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Abstract. Recently, a great development in image recognition has been
achieved, especially by the availability of large and annotated data-
bases and the application of Deep Learning on these data. Convolutional
Neural Networks (CNN’s) can be used to enable the extraction of highly
representative features among the network layers filtering, selecting and
using these features in the last fully connected layers for pattern classifi-
cation. However, CNN training for automatic medical image classification
still provides a challenge due to the lack of large and publicly available
annotated databases. In this work, we evaluate and analyze the use of
CNN’s as a general feature descriptor doing transfer learning to generate
“off-the-shelf” CNN'’s features for the colonic polyp classification task.
The good results obtained by off-the-shelf CNN’s features in many dif-
ferent databases suggest that features learned from CNN with natural
images can be highly relevant for colonic polyp classification.

Keywords: Deep learning - Convolutional Neural Networks - Colonic
polyp classification

1 Introduction

The leading cause of deaths related to intestinal tract is the development of can-
cer cells (polyps) in its many parts. An early detection (when the cancer is still
at an early stage) can reduce the risk of mortality among these patients. More
specifically, colonic polyps (benign tumors or growths which arise on the inner
colon surface) have a high occurrence and are known to be precursors of colon
cancer development. As a consequence, it is recommended that everyone over an
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age of 50 years be examined regularly [32]. This exam can be done through an
endoscopy procedure that is a minimally invasive and relatively painless diag-
nostic medical procedure that enables specialists to obtain images of internal
human body cavities.

Several studies have shown that automatic detection of image regions which
may contain polyps within the colon can be used to assist specialists in order
to decrease the polyp miss rate [3,28,31]. Such detection can be performed by
analyzing the polyp appearance that is generally based on color, shape, texture or
spatial features applied to the video frames denoted as polyp detection [1,21,30].

Subsequently, the polyps can be automatically classified using different aspects
of shape, color or texture into hyperplastic, adenomatous and malignant. The so-
called “pit-pattern” scheme proposed by Kudo et al. [18] can help in diagnos-
ing tumorous lesions once suspicious areas have been detected. In this scheme,
the mucosal surface of the colon can be classified into 5 different types designat-
ing the size, shape and distribution of the pit structure [6,9,12]. These five pit-
pattern types can allow to group the lesions into two main classes: normal mucosa
or hyperplastic polyps (healthy class) and neoplastic, adenomatous or carcinoma-
tous structures (abnormal class) as can be seen in Fig. 1(a—d). This approach is
quite relevant in clinical practice as shown in a study by Kato et al. [17].

In this work we focus on the polyp classification into these two classes. The
different types of pit patterns [18] of these two classes can be observed in Fig. 1(e—f)
[14]. However, the classification can be a difficult task due to several factors such as
the lack or excess of illumination, the blurring due to movement or water injection
and the different appearances of polyps [32]. Also, to find a robust and a global
feature extractor that summarizes and represents all these pit-patterns structures
in a single vector is very difficult and Deep Learning can be a good alternative to
surpass these problems.

Deep learning Neural Networks have been of great interest in recent years,
mainly due to the new variations of so-called Convolutional Neural Networks

i

(a) Healthy

(e) Healthy (f) Abnormal

Fig. 1. Example images of the two classes (a—d) and the pit-pattern types of these two
classes (e—f).
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and the use of efficient parallel solvers improved by GPU’s [2]. Deep learning
is closely related to the high-level representation obtained by raw data such as
images and is very effective when applied to large and annotated databases.
However, the lack of available annotated medical image databases big enough
to properly train a CNN is still a problem [2]. The use of transfer learning by
pre-trained CNN’s can help avoid this problem, however the existing available
pre-trained CNN’s are trained with natural images with very different features
from the texture-like mucosa patterns in the colonic polyp images.

In this paper, we explore the use of Convolutional Neural Networks (CNN’s)
pre-trained with natural images to use them as medical imaging feature extrac-
tors, specifically of rectal colon images for colonic polyps classification. Rather
than directly train a CNN with medical images, we apply a simple transfer
method using pre-trained Convolutional Neural Networks. The assumption is
that the patterns learned in the original database can be used in colonoscopy
images for colonic polyp classification. In particular, we explore 11 different archi-
tectures (from 5000 to 160 million parameters) and depths (different numbers
of layers), describing and analyzing the effects of pre-trained CNN’s in different
acquisition modes of colonoscopy images (8 different databases). This study was
motivated by recent studies in computer vision addressing the emerging tech-
nique of transfer learning using pre-trained CNN’s presented in the next section.

2 CNN’s in Medical Image Classification

In recent years there has been an increased interest in machine learning tech-
niques that is based not on hand-engineered feature extractors but using raw
data to learn the representations.

This type of model has been very successful in large annotated databases,
such as ImageNet [16] dataset that contains around 1.2 million images divided
into 1000 categories. For these tasks, it is common to have a large number of
parameters (in order of millions), requiring a significant amount of processing
power to train the Neural Network. The CNN’s can learn through their numerous
layers and millions of connections if they are trained with sufficient examples,
which becomes a significant difficulty in the medical area [8]. This problem occurs
because of the lack of large, annotated and publicly available medical image
databases such as the existing natural image databases, so that is a difficult and
costly task to acquire and annotate such images and due to the specific nature
of different medical imaging modalities which seems to have different properties
according to each modality [15].

Some current pattern recognition techniques set aside handcrafted feature
extraction algorithms to feed a Deep Learning Neural Network directly with raw
data simultaneously acting as features extractor and image classifier at the same
time [8,23]. These networks use many consecutive convolutional layers followed
by pooling layers that reduce the data dimensionality making it, concomitantly,
invariant to geometric transformations. Such convolution filters (kernels) are
built to act as feature extractors during the training process and recent research
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indicates that a satisfactorily trained CNN with a large database can perform
properly when it is applied to other databases, which can mean that the kernels
can turn into a universal feature extractor [23].

The works of Raza et al. [23] and Oquab et al. [20] suggest that the use
of CNN’s intermediate layer outputs can be used as input features to train
other classifiers (such as support vector machines) for a number of other appli-
cations different from the original CNN obtaining a good performance. In fact,
despite the difference between natural and medical images, some feature descrip-
tors designed especially for natural images are used successfully in medical
image detection and classification, for example: texture-based polyp detection
[1], Fourier and Wavelet filters for colon classification [32], shape descriptors [14],
local fractal dimension [13] for colonic polyp classification etc. In light of this,
transfer learning that is a method used to harness the knowledge obtained by
another task can be a good option to represent these kind of features.

Recently, works addressing the use of deep learning techniques in endoscopic
images and videos are explored in many different ways, for example, to clas-
sify digestive organs in wireless capsule endoscopy images [34], detect lesions
of endoscopy images [33] and automatically detect polyps in colonoscopy videos
[22,27]. Also, pre-trained CNN’s have been successfully used in the identification
and pathology of X-ray and computer tomography modalities [8]. However, the
application of transfer learning in endoscopic and colonoscopic images has not
yet been exploited.

3 Materials and Methods

Using the inductive transfer learning, there are basically three types of strategies
exploiting CNN’s for medical image classification. Such strategies are described
in the following and can be employed according to the intrinsic characteristics
of each database [15].

When the available training database is large enough, diverse and very dif-
ferent from the database used in all the available pre-trained CNN’s (in a case of
transfer learning), the most appropriate approach would be to initialize the CNN
weights randomly (training the CNN from scratch), and train it according to
the medical image database for the kernels domain adaptation, that is, to find
the best way to extract the features of the data in order to classify the images
properly. This strategy, although ideal, is not widely used due to the lack of large
and annotated medical image database publicly available for training the CNN.

Another alternative for large databases, but in this case, similar to a pre-
trained CNN training database is the CNN fine-tuning. In fine-tuning the pre-
trained network training continues with new entries (with a new database) for
the weights to adjust properly to the new scenario reinforcing the more generic
features with a lower probability of overfitting. This approach is also not widely
applicable in case of medical image classification, again because of the limitation
in the number of annotated medical images available for the appropriate network
fine-tuning.
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When the database is small, the best alternative is to use an off-the-shelf
CNN [15]. In this case, using a pre-trained CNN, the last or next-to-last linear
fully connected layer is removed and the remaining pre-trained CNN is used as
a feature extractor to generate a feature vector for each input image from a dif-
ferent database. These feature vectors can be used to train a new classifier (such
as an SVM) to classify the images correctly. If the original database is similar
to the target database, the probability of the high-level features to describe the
image correctly is high and relevant to this new database. If the target database
is not so similar to the original, it can be more appropriate to use higher-level
features, IE features from previous layers of CNN.

In this paper, we consider the knowledge transfer between natural images and
medical images using off-the-shelf pre-trained CNN’s. The CNN will project the
target database samples into a vector space where the classes are more likely to
be separable. This strategy was inspired by the work of Oquab et al. [20], which
uses a pre-trained CNN in a large database (ImageNet) to classify images in a
smaller database (Pascal VOC dataset) with improved results. Unlike that work,
instead copy the weights of the original pre-trained CNN to the target CNN with
additional layers, we use the pre-trained CNN to project data into a new feature
space. This is done through the propagation of images from the colonic polyp
database in the CNN, getting the resultant vector from the last CNN’s layer
and obtaining a new representation for each input sample. Subsequently, we use
the feature vector set to train a linear classifier (for example support vector
machines) in this representation to evaluate the results as used in [2,8].

To explore the use of different off-the-shelf CNN architectures for the
computer-aided classification problem, we will describe below the elements to
make the evaluation possible.

3.1 Data

The use of integrated endoscopic apparatus with high-resolution acquisition
devices has been an important object of research in clinical decision support
system area. With high-magnification colonoscopies is possible to acquire images
up to 150-fold magnified, revealing the fine surface structure of the mucosa as
well as small lesions. Recent work related to classification of colonic polyps used
highly-detailed endoscopic images in combination with different technologies
divided into three categories: high-definition endoscope (with or without staining
the mucosa) combined with the i-Scan technology (1, 2, 3), high-magnification
chromoendoscopy [9] and high-magnification endoscopy combined with narrow
band imaging [7].

Specifically, the i-Scan technology (Pentax) used in this work is an image
processing technology consisting of the combination of surface enhancement and
contrast enhancement aiming to help detect dysplastic areas and to accentuate
mucosal surfaces [14].

There are three i-Scan modes available: i-Scanl, which includes surface
enhancement and contrast enhancement, i-Scan2, that includes surface enhance-
ment, contrast enhancement and tone enhancement and i-Scan3 that, besides
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including surface, contrast and tone enhancement, also increases lighting empha-
sizing the features of vascular visualization [32]. In this work we use an endo-
scopic image database (CC-i-Scan Database) with 8 different imaging modali-
ties acquired by an HD endoscope (Pentax HiLINE HD+ 90i Colonoscope) with
images of size 256 x 256 from video frames either using the i-Scan technology
or without any computer virtual chromoendoscopy (—=CVC). Table 1 shows the
number of images and patient per class in the different i-Scan modes. The mucosa
is either stained or not stained. Despite the fact the frames being high-definition
originally, the image size was chosen (i) to be large enough to describe a polyp
and (ii) small enough to cover just one class of mucosa type (only healthy or only
abnormal area). Also, the image labels (ground truth) were provided according
to their histological diagnosis.

Table 1. Number of images and patients per class of the CC-i-Scan databases gathered
with and without CC (staining) and computed virtual chromoendoscopy (CVC).

i-Scan mode No staining Staining

-CVC ‘ i-Scanl ‘ i-Scan2 ‘ i-Scan3 | -CVC ‘ i-Scanl ‘ i-Scan2 ‘ i-Scan3
Non-neoplastic
Number of images 39 25 20 31 42 53 32 31
Number of patients | 21 18 15 15 26 31 23 19
Neoplastic
Number of images 73 75 69 71 68 73 62 54
Number of patients | 55 56 55 55 52 55 52 47
Total nr. of images | 112 100 89 102 110 126 94 85

3.2 Pre-trained Convolutional Neural Networks Architectures

We mainly explore six different CNN architectures trained to perform classifica-
tion in the ImageNet ILSVRC challenge data. The input of all tested pre-trained
CNN'’s has size 224 x 224 x 3 and the descriptions as well as the details of each
CNN are given as follows:

— The CNN VGG-VD [25] uses a large number of layers with very small
filters (3 x 3) divided into two architectures according to the number of their
layers. The CNN VGG-VD16 has 16 convolution layers and five pooling
layers while the CNN VGG-VD19 has 19 convolution layers, adding one more
convolutional layer in three last sequences of convolutional layers. The fully
connected layers have 4096 neurons followed by a softmax classifier with 1000
neurons corresponding to the number of classes in the ILSVRC classification.
All the layers are followed by a rectifier linear unit (ReLU) layer to induce the
sparsity in the hidden units and reduce the gradient vanishing problem.

— The CNN-F (also called Fast CNN) [4] is similar the CNN used by Krizhevsky
et al. [16] with 5 convolutional layers. The input image size is 224 x 224 and
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the fast processing is granted by the stride of 4 pixels in the first convolu-
tional layer. The fully connected layers also have 4096 neurons as the CNN
VGG-VD. Besides the original implementation, in this work we also used the
MatConvnet implementation (betal7, [29]) of this architecture trained with
batch normalization and minor differences in its default hyperparameters and
called here CNN-F MCN.

— The CNN-M architecture (medium CNN) [4] also has 5 convolutional layers
and 3 pooling layers. The number of filters is higher than the Fast CNN: 96
instead of 64 filters in the first convolution layer with a smaller size. We also
use the MatConvNet implementation called CNIN-M MCN.

— The CNN-S (slow CNN) [4] is related to the “accurate” network from the
Overfeat package [24] and also has smaller filters with a stride of 2 pixels in the
first convolutional layer. We also use the MatConvNet implementation called
CNN-S MCN.

— The AlexNet CNN [16] has five convolutional layers, three pooling layers
(after layer 2 and 5) and two fully connected layers. This architecture is similar
to the CNN-F, however, with more filters in the convolutional layers. We also
use the MatConvNet implementation called AlexNet MCN.

— The GoogleLeNet [26] CNN has the deepest and most complex architecture
among all the other networks presented here. With two convolutional layers,
two pooling layers and nine modules also called “inception” layers, this net-
work was designed to avoid patch-alignment issues introducing more sparsity
in the inception modules. Each module consists of six convolution layers and
one pooling layer concatenating these filters of different sizes and dimensions
into a single new filter.

3.3 Experimental Setup

In order to form the feature vector using the pre-trained CNNs, all images are
scaled using bicubic interpolation to the required size for each network, in the
case of this work: 224 x 224 x 3. The vectors obtained from the linear layers of
the CNN have size: 1024 x 1 for the GoogleLeNet CNN and 4096 x 1 for the
other networks due to their architecture specificities.

To allow the CNN features comparison and evaluation, we compared them
with the results obtained by some state-of-the-art feature extraction methods for
the classification of colonic polyps [32] which are: Blob Shape adapted Gradi-
ent using Local Fractal Dimension method (BSAG-LFD [13]), Blob Shape and
Contrast (Blob SC [14]), Discrete Shearlet Transform using the Weibull dis-
tribution (Shearlet-Weibull [5]), Gabor Wavelet Transform (GWT Weibull
[32]), Local Color Vector Patterns (LCVP [11]) and Multi-Scale Block Local
Binary Pattern (MB-LBP [11]). All these feature extraction methods (with the
exception of BSAG-LFD) were applied to the three RGB channels to form the
final feature vector space.

For the classical features, the classification accuracy is also computed using
a SVM classifier however, with the original images (without resizing) trained
using the Leave-One-Patient-out cross validation strategy as in [10] to make
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sure the classifier generalizes to unseen patients. This cross-validation is applied
to the methods from the literature as well as to off-the-shelf CNN’s features.
The accuracy measure based on the percentage of images correctly classified in
each class is used to allow an easy comparability of the results due to the high
number of methods and databases to be compared.

4 Results and Discussion

The accuracy results for the colonic polyp classification in the 8 different data-
bases are reported in Table 2. As can be seen, the results in Table 2 are divided
into two groups: off-the-shelf features and concatenating them with state-of-the-
art features.

Among the 11 pre-trained CNN investigated, the CNN that presents lower
performance were GoogleLeNet, CNN-S and AlexNet MCN. These results may
indicate that such networks themselves are not sufficient to be considered off-
the-shelf feature extractors for the polyp classification task.

Table 2. Accuracies of the methods for the CC-i-Scan databases in %.

Methods No staining Staining
—CVC | i-Scanl | i-Scan2 | i-Scan3 | ~CVC | i-Scanl | i-Scan2 | i-Scan3 X

1- CNN-F 86.16 89.33 80.65 88.41 86.52 81.40 84.22 80.62 84.66
2- CNN-M 87.45 | 90.67 81.38 83.58 87.99 | 89.55 87.40 90.53 87.31
3- CNN-S 88.03 90.00 87.01 77.33 87.25 82.68 87.40 75.54 84.41
4- CNN-F MCN 88.84 82.00 73.15 90.73 85.78 89.55 89.72 83.15 85.36
5- CNN-M MCN 89.53 90.67 88.88 94.66 86.97 89.29 87.40 90.53 89.74
6- CNN-S MCN 90.12 | 91.42 81.38 79.85 89.18 | 93.49 81.10 84.77 86.41
7- GoogleLeNet 79.65 90.67 72.43 74.51 88.27 80.46 75.60 84.08 80.70
8- VGG-VD16 87.45 85.33 86.38 79.65 92.47 89.80 95.26 | 92.38 88.59
9- VGG-VD19 83.49 82.67 83.88 87.71 92.47 83.98 94.46 85.59 86.78
10-AlexNet 91.40 | 87.33 75.65 89.32 87.71 83.03 84.22 79.24 84.73
11-AlexNet MCN 89.42 84.67 78.88 83.78 89.36 83.55 81.10 78.32 83.63

X 87.41 87.70 80.88 84.50 88.54 86.07 86.17 84.06 85.67
13- Blob SC 77.67 83.33 82.10 75.22 59.28 78.83 66.13 59.83 72.79
14- Shearlet-Weibull 73.72 76.67 79.60 86.80 81.30 69.91 72.38 83.63 78.00
15- GWT-Weibull 79.75 | 78.67 70.25 84.28 81.30 | 74.54 7717 83.39 78.66
16- LCVP 76.60 66.00 47.75 77.12 77.45 79.00 70.01 69.56 70.43
17- MB-LBP 78.26 80.67 81.38 83.37 69.29 70.60 77.22 78.32 77.38

X 78.71 78.70 74.28 81.61 73.13 75.58 73.61 74.35 76.24
Concatenating 5/8 88.84 | 85.33 83.88 92.14 93.12 | 90.49 96.88 94.00 90.58
Concatenating 5/12 92.79 | 92.67 88.88 96.98 87.71 90.49 88.26 90.53 91.03
Concatenating 5/8/12 95.94 | 90.00 88.88 92.14 92.30 91.43 97.63 97.46 93.22
Concatenating 5/8/14 91.51 88.67 87.10 93.75 94.68 91.43 98.44 95.85 92.67
Concatenating 5/8/15 90.91 | 90.00 88.88 92.14 93.94 | 89.80 96.88 95.61 92.27
Concatenating 5/8/12/14 | 93.38 88.00 91.38 93.75 93.49 92.12 97.63 94.92 93.08
Concatenating 5/8/12/17 | 93.38 | 90.00 |91.38 | 93.75 |92.75 |92.12 |97.63 | 97.46 |93.55
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As it can be seen, the pre-trained CNN that presents the best result on
average for the different imaging modalities (X) is the CNN-M network trained
with the MatConvNet parameters (89.74%) followed by the CNN VGG-VD16
(88.59%). These deep models with smaller filters generalize well with other
datasets as it shown in [25], including texture recognition, which can explain
the better results in the colonic polyp database. However, there is a high vari-
ability in the results and thus it is difficult to draw general conclusions.

Many results obtained by the pre-trained CNN'’s surpassed the classic feature
extractors for colonic polyp classification in the literature. The database that
presents the best results using off-the-shelf features is the database staining
the mucosa without any i-Scan technology (88.54% on average). In the case of
classical features, the database with the best result in the average is the database
using the i-Scan3 technology without staining the mucosa (81.61%).

To investigate this difference in the results we asses the significance of them
using the McNemar test [19]. By means of this test, we analyze if the images
from a database are classified differently or similarly by the other methods.
With a high accuracy it is suppose of that the methods will have a very similar
response, so the significance level @ must be small enough to differentiate between
classifying an image as correct or incorrect.

CNN-M
CNN-S
CNN-F MCN
CNN-M MCN
CNN-S MCN
Gnogchchl-
VGG-VD16
VGG-VD19
AllexNet
AlexNet MCN
BSAG-LFD
Blob SC |
Shearlet-Weibull |
GWT-Weibull
LCVP
MB-LBP

282500 Bo 23
g8z =22 s e 22
222983200325 ,728 o
EZoe3g3s 2280382, 4
552222 88252835543
CO00008222<mmpoas
CNN-F I

Fig. 2. Results of the McNemar test for the i-Scan3 database without staining. A black
square in the matrix means that the methods are significantly different with significance

level o = 0.01. If the square is white then there is no significant difference between the
methods.

The test is carried out on the database that presents the best results with
the classic features (i-Scan3 without staining the mucosa) using significance level
a = 0.01. The results are presented in Fig.2. It can be observed by the black
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squares that, among the pre-trained CNN’s, the CNN-M MCN and GoogleLeNet
present the most different results comparing to the other CNN'’s.

Also, in Fig. 2 when comparing the classical feature extraction methods with
the CNN’s features it can be seen that there is a quite different response among
the results, especially for CNN-M MCN that is significantly different from all
the classical methods with the exception of the Shearlet-Weilbull method.

The methods with high accuracy are not found to be significantly different
which can indicate that, in these methods, almost the same images are classified
wrong, independent of the extracted features.

Observing the features that are significantly different in Fig. 2 and with good
results in Table2 we decided to concatenate the feature vectors to see if the
features can complement each other. It can be seen also in Table2 that the
two most successful CNN’s (CNN-M MCN and VGG-VD16) are significantly
different from each other and, at the same time, the CNN-M MCN is significantly
different to BSAG-LFD features which, among the classical results, presents the
best results.

Based on this difference, the three feature vectors (CNN-M, CNN-M MCN
and BSAG-LFD) were concatenated and the results presents a high accuracy on
average: 93.22%. When we add to the vector one more classical feature (MB-
LBP) that is also significantly different to CNN-M MCN, the result outperforms
all the previous approaches: 93.55%.

5 Conclusion

In this paper, we explored and evaluated several different pre-trained CNN’s
architectures to extract features from colonoscopy images by the knowledge
transfer between natural and medical images providing what it is called off-the-
shelf CNNs features. We show that the off-the shelf features may be well suited
for the automatic classification of colon polyps even with a limited amount of
data.

The different used CNNs were pre-trained with an image domain completely
different from the proposed task. Apparently the 4096 features extracted from
CNN-M MCN and VGG-16 provided a good and generic extractor of colonic
polyps features. Some reasons for the success of the classification include the
training with a large range of different images, providing a powerful extractor
joining the intrinsic features from the images such as color, texture and shape in
the same architecture, reducing and abstracting these features in just one vector.

Also, the combination of classical features with off-the-shelf features yields
good prediction results complementing each other. We believe that this strategy
could be used in other endoscopic databases such as automatic classification of
celiac disease. Besides that, this approach will be explored in future work to also
detect polyps in video frames and the performance in real time applications will
be evaluated. It can be concluded that Deep Learning through Convolutional
Neural Networks is becoming essentially the most favorite candidate in almost
all pattern recognition tasks.
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