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Abstract Emergency Medical Service (EMS) systems aim at providing immediate
medical care in case of emergency. A careful planning is a major prerequisite for
the success of an EMS system, in particular to reduce the response time to emer-
gency calls. Unfortunately, the demand for emergency services is highly variable
and uncertainty should not be neglected while planning the activities. Thus, it is of
fundamental importance to predict the number of future emergency calls and their
interarrival times to support the decision-making process. In this paper, we propose
a Bayesian model to predict the number of emergency calls in future time periods.
Calls are described by means of a generalized linear mixed model, whose posterior
densities of parameters are obtained throughMarkov ChainMonte Carlo simulation.
Moreover, predictions are given in terms of their posterior predictive probabilities.
Results from the application to a relevant real case show the applicability of the
model in the practice and validate the approach.
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1 Introduction

Emergency Medical Service (EMS) consists of pre-hospital medical care and trans-
port to a medical facility. Almost all EMS requests arrive by phone, through calls
to an emergency number. The urgency of each request is evaluated and the location
is obtained. Then, an ambulance is dispatched to the call site and, if needed, the
patient is transported to a medical facility. Demand for such services is constantly
increasing throughout the world, according to population growth and aging, while
we observe a continuous pressure of governments to reduce health care costs; thus,
an efficient use of resources is fundamental to guarantee a good quality of the service
while maintaining the economic sustainability.

Several optimization planning models have been developed in the literature for
EMS systems (see Bélanger et al. [3] for an extensive review). Unfortunately, the
EMS demand is highly variable, and the uncertainty should not be neglected while
planning the activities. Hence, it is fundamental to fairly predict the future number
of emergency calls and their interarrival times.

The goal of this paper is thus to propose and validate a Bayesian model to predict
the number of emergency calls in future time slots. The number of calls is described by
means of a generalized linearmixedmodel, and the inference is based on the posterior
density ofmodel parameters, which is obtained through aMarkovChainMonteCarlo
simulation scheme. Then, predictions are given in terms of their posterior predictive
probabilities.

We demonstrate the applicability of the approach using the information available
from the city of Montréal, Québec, Canada. Results show the convergence of the
approach, good fitting, and low prediction errors.

The paper is organized as follows. A review of previous works dealing with
stochastic modeling of EMS calls is presented in Sect. 2; the general features of an
EMS system and the typical structure of the demand dataset are described in Sect. 3.
Then, the Bayesian model is proposed in Sect. 4, and its application to the Montréal
case is presented in Sect. 5. Conclusions of the work are finally given in Sect. 6.

2 Literature Review

Several studies deal with EMS calls prediction under a frequentist approach. An
interesting survey of the works dated before 1982 can be found in Kamenetsky
et al. [10]. In addition, the authors also presented regression models to predict EMS
demand as a function of population, employment, and other demographic variables.
Socio-economic parameters such as median income and percentage of people living
below poverty line have been considered by Cadigan and Bugarin [5]. More recently,
McConnell and Wilson [12] focused on the increasing impact of age distribution on
EMS demand, while Channouf et al. [6] developed ARIMA models.

To the best of our knowledge, Bayesian approaches have not been considered for
the EMS demand yet, even though they have been successfully applied in the health
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care literature. In fact, Bayesian approaches allow combining the available data with
prior information within a solid theoretical framework, and results can be used as
prior information once new data are available, which are important features in health
applications. A good example of application to another health care service (i.e., the
home care service) can be found in [1, 2].

3 Problem Description

An EMS system consists of an operations center and a certain number of ambu-
lances, including the related staff. Ambulances are located in predetermined sites,
ready to serve EMS requests. Requests arrive at the operations center via telephone,
where they are evaluated. If a call requires an intervention, it is assigned to one of
the available vehicles. The aim of an EMS is to serve all calls as fast as possible,
maximizing the number of calls served within a given threshold that depends on the
type of area (urban or rural).

For this purpose, due to the high uncertainty related to EMS calls, the decision
maker needs accurate estimates of the demand as input for any optimization model
underlying ambulance dispatching.

The typical EMS dataset includes several information about the calls and the
provided service. For the aim of developing a prediction model, we focus on the
calls. Three types of information are available:

• Type: required service and patient characteristics; this information is usually sum-
marized into a priority associated to the call.

• Arrival time: day and time of the call.
• Coordinates: latitude and longitude of the call, or alternatively the address.

Usually, for managing purposes, the territory is divided into zones; thus, coordi-
nates are translated into the zone z (z = 1, . . . , Z ) of the call. Moreover, concerning
the arrival times, in this work we group the time into slots. Thus, day i (i = 1, . . . , I )
and slot t (t = 1, . . . , T ) are associated to the call, and for each day i we register the
number of calls Ni

z,t arisen in slot t and zone z. In particular, we consider slots of
two hours, i.e., T = 12.

4 The Bayesian Model

We propose the following generalized linear mixed model for the number of
calls Ni

z,t :

Ni
z,t |λi

z,t
ind∼ Poisson

(
λi
z,t

)
(1)

log
(
λi
z,t

) = β1 pz + β2az +
K∑

k=1

β3,kφk,z + β4hi + γt (2)
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where: pz and az are the population and the area of zone z, respectively; hi is a
binary covariate equal to 1 if day i is holiday and 0 otherwise; Φz = [

φk,z
]
is a

dummy vector of dimension K describing the type of zone z.
Zones z are classified into K + 1 types (e.g., residential, commercial, industrial);

φk,z = 1 if zone z is of type k (with k = 1, . . . , K ) and 0 otherwise, while φk,z is
always equal to 0 if zone z is of type K + 1, to avoid identifiability problems.

Model (1) and (2) is a generalized linear mixed model with four fixed-effects
parameters β1, β2, β3β3β3 and β4 (where β3β3β3 is K -dimensional), and a random-effects
parameter γt . The latter takes into account the similarity of the number of calls in
different zones during the same time slot t . In this formulation λi

z,t is the parameter
responsible for EMS calls: the higher the parameter λi

z,t is, the higher the expected
number of calls is.

Finally, independent non-informative priors, i.e., Gaussian distributions with 0
mean and large variance equal to 100, are chosen for β1, β2, β4, γt , and for the
components of vector β3β3β3:

β j
i id∼ N (0, 100) j = 1, 2, 4

β3,k
iid∼ N (0, 100) k = 1, . . . , K

γt
i id∼ N (0, 100) ∀t

5 Application to the Dataset

Data adopted in this work are those adopted in [4, 7, 11]. They refer to EMS calls
arisen in the city of Montréal and the near suburb of Laval, Québec, Canada, i.e., a
region with about 2.3 million of inhabitants and a territory of 744km2. According
to these data, the region is divided into Z = 595 demand zones. In addition to the
EMS data, information from Municipality of Montréal have been used to define the
vector Φz for each zone. Eleven different types of zone are present, as described in
Table1; moreover, to avoid collinearity due to the low number of zones belonging to
some types, types are regrouped as follows:

• Residential (k = 1);
• Workplace, regrouping commercial, office, industrial and institutional (k = 2);
• Street (k = 3);
• Other, regrouping park, agricultural, empty space, water, and golf field.

Finally, data about population has been divided by 1,000 to be of the same order of
magnitude of the other covariates.
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Table 1 Total number of calls and empirical mean divided by the type of zone

Type of zone Number of zones Total number of calls Mean number of calls

Residential 266 95,394 358.62

Commercial 14 4,325 308.93

Office 7 3,361 480.14

Industrial 19 4,359 229.42

Institutional 46 18,004 391.39

Park 30 8,003 266.77

Street 184 67,738 368.14

Agricultural 4 506 126.50

Empty space 19 4,190 220.53

Water 2 405 202.50

Golf field 4 615 153.75

Table 2 Empirical mean and
standard deviation of the
number of calls divided by
time slot

Time slot Mean number of
observations

Standard deviation
of the number of
observations

1 0.0606 0.2513

2 0.0535 0.2416

3 0.0409 0.2040

4 0.0529 0.2334

5 0.0908 0.3098

6 0.1039 0.3328

7 0.1010 0.3272

8 0.0991 0.3244

9 0.0937 0.3143

10 0.0915 0.3089

11 0.0893 0.3067

12 0.0776 0.2851

5.1 Descriptive Statistics

The dataset consists of 2,606,100 observations for Ni
z,t (I = 365 days, Z = 595

zones and T = 12 slots) together with the related covariates.
Tables1 and 2 report the main information about the data. Moreover, Fig. 1 shows

a map of the territory together with the number of calls.
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Fig. 1 Map of the city of Montréal together with the total number of calls. The number of calls
for each zone is represented by a point in the center of the zone. Green points correspond to lower
numbers of EMS calls, while red points represent higher numbers of EMS calls, according to the
division in quartiles reported in the legend

5.2 Posterior Analysis

5.2.1 Convergence Analysis

The model is implemented in STAN (http://mc-stan.org/), which uses the Hamil-
tonianMonte Carlo algorithm to reduce the correlation and obtain faster convergence
of the chains. Hence, 5,000 MCMC iterations have been run, with a burn-in of 1,000
iterations and a final sample size of 4,000.

Traceplots, autocorrelations and the Gelman–Rubin convergence statistics (R̂)
have been considered to verify that convergence is achieved. Moreover, we have
estimated the Monte Carlo Standard Error (MCSE) with the MC error, the Naive SE
and the Batch SE. See [8, 9] for further information.

Results show that R̂ is equal to 1 and that the MCSE is always less than the 5%
of the standard deviation for all parameters. Moreover, nice traceplots and autocor-
relations are obtained, showing that the convergence of the chain is satisfactory.

http://mc-stan.org/
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5.2.2 Credible Intervals of Model Parameters

Inference for eachmodel parameter is reported in terms of the posterior 95% credible
interval (CI).

CIs of the fixed-effects parameters are reported in Table3. The population para-
meter β1 yields a positive effect, thus increasing number of calls, while the area
parameter β2 gives a negative effect. This is in agreement with the considered data,
in which zones with large areas have small population densities; thus, the higher the
population density of a zone is, the higher the number of calls is. Vector β3β3β3 gives
the effect of the zone; results show that workplace zones and streets have more EMS
calls, followed by Residential Zones. Finally, CI of parameter β4 suggests that a
lower number of calls is to be expected during holidays.

Posterior CIs for the random-effects vector γt are reported in Fig. 2. They suggest
a clear distinction of the time slots: a higher number of calls arrive during the day
(slots t = 5, . . . , 11), while a lower number of calls arrive during night hours.

Table 3 95% CIs for the fixed-effects parameters

Parameter Covariate 2.5% 50% 97.5%

β1 Population 0.087 0.090 0.093

β2 Area −0.049 −0.047 −0.044

β31 Residential 0.277 0.297 0.316

β32 Workplace 0.347 0.369 0.389

β33 Street 0.332 0.352 0.371

β4 Holiday −0.067 −0.055 −0.044

Fig. 2 95% CIs for the random-effects vector γt



210 V. Nicoletta et al.

5.2.3 Cross-Validation Prediction

A cross-validation approach is adopted to validate the model, by partitioning the
complete dataset. Thefirst 90%of the days (with i = 1, . . . , I − Ĩ ) is used as training
set to determine the posterior density, while the remaining 10% (with i = I − Ĩ +
1, . . . , I ) is used as testing set. The predictive distributions of each Ni

z,t (with i = I −
Ĩ + 1, . . . , I ) are computed, and the predictions are checked with the corresponding
observed data.

The accuracy of the predictions is evaluated in terms of the global Mean Absolute
Error (MAE), defined as:

MAE = 1

Ĩ Z T

I∑

i=I− Ĩ+1

Z∑

z=1

T∑

t=1

∣∣∣Ni obs
z,t − N̂ i

z,t

∣∣∣

where the product Ĩ Z T is the numerousness of the sample in the testing set, and
Ni obs
z,t and N̂ i

z,t represent the observed number of calls and the number predicted
by the model (median of the predictive distribution) at day i , zone z and slot t ,
respectively. The obtained value is 0.078, which is two orders of magnitude lower
than the unit, showing a good fit of the model.

We have also detailed the MAE for each combination of type of zone k and
time slot t . Results in Table4 show quite similar values, whose maximum is 0.111,
confirming a good fit of the model that does not significantly deteriorate for any pair
k and t .

Table 4 MAE for each combination of type of zone k and time slot t
�����������
Time slot
t

Type of zone
k 0 1 2 3 All

1 0.035 0.061 0.060 0.062 0.059

2 0.036 0.048 0.046 0.051 0.048

3 0.025 0.043 0.036 0.043 0.040

4 0.033 0.060 0.057 0.056 0.056

5 0.066 0.103 0.100 0.096 0.097

6 0.063 0.111 0.111 0.104 0.104

7 0.054 0.105 0.104 0.102 0.099

8 0.052 0.102 0.103 0.104 0.098

9 0.061 0.093 0.093 0.097 0.091

10 0.057 0.093 0.085 0.092 0.088

11 0.063 0.087 0.083 0.089 0.084

12 0.047 0.077 0.074 0.078 0.074

All 0.049 0.082 0.079 0.081 0.078
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Table 5 Comparison of the
MAE between the proposed
Bayesian model and the mean
frequentist approach, grouped
by type of zone z, time slot t ,
and holiday h

Bayesian model Frequentist mean

Type of zone 0 0.049 0.098

1 0.082 0.152

2 0.079 0.148

3 0.081 0.153

Time slot 1 0.059 0.112

2 0.048 0.096

3 0.040 0.078

4 0.056 0.103

5 0.097 0.171

6 0.104 0.188

7 0.099 0.181

8 0.098 0.178

9 0.091 0.169

10 0.088 0.164

11 0.084 0.159

12 0.074 0.141

Holiday 0 0.078 0.147

1 0.077 0.142

5.2.4 Comparison with the Mean Estimate

In this Section we compare the outcomes of the proposed model with those of a
very simple frequentist approach, in which the predictions are simply given by the
historical means. This approach gives as a predictor the mean number of calls for the
specific combination of type of zone z, time slot t and holiday parameter h. MAE
values are computed considering the same training and testing sets as in Sect. 5.2.3.

The global MAE of the frequentist approach is equal to 0.145, while the values
grouped by z, t and h are reported in Table5. Results show that the MAE under
the frequentist approach is higher, being about the double than the MAE under the
proposed Bayesian approach. This further confirms the good fit of the proposed
model to the data.

6 Conclusions

This paper presents a first attempt to deal with stochasticity in the EMS calls by using
the Bayesian approach. A generalized linear mixed model has been proposed, with
the aim of identifying relevant effects that influence the calls and giving predictions
of future EMS calls.
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Results from theMontréal case suggest that population, area and type of zone have
a strong impact. Moreover, as expected, the time slot has a relevant effect, showing
lower predicted values of number of calls during the night. Finally, the model shows
good performance when used to make predictions, and documented by the lowMAE
values under cross-validation.

Moreover, themodel is general, and can be easily applied to describeEMSdemand
in other cities. On the contrary, as for rural situations, we expect that some modi-
fications are necessary to include the presence of rare events in an environment
characterized by a usually low demand. Another extension will be to consider the
area of each zone as an offset/exposure term of the Poisson regression.
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