individual smoothed maps of fintra and z-scores for each contrast. For the fintra, we set
the threshold to half of the standard deviation (ie, threshold D mean� 0:5� stddev)
and for the z-scores, as it can be negative, we limited the threshold to one standard
deviation (ie, threshold D mean C stddev). The two maps have their own range
of values and we had to adapt each threshold independently: it has been done
empirically but would benefit from an automatized process in the future. Then,
we used Eq. (2) to compute the Dice index for each cortical area defined by the
Destrieux’s parcellation at the subject level.

3 Results and Discussion

3.1 Statistical Evaluation of Left-Right Neurite Density
Asymmetries

First of all, we checked the gaussianity of the fintra distributions using the Shapiro-
Wilcoxon test. Then, for all the cortical regions taken from the Destrieux’s atlas [8],
the signed differences of mean fintra between the left area and its associated right one
were computed for all the subjects. A t-test was then applied on this list of left-right
differences and finally, a False Discovery Rate (FDR) was computed to get rid of
the false positives. We only represented on Fig. 4 brain areas depicting a significant
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Fig. 4 Left-right difference
of fintra in cortical regions

difference between left and right hemispheres and the color of the area corresponds
to the difference using a rainbow colormap (the higher difference is shown in red).

Among the cortical regions where fintra.LH/ > fintra.RH/, we recognize the
frontopolar cortex, the secondary motor area, the somatosensory primary cortex
(central sulcus and postcentral gyrus but surprisingly not the left precentral gyrus),
the auditory cortex and some areas involved in the language network (Broca’s area,
Wernicke’s area, the inferior parietal lobule). As the language has been admitted
to be left-lateralized in 80% of the right-handed population and about 75% of the
left-handed population (cf. pioneer studies of language hemispheric lateralization
using the Wada test [9] but also more recent corroboration of those numbers
[10]), our findings seem to back up this cortical asymmetry. Furthermore, the link
between handedness and language dominance for the right-handed volunteers is in
adequation with the literature’s statements from [11].

On the other hand, by looking at the regions where fintra.RH/ > fintra.LH/, we
can notice that a portion of the visual primary cortex is highlighted which seem
to indicate a right lateralization in neurite density of this cortical region. A recent
article [12] has studied the cerebral response to a simple visual stimulation and they
suggest a right-hemispheric dominance of the concerned areas also in adequation
with what we have found in our study; to be verified with the functional underlying
activity in the next part.
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To link the microstructure with the underlying functional activity, we guided our
studies based on the Penfield homonculus [13] using a motor hand, a reading and a
visual contrasts.

3.2 Investigation of the Neurite Density in the Sensorymotor
Cortex

For the hand motor contrast, the first row of Fig. 5 shows an important activity in
the primary motor and the sensorymotor cortex assessed by strong z-scores. For the
“Left minus Right click” contrast, we highlight the right hemisphere and the left
one for the “Right minus Left click” contrast as expected knowing the contralateral
control of motor areas.

The second row of the Fig. 5 depicts Dice index values for each cortical region.
We computed a t-test and found that the precentral gyrus, the central sulcus and the
post central gyrus are significantly different in term of Dice index compared to the
homologous cortical regions on the other hemisphere. The contralateral pattern of

Fig. 5 Group level maps for the hand motor contrasts: (top-left) z-scores for the “Right-Left click”
contrast at the vertex level; (top-right) z-scores for the “Left-Right click” contrast at the vertex
level; (bottom-left) Dice index results for the “Right-Left click” contrast at the cortical area level;
(bottom-right) Dice index results for the “Left-Right click” contrast at the cortical area level
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the motor areas implies that for the right hand motor contrast, the left hemisphere
regions show more activity and the other way around when it is the left hand motor
contrast. The colocalization of peaks of neurite density and functional activity is
thus assessed by the Dice index. A noteworthy fact is that the Dice index values in
the mentioned cortical areas are higher while doing the “Right minus Left click”
contrast than while performing the “Left minus Right click” contrast which is in
good agreement with the fact that the volunteers are all right-handed.

3.3 Investigation of the Neurite Density in Language Areas

As for the language contrast, Fig. 6(top-left) depicts the group level neurite density
map, Fig. 6(top-right) the group level z-scores map stemming from the reading
contrast and Fig. 6(bottom) the corresponding group level Dice index map at the
cortical area level (using the Destrieux’s parcellation [8]). The language network
has been widely studied and has been proven to be left-lateralized in most cases
(right and left-handed). Figure 6 shows a high level of activation in the primary
auditory cortex, the motor tongue area and more generally the temporal lobe.

Fig. 6 Group level maps for the language contrast: (top-left) neurite density at the vertex level;
(top-right) z-scores at the vertex level; (bottom) Dice index results at the cortical area level
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As we did for the hand motor tasks, we computed a statistical t-test in order to
characterize the significant asymmetrical areas involved in the reading paradigm
used. More precisely, we can recognize the Broca’s area, the Wernicke’s area,
the inferior parietal lobule and some parts of the primary auditory cortex to be
the highest meaningful cortical regions for this paradigm. Thus, the Dice index
corroborates the link between the neurite density and the functional activity in those
areas.

3.4 Investigation of the Neurite Density in the Visual Cortex

For the visual activity, Fig. 7 (top-left) depicts the group level neurite density map,
Fig. 7 (top-right) the group level z-scores map stemming from the visual contrast
and Fig. 7 (bottom) the corresponding group level Dice index map at the cortical
area level (using the Destrieux’s parcellation [8]).

As we can see, the occipital lobe shows the highest values of the Dice indices
and especially higher values on the right hemisphere compared to the left ones
(the inferior occipital gyrus (O3) and associated sulcus, the lunate sulcus. . . ). But

Fig. 7 Group level maps for the visual contrast: (top-left) neurite density at the vertex level; (top-
right) z-scores at the vertex level; (bottom) Dice index results at the cortical area level
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surprisingly, we found only few cortical areas significantly higher on the right
hemisphere when we used a statistical t-test on the mean difference over all subjects
(p-value < 5%). This can be explained by the fact that regarding the occipital
lobe, the neurite density is highly asymmetrical whereas the functional activity is
not. A recent work [14] established the complementary specialization regarding the
language dominance and the visuospatial attention. In our case, as the right-handed
population seem to all have a left-lateralized language network and as we saw the
right-lateralization of the occipital lobe neurite density, we could explain our cortical
asymmetries by thinking the visual network as a high neuron-dense path.

4 Conclusion and Perspectives

To conclude, we saw that there are some strong asymmetries of neurite density in
cortical regions representing a well-known lateralized underlying functional activity
(such as the language network on the left hemisphere or the hand motor areas
depending on the handedness of the volunteers population). The colocalization
of neurite density and brain activation peaks may suggest that the level of local
activation could be linked to the local neurite density. Of course, this remains
an assumption that needs to be investigated more deeply in the future. More
surprisingly, while the level of activation on the left and right visual cortical areas
does not present any significant left-right asymmetry, we found a strong asymmetry
of the neurite density in the visual cortex in favor of the right hemisphere. This
could be linked to the known right localization of the visuospatial attention network
described in [14]. This needs to be further investigated from a functional point of
view in light of the study described in [15] mentioning the same trend on primates
using visual block paradigm.
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Abstract In this study, we assessed the evolution of diffusion MRI (dMRI) derived
markers from different white matter models as progressive neurodegeneration
occurs in transgenic Alzheimer rats (TgF344-AD) at 10, 15 and 24 months.
We compared biomarkers reconstructed from Diffusion Tensor Imaging (DTI),
Neurite Orientation Dispersion and Density Imaging (NODDI) and Mean Apparent
Propagator (MAP)-MRI in the hippocampus, cingulate cortex and corpus callosum
using multi-shell dMRI. We found that NODDI’s dispersion and MAP-MRI’s
anisotropy markers consistently changed over time, possibly indicating that these
measures are sensitive to age-dependent neuronal demise due to amyloid accu-
mulation. Conversely, we found that DTI’s mean diffusivity, NODDI’s isotropic
volume fraction and MAP-MRI’s restriction-related metrics all followed a two-step
progression from 10 to 15 months, and from 15 to 24 months. This two-step pattern
might be linked with a neuroinflammatory response that may be occurring prior to,
or during microstructural breakdown. Using our approach, we are able to provide—
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directly describe the underlying pathophysiology in Alzheimer’s disease.
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1 Introduction

Diffusion MRI (dMRI) allows us to non-invasively study microstructural changes
caused by neuropathology. Among these pathologies, gaining understanding of
Alzheimer’s disease (AD) is of particular importance, affecting over one in nine
people age 65 and above in the U.S. alone [1]. Traditionally, dMRI studies have used
Diffusion Tensor Imaging (DTI) [2] to model the grey and white matter structure
abnormalities in AD patients. Only recently, more complex white matter models
like Neurite Orientation Dispersion and Density Imaging (NODDI) [3] have been
explored to classify AD, and have shown greater discriminative power than DTI [4].
This reinforces the importance of exploring white matter models that provide more
detailed microstructural information than DTI.

In human studies, it is hard to relate dMRI derived metrics to corresponding
microstructural changes for lack of histological validation. As a solution, animal
models provide a way to gain understanding on the underlying pathophysiology of
AD by allowing dMRI in addition to histological measurements. Mouse models
of human tauopathy (rTg4510) have been previously studied at various time
points using DTI [5, 6], and at a single time point comparing DTI with NODDI
metrics [7]. In this latter study, NODDI derived metrics once again appeared more
discriminative than those derived from DTI. Further efforts focusing on multi-
shell dMRI analysis of transgenic Alzheimer rats (TgF344-AD) have shown that
dMRI measurements at higher gradient strengths aid the classification of AD-like
pathology [8]. However, only anisotropy measures of DTI and hybrid diffusion
imaging (HYDI) [9] were explored.

In this study, we compare the evolution of dMRI-derived markers from dif-
ferent white matter models as progressive neurodegeneration occurs in transgenic
Alzheimer rats (TgF344-AD). In particular, we study the patterns of alteration
across three time points in the hippocampus, cingulate cortex and corpus callosum—
areas known to be affected in AD. The two grey matter areas were previously shown
to manifest age-dependent cerebral amyloidosis that precedes tauopathy, gliosis and
apoptotic loss of neurons [10], making these cortical regions extremely relevant for
understanding the underlying mechanisms in AD. We compare biomarkers derived
from DTI, NODDI and Mean Apparent Propagator (MAP)-MRI [11] using multi-
shell data. To the best of our knowledge, this is the first study that investigates
multi-shell biomarkers at different time points in AD animal models.

The paper is structured as follows: we first describe the diffusion MRI data and
the metrics we derive in Sect. 2. We provide the results in Sect. 3 and discuss them
in Sect. 4. We finally provide our conclusions in Sect. 5.
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2 Materials and Methods

In this section, we first detail the diffusion MRI data acquisition, preprocessing and
region of interest selection of the AD rats. We then give a brief overview of the
methods we use and their metrics of interest. We detail the fractional anisotropy
(FA) and mean diffusivity (MD) of classical DTI, the orientation dispersion index
(ODI), neurite density index (NDI) and isotropic volume fraction (IsoVF) of the
multi-compartment NODDI model, and finally the formulation of several q-space
indices of the MAP-MRI functional basis. We estimated the DTI and MAP-MRI
metrics using the diffusion imaging in python (dipy) open source software [12] and
the NODDI metrics using the NODDI toolbox [3].

2.1 Processing of Transgenic Alzheimer Rat Data Sets

We use multi-shell dMRI data of three ex-vivo transgenic Alzheimer rats (line
TgF344-AD) [10], also previously analyzed by Daianu et al. [8]. The rats were
euthanized at 10, 15 and 24 months, fixed brains were prepared as described in [8],
and scanned using a 7 Tesla Bruker Biospin MRI scanner at California Institute of
Technology. A high-resolution fast low angle magnetic shot (FLASH) anatomical
image with a mix of T1 and T2 weighting (375 � 224 � 160 matrix; voxel size:
0:08 � 0:08 � 0:08mm3) was used. The diffusion MRI data were sampled on 5
shells with b-values f1000; 3000; 4000; 8000; 12;000g s=mm2, all with the same 60
directions and 5 b0 measurements. Other parameters were ı=� D 11=16ms and
TE=TR D 34=500ms. The voxel dimensions were 0:15 � 0:15 � 0:25mm3.

During preprocessing, extra-cerebral tissue was removed using the “skull-
stripping” Brain Extraction Tool from BrainSuite (http://brainsuite.org/), for both
the anatomical images and the DWIs. We corrected for eddy current distortions
using the “eddy correct FSL” tool (www.fmrib.ox.ac.uk/fsl) for which a gradient
table was calculated to account for the distortions. As an image processing step,
DWIs were up-sampled to the resolution of the anatomical images (with isotropic
voxels) using FSL’s flirt function with 9 degrees of freedom; the gradient direction
tables were rotated accordingly after each linear registration. For our study, we draw
regions of interest (ROIs) in the cingulate cortex, hippocampus and corpus callosum
as shown in Fig. 1.

2.2 DTI Metrics

The classical DTI model [2] assumes that the measured diffusion signal belongs
to the set of Gaussian distributions. While DTI has well-known limitations with
respect to the modeling of crossing tissue configurations and restricted diffusion,

http://brainsuite.org/
www.fmrib.ox.ac.uk/fsl
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Fig. 1 Regions of interest for biomarker estimation on the registered FA map of rat 1. We mark
the cingulate cortex (green), corpus callosum (blue) and hippocampus (red)

its derived metrics FA and MD have been found useful to classify AD patients [4].
Using signal attenuation E.b/ D S.b/=S.0/, the DTI model describes the diffusion
signal as E.b/ D exp.�bgTDg/ with D a 3 � 3 symmetric positive-definite matrix
and g the gradient direction. Estimating the eigenvalues of D as f�1; �2; �3g the FA
and MD are given as

FA D
r
1

2

p
.�1 � �2/2 C .�2 � �3/2 C .�3 � �1/2q

�21 C �22 C �23
MD D �1 C �2 C �3

3
(1)

In accordance with DTI’s Gaussian diffusion assumption, we only use the b0 and
b D 1000 s=mm2 data when fitting DTI. The FA and MD in our slice of interest are
shown in Fig. 2.

2.3 NODDI Metrics

The more advanced multi-compartment NODDI model [3] separates the signal
contribution of different tissues by fitting a combination of intra-cellular, extra-
cellular and free-water models.

E D .1 � �iso/.�icEic.ODI/C .1 � �ic/ � Eec/C �isoEiso (2)

The intra-cellular signal Eic is modeled as a set of dispersed sticks, i.e., cylinders
of zero radius, to capture the highly restricted nature of diffusion perpendicular to
neurites and unhindered diffusion along them. The amount of dispersion is given by
the orientation dispersion index (ODI), which is defined by a Watson distribution.
The extra-cellular signal Eec is described as a dispersed mixture of Gaussian
anisotropic diffusion, and an isotropic Gaussian compartment Eiso represents free
diffusion. Similarly as in [7], we study the ODI, the neurite density index NDI D
.1 � �iso/�ic and the isotropic volume fraction IsoVF D �iso.

In accordance with NODDI’s recommended acquisition scheme [3], we fit
NODDI only using the b0 and b D f1000; 3000g s=mm2 data. Furthermore, as
water diffusivity changes in ex-vivo tissue, we set the intra-cellular and isotropic
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Fig. 2 Illustrations of a DTI and NODDI metrics in the same coronal slice for the three time points

diffusivity to 0.6�10�9m2s�1 and 2.0�10�9m2s�1 [13]. An illustration of the ODI,
NDI and IsoVF can be seen in Fig. 2.

2.4 MAP-MRI Metrics

The MAP-MRI approach [11] uses a functional basis to represent the 3D diffusion
signal with as little assumptions as possible. It then analytically reconstructs the
3D diffusion propagator by only assuming the short gradient pulse approximation
(ı � 0). In this way, it accurately estimates the diffusion propagator in the presence
of both non-Gaussian diffusion and crossing tissue configurations.
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MAP-MRI represents the discretely measured signal attenuation E.q/ using
a set of continuous orthogonal basis functions representing the space OE.qI c/,
where the signal is now represented in terms of basis coefficients c and the q-
space wave vector q D jqjg with g the gradient direction is related to the
b-value as jqj D p

b=.�� ı=3/=2	 . Without going into the formulation of MAP-
MRI’s basis functions, we detail the estimation of basis coefficients c in Eq. (3).
In short, we regularize the fitting of c such that OE.qI c/ smoothly interpolates
between the measured q-space points by using Laplacian regularization [14], where
regularization weight � is set using voxel-wise generalized cross-validation. We also
constrain the estimated diffusion Propagator OP.RI c/ to be positive using quadratic
programming [11].

argminc

Data Fidelity‚ …„ ƒZ

R3

h
E.q/ � OE.qI c/

i2
dqC

Smoothness‚ …„ ƒ
�

Z

R3

h
r2 OE.qI c/

i2
dq

subject to OP.RI c/ > 0 with OP.RI c/ D IFT
� OE.qI c/

�
(3)

Once c is known, the MAP-MRI basis simultaneously represents the 3D dMRI
signal and 3D diffusion propagator. We estimate the q-space indices Return-To-
Origin, Return-To-Axis and Return-To-Plane Probability (RTOP, RTAP and RTPP),
which in theory are related to the volume, surface and length of a cylindrical
pore [11]. We also estimate the non-Gaussianity (NG), which describes the ratio
between the Gaussian and non-Gaussian volume of the signal. Finally we estimate
the propagator anisotropy (PA), which is a normalized metric that describes the
anisotropy of the 3D diffusion propagator. As MAP-MRI is designed to represent
the entire 3D diffusion signal, we estimate all metrics using the entire 5 shell data
up to a b-value of 12;000 s=mm2, using a radial order of 6, resulting in 50 estimated
coefficients. We illustrate these metrics in Fig. 3.

3 Results

In Fig. 4 we show the evolution of the mean with 0:5 standard deviation of all
dMRI-derived metrics in the ROIs shown in Fig. 1. We use the same colors for
the hippocampus (red), corpus callosum (blue) and cingulate cortex (green). The
only metric that consistently increases over time is NODDI’s ODI and consistently
decreases is MAP-MRI’s PA, with the exception of the cortex. It is also apparent that
FA, NDI, RTOP, RTAP and RTPP follow a different, 2-step pattern, first decreasing
and then slightly increasing. Inversely, for MD, IsoVF and NG we first find an
increase and then a decrease. We provide the raw data values in Table 1. We also
produce correlation plots for dispersion and anisotropy measures in Fig. 5 and for
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Fig. 3 Illustrations of MAP-MRI’s q-space indices in the same coronal slice for the three time
points. To visualize RTOP, RTAP and RTPP in the same unit (mm�1) we show the cubed root of
RTOP and squared root of RTAP

the 2-step metrics in Fig. 6. It can be seen that ODI is negatively correlated with FA
and PA, and that IsoVF is positively correlated with MD and negatively with RTOP.

4 Discussion

In this work, we have shown that different metrics of DTI, NODDI and MAP-MRI
appear to be sensitive to different processes as age-dependent cerebral amyloidosis
manifests in both grey and white matter in the Alzheimer rats.
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Fig. 4 DTI, NODDI and MAP-MRI metrics for the same time points in the hippocampus (red),
corpus callosum (blue) and cingulate cortex (green)

DTI findings: We find a significant drop in FA in all ROIs from 10 to 15 months
and a small increase from 15 to 24 months. This corresponds with previous findings
in the hippocampus using data up to b D 1000 s=mm2 [8]. While a comparison
of using different b-values in the DTI estimation was outside of the scope of this
study, it was shown that when higher b-values are included, the FA trend consistently
decreases over time [8]. Nonetheless, it has been argued that compared to FA, MD
lends itself better to the assessment of cortical and subcortical grey matter, where
net diffusion may not be expected to conform to any one specific direction [15].
When we assess MD, we consistently find an increase from 10 to 15 months and a
decrease from 15 to 24 months. This may suggest that FA and MD are sensitive to
different processes taking place in AD.

NODDI findings: Several studies have suggested that NODDI metrics, in particu-
lar ODI, have better AD classifying potential due to NODDI’s ability to delineate
signal contributions from different tissue compartments [4, 7]. While we cannot do a
classification study using our data, we find that ODI consistently increases in areas
where tau pathology increases in our rat model [10]; the hippocampus, cingulate
cortex and corpus callosum. We also find that IsoVF shows an increase from 10 to 15
months and a decrease from 15 to 24 months in all areas, following the same trend as
DTI’s MD. Though, it should be mentioned that fitting NODDI requires presetting
the intra-cellular and isotropic diffusivity, which influences obtained metric values.
Fitting NODDI on the selected bmax D 3000 s=mm2 or the full data does not
significantly impact our findings.

MAP-MRI findings: To the best of our knowledge, this is the first study that
estimates MAP-MRI metrics on data from an AD model. We find that all metrics
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Table 1 Mean and standard deviation of DTI, NODDI and MAP-MRI metrics for the three time
points in each region of interest

DTI metrics Age

Metric ROI 10 months 15 months 24 months

FA Hippocampus 0.29˙0.08 0.19˙0.05 0.20˙0.06

C. Callosum 0.51˙0.15 0.27˙0.08 0.30˙0.09

C. Cortex 0.28˙0.08 0.20˙0.05 0.22˙0.08

MD (�103) Hippocampus 0.32˙0.02 0.39˙0.03 0.29˙0.02

C. Callosum 0.19˙0.05 0.30˙0.05 0.21˙0.02

C. Cortex 0.31˙0.04 0.49˙0.06 0.23˙0.04

NODDI metrics Age

Metric ROI 10 months 15 months 24 months

ODI Hippocampus 0.39˙0.11 0.48˙0.10 0.55˙0.11

C. Callosum 0.39˙0.08 0.48˙0.09 0.53˙0.09

C. Cortex 0.44˙0.11 0.47˙0.10 0.63˙0.10

NDI Hippocampus 0.46˙0.03 0.45˙0.04 0.54˙0.05

C. Callosum 0.93˙0.09 0.86˙0.07 0.93˙0.08

C. Cortex 0.58˙0.04 0.60˙0.10 0.74˙0.10

IsoVF Hippocampus 0.03˙0.02 0.11˙0.03 0.03˙0.01

C. Callosum 0.02˙0.03 0.11˙0.05 0.02˙0.02

C. Cortex 0.08˙0.05 0.28˙0.06 0.02˙0.03

MAP-MRI Metrics Age

Metric ROI 10 months 15 months 24 months

RTOP (�107) Hippocampus 0.68˙0.08 0.45˙0.10 0.76˙0.14

C. Callosum 1.03˙0.12 0.85˙0.10 0.94˙0.10

C. Cortex 1.04˙0.27 0.90˙0.27 1.58˙0.56

RTAP (�105) Hippocampus 0.38˙0.03 0.31˙0.04 0.41˙0.05

C. Callosum 0.93˙0.09 0.86˙0.07 0.93˙0.08

C. Cortex 0.51˙0.08 0.45˙0.08 0.65˙0.12

RTPP (�103) Hippocampus 0.16˙0.01 0.15˙0.01 0.17˙0.01

C. Callosum 0.21˙0.02 0.22˙0.02 0.23˙0.02

C. Cortex 0.18˙0.01 0.17˙0.01 0.21˙0.02

NG Hippocampus 0.43˙0.03 0.49˙0.02 0.45˙0.02

C. Callosum 0.51˙0.02 0.55˙0.01 0.52˙0.01

C. Cortex 0.51˙0.03 0.57˙0.02 0.49˙0.02

PA Hippocampus 0.27˙0.09 0.2˙0.07 0.15˙0.06

C. Callosum 0.78˙0.11 0.64˙0.11 0.53˙0.13

C. Cortex 0.30˙0.12 0.33˙0.16 0.17˙0.10
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Fig. 5 Scatter plots of FA, ODI and PA for the rats of ages 10 months (blue), 15 months (green)
and 24 months (red) in the hippocampus. It can be seen that ODI is negatively correlated with both
FA and PA

except PA follow a two-stage progression pattern similar to DTI’s MD. The
decrease-increase of return-to-origin, return-to-axis and return-to-plane probability
(RTOP, RTAP and RTPP) makes sense with the increase-decrease of MD, as an
increased diffusivity means that spins are able to move away farther, reducing the
chance they return to their origin, axis or plane. Interestingly, this does not make the
signal more Gaussian, as the Non-Gaussianity follows an increase-decrease pattern
in all ROIs. The exception to this trend is the RTPP in the corpus callosum, which
increases monotonically, indicating a steady increase in restriction parallel to the
axon direction. Finally, PA consistently decreases in all areas except the cortex,
where a small increase is found, followed by a larger decrease. This decreasing trend
in anisotropy measures when using higher gradients strengths was also reported with
DTI’s FA or HYDI’s NQA [8]. We note that while we fitted MAP-MRI to the full
data with 300 DWIs, it was shown that its metrics are stable under subsampling to
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Fig. 6 Scatter plots of MD, IsoVF and RTOP for the rats of ages 10 months (blue), 15 months
(green) and 24 months (red) in the hippocampus. It can be seen that IsoVF is positively correlated
with MD and negatively with RTOP

less than 100 DWIs [14] or could even be fitted directly on a NODDI acquisition
scheme.

Biological explanation for biomarker trends: The trends of all derived metrics
can be divided into two groups: those that consistently decrease or increase and
those that show a ‘decrease-increase’ or ‘increase-decrease’ pattern.

The first group could point towards the accelerating cerebral amyloidosis as
age increases in these rats [10]. Over time, this “amyloid burden” results in age-
dependent neuronal demise that is likely owed to oligomeric Aˇ accumulation. In
turn, this neuronal demise could result in a more dispersed, less anisotropic diffusion
signal. This corresponds with the observed correlations between dispersion and
anisotropy measures in Fig. 5.

The second group may indicate an inflammatory response to amyloid accumula-
tion, occurring prior to (or coincident with and obscuring) the onset of microstruc-
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tural breakdown and macrostructural atrophy [16]. At 15 months TgF344-AD rats
have heavy plaque burden and strong neuroinflammation, whereas by 24 months
most of the inflammatory reaction to the plaques has passed. This corresponds to
what we see when MD and IsoVF increase-decrease and RTOP, RTAP and RTPP
decrease-increase (except RTPP at corpus callosum). The correlations between MD,
IsoVF and RTOP in Fig. 6 therefore makes sense. Though, the increase-decrease
in NG indicates that while the inflammatory response increases diffusivity, it also
increases the non-Gaussian portion of the signal at higher b-values.

Difficulties of comparing our findings with previous animal studies: There have
been several previous dMRI studies using Alzheimer animal models. However,
different species and disease expressions make comparisons of dMRI metrics
difficult. For instance, our TgF344-AD rat model was made to drive cerebral
amyloid and downstream tauopathy and neuronal loss, also known as the “amyloid
cascade hypothesis” of John Hardy [17]. In contrast, the Tg4510 mouse model used
by Colgan et al. [7] was developed to only assess tauopathy; and not the amyloid
cascade hypothesis. For this reason, it is hard to make claims about differences in
biomarker trends found between this study and theirs.

Limitations of the study: As we did not have healthy rats to statistically test for
changes with disease progression—which means there is room for improvement—
we used the youngest rat (10 months old) as a control subject to compare against
suggestive changes at later time points. Another limitation is the low number of
experimental subjects that also prevents us from statistically differentiating between
the disease stages of the transgenic Alzheimer rat model.

5 Conclusion

We presented a unique study on transgenic Alzheimer rats at 10, 15 and 24
months, comparing DTI, NODDI and MAP-MRI-derived metrics, in grey and
white matter areas known to manifest age-dependent cerebral amyloidosis that
precedes neurofibrillary tangles and apoptotic loss of neurons. We found that
NODDI’s ODI and MAP-MRI’s PA metrics uniformly changed over time, likely
indicating that they are sensitive to age-dependent neuronal demise due to amyloid
accumulation. It is relevant to note that both of these metrics require b-values
higher than 1000 s=mm2. Conversely, we found that DTI’s MD, NODDI’s IsoVF
and MAPMRI’s RTOP, RTAP, RTPP and NG all follow a two-step progression
from 10 to 15 to 24 months—either an increase-decrease or a decrease-increase—
likely indicating sensitivity to the neuroinflammatory response at 15 months and
potentially, atrophy of the microstructure at 24 months. While this study does
not have enough subjects to statistically differentiate between the different disease
stages, it does provide valuable insight on which biomarkers and models come
closest to explaining the biological changes in the cerebral tissue.
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Working Memory Function in Recent-Onset
Schizophrenia Patients Associated with White
Matter Microstructure: Connectometry
Approach
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Abstract Schizophrenia is a kind of psychosis accompanied by cognitive deficits.
In addition, white matter abnormalities are observed in various brain regions and
tracts in the disease. Association of some tracts like superior longitudinal fasciculus
(SLF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus
(IFOF) with working memory function have been observed using diffusion MRI
analysis methods such as tract-based spatial statistics (TBSS). Thus, we applied
connectometry, not suffering from some limitations of tract specific analysis, in a
group of 29 patients and 32 healthy controls to investigate association of working
memory performance (as measured by letter-number sequencing test) with white
matter integrity in recent-onset schizophrenic patients, who are less affected by
antipsychotic medications. Connectometry is a recently introduced approach uti-
lized to associate local connectomes with a study variable along the fiber pathways
themselves instead of finding the difference in the whole fiber pathways. This
study showed that lesser integrity of some fiber tracts like the arcuate fasciculus,
the inferior longitudinal fasciculus, the body of corpus callosum and also some
fibers of corticospinal tract, IFOF, and cingulum bundle associated with working
memory deficits in schizophrenic patients while healthy controls did not show any
correlation unless the percentage threshold was increased up to 45%. These results
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are consistent with previous ones to a large extent but we also found some fiber
tracts other than previous studies like the body of corpus callosum and some fibers
of corticospinal tract. On the whole, Our study further supports disconnectivity
hypothesis in schizophrenia, playing a major role in cognitive dysfunction.

1 Introduction

Patients with schizophrenia manifest a wide range of symptoms that form the
clinical definition of the illness. However, it has become increasingly apparent that
the disorder is, to a variable degree, accompanied by cognitive impairment [1].
Since schizophrenia is a disease characterized in part by white matter abnormalities
that alter brain connectivity, we expect some changes in white matter fiber tracts.
Moreover, pathophysiological processes affecting the formation of myelin have
long been in the focus of attention in schizophrenia. Previous studies have shown
fractional anisotropy (FA) reductions and mean diffusivity (MD) (and also radial
and axial diffusivity respectively called RD, AD) increases in various white matter
tracts and regions in first-episode (FES) and chronic schizophrenic patients [2]. A
meta-analysis of adults with FES identified lower white matter FA in the left deep
temporal lobe, corresponding to left ILF and left IFOF and also left deep frontal
lobe [3]. In another study, these two major left hemisphere fiber tracts showed
specific myelination deficits and FA reduction in adults with chronic schizophrenia,
which correlated with reductions in processing speed, a major cognitive abnormality
in schizophrenia [4]. A study in never-medicated chronic schizophrenic patients
revealed the same results [5].

Importantly, working memory deficit, a core cognitive dysfunction underlying
many cognitive deficits in schizophrenia, is found to be associated with some
structural and functional abnormalities, consistently observed within the dorsolat-
eral prefrontal cortex (DLPFC) and between DLPFC and posterior brain regions
[6]. Verbal working memory was assessed using letter-number sequencing test
(LNS), a standardized executive function task. Previous studies have applied tract-
based spatial statistics (TBSS) to diffusion tensor imaging data to examine FA
in superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF),
inferior fronto-occipital fasciculus (IFOF), splenium of corpus callosum (CC), and
posterior cingulum in schizophrenic patients with working memory deficit [7].
We hypothesized that some other white matter tracts may be involved in working
memory deficits because tractography methods do not have the capacity to capture
difference in “a segment of” fiber tract. In order to overcome this limitation, a
new approach based on the concept of local connectome called connectometry has
been introduced [8]. By introducing the concept of local connectome, the degree
of connectivity is determined by measuring the density of diffusing spins, mapped
by applying local fiber directions from a common atlas. Mapping and analysis
of local connectomics, called connectometry, is a statistical approach designed to
track only the segment of fiber bundles that exhibit significant association with the
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study variable. Connectometry applies quantified anisotropy (QA), as a measure of
density of diffusing spins, instead of FA which is a measure of the diffusion velocity
(diffusivity). So, we decided to conduct connectometry in a larger sample of recent-
onset schizophrenic patients and age-sex matched healthy controls.

2 Method

2.1 Participants

Participants in this study were recruited from MCIC collection. The Mental Illness
and Neuroscience Discovery (MIND) Institute, now the Mind Research Network
formed the MIND Clinical Imaging Consortium (MCIC) in 2003 to conduct a
multi-institutional, cross-sectional study of patients with schizophrenia and demo-
graphically matched, by sex and age, healthy control. Diffusion weighted images
(DWI) were obtained for 29 patients and 32 healthy controls. Sample demographics
are shown in Table 1. A Structured Clinical Interview for DSM-IV (SCID/SCID-NP
for controls) (First) or the Comprehensive Assessment of Symptoms and History
(CASH) were used to diagnose primary and co-morbid psychiatric disorders in
controls and patients. Patients were interviewed with the Scale for Assessment of
Negative Symptoms (SANS), Scale for Assessment of Positive Symptoms (SAPS),
and the Calgary Depression Scale for Schizophrenia (CDSS) to record symptoms
and their current severity. The healthy control subjects with no current or past history
of psychiatric illness including substance abuse or dependence were matched to the
patient group for age and sex. All subjects provided informed consent to participate
in the study that was approved by the human research committees.

Table 1 Subject demography

Patients with schizophrenia Control subjects

Age 31.72˙11.96 26.93˙11.53

Sex (male/female) 22/7 26/6

Handedness (right/left) 28/1 30/2

Race (White) (N/%) 27/93.10% 29/90.62%

Subject education 12.9˙62.22 14.04˙1.55

Subject socioeconomic status 2.78˙0.42 3.85˙0.90

Total positive symptoms 5.10˙2.28 –

Total negative symptoms 8.51˙3.38 –
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2.2 Data Acquisition

Data used in this study were obtained from MCIC collection database at http://
schizconnect.org/ [9]. This dataset was acquired utilizing a 1:5T Siemens Sonata
and DWI scans were collected. The imaging parameters were: TR D 9800ms, TE
D 86ms, B values of 0 and 1000, NEX D 4, bandwidth D 1502, 64 slices, and
12 directions. Letter-number sequencing test (LNS) subtest of the Wechsler Adult
Intelligence Scale—Third Edition 16 (WAIS-III) was applied as a complex verbal
working memory task. The test involves a 24-item experimental condition, in which
participants are read a series of letters and numbers and are asked to recite both back
in ascending order, with the numbers first and then the letters. It is followed by a
24-item control condition that asks participants to simply repeat back the sequence
of numbers and letters in the order presented.

2.3 Diffusion MRI Data Processing, Group Connectometry

Data analysis was conducted using DSI studio software available at dsi-studio.
labsolver.org/ where instructions and technical illustrations are also provided. The
diffusion data were reconstructed in the MNI space using q-space diffeomorphic
reconstruction [10] to obtain the spin distribution function [11]. A diffusion
sampling length ratio of 1.25 was used, and the output resolution was 2 mm.
Diffusion MRI connectometry [8] was conducted in a total of 29 patients using a
multiple regression model considering letter-number sequencing test (LNS), sex,
and age and the local connectomes expressing significant associations with the LNS
were identified. The same approach was conducted in a total of 32 healthy controls
matched for age and sex. Percentage thresholds of 30% to 50% were used to select
local connectomes correlated with letter-number sequencing test for each group. A
deterministic fiber tracking algorithm was conducted along the core pathway of fiber
bundle to connect the selected local connectomes. A length threshold of 40mm was
used to select tracks. The seeding density was 20 seed(s) per mm3. To estimate the
false discovery rate, a total of 2000 randomized permutations were applied to the
group label to obtain the null distribution of the track length. Permutation testing
allows for estimating and correcting the false discovery rate (FDR) of Type-I error
inflation due to multiple comparisons.

3 Result

There was a significant group difference between the control and the patient group
in letter-number sequencing test scores. The multiple regression analysis results
showed that there was no track with significantly decreased quantified anisotropy

http://schizconnect.org/
http://schizconnect.org/
dsi-studio.labsolver.org/
dsi-studio.labsolver.org/
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Table 2 Result of quantitative measurements of diffusion MRI in control, PD and SWEDD

Percentage threshold (%) Patients with schizophrenia (FDR) Control subjects (FDR)

30 0.063632 �
35 0.044593 �
38.40 0.047736 0.087578

44.38 0.034479 0.049419

50 � 0.031414

related to letter-number sequencing test scores in healthy controls (p>0.05). When
the percentage threshold was increased up to 45%, FDR showed significance
but fiber tracking along fiber pathways showed no tracts. However, significantly
decreased anisotropy in the arcuate fasciculus (AF), the inferior longitudinal
fasciculus (ILF), and the body of the corpus callosum of the patients related to letter-
number sequencing test with the percentage threshold of 35% and more (p<0.05)
(Table 2).

4 Conclusion

In this study we applied connectometry, which tracks the differences along the
pathways themselves, while conventional connectome analyses are designed to find
differences in whole fiber pathways. Therefore, by using connectometry we were
able to track statistically meaningful associations to identify the subcomponents of
white matter pathways, as well as white matter fascicles as a whole, associated with
LNS scores. It is because connectometry does not map the connectome itself but
it analyzes differences in the local connectome, associates the local connectome
with study variables (here, LNS scores), and then tracks the associations across a
pathway [8].

Our study revealed that LNS scores, as a measure of verbal working memory, in
recent-onset schizophrenic patients are positively associated with QA in the fibers
going through the track of AF, ILF, body of CC, and some fibers of CST, cingulum
bundle and IFOF by applying connectometry (Fig. 1). However, LNS scores did
not show any significant association with QA in control subjects in lower than
45% percentage threshold. This can be applied as a clinical marker for diagnosis
of schizophrenic patients, not observed in healthy people. It has enough sensitivity
to capture schizophrenic patients but association of a test score and DTI metrics is
a time consuming way for this goal. However, as this marker might be observed
in other psychiatric disorders, it may not have enough specificity. So we suppose
that conducting studies using patients with other psychiatric disorders may help us
check the specificity of this clinical marker.

Our analyses confirm previous findings regarding working memory in
schizophrenia to a large extent. However there are some new findings. In addition,
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Fig. 1 Fiber tractography in one of the schizophrenic patients with working memory deficit. (a)
left and right arcuate fasciculus. (b) left and right inferior longitudinal fasciculus. (c) body of
corpus callosum
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using connectometry has enabled us to visualize the segments of fiber bundles
whose density (spin distribution function) is associated with working memory
dysfunction.

Individual capacity of working memory function relies on the integrity of
frontal and parietal white matter tracts based on previous functional [12] and
diffusion imaging [13] evidence. Conducting fMRI in schizophrenic patients while
performing working memory tasks, has shown hypoactivation in the DLPFC and
medial prefrontal region, involved in task relevant information and maintenance of
visuospatial attention during working memory tasks respectively [6].

SLF is a long association fiber tract, commonly said to be composed of five
subcomponents, mainly connecting frontal and parietal regions. Most of the white
matter fiber tracts detected in this paper to be associated with working memory
function, were the association fiber tracts running from superior temporal to middle
and inferior frontal regions which mainly form the arcuate fasciculus,which is
considered to be one of the subcomponents of the SLF. Also some of the fiber tracts
running from DLPFC to superior temporal region were detected. This is known as
an important working memory pathway. However, association of working memory
function in recent-onset schizophrenia with FA value in superior longitudinal
fasciculus using TBSS has been previously identified [7].

Our study showed that the corpus callosum is associated with working memory
dysfunction. Schizophrenic patients, like older people, manifest a wide range
of cognitive deficits. Therefore, correlation of reductions in the integrity of the
body of corpus callosum, which interconnects frontal and parietal regions, in
schizophrenic patients with working memory deficit does not seem unexpected. A
study regarding cognitive function in older healthy people using TBSS to explore
structural connectivity, revealed that working memory function correlated with
white matter integrity in the left genu and body of corpus callosum subserving
DLPFC, and left IFOF/anterior thalamic radiation with the peak signal intensities
near the anterior intraparietal cortex [14].

Our study also indicated ILF and IFOF to be associated with working mem-
ory dysfunction. We suppose that the neuropsychological test we have used for
measuring working memory (LNS) is dependent not only on working memory but
also on other aspects of cognitive function like processing speed and executive
function, which ILF and IFOF are shown to be correlated with [4]. So finding an
association between test scores and the integrity of ILF and some fibers of IFOF
is expectable. However, a study conducted in early-onset schizophrenia showed
significant associations between FA values in left ILF and scores on the number-
letter switching subtest [15]. Lower ILF FA has been shown to mediate lower
working memory performance in overweight adolescents [16].

Association of lower QA in cingulum and working memory deficit is quite
understandable due to its major role in memory. But the association of fibers of
CST with LNS test seems to be due to its dependence on doing tasks. So, studies
using more accurate tests are required.

It would be worthy of note that by administering connectometry approach, QA
value has been assessed instead of FA, which is more commonly applied. This may



208 M. Dolatshahi et al.

guide us more directly to the pathophysiology of psychoses like schizophrenia. As
QA is based on spin distribution function (SDF), measuring the density of diffusion
spins, it is thought to be more sensitive to physiological conditions and compactness
of bundles. It is while fractional anisotropy (FA) is used to assess diffusion velocity
and is a measure of axonal loss, demyelination and pathological conditions.

However, we suppose that further study in our sample using TBSS is required
to confirm the anatomical location of fiber tracts we have found and to compare
tracking the local connectome and whole fiber tractography. This study further
confirms disconnectivity hypothesis in schizophrenia but the temporality of white
matter integrity changes and pathology remains a question. In addition, , we should
pay attention that although connectometry is quite powerful, it has some limitations
because it is relatively insensitive to focal differences in short ranged pathways.
Thus, it should always be kept in mind that by implementing connectometry the
value of the threshold used to define the set of supra-threshold links is an arbitrary
choice.
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