
Chapter 4

Mesenchymal Stem Cells Direct

the Immunological Fate of Macrophages

Patricia Luz-Crawford, Christian Jorgensen, and Farida Djouad

Abstract Mesenchymal stem cells (MSC) are multipotent stem cells with a broad

well-described immunosuppressive potential. They are able to modulate both the

innate and the adaptive immune response. Particularly, MSC are able to regulate the

phenotype and function of macrophages that are critical for different biological

processes including wound healing, inflammation, pathogenesis of several autoim-

mune diseases, and tumor growth. These multifunctional roles of macrophages are

due to their high plasticity, which enable them to adopt different phenotypes such as

a pro-inflammatory M1 and anti-inflammatory M2 phenotype. MSC promote mac-

rophage differentiation toward an M2-like phenotype with a high tissue remodeling

potential and anti-inflammatory activity but also a pro-tumorigenic function. MSC

regulatory effect on macrophages is mediated through the secretion of different

immunomodulatory molecules such as PGE2, IL1RA, and IL-6. Moreover, the

presence of macrophages in damaged tissue and inflammation is essential for

MSC to exert their therapeutic function. In this chapter, we discuss how the

interplay between macrophages and MSC mutually modulates their phenotypes

and functions, orchestrates tissue repair, and controls inflammation during autoim-

munity and tumor growth.
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Inserm U1183, IRMB, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier

Cedex 5, France
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Université de Montpellier, Montpellier 34000, France

e-mail: farida.djouad@inserm.fr

© Springer International Publishing AG 2017

M. Kloc (ed.), Macrophages, Results and Problems in Cell Differentiation 62,

DOI 10.1007/978-3-319-54090-0_4

61

mailto:patricia.luzc@gmail.com
mailto:farida.djouad@inserm.fr


List of Abbreviations

Arg1 Arginase 1

ASCs Adipose-derived mesenchymal stem cells

CIA Collagen-induced arthritis

COX-2 Cyclooxygenase type 2

CXCR4 Chemokine receptor type 4

ET-1 Endothelin-1

IFN-γ Interferon gamma

IL Interleukin

iNOS Inducible nitric oxide synthase

KCs Kupffer cells

LPS Lipopolysaccharides

M1 Macrophages type 1

M2a Macrophages type 2A

M2b Macrophages type 2B

M2c Macrophages type 2C

M-CSF Macrophage colony-stimulating factor 1

MSC Mesenchymal stem cells

NFκβ Nuclear factor kappa-beta

NK Natural killer

PD-1 Pathway of cell death-1

PDL1 Pathway of cell death ligand-1

PGE2 Prostaglandin E2

RA Rheumatoid arthritis

RANK-L Receptor activator of NFκ-β ligand

SFD-1 Stromal cell-derived factor 1

TAMs Tumor-associated macrophages

TGF-β1 Transforming growth factor β1
TLR Toll-like receptor

TNF-α Tumor necrosis factor alpha

TSG-6 TNF-α-stimulated gene 6

VEGF Vascular endothelial growth factor

Ym1 Chitinase-like 3

4.1 Introduction

Mesenchymal stem cells (MSC) are adult multipotent stromal cells widely studied

for their regenerative and immunomodulatory properties (Jackson et al. 2012; Le

Blanc and Ringden 2007; Djouad et al. 2006, 2009; Ruiz et al. 2016). The

therapeutic effect of MSC in mouse experimental disease models has been shown

to be associated with their role in tissue maintenance or regeneration, support for

hematopoiesis, stimulation of angiogenesis, and modulation of the immune
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response (Arminan et al. 2010; Kim et al. 2012; Singer and Caplan 2011). In an

inflammatory environment, MSC are able to interact with a broad range of immune

cells via the secretion of several paracrine factors such as transforming growth

factor (TGF)-β1, IL-6, and PGE-2 (Djouad et al. 2007; English et al. 2009) but also
through cell–cell contact via Jagged/Notch or PD-1/PD-L1 pathways (Liotta et al.

2008; Luz-Crawford et al. 2012; Cahill et al. 2015). As a consequence of this

interaction, MSC interact with and inhibit the function of immune effector cells

inducing regulatory cell functions (Luz-Crawford et al. 2013; Glenn andWhartenby

2014). Here, we focus on the dialogue between MSC and macrophages, which

results in the generation of MSC-educated macrophages and their role in (1) tissue

repair, (2) immune tolerance, and (3) tumor growth.

4.2 The Interplay Between Mesenchymal Stem Cells

and Macrophages in Tissue Repair

Macrophages are major players during both inflammatory and tissue repair pro-

cesses. They are one of the first immune cells to arrive to the injured site in order to

avoid any microbial infection and to phagocyte the remaining debris of the injured

tissue (Mantovani et al. 2013; Chazaud 2014). In particular, the inflammatory

subset of macrophages referred to as M1 macrophages are the first to be found in

the damaged tissue. M1 macrophages are activated by LPS and IFN-γ and express

high levels of the co-stimulatory molecules, inducible nitric oxide synthase (iNOS)

and pro-inflammatory cytokines such as TNF-α, and low levels of Ym1 (Novak and

Koh 2013). M1 macrophages induce cell proliferation to replenish the damage area

and its deficiency during the process of tissue repair (Wynn and Vannella 2016). In

a second wave of macrophage recruitment, another subtype of macrophages

referred to as alternatively activated M2 are dominant. Upon induction with IL-4,

macrophages can adopt an M2a macrophage phenotype expressing low levels of

co-stimulatory molecules together with high Ym1 and Arginase-1 (Arg-1) activi-

ties, high CD206 expression, and VEGF production. All together these factors

released by M2a macrophages are known to exert wound healing/pro-fibrotic

functions. M2b macrophages producing pro-inflammatory cytokines are induced

by immune complexes while M2c also known as an anti-inflammatory subtype of

macrophages releasing high levels of IL-10 are induced by IL-10 and TGF-β1
(Novak and Koh 2013). M2 macrophages are involved in the resolution of inflam-

mation promoting the survival, proliferation, and differentiation of the remaining or

recruited progenitor cells at the site of injury. Interestingly, MSC interact with and

impact on macrophage functions. Indeed, in vitro, while MSC inhibit M1 markers

such as TNF-α and iNOS, they promote the differentiation of macrophages toward

M2 phenotype expressing IL-10, CD206, and Arg1 (Abumaree et al. 2013; Maggini

et al. 2010). These latter results are in line with observations from an in vivo model

of myocardial infarction, revealing that infiltrated macrophages in the heart of mice
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treated with MSC express higher levels of Arg1 and lower levels of

pro-inflammatory M1 markers compared to macrophages in the mice that did not

receive MSC treatment (Dayan et al. 2011).

Moreover, it has been also demonstrated that the injection of MSC in a cardiac

failure model significantly increases the local recruitment of macrophages, accel-

erating cardiac muscle repair (Wang et al. 2015). Additionally, macrophages are

critical for MSC to exert their therapeutic function since the depletion of macro-

phages using the lipoclodronate solution significantly decreased the therapeutic

effect of MSC on cardiac regeneration. This effect was associated with the inhibi-

tion of an enhanced angiogenesis observed after MSC transplantation and occurring

in the presence of macrophages (Wang et al. 2015). In another experimental model

of acute kidney ischemia (AKI), MSC injection improved regeneration of the

kidney promoting the switch from inflammatory M1 macrophages into an anti-

inflammatory M2 phenotype. Indeed, this switch was associated with an increase in

the matrix metalloproteinase (MMP)-9 activity in ischemic kidneys, which con-

tributed to a reduction of total collagen I, and a subsequent decrease of fibrosis

(Wise et al. 2014). Finally, in an experimental model of diabetes, the administration

of MSC significantly increased the recruitment of macrophages with mainly a M2

phenotype. This recruitment of macrophages depends on the CXCR4/Stromal cell-

derived factor (SFD)-1 axis that promotes beta cell replication and regeneration

reducing diabetes progression (Cao et al. 2014). All together these data demonstrate

that macrophages play a critical role in the therapeutic effect of MSC in tissue

regeneration through the capacity of MSC to stimulate the migration and recruit-

ment of M2-like macrophages into the site of damage, promoting angiogenesis and

tissue remodeling (Fig. 4.1).

4.3 The Interplay Between Mesenchymal Stem Cells

and Macrophages in Immune Tolerance

Macrophages are one of the main players in early stages of inflammation by playing

several functions such as antigen presentation and the secretion of pro-inflammatory

factors. However, the persistence of macrophage pro-inflammatory activity was

shown to be associated with the development of chronic inflammatory diseases. In

contrast, tissue homeostasis depends on the capacity of macrophages to adopt

different phenotypes in response to different mediators promoting macrophage

reprograming from pro-inflammatory M1 into an anti-inflammatory M2. This plas-

ticity is critical for the resolution of inflammation (Jou et al. 2013).

It has been well described that MSC are able to educate tissue-resident macro-

phages in order to diminish local inflammation (Eggenhofer and Hoogduijn 2012).

In the first in vitro approach, Kim and collaborators demonstrated that MSC were

able to educate macrophages after 3 days of coculture of activated M1-like macro-

phages with MSC (Kim and Hematti 2009). These “educated” macrophages
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produce low levels of pro-inflammatory cytokines such as TNF-α, IL-6, and

IL-12p70 and display a higher capacity to produce IL-10 and IL-12p40 after LPS

stimulation (Kim and Hematti 2009). In addition, adipose-derived MSC (ASCs)

have been shown to induce M2-like macrophage phenotype independently of cell-

to-cell contact when treated with either LPS or the serum of patients with acute

respiratory distress syndrome (Hu et al. 2016). In another report, authors used

ASC-conditioned medium to educate macrophages for chronic colitis treatment.

Indeed, systemic infusion of such MSC-educated macrophages inhibited colitis in

mice and reduced mortality protecting against sepsis (Anderson et al. 2013). In

rheumatoid arthritis (RA), an autoimmune and inflammatory disease, macrophages

are among the main players of disease progression (Udalova et al. 2016). They are

significantly increased in both the synovium and the adjacent tissues (Janossy et al.

1981; Udalova et al. 2016). Indeed, macrophages in the synovial membranes of

patients with RA have been described as the main initiators of T-cell infiltration and

activation in an antigen-dependent manner (Janossy et al. 1981). A large body of

studies has demonstrated that in RA patients, as compared to healthy individuals,

there is an imbalance between pro-inflammatory M1 secreting TNF-α and anti-

inflammatory M2c secreting IL-10 macrophages in favor of the first macrophage

Fig. 4.1 MSC regulate macrophage immunological fate and their functions. MSC are able to

induce M2-like macrophages that increase wound healing resolution. In response to inflammation,

MSC induce the generation of “M2-educated macrophages” that mainly secrete IL-10 which will

reduce autoimmune disease progression. In tumors, TAM macrophages will increase the survival

and progression of tumor growth
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subtype (Kennedy et al. 2011; Ye et al. 2014). Moreover, in healthy individuals

there is a balance between osteoclasts and osteoblasts (bone resorption versus bone

regeneration) that is completely lost in RA patients. Indeed, the production of

pro-inflammatory cytokines such as IL-6 and TNF-α will stimulate the secretion

of receptor activator of nuclear factor-κB ligand (RANKL) and the macrophage

colony-stimulating factor 1 (M-CSF) by synovial fibroblasts, which are critical for

osteoclast formation through the fusion of myeloid precursors of monocytes and

macrophages (Hamilton et al. 1993; Shigeyama et al. 2000; Teitelbaum 2000). In

this context, MSC have shown promising results in the treatment of arthritis. For

example, ASCs significantly improve the collagen-induced arthritis (CIA) in

murine model mainly through their capacity to inhibit RANK-induced

osteoclastogenesis (Gonzalez et al. 2009; Garimella et al. 2015). In addition to

their capacity to prevent osteoclast formation, MSC also participate in the regula-

tion of the phenotypic switch from a pro-inflammatory M1-like to an IL-10

producing M2-like macrophage subset (Abumaree et al. 2013). In another model

of liver transplantation, the MSC were able to reprogram Kupffer cells (KCs) that

are resident hepatic macrophages that control innate liver immunity (You et al.

2015). Similar to typical macrophages, they can display different phenotypes,

depending on the stimuli they receive, to promote hepatic immune tolerance

(Movita et al. 2012). Several studies have demonstrated that the negative or positive

outcome in liver injury will strictly depend on the phenotype of KCs (Movita et al.

2012; Ahsan et al. 2013; Akamatsu et al. 2003). In this context, MSC were able to

induce the switch of KCs from a M1 phenotype into an M2 phenotype, which

significantly contributed to liver allograft tolerance (You et al. 2015). In a sepsis

experimental model, the infusion of MSC has been shown to polarize

pro-inflammatory macrophages into an anti-inflammatory phenotype resulting in

an improvement of survival. However, when macrophages were depleted using

either the lipoclodronate or specific antibodies against IL-10, the therapeutic effect

of MSC was completely lost (Nemeth et al. 2009).

The mechanism by which MSC modulate macrophage polarization is still under

investigation. However, it has been demonstrated that MSC treated with TNF-α, the
main pro-inflammatory cytokine produced by M1-like macrophages, significantly

increase the secretion of anti-inflammatory molecules such as TNF-α-stimulated

gene 6 protein (TSG-6) (Torihashi et al. 2015). Recently, it has been reported that

intravenous administration of MSC prompts the generation of M2 alveolar macro-

phages that will induce immune tolerance (Ko et al. 2016). Moreover, prostaglandin

E2 (PGE2) through the upregulation of Cox2 expression as well as other compo-

nents of the arachidonic acid pathway reprograms macrophages into a M2-like

phenotype (Nemeth et al. 2009). TSG-6 prevents the Toll-like receptor 2 (TLR2)

signaling in macrophages via CD44, which will inhibit NF-κB and decrease mac-

rophage inflammatory response (Choi et al. 2011), and PGE2 promotes the polar-

ization of macrophages toward an M2-like phenotype (Uccelli and de Rosbo 2015).

Others and we have demonstrated that the production of IL-1 receptor antagonist

(IL-1RA) by MSC plays a critical role in the modulation of macrophage phenotype

promoting their differentiation toward an M2-like phenotype (Ortiz et al. 2007;
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Luz-Crawford et al. 2015). It has been proposed that in vivo the beneficial effect of

MSC is initiated in the lung where MSC migrate after intravenous administration.

This was associated with an enhanced polarization of macrophages toward an

M2-like phenotype resulting in the increased IL-10 levels in the lung in response

to MSC injection. Moreover, the protective role of MSC on hepatic injury was

significantly decreased upon administration of an anti-IL10 neutralizing antibody

(Lee et al. 2015). All together these data suggest that the therapeutic effect of MSC

in autoimmune disorders is associated with the generation of M2-like macrophages

that increase IL-10 production to dampen pathogenic inflammation.

4.4 Mesenchymal Stem Cells Promote Tumor Progression

Through Macrophages

Macrophages are one of the most represented leukocyte population within solid

tumors. Indeed, their role in tumor cell growth depends on the phenotype acquired

by macrophages in the tumor microenvironment (Lamagna et al. 2006). Anti-

tumorigenic-activated M1-like macrophages are able to stimulate activation of

resting NK cells and recruitment of pro-inflammatory T cells into the tumor,

while tumor-associated macrophages (TAMs) are alternatively activated M2-like

macrophages that stimulate anti-inflammatory responses exerting pro-tumorigenic

functions (Fig. 4.1) (Solinas et al. 2009; Wong et al. 2009). Because it has been

shown that the deficiency in M1 macrophage polarization significantly increases

tumor progression (Kondo et al. 2016), one of the main targets for cancer therapy is

the modulation of macrophage polarization in the tumor microenvironment from a

pro-tumorigenic M2-like to an anti-tumorigenic M1-like macrophage phenotype. In

this context, MSC have been shown to promote tumor progression by increasing the

generation of M2-like macrophages, calling into question the use of MSC to treat

tumors (Jia et al. 2016). In line with this study, Yamada and collaborators have

shown that MSC infusion significantly favors tumor progression by controlling

macrophage differentiation and function (Yamada et al. 2016). Indeed, MSC induce

generation of a particular M2-like macrophage subset able to inhibit the cytotoxic

activity of both NK and CD8+ T cells by reducing the expression of NKp44, CD69,

and CD25 markers, and production of IFN-γ, and by inducing generation of T

regulatory cells, which will lead to an improvement of tumor growth (Mathew et al.

2016). Furthermore, MSC secreting VEGF and ET-1 will significantly promote

tumor progression by increasing the number of M2-like macrophages within tumors

inducing a tolerogenic environment and promoting tumor angiogenesis (Yamada

et al. 2016). Interestingly, the cross talk between MSC and macrophages also favors

the tumor to escape from immune surveillance since M1-like macrophages enhance

the capacity of MSC to promote tumor growth in vivo. Moreover, primed MSC

produce significantly higher levels of iNOS andMCP1 as compared to unstimulated

MSC, which increases recruitment of macrophages to the tumor sites. Furthermore,
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IL-6 secreted by stimulated MSC polarizes infiltrated macrophages into an M2-like

phenotype. Thus, in the presence of anti-tumorigenic M1-like macrophages in the

tumor microenvironment, MSC seems to act as sensors and switchers of inflamma-

tion accelerating tumor progression (Ren et al. 2012).

In summary, cellular interactions between MSC and immune effectors, in

particular macrophages, in the tumor microenvironment play a pivotal role in the

establishment of tumor immune escape.

4.5 Conclusions

The dialogue between MSC and macrophages has a critical role for their phenotype

and function. In the context of wound healing, MSC induce generation of an

M2-like phenotype which will control the resolution of inflammation and promote

angiogenesis and tissue repair. In inflammatory disease models, MSC inhibit

pro-inflammatory M1-like macrophages promoting M2-like phenotype that will

reduce autoimmune disease progression. However, in tumor, MSC will support the

anti-inflammatory microenvironment by generating TAMs with pro-tumorigenic

growth activities. In conclusion, M2-like macrophages induced by MSC improve

tissue repair, inhibit inflammation, and support tumor growth. Thus, the specific

mechanisms by which MSC are able to interact with macrophages have to be

clearly defined to ensure safe clinical use of MSC.
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