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Abstract. We propose a novel local image descriptor called the
Extended Multi-resolution Local Patterns, and a discriminative proba-
bilistic framework for learning its parameters together with a multi-class
image classifier. Our approach uses training data with image-level labels
to learn the features which are discriminative for multi-class colonoscopy
image classification. Experiments on a three class (abnormal, normal,
uninformative) white-light colonoscopy image dataset with 2800 images
show that the proposed feature perform better than popular hand-
designed features used in the medical as well as in the computer vision
literature for image classification.

1 Introduction

More than one million new Colorectal cancer (CRC) cases are diagnosed yearly
worldwide, and CRC remains the third leading cause of cancer death in the world
[1]. There is compelling evidence that removing adenomas from the colon sub-
stantially reduces the risk of a patient developing CRC [1]. If CRC is diagnosed
in its earliest stages, the chance of survival is 90% [1]. Clearly, early identification
of colonic abnormalities is crucially important.

Adenoma detection rate (ADR) is a commonly used predictor of the risk
of developing CRC after undergoing a colonoscopy screening [2]. Although
colonoscopy remains the gold standard for CRC screening, CRC miss rate has
been reported as high as 6% [3], posing risk of developing colon cancer due to a
failure to detect treatable lesions in time. It is therefore arguable that a reliable
computer-aided detection system specialised for identifying suspicious colonic
abnormalities in colonoscopy videos could contribute to improve ADR, e.g. by
presenting clinicians with a second opinion obtained by objective and repeatable
methods.

In this paper we propose an automated system to classify colonoscopy images
into three classes: abnormal, normal and uninformative. The abnormal images
contain various abnormalities such as polyps, cancers, ulcers and bleeding,
appearing in a variety of sizes, positions and orientations in the image. The nor-
mal images contain none and show a clear healthy colon wall. The uninforma-
tive images contain images which are blurred due to out of focus (e.g., camera
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(a) Abnormal (b) Normal (c) Uninformative

Fig. 1. Example images from our dataset.

pushed against the colon wall) or sharp camera movements. Note that we are not
specifically interested in detecting uninformative frames as done in the existing
approaches (e.g. [4]), but our target is a multi-class colonoscopy image classifi-
cation (Fig. 1).

Various hand-designed features (e.g. SIFT) have been explored for
colonoscopy image classification (discussed in Sect. 2). However, these features
may not be optimally discriminative for classifying images from particular
domains (e.g. colonoscopy), as not necessarily tuned to the domain’s characteris-
tics. We instead propose a learning approach, which jointly learns discriminative
local features together with a multi-class image classifier using training data with
image-level labels. Since our features are learned from the data we expect them
to be more discriminative than hand-designed ones. Comparative experiments
with our colonoscopy dataset show that the learned features perform better than
popular features used in the medical as well in the computer vision literature for
image classification.

2 Related Work

The approaches proposed for colonoscopy image analysis are mainly focussed
on identifying appropriate features; various hand-crafted features such as
color wavelet co-variance (CWC) [5], color histograms (CH) [6], gray-level co-
occurrence matrices (GLCM) [7], Root-SIFT (rSIFT) [8], Local Binary Patterns
(LBP) [8], Local Ternary Patterns (LTP) [8] have been explored. For exam-
ple, LBP and GLCM for normal/abnormal classification [7,8], CWC for polyp
detection [5], and for classification [7].

Feature learning approaches, e.g. [9–11], on the other hand, learn domain-
specific discriminative local features and report improved performance compared
to hand-crafted features in various applications, e.g. medical image segmenta-
tion [9], and natural image retrieval [11,12]. However, these approaches require
a labelled dataset for learning; e.g., Becker et al. [9] uses manual region-level
segmentations to learn filters for curvilinear structure segmentation in retinal
and microscopy images.

Convolutional neural nets (CNN) have been widely used to jointly learn fea-
tures and a classifier. Usually CNN requires a large amount of training data [13];
when this is not available, CNN may give worse performance than traditional,
hand-crafted features with feature encoding methods such as sparse coding [13].
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Recently, transfer learning approaches have been widely used (e.g. [14]) to over-
come this, where a CNN model trained on a large dataset (e.g. ImageNet, which
contains 1.2 million images with 1000 categories), is used either as an initializa-
tion or a fixed feature extractor for the task of interest. CNN is computationally
expensive to train, even on the GPU [15].

Since obtaining region-level annotations (to learn features as in [9–11]) is a
difficult, time-consuming task, we propose a feature learning approach which uses
only the image-level labels. Requiring image-labels instead of region-level labels
makes annotations less expensive, hence more feasible in practice. Compared to
CNN, our approach does not require pre-training on large dataset, or specialized
hardware such as GPU for training.

3 Method

First we introduce our notation, and then we define the structure of our feature
in Sect. 3.1. Section 3.2 proposes the learning algorithm to learn the parameters
of the feature together with a multi-class image classifier. We call the learned
feature Extended Multi-Resolution Local Patterns (xMRLP).

We characterize an image Ii by a set of local features {xij}Ni
j=1, where Ni

is the number of local features in Ii. Let’s consider the general case of labels,
whereby an image is associated with an image-level soft label indicating, for e.g.,
class probabilities. Our goal is to learn the parameters of the xMRLP features as
well as a multi-class classifier based on the given training data, which is formed
by the set of tuples D = {(Ii, P̃i)}M

i=1, where M is the number of images in D, and
P̃i ∈ [0, 1]C corresponds to a C-dimensional vector of soft labels of the ith training
image associated with the C classes. We assume that

∑C
c=1 P̃ (yi = c) = 1, where

P̃ (yi = c) is the latent class assignment of the image Ii to class c.

3.1 Extended Multi-resolution Local Patterns

Fig. 2. An example sam-
pling pattern.

Let Iij be the intensity of the jth pixel in the ith image.
To capture local context and to make the descriptor less
sensitive to noise, we use the sampling pattern widely
adopted in feature descriptors e.g. [16]. Figure 2 shows
a 3-resolution version of the sampling pattern, where
the local neighbourhood around the jth pixel of image
Ii is quantized at three resolution levels. Eight sam-
pling points are considered at each resolution. At each
sampling point, a Gaussian filter with standard devia-
tion proportional to the size of the support region (cir-
cle around each sampling point in Fig. 2) is applied to
collect information from that region.

Let Is
ij , s = 1, . . . , d, represents the intensity value at the s-th sampling point

in the pattern around the jth pixel of image Ii (e.g. d = 24 in Fig. 2). We define
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xij ∈ R
d as the xMRLP descriptor vector at pixel j in image Ii using the multi-

resolution sampling pattern with d sampling points:

xij(a) =
[
Iij − a1I

1
ij , . . . , Iij − adI

d
ij

]
(1)

where a = [a1, . . . , ad] defines the weights for different neighbourhood regions.
Note that, xMRLP is an improved version of the Multi-resolution Local Pat-

terns (MRLP) descriptor proposed in [17,18] for cell image classification. In
MRLP the weights for the local neighborhoods were fixed to 1, i.e. ai = 1,∀i
(Eq. 1).

3.2 A Discriminative Multi-class Framework for Learning

In this section we propose a discriminative framework based on image-to-class
distances (I2CD) [19] to jointly learn the feature parameter (a in Eq. 1) and
an image-level multi-class probabilistic classifier for colonoscopy image classifi-
cation.

Image to Class Distances. The I2CD was first introduced by Boiman et al.
[19] in the NBNN classifier. It requires no training phase, and classifies an image
by comparing its distance to different classes. A relaxed version of I2CD was
proposed in [20], showing improved performance over the original version for
complex datasets. The relaxed version of I2CD is given as:

Dic(a) =
1

NiP

Ni∑

j=1

P∑

p=1

‖xij − xcp
ij ‖22 (2)

where xcp
ij is the pth nearest neighbour of xij in the cth class, P is the number

of considered neighbours. In all the reported experiments we set P = 3.

Discriminative Probabilistic Softmax Classifier. Equation (3) below
defines a discriminative probabilistic classifier. This classifier outputs the poste-
rior probability of an image Ii belonging to a class c based on the I2CD.

P (yi = c|{xij}) =
exp−γcDic

∑C
l=1 exp−γlDil

(3)

The class c maximising the probability above is the one associated with the
smallest I2CD over all classes. In Eq. (3) {γl}C

l=1 are the classifier parameters.

The Objective Function. Equation (4) defines the objective function to learn
the feature parameter a and the classifier parameters {γl}C

l=1.

L(a, {γl}C
l=1) = − 1

M

M∑

i=1

C∑

l=1

P̃ (yi = l) log (P (yi = l|{xij})) + β‖a + 1‖22 (4)
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where, the first term maximizes the target posterior probabilities of the images in
the training set and second term is a regularisation term, prevents the parameters
a from becoming arbitrary high and makes their values close to −1 (as in MRLP).
We set β = 1 for all the reported experiments.

We use a coordinate descent method to optimize Eq. (4), where we learn one
parameter at a time while keeping the others constant.

Note that, learning the feature parameters is similar to metric learning
approaches. For example in [21], class-specific distance metrices were learned
to compare images with different classes, and the class which gives the smallest
I2CD was considered as the target class for that image. However, in Sect. 4.2
we show that the learned features when they are combined with the traditional
feature encoding methods such as sparse coding and a SVM classifier performs
better than directly using them (as in [21]).

4 Experiments

This section reports our comparative experiments and the results based on the
xMRLP descriptor and other features such as LBP, LTP, rSIFT, RP.

Materials: We collected 82 white-light colonoscopy video segments from the
Internet. K-means clustering was applied to select a representative subset of
images from each video segment based on color statistics (mean, std, skewness
and entropy in RGB color chennels) and texture features (LBP histograms).
From each video one frame per cluster was randomly selected and annotated by
a clinical expert who provided image-level annotations. It is observed that the
movement of the colonoscope is fast in normal videos compared to the abnormal
ones as the corresponding colon segments do not need a careful inspection of the
colonic walls. Therefore the number of clusters for a video vi was experimentally
set to V

7 for normal and V
10 for abnormal videos, where V is the total number

of images in vi. The final dataset contains 1000 abnormal, 900 normal and 900
uninformative images. All images in the final dataset are rescaled preserving the
aspect ratio so that the maximum dimension (row or column) of each image is
300 pixels.

Experimental setup and evaluation criteria: All the local features are
extracted from RGB color patches of size 3×16×16 with an overlap of Q pixels
in vertical and horizontal directions. The sampling pattern shown in Fig. 2 (3
resolution, 8 sampling points in each resolution) is used for xMRLP, LBP and
LTP features. We rescale the sampling pattern such that all the sampling points
lie inside the 16 × 16 image patches.

The classification performance is measured as the average of the per-class
accuracies (mean-class accuracies, MCA) measured on the test test. All the
experiments were repeated 10 times and the MCA averaged over these itera-
tions are reported. In each run we randomly selected 300 images from each class
for training and use the rest for testing.
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Table 1. Performance of various features using the softmax classifier (Eq. 3).

Feature rSIFT RP MRLP xMRLP (proposed)

Feature dimensionality 384 200 72 72

MCA 82.83± 1.20 84.37± 0.48 80.97± 0.92 87.07± 0.40

(.36, .64, .00) (.47, .52, .01) (.15, .35, .50) (.52, .45, .03) (.85, .13, .02) (.41, .44, .15)

(.49, .51, .00) (.44, .56, .00) (.52, .48, .00) (.54, .46, .00) (.32, .48, .20) (.21, .50, .29)

Fig. 3. Example of wrongly classified images (abnormal - first two columns, normal -
next two columns, uninformative - last two columns) and their confidence values using
the xMRLP features. The values in the brackets are correspond to P (y = abnormal),
P (y = normal) and P (y = uninfomative) respectively.

4.1 Effect of Feature Learning

This section compares the xMRLP feature with baseline features rSIFT, RP and
MRLP.

For each feature the representation of a patch was obtained by concatenating
the features extracted from each of the color channels of the RGB color space.
This led to a dimensionality of 72 (3 colors ×3 resolutions ×8 sampling points)
for MRLP and xMRLP, and 3×128 for rSIFT. Each of the vectorized color patch
of dimension 3 × 16 × 16 is projected to a compressed space of dimension 200
using a random projection matrix [22] to get a RP feature.

In the feature learning stage of xMRLP we use only 50 images from each of
the 3 classes, since the I2CD calculations are computationally expensive due to
nearest neighbour search. In the classification stage we randomly sample 50, 000
local features from each class of the training images and calculate the I2CD
between a test image and the training set to do the classification. In both cases
features are extracted densely without overlap (Q = 0).

Table 1 compares the performance of different features; xMRLP improves
the performance of MRLP by about 7%, suggesting that learning can capture
discriminative information. xMRLP also outperforms rSIFT and RP with low
dimensional representation, makes the I2CD classifier computationally efficient.

Since the proposed framework can also provide probabilistic outputs for the
test images, Figs. 3 and 4 show example of the wrongly and correctly classified
test images and their confidence values based on the probabilistic soft-max clas-
sifier given in Eq. (3). As can be seen from Fig. 3 the probability outputs and the
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Fig. 4. Example of correctly classified
images with high confidence (P > 0.9).
abnormal(top), normal(middle) and unin-
formative(bottom).

Fig. 5. Performance of different
features with LLC and SVM (dic-
tionary size vs MCA).

wrong classification results are reasonable, as it is hard to assign the ambigu-
ous images (i.e. images with ambiguous appearance) to a single class with high
confidence.

4.2 XMRLP with Feature Encoding and SVM Classifier

The softmax classifier used in Sect. 4.1 is computationally expensive due to the
nearest neighbour search involved in the I2CD calculations. Feature encoding
methods (e.g. [23]) with SVM classifier, on the other hand, are widely used in
medical image analysis [8] and are computationally efficient compared to I2CD
calculations. Therefore, in this section we evaluate the performance of the learned
xMRLP features (after learning them as explained in Sect. 4.1) using a feature
encoding method called Locality Constraint Linear Coding (LLC) [23] and a
SVM classifier. We show that xMRLP features with LCC+SVM perform bet-
ter than other features as well as xMRLP features with the soft-max classifier
(Sect. 4.1).

Since feature encoding is computationally efficient, we extracted features
more densely, with an overlap of Q = 12 pixels. For each feature type we ran-
domly sampled 100,000 local features to learn the dictionary using k-means. We
used SVM classifier (LIBSVM [24]) with an exponential χ2 kernel and report
the performance in Fig. 5. xMRLP feature outperforms other features even with
a smaller dictionary size (500) suggesting that learned features are better than
other features considered. When the dictionary size is 4000, xMRLP gives a
MCA of 92.8% which is better than the MCA obtained by rSIFT (89.7%) and
RP (89.1%).

4.3 Comparison with the Features Proposed for Colonoscopy

This section compares the performance of various features proposed for
colonoscopy image classification literature such as LBP [8], LTP [8], color his-
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Table 2. Performance of different features (S -size of the image representation).

Feat CH CWC CWC2 GLCM WGLCM LBP LTP rSIFT RP MRLP xMRLP

S 225 216 240 144 144 531 1062 4000 4000 4000 4000

MCA 85.0 79.3 79.7 80.1 83.0 87.4 89.6 89.7 89.1 91.3 92.8

std(±) 1.17 0.8 0.8 0.87 0.5 0.52 0.72 1.05 0.90 0.8 0.70

tograms (CH) [6], GLCM [25], GLCM on wavelet images (WGLCM) [26], CWC
[5] and CWC with higher-order statistics (CWC2) [7].

For LBP and LTP features we use a three resolution version of the sampling
patterns as explained in Sect. 4. These features are extracted with an overlap of
Q = 12 pixels. The LTP parameters were learned from a 5-fold cross validation
on the training set. To make a fair comparison we used the same SVM classifier
with an exponential χ2 kernel for this experiment.

The results are reported in Table 2. The proposed xMRLP feature outper-
forms others by a large margin. xMRLP feature takes about 0.3 s to classify an
image compared to 1.1 s and 1.3 s by RP and rSIFT features respectively on an
Intel Core-i7 machine with 8 GB RAM. These times include the time for feature
extraction and encoding with a dictionary of size 1000.

4.4 Comparison with Deep Convolutional Neural Nets

Since CNN was widely applied for bio-medical [27] as well in non-medical [13]
applications, the following experiments were done with CNN to evaluate its
performance on our colonoscopy dataset.

Training using colon dataset: A shallow network (Fig. 6) was trained (from
scratch) using only the images from the colon dataset with data augmentation
(mirrored images). This network gives an MCA of 76.1±0.7%, which is ∼15% less
compared to our approach (92.8%). This is mainly due to the lack of data used
for training. Similar findings were reported in [13] on the Caltech101 dataset1;
CNN trained on this dataset gives an accuracy of 46%, compared to the accuracy
of 84% obtained by the hand-designed features with feature encoding.

Transfer learning: In this experiment we fine-tuned the ImageNet (1.2 Million
images) trained model “AlexNet” [15] using the colon dataset with data augmen-
tation (mirrored images, and randomly cropped image regions of size 227 × 227
from images of size 256 × 256). This fine-tuned net gives a MCA of 92.9 ± 0.6%,
which is similar to the MCA obtained by our approach (92.8%).

Unlike our approach, CNN is designed to capture features at multiple scales.
Therefore, the classification performance of CNN can be expected to be high
compared to our approach. However this ImageNet pretrained CNN shows sim-
ilar performance compared to our approach, as the results on this dataset are
saturated at ∼93%. Although results are similar, our approach does not require

1 http://www.vision.caltech.edu/Image Datasets/Caltech101/.

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Fig. 6. The shallow CNN architecture used for the colonoscopy image classification.

a larger dataset for pre-training or higher computational power such as GPU.
Our approach takes ∼1.5 h to train on a CPU with our unoptimized Matlab code
on an Intel Core-i7 machine with 8 GB RAM compared to ∼20 min fine-tuning
time required by CNN on NVidia Tesla K40 GPU2 with 12 GB RAM.

For the above two experiments we use the following parameters to train
the network: learning rate 10−4, momentum 0.9, weight decay 5 × 10−4. The
maximum number of iterations were set to 10000 and 7000 for the first and
second experiments respectively. The library Caffe [28] was used in all the CNN-
related experiments.

5 Conclusions

We presented a novel discriminative feature learning approach for multi-class
colonoscopy image classification, which jointly learns the parameters of the pro-
posed xMRLP features together with an image-level classifier using training
data with image-level labels. Various comparative experiments on a colonoscopy
dataset with the features proposed in the literature of colonoscopy as well as
computer vision show that our learned features outperform others. The pro-
posed approach is not restricted to colonoscopy images, hence our future work
will explore applications to other medical image domains.
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