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Abstract. Augmented Reality (AR) guidance systems are currently
being developed to help laparoscopic surgeons locate hidden structures
such as tumours and major vessels. This can be achieved by registering
pre-operative 3D data such as CT or MRI with the laparoscope’s live
video. For soft organs this is very challenging, and quantitative evalua-
tion is both difficult and limited in the literature. It has been done previ-
ously by measuring registration accuracy using retrospective (non-live)
data. However a performance evaluation of a real-time system in live use
has not been presented. The clinical benefit has therefore not been mea-
sured. We describe an AR guidance system based on an existing one with
several important improvements, that has been evaluated in an ex-vivo
pre-clinical study for guiding tumour resections with porcine kidneys.
The main improvement is a considerably better way to visually guide
the surgeon, by showing them how to access the tumour with an incision
tool. We call this Tool Access Visualisation. Performance was measured
with the negative margin rate across 59 resected pseudo-tumours. This
was 85.2% with AR guidance and 41.9% without, showing a very signif-
icant improvement (p = 0.0010, two-tailed Fisher’s exact test).

1 Introduction and Background

There is much ongoing research to develop AR guidance systems to improve
laparosurgery. One important goal is to visualise hidden internal structures such
as tumours and major vessels by augmenting optical images from a laparoscope
with pre-operative 3D radiological data from MRI or CT. Despite considerable
research, robust systems capable of handling soft tissue deformation do not yet
exist. To achieve this three main challenges must be overcome. The first is to
build a segmented deformable model of the organ and its internal structures
from the radiological data. This process is the least time-critical because it can
be done before intervention. The second challenge is real-time registration, where
the goal is to transform the model to the laparoscope’s coordinate frame using
live visual information present in the laparoscope’s image. The third challenge
is visualisation, where the goal is to augment the laparoscope’s image with data
c© Springer International Publishing AG 2017
T. Peters et al. (Eds.): CARE 2016, LNCS 10170, pp. 114–126, 2017.
DOI: 10.1007/978-3-319-54057-3 11



A System for Augmented Reality Guided Laparoscopic Tumour Resection 115

from the organ model in order to guide the surgeon. This paper focuses on the
registration and visualisation problems, for which a number of approaches have
been proposed. Registration algorithms have been described and tested with
various organs including the liver [6,7,11], uterus [3,4] and kidney [9,12,13]. To
date most previous approaches have been developed for robotic surgery with
stereo laparoscopes. However there are a few that work with monocular laparo-
scopes [3,4,6,9,12]. The challenges with monocular laparoscopes are far greater
due to the lack of depth information. However they are used in the majority of
laparosurgery due to several factors including cost, image resolution and smaller
port size. Of these, the systems which are capable of robust registration over
long durations are [4,12]. These work by first performing an initial registration,
to align the model to one [12] or several [4] reference laparoscopic images. Then
2D texture features are detected in the reference images with e.g. SURF [2] and
mapped onto the model’s surface. Once done the model is automatically reg-
istered to new laparoscopic images using feature-based tracking. An important
difference between [4,12] is that in [12] the initial registration was done man-
ually with a rigid model, whereas in [4] it was done semi-automatically with a
deformable model. Therefore [4] could handle deformation due to insufflation
and other factors, which is required for accurate registration of soft organs.

A main shortcoming of the above approaches is the lack of thorough quan-
titative evaluation, and the lack of live usage tests. In the above papers all
quantitative results were presented using retrospective videos from pre-recorded
surgeries. Therefore evaluating the practical benefit of the system for surgical
guidance was not done. From a technical standpoint, moving from pre-recorded
videos to live surgery is far from trivial. The main issues are time constraints: any
time for manual stages becomes significant and parameter tuning is not really
possible. Furthermore, when processing live videos the effective frame-rate is
limited by the AR system’s speed, which is usually well below the frame-rate of
a pre-recorded video (typically 30–50 fps). Therefore inter-frame motion is more
significant, and depending on the algorithm can severely affect performance.

We present an AR guidance system with monocular laparoscopes, based on
[4], which runs in real-time and which has been tested live with a systematic pre-
clinical user study. This evaluation measured the benefit of AR guided tumour
resection using ex-vivo porcine kidneys. To achieve this a number of improve-
ments were made to [4]. These were for generalising the approach to general
biomechanical organ models, reducing manual processing time and a much bet-
ter approach to AR visualisation, which we call Tool Access Visualisation.

2 AR Guidance System

We first describe the system’s inputs (Sect. 2.1) and give a global overview of the
registration algorithm (Sect. 2.2). We then describe the two main components of
the registration algorithm, which are the initial registration and tracking stages
(Sects. 2.3 and 2.4 respectively). Lastly we present Tool Access Visualisation
(Sect. 2.5).
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Fig. 1. The initial registration problem illustrated with a human uterus. Four
keyframes are shown in the first row with their associated contour fragments.

2.1 System Inputs

The system requires a segmented pre-operative biomechanical 3D model, which
has surface meshes for the organ and internal structures that are to be visualised.
Here the internal structures are tumours and their safe tissue margin. A safe
tissue margin is a border around the tumour of healthy tissue which should
also be removed, whose thickness w depends on the risk factor of the particular
tumour. We require two functions from the biomechanical model. The first is
the transform function f(p;xt) : Ω → R

3, which transforms a 3D point p in the
model’s 3D domain Ω ⊂ R

3 to the laparoscope’s coordinates frame, where the
vector xt denotes the model’s parameters at time t. The second is an internal
energy function Einternal(xt) : R

d → R
+ which gives the internal energy for

transforming the organ with xt, where d is the dimensionality of xt. Both f
and Einternal must be continuous and at least first-order differentiable. We also
require the laparoscope to be intrinsically calibrated.

We describe here the input models used in the presented experiments to make
things concrete for the reader. These came from T2 weighted MRI with segmen-
tation done semi-automatically using MITK [14]. The deformation models were
tetrahedral Finite Element Models (FEMs) built with a 3D vertex grid (6 mm
spacing) cropped to the organ. Therefore xt held the unknown 3D positions of
the FEM’s vertices in laparoscope coordinates. Trilinear interpolation was used
to compute f(p;xt). For Einternal the Saint Venant-Kirchoff strain energy was
used, with rough generic values for the Young’s modulus E and Poisson’s ratio
ν. These were for healthy kidney tissue E = 7kPa, ν = 0.43 [5], healthy uterus
tissue E = 96 kPa, ν = 0.45 [10] and myomas E = 532 kPa, ν = 0.48 [10]. Note
that in the registration problem there is always a balancing weight between the
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internal energy and energy coming from image cues (which have no real physi-
cal meaning). Therefore only the relative values of E are important to us (with
respect to the balancing weight), rather than their absolute values.

2.2 Overview of the Registration Algorithm

The registration problem is to determine xt for a given live laparoscopic image
streamed at time t. We break this down into two stages. The first is a non-live
stage which is called the initial registration stage. The second is a live-stage
which is called the tracking stage. The purpose of the initial registration stage is
two-fold. Firstly, it is to determine the change of shape of the organ between its
pre-operative state and an intra-operative reference state. Secondly, it is used to
associate texture with the organ’s surface, which is required in the tracking stage.
To achieve high robustness we make a simplifying assumption in the tracking
stage, which is that the organ does not deform significantly during this stage.
Therefore the tracking stage can be modelled with rigid update transforms, which
can be estimated far more quickly and robustly than deformable transforms. In
practice this assumption is reasonable by asking the surgeon to not physically
deform the organ during the tracking stage (i.e. the period that they wish to use
live AR guidance). Formally, the two stages break down f(p;xt) as f(p;xt) =
M(f(p;x);Rt, tt). Here x denotes the organ’s interventional reference state.
The function M(·;Rt, tt) : R3 → R

3 denotes a rigid update transform at time t,
parameterised by a rotation Rt ∈ SO3 and translation tt ∈ R

3. Thus the initial
registration stage is for estimating x and the tracking stage is for estimating
(Rt, tt). To have live AR, only the tracking stage needs to be real-time. The
time to solve the initial registration stage is a delay period before AR can run.
With our current implementation this takes approximately three minutes with
non-optimised C++/Matlab code on a standard workstation PC (approximately
two minutes for manual pre-processing and one minute for optimisation). The
tracking stage is an implementation of [3] in optimised C++/CUDA and runs
at approximately 16 fps.

2.3 The Initial Registration Stage

Overview. We illustrate the problem setup in Fig. 1 using a human uterus with
a deep myoma. This stage is more challenging to solve than the tracking stage
because (i) we have no texture information associated with the organ’s sur-
face (because it comes from a radiological image segmentation), and (ii) it is a
deformable registration. We tackle it similarly to [4] using a 3D point cloud recon-
struction of the interventional scene by running rigid Structure-from-Motion
(SfM), for which mature methods exist. To do this we require some sample
images of the organ, known as keyframes, observing it from different viewpoints
and distances. In our experiments typically no more than 10 are required, which
are gathered as the surgeon performs an initial exploration of the organ (referred
to as the exploratory phase). Note that a SfM reconstruction is up to an unknown
global scale factor s. We resolve this jointly with registration.
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We formulate the problem as a non-linear energy-minimisation problem, with
energies coming from prior and data terms. The prior term encodes the model’s
internal energy, which is used to regularise the problem. The data terms are illus-
trate in Fig. 1. The first involves the point cloud reconstruction, and encourages
the organ’s surface mesh to fit to the point cloud. Importantly, this is a robust
data term, which accounts for the fact that the reconstruction may contain out-
liers or some residual background and/or occluding structures. The second data
term complements the first and uses contour cues. Specifically, it is a silhouette
contour term which makes the organ model’s silhouette align to its associated
contours in the keyframe images. This is complementary to the point cloud data
term for two reasons. Firstly, we never usually reconstruct points reliably at these
regions due to occlusions. Secondly, it anchors the organ’s silhouette to the con-
tour fragments, which is a strong constraint. We implement this data term with
some manual assistance, similarly to [4]. Specifically, a human operator marks
in a keyframe where they can confidently see the organ’s silhouette contours
(Fig. 1, first row). We call these contour fragments. The operator does not need
to mark contour fragments in all keyframes (it can be done with only one). If
more keyframes are marked then we have more constraints, but it takes more
time. We use a default of four keyframes. They also do not need to be contiguous.
Optionally, an anatomical landmark data term can also be included [4], which
is used to align distinct landmarks that can be found on the organ’s surface in
the pre-operative and laparoscopic images. In [4] for the uterus, these were the
Fallopian tube/uterus junctions, which were manually located. Landmarks help
guide registration if the initialisation is poor or there is very strong deformation.
In the presented experiments we do not use them in the optimisation process,
so are omitted from the energy function.

The main improvements over [4] are summarised as follows:

– In [4] the deformable model used was a 3D affine model. This was shown to be
sufficient for simple deformations of the human uterus but is not sufficient in
general. We extend the approach to work with general biomechanical models.
This requires changing the core energy function to include the model’s internal
energy (without this the problem is highly under-constrained), and to correct
the interventional reconstruction’s scale factor s. Note that in [4], s could be
absorbed into the affine model’s coefficients. This is generally not possible with
biomechanical models because a change of scale affects the internal energy.

– In [4] the organ’s surface was assumed to have disc topology. We generalise
this to arbitrary fixed topologies.

– We have sped up the process of marking contour fragments considerably with
a touch-screen interface, where the operator marks them with rough finger
strokes. These strokes then guide an automatic refinement method based on
intelligent scissors [8]. This reduces manual effort, typically taking less than
10 s for a single keyframe.

Interventional 3D reconstruction. During the exploratory phase the laparoscopic
video is saved to disk, then N keyframes {K1, . . . KN} are extracted. We index
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these with i ∈ [1, N ]. This is done by uniformly sampling the video into N
intervals with a default N = 12. For each interval i we take the keyframe Ki to
be the one with the lowest optical motion, using the Sum-of-Absolute Difference
(SAD) as the metric computed between consecutive frame pairs. This is done to
improve the quality of the reconstruction because SfM work best with sharper
images. We then run a state-of-the-art dense SfM algorithm (currently Photoscan
[1]) to compute a dense point cloud reconstruction Q def= {q1, . . .qM}, qj ∈ R

3,
and the keyframe camera pose matrices Mi ∈ SE4. These hold the laparoscope’s
rotation matrix Ri ∈ SO3 and translation vector ti ∈ R

3 relative to the point
cloud. Recall that Q and ti are defined up to the unknown scale factor s ∈ R

+.
We chose Photoscan because it has been shown to work well on laparoscopic
data [3] and can produce far denser reconstructions than purely feature-based
methods. There may exist some keyframes whose pose is not computable, due to
e.g. insufficient visual overlap. We currently deal with this by simply removing
the keyframe. The point cloud Q may contain background and/or foreground
structures that partially occlude the organ. We currently deal with this by a
human operator cropping them using a fast lasso-based user interface [1]. To
reduce time we do not require the cropping to be perfect. We allow some non-
organ points to remain in Q and we deal with them by making the associated
data term robust (see below). In some instances SfM may fail, which typically
occurs when the keyframe overlap is insufficient. This can usually be resolved by
extracting more keyframes by doubling the number of intervals and re-running
SfM. In rare events SfM may still fail, due to very weak texture. In these cases we
find image enhancement such as Storz’s CLARA can help. Alternatively, SLAM
could be tried because unlike SfM it exploits temporal continuity.

Initialisation. We initialise x with a rigid transform, denoted by M ∈ SE4. In
some cases M can be considered known a priori, for example if the laparoscope
is assumed to be in a canonical position. When this cannot be assumed, we
compute it with a small amount of manual interaction as follows. A small num-
ber of point correspondences (at least four) are selected on the organ’s surface
model and one of the keyframe images. Without loss of generality let this be the
first keyframe K1. We then compute a rigid transform Ma from model coordi-
nates to laparoscope coordinates, by fitting the correspondences using OpenCV’s
PnP method. The point correspondences are computed using an interactive user
interface, where the model can be freely rotated to present it from a similar
viewpoint as the keyframe’s viewpoint. This significantly eases the operator’s
task. We then initialise s as follows. First we transform the model by Ma and
render it using OpenGL with the same intrinsic parameters as the laparoscope.
This generates a depth map d(x, y), and we compute s by comparing depths in
d to the depths of Q. Specifically, let d̃j be the depth of qj to the laparoscope
in keyframe 1, and (xj , yj) be its 2D position in the keyframe’s image. We can
then estimate s by s ≈ d(xj , yj)/d̃j . Note that only points that project within
the render’s silhouette can be used. To compute s robustly, we compute it as
the median value from all such points. Finally, the transform M is given by the
composition M = Ms M−1

i M−1
s Ma, where Ms is an isotropic scaling by s.
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The energy function. To improve clarity we define all image points in normalised
pixel coordinates, which is possible given the intrinsic calibration. The energy
function E(x, s) ∈ R

+ consists of the point cloud data term Epoint, which encour-
ages the organ’s surface to fit to Q, the contour data tern Econtour, which encour-
ages the organ’s silhouette contours to fit to the contour fragments, and the prior
term, which is the model’s internal energy Einternal(x):

E(x, s) = Epoint(x, s;Q) + λcontourEcontour(x, s; C1, . . . , CN ) + λinternalEinternal(x) (1)

where λcontour and λinternal are scalar weights specific to the organ category.
The set Ci denotes all pixels on the contour fragments in keyframe i.

We construct Epoint using an Iterative Closest Point (ICP)-based energy.
This works using a set of virtual point correspondences P = {p1, . . .pM} with
pj ∈ ∂Ω denoting the unknown position of point j on the organ’s surface mesh.
For a given (x, s) we compute Epoint as follows. First we transform the organ’s
surface mesh according to f(·;x) and rescale the point cloud with q̂j ← sqj .
We then set pj as the closest point to q̂j on the surface’s mesh. We define Epoint

using a robust point-to-plane distance function, which is inspired by point-to-
plane ICP with rigid objects. This allows the model to slide over the point cloud
without resistance, and is defined as follows:

Epoint(x, s;Q) =
1
M

M∑

j=1

ρ (dplane (vj(x), q̂j)) (2)

The function vj(x) ∈ R
4 gives the organ surface’s tangent plane at f(pj). The

function dplane(v,q) gives the signed distance between a plane v and a 3D point
q. The function ρ : R → R

+ is an M-estimator and is crucial to achieve robust
registration. Its purpose is to align the reconstructed point q̂j with the organ’s
surface, but to do so robustly to account for non-organ points being in Q or
poorly reconstructed points. The model should not align these points, and the
M-estimator facilitates this by reducing the influence of their alignment error on
E. We have tested various types and good results are obtained with pseudo-L1
ρ(x) def=

√
x2 + ε with ε = 10−3 being a small constant, which is used to make ρ

differentiable everywhere.
We construct Econtour similarly with virtual point correspondences. Specifi-

cally, for a given pair (x, s) and a given keyframe i we construct a set of virtual
correspondences Ri = {r1, . . . , rC(i)} where rk ∈ ∂Ω denotes the unknown posi-
tion of the kth contour fragment pixel ck on the model’s surface. The virtual
correspondences are points on the organ surface mesh’s occluding contours, and
are computed as follows. First we transform the organ’s surface mesh accord-
ing to f(·;x), then transform it to laparoscope coordinates using (Ri, s ti). We
then render the surface mesh using OpenGL, using the same intrinsic parame-
ters as the laparoscope. We then take the render’s silhouette and extract all the
pixels on the render’s boundary, which is put into a set B. For each contour
fragment pixel ck ∈ Cj we compute its closest point bk ∈ B and form a corre-
spondence with it. We then compute the 3D position of bk in model coordinates,
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which is easy to do with an OpenGL shader, and assign it to rk. We then evaluate
Econtour as the alignment error from all correspondences:

Econtour(x, s; C1, . . . , CN ) =
1
C

N∑

i=1

∑

(ck∈Ci,rk∈Ri)

ρ (‖π (f(rk)) − ck‖2) (3)

where π([x, y, z]�) def= 1/z[x, y]� is the perspective projection function and C is
the total number of contour fragment pixels. Here the M-estimator ρ is also used
to handle the fact that some of the contour fragment pixels may be erroneous,
which can sometimes occur if the intelligent scissoring fails to snap correctly at
low-contrast edges.

Optimisation. We optimise E by iterative non-linear optimization using a stiff-
to-flexible strategy. This is used to improve convergence by starting with a
stiff model, optimising E, then reducing the stiffness to account for more and
more deformation. We use a default of l = 6 stiffness levels with λinternal(l) =
2λinternal(l−1). For each level we alternate between computing the virtual corre-
spondence sets (Ri and P) and optimising E, which is done with a Gauss-Newton
iteration and backtracking line search. This continues until either convergence
is reached or 10 iterations have passed. At the final stiffness level we optimize
until convergence. Convergence however is not guaranteed because of the point-
to-plane distance function in Epoint. Specifically, the energy may increase after
P is re-computed. We handle this by using the point-to-point distance at the
final level, because this ensures E will decrease at each iteration.

2.4 The Tracking Stage

Having solved the initial registration we initiate the tracking stage, which
updates the initial registration in real-time using live images streamed from
the laparoscope. We solve this with an existing feature-based method [3]. This
works by first extracting 2D features in the keyframe images, then matching them
with RANSAC-based rigid registration to each new image. The advantages of
[3] are it is robust to occlusions from e.g. surgical tools, handles partial views
and viewpoint changes. Unlike SLAM-based tracking methods it does not use
frame-to-frame tracking. Instead it performs tracking-by-detection. This allows
it to register over long durations and can trivially recover when the organ is
not visible for certain periods, such as when the surgeon removes and then rein-
serts the laparoscope or cleans the lens. In cases when the organ is assumed
to be fixed relative to background structures, we can track using features from
both the organ and background structures. This improves stability if the organ’s
texture is weak, and we do this in the ex-vivo user study.

2.5 AR Guidance with Tool Access Visualisation

Having registered, the final task is AR visualisation. We briefly describe Trans-
parent Blending (TB) visualisation, which is the previous approach used with
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Fig. 2. (a) AR with Transparent Blending (TB) visualisation taken from [4]. (b) Our
AR visualisation combining Transparent Blending with Tool Access Visualisation. (c)
Our AR system in live operation during the ex-vivo user study.

Fig. 3. The difference between typical AR visualisation of a tumour (a), which does
not take into account the position and access direction of the incision tool, and the
proposed Tool Access Visualisation (b) which does.

monocular laparoscopes. It works by first rendering the tumours on the laparo-
scope’s image plane, then a composite image is made by blending the render with
the real image to give the impression the organ is transparent. An example from
[4] is shown in Fig. 2(a) where two myomas are visualised with TB. TB however
has a serious limitation which has not been previously addressed, and we find it
can actually mis-guide the surgeon. The problem is illustrated in Fig. 3(a) and
is as follows. When a surgeon actually uses TB to resect a tumour they usually
assume it indicates where they should cut to access the tumour. This however
is incorrect. It just shows the position of the tumour from the viewpoint of the
laparoscope. Often they assume the tumour’s centre would be reached by cutting
into the organ from the rendered tumour’s centre c ∈ R

2. This is not the case
as shown in Fig. 3(a). In our user study we found this is a significant problem
with smaller and/or deeper tumours, and can cause them to be missed.

What the surgeon actually wants is to be shown how to reach the tumour
using the incision tool. Furthermore, surgeons typically want to also see the
tumour’s safe tissue margin. We provide both information with what we call
Tool Access Visualisation, which is shown in Fig. 2(b). Its associated geometry
is shown in Fig. 3(b). Tool Access Visualisation works by showing the tumour’s
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safe tissue margin projected onto the organ’s surface as a ring, which we call the
tumour guidance ring. The idea is that if the surgeon were to cut into the organ
along the guidance ring, they would segment the tumour with a minimal margin
of w mm. At present we do not visualise uncertainty in the margin’s location,
which is important for real clinical use, and leave this to future work.

We achieve Tool Access Visualisation with two projections. The first is a
perspective projection of the margin’s surface onto the organ’s surface, using
a centre-of-projection located at the incision tool’s port centre p ∈ R

3. The
second is a perspective projection of the projected margin’s perimeter onto the
laparoscope’s optical image (shown as rings in Fig. 2(b)). To achieve this we need
to know p. Recall that the organ has been registered in laparoscope coordinates,
therefore we need p in laparoscope coordinates. It may be possible to estimate
p automatically using external and/or internal tool tracking, however this is left
to future work. Here we assume p is given a priori. In our user study, where
the ports are located on a pelvic trainer, this is simple and can be done offline
by taking physical measurements. We complete the visualisation by combining
Tool Access Visualisation with TB visualisation (Fig. 2(b)) to show tumours
(solid fill), organ (wireframe) and safe tissue margins (wireframe).

3 Evaluation

This section is divided into two parts. The first is the main part describing
our ex-vivo user study. The second part shows our system doing live in-vivo
registration of a porcine kidney during a laparoscopic training exercise. All the
procedures were performed in the operating room of the International Centre of
Endoscopic Surgery (CICE), France, approval number C63 18 113.

3.1 Ex-vivo User Study Evaluation

We used 29 porcine kidneys recovered from pigs operated after resident training.
For each kidney pseudo-tumours were created by injecting alginate, a harden-
ing hydrocolloid, of between 4 mm and 10 mm in diameter. In total 59 pseudo-
tumours were injected at arbitrary sub-surface positions, with an average of 2.5
per kidney. We used safe tissue margins of 5 mm. Kidney models were made as
described in Sect. 2.1 from 3T MRI images (0.4 mm resolution and slice thick-
ness 1.5 mm). The interventional equipment is shown in Fig. 2(c) and consisted
of a Karl Storz 10 mm laparoscope column with CLARA image enhancement,
a surgical grasper, an incision tool, a laparoscopic pelvic trainer and an instru-
ment with a surgical marker pen attached at the tip (referred to as the marker
instrument). The AR software ran on a mid-range Intel i7 desktop workstation
with an NVidia 980 Ti GPU, with visualisations shown on a 26 inch monitor.
Laparosurgery was performed by a skilled final-year resident. The resident spent
time training before evaluation to familiarise the task, the guidance software and
to provide feedback to improve visualisation. In total 28 pseudo-tumours were
resected during this time.
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3.2 Interventional Protocol and Equipment

Laparosurgery was performed using the pelvic trainer, with the kidney inserted
on a ground surface and the laparoscope and instruments inserted through three
ports. The same port configuration was used in all cases. The surgeon was tasked
to remove each tumour by cutting out a conic tissue section which included the
tumour and its safe tissue margin. The kidneys were divided into two groups
(non-randomised): the AR group and the Non-AR group, with 13 kidneys in
the AR group with 29 tumours, and 19 kidneys in the Non-AR group with 33
tumours. Kidneys in the AR group were operated with the AR guidance system
activated. Recall that the guidance system is not designed to handle significant
deformation or topology change after the initial registration, which occurs when
a tumour is resected. This was dealt with in the protocol by having the surgeon
first mark dots along the tumour guidance ring using the marker instrument,
guided by the AR visualisation. Once completed they used the marks to guide
the resection with AR disactivated. For the Non-AR group, the surgeon first
consulted the MRI using interactive slice-based visualisation [14]. The task was
then performed without AR guidance using the same safe tissue margin of 5 mm.

3.3 Results

We present results with the negative margin rate. A negative margin occurs
when the tumour is contained entirely within the resected tissue. A positive
margin occurs when either the tumour is completely absent from the resected
tissue (a complete miss), or if it is partially contained (a contact). For three
tumours the protocol was not completed properly (the conic section did not cut
fully through the kidney) and were excluded. There were 13 negative margins
in the Non-AR group (41.9%), with 4 complete misses and 14 contacts. There
were 23 negative margins in the AR group (85.2%), with 0 complete misses and
4 contacts. Statistical significance was measured with Fisher’s exact two-tailed
test with p = 0.0010. Therefore the user study indicates a very significant benefit
for using the AR guidance system.

3.4 Live In-vivo Registration of a Porcine Kidney

We finish by showing our system in live use for registering in-vivo a porcine
kidney during a laparoscopic training exercise (Fig. 4). The kidney did not con-
tain a tumour and no ground truth information was available, so the results
are merely to demonstrate that the registration system works live and in-vivo.
The biomechanical kidney model was build as described in Sect. 2.1. The same
Storz laparoscope column was used as the user study. An exploratory video was
captured lasting approximately 30 s. We show sample keyframes in Fig. 4(b–d)
with contour fragments overlaid. Note that only the kidney’s upper silhouette
contours are visible, with the lower ones being occluded by intestine and peri-
toneum, which is why there are no contour fragments on the lower half. In
Fig. 4(e) we overlay the registered model’s surface onto one of the keyframes,
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Fig. 4. Live in-vivo registration of a porcine kidney. (a) the organ model’s surface
mesh. (b–d) contour fragments in three keyframes. (e) the surface mesh overlaid on a
keyframe after the initial registration with its silhouette contours in red. (f–g) Snapshots
of the surface mesh during live tracking, with ground-truth silhouette contours shown
in green. Note that the kidney’s lower portion is occluded by intestine and peritoneum.
Best viewed in colour. (Color figure online)

showing the upper contours aligning well with the image. In Fig. 4(f,g) we show
frames from the live tracking stage, which shows robustness to tool occlusions
and mild deformations.

4 Conclusion

We have presented a complete system for AR guided laparoscopic tumour resec-
tion, and a quantitative ex-vivo user study to measure its benefit in live use,
which is the first of its kind. The system has been based on [4] with several
major improvements. These include supporting general biomechanical models
as inputs, less manual processing and a new visualisation method, called Tool
Access Visualisation (TAV), which shows the surgeon how to access a tumour
and its safe tissue margin with an incision tool. In future work we aim to conduct
a similar user study in-vivo, and to test with stereo laparoscopic images, where
the point cloud reconstruction would come from stereo triangulation. We also
aim to extend Tool Access visualisation to handle non-straight incision tools,
such as articulated ones used in robotic laparosurgery.
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