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Abstract. Robotic video capsule endoscopy (VCE) is a rapidly evolving medical
imaging technology enabling more thorough examination and treatment of the
gastrointestinal tract than conventional endoscopy technologies. Despite of the
technological advances in this field, the reviewing of the large VCE image
sequences remains manual and challenges experts’ diagnostic capabilities. Video
reviewing systems for automated lesion detection are still under investigation.
Most of these systems are based on supervised machine learning algorithms,
which require a training set of images, manually annotated by the experts to indi‐
cate which pixels correspond to lesions. In this paper, we investigate a weakly-
supervised approach for lesion detection, which requires image-level instead of
pixel-level annotations for training. Such an approach offers a considerable
advantage with respect to the efficiency of the annotation process. It is based on
state-of-the-art colour features, which, in this study, are extended according to
the bag-of-visual-words model. The area under receiver operating characteristic
achieved, reaches 81%.
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1 Introduction

Video capsule endoscopy (VCE) enables the examination of the whole gastrointestinal
(GI) tract in a non-invasive way. It is performed with a swallowable capsule endoscope
(CE), which captures colour images during its approx. 12 h battery lifetime. Today’s
commercial CEs are passive, in the sense that they are moving by exploiting both the
gravity and the peristaltic motion of the GI tract. However, several research prototypes
have been proposed for active, robotic capsule endoscopy, which will enable thorougher
examinations, easier lesion localization, and drug infusion [1].
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A major issue that is still unresolved, both in passive and active VCE is that it requires
a lot of human effort for manually reviewing of the produced videos. Typically, each
individual review lasts 45–90 min, during which, the reviewer’s concentration should
remain undivided for a careful inspection of the output video [2]. Such a tiring procedure
is prone to human errors; a fact with serious consequences in the diagnostic yield, which
is alarmingly low [3].

In order to cope with this problem, automated lesion detection methods based on
computer vision algorithms have been proposed [4]. Most of these methods exploit
supervised machine learning methodologies, capable of learning what is defined as
normal and what is defined as an abnormal finding within the VCE video. The generation
of datasets for training the learning machines requires that experts indicate which pixels
correspond to normal or abnormal tissues within the VCE images. Considering that the
videos produced by a VCE examination are composed of thousands of frames (usually
of the order of 104), such a pixel-wise annotation task can prove very time-consuming
and discouraging for annotation of large datasets by the experts.

A promising solution that could alleviate this problem is weakly-supervised learning,
which involves training of a learning machine using weakly annotated data [5, 6]. In
this paper weakly supervised learning is considered using images annotated at image-
level instead of pixel-level. This way, a binary semantic label is assigned per video frame
indicating whether its content is normal or abnormal. A drawback of such an approach
is that the abnormal images can be tracked, but the localization of the lesion(s) within
each abnormal frame remains a challenge. However, it is much more significant for the
system to robustly detect which frames contain possible lesions than to localize the lesion
within these frames, since this can be much easier done by the video reviewers.

The Bag-of-Words or Bag-of-Visual Words (BoW/BoVW) can be considered as a
weakly supervised model built upon the notion of visual vocabularies. A visual vocabu‐
lary may be seen as a set of “exemplar” image patches (visual words), in terms of which
any given image may be described. Typically, this vocabulary is built using a large
corpus of representative images of the domain of interest and should be closely related
to the problem at hand. The vocabulary may be seen as a means of quantization of the
feature space i.e., the one of the local descriptors. Any unseen descriptor may then be
easily quantized to its nearest visual word. The description of the whole image is formed
by a histogram, counting the appearances of each visual word within it. Apart from the
obvious advantage of BoW, i.e., that can be used as a weakly supervised approach as it
has already been discussed, it also provides a fixed-size representation, a useful property
for tasks such as classification using traditional classifiers e.g., feed-forward neural
networks, support vector machines etc. Finally, the visual description provided by BoW
may also be used on tasks such as inverted file indexing [7], visual retrieval etc.

An early application of BoW in capsule endoscopy has been investigated using
speeded-up robust features (SURF) for polyp detection [8]. In [9] the performance of
BoW was investigated using scale-invariant feature transform features (SIFT) and local
binary patterns (LBP) for ulcer detection. A more complex feature extraction scheme
for the construction required in BoW was proposed in [10]. This scheme was applied
for polyp detection and includes extraction of SIFT, LBP, uniform LBP and histogram
of oriented gradients (HoG) features from neighbourhoods of salient points detected
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using the SIFT key-point detector. In the context of bleeding detection, colour histo‐
grams extracted from various colour spaces were considered [11]. Colour along with
textural information has also been exploited in [12] for detection of gastric and oeso‐
phageal cancer, gastritis, and oesophagitis. In that study superpixel segmentation was
exploited for estimation of image descriptors from homogeneous regions. As in [12] the
descriptors considered include colour histograms from various colour spaces as well as
LBP-based textural signatures. Most of the aforementioned approaches are based on
support vector machine (SVM) classifiers.

The BoW model was also exploited in the context of unsupervised segmentation of
capsule endoscopy videos, based on probabilistic latent semantic analysis (pLSA) [13].
In the context of the analysis of higher resolution endoscopic images, BoW models have
been proposed for browsing endoscopic imagery by semantic information [14], colo‐
noscopy image classification [15], and classification of images obtained using chromo-
endoscopy and narrow-band imaging techniques.

Acknowledging the significance of incorporating an image-level instead of pixel-
level annotation process in the development of training datasets for lesion detection
systems in VCE, in this paper we investigate a novel BoW-based weakly-supervised
learning approach using the state-of-the-art features that have been proposed in [15].
These features represent colour information both at pixel and region level in CIE-Lab
colour space, and despite their simplicity they have been proved very effective in the
detection of a diverse set of abnormalities [5, 17].

The rest of this paper is organized as follows: In Sect. 2 we describe the methodology
we followed for the proposed weakly supervised classification scheme. We provide a
brief description of both the generic BoW methodology and the approach we followed.
Then, in Sect. 3 we demonstrate and discuss our experimental results. Finally, conclu‐
sions are drawn in Sect. 4, where we also discuss plans for future continuation of this
work.

2 Methodology

BoW is a widely used method to model generic categories in detection, classification
and recognition problems [18]. This method has been originally inspired by text docu‐
ment analysis techniques, and consists of calculating word frequencies. The first step of
BoW is to describe an image as a set of “words”, which capture its visual content. To
this goal, given an adequately large dataset, a set of features is extracted from every
image and typically quantized using a clustering approach, e.g., the k-means algorithm
[19]. Upon clustering, the centroids (or in some approaches the medoids, which opposed
to centroids are actual members of the dataset) that have been determined, are used as
a “visual vocabulary” and are often referred to as “visual words.”

Each feature is then translated (coded) into one of these visual words, i.e., to the
nearest one in the feature space (typically based on the Euclidean distance). The next
step involves a histogram construction, which describes the appearance frequency of
every visual word within an image. Thus, this histogram is used to characterize the visual
content of the image. Among the advantages of BoW, we should emphasize that it
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succeeds to reduce the problem of classifying a large number of high dimensional vectors
from local point descriptors to a fixed-size, one dimensional vector without significant
loss of visual information. Finally, any typical classification approach may be used for
the classification of these histogram vectors. In this work we choose to use an SVM [20],
trained with examples of histograms extracted from both normal and abnormal catego‐
ries.

We use the well-known SURF (speeded up robust features) algorithm [21], in order
to detect interest points and extract descriptions from patches around them. SURF is a
powerful and fast descriptor scheme and has been successfully applied to a plethora of
computer vision problems. It has been shown to achieve comparable repeatability and
performance to other, more sophisticated schemes, at a lower computational cost. It
combines a Hessian-Laplace region detector and a gradient orientation-based feature
descriptor and is invariant to several image transformations and robust to illumination
variations. For interest point selection, we also make use of a “naïve” approach known
as “dense sampling”. Following this approach, we select all pixels sampled using a
regular grid (i.e., one with equal horizontal and vertical inter-pixel distances), which are
then used as interest points. Although these points cannot be matched accurately, when
compared e.g., to the SURF interest points, they carry valuable information regarding
image content interpretation [22].

For the extraction of visual descriptions of patches around the interest points, we
also evaluate the colour-based features of [16]. Images are first transformed to the CIE-
Lab colour space and then, the following colour information is extracted from a square
region centered at each point: (i) The Lab values of each interest point; (ii) The minimal
and maximal values of each component. This results to a vector consisting of 9 values.

Fig. 1. Image examples of different uses of the algorithms: (a) A raw WCE image depicting
lymphangiectasia; (b) SURF; (c) Dense SURF; (d) Lab; and (e) Dense Lab.
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In Fig. 1(b) and (d) we illustrate the set of the SURF interest points extracted from
a given VCE image, combined with SURF regions and fixed windows, respectively,
whilst in Fig. 1(c) and (e) we illustrate the set of the dense interest points, also combined
with SURF regions and fixed windows. One may easily observe that SURF points do
not cover the visual properties of the whole image. Yet, the latter is achieved by the
dense features.

3 Results

For the evaluation of the proposed weakly-supervised BoW approach, we performed
experiments using a subset of dataset 2 from the publicly available KID database [23, 24].
This dataset displays a variety of different kinds of abnormalities. More precisely, the
selected subset consists of 227 images of most common inflammatory lesions, e.g., as in
Fig. 2(a) including ulcers, aphthae, mucosal breaks with surrounding erythema, cobble‐
stone mucosa, stenoses and/or fibrotic strictures, and significant mucosal/villous oedema.
It also includes a set of 1327 normal images derived from the small bowel (728 images),
e.g., as in Fig. 2(b) (right), and the stomach (599 images), e.g., as in Fig. 2(b) (left).

Fig. 2. Representative images from the dataset used in experiments: (a) Inflammatory lesion
images, (b) Normal images from the stomach (left) and the small bowel (right)

In order to investigate whether BoW could be used as a reliable classification
approach, we compare its performance in four different experiments. These differentiate
on the method for the selection of interest points, the description of patches around the
aforementioned points; and the colour space used. For the latter case we used greyscale
images and also transformations of CIE-Lab (using standard illuminant D65), where L
and b channels had been discarded, keeping only the colour information of a. We shall
refer to the latter as the “Lab images”. More specifically, the performed experiments are
as follows: (i) SURF points and features on the greyscale image; (ii) dense points and
SURF features on the Lab images; (iii) SURF points and colour features of [16]; (iv)
dense points and colour features of [16]; and (v) the state-of–the-art method of [10],
where image description is based on the combination of SIFT and compound local binary
pattern features (CLBP). In each case, we extract interest points, then their descriptions,
we create the visual vocabulary, which we use for image BoW description and finally
train SVM classifiers. In every experiment we use 6-fold cross validation method and
estimate the values of area under the receiver operating characteristic (AUC).
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The visual vocabulary size ranged from 300 to 1200 words. For the experiments with
dense SURF, we used multi-scale feature extraction with scale step 1.6, starting from
scale 1.6, up to scale 6.4. We also experimented with various sizes of square regions,
for the extraction of the colour features. We used 18 × 18 and 36 × 36 square areas. For
dense feature extraction we used grid steps of 4, 10, 18 and 36 pixels, both horizontally
and vertically. For the method of [10] we used CLBP of patch size 4 × 4 and 8 × 8. For
the classification we used an SVM with RBF kernel.

Most notable results are summarized in Table 1. In this Table we may observe that
best performance was achieved for the case of dense Lab features using a window size
of 18 × 18 pixels and a visual vocabulary of 700 words. The best performance of standard
SURF features (i.e., applied on grayscale images) was achieved using dense extraction
and a vocabulary size of 800 words. However, this advantageous performance comes at
cost of efficiency, since the number of samples obtained by dense SURF is higher (due
to the regular sampling process). In addition, our approach had better results in compar‐
ison with of the state-of-the-art method of [10]. In any case the application of SURF on
the a channel of CIE-Lab leads to an increase of AUC.

Table 1. Experimental Results; in dense (x), x denotes the step, in SURF (y), y denotes the colour
space (g: greyscale, a: a channel of Lab). Note that in case of SURF feature description, image
patches are selected by the algorithm, thus marked herein as “N/A”

Feature
extraction

Feature description Window size Vocabulary
size

AUC

dense (18) Lab [15] 18 × 18 500 0.80
dense (4) SURF (g) N/A 800 0.70
dense (36) Lab [15] 36 × 36 700 0.79
dense (18) SURF (g) 18 × 18 800 0.69
dense (10) Lab [15] 18 × 18 700 0.81
SURF (a) Lab [15] N/A 700 0.77
SURF (g) SURF (g) N/A 500 0.59
SIFT (g) SIFT + CLBP [10] 4 × 4 500 0.73
SIFT (g) SIFT + CLBP [10] 8 × 8 500 0.73
SIFT (g) SIFT + CLBP [10] 8 × 8 700 0.74

4 Conclusions

In this paper we presented a weakly supervised classification scheme for automated
lesion detection in VCE videos. We followed the BoW paradigm and created a visual
dictionary encoding all extracted image features into visual words. A novel contribution
of this paper is that we extended our state-of-the-art colour features [16, 17], according
to the bag-of-visual-words model and created BoW image descriptions, which were used
to train SVM classifiers. We evaluated four different feature extraction schemes,
including a state-of-the-art approach, and investigated among others the use of colour
and different sampling schemes. Our results indicate that standard SURF features are
not capable of providing a reliable descriptor in the given problem. However, when
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applied to the Lab colour space, their performance is boosted. The latter are able to
provide valuable results within the proposed weakly-supervised scheme, which could
be used as an alternative to the demanding in terms of manual annotation effort, fully-
supervised, schemes.

Open research topics in the area of BoW with application to weakly-supervised
lesion detection include the construction of visual vocabularies (flat vs. hierarchical
approaches, predefined vs. dynamically selected sizes), the selection of interest points
(dense vs. salient vs. hybrid), the selection of patches surrounding interest points (shape,
size, orientation) and of course their description (colour vs. greyscale vs. binary descrip‐
tors). We plan to perform a thorough systematic investigation to assess the effect of each
part of BoW schemes to the overall results, within the context of lesion detection in VCE
videos.
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