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Preface

Welcome to the proceedings of the third edition of the International Workshop on
Computer-Assisted and Robotic Endoscopy (CARE) that was held in conjunction with
MICCAI on October 17, 2016, in Athens, Greece.

CARE brings together researchers, clinicians, and medical companies involved in
scientific research in the field of computer-assisted and robotic endoscopy to advance
current endoscopic medical interventions. The next generation of CARE systems
promises to integrate multimodal information relative to the patient’s anatomy, the
control status of medical endoscopes and surgical tools, and the actions of surgical staff
to guide endoscopic interventions. To this end, technical advances should be intro-
duced in many areas, such as computer vision, graphics, robotics, medical imaging,
external tracking systems, medical device controls systems, information processing
techniques, endoscopy planning and simulation.

The technical program of this workshop comprised original and high-quality papers
that, together with this year’s keynotes, explored the most recent scientific, techno-
logical, and translational advancements and challenges toward the next generation of
CARE systems. We selected 11 high-quality papers from nine countries this year. All
the selected papers were revised and resubmitted by the authors in accordance with the
reviewers’ comments and the volume editors’ suggestions.

It was also our great honor and pleasure to welcome the keynote speakers, Dr. Pierre
Jannin (INSERM and University of Rennes 1), Prof. Dr. Nassir Navab (Johns Hopkins
University, USA), and Dr. Mahdi Azizian (Intuitive Surgical Inc., USA), who gave
fantastic talks on recent advances in robotic endoscopic interventions from both aca-
demic and industrial perspectives.

The CARE 2016 Organizing Committee would like to sincerely thank all Program
Committee members for putting their best effort in reviewing all the submissions. We
also extend our thanks and appreciation to KUKA Robotics, Germany, for sponsoring
the best paper award and Springer for accepting to publish the CARE proceedings in
the Lecture Notes in Computer Science series. We warmly thank all authors, researcher,
and attendees at CARE 2017 for their scientific contribution, enthusiasm, and support.
We are looking forward to the continuing support and participation in our next CARE
event that will be held in conjunction with MICCAI 2017 in Quebec, Canada.

January 2017 Terry Peters
Guang-Zhong Yang

Nassir Navab
Kensaku Mori
Xiongbiao Luo
Tobias Reichl

Jonathan McLeod
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Abstract. Recently, a great development in image recognition has been
achieved, especially by the availability of large and annotated data-
bases and the application of Deep Learning on these data. Convolutional
Neural Networks (CNN’s) can be used to enable the extraction of highly
representative features among the network layers filtering, selecting and
using these features in the last fully connected layers for pattern classifi-
cation. However, CNN training for automatic medical image classification
still provides a challenge due to the lack of large and publicly available
annotated databases. In this work, we evaluate and analyze the use of
CNN’s as a general feature descriptor doing transfer learning to generate
“off-the-shelf” CNN’s features for the colonic polyp classification task.
The good results obtained by off-the-shelf CNN’s features in many dif-
ferent databases suggest that features learned from CNN with natural
images can be highly relevant for colonic polyp classification.

Keywords: Deep learning · Convolutional Neural Networks · Colonic
polyp classification

1 Introduction

The leading cause of deaths related to intestinal tract is the development of can-
cer cells (polyps) in its many parts. An early detection (when the cancer is still
at an early stage) can reduce the risk of mortality among these patients. More
specifically, colonic polyps (benign tumors or growths which arise on the inner
colon surface) have a high occurrence and are known to be precursors of colon
cancer development. As a consequence, it is recommended that everyone over an

E. Ribeiro—This research was partially supported by CNPq-Brazil for Eduardo
Ribeiro under grant No. 00736/2014-0.

c© Springer International Publishing AG 2017
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2 E. Ribeiro et al.

age of 50 years be examined regularly [32]. This exam can be done through an
endoscopy procedure that is a minimally invasive and relatively painless diag-
nostic medical procedure that enables specialists to obtain images of internal
human body cavities.

Several studies have shown that automatic detection of image regions which
may contain polyps within the colon can be used to assist specialists in order
to decrease the polyp miss rate [3,28,31]. Such detection can be performed by
analyzing the polyp appearance that is generally based on color, shape, texture or
spatial features applied to the video frames denoted as polyp detection [1,21,30].

Subsequently, the polyps can be automatically classified using different aspects
of shape, color or texture into hyperplastic, adenomatous and malignant. The so-
called “pit-pattern” scheme proposed by Kudo et al. [18] can help in diagnos-
ing tumorous lesions once suspicious areas have been detected. In this scheme,
the mucosal surface of the colon can be classified into 5 different types designat-
ing the size, shape and distribution of the pit structure [6,9,12]. These five pit-
pattern types can allow to group the lesions into two main classes: normal mucosa
or hyperplastic polyps (healthy class) and neoplastic, adenomatous or carcinoma-
tous structures (abnormal class) as can be seen in Fig. 1(a–d). This approach is
quite relevant in clinical practice as shown in a study by Kato et al. [17].

In this work we focus on the polyp classification into these two classes. The
different types of pit patterns [18] of these two classes can be observed in Fig. 1(e–f)
[14]. However, the classification can be a difficult task due to several factors such as
the lack or excess of illumination, the blurring due to movement or water injection
and the different appearances of polyps [32]. Also, to find a robust and a global
feature extractor that summarizes and represents all these pit-patterns structures
in a single vector is very difficult and Deep Learning can be a good alternative to
surpass these problems.

Deep learning Neural Networks have been of great interest in recent years,
mainly due to the new variations of so-called Convolutional Neural Networks

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 1. Example images of the two classes (a–d) and the pit-pattern types of these two
classes (e–f).
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and the use of efficient parallel solvers improved by GPU’s [2]. Deep learning
is closely related to the high-level representation obtained by raw data such as
images and is very effective when applied to large and annotated databases.
However, the lack of available annotated medical image databases big enough
to properly train a CNN is still a problem [2]. The use of transfer learning by
pre-trained CNN’s can help avoid this problem, however the existing available
pre-trained CNN’s are trained with natural images with very different features
from the texture-like mucosa patterns in the colonic polyp images.

In this paper, we explore the use of Convolutional Neural Networks (CNN’s)
pre-trained with natural images to use them as medical imaging feature extrac-
tors, specifically of rectal colon images for colonic polyps classification. Rather
than directly train a CNN with medical images, we apply a simple transfer
method using pre-trained Convolutional Neural Networks. The assumption is
that the patterns learned in the original database can be used in colonoscopy
images for colonic polyp classification. In particular, we explore 11 different archi-
tectures (from 5000 to 160 million parameters) and depths (different numbers
of layers), describing and analyzing the effects of pre-trained CNN’s in different
acquisition modes of colonoscopy images (8 different databases). This study was
motivated by recent studies in computer vision addressing the emerging tech-
nique of transfer learning using pre-trained CNN’s presented in the next section.

2 CNN’s in Medical Image Classification

In recent years there has been an increased interest in machine learning tech-
niques that is based not on hand-engineered feature extractors but using raw
data to learn the representations.

This type of model has been very successful in large annotated databases,
such as ImageNet [16] dataset that contains around 1.2 million images divided
into 1000 categories. For these tasks, it is common to have a large number of
parameters (in order of millions), requiring a significant amount of processing
power to train the Neural Network. The CNN’s can learn through their numerous
layers and millions of connections if they are trained with sufficient examples,
which becomes a significant difficulty in the medical area [8]. This problem occurs
because of the lack of large, annotated and publicly available medical image
databases such as the existing natural image databases, so that is a difficult and
costly task to acquire and annotate such images and due to the specific nature
of different medical imaging modalities which seems to have different properties
according to each modality [15].

Some current pattern recognition techniques set aside handcrafted feature
extraction algorithms to feed a Deep Learning Neural Network directly with raw
data simultaneously acting as features extractor and image classifier at the same
time [8,23]. These networks use many consecutive convolutional layers followed
by pooling layers that reduce the data dimensionality making it, concomitantly,
invariant to geometric transformations. Such convolution filters (kernels) are
built to act as feature extractors during the training process and recent research
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indicates that a satisfactorily trained CNN with a large database can perform
properly when it is applied to other databases, which can mean that the kernels
can turn into a universal feature extractor [23].

The works of Raza et al. [23] and Oquab et al. [20] suggest that the use
of CNN’s intermediate layer outputs can be used as input features to train
other classifiers (such as support vector machines) for a number of other appli-
cations different from the original CNN obtaining a good performance. In fact,
despite the difference between natural and medical images, some feature descrip-
tors designed especially for natural images are used successfully in medical
image detection and classification, for example: texture-based polyp detection
[1], Fourier and Wavelet filters for colon classification [32], shape descriptors [14],
local fractal dimension [13] for colonic polyp classification etc. In light of this,
transfer learning that is a method used to harness the knowledge obtained by
another task can be a good option to represent these kind of features.

Recently, works addressing the use of deep learning techniques in endoscopic
images and videos are explored in many different ways, for example, to clas-
sify digestive organs in wireless capsule endoscopy images [34], detect lesions
of endoscopy images [33] and automatically detect polyps in colonoscopy videos
[22,27]. Also, pre-trained CNN’s have been successfully used in the identification
and pathology of X-ray and computer tomography modalities [8]. However, the
application of transfer learning in endoscopic and colonoscopic images has not
yet been exploited.

3 Materials and Methods

Using the inductive transfer learning, there are basically three types of strategies
exploiting CNN’s for medical image classification. Such strategies are described
in the following and can be employed according to the intrinsic characteristics
of each database [15].

When the available training database is large enough, diverse and very dif-
ferent from the database used in all the available pre-trained CNN’s (in a case of
transfer learning), the most appropriate approach would be to initialize the CNN
weights randomly (training the CNN from scratch), and train it according to
the medical image database for the kernels domain adaptation, that is, to find
the best way to extract the features of the data in order to classify the images
properly. This strategy, although ideal, is not widely used due to the lack of large
and annotated medical image database publicly available for training the CNN.

Another alternative for large databases, but in this case, similar to a pre-
trained CNN training database is the CNN fine-tuning. In fine-tuning the pre-
trained network training continues with new entries (with a new database) for
the weights to adjust properly to the new scenario reinforcing the more generic
features with a lower probability of overfitting. This approach is also not widely
applicable in case of medical image classification, again because of the limitation
in the number of annotated medical images available for the appropriate network
fine-tuning.
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When the database is small, the best alternative is to use an off-the-shelf
CNN [15]. In this case, using a pre-trained CNN, the last or next-to-last linear
fully connected layer is removed and the remaining pre-trained CNN is used as
a feature extractor to generate a feature vector for each input image from a dif-
ferent database. These feature vectors can be used to train a new classifier (such
as an SVM) to classify the images correctly. If the original database is similar
to the target database, the probability of the high-level features to describe the
image correctly is high and relevant to this new database. If the target database
is not so similar to the original, it can be more appropriate to use higher-level
features, IE features from previous layers of CNN.

In this paper, we consider the knowledge transfer between natural images and
medical images using off-the-shelf pre-trained CNN’s. The CNN will project the
target database samples into a vector space where the classes are more likely to
be separable. This strategy was inspired by the work of Oquab et al. [20], which
uses a pre-trained CNN in a large database (ImageNet) to classify images in a
smaller database (Pascal VOC dataset) with improved results. Unlike that work,
instead copy the weights of the original pre-trained CNN to the target CNN with
additional layers, we use the pre-trained CNN to project data into a new feature
space. This is done through the propagation of images from the colonic polyp
database in the CNN, getting the resultant vector from the last CNN’s layer
and obtaining a new representation for each input sample. Subsequently, we use
the feature vector set to train a linear classifier (for example support vector
machines) in this representation to evaluate the results as used in [2,8].

To explore the use of different off-the-shelf CNN architectures for the
computer-aided classification problem, we will describe below the elements to
make the evaluation possible.

3.1 Data

The use of integrated endoscopic apparatus with high-resolution acquisition
devices has been an important object of research in clinical decision support
system area. With high-magnification colonoscopies is possible to acquire images
up to 150-fold magnified, revealing the fine surface structure of the mucosa as
well as small lesions. Recent work related to classification of colonic polyps used
highly-detailed endoscopic images in combination with different technologies
divided into three categories: high-definition endoscope (with or without staining
the mucosa) combined with the i-Scan technology (1, 2, 3), high-magnification
chromoendoscopy [9] and high-magnification endoscopy combined with narrow
band imaging [7].

Specifically, the i-Scan technology (Pentax) used in this work is an image
processing technology consisting of the combination of surface enhancement and
contrast enhancement aiming to help detect dysplastic areas and to accentuate
mucosal surfaces [14].

There are three i-Scan modes available: i-Scan1, which includes surface
enhancement and contrast enhancement, i-Scan2, that includes surface enhance-
ment, contrast enhancement and tone enhancement and i-Scan3 that, besides
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including surface, contrast and tone enhancement, also increases lighting empha-
sizing the features of vascular visualization [32]. In this work we use an endo-
scopic image database (CC-i-Scan Database) with 8 different imaging modali-
ties acquired by an HD endoscope (Pentax HiLINE HD+ 90i Colonoscope) with
images of size 256 × 256 from video frames either using the i-Scan technology
or without any computer virtual chromoendoscopy (¬CVC). Table 1 shows the
number of images and patient per class in the different i-Scan modes. The mucosa
is either stained or not stained. Despite the fact the frames being high-definition
originally, the image size was chosen (i) to be large enough to describe a polyp
and (ii) small enough to cover just one class of mucosa type (only healthy or only
abnormal area). Also, the image labels (ground truth) were provided according
to their histological diagnosis.

Table 1. Number of images and patients per class of the CC-i-Scan databases gathered
with and without CC (staining) and computed virtual chromoendoscopy (CVC).

i-Scan mode No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3

Non-neoplastic

Number of images 39 25 20 31 42 53 32 31

Number of patients 21 18 15 15 26 31 23 19

Neoplastic

Number of images 73 75 69 71 68 73 62 54

Number of patients 55 56 55 55 52 55 52 47

Total nr. of images 112 100 89 102 110 126 94 85

3.2 Pre-trained Convolutional Neural Networks Architectures

We mainly explore six different CNN architectures trained to perform classifica-
tion in the ImageNet ILSVRC challenge data. The input of all tested pre-trained
CNN’s has size 224 × 224 × 3 and the descriptions as well as the details of each
CNN are given as follows:

– The CNN VGG-VD [25] uses a large number of layers with very small
filters (3 × 3) divided into two architectures according to the number of their
layers. The CNN VGG-VD16 has 16 convolution layers and five pooling
layers while the CNN VGG-VD19 has 19 convolution layers, adding one more
convolutional layer in three last sequences of convolutional layers. The fully
connected layers have 4096 neurons followed by a softmax classifier with 1000
neurons corresponding to the number of classes in the ILSVRC classification.
All the layers are followed by a rectifier linear unit (ReLU) layer to induce the
sparsity in the hidden units and reduce the gradient vanishing problem.

– The CNN-F (also called Fast CNN) [4] is similar the CNN used by Krizhevsky
et al. [16] with 5 convolutional layers. The input image size is 224 × 224 and
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the fast processing is granted by the stride of 4 pixels in the first convolu-
tional layer. The fully connected layers also have 4096 neurons as the CNN
VGG-VD. Besides the original implementation, in this work we also used the
MatConvnet implementation (beta17, [29]) of this architecture trained with
batch normalization and minor differences in its default hyperparameters and
called here CNN-F MCN.

– The CNN-M architecture (medium CNN) [4] also has 5 convolutional layers
and 3 pooling layers. The number of filters is higher than the Fast CNN: 96
instead of 64 filters in the first convolution layer with a smaller size. We also
use the MatConvNet implementation called CNN-M MCN.

– The CNN-S (slow CNN) [4] is related to the “accurate” network from the
Overfeat package [24] and also has smaller filters with a stride of 2 pixels in the
first convolutional layer. We also use the MatConvNet implementation called
CNN-S MCN.

– The AlexNet CNN [16] has five convolutional layers, three pooling layers
(after layer 2 and 5) and two fully connected layers. This architecture is similar
to the CNN-F, however, with more filters in the convolutional layers. We also
use the MatConvNet implementation called AlexNet MCN.

– The GoogleLeNet [26] CNN has the deepest and most complex architecture
among all the other networks presented here. With two convolutional layers,
two pooling layers and nine modules also called “inception” layers, this net-
work was designed to avoid patch-alignment issues introducing more sparsity
in the inception modules. Each module consists of six convolution layers and
one pooling layer concatenating these filters of different sizes and dimensions
into a single new filter.

3.3 Experimental Setup

In order to form the feature vector using the pre-trained CNNs, all images are
scaled using bicubic interpolation to the required size for each network, in the
case of this work: 224 × 224 × 3. The vectors obtained from the linear layers of
the CNN have size: 1024 × 1 for the GoogleLeNet CNN and 4096 × 1 for the
other networks due to their architecture specificities.

To allow the CNN features comparison and evaluation, we compared them
with the results obtained by some state-of-the-art feature extraction methods for
the classification of colonic polyps [32] which are: Blob Shape adapted Gradi-
ent using Local Fractal Dimension method (BSAG-LFD [13]), Blob Shape and
Contrast (Blob SC [14]), Discrete Shearlet Transform using the Weibull dis-
tribution (Shearlet-Weibull [5]), Gabor Wavelet Transform (GWT Weibull
[32]), Local Color Vector Patterns (LCVP [11]) and Multi-Scale Block Local
Binary Pattern (MB-LBP [11]). All these feature extraction methods (with the
exception of BSAG-LFD) were applied to the three RGB channels to form the
final feature vector space.

For the classical features, the classification accuracy is also computed using
a SVM classifier however, with the original images (without resizing) trained
using the Leave-One-Patient-out cross validation strategy as in [10] to make
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sure the classifier generalizes to unseen patients. This cross-validation is applied
to the methods from the literature as well as to off-the-shelf CNN’s features.
The accuracy measure based on the percentage of images correctly classified in
each class is used to allow an easy comparability of the results due to the high
number of methods and databases to be compared.

4 Results and Discussion

The accuracy results for the colonic polyp classification in the 8 different data-
bases are reported in Table 2. As can be seen, the results in Table 2 are divided
into two groups: off-the-shelf features and concatenating them with state-of-the-
art features.

Among the 11 pre-trained CNN investigated, the CNN that presents lower
performance were GoogleLeNet, CNN-S and AlexNet MCN. These results may
indicate that such networks themselves are not sufficient to be considered off-
the-shelf feature extractors for the polyp classification task.

Table 2. Accuracies of the methods for the CC-i-Scan databases in %.

Methods No staining Staining

¬CVC i-Scan1 i-Scan2 i-Scan3 ¬CVC i-Scan1 i-Scan2 i-Scan3 X

1- CNN-F 86.16 89.33 80.65 88.41 86.52 81.40 84.22 80.62 84.66

2- CNN-M 87.45 90.67 81.38 83.58 87.99 89.55 87.40 90.53 87.31

3- CNN-S 88.03 90.00 87.01 77.33 87.25 82.68 87.40 75.54 84.41

4- CNN-F MCN 88.84 82.00 73.15 90.73 85.78 89.55 89.72 83.15 85.36

5- CNN-M MCN 89.53 90.67 88.88 94.66 86.97 89.29 87.40 90.53 89.74

6- CNN-S MCN 90.12 91.42 81.38 79.85 89.18 93.49 81.10 84.77 86.41

7- GoogleLeNet 79.65 90.67 72.43 74.51 88.27 80.46 75.60 84.08 80.70

8- VGG-VD16 87.45 85.33 86.38 79.65 92.47 89.80 95.26 92.38 88.59

9- VGG-VD19 83.49 82.67 83.88 87.71 92.47 83.98 94.46 85.59 86.78

10-AlexNet 91.40 87.33 75.65 89.32 87.71 83.03 84.22 79.24 84.73

11-AlexNet MCN 89.42 84.67 78.88 83.78 89.36 83.55 81.10 78.32 83.63

X 87.41 87.70 80.88 84.50 88.54 86.07 86.17 84.06 85.67

13- Blob SC 77.67 83.33 82.10 75.22 59.28 78.83 66.13 59.83 72.79

14- Shearlet-Weibull 73.72 76.67 79.60 86.80 81.30 69.91 72.38 83.63 78.00

15- GWT-Weibull 79.75 78.67 70.25 84.28 81.30 74.54 77.17 83.39 78.66

16- LCVP 76.60 66.00 47.75 77.12 77.45 79.00 70.01 69.56 70.43

17- MB-LBP 78.26 80.67 81.38 83.37 69.29 70.60 77.22 78.32 77.38

X 78.71 78.70 74.28 81.61 73.13 75.58 73.61 74.35 76.24

Concatenating 5/8 88.84 85.33 83.88 92.14 93.12 90.49 96.88 94.00 90.58

Concatenating 5/12 92.79 92.67 88.88 96.98 87.71 90.49 88.26 90.53 91.03

Concatenating 5/8/12 95.94 90.00 88.88 92.14 92.30 91.43 97.63 97.46 93.22

Concatenating 5/8/14 91.51 88.67 87.10 93.75 94.68 91.43 98.44 95.85 92.67

Concatenating 5/8/15 90.91 90.00 88.88 92.14 93.94 89.80 96.88 95.61 92.27

Concatenating 5/8/12/14 93.38 88.00 91.38 93.75 93.49 92.12 97.63 94.92 93.08

Concatenating 5/8/12/17 93.38 90.00 91.38 93.75 92.75 92.12 97.63 97.46 93.55
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As it can be seen, the pre-trained CNN that presents the best result on
average for the different imaging modalities (X) is the CNN-M network trained
with the MatConvNet parameters (89.74%) followed by the CNN VGG-VD16
(88.59%). These deep models with smaller filters generalize well with other
datasets as it shown in [25], including texture recognition, which can explain
the better results in the colonic polyp database. However, there is a high vari-
ability in the results and thus it is difficult to draw general conclusions.

Many results obtained by the pre-trained CNN’s surpassed the classic feature
extractors for colonic polyp classification in the literature. The database that
presents the best results using off-the-shelf features is the database staining
the mucosa without any i-Scan technology (88.54% on average). In the case of
classical features, the database with the best result in the average is the database
using the i-Scan3 technology without staining the mucosa (81.61%).

To investigate this difference in the results we asses the significance of them
using the McNemar test [19]. By means of this test, we analyze if the images
from a database are classified differently or similarly by the other methods.
With a high accuracy it is suppose of that the methods will have a very similar
response, so the significance level α must be small enough to differentiate between
classifying an image as correct or incorrect.

Fig. 2. Results of the McNemar test for the i-Scan3 database without staining. A black
square in the matrix means that the methods are significantly different with significance
level α = 0.01. If the square is white then there is no significant difference between the
methods.

The test is carried out on the database that presents the best results with
the classic features (i-Scan3 without staining the mucosa) using significance level
α = 0.01. The results are presented in Fig. 2. It can be observed by the black
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squares that, among the pre-trained CNN’s, the CNN-M MCN and GoogleLeNet
present the most different results comparing to the other CNN’s.

Also, in Fig. 2 when comparing the classical feature extraction methods with
the CNN’s features it can be seen that there is a quite different response among
the results, especially for CNN-M MCN that is significantly different from all
the classical methods with the exception of the Shearlet-Weilbull method.

The methods with high accuracy are not found to be significantly different
which can indicate that, in these methods, almost the same images are classified
wrong, independent of the extracted features.

Observing the features that are significantly different in Fig. 2 and with good
results in Table 2 we decided to concatenate the feature vectors to see if the
features can complement each other. It can be seen also in Table 2 that the
two most successful CNN’s (CNN-M MCN and VGG-VD16) are significantly
different from each other and, at the same time, the CNN-M MCN is significantly
different to BSAG-LFD features which, among the classical results, presents the
best results.

Based on this difference, the three feature vectors (CNN-M, CNN-M MCN
and BSAG-LFD) were concatenated and the results presents a high accuracy on
average: 93.22%. When we add to the vector one more classical feature (MB-
LBP) that is also significantly different to CNN-M MCN, the result outperforms
all the previous approaches: 93.55%.

5 Conclusion

In this paper, we explored and evaluated several different pre-trained CNN’s
architectures to extract features from colonoscopy images by the knowledge
transfer between natural and medical images providing what it is called off-the-
shelf CNNs features. We show that the off-the shelf features may be well suited
for the automatic classification of colon polyps even with a limited amount of
data.

The different used CNNs were pre-trained with an image domain completely
different from the proposed task. Apparently the 4096 features extracted from
CNN-M MCN and VGG-16 provided a good and generic extractor of colonic
polyps features. Some reasons for the success of the classification include the
training with a large range of different images, providing a powerful extractor
joining the intrinsic features from the images such as color, texture and shape in
the same architecture, reducing and abstracting these features in just one vector.

Also, the combination of classical features with off-the-shelf features yields
good prediction results complementing each other. We believe that this strategy
could be used in other endoscopic databases such as automatic classification of
celiac disease. Besides that, this approach will be explored in future work to also
detect polyps in video frames and the performance in real time applications will
be evaluated. It can be concluded that Deep Learning through Convolutional
Neural Networks is becoming essentially the most favorite candidate in almost
all pattern recognition tasks.
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13. Häfner, M., Tamaki, T., Tanaka, S., Uhl, A., Wimmer, G., Yoshida, S.: Local
fractal dimension based approaches for colonic polyp classification. Med. Image
Anal. 26(1), 92–107 (2015)
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Abstract. Robotic trans-esophageal echocardiography (TEE) has many
advantages over the traditional manual control approach during cardiac surgical
procedures in terms of stability, remote operation, and radiation safety. To
further improve the usability of the robotic approach, development of an
intelligent system using automatic acquisition of ultrasound images is proposed.
This is addressed using a view planning platform in which the robot is con-
trolled according to a pre-planned path during the acquisition. Considering the
real mechanical movement, feedback of the probe position is essential in
ensuring the success of the automatic acquisition. In this paper, we present a
tracking method using the combination of an electromagnetic (EM) tracking
system and image-based registration for the purpose of feedback control used in
the automatic acquisition. Phantom experiments were performed to evaluate the
accuracy and reliability of the tracking and the automatic acquisition. The results
indicate a reliable performance of the tracking method. As for automatic
acquisition, the mean positioning error in the near field of ultrasound where
most structures of clinical interest are located is 10.44 mm. This phantom study
is encouraging for the eventual clinical application of robotic-based automatic
TEE acquisition.

1 Introduction

Trans-esophageal ultrasound is a manually controlled imaging modality widely used for
diagnosing heart disease and guiding cardiac surgical procedures [1]. The on-site oper-
ation of the probe usually requires operators standing for long periods of time andwearing
heavy radiation-protection shielding when X-ray is utilized during the surgery [2]. Apart
from the inconvenience and tedium of the manual control, the need for highly specialized
skills is always a barrier for reliable and repeatable acquisition of ultrasound. Accord-
ingly, there is a need for an automatic TEE system and method to acquire the desired
imaging based on the user’s request. Though numerous works have been presented for
robotic ultrasound as reviewed in [3], there is no solution for automatic heart scanning
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with TEE produced so far due to the complexity of heart imaging and the unavailability of
a robot specifically designed for this task.

A recently developed robotic system for TEE has made remote control possible [4]
and we have subsequently proposed an automatic acquisition workflow (as shown in
Fig. 1) [5] using this robot based on a view-planning platform for path-panning and an
ultrasound-to-MR registration method [6] for locating the probe position when
applying feedback. However, in the workflow described in [5], the probe tracking
method based on registering 3-D echo images to pre-scanned MR models requires a
close estimate of the probe pose. This was estimated based on the robotic kinematics,
which could result in failures because the mechanical performance of the probe driven
by the robot mechanism within the real esophagus could be different to the kinematics
in the simulation environment. Therefore, a method of more reliable tracking of the
probe is a key component for automatic acquisition to be clinically transferable. As an
alternative option, EM tracking systems are widely used for medical device tracking
and have been reported for tracking the TEE probe [7]. However, registering the EM
tracking coordinates to the patient coordinates is required which is difficult to achieve
using the EM tracking system on its own and the accuracy of EM tracking could also
be influenced by the electromagnetic environment.

To solve the problem of reliable tracking, we introduce a method to combine the
EM tracking system with image-based registration for probe tracking and integrate this
method into the workflow as shown in Fig. 1. This tracking method is tested with a
phantom experiment in which the tracking information provides feedback for the robot.
The performances of the combined tracking method and the automatic acquisition are
analyzed and discussed. In this paper, the robotic system and the view-based motion
planning are briefly reviewed in Sect. 2.1. Details of the new probe tracking method are
presented in Sect. 2.2. The utilization of this new tracking method in feedback position
control, relying on the inverse kinematics, is introduced in Sect. 2.3. Based on these
methods, experiments, results, discussion and conclusions are presented in the
subsequent sections.

Fig. 1. Overview of the TEE add-on robotic system and the automatic acquisition workflow.
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2 Materials and Methods

2.1 Robotic System and View-Based Motion Planning

An overview of the robotic system is shown in Fig. 2(a). The add-on TEE robot holds
the probe handle and manipulates four degrees of freedom (DOFs) that are available in
manual handling of the probe, including the rotation about and translation along the
length of the TEE probe and additional manipulators with 2-DOFs to steer the probe
head. The remote operation of the probe is via Bluetooth communication. More details
of the design of the robotic system can be found in [4].

In the view-planning platform (Fig. 2(b)) described in [5], an automatically seg-
mented heart 3-D model from the pre-scanned MR image, the corresponding manually
segmented esophagus center line, and the virtual model of the TEE probe head can be
loaded and viewed intuitively. The forward kinematics of the probe is modeled and the
corresponding virtual 2-D ultrasound images are displayed based on the given robotic
parameters [4]. By defining targeted views based on the virtual ultrasound image
outputs, sets of robotic parameters, along with planed paths for the robotic movements,
can be obtained.

In addition, the view-planning platform has the capability of auto-patient adaption,
in which case standard TEE views of patient-specific data can be automatically
obtained based on registration and optimization methods. This function allows rapid
motion planning of the acquisition if standard TEE views in the protocol are required as
targets. Details of the auto-patient adaption method can be found in [5].

2.2 Probe Calibration and Tracking Method

The proposed probe tracking method uses the combination of image-based registration
and an EM tracking system. The registration [6] takes a 3-D full-volume ultrasound
image, registers to a pre-scanned MR image and obtains the probe pose as the result.
This registration can provide an accurate probe pose but requires a close initial esti-
mation. The method has previously been shown to have a capture range of 9 mm [9].

Fig. 2. (a) Overview of the mechanical design of the robotic TEE system with its mechanisms
shown. (b) The view-planning platform with the function of the platform and an example defined
view shown.
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We therefore introduce EM tracking to the workflow, which typical has accuracy
within this range, to provide the initial estimation and ensure the success of the
registration.

Spatial Calibration. In the workflow, EM tracking is done using the Aurora Elec-
tromagnetic Measurement System (Northern Digital Inc, Waterloo, Canada). An EM
sensor has been mounted onto the tip of the probe. Spatial calibration of the ultrasound
image to the EM tracker was by a simple registration-based method using a phantom
comprising several crossed wires [8]. The experimental setup and workflow for the
calibration are shown in Fig. 3(a). 3-D images of the wires were acquired at different
positions and orientations, and the straight lines and crossing points of the wires were
extracted manually. The calibration transformation trackerTUS was then solved for
iteratively to minimise the misalignment of the extracted wires in each position. From
this the targeted transformation trackerTprobe was obtained using a prior known trans-
formation from the probe coordinates to the ultrasound image coordinates. Using this
spatial calibration, a measured pose of the EM tracker in the EM coordinates (defined
by the Aurora field generator) can be converted to the pose of the probe in the EM
coordinates EMTprobe.

Initialization. In order to provide the probe pose in the MR coordinates, another
calibration between the EM coordinates and the MR coordinates must be obtained. This
can be done at the time when the probe is manually inserted into the esophagus at a
random starting pose with the probe pointing towards the heart. By visually looking at

Fig. 3. (a) Experimental setup and workflow for the calibration of the probe. (b) Flow diagram
of the tracking method used in the TEE automatic acquisition.
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the first output ultrasound image, a similar view can be manually selected from the
view-planning platform, giving an estimate of the current probe pose in the MR
coordinates MRTprobe initialð Þ. The ultrasound image is then registered to the MR image
starting from this estimation, giving an accurate probe pose in the MR coordinates
MRTprobe regð Þ. The current probe pose EMTprobe is also measured from the EM system.
Therefore, the transformation from the EM coordinates to the MR coordinates MRTEM

can be obtained. It is important to understand that this is a once-only manual operation
for each TEE scan of a patient. Clinically, this could be achieved relatively easily by an
experienced TEE operator by requiring that they position the probe to one of the
standard views when it is first inserted into the esophagus.

Combined Tracking. After initialization, the probe pose MRTprobe EMð Þ can be
tracked automatically in any position inside of the esophagus by the EM tracking
system using MRTEM and EMTprobe. To further eliminate the influence of the envi-
ronment on EM tracking and the inaccuracy of the initial calibration MRTEM, regis-
tration of the current ultrasound image to the MR image is performed from the current
MRTprobe EMð Þ. As described in [6], an ultrasound-like image is generated from the
MR using the acoustic property information and an ultrasound imaging model. This is
then registered to the real US image using a monogenic phase similarity measure. The
optimization method attempts to maximize this similarity measure to find the true pose
of the TEE probe relative to the MR coordinates MRTprobe EM� regð Þ, which is used
to provide feedback for the robot control. The overview of the initialization and
combined tracking are shown in Fig. 3(b).

2.3 Inverse Kinematics and Feedback

The tracking result is used as feedback information for the robotic system to adjust the
parameters required to obtain the targeted positions. In order to find the robotic
parameters’ offsets between the current pose and the targeted pose, an inverse kine-
matic model is proposed using a gradient decent search strategy based on the forward
kinematics reported before. The search strategy defines a single objective function in
order to optimize the robotic parameters p ¼ x;h; a; bð Þ, where x is the translation
parameter, h is the axial rotation parameter, and a, b are the bi-directional bending
parameters. The forward kinematics, denoted as F, gives the transformation from the
probe coordinates to the MR coordinates:

MRTprobe ¼ F pð Þ ¼ F x;h; a; bð Þ ð1Þ

Detailed information on the forward kinematics is given in [4]. The objective
function uses the four corners of the probe transducer face as reference points, denoted
as Ri. The current pose of the probe is denoted as MRTprobe� , and the objective function
f(p) used for optimization is defined as follows:
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f pð Þ ¼ � 1
4

X4

i¼1
MRTprobe�Ri � F pð ÞRi

�� �� ð2Þ

During the search and step approach, the parameter pi in the parameter space
p which gives the maximum partial derivative will be selected as the step parameter to
be updated. The best step direction di ¼ �rf pið Þ= rf pið Þk k in the step direction space
d is the forward direction of the selected parameter. The step size, r, is initially defined
based on the dimension scale of each parameter and then reduced after each conver-
gence when rf pið Þ ¼ 0. A new parameter set pþ is of the form:

pþ ¼ pþr � d ð3Þ

The search strategy starts from p = 0 and ends when f(p) reaches its minimum
preset value. The final parameter set p�, representing the current pose of the probe, is
the output of the inverse kinematics. With the tracking information and the inverse
kinematics, a simple feedback position controller is designed as shown in Fig. 4. Based
on the result from the previous work [5], the cycle of measurement and adjustment is
executed only one time, which has been shown to effectively improve the accuracy.

2.4 Automatic Acquisition Experiment

A phantom experiment was designed to test the proposed tracking method and its
performance in automatic TEE acquisition. A custom phantom was built in order to
provide a simulation environment for the TEE approach. This phantom includes a
silicone tube representing the esophagus and a commercial ultrasound/MRI heart
phantom (Computerized Imaging Reference Systems, Incorporated (CIRS), USA.)
used for imaging. The heart and silicone tube model of the phantom were extracted
from the pre-scanned MR image and loaded into the view-based robot planning plat-
form. Based on featured structures (chambers, valves, vessels) shown in either
long-axis view or short-axis view, five views were defined and the corresponding probe
poses and robotic parameters were recorded. Mechanically, a special link mechanism
was designed in order to lead the endoscopic portion of the TEE probe translating into
the phantom. The experimental setup is show in Fig. 5.

During the experiment, the initial calibration between the EM coordinates and the
MR coordinates was performed at the very beginning using the method described in

Fig. 4. Feedback position controller based on the tracking and kinematics of the TEE robot.
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Sect. 2.2. After initialization, the probe was tracked by the proposed tracking method.
Based on the pre-planned poses of the probe, the robotic system was actuated, driving
the probe towards the targeted poses. When the probe arrived, the tracked probe pose
was used as feedback information with the inverse kinematics method described in
Sect. 2.3. The adjustments of the probe parameters were calculated and performed, and
the ultrasound image recorded. The experiment was repeated three times with different
random initial poses of the probe.

For post-processing, to understand the improvement in accuracy using the com-
bined tracking method over the EM tracking method, the tracked probe poses reported
by the EM tracking system MRTprobe EMð Þ and the combined tracking method
MRTprobe EM� regð Þ were compared. Root sum square (RSS) of the differences
between the X-, Y-, and Z-axes rotation and translation components were calculated
after decomposing each matrix. To understand the need for using the EM tracking
system to provide the initial estimate of registration for tracking, we used robot
kinematics as an alternative initialization for the registrations and compared the success
rate with the proposed combined tracking method. The accuracy of automatic acqui-
sition was quantified by comparing the final probe pose determined by registration
MRTprobe EM� regð Þ with the planned probe pose MRTprobe plannedð Þ. 60 marker
points were defined in the ultrasound image field of view 90� � 90�coneð Þ at a depth of
5–6 cm where most structures of clinical interest during cardiac procedures are located,
including major valves and the septum. The locations of corresponding marker points
in the MR coordinates were obtained and compared. Additionally, the acquired real
ultrasound images were compared with the planned views in the view planning
platform visually.

Fig. 5. Experimental setup for the automatic acquisition using the TEE robot, custom
heart-esophagus phantom, and the EM tracking system.
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3 Results

Results from the experiments indicate that the proposed tracking method is suitable for
the robotic-based automatic TEE acquisition. Figure 6(a) shows one of the tracking
examples where the EM tracking provided a close estimation and the image-based
registration calculated an accurate probe pose. Visual examination of the registration
results found that the combined registration result could not be improved by manual
adjustments, whereas the EM-only registration had some clear misalignment. Quanti-
tatively, the proposed combined tracking method has a relatively high tracking accu-
racy with a median registration error of 2.9 mm. This has been shown previously from
the investigation of the registration method itself in [9]. Therefore, the combined
tracking result is used as the reference to compare with the EM tracking result. The
error in the EM tracking method compared to the combined result indicates an

Fig. 6. (a) Example of tracking with target probe pose (black), EM tracked pose (green), and
EM-registration tracked pose (white) shown. (b) Examples of automatic acquisition results with
planned view (top row) and acquired real ultrasound images (bottom row) shown. (c) Histogram
of the error at 5–6 cm depth. (Color figure online)
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improvement of 7.96 mm and 3.41° in tracking accuracy. The success rate is 11 out of
15 (73%) using the kinematics to provide the initial estimate of registration while all
registrations succeed (100%) using the EM tracking result as the initial estimate of
registration. For the performance of the automatic acquisition, the ultrasound image
was overlaid on the MR segmentation data in order to intuitively compare the acquired
ultrasound views with the views originally defined in the view planning software
(example views are shown in Fig. 6(b)). The results show that all planned structures
were in the 3-D field of view and most of the center slices of the obtained ultrasound
images align with the original slice planned in the view planning platform. Quantita-
tively, the overall error of marker points defined in the ultrasound field of view at the
depth of interest over all three experiments is 10.44 ± 2.30 mm (mean ± standard
deviation). A histogram of this error is shown in Fig. 6(c).

4 Discussion and Conclusions

The proposed combined tracking method using the image-based registration and an EM
tracking system together enables a more accurate tracking performance than using the
EM sensor alone. This is because the EM sensor could be influenced by the metallic
environment and an inaccurate calibration. Compared with using kinematics as the
initial estimate of registration, the EM tracking system provides a more reliable esti-
mate and ensures the success rate of the tracking. Therefore we believe the proposed
combined tracking method is suitable for the automatic TEE acquisition in terms of
both accuracy and reliability. It should be noted that our gold standard for the error
measurement of the tracking method was to run the registration from a good initial
alignment, and then to manually correct any visible alignment errors, although in the
experiment there was almost no visible misalignment after this registration. Therefore,
while the gold standard is not truly independent, we are confident that it is accurate, and
certainly shows that registration is better than using EM tracking alone.

As for the accuracy of probe positioning for automatic acquisition, the error in the
ultrasound space at the depth of clinical interested due to the probe positioning error is
similar to the amount of movement and deformation of the beating heart (1 cm). With
this range of error, most of the desired anatomies are still very likely to remain in the
field of view in either 2-D or 3-D mode. However, such a deviation might still cause
significant challenges for the 2-D mode if a small structure is required in the view
plane. In that case, a precision of a few millimeters might need to be achieved. There
are a number of error sources contributing to the overall error, including the error from
tracking, inaccuracy of the inverse kinematics in the constrained environment of the
silicone tube, and mechanical movement. The rigidity of the silicone tube may mean
that the feedback is less effective in the phantom than in a human esophagus. Addi-
tionally, the probe is constrained to move along the esophagus center line in the view
planning platform, which in reality might be different in the silicone tube or real
esophagus.

In this paper, we have proposed a method of probe tracking using an EM tracking
system and image-based registration to work with a TEE robot. This method is par-
ticularly developed for the application of automatic TEE acquisition. Results from the
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experiment demonstrated the feasibility of the tracking method and proved the new
concept of automatic TEE acquisition in a phantom. To further evaluate the method in
the human body, specially preserved cadavers using the Thiel embalming method [10]
will be employed and the whole workflow will be evaluated in a more realistic clinical
scenario. The accuracy requirements for the automatic TEE acquisition workflow in
this less rigid environment can be re-evaluated based on a qualitative study judging
whether the planned structures are successfully obtained in a real human body. In
addition, further developments in automation, particularly in the initialization, will be
necessary for clinical translation of the workflow.
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Abstract. In recent years, laparoscopic surgery has become major surgery due
to several advantages for patients. However, it has disadvantages for operators
because of the narrow surgical field of view. To solve this problem, our group
proposed camera-retractable trocar which can obtain multiple surgical viewpoints
while maintaining the minimally invasiveness. The purpose of this study is to
obtain a wide visual panoramic view by utilizing image mosaicking of camera-
retractable trocar viewpoints videos. We utilize feature points tracking in different
videos to generate panoramic video independent of inter-cameras overlap and to
increase mosaicking speed and robustness. We evaluate tracking accuracy
according to several conditions and mosaicking accuracy according to overlap
size. In contrast to the conventional mosaicking approach, the proposed approach
can produce panoramic image even in the case of 0% inter-cameras overlap.
Additionally, the proposed approach is fast enough for clinical use.

1 Introduction

Laparoscopic surgery, one of the minimally invasive surgeries (MIS), has several
advantages for patients. For example, patients would feel less postoperative pain because
of the small surgical wound, can early discharge and can early return to their social
activities. However, this surgery has disadvantages for operators because of the narrow
surgical field of view. Also, the safety improvement of this surgery is strongly required
owing to concern for the medical accidents occurred in recent years. As one of the
countermeasures for this problem, it has been demanded to realize a wide visual field
such as abdominal surgery maintaining the minimally invasiveness that is an advantage
of laparoscopic surgery. In the case of endoscopic surgery or robotic assisted surgery,
image mosaicking and image mapping are proposed to achieve a wide visual field [1, 2].

In the present laparoscopic surgery, operators insert a laparoscope into a port and
display a single viewpoint video on a monitor. It is a major operative procedure. In recent
years, several mosaicking methods are proposed to expand the surgical view. These
methods usually use monocular tracking [3–6], or stereo imaging devices [7]. However,
these methods extend the field of view using static panorama images and do not provide
a real extended view of the operation site. To achieve a real wider visual field, we must
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observe intraperitoneal conditions from new ports other than the laparoscope port.
Camera-retractable trocar is proposed by Okubo et al. [8] to invasively provide multiple
surgical views. Trocar is a surgical instrument that is inserted through abdominal wall
to secure forceps ports and to keep abdominal air pressure. Camera-retractable trocar,
shown in Fig. 1(a), (b), has a miniature camera which can be retracted or expanded at
the end of the trocar. It is possible to obtain several videos of different viewpoints from
the camera-retractable trocar. Therefore, it is possible to obtain multiple surgical view‐
points videos while maintaining the minimally invasiveness which is an advantage of
laparoscopic surgery. Although these advantage of camera-retractable trocar, observing
multiple views at the same time may cause confusion specially in the case of overlapped
views.

(a) retracted (b) expanded

Fig. 1. Camera-retractable trocar.

In this study, therefore, we tend to utilize camera-retractable trocar views to provide
a more realistic expanded surgical view. Supposing the situation that two camera-
retractable trocars are placed at two different ports, the purpose is to perform image
mosaicking of these viewpoints videos to obtain a wide visual panoramic video of the
operation site.

In traditional image mosaicking, an overlap between images is necessary for gener‐
ating panoramic image. However, in the case of trocar-retractable cameras, an enough
large overlap between cameras is not necessarily preserved during the operation because
of trocar movement caused by operation of forceps. Therefore, in this work, feature
points tracking in different videos is utilized to increase mosaicking speed and robust‐
ness. Moreover, by combining mosaicking and tracking, it is possible to generate panor‐
amic video regardless the overlap between different cameras. The speed and efficiency
of the proposed approach is evaluated in this study. From this evaluation, we can deduce
that using feature tracking reduces the required number of free view point mosaicking.
And then, the computational cost of the whole approach is reduced. Moreover, the
mosaicking robustness can be improved.
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2 Proposed Method

The general diagram of the proposed mosaicking approach using two cameras is shown
in Fig. 2.

Fig. 2. The general diagram of the proposed mosaicking approach.
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At the beginning, an initial panorama image is required. This initial panoramic view is
constructed when an enough overlap is found at the exploration time. To construct this view,
Speed-Up Robust Feature (SURF) algorithm [9] is utilized to extract feature points from the
initial frames acquired from different trocar-retractable cameras. A robust feature matching
is then performed by applying a ratio test and double matching from view1 to view2 and
vice-verse. Consequently, the inter-cameras homography is calculated from a set of inliers
matches found using random sample concise (RANSAC) algorithm [10].

After initialization, continues tracking is performed from frame to frame in each video.
In this work, a set of feature points extracted using Good-Feature-to-Track technique [11]
are tracked using Pyramidal Lucas-Kanade Optical Flow tracking [12]. These tracked points
are utilized to estimate intra-camera homography, which models the relationship of conse‐
quent video frames. The current expanded view is then calculated using both intra-camera
homographies and the last updated inter-cameras homography. By considering the last
updated inter-cameras homography as Hpano, the intra-camera homography of the first and
second view as Hview1 and Hview2, the current expanded homography view is estimated as in
Eq. (1). Figure 3 show an illustration of the estimation process.

Hcurrent = Hview1 × H
pano

× H−1
view2 (1)

Fig. 3. Estimation of the expanded view.

By using the above mentioned homography estimation methodology, the relationship
between different views can be maintained regardless the overlap size. However, the
homography error accumulated from frame to frame which cause large estimation error in
time. To alleviate this problem and to enhance the overall estimation, an update method is
performed if one of the following conditions is satisfied:

(a) The accumulated camera movement is more than 10 pixels since the last update and
there is an enough views overlap.

(b) Ten frames have been passed since the last update and there is an enough views
overlap.

This update process utilizes the estimated homography to determine the overlap of view1
and view2, and warp the overlap area of view2 to view1 frame. Consequently, the update
process is performed using SURF feature points detection and matching.

The matching process is performed locally around the detected points and then the
matching time and error are reduced. A correction homography is then calculated from a set
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of inliers using RANSAC algorithm, and the final corrected homography is calculated as in
Eq. (2).

Hfinal = Hcorrection ∗ H
corrent (2)

where, Hfinal is the corrected current expanded view homography, Hcorrection is the correction
homography calculated from the overlap area in view1 and view2 and Hcurrent is the initial
current view estimated homography. The inter-camera homography is now updated using
Hfinal and all update conditions are reset.

In the proposed method, it is possible to generate panoramic image using frame-to-
frame feature detection and temporal tracking independent of spatial overlap size, as
shown in Fig. 4. Also, if there is an enough large overlap between two cameras, we can
obtain more accurate panoramic image with direct mosaicking.

Fig. 4. Panoramic image by temporal tracking.

3 Evaluation Experiments

This section describes the evaluation of the proposed approach. We describe accuracy eval‐
uation of tracking according to camera types and imaging conditions in Sect. 3.1, accuracy
evaluation of mosaicking according to overlap size between two cameras in Sect. 3.2.
Finally, the comparison of the proposed approach and the conventional mosaicking approach
in provided in Sect. 3.3.

All experiments in this study were performed using OpenCV toolkit [13] on a PC with
the following specifications; OS is Windows8.1 professional 64 bit, CPU is Intel® Core™
i7-2600 K, RAM is 8 GB, and GPU is NVIDEA GeForce GTX 560 Ti. Moreover, GPU-
based features extraction, matching, tracking and image warping were utilized to accelerate
the process.
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3.1 Tracking Accuracy Evaluation According to Camera Types and Imaging
Conditions

In this work, in vivo and in vitro videos are used to asses feature points tracking accuracy.
The trocar-retractable camera is used to capture intra-operational videos of organs which
have smooth and specular surfaces. Additionally, a blurring effect may happen during the
operation.

3.1.1 Experimental Setup
In this experiment, we use three videos as shown in Fig. 5. These videos are captured at 30
fps for 10 s with a total number of 300 frames. The shelves video shown in Fig. 5(a) is
captured by RGB camera (Lumenera Lu170C) which has a resolution of 640 × 480. The
intra-operational video of a pig abdomen shown in Fig. 5(b) is captured by trocar camera
which has a resolution of 640 × 480, and the intra-operational video shown in Fig. 5(c) is
captured with the same trocar camera when blurring and turbulence occurs.

(a)The shhelves video (b)The pig abdomen (c) Thee blurred videoo

Fig. 5. Videos used for tracking accuracy evaluation, blue dots represent the tracked features.
(Color figure online)

3.1.2 Results and Discussion
The tracking methodology of the proposed approach is applied to the videos described in the
previous section and the results are evaluated. Figure 6 shows the result of feature tracking
for all videos. For the video shown in Fig. 5(a), large number of feature points, more than
400, can be always tracked. In comparison with this video, in the intra-operational trocar
videos, smaller number of features can be tracked specially in the case of blurred video
shown in Fig. 5(c). In this video, the number of tracked features becomes almost 0 when
high blurring effect occurs. This fluctuation is caused by noises of video under the influ‐
ence of using surgical diathermy.

In the proposed approach, intra-camera homography can be calculated if the number of
tracked feature points more than seven. Accordingly, we can perform tracking and calcu‐
late intra-camera homography in all three videos. However, more accurate intra-camera
homography can be calculated when the number of tracked feature points is as large as
possible. Therefore, we must examine the feature detection and tracking method for in vivo
videos in more details.
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3.2 Mosaicking Accuracy Evaluation According to Overlap Size Between Two
Cameras

The proposed approach can maintain the expanded view regardless the overlap size.
However, the mosaicking accuracy may be affected by the views overlap size because the
update process is affected by overlap size. Therefore, we created test videos of different
percentages of overlap range from 20% to 90% of frame size at an interval of 10%. Then,
we implement the proposed approach and compare the results using these videos.

3.2.1 Experimental Setup
To create videos for this evaluation, we cut out two 640 × 480 rectangles from high resolu‐
tion video captured by the “Stryker 1188 HD” monocular laparoscope, the resolution of
which is 1280 × 720. These rectangles are considered as the viewpoint of camera-1(V1) and
the viewpoint camera-2(V2), as shown in Fig. 7. The video captured by laparoscope mainly
shows serosa of pig stomach. To change the overlap size as a percentage of the whole frame
size, we translate V1 and V2 in a parallel direction and create eight types of videos, as shown
in Table 1.

Table 1. Comparison of mosaicking accuracy for different views overlap size.

Overlap(%) 20 30 40 50 60 70 80 90
Overlap size (# of
pixels)

128 × 480 198 × 480 256 × 480 320 × 480 384 × 480 448 × 480 512 × 480 576 × 480

Ideal values
(Xr,Yr)

(512, 0) (448, 0) (384, 0) (320, 0) (256, 0) (192, 0) (128, 0) (64, 0)

Measured
values(Xc,Yc)

(569.9,
16.2)

(483.6,
21.9)

(383.6,
−0.4)

(319.6,
−0.3)

(255.6,
−0.3)

(191.6,
−0.4)

(127.6,
−0.4)

(63.6,
−0.5)

error(pixel) 69.2 49.9 4.5 3.9 3.2 2.5 1.8 1.7

Fig. 6. Evaluation of the number of tracked features in different video frames.
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To quantify the accuracy of the estimated panoramic image, we set the central coor‐
dinate of V1 as a relative central position and calculate a relative position of the central
coordinate of V2, regarded as (x, y). We use the error between ideal values (xr, yr) and
measured values (xc, yc) as Euclidean distances for accuracy evaluation as in Eq (3)

error =
√
(xc − xr)

2 + (yc − yr)
2 (3)

3.2.2 Results and Discussion
As noticed from Table 1, the expanded view can be obtained in all cases. However, in the
cases of 20% and 30% percentage of overlap, the panoramic image is generated by tracking
only and no update is performed. Accordingly, the error is accumulated from frame to frame
and the mosaicking accuracy is degraded. In all other cases, when the overlap size is enough
for update process, a very good mosaicking accuracy is achieved. Therefore, we deduce that
we need to improve the tracking accuracy in order to further improve the mosaicking accu‐
racy specially in the case of small overlap size.

Figure 8(a), (b) shows the viewpoints of camera-1(V1) and camera-1(V1) when the
overlap size is 40%, and Fig. 8(c) shows the result of mosaicking. We can get very
accurate panoramic image. On the other hand, Fig. 8(d) shows a case when errors occur.

Figure 9 shows the error measured for every frame in each video in the interval of
40% to 90% of overlap size. As can be noticed from this figure, the error accumulates
between the update process and it is greatly reduced when the update is performed. It is
also noticed that, the larger overlap percentages produces higher mosaicking accuracy.
The results of this experiment, shows the importance of update process in reducing the
accumulated error. However, as the tracking is an important component of the proposed
approach, we must analyze of the tracking errors deeply and try other feature detectors
in order to improve its accuracy. In this experiment, we only consider the parallel trans‐
lation. Thus, we have to consider the rotation movement and its accuracy.

Fig. 7. Evaluation of the number of tracked features in different video frames.
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Fig. 9. Comparison of mosaicking accuracy at each video frame.

(a) Camera-1(V1 () b)Camera-2(V2)

(c) Result of mosaicking

(d) Result of mosaicking (error) 

Fig. 8. Result of mosaicking (overlap size: 40%)
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In addition to the tracking accuracy, physiological motion, forceps motion and tissue
deformation would affect the result of mosaicking. We must distinguish these move‐
ments from the camera motion in the future.

3.3 Comparison of the Proposed Approach and the Conventional Approach

In conventional image mosaicking approach, an overlap between images is necessary
for generating panoramic image. On the other hand, the proposed approach can utilize
both tracking and direct mosaicking to generate panoramic image independent of pres‐
ence of overlap between cameras. To check the efficacy of the proposed approach, we
create a video in which the overlap size becomes smaller over time and we perform the
comparative evaluation.

3.3.1 Experimental Setup
Similar to 3.3, to create videos for evaluation, we cut out two 640 × 480 rectangles from
a high resolution video captured by the “Stryker 1188 HD” laparoscope. In this experi‐
ment, we do not fix the percentages of overlap size; however, we translate V1 and V2
while reducing the percentages of overlap, as shown is Fig. 10. The percentages of the
overlap size of the first frame is set to 50%, we reduce the percentages at a regular speed
until frame number 1600. At the frame number 1600, the percentage of overlap between
V1 and V2 becomes 0% and we fix V1 and V2 until frame number 1800.

We implement the proposed approach and the conventional approach using these
videos and the mosaicking accuracy and processing speed are evaluated. We use the
error between ideal values (xr, yr) and measured values (xc, yc) as Euclidean distances
for mosaicking accuracy evaluation as in Eq (3).

3.3.2 Results and Discussion
Figure 11 shows the evaluation results of the proposed approach and the conventional
approach over time. As can be noticed from this figure, the mosaicking error of the
conventional approach is low when an enough overlap is found. However, it becomes
unstable from about frame number 1200, and completely stopped at frame number 1400
because of lack of an enough overlap size. On the other hand, the proposed approach
can continue the process after frame number 1600 of which percentage of overlap

Fig. 10. Changes of the overlap size over video frames.
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becomes 0%. The error increase from about frame number 800 because of the accumu‐
lated error of tracking. Additionally, the proposed approach achieves a frame rate of
18.7 fps while the conventional approach run at 10.1 fps.

From these experiments we deduce that, the proposed approach can provide the
expanded view even in the case of 0% overlap, and we can also obtain the advantage in
terms of the processing speed.

4 Conclusion

In this work, an approach for abdominal view expansion is proposed. This approach can
utilize multiple trocar-retractable camera, image mosaicking and tracking. In contrast
to the traditional mosaicking approach, the proposed approach can produce panoramic
image even in the case of 0% inter-cameras overlap. Additionally, the proposed approach
is about 9 frames per second faster than the conventional approach. The evaluation
performed in this work shows that it is difficult to detect the adequate amount of features
from trocar camera at the moment; however, the trocar camera is under active devel‐
opment and will be enhanced in the future. Moreover, we found that the overlap size
affects the final mosaicking accuracy in the proposed approach. This limitation is mainly
caused by the tracking accuracy and we tend to improve the tracking algorithm in the
future. In this paper, we used videos created from the laparoscope video; however, we
will examine the results using the actual trocar videos in the future.
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Abstract. Endoscopic ultrasound (EUS) is a minimally-invasive imaging tech‐
nique that can be technically difficult to perform due to the small field of view
and uncertainty in the endoscope position. Electromagnetic (EM) tracking is
emerging as an important technology in guiding endoscopic interventions and for
training in endotherapy by providing information on endoscope location by fusion
with pre-operative images. However, the accuracy of EM tracking could be
compromised by the endoscopic ultrasound transducer. In this work, we quantify
the precision and accuracy of EM tracking sensors inserted into the working
channel of a flexible endoscope, with the ultrasound transducer turned on and off.
The EUS device was found to have little (no significant) effect on static tracking
accuracy although jitter increased significantly. A significant change in the meas‐
ured distance between sensors arranged in a fixed geometry was found during a
dynamic acquisition. In conclusion, EM tracking accuracy was not found to be
significantly affected by the flexible endoscope.

Keywords: Electromagnetic tracking · Endoscopic ultrasound · Image-guided
systems · Accuracy · Precision · Validation

1 Introduction

Endoscopic ultrasound (EUS) imaging has become an increasingly important investi‐
gative tool in a number of endoscopic procedures, including bronchoscopy, endoscopic
procedures involving the gastrointestinal tract, and for localising pancreatic lesions, for
example during trans-gastric or trans-duodenal fine needle aspiration (FNA) or during
the course of endoscopically guided treatments (endotherapy) [1]. However, many EUS-
guided procedures are complex, technically challenging, and require significant expe‐
rience [2]. The ability to track the 3D position and visualize the endoscope shape, and
other surgical instruments inserted through it, in real-time is important for improving
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surgical confidence, reducing the skill required to navigate, and may ultimately allow a
less experienced gastroenterologist to perform at an equivalent level as an expert. The
additional navigational information becomes especially useful when combined with
other diagnostic, planning, and intraoperative imaging modalities, such as pre-operative
X-ray computed tomography (CT) or magnetic resonance (MR) images, to provide
anatomical context.

Electromagnetic (EM) tracking is arguably the most versatile option for computer-
assisted interventions and therapy (CAI) as it allows flexible instruments inside the
human body to be tracked in real-time using a very small sensor, and, unlike optical
tracking or other image-based tracking methods, it does not require a line-of-sight to be
maintained [3]. As a result, EM tracking has rapidly become the tracking method of
choice for endoscopic interventions [4], and in turn for EUS-guided procedures [5, 6],
and is now incorporated into a number of commercial navigation systems.

Several different protocols have been proposed to evaluate the accuracy of EM
tracking systems, mainly to assess static errors [7–11]. The most common approach was
proposed by Hummel et al. [8] and has been used to assess new EM systems [12, 13],
the accuracy of sensors mounted on US probes [14, 15], and also for optimization [16].
This assessment protocol employs a machined base plate to measure positional and
rotational tracking data, offering simplicity, reproducibility, a high precision ground
truth and accuracy. This protocol is now widely considered to be the standard method,
but there is the limitation that measurement accuracy is a function of translation or
rotation [17]. Optical tracking [16] and robots have also been used, however, these
solutions are expensive and typically involve complicated calibration procedures [10].

Despite the growing popularity of EM tracking in interventional applications, signif‐
icant tracking errors due to metallic objects (i.e., steel, aluminium and bronze) placed
between the emitter and the sensor, and the use of some electronic devices, such as a C-
arm unit, have been reported to cause disturbances to the magnetic field below 4.2 mm
[8, 13, 17–20]. Such errors can be particularly prevalent in clinical environments and
their sources difficult to control. Therefore, it is challenging to predict the accuracy of
an EM tracking system based on measurements from a different environment [21].

The aim of this study was to assess the precision and accuracy of two new EM sensor
tools, designed for flexible endoscope tracking, by adapting Hummel et al. standardized
protocol specifically for EUS-guided procedures. The main motivation was to determine
the accuracy of a widely used EM tracking system when the sensor tools are placed
alongside or inside an endoscope working channel, with an EUS probe turned off and
on and, to better understand the errors associated with EM instrument tracking in the
overall surgical navigation error analysis of EUS-guided procedures.

2 Materials

In this study, we evaluated a NDI Aurora® V3 Tabletop Field Generator (TTFG;
Northern Digital, Inc., Waterloo, Ontario, Canada) with a tracking frequency of 40 Hz.
This device has shown good performance in terms of accuracy and stability [12], which
is required for guiding EUS-related procedures. The TTFG has an ellipsoidal volume
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of 600 × 420 × 600 mm starting at approximately 120 mm from the physical plane of
the board. The manufacturer-reported accuracy of six degrees of freedom (DOFs) sensor
tools is 0.80 mm and 0.70° for positional- and rotational data, respectively, in terms of
root-mean-square errors (RMSE)1. A NDI 6DOF catheter (Type 2) sensor tool, and a
NDI 5/6DOF Shape tool (Type 1), were used, both of which are tools designed to be
inserted in the working channel of a flexible endoscope. Results reported in this paper
are based on tracking data acquired using the NDI Track software included in the NDI
ToolBox (version 4.007.007).

To assess the tracking performance of EUS-guided procedures, we used an Aloka
ProSound SSD 5000 ultrasound console with an Olympus GF-UCT240 endoscopic
ultrasound transducer, operating at a frequency of 11 MHz. The endoscope has a working
channel with a diameter of 3.7 mm.

A methacrylate Hummel board [8] with dimensions 550 × 650 × 12 mm was fabri‐
cated and used as a ground truth for static measurements. The board contains a grid of
10 × 12 holes with a precision of 10 μm at a temperature of 20°, spaced 50 mm apart in
each direction, and a circle in the centre with 32 holes spaced 11.25° apart, with a radius
of 50 mm. To reliably assess the variation along the z-axis of the reference coordinate
system, and to enable comparison with older studies, we designed a modular marine
plywood platform, which was rigidly secured above the TTFG. This platform allows
the board to be easily positioned at three vertical z-levels (120 mm, 220 mm and 320 mm)
from the origin of the global coordinate system (see Fig. 1(a)). Two acetal adapters were
designed to position tracking tools and endoscopes on the board (see Fig. 1(b–c)). The
tracking tool adapters included two pins at a distance of 50 mm that fit into a pair of
holes in the board to fix the sensor or endoscope. The endoscope adapter also included
four nylon screws to fix the endoscope and avoid undesired rotations or movement.
Special attention was paid in using only plastic materials to avoid interference with the
field emitted by the TTFG. Based on the tolerances of the fabrication of the phantom,
the accuracy of the ground truth setup was estimated to be within 100 μm.

Fig. 1. Experimental setup. (a) The modular platform with 3 positional levels placed above the
Aurora Tabletop. (b) Catheter tool sensor attached to the board with the tracking tool adapter. (c)
Flexible endoscope attached to the board with the endoscopic adapter. (d) Flexible endoscope
with a representation of the working channel. (e) 6DOF catheter tool inserted in the pushing
catheter and fixed with the adapter.

1 http://www.ndigital.com/medical/products/aurora/.
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3 Methods

3.1 Static Measurements

Using our setup, 72 positions on the grid for each of the three z-levels were available
within the ellipsoidal TTFG working volume. For each grid position, 10 s of continuous
positional and rotational data were acquired. For the purpose of comparison, measure‐
ments were recorded under three different conditions: (a) the sensor in isolation, without
the endoscope present (as a reference); (b) the sensor inserted inside the working channel
of the endoscope, with the ultrasound console turned off; and (c) the sensor inside the
working channel with the ultrasound console and transducer turned on. In order to fix
the catheter sensor tool inside the working channel of the flexible endoscope, the tool
was first inserted and fixed into a pushing catheter (see Fig. 1(d–e)). Afterwards, the
pushing catheter was inserted into the working channel of the endoscope. For the
convenience of interpretation of acquired rotational data, the quaternions reported by
the tracking system were converted to Euler angles, with rotations about the z-axis being
first multiplied when the composite rotation matrices were constructed.

3.2 Precision

Repeated 3D tracking measurements for a static sensor tool contain random errors,
commonly referred as jitter. For each sample, the Euclidean distance between the meas‐
ured location and the mean location over all the samples was computed, whilst the rota‐
tional distance was calculated as the difference between each measured Euler angle and
the mean angle. For each grid position, the precision was quantified by calculating the
RMSEs of positional and rotational distances.

3.3 Accuracy

We adapted a distance-based measure to assess the accuracy of tracking based on the
TTFG, similar to the one proposed in Hummel protocol [8]. For each grid position, we
measured the distance to all of the other ones, which were available, at grid distances
of 50 mm, 100 mm and 150 mm as suggested by the protocol (see Fig. 2(a)). The accuracy
was calculated as the mean of absolute difference between the ground-truth and the
measured distance for each position. This measure provides an indication of how accu‐
rate the tracking is when the sensor is moved a certain distance away from a particular
reference position. The accuracy along the z-axis, was defined as the mean of the abso‐
lute difference in distances between different vertical z-levels (i.e., bottom-middle,
middle-top and bottom-top). Estimates of rotational accuracy were obtained by meas‐
uring all relative rotations of 11.25°, using the circle included in the board, at the three
different levels. In this case, only one rotation was studied due to positioning restrictions
of the endoscope adapter.
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(a) (b) (c)

Fig. 2. (a) Illustration of the accuracy measurements in terms of relative distances of 50 mm for
rows and columns, and 100 mm for columns. (b) Setup for the EUS-induced distortion error
experiment. (c) Position of the sensors inside the working channel to evaluate the dynamic error.

3.4 EUS-Induced Distortion Error

During EUS-guided procedures, the endoscope can be used in conjunction with other
sensors to track patient motion and/or other surgical tools. In particular, we were inter‐
ested in assessing the effect of placing the endoscope between the TTFG and a sensor
of interest (in this case, the catheter tool) which may affect the precision and accuracy
of the tracking, as both the catheter and endoscope may cause distortion of the magnetic
field. In this case, similar to Sects. 3.2 and 3.3 but only for a small grid of 3 × 5 positions
in the centre of the board, we first took static measurements without the endoscope (as
a reference). We then repeated the experiment having attached the endoscope at the
bottom of the board, just at the middle of the 3 × 5 grid positions, using the endoscopic
adapter, such that the endoscope remained in a static position between the TTFG and
the sensor of interest (see Fig. 2(b)). The grid positions were the closest to the endoscope,
thus more likely to affect the tracking accuracy [8, 13, 18–20]. Additionally, the endo‐
scope contained the shape tool in the working channel, and its position was measured
as a reference of the distance between the two tracking tools. We then calculated the
positional and rotational jitter, and the accuracy as defined in Sects. 3.2 and 3.3.

3.5 Dynamic Errors

To study dynamic error, the 6/5DOF NDI shape tool was inserted into the working
channel of the flexible endoscope in a fixed position where the first three sensors (of 7)
formed a triangle (see Fig. 2(c)). As a reference, 10 s of data were recorded in a static
position and the mean position of each sensor was obtained. The endoscope was
manually moved in a random path within the EM working volume while data was
acquired continuously for 20 s. For each dynamic measurement, we calculated the
distances between each pair of the three sensors which were located in the fixed part of
the endoscope. These three distances were then compared with the corresponding mean
distances computed from the reference measurements. This measure does not represent
the complete “dynamic error” as any errors correlated between sensors, such as those
caused by time latency, may cancel out each other. However, this is a simple and useful
estimate of the relative dynamic error for applications where relative positions and
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distances are important, such as the real-time visualisation of the shape of a moving
flexible endoscope.

3.6 Statistical Analysis

Paired two-sample Student’s t-tests (t-tests), all with standard confidence level
α = 0.05, were used to compare means of the static precision and accuracy errors between
three scenarios (no endoscope, with endoscope and transducer off and with endoscope
and transducer on). Additionally, because the errors were based on non-negative
distance measures, results from nonparametric Kolmogorov-Smirnov tests (K-S tests)
are also reported. In cases where any null hypothesis was rejected, i.e. a statistically
significant difference was observed, a one-way analysis of variance (ANOVA) was used
to further test if the three population means are likely to be the same. Furthermore, we
used a Pearson’s linear correlation coefficient (CC) to quantify the linear correlation
between errors obtained from these different scenarios, and between the errors and the
distance from the sampling location to the reference coordinate origin. Similarly, the t-
test, K-S test and CC were used to analyse the EUS-induced distortion errors and the
distance errors from dynamic acquisitions, described in Sects. 3.4 and 3.5, respectively,
compared to their respective reference measurements.

4 Results

4.1 Precision

Each acquisition of 10 s led to a set of data with more than 400 valid samples. The mean
and standard deviation of the positional and rotational jitter, obtained at the three
different z-levels, are summarised in Table 1 and Table 2 respectively. Statistically
significant difference was found between jitters with no endoscope and when the endo‐
scope’s transducer was turned off and on (p-value < 0.001 and p-value < 0.001, for t-
test and K-S test, respectively). ANOVA also confirmed a statistically significant differ‐
ence between three errors (p-value = 0.025). Interestingly, positional jitters were corre‐
lated with a CC of 0.98 in both cases (both p-values < 0.001). On the other hand, much
smaller CCs were observed between rotational jitters (CC = 0.34 and 0.35).

Table 1. Positional jitter averaged for all grid positions, at three different levels, with no
endoscope and with the endoscope transducer turned on/off (mean ± STD in mm RMS).

Positional Lower level Middle level Top level
No endoscope 0.01 ± 0.01 0.04 ± 0.01 0.14 ± 0.03
Transducer off 0.01 ± 0.01 0.04 ± 0.01 0.15 ± 0.04
Transducer on 0.02 ± 0.01 0.05 ± 0.01 0.18 ± 0.04
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Table 2. Rotational jitter averaged for all grid positions, at three different levels, with no
endoscope and with the endoscope transducer turned on/off (mean ± STD in degrees RMS).

Rotational Lower level Middle level Top level
No endoscope 0.02 ± 0.03 0.06 ± 0.03 0.17 ± 0.07
Transducer off 0.12 ± 0.26 0.07 ± 0.03 0.18 ± 0.07
Transducer on 0.33 ± 0.38 0.10 ± 0.05 0.72 ± 0.70

Positional jitters versus Euclidean distance to the origin of the coordinates system is
plotted in Fig. 3. A strong correlation was observed between jitters with all CCs greater
than 0.89 for measurements from different grid positions and z-levels. Rotational jitters
were correlated with the distance to the coordinate’s origin with a correlation coefficient
of 0.84 when there was no endoscope, a coefficient of 0.30 with the endoscope console
turned off and 0.36 with the ultrasound transducer turned on. In this case, the lack of
correlation between rotational precision and location was caused by the physical pres‐
ence of the endoscope
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Fig. 3. Positional jitter versus Euclidean distance to origin of the coordinates system (+ = bottom
level, o = middle level, ▼ = top level) with the corresponding exponential fitted curves without
endoscope (orange), with the ultrasound transducer turned off (green), and with the ultrasound
transducer turned on (blue). (Color figure online)

4.2 Accuracy

For each z-level, a total of 52 values in rows and 56 values in columns were available
at a distance of 50 mm, 32 values in rows and 40 values in columns were available at a
distance of 150 mm, and finally, at a distance of 150 mm, 12 values in rows and 24
values in columns were obtained. Comparisons of the positional mean values are shown
in Fig. 4. Overall, no statistically significant difference was found between the positional
accuracy without endoscope and with endoscope and the ultrasound transducer on
(ANOVA p-value = 0.496). Positional accuracies with endoscope and no endoscope
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were correlated with a Pearson’s coefficient higher than 0.81. Additionally, there was
no statistically significant difference between the distance from the low level to the top
level and the sum of the distances between two adjacent levels (p-value = 0.740, K-S
test). Correlation analysis also showed a CC lower than 0.46 between the accuracy of
each position and the distance to the origin of the coordinates system in all cases.
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Fig. 4. Comparison of positional accuracy at a distance of 50 mm (a), 100 mm (b), 150 mm (c),
and between levels (d). Boxplots show the absolute difference in distance (median, minimum,
maximum, upper and lower quartile) for the bottom (L), middle (M) and top (T) levels.

The rotational accuracy results are summarized in Table 3. Overall, a statistically
significant difference was found between the rotational accuracy without endoscope and
rotational accuracy with endoscope (p-value < 0.001 and p-value < 0.001, for t-test and
K-S test, respectively). However, relatively low CCs were found between the accuracies
without endoscope and with endoscope and the transducer on (CCs were 0.49 and 0.46
for the transducer on- and off cases, respectively).
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Table 3. Relative rotational error averaged for all 32 positions, at three different levels, with no
endoscope and with the endoscope transducer turned on/off (mean ± STD in degrees).

Rotational Lower level Middle level Upper level
No endoscope 0.35 ± 0.48 0.19 ± 0.13 0.21 ± 0.13
Transducer off 0.30 ± 0.36 0.30 ± 0.43 0.47 ± 0.75
Transducer on 0.27 ± 0.31 0.36 ± 0.51 0.39 ± 0.55

4.3 EUS-Induced Distortion Error

The mean ± standard deviation of positional jitter for all grid positions was
0.03 ± 0.01 mm without endoscope, and 0.02 ± 0.00 mm when the endoscope was placed
between the sensor and the TTFG (as described in Sect. 3.4). Rotational jitter was
0.05 ± 0.01 mm without endoscope and 0.01 ± 0.00 mm with endoscope. The distance
between the shape tool, placed inside the endoscope, and the catheter tool ranged from
31.71 to 65.49 mm. Results showed no statistically significant difference in positional
jitters with and without endoscope (p-value = 0.589, K-S test) with a CC of 0.92. Rota‐
tional jitter was also not statistically significant different (p-value = 0.962 and p-
value = 0.890, for t-test and K-S test, respectively) with a CC of 0.76. A relatively poor
correlation was found between the jitters and the distance to the endoscope (CC of 0.13
and –0.15, for positional and rotational jitter respectively).

Accuracy for 5 mm distances was 0.18 ± 0.09 with no endoscope and 0.16 ± 0.01
with endoscope. Statistical analysis showed no significant difference in accuracy with
and without endoscope (p-value = 0.862, K-S test).

4.4 Dynamic Errors

The dynamic acquisition of 20 s led to 894 positional vectors acquired with an average
speed of 0.31 m/s. Differences in distance, calculated between the three pairs of sensors
(described in Sect. 3.5), were 0.29 ± 0.42 mm, –0.39 ± 0.24 mm and 0.64 ± 0.4 mm.
A histogram of the difference in distance between sensors is shown in Fig. 5. Dynamic
distances where found to be significantly different than static distances (p-value < 0.001,
two-sample K-S test). The whole set of static measurements was also significantly
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Fig. 5. Histogram of the differences in distance between the three fixed sensors during a dynamic
acquisition.
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different than the dynamic set of measurements (p < 0.001, two-sample t-test). No strong
correlation was observed between these three distance errors (CCs were –0.43, –0.18
and 0.09).

5 Discussion

Positional accuracy did not significantly differ using the endoscope and there was no
evidence of correlation with the distance to the TTFG. Our analysis shows clear evidence
that the error obtained, when moving along the z-axis (away from the emitter), is cumu‐
lative. This effect was also observed with no endoscope. This error appears to be
systematic, thus, should be taken into account and corrected if possible. Rotational
accuracy was also not strongly correlated with the distance to origin. Due to the limi‐
tation of the endoscopic adapter, only rotation about the Z axis was evaluated. This
limitation may be overcome by creating two more adapters that allow rotation of the
endoscope on the other two axes. On the other hand, positional jitter was found to
significantly increase when the sensor was inserted in the working channel of the endo‐
scope and was positively correlated with the distance to the origin of the coordinates
system, remaining below 0.2 mm for all cases. Rotational jitter also increased, with a
precision error of 0.7° in the worst case. In this case, no evidence was found regarding
the correlation with the distance to the origin of the coordinates system.

EUS-induced distortion error was measured with the endoscope between the sensor
and the TTFG. Our results showed no evidence of significant distortion when the endo‐
scope was placed between 32 and 65 mm to the sensor. These positions were the closest
on the grid to the endoscope during the experiments and therefore more likely to affect
the accuracy. Thus, tracking other objects, such as clinical instruments, in combination
with EUS seems feasible, although the accuracy of electromagnetic tracking should be
quantified with the instrument of interest.

Errors introduced when the sensor is moving are of interest, although these have not
been included in most assessment protocols reported in the literature [11]. In this work,
we assessed a simple distance-based relative error between sensors during a dynamic
acquisition, which was found to change significantly, with all mean errors below 0.7 mm.
The dynamic error may affect the position and shape displayed of the flexible endoscopes
during guidance, and its clinical impact will be dependent on the application.

The robustness of tracking accuracy with respect to the use of an endoscope was
assessed by repeating the measurements with the EUS probe turned off and on, and
without the endoscope being present. It is worth mentioning that the experiments were
performed in a laboratory where conditions may differ from a clinical interventional
suite, as the presence of other devices, such as a C-arm, may interfere in the measure‐
ments. To the best of our knowledge, no endoscope for EUS-guided procedures with an
integrated EM sensor currently exists, although similar devices are available for bron‐
choscopy [22] and colonoscopy [23]. In addition, having the sensor tool inserted in the
working channel has the advantages of portability and compatibility across different
endoscope models and manufacturers compared with permanently embedding sensors
within the wall of the flexible and/or bending sections. Our results suggest that it is
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possible to combine EUS and EM tracking without compromising the tracking accuracy
significantly, although further research is required to estimate localisation errors for
instruments, such as needle-tips, for specific clinical applications, which are likely to
have different accuracy requirements.

This work focused on the study of static errors (jitter and relative accuracy), and
partial distance-based dynamic errors, as we believe they are the main errors affecting
the application of interest in EUS-guided procedures.

6 Conclusions

In this paper, we present the first accuracy study of 6DOF EM tracking tools inserted
into the working channel of an endoscopic ultrasound probe, by using and extending a
standardized protocol. Accuracy was not found to be highly affected by the endoscope
for EUS-guided procedures, although the jitter increased. Future work includes evalu‐
ation of the tools in an interventional suite using different endoscopes as well as an
assessment of the shape provided by the shape tool inserted in an endoscope.
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Abstract. We propose a novel local image descriptor called the
Extended Multi-resolution Local Patterns, and a discriminative proba-
bilistic framework for learning its parameters together with a multi-class
image classifier. Our approach uses training data with image-level labels
to learn the features which are discriminative for multi-class colonoscopy
image classification. Experiments on a three class (abnormal, normal,
uninformative) white-light colonoscopy image dataset with 2800 images
show that the proposed feature perform better than popular hand-
designed features used in the medical as well as in the computer vision
literature for image classification.

1 Introduction

More than one million new Colorectal cancer (CRC) cases are diagnosed yearly
worldwide, and CRC remains the third leading cause of cancer death in the world
[1]. There is compelling evidence that removing adenomas from the colon sub-
stantially reduces the risk of a patient developing CRC [1]. If CRC is diagnosed
in its earliest stages, the chance of survival is 90% [1]. Clearly, early identification
of colonic abnormalities is crucially important.

Adenoma detection rate (ADR) is a commonly used predictor of the risk
of developing CRC after undergoing a colonoscopy screening [2]. Although
colonoscopy remains the gold standard for CRC screening, CRC miss rate has
been reported as high as 6% [3], posing risk of developing colon cancer due to a
failure to detect treatable lesions in time. It is therefore arguable that a reliable
computer-aided detection system specialised for identifying suspicious colonic
abnormalities in colonoscopy videos could contribute to improve ADR, e.g. by
presenting clinicians with a second opinion obtained by objective and repeatable
methods.

In this paper we propose an automated system to classify colonoscopy images
into three classes: abnormal, normal and uninformative. The abnormal images
contain various abnormalities such as polyps, cancers, ulcers and bleeding,
appearing in a variety of sizes, positions and orientations in the image. The nor-
mal images contain none and show a clear healthy colon wall. The uninforma-
tive images contain images which are blurred due to out of focus (e.g., camera
c© Springer International Publishing AG 2017
T. Peters et al. (Eds.): CARE 2016, LNCS 10170, pp. 48–58, 2017.
DOI: 10.1007/978-3-319-54057-3 5
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(a) Abnormal (b) Normal (c) Uninformative

Fig. 1. Example images from our dataset.

pushed against the colon wall) or sharp camera movements. Note that we are not
specifically interested in detecting uninformative frames as done in the existing
approaches (e.g. [4]), but our target is a multi-class colonoscopy image classifi-
cation (Fig. 1).

Various hand-designed features (e.g. SIFT) have been explored for
colonoscopy image classification (discussed in Sect. 2). However, these features
may not be optimally discriminative for classifying images from particular
domains (e.g. colonoscopy), as not necessarily tuned to the domain’s characteris-
tics. We instead propose a learning approach, which jointly learns discriminative
local features together with a multi-class image classifier using training data with
image-level labels. Since our features are learned from the data we expect them
to be more discriminative than hand-designed ones. Comparative experiments
with our colonoscopy dataset show that the learned features perform better than
popular features used in the medical as well in the computer vision literature for
image classification.

2 Related Work

The approaches proposed for colonoscopy image analysis are mainly focussed
on identifying appropriate features; various hand-crafted features such as
color wavelet co-variance (CWC) [5], color histograms (CH) [6], gray-level co-
occurrence matrices (GLCM) [7], Root-SIFT (rSIFT) [8], Local Binary Patterns
(LBP) [8], Local Ternary Patterns (LTP) [8] have been explored. For exam-
ple, LBP and GLCM for normal/abnormal classification [7,8], CWC for polyp
detection [5], and for classification [7].

Feature learning approaches, e.g. [9–11], on the other hand, learn domain-
specific discriminative local features and report improved performance compared
to hand-crafted features in various applications, e.g. medical image segmenta-
tion [9], and natural image retrieval [11,12]. However, these approaches require
a labelled dataset for learning; e.g., Becker et al. [9] uses manual region-level
segmentations to learn filters for curvilinear structure segmentation in retinal
and microscopy images.

Convolutional neural nets (CNN) have been widely used to jointly learn fea-
tures and a classifier. Usually CNN requires a large amount of training data [13];
when this is not available, CNN may give worse performance than traditional,
hand-crafted features with feature encoding methods such as sparse coding [13].
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Recently, transfer learning approaches have been widely used (e.g. [14]) to over-
come this, where a CNN model trained on a large dataset (e.g. ImageNet, which
contains 1.2 million images with 1000 categories), is used either as an initializa-
tion or a fixed feature extractor for the task of interest. CNN is computationally
expensive to train, even on the GPU [15].

Since obtaining region-level annotations (to learn features as in [9–11]) is a
difficult, time-consuming task, we propose a feature learning approach which uses
only the image-level labels. Requiring image-labels instead of region-level labels
makes annotations less expensive, hence more feasible in practice. Compared to
CNN, our approach does not require pre-training on large dataset, or specialized
hardware such as GPU for training.

3 Method

First we introduce our notation, and then we define the structure of our feature
in Sect. 3.1. Section 3.2 proposes the learning algorithm to learn the parameters
of the feature together with a multi-class image classifier. We call the learned
feature Extended Multi-Resolution Local Patterns (xMRLP).

We characterize an image Ii by a set of local features {xij}Ni
j=1, where Ni

is the number of local features in Ii. Let’s consider the general case of labels,
whereby an image is associated with an image-level soft label indicating, for e.g.,
class probabilities. Our goal is to learn the parameters of the xMRLP features as
well as a multi-class classifier based on the given training data, which is formed
by the set of tuples D = {(Ii, P̃i)}M

i=1, where M is the number of images in D, and
P̃i ∈ [0, 1]C corresponds to a C-dimensional vector of soft labels of the ith training
image associated with the C classes. We assume that

∑C
c=1 P̃ (yi = c) = 1, where

P̃ (yi = c) is the latent class assignment of the image Ii to class c.

3.1 Extended Multi-resolution Local Patterns

Fig. 2. An example sam-
pling pattern.

Let Iij be the intensity of the jth pixel in the ith image.
To capture local context and to make the descriptor less
sensitive to noise, we use the sampling pattern widely
adopted in feature descriptors e.g. [16]. Figure 2 shows
a 3-resolution version of the sampling pattern, where
the local neighbourhood around the jth pixel of image
Ii is quantized at three resolution levels. Eight sam-
pling points are considered at each resolution. At each
sampling point, a Gaussian filter with standard devia-
tion proportional to the size of the support region (cir-
cle around each sampling point in Fig. 2) is applied to
collect information from that region.

Let Is
ij , s = 1, . . . , d, represents the intensity value at the s-th sampling point

in the pattern around the jth pixel of image Ii (e.g. d = 24 in Fig. 2). We define
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xij ∈ R
d as the xMRLP descriptor vector at pixel j in image Ii using the multi-

resolution sampling pattern with d sampling points:

xij(a) =
[
Iij − a1I

1
ij , . . . , Iij − adI

d
ij

]
(1)

where a = [a1, . . . , ad] defines the weights for different neighbourhood regions.
Note that, xMRLP is an improved version of the Multi-resolution Local Pat-

terns (MRLP) descriptor proposed in [17,18] for cell image classification. In
MRLP the weights for the local neighborhoods were fixed to 1, i.e. ai = 1,∀i
(Eq. 1).

3.2 A Discriminative Multi-class Framework for Learning

In this section we propose a discriminative framework based on image-to-class
distances (I2CD) [19] to jointly learn the feature parameter (a in Eq. 1) and
an image-level multi-class probabilistic classifier for colonoscopy image classifi-
cation.

Image to Class Distances. The I2CD was first introduced by Boiman et al.
[19] in the NBNN classifier. It requires no training phase, and classifies an image
by comparing its distance to different classes. A relaxed version of I2CD was
proposed in [20], showing improved performance over the original version for
complex datasets. The relaxed version of I2CD is given as:

Dic(a) =
1

NiP

Ni∑

j=1

P∑

p=1

‖xij − xcp
ij ‖22 (2)

where xcp
ij is the pth nearest neighbour of xij in the cth class, P is the number

of considered neighbours. In all the reported experiments we set P = 3.

Discriminative Probabilistic Softmax Classifier. Equation (3) below
defines a discriminative probabilistic classifier. This classifier outputs the poste-
rior probability of an image Ii belonging to a class c based on the I2CD.

P (yi = c|{xij}) =
exp−γcDic

∑C
l=1 exp−γlDil

(3)

The class c maximising the probability above is the one associated with the
smallest I2CD over all classes. In Eq. (3) {γl}C

l=1 are the classifier parameters.

The Objective Function. Equation (4) defines the objective function to learn
the feature parameter a and the classifier parameters {γl}C

l=1.

L(a, {γl}C
l=1) = − 1

M

M∑

i=1

C∑

l=1

P̃ (yi = l) log (P (yi = l|{xij})) + β‖a + 1‖22 (4)



52 S. Manivannan and E. Trucco

where, the first term maximizes the target posterior probabilities of the images in
the training set and second term is a regularisation term, prevents the parameters
a from becoming arbitrary high and makes their values close to −1 (as in MRLP).
We set β = 1 for all the reported experiments.

We use a coordinate descent method to optimize Eq. (4), where we learn one
parameter at a time while keeping the others constant.

Note that, learning the feature parameters is similar to metric learning
approaches. For example in [21], class-specific distance metrices were learned
to compare images with different classes, and the class which gives the smallest
I2CD was considered as the target class for that image. However, in Sect. 4.2
we show that the learned features when they are combined with the traditional
feature encoding methods such as sparse coding and a SVM classifier performs
better than directly using them (as in [21]).

4 Experiments

This section reports our comparative experiments and the results based on the
xMRLP descriptor and other features such as LBP, LTP, rSIFT, RP.

Materials: We collected 82 white-light colonoscopy video segments from the
Internet. K-means clustering was applied to select a representative subset of
images from each video segment based on color statistics (mean, std, skewness
and entropy in RGB color chennels) and texture features (LBP histograms).
From each video one frame per cluster was randomly selected and annotated by
a clinical expert who provided image-level annotations. It is observed that the
movement of the colonoscope is fast in normal videos compared to the abnormal
ones as the corresponding colon segments do not need a careful inspection of the
colonic walls. Therefore the number of clusters for a video vi was experimentally
set to V

7 for normal and V
10 for abnormal videos, where V is the total number

of images in vi. The final dataset contains 1000 abnormal, 900 normal and 900
uninformative images. All images in the final dataset are rescaled preserving the
aspect ratio so that the maximum dimension (row or column) of each image is
300 pixels.

Experimental setup and evaluation criteria: All the local features are
extracted from RGB color patches of size 3×16×16 with an overlap of Q pixels
in vertical and horizontal directions. The sampling pattern shown in Fig. 2 (3
resolution, 8 sampling points in each resolution) is used for xMRLP, LBP and
LTP features. We rescale the sampling pattern such that all the sampling points
lie inside the 16 × 16 image patches.

The classification performance is measured as the average of the per-class
accuracies (mean-class accuracies, MCA) measured on the test test. All the
experiments were repeated 10 times and the MCA averaged over these itera-
tions are reported. In each run we randomly selected 300 images from each class
for training and use the rest for testing.
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Table 1. Performance of various features using the softmax classifier (Eq. 3).

Feature rSIFT RP MRLP xMRLP (proposed)

Feature dimensionality 384 200 72 72

MCA 82.83± 1.20 84.37± 0.48 80.97± 0.92 87.07± 0.40

(.36, .64, .00) (.47, .52, .01) (.15, .35, .50) (.52, .45, .03) (.85, .13, .02) (.41, .44, .15)

(.49, .51, .00) (.44, .56, .00) (.52, .48, .00) (.54, .46, .00) (.32, .48, .20) (.21, .50, .29)

Fig. 3. Example of wrongly classified images (abnormal - first two columns, normal -
next two columns, uninformative - last two columns) and their confidence values using
the xMRLP features. The values in the brackets are correspond to P (y = abnormal),
P (y = normal) and P (y = uninfomative) respectively.

4.1 Effect of Feature Learning

This section compares the xMRLP feature with baseline features rSIFT, RP and
MRLP.

For each feature the representation of a patch was obtained by concatenating
the features extracted from each of the color channels of the RGB color space.
This led to a dimensionality of 72 (3 colors ×3 resolutions ×8 sampling points)
for MRLP and xMRLP, and 3×128 for rSIFT. Each of the vectorized color patch
of dimension 3 × 16 × 16 is projected to a compressed space of dimension 200
using a random projection matrix [22] to get a RP feature.

In the feature learning stage of xMRLP we use only 50 images from each of
the 3 classes, since the I2CD calculations are computationally expensive due to
nearest neighbour search. In the classification stage we randomly sample 50, 000
local features from each class of the training images and calculate the I2CD
between a test image and the training set to do the classification. In both cases
features are extracted densely without overlap (Q = 0).

Table 1 compares the performance of different features; xMRLP improves
the performance of MRLP by about 7%, suggesting that learning can capture
discriminative information. xMRLP also outperforms rSIFT and RP with low
dimensional representation, makes the I2CD classifier computationally efficient.

Since the proposed framework can also provide probabilistic outputs for the
test images, Figs. 3 and 4 show example of the wrongly and correctly classified
test images and their confidence values based on the probabilistic soft-max clas-
sifier given in Eq. (3). As can be seen from Fig. 3 the probability outputs and the
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Fig. 4. Example of correctly classified
images with high confidence (P > 0.9).
abnormal(top), normal(middle) and unin-
formative(bottom).

Fig. 5. Performance of different
features with LLC and SVM (dic-
tionary size vs MCA).

wrong classification results are reasonable, as it is hard to assign the ambigu-
ous images (i.e. images with ambiguous appearance) to a single class with high
confidence.

4.2 XMRLP with Feature Encoding and SVM Classifier

The softmax classifier used in Sect. 4.1 is computationally expensive due to the
nearest neighbour search involved in the I2CD calculations. Feature encoding
methods (e.g. [23]) with SVM classifier, on the other hand, are widely used in
medical image analysis [8] and are computationally efficient compared to I2CD
calculations. Therefore, in this section we evaluate the performance of the learned
xMRLP features (after learning them as explained in Sect. 4.1) using a feature
encoding method called Locality Constraint Linear Coding (LLC) [23] and a
SVM classifier. We show that xMRLP features with LCC+SVM perform bet-
ter than other features as well as xMRLP features with the soft-max classifier
(Sect. 4.1).

Since feature encoding is computationally efficient, we extracted features
more densely, with an overlap of Q = 12 pixels. For each feature type we ran-
domly sampled 100,000 local features to learn the dictionary using k-means. We
used SVM classifier (LIBSVM [24]) with an exponential χ2 kernel and report
the performance in Fig. 5. xMRLP feature outperforms other features even with
a smaller dictionary size (500) suggesting that learned features are better than
other features considered. When the dictionary size is 4000, xMRLP gives a
MCA of 92.8% which is better than the MCA obtained by rSIFT (89.7%) and
RP (89.1%).

4.3 Comparison with the Features Proposed for Colonoscopy

This section compares the performance of various features proposed for
colonoscopy image classification literature such as LBP [8], LTP [8], color his-
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Table 2. Performance of different features (S -size of the image representation).

Feat CH CWC CWC2 GLCM WGLCM LBP LTP rSIFT RP MRLP xMRLP

S 225 216 240 144 144 531 1062 4000 4000 4000 4000

MCA 85.0 79.3 79.7 80.1 83.0 87.4 89.6 89.7 89.1 91.3 92.8

std(±) 1.17 0.8 0.8 0.87 0.5 0.52 0.72 1.05 0.90 0.8 0.70

tograms (CH) [6], GLCM [25], GLCM on wavelet images (WGLCM) [26], CWC
[5] and CWC with higher-order statistics (CWC2) [7].

For LBP and LTP features we use a three resolution version of the sampling
patterns as explained in Sect. 4. These features are extracted with an overlap of
Q = 12 pixels. The LTP parameters were learned from a 5-fold cross validation
on the training set. To make a fair comparison we used the same SVM classifier
with an exponential χ2 kernel for this experiment.

The results are reported in Table 2. The proposed xMRLP feature outper-
forms others by a large margin. xMRLP feature takes about 0.3 s to classify an
image compared to 1.1 s and 1.3 s by RP and rSIFT features respectively on an
Intel Core-i7 machine with 8 GB RAM. These times include the time for feature
extraction and encoding with a dictionary of size 1000.

4.4 Comparison with Deep Convolutional Neural Nets

Since CNN was widely applied for bio-medical [27] as well in non-medical [13]
applications, the following experiments were done with CNN to evaluate its
performance on our colonoscopy dataset.

Training using colon dataset: A shallow network (Fig. 6) was trained (from
scratch) using only the images from the colon dataset with data augmentation
(mirrored images). This network gives an MCA of 76.1±0.7%, which is ∼15% less
compared to our approach (92.8%). This is mainly due to the lack of data used
for training. Similar findings were reported in [13] on the Caltech101 dataset1;
CNN trained on this dataset gives an accuracy of 46%, compared to the accuracy
of 84% obtained by the hand-designed features with feature encoding.

Transfer learning: In this experiment we fine-tuned the ImageNet (1.2 Million
images) trained model “AlexNet” [15] using the colon dataset with data augmen-
tation (mirrored images, and randomly cropped image regions of size 227 × 227
from images of size 256 × 256). This fine-tuned net gives a MCA of 92.9 ± 0.6%,
which is similar to the MCA obtained by our approach (92.8%).

Unlike our approach, CNN is designed to capture features at multiple scales.
Therefore, the classification performance of CNN can be expected to be high
compared to our approach. However this ImageNet pretrained CNN shows sim-
ilar performance compared to our approach, as the results on this dataset are
saturated at ∼93%. Although results are similar, our approach does not require

1 http://www.vision.caltech.edu/Image Datasets/Caltech101/.

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Fig. 6. The shallow CNN architecture used for the colonoscopy image classification.

a larger dataset for pre-training or higher computational power such as GPU.
Our approach takes ∼1.5 h to train on a CPU with our unoptimized Matlab code
on an Intel Core-i7 machine with 8 GB RAM compared to ∼20 min fine-tuning
time required by CNN on NVidia Tesla K40 GPU2 with 12 GB RAM.

For the above two experiments we use the following parameters to train
the network: learning rate 10−4, momentum 0.9, weight decay 5 × 10−4. The
maximum number of iterations were set to 10000 and 7000 for the first and
second experiments respectively. The library Caffe [28] was used in all the CNN-
related experiments.

5 Conclusions

We presented a novel discriminative feature learning approach for multi-class
colonoscopy image classification, which jointly learns the parameters of the pro-
posed xMRLP features together with an image-level classifier using training
data with image-level labels. Various comparative experiments on a colonoscopy
dataset with the features proposed in the literature of colonoscopy as well as
computer vision show that our learned features outperform others. The pro-
posed approach is not restricted to colonoscopy images, hence our future work
will explore applications to other medical image domains.
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Abstract. Image enhancement technologies, such as chromoendoscopy
and digital chromoendoscopy were reported to facilitate the detection
and diagnosis of colonic polyps during endoscopic sessions. Here, we
investigate the impact of enhanced imaging technologies on the classifica-
tion accuracy of computer-aided diagnosis systems. Specifically, we deter-
mine if image representations obtained from different imaging modalities
are significantly different and experimentation is performed to figure out
the impact of utilizing differing imaging modalities in the training and
validation sets. Finally, we examine if merging the images of similar
imaging modalities for training the classification model can be effectively
applied to improve the accuracy.

Keywords: Colonic polyps · Endoscopy · Imaging modalities · i-Scan ·
Chromoendoscopy · Automated diagnosis

1 Introduction

Image enhancement technologies, such as chromoendoscopy and digital chro-
moendoscopy (such as narrow band imaging (NBI), Pentax’s i-Scan or Fujinon’s
FICE), have become largely available in daily practice. These technologies apply
different strategies to facilitate detection and histological prediction of colonic
polyps compared to traditional white-light (WL) endoscopy and can be subdi-
vided into conventional chromoendoscopy and digital chromoendoscopy:

1. Conventional chromoendoscopy (CC) came into clinical use 40 years ago.
Staining the mucosa using (indigocarmine) dye spray enables an easier detec-
tion and classification of colonic polyps.
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2. Digital chromoendoscopy is a technique to facilitate “chromoendoscopy with-
out dyes” [18] and can be subdivided in optical (NBI) and virtual chromoen-
doscopy (FICE, iScan):
– Optical chromoendoscopy: In NBI, narrow bandpass filters are placed in

front of a conventional white-light source to enhance the detail of certain
aspects of the surface of the mucosa.

– Virtual chromoendoscopy: The i-Scan (Pentax) image processing tech-
nology [20] is a digital contrast method which consists of combinations
of surface enhancement, contrast enhancement and tone enhancement.
i-Scan 1 performs surface enhancement augmenting pit patterns and sur-
face details, providing assistance to the detection of dysplastic areas. This
mode enhances light-to-dark contrast by obtaining luminance intensity
data for each pixel and adjusting it to accentuate mucosal surfaces. i-
Scan 2 expands on i-Scan 1 and additionally performs tone enhancement.
It assists by intensifying boundaries, margins, surface architecture and
difficult-to-discern polyps. i-Scan 3 is similar to i-Scan 2 with increased
illumination and emphasis on the visualization of vascular features. This
mode focuses on accentuating the vascular architecture.

The FICE system (Fujinon) decomposes images by wavelength and then
directly reconstructs images with enhanced mucosal surface contrast.

Both systems (i-Scan and FICE) apply post-processing to the reflected
light.

In this work, we are primarily interested in traditional WL endoscopy, the
i-Scan technology and chromoendoscopy, as imaging modalities (all using high
definition (HD) endoscopes). Clinical studies about the effectiveness of these
image enhancement technologies for the detection and classification of colonic
polyps came to the following conclusions: In [16], it was shown that in case of
HD endoscopes, chromoendoscopy and i-Scan are better suited for the detection
and prediction of neoplastic lesions than traditional WL endoscopy. In [1], the
prediction rates for small colonic polyps were compared using HD endoscopy,
once again using either WL endoscopy, chromoendoscopy or the i-Scan technol-
ogy. In this study, no significant differences were found between the results of
the three imaging technologies. In [2], NBI, i-Scan and WL endoscopy were used
for the histological prediction of diminutive colonic polyps, once again using HD
endoscopes. In this study, NBI and i-Scan showed distinctly higher results than
WL endoscopy. Outcomes with NBI and i-Scan were similar. All of these three
studies reported higher results in case of the i-Scan technology compared to
traditional WL endoscopy, although in one of the studies no significant differ-
ence was found. Based on these studies, the i-Scan technology can be considered
as equivalent to NBI and chromoendoscopy when HD endoscopes are used. In
[2,27], HD endoscopy combined with i-Scan was compared with standard (low
definition) WL endoscopy. It was found that HD endoscopy in combination with
i-Scan achieves significantly higher detection rates compared to standard WL
endoscopy.
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Previous works on the computer assisted diagnosis of colonic polyps based
on highly detailed images can be divided in three categories, depending on the
used endoscopes and imaging modalities:

1. High definition endoscopy combined with the i-Scan technology and with or
without staining the mucosa [8,11]

2. High-magnification endoscopy combined with NBI [7,26]
3. High-magnification chromoendoscopy [10,13].

1.1 Contribution

In this work, we compare the prediction rates utilizing traditional WL endoscopy,
chromoendoscopy, i-Scan and combinations of these imaging modalities. In con-
trast to previous works about the impact of different imaging modalities, auto-
mated diagnosis systems are deployed for the classification of the polyps instead
of a manual classification performed by endoscopists. The authors of previous
work on classifying colonic polyps based on HD-endoscopy in combination with
WL endoscopy, chromoendoscopy and i-Scan came to the conclusion that chro-
moendoscopy complicates the differentiation of colonic polyps whereas i-Scan
rather facilitates the differentiation of polyps [8,11]. Compared to these pre-
vious literature, our study is based on a distinctly larger number of different
feature extraction methods, where each of these methods has already proven to
be suited for the classification of colonic polyps in literature.

This study should answer three questions:

– Q1: Do the image representations differ between different modalities? This is
first theoretically answered by applying a statistical test and then practical
implications are considered by performing classifier training and evaluation
based on different modalities.

– Q2: Should samples (from similar modalities) be collected for classifier training
to obtain a larger training corpus exhibiting larger variability? Whereas Q1 is
mainly of theoretical interest, Q2 should provide practically relevant outcomes.

– Q3: Which imaging modalities are best suited for the automated classification
of colonic polyps.

2 Colonic Polyps Classification

Colonic polyps constitute a frequent finding and are known to either develop
into cancer or to be precursors of colon cancer. Hence, an early assessment of
the malignant potential of such polyps is important as this can lower the mor-
tality rate drastically. As a consequence, a regular colon examination is recom-
mended, especially for people at an age of 50 years and above. The current gold
standard for the examination of the colon is colonoscopy. Modern endoscopic
devices are able to take digital pictures or videos from inside the colon, allow-
ing for a computer-assisted analysis with the goal of detecting and diagnosing
abnormalities.
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Colonic polyps are categorized into hyperplastic, adenomatous and malig-
nant polyps. To determine a diagnosis based on the visual appearance of colonic
polyps, the pit pattern classification scheme was proposed [22]. A pit is an open-
ing of a colorectal crypt and the shape of a pit is denoted as pit pattern. The
pit pattern classification scheme differentiates between six types. Type I (nor-
mal mucosa) and II (hyperplastic polyps) are characteristics of non-neoplastic
lesions, type III-S, III-L and IV are typical for adenomatous polyps and type
V is strongly suggestive to malignant cancer. Schemes and exemplar (zoom-
endoscopic) images of the pit pattern types are presented in Fig. 1.

Fig. 1. The six pit pattern types along with exemplar images and their assigned classes
in case of a two class (non-neoplastic vs neoplastic) and three class (non-neoplastic vs
non-invasive vs invasive) differentiation

This classification scheme allows to differentiate between normal mucosa and
hyperplastic lesions, adenomas (a pre-malignant condition), and malignant can-
cer based on the visual pattern of the mucosal surface. The removal of hyperplas-
tic polyps is unnecessary and the removal of malignant polyps may be hazardous.
Thus, the three-class scheme is useful to decide which lesions need not, which
should, and which most likely must not be removed endoscopically. For these
reasons, assessing the malignant potential of lesions at the time of colonoscopy
is important, as this would allow to perform targeted biopsy. Apart from the
three-classes case, the two-class classification scheme differentiating between
non-neoplastic (pit pattern I and II) and neoplastic lesions (pit pattern III-V)
is quite relevant in clinical practice [17]. Since the number of images showing
malignant cancer is limited, we are only able to consider the two-classes case
and have to omit the three-classes case.

The highly detailed images utilized in this work are gathered with high def-
inition (HD) endoscopes based on traditional WL endoscopy, the i-Scan tech-
nology, chromoendoscopy as well as combinations of these image enhancement
technologies.
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(a) WL endoscopy (b) i-Scan 1 (c) i-Scan 2 (d) i-Scan 3

(e) C (f) C+i-Scan1 (g) C+i-Scan2 (h) C+i-Scan3

Fig. 2. Images of a polyp using i-Scan and/or conventional chromoendoscopy (C)

In Fig. 2 images of an adenomatous polyp are shown, captured with eight
different combinations of imaging modalities. Figure 2(a) shows the polyp using
traditional WL endoscopy, (b,c,d) in combination with different i-Scan modes,
(e) with chromoendoscopy and (f,g,h) with combinations of chromoendoscopy
and the i-Scan technology.

3 Feature Extraction Methods

In this section we briefly describe the ten feature extraction methods utilized
to differentiate between non-neoplastic and neoplastic lesions. All ten methods
have proven to be well suited for the diagnosis of colonic polyps in literature.

3.1 CNN [25]

For this method, a convolutional neural network (CNN) pre-trained on the Ima-
geNet ILSVRC challenge data (http://www.image-net.org/challenges/LSVRC/
is used as a fixed feature extractor. As CNN we deploy the VGG-f net from [3].
The images are fed through the CNN and the outputs of the first fully connected
layer are extracted as feature.

3.2 Delaunay [10]

The first step of this method is to detect pits in the image using a local binary
patterns operator. Based on the detected pit candidates, a Delaunay triangu-
larization is computed and the edge length of the resulting triangles is utilized
for classification of the colonic polyps. This method was especially developed for
the classification of polyps based on zoom-endoscopic imagery.

http://www.image-net.org/challenges/LSVRC/
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3.3 BlobShape [8]

A segmentation similar to the watershed transformation is deployed to segment
the image in connected regions (blobs), which model the pits and peaks of the pit
pattern structure. Three shape features and one contrast feature are extracted
from the detected blobs and histograms are computed based on these features.
This method was developed for the classification of polyps using HD endoscopy
combined with the i-Scan technology and/or chromoendoscopy.

3.4 BALFD [12]

The blob-adapted local fractal dimension (BA-LFD) is derived from the local
fractal dimension (LFD) [28], a feature analysing changes in the intensity dis-
tribution in expanding circle shaped regions. In the BA-LFD approach, these
regions are elliptic and the shape and size of the regions is adapted to the local
texture structure. The feature vector of an image consists of the histograms of
the BA-LFD’s. Like the previously described method, this method was developed
for the classification of polyps using HD endoscopy combined with the i-Scan
technology and/or chromoendoscopy.

3.5 BSAGLFD [14]

The blob shape adapted gradient LFD (BSAGLFD) approach combines the
BALFD and the BlobShape approach and turned out to achieve distinctly higher
classification rates for the classification of colonic polyps than its two compo-
nents. The BALFD and the BlobShape approach are applied to the original
image as well as to the gradient magnitude image and the concatenation of
the resulting features (using different weight factors for the BA-LFD and the
BlobShape features) gives the feature vector of the BSAGLFD approach.

3.6 DT-CWT-Weibull [23]

The dual-tree complex wavelet transform (DT-CWT [19]) is a multi-scale and
multi-orientation wavelet transform. The DT-CWT is applied using four decom-
position levels. The feature extraction step is based on fitting a two-parameter
Weibull distribution to the coefficient magnitudes of the DT-CWT sub-bands.
The concatenation of the extracted Weibull features from all subbands gives the
final feature vector of an image. Extracting Weibull features from DT-CWT,
Gabor wavelet transform or shearlet transform subbands turned out to be highly
suited for the classification of colonic polyps in [29].

3.7 GWT-Weibull [29]

The Gabor wavelet transform [24] is a multi-scale and multi-orientation wavelet
transform. As for the DT-CWT, four decomposition levels are used and the
subbands are fitted using the two-parameter Weibull distribution.
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3.8 Shearlet-Weibull [29]

The shearlet transform [4] is based on the wavelet theory, but it offers more
directional selectivity than wavelet transforms and a higher flexibility. The
shearlet transform is applied using four decomposition levels with eight direc-
tions per decomposition level resulting in 32 subbands. Like for the two wavelet
approaches, the final feature vector consists of the Weibull parameters extracted
from the subbands.

3.9 LCVP [9]

Multi-scale local color vector patterns (LCVP) is based on local binary patterns
(LBP). Whereas the LBP operator is applied to each color channel separately,
LCVP constructs a color vector field from an image. Based on this field, the
LCVP operator computes the similarity between neighboring pixels. The result-
ing image descriptor is a compact 1D-histogram. This method was especially
developed for the classification of polyps using zoom-endoscopic imagery using
chromoendoscopy.

3.10 VesselFeature [7]

In this approach, the blood vessel structure on polyps is segmented by means
of the phase symmetry [21]. Eight features are computed describing the shape,
the size, the contrast and the underlying color of the segmented vessels. This
method is especially designed to analyze the vessel structures of polyps in NBI
images and is potentially not suited for imaging modalities that are not designed
to highlight the blood vessel structure.

4 Experimental Setup and Results

4.1 Experimental Setup

The eight image databases are acquired by extracting patches of size 256× 256
from frames of HD-endoscopic (Pentax HiLINE HD+ 90i Colonoscope) videos.
Most of the videos contain sequences from each of the eight imaging modalities
(with or without i-Scan and with or without staining) but in some of the videos
only a subset of the eight imaging modalities occur. Table 1 lists the number of
images and patients per class for the eight databases, where each of the eight
image databases is acquired under different imaging modalities. The patches
utilized for our experiments are extracted from regions exhibiting histological
findings.

Classification is performed utilizing leave-one-patient-out (LOPO) cross val-
idation and a linear support vector machine classifier [5]. Compared to leave-
one-out cross validation, the samples of one patient are either all in the training
or all in the evaluation set to avoid any bias [15].
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Table 1. Number of image patches and patients per class with and without staining
the mucosa and with different i-Scan modes respectively with WL endoscopy (¬i-Scan)

i-Scan mode No staining Staining

¬i-Scan i-Scan 1 i-Scan 2 i-Scan 3 ¬i-Scan i-Scan 1 i-Scan 2 i-Scan 3

Non − neoplastic

Number of images 47 33 25 39 66 69 39 39

Number of patients 25 24 18 24 34 38 28 24

Neoplastic

Number of images 86 88 80 80 85 85 74 63

Number of patients 66 66 64 63 66 65 62 55

Total no. of images 133 121 105 119 151 154 113 102

To investigate the similarity between the eight imaging modalities, each of the
eight databases is classified using each of the eight databases for classifier train-
ing (always following the LOPO protocol). Thereby, for each feature extraction
technique, 64 combinations (8 × 8) for training and evaluation are investigated
and reported.

The motivation of this approach is to find out which imaging modalities are
similar with respect to the outputs of the feature extraction methods and thereby
can be potentially effectively combined.

Additionally we want to find out if it is better to use only those images for
training that are from the same imaging modality as the considered evaluation
image (to avoid differences between the training and validation samples) or if it
is better to additionally utilize training images from other imaging modalities
too, to increase the number of training samples.

To answer which groups of imaging modalities should be utilized for training,
we additionally conduct three experiments using:

1. the images of the four databases without stained mucosa as training samples,
2. the images of the four databases with stained mucosa as training samples,
3. the images of all eight databases as training samples.

Again, LOPO is applied for these experiments and each of the eight image data-
bases is classified using these three different training sets. To avoid any bias due
to unbalanced evaluation data sets (especially the unequal number of images per
class), we report the balanced classification accuracies only, equally weighting
the sensitivity and the specificity.

To assess whether the distributions of the extracted features from the 10 fea-
ture extraction methods show statistically significant differences under different
modalities (Q1), we conduct a series of two-sample hypothesis tests. In partic-
ular, we test for equality in feature distribution (i.e., the null-hypothesis). This
is realized with the kernel-based two-sample test of Gretton et al. [6], using a
standard RBF kernel (bandwidth parameter set to the median Euclidean dis-
tance between all samples) and 5000 permutations. For each pair of modalities,
we tested all feature distributions and eventually computed the median over the
resulting p-values of the 10 methods.
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Fig. 3. Experimental Results: Classifiation was performed for all combinations of
modalities (WL, I1, I2, I3, C, C1, C2, C3) for training and evaluation, where I1, I2,
I3 denote the three i-Scan modes, C denotes chromoendoscopy and C1, C2, C3 denote
chromoendoscopy in combination with the three i-Scan modes. Training was addition-
ally conducted with all non-chromoscopic data (NC), all chromoscopic data (AC) and
all eight data sets (A)
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Fig. 4. Boxplot showing the distribution (median, quantiles, outliers) of accuracies
above all image representations and training with: the same modality (red), the
same modality-group (non-chromoscopy or chromoscopy, green), the different modality-
group (blue) and all available data (yellow) (Color figure online)

4.2 Results and Discussion

The two-sample hypothesis tests showed that only the combinations (C+i-Scan2,
C+i-Scan3) as well as (i-Scan2, C+i-Scan1) and (i-Scan2,C+i-Scan 2) showed
no statistically significant difference at the 0.05 significance level. So the dis-
tributions of the extracted features are in general significantly different under
different modalities.

In Fig. 3 we present the classification accuracies of the ten image repre-
sentations. Each database was classified based on classifier training with each
of the eight different databases, as well as on a collection containing all non-
chromoendoscopic (NC), all chromoendoscopic (AC) and all (A) available data
sets.

Considering the different image representations, we notice that the best
performances on average were obtained with the wavelet based descriptors
(DTCWT-Weibull, GWT-Weibull and Shearlet-Weibull). These methods exhib-
ited a high discriminative power not only if training and evaluation is executed
on the same modality (diagonal lines in Fig. 3), but also in the model transfer
scenarios (different training and evaluation modalities). The accuracies obtained
in the ideal scenario (diagonal lines) are partly even slightly outperformed which
is supposed to be due to random effects in combination with the relatively small
data sets. Other descriptors, such as BALFD, BSAGLFD, BlobShape and CNN,
exhibited high classification rates in the ideal case (training and evaluation on
the same data set) whereas rates mostly dropped distinctly for differing training
and evaluation modalities. The VesselFeature method generally produced good
outcomes only in combination with specific modalities. The performance of the
Delaunay method was generally weak. In summary, regarding the performances
of the ten image representations, we notice completely different behaviors with
respect to varying classification scenarios.
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Increasing the number of training samples by collecting additional data from
other imaging modalities was partly effective. Especially WL endoscopy, i-Scan1
and i-Scan2 profited on average if all non-chromoscopic data was utilized for
classifier training. The average accuracies (Fig. 3 (k)) improved from 78.3% to
80.2% (WL), from 74.2% to 78.8% (i-Scan1) and from 77.6% to 81.0% (i-Scan2),
respectively. Interestingly, using the images of all imaging modalities as training
samples did not further improve the averaged classification rates (except for i-
Scan1). Considering the results of the chromoscopic evaluation sets, adding train-
ing samples of other chromoscopic image databases in general slightly decreases
the averaged classification rates. Additionally adding non-chromoscopic image
databases furtherly decreases the averaged classification rates. In general, the
averaged classification rates are clearly higher for the evaluation sets without
chromoendoscopy.

So additionally utilizing training samples of databases captured with the
same chromoscopy mode (as the evaluation database) improves in four of eight
cases the averaged classification rates. The results of utilizing training samples of
all eight databases are in six of eight cases worse than these using only training
samples of the same chromoscopy mode. Hence it can be assumed that especially
the domain change between non-chromoscopy and chromoscopy image data is
too pronounced to improve classification accuracy. The positive effect of more
(diverse) training data is obviously vanished due to a distinctly changed feature
distribution.

This behavior can be easier observed in Fig. 4, where the averaged accura-
cies over all image representations applying different training configurations are
presented. Whereas training with the same group (non-chromoscopy or chro-
moscopy) led to improvements compared to training with the same imaging
modality, the utilization of all data did not improve the outcome further. Train-
ing with the other group was always disadvantageous.

Based on these experiments, a clear statement on the overall best imaging
modality cannot be made due to variably large training data sets. However, due
to a consistent trend, we conclude that the highest distinctiveness is obtained
without chromoendoscopy.

5 Conclusion

Our Experiments showed that feature distributions between different modalities
are generally significantly different. For varying training and evaluation modal-
ities, the obtained loss of accuracy strongly depended on the deployed feature
extraction method. Especially wavelet-based image representations proved to be
highly robust whereas others were less stable. For the wavelet-based methods,
a combination of similar data for training (chromoscopy or non-chromoscopy
samples) led to improved classification outcomes compared to using only train-
ing samples obtained with the same imaging modality. Considering the averaged
accuracies over all methods, utilizing training samples of the same chromoscopic
mode generally improves the results. The utilization of all available training
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data, did not perform equally well, which is supposed to be due to too distinct
changes in image characteristics.
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9. Häfner, M., Liedlgruber, M., Uhl, A., Vécsei, A., Wrba, F.: Color treatment in
endoscopic image classification using multi-scale local color vector patterns. Med.
Image Anal. 16(1), 75–86 (2012)
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Abstract. We aim to track the endoscope location inside the surgical
scene and provide 3D reconstruction, in real-time, from the sole input
of the image sequence captured by the monocular endoscope. This infor-
mation offers new possibilities for developing surgical navigation and
augmented reality applications. The main benefit of this approach is
the lack of extra tracking elements which can disturb the surgeon per-
formance in the clinical routine. It is our first contribution to exploit
ORBSLAM, one of the best performing monocular SLAM algorithms, to
estimate both of the endoscope location, and 3D structure of the surgi-
cal scene. However, the reconstructed 3D map poorly describe textureless
soft organ surfaces such as liver. It is our second contribution to extend
ORBSLAM to be able to reconstruct a semi-dense map of soft organs.
Experimental results on in-vivo pigs, shows a robust endoscope track-
ing even with organs deformations and partial instrument occlusions. It
also shows the reconstruction density, and accuracy against ground truth
surface obtained from CT.

Keywords: Endoscope tracking and navigation · Visual SLAM ·
Augmented reality

1 Introduction

Minimally Invasive Surgery (MIS) practice has several drawbacks for the sur-
geon, such as, lack of depth perception, or poor localization within operating
field due to the limited field of view. The intra-operative 3D reconstruction of
surgical scene simultaneous to tracking endoscope position in real-time provides
key information for many MIS tasks. These tasks include surgical navigation
(in case of flexible endoscope), and Augmented Reality (AR) overlies of pre-
operative medical data in the endoscope live video stream.
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Recently, computer vision based algorithms have attracted the attention, for
their success in providing intra-operative reconstruction of the surgical scene, and
the tracking of the stereo-endoscope position [1,2]. However, these methods are
not adapted to the commonly used monocular endoscope. Structure from motion
(SfM) methods have been proposed to deal with monocular endoscope [3,4].
However, SFM methods requires offline batch processing, what makes them not
suitable for real-time applications. Therefore, in [4] a tracking sensor is attached
to the endoscope to estimate its position.

VSLAM (Simultaneous Location And Mapping from Visual sensor) is a popu-
lar topic in robotics, which aims at simultaneously building a 3D map of unknown
environment while keep track of camera location. VSLAM use in MIS has been
researched by Mountney et al. [5], who applied and extended the Extended
Kalman Filter SLAM (EKF-SLAM) framework from Davison [6] to MIS envi-
ronment, but with stereo-endoscope. For periodic liver deformation, Mountney
and Yang [7] proposed to learn the parameters of the periodic motion first, and
then use it to improve the VSLAM estimation.

In [8], Klein and Murray proposed the Parallel Tracking and Mapping (PTAM)
algorithm that represented a breakthrough in visual SLAM. Lin et al. [2] adapted
PTAM to a stereo-endoscope in order to reconstruct a denser 3D map than those
made by EKF-SLAM systems. Due to non-rigid deformation in surgical scenes,
the use of only a monocular endoscope has proven challenging. Grasa et al. [9] pro-
vided experimental evidence of the feasibility of monocular EKF SLAM in med-
ical scenes. In [10], they provided extensive validation on in-vivo human sequences
proofing its ability to be used for hernia defect measurements in hernia repair
surgery.

Following the venue open by PTAM, the ORBSLAM system [11] has been
proposed recently, it has proven as a robust camera tracking and mapping esti-
mator with remarkable camera relocation capabilities. Our first contribution
is researching ORBSLAM performance within MIS environments. By only re-
tuning the system, the endoscope location was robustly tracked and relocated
successfully after tracking loss. However, it is at the expense of a low map density,
mainly due to the lack of repeatability of the ORB features in some body struc-
tures such as the liver. It is also our contribution a new matching algorithm to
densify the map and hence improve the estimated 3D map. In the experimental,
section we provide qualitative evaluation of the performance in several in-vivo
pig sequences, including respiration, and tools cluttering the endoscope field of
view. We also provide a quantitative assessment that yields an accuracy in the
range between 3 mm to 4.5 mm when the VSLAM map points are compared with
respect to a ground truth surface from CT. Additionally, the tracked endoscope
location has been exploited to provide support for augmented reality overlays of
preoperative models onto the endoscope live video stream.

2 ORBSLAM Overview

ORBSLAM is based on keyframes and nonlinear optimization as proposed in
PTAM. It includes the covisibility information in the form of a graph as proposed
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in [12], in addition to bag of binary words DBoW2 proposed in [13] for place
recognition. For large scale mapping, scale aware loop closing [14] is used. The
system uses ORB [15] for feature detection and description in all processes,
what boots the performance in the place recognition and loop closure operations.
A complete description of the algorithm can be found in [11]. For the sake of
completeness, we summarize next the more relevant steps: tracking, mapping
and relocation.

Tracking. This task tracks the endoscope location sequentially in every frame of
the live video. The 3D locations of the map points are assumed to be available,
each of them with a valid ORB binary descriptor. At the current frame, an initial
guess for the endoscope position is estimated from the previous frame by means
of a motion model, then the map points are reprojected to estimate its image
in the current frame. The ORB descriptor of each map point is compared with
those of all the features detected inside a search region surrounding the predicted
point. The feature point in the image with the smallest Hamming distance is
selected as the match, only if it is over a threshold. Then the pose of the frame
is refined by Huber robustified non-linear optimization of the reprojection error
for the matched points. After the optimization stage, the matches are segmented
as inliers or outliers according to the Huber threshold. Map points rendering
outlier matches consistently during initialization are considered non reliable and
do not survive in the initialization process.

Mapping. To build the 3D map of the scene, the system selects a set of frames
from the endoscope sequence. This selected frames are called keyframes. Bene-
fiting from the matches provided by the tracking process, the system estimates
matches across the keyframes. Once the matches are available, the 3D location
for the map points and the 3D poses for the keyframes are computed by bundle
adjustment (BA). The algorithm sequentially computes the matches and iter-
atively improves the map accuracy, in a thread that runs in parallel with the
tracking thread, but at lower frequency. The BA minimizes total Huber robus-
tified reprojection error with respect to the keyframe positions, XWCi

, and the
3D map point locations, XWj :

arg min
XWj ,XWCi

∑

i,j

ρ (||uij − CamProj(XWj ,XWCi
)||) (1)

where uij is the matched observation of the j -th map point by the i -th keyframe.
CamProj codes the projection function including perspective and radial distor-
tion. ρ denotes the robust Huber influence function. As the endoscope explores
new areas of the scene not imaged previously, new keyframes are added to the
map. After adding a new keyframe, new matches with respect to the previous
keyframes are found to initialize new map points.

Initially, map points and keyframes are initialized in excess, then in a second
stage a demanding rigorous is applied to select the fittest to survive. The reasons
for culling a map point are: (1) The point cannot be tracked and matched in
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the following frames. (2) The projection rays used to triangulate the point in 3D
render low parallax. (3) The triangulated point produces excessive reprojection
error over the keyframes where it is observed. This severe selection of points have
proven essential for robust performance in endoscope sequences. The keyframes
whose 90% of the map points have been detected in at least other three keyframes
are removed from the map, in order to keep just the more informative ones.

Map points are initialized by detecting ORB features at different image scales
to achieve both scale and rotation invariance. One of the strong points of the
algorithm is that ORB features are used both for mapping, and for the place
recognition. Place recognition combines a Bag of Words built from the ORB
binary descriptors, with the covisibility graph that determines all the keyframes
that are observing the same 3D scene region.

Endoscope relocation. Tacking can be lost because of occlusion, feature deletion
due to fast endoscope motion, or failure to match enough map points. Therefore,
the endoscope has to be located with respect to the map from scratch. Relocation
is also known as the kidnapped camera situation. All the keyframes of the map
are stored in a Bag of Binary Words indexed database to recover the more similar
keyframes in response to a query image. More crucially, thanks to the covisibility
graph, the set of keyframes observing the same area of the map can be also recov-
ered. After tracking loss, the ORB detected in the image gathered by the endoscope
are used to query the database to detect the set of keyframes that are observing
the same scene area as the endoscope image. Additionally, the system also pro-
vides a set of putative ORB matches between the image and a set of 3D points
in the map. Then endoscope position is estimated by P3P and RANSAC. Once a
valid endoscope pose is estimated, the tracking can be resumed.

3 Extending the Map Density

The mapping thread is responsible for creation/deletion of map points, and map
refinement through BA. After new keyframe arrival, all of its ORB features are
matched against closest keyframes, and all matched ORB points are triangulated
and appended to the map. However, map points cannot be initialized on soft
organs like liver, because they can not be repetitively detected along several
frames in the sequence. We extended this initialization process to a second stage.
Firstly, all matched ORB points are triangulated. Secondly, a cross-correlation
guided by epipolar geometry is used to find matches for all unmatched ORB
points in the newly added keyframe, according to Algorithm 1.

Figure 1 shows the map obtained by Algorithm 1. The original map created
by ORBSLAM and its reprojection onto one liver image are shown in Fig. 1(a).
Blue rectangles in Fig. 1(b,d,e) are keyframes describing endoscope trajectory,
camera position in current image is displayed in green. Red points are ORB map
points. A semi-dense map is obtained by reconstructing points in a sparse regions
in the image and represented as green points in Fig. 1(d,e). More points will
be reconstructed when exploring new regions. In subsequent frames, the newly
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reconstructed points (by Algorithm 1) are tracked, firstly, by Lucas-Kanade opti-
cal flow. Secondly, for all untracked points a cross-correlation search guided by
epipolar geometry is performed using patch around the point extracted in the
keyframe used for its 3D triangulation in Algorithm 1.

foreach Newly added KF (KFC) do
Get 4 neighbors KFs with significant baseline
foreach Neighbor KF (KFN ) do

foreach unmatched ORB feature (Pc) in KFC do
- Extract a rectangular correlation patch
- Patch crosscorrelation around epipolar segment in KFN

- Threshold on maximal distance to epipolar line
- Triangulate map point from matched two observations
- Remove points with negative depth relative to KFC and KFN

- Threshold on maximal reprojection error onto KFC and KFN

- Remove point if depth different from median depth in KFC

end
end

end
Algorithm 1. Cross-correlation search for 3D point triangulation

(a) (b)

(c) (d) (e)

Fig. 1. Algorithm 1 semi-dense map. (a) Reprojection of the ORB points (yellow). (b)
ORBSLAM 3D map. (c) Reprojection of Algorithm 1 map points. (d, e) Algorithm 1
map (green) and ORBSLAM map (red), from two different points of view (Color figure
online)

4 Experimental Results

The performance was evaluated with several in-vivo pig laparoscopy sequences.
The endoscope camera was calibrated following [16]. Next we detail the different
experiments. More details can be appreciated in our video [17]
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4.1 ORBSLAM Performance Evaluation

We re-tune the ORBSLAM to overcame the key factors limiting its performance
when processing endoscope sequences, we report modifications relative to the
ORBSLAM standard rigid case:

Search region in tracking. For tracking, map points are reprojected in the
image, and each one of them defines a search region in which a match with
an image keypoint is attempted. We have increased the size of the search
region in a factor 1.5 (0.5 pixel), not to loose some matches due to potential
deformation.

Parallax threshold at point initialization. When a map point is created,
it is enforced to have at least a threshold parallax to ensure that its location
in 3D is accurate. Minimum parallax is increased in a factor of 5, it becomes
1.4035◦, to increase the accuracy in the triangulated points.

Reprojection error threshold. A maximum threshold is allowed in the dis-
tance between the reprojected map point and the image keypoints used for
its triangulation. We reduced this threshold in a factor 10, it becomes 0.5991,
to ensure that only rigid scene points are included eventually in the map.

Hamming distance threshold. We reduce the allowed Hamming distance
between descriptors of matched image points. We decreased it by a factor
0.9, it becomes 45 bit, to enforce more similarity in the accepted matches.

We have found that the endoscope tracking qualitatively quite robust and
accurate. However, there are many areas of the scene where the system is unable
to track map points, being able to match only 24% of the map points visible
in the image. The main reason for this failure in matching, around 50% of the
potential matches, is that ORB detector is not able to detect repeatable points
on soft organs, such as liver. Also, BA in mapping process considers 11% of the
map points as non-rigid, this percentage raises up to 25% in areas with visually
high non-rigid component. Despite the low number of matched map points, the
system was able to compute an sparse map. Figure 2(d) shows the reconstructed
map which consisted of 66 keyframes and 1566 map points. In this part of the
sequence the endoscope was fixed relative to the operating table, Fig. 2(e) and (f)
show the ability to estimate the breathing motion, because of the pig breathing
there was a forward-backward motion of the diaphragm able to be seen in the
camera trajectory.

Additionally, the system was able to accurately relocate the endoscope loca-
tion after tracking loss. In Fig. 3, after the exploration phase of the abdominal
cavity, the endoscope was extracted outside the cavity while looking at the liver,
and it is later reinserted imaging the spleen. Since, several spleen points had
been mapped before, the system was able to relocate the endoscope location
within 3 s.

Finally, the system has also been tested with challenging gastroscopy
sequences which contains reflection and abrupt movements. It was able to track
the endoscope location and reconstruct 3D map of the scene (cf. Fig. 4). The
average tracking time per frame was approximately 25 ms on desktop PC with
Intel(R) Core d −3337U CPU @ 1.80 GHz with 6 GB RAM.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. ORBSLAM performance. (a–c) images with reprojected map points(green
points). (d) Reconstructed map points (red) and keyframes (endoscope tip trajectory).
(e–f) Breathing motion, current endoscope location is shown as a green rectangle. (e)
and (f) during inhale and exhale, respectively. (Color figure online)

(a) (b) (c)

(d) (e) (f)

Fig. 3. Relocation ability. (a) Consecutive stages from left to right: successful track-
ing while observing the liver, tracking loss when endoscope was extracted, endoscope
inserted again imaging the spleen, relocation. (b,c) The arrows refer to the endoscope
locations before tracking lost, and after relocation

4.2 Estimation of Reconstruction Error

To evaluate the error associated with the reconstructed point cloud of the scene,
two pigs were used inside computed tomography (CT) room to obtain in-vivo
sequences with CT ground truth surface. A monocular endoscope explores the
abdominal cavity before any interaction with the liver. Then a CT scan was
performed while the endoscope was fixed by means of an articulated arm as
shown in Fig. 5. In all CT acquisitions, the tip of the endoscope was included in
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(a) (b)

Fig. 4. Gastroscopy sequence. (a) Esophagus with tracked points. (b) Reconstructed
map (red and black points), keyframes (blue rectangles) and current endoscope location
(green rectangle). (Color figure online)

the CT, to be segmented and extracted from the CT images. The length of the
recorded sequences ranged between 2 to 10 min.

(a) (b)

Fig. 5. Data acquisition. (a) Video recording. (b) CT acquisition while endoscope was
fixed and its tip inside the abdominal cavity

The abdominal surface was segmented from CT images and considered as
ground truth. In order to compare with the VSLAM map, firstly, the endoscope
was segmented from CT images and its position w.r.t the surface was computed
using [18]. Endoscope position estimated by ORBSLAM and by [18] were aligned,
however VLSAM cannot recover the scene scale (λ), and [18] cannot recover the
endoscope roll angle (θ) so additional scale and rotational alignment was needed
before comparing the two scene maps. The alignment is not a critical process,
brute-force search to find both the scale and the roll angle that minimize the
distance between the VSLAM map and the CT surface was used.

The distance is defined as the euclidean distance between each point in the
VSLAM map its closest one on the CT surface. The closest point on the surface
is the one with smallest perpendicular distance. So the cost function for the
Brute-force optimization is:

arg min
λ,R(θ)

√
√
√
√ 1

N

N∑

i=1

||Pi − λ · R(θ) · Qi||2 (2)
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(a) (b) (c)

Fig. 6. Alignment of point cloud with ground truth surface. (a) Reconstructed ORB
points. (b) and (c) alignment of ORB points and points obtained by Algorithm 1 from
different directions. Red line is the estimated endoscope position by [18].

where Pi are CT surface points closest point and Qi are the N VSLAM map
points. λ and R(θ) are the scale factor and rotation matrix calculated from
the roll angle, respectively. Only 80% of the points are considered in RMSE
computation. The remaining 20% are either outliers or points reconstructed on
the diaphragm wall which was outside the CT field of acquisition. The obtained
RMSE of considering only reconstructed ORB points was approximately 3 mm
(cf. Fig. 6(a)). The RMSE of the semi-dense map obtained by Algorithm 1 was
approximately 4.1 mm (cf. Fig. 6(b–c)).

4.3 Evaluation with Instrument Occlusion and Deformations

Several pig liver sequences are used, which contains instruments interacting with
the liver, what generates deformations and occlusions. Figure 7(b–d) shows the
endoscope tracking on one liver sequence, where red points are reconstructed
ORB points and green points are reconstructed by Algorithm 1. The estimated
endoscope position in the current frame is represented in green rectangle, while
the blue rectangles represent the trajectory described as past keyframe positions.
Yellow and blue points in Fig. 7(a) are the reprojection of ORB points and
points reconstructed by Algorithm 1, respectively. We use the same colors for
all subsequent figures. As it can be noticed, more points were reconstructed
particularly on the liver (Fig. 7(e)). The number of the recovered 3D map points
were about 4599 with 58 keyframes.

(a) (b) (c) (d)

Fig. 7. Endoscope tracking and reconstructed 3D map from exploration phase. (a-c)
Reconstructed points and keyframe positions from different directions. (e) Reconstructed
points colored using the same RGB color of the 2D features (Color figure online)
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Figure 8 shows results on different sequences including different deformations
and partial scene occlusion due to an instrument. Figure 8(c) shows, from a top
view, the endoscope position w.r.t the reconstructed 3D map. The reconstructed
3D map, keyframes and current endoscope position for Fig. 8(d) are displayed
in Fig. 8(e,f). For first row sequence, the size of the reconstructed map were
6750 points, 3263 points for second row sequence and 3740 points for third row
sequence.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Endoscope tracking and reconstructed 3D map during different deformations

It is worth noting that the liver of the second pig (cf. Fig. 8 second and third
rows) was totally texture-less and it was hardly to detect features on its surface,
but the system was able to reconstruct many points on liver. The endoscope
location was successfully tracked during the interaction with liver in all sequences
(cf. Fig. 8(b,d,g)). In case of tracking failure due to feature deletion during fast
endoscope movements the system was able to relocate the endoscope location
once the endoscope had moved and few ORB features were detected. Algorithm
1 is allocated in the tracking thread, increasing its computation time as shown
in Table 1, which reports the average additional time due to the reconstruction
and matching of all points.

The estimated endoscope location was used to superimpose AR onto one
video sequence. The AR insertion was the liver pre-operative surface segmented
from CT images in addition to hepatic veins. The pre-operative liver surface and
hepatic veins were manually registered in first few frames, and then successfully
tracked through out the whole video. Few frames are randomly picked to show
the augmented results in Fig. 9.
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Table 1. Average time (in ms) of different tasks

Mapping Tracking

New points
triangulation

ORB triangulation ORB matching L-K opt. flow
& cross corr

Tracking time

25.3 379.2 13.3 66.2 105.2

(a) (b) (c) (d)

Fig. 9. Pre-operative data AR overlays. (a–b) liver pre-operative surface segmented
and reconstructed from CT images. [c–d] superimposition of liver hepatic veins.

5 Conclusion and Future Work

In this paper, ORBSLAM system has been re-tuned, proving it as a robust
method for monocular endoscope tracking and 3D scene reconstruction from
the only input of image stream gathered by the endoscope. Additionally, it is
extended to reconstruct a semi-dense map of the scene. The scene map accuracy
has been evaluated against CT ground truth surface and achieving 3–4.1 mm
RMSE. The system has also been tested in several in-vivo sequences where dis-
played a robust performance, even during partial occlusions and severe deforma-
tions. In future work, the obtained semi-dense map and the tracked 2D points in
the image will be used to estimate the non-rigid organ deformations using shape
from template techniques.
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Abstract. Real-time tool segmentation is an essential component in
computer-assisted surgical systems. We propose a novel real-time auto-
matic method based on Fully Convolutional Networks (FCN) and optical
flow tracking. Our method exploits the ability of deep neural networks to
produce accurate segmentations of highly deformable parts along with
the high speed of optical flow. Furthermore, the pre-trained FCN can
be fine-tuned on a small amount of medical images without the need
to hand-craft features. We validated our method using existing and new
benchmark datasets, covering both ex vivo and in vivo real clinical cases
where different surgical instruments are employed. Two versions of the
method are presented, non-real-time and real-time. The former, using
only deep learning, achieves a balanced accuracy of 89.6% on a real clin-
ical dataset, outperforming the (non-real-time) state of the art by 3.8%
points. The latter, a combination of deep learning with optical flow track-
ing, yields an average balanced accuracy of 78.2% across all the validated
datasets.

1 Introduction

Tool detection, segmentation and tracking is a core technology that has many
potential applications. It may for example be used to increase the context-
awareness of surgeons in the operating room [1]. In the context of delicate surgical
interventions, such as fetal [2] and ophthalmic surgery [3], providing the clinical
operator with accurate real-time information about the surgical tools could be
highly valuable and help to avoid human errors. Identifying tools is also part
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of other computational pipelines such as mosaicking, visual servoing and skills
assessment. Image mosaicking can provide reconstructions larger than the image
provided by the usual endoscopic view. The mosaic is normally generated by
stitching endoscopic images as the endoscope moves across the operating site [4].
However, surgical tools present in the images occlude the surgical scene being
reconstructed. Real-time instrument detection and tracking facilitates the local-
isation of the instruments and the further separation from the underlying tissue,
so that the final mosaic only contains patient’s tissue. Another application of
tool segmentation is visual servoing of articulated or flexible surgical robots. As
the dexterity of the instruments rises [5], it becomes increasingly difficult for the
surgeon to understand the shape of these instruments. With the miniaturisation
of said instruments, the kinematics of these devices become less deterministic due
to effects from friction, hysteresis and backlash alongside with increased instru-
ment compliance and safety. Furthermore, it is challenging to embed position or
shape sensing on them without increasing their size. A key advantage of visual
tool tracking versus fiducial markers or auxiliary technologies is that there is no
need to modify the current workflow or propose alternative exotic instruments.
Previous work has addressed detection [6], localisation [7] and pose estimation
of instruments [8] using different cues and classification strategies. For example,
employing information about the geometry of the instruments [9], fiducial mark-
ers [10], 3D coordinates of the insertion point [11], fusing visual and kinematic
information [12] and through multi-class pixel-wise classification of colour, tex-
ture and position features with different machine learning techniques such as
Random Forests (RF) [7] and Boosted Decision Forests [1]. Recent advances
in Region-based Convolutional Neural Networks (R-CNN) [13] and Region Pro-
posal Networks (RPN) [14] have enabled the possibility of object detection (with
a bounding box) near real-time (17 fps for images on Pascal VOC 2007 [15]).
EndoNet [16] has been recently proposed as a solution for phase recognition and
tool presence detection on laparoscopic videos. However, there is still a need
for an automatically initialised real-time (i.e. camera frame rate) segmentation
algorithm for non-rigid tools with unknown geometry and kinematics.

There are a number of challenges that need to be addressed for real-time
detection and tracking of surgical instruments. Endoscopic images typically
present a vast amount of specular reflections (from both tissue and instruments),
which is a source of confusion for segmentation algorithms as pixels that look
the same belong to different objects (e.g. background and foreground). Changing
lighting conditions, shadows and motion blur, combined with the complexity of
the scene and the motion of organs in the background are also a challenge, as can
be observed in Fig. 1. As a result, anatomical structures and surgical instruments
may look more similar than they actually are. Occlusions caused by body fluids
and smoke also represent a major issue. Particularly for the case of fetal surgery,
the turbidity of the amniotic fluid, makes the localisation of instruments really
challenging, as can be observed in Fig. 1. Fetal surgery also has the additional
difficulty of relying on miniature endoscopes that contain several tens of thou-
sands of fibres in an imaging guide. Transformed into pixels the number of fibres
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Optical fibre tip for 
laser photocoagulation

Shadows

Specular reflections

Reflections from tissue

Blurriness

Occlusions

Fig. 1. Challenges encountered by tool detection and localisation algorithms in real
interventions. In vivo neurosurgery [1] (left). Twin-to-twin transfusion syndrome laser
photocoagulation (right).

results in a very poor resolution (e.g. 30 K in a Karl Storz GmbH 11508 AAK
curved fetoscope [17]).

To the best of our knowledge, in this paper, we present the first real-time
(≈30 fps) surgical tool segmentation pipeline. Our pipeline takes monocular
video as input and produces a foreground/background segmentation based on
both deep learning semantic labelling and optical flow tracking. The method
is instrument-agnostic and can be used to segment different types of rigid or
non-rigid instruments. We demonstrate that deep learning semantic labelling
outperforms the state of the art on an open neurosurgical clinical dataset [1].
Our results also show competitive performance between real-time and non-real-
time implementations of our method.

2 Methods

Convolutional-Neural-Network-based Segmentation. There are several
benefits of using a Convolutional Neural Network (CNN) compared to other
state-of-the-art machine learning approaches [1]. First, there is no need for trial
and error to hand-craft features, as features are automatically extracted during
the network training phase. As demonstrated in [18], automatic feature selection
does not negatively affect the segmentation quality. Furthermore, CNNs can
be pre-trained on large general purpose datasets from the Computer Vision
community and fine-tuned with a small amount of domain-specific images, as
explained in [19]. This particular feature of CNNs allows us to overcome the
scarcity of labelled images faced by the CAI community. Therefore, it conveys
the possibility of having an instrument segmentation mechanism that is not tool
dependent, as demonstrated by our results.

Fully Convolutional Networks (FCN) are a particular type of CNN recently
proposed by Long et al. [19]. As opposed to previous CNNs such as AlexNet [20]
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or VGG16 [21], FCN are tailored to perform semantic labelling rather than classi-
fication. However, the two are closely related as FCN are built from adapting and
fine-tuning pre-trained classification networks. In order to achieve this conver-
sion from classification to segmentation two key steps are performed. First, the
fully connected (FC) layers of the classification network are replaced with convo-
lutions so that spatial information is preserved. Second, upsampling filters (also
called deconvolution layers) are employed to generate a multi-class pixel-level
output segmentation that features the same size of the input image. An essential
characteristic of the upsampling filters present in FCN is that their weights are
not fixed, but initialised to perform bilinear interpolation and then learnt during
the fine-tuning process. As a consequence, these networks are able to accept an
arbitrary-sized input, produce a labelled output of equivalent dimensions and
rely on end-to-end learning of labels and locations. That is, they behave as deep
non-linear filters that perform semantic labelling. There are three versions of
the FCN introduced by Long et al., FCN-8s (shown in Fig. 2), FCN-16s and
FCN-32s (available in the Caffe Model Zoo [22]). The difference between them
being the use of intermediate outputs (such as the one coming from POOL 3 or
POOL 4 in Fig. 2) in order to achieve finer segmentations.

In this work, we have adapted and fine-tuned the FCN-8s [19] for instru-
ment segmentation. Its state-of-the-art performance in multi-class segmentation
of general purpose computer vision datasets makes it a sensible choice for the
task. The FCN-8s we employed was pre-trained on the PASCAL-context 59-class
(60 including background) [23] dataset. As we are concerned with the separation
of non-rigid surgical instruments from background, the structure of the network
was adapted to provide only two scores per pixel by changing the number of
outputs to just two in the scoring and upsampling layers. This modification of

Fig. 2. Illustration of the FCN-8s network architecture, as proposed in [19]. In our
method, the architecture of the network remains the same, but the number of outputs
in SCORE 3, SCORE 4, SCORE 5, UPSAMPLE 8, UPSAMPLE 16 and UPSAM-
PLE 32 has been changed so that they produce only two scores per pixel, background
and foreground.
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Fig. 3. Parameters of the adapted FCN. Changes with respect to the original FCN-
8s [19] are shown surrounded by a dashed line.

parameters is highlighted within the dashed line in Fig. 3. After this change, the
network can be fine-tuned with a small amount of data belonging to a particu-
lar surgical domain. During inference, the final per-pixel scores provided by the
FCN are normalised and calculated via argmax to obtain per-pixel labels.

We have also implemented an improved learning process for the FCN. The
optimiser selected to update the weights was the standard Stochastic Gradient
Descent (SGD). A key hyper-parameter of the fine-tuning process is the learning
rate (LR), which is the weight applied to the negative gradient used in the update
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rule of the optimisation. It has been recently shown in [24] that letting the learn-
ing rate fluctuate during the fine-tuning process achieves convergence to a higher
accuracy in less number of iterations. This policy, introduced by Smith as Cycli-
cal Learning Rate (CLR) [24], may be implemented with different shapes (e.g.
triangular, parabolic, sinusoidal). However, all of them produce similar results
in [24]. We therefore choose the triangular window for the sake of simplicity. As
we are only interested in fine-tuning the network, the LR was constrained to
a small value to tailor the parameters to the surgical domain without altering
the behaviour of the network. In our case, the LR boundaries, momentum and
weight decay were set to [1e-13, 1e-10], 0.99 and 0.0005, respectively.

Real-Time Segmentation Pipeline. The drawback of the FCN we used is
that it cannot run in real-time. Caffe performs forward evaluation in about
100 ms for a 500 × 500 RGB image using an NVIDIA GeForce GTX TITAN X
GPU, but this computational time is well below the frame-rate of the endoscopic
video, which is generally 25, 30, or 60 fps.

The key insight that was employed here to overcome this problem is that in
the short time slot between two FCN segmentations, the tool remains roughly
rigid and its appearance changes can be captured sufficiently well by an affine
transformation. This type of transformation provides a trade-off between repre-
senting small changes and being robust enough for fast fitting purposes. Based
on this assumption, tracking is used to detect the small motion between the
last FCN-segmented frame and the current one. By registering the last FCN-
segmented frame (as opposed to the most recently segmented frame) with the
current one, we avoid the time-consuming feature point extraction in every frame
and potentially reduce the propagation of error across frames.

Our asynchronous pipeline is illustrated in Fig. 4. The FCN segmenter runs
asynchronously to the rest of the pipeline. That is, when a frame is read from the
video feed, it is sent to the FCN segmenter only if the FCN is not currently busy
processing a previous frame. When the FCN finishes a segmentation, it updates
the last segmentation mask, which is stored in synchronised memory. Further-
more, the image just segmented is converted to grayscale (as matching feature
points is faster than in colour images) and stored along with some (maximum
4000) foreground feature points for later use by the optical flow tracker. The
feature points used are corners provided by the GoodFeaturesToTrack extrac-
tor (OpenCV implementation of the Shi-Tomasi corner detector [25]), which in
combination with optical flow forms a widely successful tracking framework used
for temporal constraints that satisfies our real-time requirement. All the output
segmentations are computed according to the following process. First, pyramidal
Lukas-Kanade [26] optical flow is employed to find the correspondence between
the foreground points in the previous FCN-segmented frame and the current
received frame. Then the affine transformation between the two sets of points is
estimated by solving the linear least squares problem

A∗, t∗ := argmin
A, t

( ∑

i ∈ inliers

‖n[i] − Ap[i] − t‖2
)
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Fig. 4. Real-time segmentation diagram and timeline. For the first few frames no FCN-
based segmentation is available, hence the system does not provide any output. As soon
as the first FCN output is retrieved, the system provides a segmentation per video
frame. All the segmentation outputs W were obtained based on the last FCN-based
output C.

with a RANSAC approach (estimateRigidTransform, OpenCV implementa-
tion to compute an optimal affine transformation between two 2D point sets)
where i is the iterator over the inlier feature-point matches, p is the set of points
in the last FCN-segmented frame, n is the set of points in the frame that we are
currently trying to segment and [A|t] is the affine transformation between the
two sets of points that we are estimating.

Once the affine transformation is obtained, it is applied to the last segmen-
tation mask produced by the FCN. This warped label is the final segmentation
for the frame.

3 Experiments and Results

With the aim of demonstrating the flexibility of the presented methodology,
three datasets have been used for validation. They contain training and test
data for a wide variety of surgical settings, including in vivo abdominal and
neurological surgery and different set-ups of ex vivo robotic surgery. Further-
more, they also contain different surgical instruments, i.e. rigid, articulated and
flexible, respectively.

EndoVisSub [27]. MICCAI 2015 Endoscopic Vision Challenge - Instrument
Segmentation and Tracking Sub-challenge. This dataset consists of two sub-
datasets, robotic and non-robotic. The training data for the robotic sub-dataset
is formed by four ex vivo 45-second videos and the test data is formed by four
15-second and two 60-second videos. All of them having a resolution of 720× 576
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and 25 fps. The training data for the non-robotic sub-dataset is formed by 160
in vivo abdominal images (coming from four different sequences) and the test
data is formed by 4600 images (coming from nine different sequences). All of
them having a resolution of 640× 480. No quantitative results are reported for
the non-robotic EndoVisSub sub-dataset as ground-truth was not available from
the challenge website.

NeuroSurgicalTools [1]. This dataset consists of 2476 monocular images
(1221 for training and 1255 for testing) coming from in vivo neurosurgeries. The
resolution of the images varies from 612 × 460 to 1920 × 1080.

FetalFlexTool. Ex vivo fetal surgery dataset consisting of 21 images for
training and a video sequence of 10 s for testing. In both the images and the video
a non-rigid McKibben artificial muscle [5] is actuated close to the surface of a
human placenta. In order to prove the generalisation capabilities of the method,
the training images were captured in air and the video was recorded under water,
to facilitate different backgrounds and lighting conditions. The ground truth of
both the training images and the testing video was produced through manual
segmentation. The ex vivo placenta used to generate this dataset was collected
following a caesarean section delivery and after obtaining a written informed con-
sent from the mother at University College London Hospitals (UCLH). The Joint
UCL/UCLH Committees on Ethics of Human Research approved the study.

We implemented our method in C++, making use of the Caffe-future
branch, acceleration from the NVIDIA CUDA Deep Neural Network library v4,
using the Intel(R) Math Kernel Library as BLAS choice and the CUDA module
of OpenCV 3.1. The results have been generated with an Intel(R) Xeon(R)
(CPU) E5-1650 v3 @ 3.50 GHz computer and a GeForce GTX TITAN X (GPU).
All the results reported were obtained by fine-tuning the FCN for each dataset.

The first experiment carried out analysed the feasibility of FCN-based seman-
tic labelling for instrument segmentation tasks without considerations for real-
time requirements. The quantitative results can be seen in Table 1 and some
segmentation examples are shown in Fig. 5 and the supplementary material. As
can be seen in Table 1, the balanced accuracy = (sensitivity + specificity)/2
achieved for the in vivo NeuroSurgicalTools dataset is 89.6%, which is higher
than the 85.8% reported by [1].

Table 1. Non-real-time quantitative results of the FCN-based segmentations. The
results have been calculated based on the semantic labelling obtained for the testing
images of each dataset. Three different FCN (one per dataset) have been fine-tuned to
obtain these results.

Dataset Sensitivity Specificity Balanced accuracy

EndoVisSub (robotic) 72.2% 95.2% 83.7%

NeuroSurgicalTools 82.0% 97.2% 89.6%

FetalFlexTool 84.6% 99.9% 92.3%
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Fig. 5. FCN-based segmentation of four testing images, each one belonging to a differ-
ent dataset. From left to right, EndoVisSub (robotic), EndoVisSub (non-robotic),
NeuroSurgicalTools (see [1] Fig. 5 for a qualitative comparison) and FetalFlexTool.

Table 2. Quantitative results of the full real-time segmentation pipeline. The reported
numbers are based on the frame-by-frame comparison of the binary labels provided by
the presented real-time method and the ground truth video segmentations (for those
datasets which have it).

Dataset Sensitivity Specificity Balanced accuracy

EndoVisSub (robotic) 87.8% 88.7% 88.3%

FetalFlexTool 36.3% 99.9% 68.1%

The real-time pipeline, including the mask propagation based on optical
flow, was evaluated on EndoVisSub (robotic) and FetalFlexTool (no real-
time results are reported for NeuroSurgicalTools due to lack of frame-by-frame
video ground-truth). Quantitative results can be seen in Table 2. The real-time
pipeline captures the tool with a performance which is acceptable in comparison
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Fig. 6. Comparison between FCN-based segmentation and tracking-based propagation.
From left to right, previous frame segmented with FCN (Cx), current frame segmented
with FCN (Cy) and tracking-based propagation (Wy←x(Cx)).

to the off-line counterpart, as illustrated in Fig. 6 and the supplementary mate-
rial. Our method was able to produce real-time (≈30 Hz) results for all the
datasets.

4 Discussion and Conclusion

FCN stand out as a very promising technology for labelling endoscopic images.
They can be fine-tuned with a small amount of medical images and no discrim-
inative features have to be hand-crafted. Furthermore, these advantages are not
at the expense of lowering the segmentation performance.

To the best of our knowledge this paper presents the first real-time FCN-
based surgical tool labelling framework. Optical flow tracking can be successfully
employed to propagate FCN segmentations in real-time. However, the quality of
the results depends on how deformable the instruments being segmented are
and how fast they move, as can be observed in the different results reported
in Table 2. The balanced accuracy achieved by the FCN-based labelling of the
EndoVisSub (robotic) dataset (83.7%) is lower than the one achieved by the
real-time version (88.3%). The increase in balanced accuracy from the FCN-
based segmentation to the real-time version for the EndoVisSub is at the expense
of a reduction in specificity. This is due to an inflation of the warped segmenta-
tion and related to the fact that several tools are present in the foreground and
move in different directions. This may benefit the accuracy score by increasing
sensitivity, similar effects have been observed for anchor box trackers (votchal-
lenge.net). For the FetalFlexTool dataset which consists of a flexible McKibben
actuator the balanced accuracy was reduced from 92.3% to 68.1%.

According to the results reported for the different datasets, we can conclude
that the presented methodology is flexible enough to easily adapt to different
clinical scenarios. Furthermore, feasibility for real-time segmentation of different
surgical instruments has been demonstrated. This including non-rigid tools, as
it is the case in the FetalFlexTool dataset.

However, as it would be expected, non-rigid foreground movements (either
caused by the presence of several instruments or due to genuine non-rigid tool
movements) that are faster than the time elapsed between two FCN segmenta-
tions (typically 100 ms) affect the segmentation quality and will not be captured
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as well. This could be further addressed by separating the feature points detected
on the foreground in different groups and using a set of affine transformations
rather than a single one for the whole foreground.

Future work includes the possibility of detecting multiple instruments and
also the inclusion of a Tracking Learning Detection framework [28]. At this stage,
temporal information of previous segmentations is not fed to the FCN but is only
used by the tracking system. It would be interesting to use long-term tracking
information to both speed-up and improve the segmentation results.

Acknowledgements. This work was supported by Wellcome Trust [WT101957],
EPSRC (NS/A000027/1, EP/H046410/1, EP/J020990/1, EP/K005278), NIHR BRC
UCLH/UCL High Impact Initiative and a UCL EPSRC CDT Scholarship Award
(EP/L016478/1). The authors would like to thank NVIDIA for the donated GeForce
GTX TITAN X GPU, their colleagues E. Maneas, S. Moriconi, F. Chadebecq, M. Ebner
and S. Nousias for the ground truth of FetalFlexTool and E. Maneas for preparing
setup with an ex vivo placenta.

References

1. Bouget, D., Benenson, R., Omran, M., Riffaud, L., Schiele, B., Jannin, P.: Detecting
surgical tools by modelling local appearance and global shape. IEEE Trans. Med.
Imaging 34(12), 2603–2617 (2015)

2. Daga, P., Chadebecq, F., Shakir, D., Garcia-Peraza Herrera, L.C., Tella, M.,
Dwyer, G., David, A.L., Deprest, J., Stoyanov, D., Vercauteren, T., Ourselin, S.:
Real-time mosaicing of fetoscopic videos using SIFT. In: SPIE Medical Imaging
(2015)

3. Sznitman, R., Ali, K., Richa, R., Taylor, R.H., Hager, G.D., Fua, P.: Data-driven
visual tracking in retinal microsurgery. In: Ayache, N., Delingette, H., Golland, P.,
Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 568–575. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33418-4 70

4. Tella, M., Daga, P., Chadebecq, F., Thompson, S., Shakir, D., Dwyer, G.,
Wimalasundera, R., Deprest, J., Stoyanov, D., Vercauteren, T., Ourselin, S.: A
combined EM and visual tracking probabilistic model for robust mosaicking of
fetoscopic videos. In: IWBIR (2016)

5. Devreker, A., Rosa, B., Desjardins, A., Alles, E., Garcia-Peraza, L., Maneas, E.,
Stoyanov, D., David, A., Vercauteren, T., Deprest, J., Ourselin, S., Reynaerts, D.,
Vander Poorten, E.: Fluidic actuation for intra-operative in situ imaging. In: IROS,
pp. 1415–1421. IEEE (2015)

6. Reiter, A., Allen, P.K., Zhao, T.: Marker-less articulated surgical tool detection.
In: CARS (2012)

7. Allan, M., Ourselin, S., Thompson, S., Hawkes, D.J., Kelly, J., Stoyanov, D.:
Toward detection and localization of instruments in minimally invasive surgery.
IEEE Trans. Biomed. Eng. 60(4), 1050–1058 (2013)

8. Allan, M., Thompson, S., Clarkson, M.J., Ourselin, S., Hawkes, D.J., Kelly, J.,
Stoyanov, D.: 2D-3D pose tracking of rigid instruments in minimally invasive
surgery. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin,
P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 1–10. Springer, Cham (2014). doi:10.
1007/978-3-319-07521-1 1

http://dx.doi.org/10.1007/978-3-642-33418-4_70
http://dx.doi.org/10.1007/978-3-319-07521-1_1
http://dx.doi.org/10.1007/978-3-319-07521-1_1


Real-Time Segmentation of Surgical Tools based on Deep Learning 95

9. Pezzementi, Z., Voros, S., Hager, G.D.: Articulated object tracking by rendering
consistent appearance parts. In: ICRA, pp. 3940–3947. IEEE (2009)

10. Reiter, A., Goldman, R.E., Bajo, A., Iliopoulos, K., Simaan, N., Allen, P.K.: A
learning algorithm for visual pose estimation of continuum robots. In: IROS, pp.
2390–2396. IEEE, September 2011

11. Voros, S., Orvain, E., Cinquin, P., Long, J.A.: Automatic detection of instruments
in laparoscopic images: a first step towards high level command of robotized endo-
scopic holders. In: The First IEEE/RAS-EMBS International Conference on Bio-
medical Robotics and Biomechatronics (BioRob 2006), pp. 1107–1112. IEEE (2006)

12. Reiter, A., Allen, P.K., Zhao, T.: Appearance learning for 3D tracking of robotic
surgical tools. Int. J. Robot. Res. 33(2), 342–356 (2014)

13. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)
14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object

detection with region proposal networks, pp. 1–9 (2015)
15. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:

The PASCAL VOC Challenge 2007 Results. http://www.pascal-network.org/
challenges/VOC/voc2007/workshop/index.html

16. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N.:
EndoNet: a deep architecture for recognition tasks on laparoscopic videos. In: CVPR,
pp. 1–10 (2016)

17. Fetoscope: https://www.karlstorz.com/doc/interactivebrochure/3317862/html5
18. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmenta-

tion. In: ICCV, pp. 1520–1528 (2015)
19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-

mentation. In: CVPR, pp. 3431–3440. IEEE (2015)
20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: NIPS, pp. 1097–1105 (2012)
21. Guerra, E., de Lara, J., Malizia, A., Dı́az, P.: Supporting user-oriented analysis for

multi-view domain-specific visual languages. Inf. Softw. Technol. 51(4), 769–784
(2009)

22. Caffe Model Zoo. http://github.com/BVLC/caffe/wiki/Model-Zoo
23. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R., Yuille,

A.: The role of context for object detection and semantic segmentation in the wild.
In: CVPR (2014)

24. Smith, L.N.: No more pesky learning rate guessing games. Arxiv, June 2015
25. Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference

on CVPR, pp. 593–600 (1994)
26. Bouguet, J.Y.: Pyramidal implementation of the lucas kanade feature tracker:

description of the algorithm. Technical report, Intel Corporation Microprocessor
Research Labs (2000)

27. MICCAI. http://endovissub-instrument.grand-challenge.org
28. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pat-

tern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://www.karlstorz.com/doc/interactivebrochure/3317862/html5
http://github.com/BVLC/caffe/wiki/Model-Zoo
http://endovissub-instrument.grand-challenge.org


Weakly-Supervised Lesion Detection in Video Capsule
Endoscopy Based on a Bag-of-Colour Features Model

Michael Vasilakakis1(✉), Dimitrios K. Iakovidis1, Evaggelos Spyrou2,
and Anastasios Koulaouzidis3

1 Department of Computer Science and Biomedical Informatics, University of Thessaly,
Lamia, Greece

vasilaka.inf@gmail.com, dimitris.iakovidis@ieee.org
2 National Center for Scientific Research - Demokritos, Institute of Informatics

and Telecommunications, Athens, Greece
espyrou@iit.demokritos.gr

3 Endoscopy Unit, The Royal Infirmary of Edinburgh, Edinburgh, UK
akoulaouzidis@hotmail.com

Abstract. Robotic video capsule endoscopy (VCE) is a rapidly evolving medical
imaging technology enabling more thorough examination and treatment of the
gastrointestinal tract than conventional endoscopy technologies. Despite of the
technological advances in this field, the reviewing of the large VCE image
sequences remains manual and challenges experts’ diagnostic capabilities. Video
reviewing systems for automated lesion detection are still under investigation.
Most of these systems are based on supervised machine learning algorithms,
which require a training set of images, manually annotated by the experts to indi‐
cate which pixels correspond to lesions. In this paper, we investigate a weakly-
supervised approach for lesion detection, which requires image-level instead of
pixel-level annotations for training. Such an approach offers a considerable
advantage with respect to the efficiency of the annotation process. It is based on
state-of-the-art colour features, which, in this study, are extended according to
the bag-of-visual-words model. The area under receiver operating characteristic
achieved, reaches 81%.

Keywords: Video capsule endoscopy · Lesion detection · Colour features · Bag-
of-Words · Weakly-supervised learning

1 Introduction

Video capsule endoscopy (VCE) enables the examination of the whole gastrointestinal
(GI) tract in a non-invasive way. It is performed with a swallowable capsule endoscope
(CE), which captures colour images during its approx. 12 h battery lifetime. Today’s
commercial CEs are passive, in the sense that they are moving by exploiting both the
gravity and the peristaltic motion of the GI tract. However, several research prototypes
have been proposed for active, robotic capsule endoscopy, which will enable thorougher
examinations, easier lesion localization, and drug infusion [1].
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A major issue that is still unresolved, both in passive and active VCE is that it requires
a lot of human effort for manually reviewing of the produced videos. Typically, each
individual review lasts 45–90 min, during which, the reviewer’s concentration should
remain undivided for a careful inspection of the output video [2]. Such a tiring procedure
is prone to human errors; a fact with serious consequences in the diagnostic yield, which
is alarmingly low [3].

In order to cope with this problem, automated lesion detection methods based on
computer vision algorithms have been proposed [4]. Most of these methods exploit
supervised machine learning methodologies, capable of learning what is defined as
normal and what is defined as an abnormal finding within the VCE video. The generation
of datasets for training the learning machines requires that experts indicate which pixels
correspond to normal or abnormal tissues within the VCE images. Considering that the
videos produced by a VCE examination are composed of thousands of frames (usually
of the order of 104), such a pixel-wise annotation task can prove very time-consuming
and discouraging for annotation of large datasets by the experts.

A promising solution that could alleviate this problem is weakly-supervised learning,
which involves training of a learning machine using weakly annotated data [5, 6]. In
this paper weakly supervised learning is considered using images annotated at image-
level instead of pixel-level. This way, a binary semantic label is assigned per video frame
indicating whether its content is normal or abnormal. A drawback of such an approach
is that the abnormal images can be tracked, but the localization of the lesion(s) within
each abnormal frame remains a challenge. However, it is much more significant for the
system to robustly detect which frames contain possible lesions than to localize the lesion
within these frames, since this can be much easier done by the video reviewers.

The Bag-of-Words or Bag-of-Visual Words (BoW/BoVW) can be considered as a
weakly supervised model built upon the notion of visual vocabularies. A visual vocabu‐
lary may be seen as a set of “exemplar” image patches (visual words), in terms of which
any given image may be described. Typically, this vocabulary is built using a large
corpus of representative images of the domain of interest and should be closely related
to the problem at hand. The vocabulary may be seen as a means of quantization of the
feature space i.e., the one of the local descriptors. Any unseen descriptor may then be
easily quantized to its nearest visual word. The description of the whole image is formed
by a histogram, counting the appearances of each visual word within it. Apart from the
obvious advantage of BoW, i.e., that can be used as a weakly supervised approach as it
has already been discussed, it also provides a fixed-size representation, a useful property
for tasks such as classification using traditional classifiers e.g., feed-forward neural
networks, support vector machines etc. Finally, the visual description provided by BoW
may also be used on tasks such as inverted file indexing [7], visual retrieval etc.

An early application of BoW in capsule endoscopy has been investigated using
speeded-up robust features (SURF) for polyp detection [8]. In [9] the performance of
BoW was investigated using scale-invariant feature transform features (SIFT) and local
binary patterns (LBP) for ulcer detection. A more complex feature extraction scheme
for the construction required in BoW was proposed in [10]. This scheme was applied
for polyp detection and includes extraction of SIFT, LBP, uniform LBP and histogram
of oriented gradients (HoG) features from neighbourhoods of salient points detected
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using the SIFT key-point detector. In the context of bleeding detection, colour histo‐
grams extracted from various colour spaces were considered [11]. Colour along with
textural information has also been exploited in [12] for detection of gastric and oeso‐
phageal cancer, gastritis, and oesophagitis. In that study superpixel segmentation was
exploited for estimation of image descriptors from homogeneous regions. As in [12] the
descriptors considered include colour histograms from various colour spaces as well as
LBP-based textural signatures. Most of the aforementioned approaches are based on
support vector machine (SVM) classifiers.

The BoW model was also exploited in the context of unsupervised segmentation of
capsule endoscopy videos, based on probabilistic latent semantic analysis (pLSA) [13].
In the context of the analysis of higher resolution endoscopic images, BoW models have
been proposed for browsing endoscopic imagery by semantic information [14], colo‐
noscopy image classification [15], and classification of images obtained using chromo-
endoscopy and narrow-band imaging techniques.

Acknowledging the significance of incorporating an image-level instead of pixel-
level annotation process in the development of training datasets for lesion detection
systems in VCE, in this paper we investigate a novel BoW-based weakly-supervised
learning approach using the state-of-the-art features that have been proposed in [15].
These features represent colour information both at pixel and region level in CIE-Lab
colour space, and despite their simplicity they have been proved very effective in the
detection of a diverse set of abnormalities [5, 17].

The rest of this paper is organized as follows: In Sect. 2 we describe the methodology
we followed for the proposed weakly supervised classification scheme. We provide a
brief description of both the generic BoW methodology and the approach we followed.
Then, in Sect. 3 we demonstrate and discuss our experimental results. Finally, conclu‐
sions are drawn in Sect. 4, where we also discuss plans for future continuation of this
work.

2 Methodology

BoW is a widely used method to model generic categories in detection, classification
and recognition problems [18]. This method has been originally inspired by text docu‐
ment analysis techniques, and consists of calculating word frequencies. The first step of
BoW is to describe an image as a set of “words”, which capture its visual content. To
this goal, given an adequately large dataset, a set of features is extracted from every
image and typically quantized using a clustering approach, e.g., the k-means algorithm
[19]. Upon clustering, the centroids (or in some approaches the medoids, which opposed
to centroids are actual members of the dataset) that have been determined, are used as
a “visual vocabulary” and are often referred to as “visual words.”

Each feature is then translated (coded) into one of these visual words, i.e., to the
nearest one in the feature space (typically based on the Euclidean distance). The next
step involves a histogram construction, which describes the appearance frequency of
every visual word within an image. Thus, this histogram is used to characterize the visual
content of the image. Among the advantages of BoW, we should emphasize that it
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succeeds to reduce the problem of classifying a large number of high dimensional vectors
from local point descriptors to a fixed-size, one dimensional vector without significant
loss of visual information. Finally, any typical classification approach may be used for
the classification of these histogram vectors. In this work we choose to use an SVM [20],
trained with examples of histograms extracted from both normal and abnormal catego‐
ries.

We use the well-known SURF (speeded up robust features) algorithm [21], in order
to detect interest points and extract descriptions from patches around them. SURF is a
powerful and fast descriptor scheme and has been successfully applied to a plethora of
computer vision problems. It has been shown to achieve comparable repeatability and
performance to other, more sophisticated schemes, at a lower computational cost. It
combines a Hessian-Laplace region detector and a gradient orientation-based feature
descriptor and is invariant to several image transformations and robust to illumination
variations. For interest point selection, we also make use of a “naïve” approach known
as “dense sampling”. Following this approach, we select all pixels sampled using a
regular grid (i.e., one with equal horizontal and vertical inter-pixel distances), which are
then used as interest points. Although these points cannot be matched accurately, when
compared e.g., to the SURF interest points, they carry valuable information regarding
image content interpretation [22].

For the extraction of visual descriptions of patches around the interest points, we
also evaluate the colour-based features of [16]. Images are first transformed to the CIE-
Lab colour space and then, the following colour information is extracted from a square
region centered at each point: (i) The Lab values of each interest point; (ii) The minimal
and maximal values of each component. This results to a vector consisting of 9 values.

Fig. 1. Image examples of different uses of the algorithms: (a) A raw WCE image depicting
lymphangiectasia; (b) SURF; (c) Dense SURF; (d) Lab; and (e) Dense Lab.
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In Fig. 1(b) and (d) we illustrate the set of the SURF interest points extracted from
a given VCE image, combined with SURF regions and fixed windows, respectively,
whilst in Fig. 1(c) and (e) we illustrate the set of the dense interest points, also combined
with SURF regions and fixed windows. One may easily observe that SURF points do
not cover the visual properties of the whole image. Yet, the latter is achieved by the
dense features.

3 Results

For the evaluation of the proposed weakly-supervised BoW approach, we performed
experiments using a subset of dataset 2 from the publicly available KID database [23, 24].
This dataset displays a variety of different kinds of abnormalities. More precisely, the
selected subset consists of 227 images of most common inflammatory lesions, e.g., as in
Fig. 2(a) including ulcers, aphthae, mucosal breaks with surrounding erythema, cobble‐
stone mucosa, stenoses and/or fibrotic strictures, and significant mucosal/villous oedema.
It also includes a set of 1327 normal images derived from the small bowel (728 images),
e.g., as in Fig. 2(b) (right), and the stomach (599 images), e.g., as in Fig. 2(b) (left).

Fig. 2. Representative images from the dataset used in experiments: (a) Inflammatory lesion
images, (b) Normal images from the stomach (left) and the small bowel (right)

In order to investigate whether BoW could be used as a reliable classification
approach, we compare its performance in four different experiments. These differentiate
on the method for the selection of interest points, the description of patches around the
aforementioned points; and the colour space used. For the latter case we used greyscale
images and also transformations of CIE-Lab (using standard illuminant D65), where L
and b channels had been discarded, keeping only the colour information of a. We shall
refer to the latter as the “Lab images”. More specifically, the performed experiments are
as follows: (i) SURF points and features on the greyscale image; (ii) dense points and
SURF features on the Lab images; (iii) SURF points and colour features of [16]; (iv)
dense points and colour features of [16]; and (v) the state-of–the-art method of [10],
where image description is based on the combination of SIFT and compound local binary
pattern features (CLBP). In each case, we extract interest points, then their descriptions,
we create the visual vocabulary, which we use for image BoW description and finally
train SVM classifiers. In every experiment we use 6-fold cross validation method and
estimate the values of area under the receiver operating characteristic (AUC).
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The visual vocabulary size ranged from 300 to 1200 words. For the experiments with
dense SURF, we used multi-scale feature extraction with scale step 1.6, starting from
scale 1.6, up to scale 6.4. We also experimented with various sizes of square regions,
for the extraction of the colour features. We used 18 × 18 and 36 × 36 square areas. For
dense feature extraction we used grid steps of 4, 10, 18 and 36 pixels, both horizontally
and vertically. For the method of [10] we used CLBP of patch size 4 × 4 and 8 × 8. For
the classification we used an SVM with RBF kernel.

Most notable results are summarized in Table 1. In this Table we may observe that
best performance was achieved for the case of dense Lab features using a window size
of 18 × 18 pixels and a visual vocabulary of 700 words. The best performance of standard
SURF features (i.e., applied on grayscale images) was achieved using dense extraction
and a vocabulary size of 800 words. However, this advantageous performance comes at
cost of efficiency, since the number of samples obtained by dense SURF is higher (due
to the regular sampling process). In addition, our approach had better results in compar‐
ison with of the state-of-the-art method of [10]. In any case the application of SURF on
the a channel of CIE-Lab leads to an increase of AUC.

Table 1. Experimental Results; in dense (x), x denotes the step, in SURF (y), y denotes the colour
space (g: greyscale, a: a channel of Lab). Note that in case of SURF feature description, image
patches are selected by the algorithm, thus marked herein as “N/A”

Feature
extraction

Feature description Window size Vocabulary
size

AUC

dense (18) Lab [15] 18 × 18 500 0.80
dense (4) SURF (g) N/A 800 0.70
dense (36) Lab [15] 36 × 36 700 0.79
dense (18) SURF (g) 18 × 18 800 0.69
dense (10) Lab [15] 18 × 18 700 0.81
SURF (a) Lab [15] N/A 700 0.77
SURF (g) SURF (g) N/A 500 0.59
SIFT (g) SIFT + CLBP [10] 4 × 4 500 0.73
SIFT (g) SIFT + CLBP [10] 8 × 8 500 0.73
SIFT (g) SIFT + CLBP [10] 8 × 8 700 0.74

4 Conclusions

In this paper we presented a weakly supervised classification scheme for automated
lesion detection in VCE videos. We followed the BoW paradigm and created a visual
dictionary encoding all extracted image features into visual words. A novel contribution
of this paper is that we extended our state-of-the-art colour features [16, 17], according
to the bag-of-visual-words model and created BoW image descriptions, which were used
to train SVM classifiers. We evaluated four different feature extraction schemes,
including a state-of-the-art approach, and investigated among others the use of colour
and different sampling schemes. Our results indicate that standard SURF features are
not capable of providing a reliable descriptor in the given problem. However, when
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applied to the Lab colour space, their performance is boosted. The latter are able to
provide valuable results within the proposed weakly-supervised scheme, which could
be used as an alternative to the demanding in terms of manual annotation effort, fully-
supervised, schemes.

Open research topics in the area of BoW with application to weakly-supervised
lesion detection include the construction of visual vocabularies (flat vs. hierarchical
approaches, predefined vs. dynamically selected sizes), the selection of interest points
(dense vs. salient vs. hybrid), the selection of patches surrounding interest points (shape,
size, orientation) and of course their description (colour vs. greyscale vs. binary descrip‐
tors). We plan to perform a thorough systematic investigation to assess the effect of each
part of BoW schemes to the overall results, within the context of lesion detection in VCE
videos.
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Abstract. In this work, convolutional neural networks (CNNs) are
applied for the computer assisted diagnosis of celiac disease based on
endoscopic images of the duodenum. To evaluate which network config-
urations are best suited for the classification of celiac disease, several
different CNN networks were trained using different numbers of layers
and filters and different filter dimensions. The results of the CNNs are
compared with the results of popular general purpose image representa-
tions such as Improved Fisher Vectors and LBP-based methods as well
as a feature representations especially designed for the classification of
celiac disease. We will show that the deeper CNN architectures outper-
form these comparison approaches and that combining CNNs with linear
support vector machines furtherly improves the classification rates for
about 3–7% leading to distinctly better results (up to 97%) than those
of the comparison methods.

Keywords: CNN · Celiac disease · Endoscopy · Deep learning

1 Introduction

Convolutional neural networks (CNN) are gaining more and more interest in
computer vision. The increase in computational power based on GPUs has led
to more sophisticated and deeper architectures which have proven in various
challenges to be the state-of-the art in image classification. Generally thousands
or millions of images are used and required as data corpus to achieve well general-
izing deep architectures. In endoscopic image classification however the available
amount of data usable as training corpus is often much more limited to a few
hundreds or thousands of images or even less. Another difference to datasets
such as used in ILSVRC or Places is however that image classification problems
in medical scenarios are often reduced to a few categories instead of thousands
in the former. Consequently, deep architectures designed for recognizing images
from thousands of categories could be too complex for the classification of celiac
disease.

CNNs are already widely used for the computer aided diagnosis in medical
scenarios [10], however not so in the computer aided diagnosis using endoscopic
c© Springer International Publishing AG 2017
T. Peters et al. (Eds.): CARE 2016, LNCS 10170, pp. 104–113, 2017.
DOI: 10.1007/978-3-319-54057-3 10
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imagery. We found only three publications in this area, 2 about the classification
of digestive organs using wireless capsule endoscopy images [19,21] and one about
lesion detection [20] in endoscopic images. Since the classification of celiac disease
can be considered as a texture classification problem and CNNs are state-of-the-
art in texture recognition, CNNs are promising image representations for the
automated classification of celiac disease.

In this experimental study we apply CNNs for the classification of celiac
disease using a experimental setup especially adapted for endoscopic imagery
and we try to answer the following open questions:

1. Are deep-architectures suited to classify celiac disease or are simpler and
more shallow architectures more suited in such a scenario because of the low
amount of training data and categories

2. What are the best network configurations like e.g. the number or filters and
their dimensions

3. How well do CNNs perform compared to other state-of-the-art approaches
4. Are linear support vector machines (SVMs) able to furtherly improve the

results when applied on the activations of the nets.

2 Celiac Disease

Celiac disease is a complex autoimmune disorder in genetically predisposed indi-
viduals of all age groups after introduction of gluten containing food. The gas-
trointestinal manifestations invariably comprise an inflammatory reaction within
the mucosa of the small intestine caused by a dysregulated immune response trig-
gered by ingested gluten protein. During the course of the disease, hyperplasia
of the enteric crypts occurs and the mucosa eventually looses its absorptive villi
thus leading to a diminished ability to absorb nutrients. [5] state that more than
2 million people in the United States, this is about one in 133, have the disease.
People with untreated celiac disease are at risk for developing various complica-
tions like osteoporosis, infertility and other autoimmune diseases including type
1 diabetes, autoimmune thyroid disease and autoimmune liver disease. So an
early diagnosis is of highest importance.

Endoscopy with biopsy is currently considered the gold standard for the
diagnosis of celiac disease. Computer-assisted systems for the diagnosis of CD
have potential to improve the whole diagnostic work-up, by saving costs, time
and manpower and at the same time increase the safety of the procedure. A
motivation for such a system is furthermore given as the inter-observer variability
is reported to be high [1,12]. A survey on computer aided decision support for
the diagnosis of celiac disease can be found in [9].

Besides standard upper endoscopy, several new endoscopic approaches for
diagnosing CD have been evaluated and found their way into clinical practice [2].
The most notable techniques include the modified immersion technique (MIT [7])
under traditional white-light illumination (denoted as WLMIT), as well as MIT
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(a) NBIMIT, healthy (b) NBIMIT, healthy (c) NBIMIT, CD (d) NBIMIT, CD

(e) WLMIT, healthy (f) WLMIT, healthy (g) WLMIT, CD (h) WLMIT, CD

Fig. 1. Example images for the two classes healthy and celiac disease (CD) using
NBIMIT as well as WLMIT endoscopy

under narrow band imaging [3,17] (denoted as NBIMIT). These specialized endo-
scopic techniques were specifically designed for improving the visual confirmation
of CD during endoscopy.

In this work we differentiate between healthy mucosa and mucosa affected by
celiac disease using images gathered by NBIMIT as well as WLMIT endoscopy.
Examples of the two classes for both endoscopy types are shown in Fig. 1. In [6]
it was shown that using NBIMIT or WLMIT as imaging modality has a significant
impact on the underlying feature distribution of general purpose image represen-
tations. However, it was also shown that systems trained on images from both
modalities generalize well without requiring additional domain adaption tech-
niques and that combining both modalities improves the accuracies in case of
an insufficient amount of data for training (as is probably the case for CNNs).

3 CNN Architectures

All our networks share the same basic principal architecture. They consist of
a variable number of convolutional blocks (CONV) using rectified linear units
(RELU) for non-linearity, local response normalization (LRN) [11] and max-
pooling (POOL), two fully connected blocks (FC) using RELU and dropout and
a last fully connected block acting as soft-max classifier: [CONV, RELU, LRN,
POOL]n → [FC, RELU, DROPOUT]2 → [FC, SOFTMAXLOSS]. We only vary
the number of convolutional blocks, the filter dimensions and the number of
filters. To provide a systematic analysis, we trained networks with n = 1, 2, 3
and 4 convolutional blocks using different filter dimensions and different numbers
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of filters in each layer. We follow the general approach of employing large filter
dimensions in lower layers and subsequently smaller filters in higher layers.

A high number of filters per layer allows the training process to adapt to
highly abstract features. However, it is unclear in the context of celiac disease
and endoscopic imagery in general if such abstract features are visible or even
useful for prediction. Consequently, we analyze the impact of the number of
filters per layer by training multiple nets of the same architecture with varying
numbers of filters. We generally rely on the concept of increasing the number of
filters from the lower to the higher layers by a factor of two per layer.

All our models are initialized and trained using the same set of techniques.
The coefficients of the nets are randomly initialized based on He et al. [8] and
the bias terms are initialized as 0. All architectures rely on using max-pooling
with a windows size of three and stride two. Stochastic gradient descent (SGD)
with weight decay (λ = 0.0005) and momentum (μ = 0.9) is used for the train-
ing of the models. Regularization is achieved using drop-out (p = 0.5) during
training. Training is performed on batches of 128 images each, which are for each
iteration randomly chosen from the training data and subsequently augmented
(see Sect. 4.1). The learning rate is initialized at 0.01 and four times divided by
three whenever the training-loss stopped improving with the current learning
rate. For this, each 250th iteration we compute the average loss of the previ-
ous 250 iterations. If the currently computed average loss is greater than 0.99
times the previously computed average loss and if the current learning rate is in
use for at least 1000 iterations, then the learning rate is divided by three. Due
to the differing number of parameters among the architectures, optimization is
continued until the training-loss shows no improvement over 2500 iterations but
at least until the learning rate has been reduced the fourth time. The model of
the iteration achieving the lowest training-loss is then used for validation.

Our learning rate configurations and break off condition are especially
adapted on our celiac disease image data to achieve high results without need-
ing too much time for training (the nets were trained for ≈10000 iterations in
average). Since we train 36 different nets (4 (different numbers of convolutional
blocks) × 3 (different filter sizes) × 3 (different filter numbers)) on 10 different
training splits (see Sect. 4.1), we had to choose such configurations that enable
a limited time of training per network.

3.1 Very-Shallow Networks

We start off with a very uncommon variation of CNNs using only one single con-
volutional block. By analyzing different architectures growing from very shallow
to deep we hope to gain some insight on the problem. Although this sort of archi-
tecture is quite uncommon and might not fit into the general CNN schemes, the
lower abstraction of features in endoscopic images and the small number of cat-
egories (two) make it necessary to start with such shallow architectures. The
Very-Shallow networks (see Table 1) are trained with N = 10, 48 and 96 filters
to analyze the impact of the number of filters on the results.
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Table 1. Architecture of the Very-Shallow networks. The first row in a convolutional
block (CONV) specifies the receptive field size of the convolutional filters and their
number (N). The second row indicates the stride (st.) and padding (pad). Furtherly
we indicate the dimensionality of the fully connected (FC) blocks.

Filter size CONV1 FC1 FC2 FC3

Large 11 × 11 ×N st. 3, pad 0 512 drop-out 512 drop-out 2 soft-max

Medium 7 × 7 ×N st. 3, pad 0 512 drop-out 512 drop-out 2 soft-max

Small 5 × 5 ×N st. 2, pad 0 512 drop-out 512 drop-out 2 soft-max

3.2 Shallow Networks

The next generation of architectures is based on the Very-Shallow networks but
the number of convolutional blocks is increased to two. Like in the previous and
also in the following deeper network architectures, the network is trained with
different numbers of filters (N = 10, 48 and 96 filters in the first convolutional
layer). The network architecture of the Shallow nets is shown in Table 2.

Table 2. Architecture of the Shallow networks.

Filter size CONV1 CONV2 FC1 FC2 FC3

Large 11× 11×N
st. 3, pad 0

7× 7× 2N
st. 3, pad 0

512 drop-out 512 drop-out 2 soft-max

Medium 7× 7×N
st. 4, pad 0

5× 5× 2N
st. 2, pad 0

512 drop-out 512 drop-out 2 soft-max

Small 5× 5×N
st. 3, pad 0

3× 3× 2N
st. 2, pad 0

512 drop-out 512 drop-out 2 soft-max

3.3 Deep Networks

The third generation of nets use 3 convolutional blocks and can therefore be
considered as our first deep architecture. The network architecture of the Deep
nets is shown in Table 3.

Table 3. Architecture of the Deep networks, where ma
b = max(a, b) and denotes the

number of convolutional filters.

Filter size CONV1 CONV2 CONV3 FC1 FC2 FC3

Large 11 × 11 × N

st. 2, pad 0

7 × 7 × m128
2N

st. 1, pad 0

5 × 5 × m256
4N

st. 1 pad 0

512 drop-out 512 drop-out 2 soft-max

Medium 7 × 7 × N

st. 2, pad 0

5 × 5 × m128
2N

st. 1, pad 0

3 × 3 × m256
4N

st. 1, pad 0

512 drop-out 512 drop-out 2 soft-max

Small 5 × 5 × N

st. 2, pad 0

3 × 3 × m128
2N

st. 1, pad 0

3 × 3 × m256
4N

st. 1, pad 0

512 drop-out 512 drop-out 2 soft-max
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3.4 Very-Deep Networks

In our last generation of nets we use 4 convolutional blocks (see Table 4).
Although the term Very-Deep is not quite true considering the number of layers
of other very-deep architectures, we use the term to easily distinguish between
our four basic architectures.

Table 4. Architecture of the Very-Deep networks, where ma
b = max(a, b).

Filter size CONV1 CONV2 CONV3 CONV4 FC1 FC2 FC3

Large 11×11×N

st. 1, pad 2

7×7×m192
2N

st. 1, pad 0

5×5×m256
4N

st. 1, pad 0

3×3×m256
8N

st. 1, pad 0

1024 drop-out 1024 drop-out 2 soft-max

Medium 7×7×N

st. 2, pad 0

5×5×m192
2N

st. 1, pad 0

3×3×m256
4N

st. 1, pad 0

3×3×m256
8N

st. 1, pad 0

1024 drop-out 1024 drop-out 2 soft-max

Small 5×5×N

st. 2, pad 0

3×3×m192
2N

st. 1, pad 0

3×3×m256
4N

st. 1, pad 0

3×3×m256
8N

st. 1, pad 0

1024 drop-out 1024 drop-out 2 soft-max

4 Experimental Setup and Results

4.1 Experimental Setup

Our celiac disease image database consists of 1661 RGB image patches of size
128×128 pixels that are gathered by means of flexible endoscopes using NBIMIT

as well as WLMIT. The database consists of 1045 images gathered by WLMIT

endoscopy (587 healthy images and 458 affected by celiac disease) and 616 images
gathered by NBIMIT endoscopy (399 healthy images and 217 affected by celiac
disease). So in total 986 image patches show healthy mucosa and the remaining
675 image patches show mucosa affected by celiac disease. The images were
captured from 353 patients.

Due to the relatively small amount of data, we perform cross-validation to
achieve a stable estimation of the generalization error. We generated 10 (fixed)
splits for training and validation (80% training and 20% validation) and took
care that images of a single patient are never in training and evaluation sets.
All nets are trained using the training portion of our data corpus. The final
validation was performed on the left-out part.

The image data is normalized by subtracting the mean image of the training
portion. We then linearly scale each image within [−1, 1]. Due to the small
amount of available data we use data augmentation to increase the number of
images for training. Augmentation is applied to the batches of images extracted
for training. The augmentation is based on cropping one sub-image (112 × 112
pixels) from each training image with randomly chosen position. Subsequently,
the sub-image is randomly rotated (0◦, 90◦, 180◦ or 270◦) and randomly either
horizontally reflected or not. Validation is performed using a majority voting of
five crops from the validation image using the upper left, upper right, lower left,
lower right and center part.
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In our experiments, we compute the overall classification rate (OCR) for each
split and report the mean OCR over all 10 splits with the respective standard
deviation.

The CNNs are implemented using the MatConvNet framework [18]. Addition-
ally to the CNN soft-max-classifier we employ linear SVMs as provided by the
LIBLINEAR library [4]. For this, the training and test samples are fed through
the CNNs and the output of the second fully connected layer is extracted as
feature for further SVM classification. The size of the extracted feature vector
per image is 1024 × 1 in case of the very-deep architectures and 512 × 1 for the
other architectures. Augmentation is also applied for the extraction of features
from the nets for further for SVM classification. The augmentation is basically
the same as for the training of the nets with only one difference. The patches
of the training images are extracted from the fixed center position instead from
random positions (8 patches per image with 4 different rotations, either horizon-
tally flipped or not). The SVM cost factor (C) is found using cross validation on
the training data.

Additionally, we combine CNNs, principle component analysis (PCA) and
SVMs by applying PCA to the CNN features resulting in 100 principal compo-
nents which are furtherly classified using SVMs.

We compare the CNNs against three popular general purpose image repre-
sentations and one feature representations especially developed for the classifi-
cation of celiac disease. As general purpose image representations we use multi-
resolution local binary patterns (LBP [13]) and multi-resolution local ternary
patterns (LTP [15]), both with 3 scales, 8 neighbors and uniform patterns. As
third general purpose method we employ the improved fisher vectors (IFV [14])
computed from SIFT descriptors on a dense 6×6 pixel grid. The fourth method,
further denoted as fractal analysis based method (FRAC [16]), was especially
developed for the classification of celiac disease and is based on pre-filtering
images using the rotation invariant MR8 filterbank, followed by computing the
local fractal dimension (see [16]) of the resulting filter responses and applying
the bag-of-visual words (BoW) approach to them. We rely on in-house MATLAB
implementations for LBP, LTP and FRAC and use the implementation of IFV
as provided by VLFeat. The comparison methods are classified using SVMs in
an analogous manner as for the CNN features.

4.2 Results

The results of our experiments are presented in Table 5. The standard devia-
tions are given in brackets. The best result of each network architecture and
classification strategy is given in bold face numbers.

As we can seen in Table 5, the highest CNN results are achieved using the
Deep and Very-Deep network architectures combined with large or medium sized
filters. Using only 10 filters in the first convolutional layer is insufficient for the
classification of celiac disease, but using 48 filters achieves similar results as using
96. The two deeper CNN architectures with large or medium sized filters achieve
classification rates of ≈90% and hence outperform the comparison methods,
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Table 5. Results of the CNNs and comparison methods

Very-shallow networks

Nr. of

filters\Size
CNN CNN &SVM CNN &SVM &PCA

large medium small large medium small large medium small

10 85.8(2.3) 85.9(1.7) 86.0(2.0) 89.5(1.9) 88.6(1.9) 91.1(2.9) 89.1(2.1) 88.7(1.6) 91.0(2.7)

48 88.0(1.1) 87.4(1.6) 87.6(1.6) 92.5(2.4) 93.3(3.0) 94.4(2.9) 92.7(2.7) 93.3(2.7) 94.3(3.1)

96 87.5(1.3) 86.8(1.7) 87.9(2.0) 92.1(2.2) 92.8(2.4) 93.3(2.2) 92.2(2.5) 92.6(2.5) 93.3(2.5)

Shallow networks

Nr. of

filters\Size
CNN CNN &SVM CNN &SVM &PCA

large medium small large medium small large medium small

10 82.6(4.2) 86.1(2.7) 86.3(1.5) 87.2(2.3) 88.9(1.6) 88.2(2.1) 86.9(2.4) 88.8(1.6) 87.9(2.2)

48 88.5(2.6) 89.9(1.3) 89.1(1.3) 92.1(2.1) 93.3(2.3) 93.2(1.6) 92.0(2.1) 93.3(2.4) 92.9(1.8)

96 88.5(1.4) 90.0(1.8) 89.6(1.4) 92.3(2.4) 94.1(2.6) 92.9(2.1) 92.4(2.4) 94.1(2.4) 93.1(2.2)

Deep networks

Nr. of

filters\Size
CNN CNN &SVM CNN &SVM &PCA

large medium small large medium small large medium small

10 87.9(1.4) 89.6(1.4) 88.9(1.2) 93.2(2.6) 92.9(2.1) 92.4(2.1) 93.3(2.6) 93.0(2.2) 92.2(2.2)

48 89.8(1.6) 90.5(1.6) 89.8(1.3) 96.7(3.0) 96.4(2.8) 95.9(2.4) 96.6(3.0) 96.4(2.9) 95.7(2.3)

96 89.1(1.7) 89.9(1.3) 89.4(1.7) 96.5(3.2) 96.4(2.7) 95.4(3.3) 96.5(3.2) 96.6(2.6) 95.5(3.0)

Very-deep networks

Nr. of

filters\Size
CNN CNN &SVM CNN &SVM &PCA

large medium small large medium small large medium small

10 88.7(1.4) 88.2(2.2) 88.0(1.6) 94.6(2.6) 93.0(2.2) 91.6(2.2) 94.7(2.7) 93.0(2.3) 91.8(2.3)

48 89.5(1.8) 89.3(2.0) 89.2(1.9) 96.5(3.7) 95.7(3.1) 95.6(2.6) 96.5(3.7) 95.7(3.1) 95.5(2.5)

96 90.3(1.7) 89.8(1.6) 89.4(1.3) 97.0(3.1) 96.5(2.6) 95.4(3.3) 97.1(3.4) 96.5(2.6) 95.3(3.1)

Comparison methods

LBP LTP IFV FRAC

86.4(2.7) 89.5(1.8) 84.7(2.8) 80.1(3.9)

whose highest classification rate is 89.5% (LTP). Combining CNNs and SVMs
furtherly improves the results for about 3–7%. Additionally applying PCA to the
CNN features has only a minimal effect to the results. The best results (≈97%)
are achieved using SVM classification (with or without PCA) applied to the
CNN features of the Very-Deep net with 96 filters of size 11 × 11 × 3 in the first
convolutional layer.

5 Conclusion

In this work we showed that deep CNN architectures are very suited for the clas-
sification of celiac disease based on endoscopic image data. These CNN networks
outperform other state-of-the-art image representation approaches. Simpler and
more shallow-architectures cannot compete with the deeper architectures. Using
large or medium filter dimensions generally leads to higher results than using
smaller filter dimensions.
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Applying SVMs on the activations of the nets furtherly improves the results
of the CNNs for about 3–7% up to a maximum of ≈97%. The highest result
was achieved using SVM classification, the deepest architecture (Very-Deep),
the largest filter dimension and the highest number of filters (96 filters of size
11 × 11 × 3 in the first convolutional layer).
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Abstract. Augmented Reality (AR) guidance systems are currently
being developed to help laparoscopic surgeons locate hidden structures
such as tumours and major vessels. This can be achieved by registering
pre-operative 3D data such as CT or MRI with the laparoscope’s live
video. For soft organs this is very challenging, and quantitative evalua-
tion is both difficult and limited in the literature. It has been done previ-
ously by measuring registration accuracy using retrospective (non-live)
data. However a performance evaluation of a real-time system in live use
has not been presented. The clinical benefit has therefore not been mea-
sured. We describe an AR guidance system based on an existing one with
several important improvements, that has been evaluated in an ex-vivo
pre-clinical study for guiding tumour resections with porcine kidneys.
The main improvement is a considerably better way to visually guide
the surgeon, by showing them how to access the tumour with an incision
tool. We call this Tool Access Visualisation. Performance was measured
with the negative margin rate across 59 resected pseudo-tumours. This
was 85.2% with AR guidance and 41.9% without, showing a very signif-
icant improvement (p = 0.0010, two-tailed Fisher’s exact test).

1 Introduction and Background

There is much ongoing research to develop AR guidance systems to improve
laparosurgery. One important goal is to visualise hidden internal structures such
as tumours and major vessels by augmenting optical images from a laparoscope
with pre-operative 3D radiological data from MRI or CT. Despite considerable
research, robust systems capable of handling soft tissue deformation do not yet
exist. To achieve this three main challenges must be overcome. The first is to
build a segmented deformable model of the organ and its internal structures
from the radiological data. This process is the least time-critical because it can
be done before intervention. The second challenge is real-time registration, where
the goal is to transform the model to the laparoscope’s coordinate frame using
live visual information present in the laparoscope’s image. The third challenge
is visualisation, where the goal is to augment the laparoscope’s image with data
c© Springer International Publishing AG 2017
T. Peters et al. (Eds.): CARE 2016, LNCS 10170, pp. 114–126, 2017.
DOI: 10.1007/978-3-319-54057-3 11
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from the organ model in order to guide the surgeon. This paper focuses on the
registration and visualisation problems, for which a number of approaches have
been proposed. Registration algorithms have been described and tested with
various organs including the liver [6,7,11], uterus [3,4] and kidney [9,12,13]. To
date most previous approaches have been developed for robotic surgery with
stereo laparoscopes. However there are a few that work with monocular laparo-
scopes [3,4,6,9,12]. The challenges with monocular laparoscopes are far greater
due to the lack of depth information. However they are used in the majority of
laparosurgery due to several factors including cost, image resolution and smaller
port size. Of these, the systems which are capable of robust registration over
long durations are [4,12]. These work by first performing an initial registration,
to align the model to one [12] or several [4] reference laparoscopic images. Then
2D texture features are detected in the reference images with e.g. SURF [2] and
mapped onto the model’s surface. Once done the model is automatically reg-
istered to new laparoscopic images using feature-based tracking. An important
difference between [4,12] is that in [12] the initial registration was done man-
ually with a rigid model, whereas in [4] it was done semi-automatically with a
deformable model. Therefore [4] could handle deformation due to insufflation
and other factors, which is required for accurate registration of soft organs.

A main shortcoming of the above approaches is the lack of thorough quan-
titative evaluation, and the lack of live usage tests. In the above papers all
quantitative results were presented using retrospective videos from pre-recorded
surgeries. Therefore evaluating the practical benefit of the system for surgical
guidance was not done. From a technical standpoint, moving from pre-recorded
videos to live surgery is far from trivial. The main issues are time constraints: any
time for manual stages becomes significant and parameter tuning is not really
possible. Furthermore, when processing live videos the effective frame-rate is
limited by the AR system’s speed, which is usually well below the frame-rate of
a pre-recorded video (typically 30–50 fps). Therefore inter-frame motion is more
significant, and depending on the algorithm can severely affect performance.

We present an AR guidance system with monocular laparoscopes, based on
[4], which runs in real-time and which has been tested live with a systematic pre-
clinical user study. This evaluation measured the benefit of AR guided tumour
resection using ex-vivo porcine kidneys. To achieve this a number of improve-
ments were made to [4]. These were for generalising the approach to general
biomechanical organ models, reducing manual processing time and a much bet-
ter approach to AR visualisation, which we call Tool Access Visualisation.

2 AR Guidance System

We first describe the system’s inputs (Sect. 2.1) and give a global overview of the
registration algorithm (Sect. 2.2). We then describe the two main components of
the registration algorithm, which are the initial registration and tracking stages
(Sects. 2.3 and 2.4 respectively). Lastly we present Tool Access Visualisation
(Sect. 2.5).
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Fig. 1. The initial registration problem illustrated with a human uterus. Four
keyframes are shown in the first row with their associated contour fragments.

2.1 System Inputs

The system requires a segmented pre-operative biomechanical 3D model, which
has surface meshes for the organ and internal structures that are to be visualised.
Here the internal structures are tumours and their safe tissue margin. A safe
tissue margin is a border around the tumour of healthy tissue which should
also be removed, whose thickness w depends on the risk factor of the particular
tumour. We require two functions from the biomechanical model. The first is
the transform function f(p;xt) : Ω → R

3, which transforms a 3D point p in the
model’s 3D domain Ω ⊂ R

3 to the laparoscope’s coordinates frame, where the
vector xt denotes the model’s parameters at time t. The second is an internal
energy function Einternal(xt) : R

d → R
+ which gives the internal energy for

transforming the organ with xt, where d is the dimensionality of xt. Both f
and Einternal must be continuous and at least first-order differentiable. We also
require the laparoscope to be intrinsically calibrated.

We describe here the input models used in the presented experiments to make
things concrete for the reader. These came from T2 weighted MRI with segmen-
tation done semi-automatically using MITK [14]. The deformation models were
tetrahedral Finite Element Models (FEMs) built with a 3D vertex grid (6 mm
spacing) cropped to the organ. Therefore xt held the unknown 3D positions of
the FEM’s vertices in laparoscope coordinates. Trilinear interpolation was used
to compute f(p;xt). For Einternal the Saint Venant-Kirchoff strain energy was
used, with rough generic values for the Young’s modulus E and Poisson’s ratio
ν. These were for healthy kidney tissue E = 7kPa, ν = 0.43 [5], healthy uterus
tissue E = 96 kPa, ν = 0.45 [10] and myomas E = 532 kPa, ν = 0.48 [10]. Note
that in the registration problem there is always a balancing weight between the
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internal energy and energy coming from image cues (which have no real physi-
cal meaning). Therefore only the relative values of E are important to us (with
respect to the balancing weight), rather than their absolute values.

2.2 Overview of the Registration Algorithm

The registration problem is to determine xt for a given live laparoscopic image
streamed at time t. We break this down into two stages. The first is a non-live
stage which is called the initial registration stage. The second is a live-stage
which is called the tracking stage. The purpose of the initial registration stage is
two-fold. Firstly, it is to determine the change of shape of the organ between its
pre-operative state and an intra-operative reference state. Secondly, it is used to
associate texture with the organ’s surface, which is required in the tracking stage.
To achieve high robustness we make a simplifying assumption in the tracking
stage, which is that the organ does not deform significantly during this stage.
Therefore the tracking stage can be modelled with rigid update transforms, which
can be estimated far more quickly and robustly than deformable transforms. In
practice this assumption is reasonable by asking the surgeon to not physically
deform the organ during the tracking stage (i.e. the period that they wish to use
live AR guidance). Formally, the two stages break down f(p;xt) as f(p;xt) =
M(f(p;x);Rt, tt). Here x denotes the organ’s interventional reference state.
The function M(·;Rt, tt) : R3 → R

3 denotes a rigid update transform at time t,
parameterised by a rotation Rt ∈ SO3 and translation tt ∈ R

3. Thus the initial
registration stage is for estimating x and the tracking stage is for estimating
(Rt, tt). To have live AR, only the tracking stage needs to be real-time. The
time to solve the initial registration stage is a delay period before AR can run.
With our current implementation this takes approximately three minutes with
non-optimised C++/Matlab code on a standard workstation PC (approximately
two minutes for manual pre-processing and one minute for optimisation). The
tracking stage is an implementation of [3] in optimised C++/CUDA and runs
at approximately 16 fps.

2.3 The Initial Registration Stage

Overview. We illustrate the problem setup in Fig. 1 using a human uterus with
a deep myoma. This stage is more challenging to solve than the tracking stage
because (i) we have no texture information associated with the organ’s sur-
face (because it comes from a radiological image segmentation), and (ii) it is a
deformable registration. We tackle it similarly to [4] using a 3D point cloud recon-
struction of the interventional scene by running rigid Structure-from-Motion
(SfM), for which mature methods exist. To do this we require some sample
images of the organ, known as keyframes, observing it from different viewpoints
and distances. In our experiments typically no more than 10 are required, which
are gathered as the surgeon performs an initial exploration of the organ (referred
to as the exploratory phase). Note that a SfM reconstruction is up to an unknown
global scale factor s. We resolve this jointly with registration.
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We formulate the problem as a non-linear energy-minimisation problem, with
energies coming from prior and data terms. The prior term encodes the model’s
internal energy, which is used to regularise the problem. The data terms are illus-
trate in Fig. 1. The first involves the point cloud reconstruction, and encourages
the organ’s surface mesh to fit to the point cloud. Importantly, this is a robust
data term, which accounts for the fact that the reconstruction may contain out-
liers or some residual background and/or occluding structures. The second data
term complements the first and uses contour cues. Specifically, it is a silhouette
contour term which makes the organ model’s silhouette align to its associated
contours in the keyframe images. This is complementary to the point cloud data
term for two reasons. Firstly, we never usually reconstruct points reliably at these
regions due to occlusions. Secondly, it anchors the organ’s silhouette to the con-
tour fragments, which is a strong constraint. We implement this data term with
some manual assistance, similarly to [4]. Specifically, a human operator marks
in a keyframe where they can confidently see the organ’s silhouette contours
(Fig. 1, first row). We call these contour fragments. The operator does not need
to mark contour fragments in all keyframes (it can be done with only one). If
more keyframes are marked then we have more constraints, but it takes more
time. We use a default of four keyframes. They also do not need to be contiguous.
Optionally, an anatomical landmark data term can also be included [4], which
is used to align distinct landmarks that can be found on the organ’s surface in
the pre-operative and laparoscopic images. In [4] for the uterus, these were the
Fallopian tube/uterus junctions, which were manually located. Landmarks help
guide registration if the initialisation is poor or there is very strong deformation.
In the presented experiments we do not use them in the optimisation process,
so are omitted from the energy function.

The main improvements over [4] are summarised as follows:

– In [4] the deformable model used was a 3D affine model. This was shown to be
sufficient for simple deformations of the human uterus but is not sufficient in
general. We extend the approach to work with general biomechanical models.
This requires changing the core energy function to include the model’s internal
energy (without this the problem is highly under-constrained), and to correct
the interventional reconstruction’s scale factor s. Note that in [4], s could be
absorbed into the affine model’s coefficients. This is generally not possible with
biomechanical models because a change of scale affects the internal energy.

– In [4] the organ’s surface was assumed to have disc topology. We generalise
this to arbitrary fixed topologies.

– We have sped up the process of marking contour fragments considerably with
a touch-screen interface, where the operator marks them with rough finger
strokes. These strokes then guide an automatic refinement method based on
intelligent scissors [8]. This reduces manual effort, typically taking less than
10 s for a single keyframe.

Interventional 3D reconstruction. During the exploratory phase the laparoscopic
video is saved to disk, then N keyframes {K1, . . . KN} are extracted. We index



A System for Augmented Reality Guided Laparoscopic Tumour Resection 119

these with i ∈ [1, N ]. This is done by uniformly sampling the video into N
intervals with a default N = 12. For each interval i we take the keyframe Ki to
be the one with the lowest optical motion, using the Sum-of-Absolute Difference
(SAD) as the metric computed between consecutive frame pairs. This is done to
improve the quality of the reconstruction because SfM work best with sharper
images. We then run a state-of-the-art dense SfM algorithm (currently Photoscan
[1]) to compute a dense point cloud reconstruction Q def= {q1, . . .qM}, qj ∈ R

3,
and the keyframe camera pose matrices Mi ∈ SE4. These hold the laparoscope’s
rotation matrix Ri ∈ SO3 and translation vector ti ∈ R

3 relative to the point
cloud. Recall that Q and ti are defined up to the unknown scale factor s ∈ R

+.
We chose Photoscan because it has been shown to work well on laparoscopic
data [3] and can produce far denser reconstructions than purely feature-based
methods. There may exist some keyframes whose pose is not computable, due to
e.g. insufficient visual overlap. We currently deal with this by simply removing
the keyframe. The point cloud Q may contain background and/or foreground
structures that partially occlude the organ. We currently deal with this by a
human operator cropping them using a fast lasso-based user interface [1]. To
reduce time we do not require the cropping to be perfect. We allow some non-
organ points to remain in Q and we deal with them by making the associated
data term robust (see below). In some instances SfM may fail, which typically
occurs when the keyframe overlap is insufficient. This can usually be resolved by
extracting more keyframes by doubling the number of intervals and re-running
SfM. In rare events SfM may still fail, due to very weak texture. In these cases we
find image enhancement such as Storz’s CLARA can help. Alternatively, SLAM
could be tried because unlike SfM it exploits temporal continuity.

Initialisation. We initialise x with a rigid transform, denoted by M ∈ SE4. In
some cases M can be considered known a priori, for example if the laparoscope
is assumed to be in a canonical position. When this cannot be assumed, we
compute it with a small amount of manual interaction as follows. A small num-
ber of point correspondences (at least four) are selected on the organ’s surface
model and one of the keyframe images. Without loss of generality let this be the
first keyframe K1. We then compute a rigid transform Ma from model coordi-
nates to laparoscope coordinates, by fitting the correspondences using OpenCV’s
PnP method. The point correspondences are computed using an interactive user
interface, where the model can be freely rotated to present it from a similar
viewpoint as the keyframe’s viewpoint. This significantly eases the operator’s
task. We then initialise s as follows. First we transform the model by Ma and
render it using OpenGL with the same intrinsic parameters as the laparoscope.
This generates a depth map d(x, y), and we compute s by comparing depths in
d to the depths of Q. Specifically, let d̃j be the depth of qj to the laparoscope
in keyframe 1, and (xj , yj) be its 2D position in the keyframe’s image. We can
then estimate s by s ≈ d(xj , yj)/d̃j . Note that only points that project within
the render’s silhouette can be used. To compute s robustly, we compute it as
the median value from all such points. Finally, the transform M is given by the
composition M = Ms M−1

i M−1
s Ma, where Ms is an isotropic scaling by s.
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The energy function. To improve clarity we define all image points in normalised
pixel coordinates, which is possible given the intrinsic calibration. The energy
function E(x, s) ∈ R

+ consists of the point cloud data term Epoint, which encour-
ages the organ’s surface to fit to Q, the contour data tern Econtour, which encour-
ages the organ’s silhouette contours to fit to the contour fragments, and the prior
term, which is the model’s internal energy Einternal(x):

E(x, s) = Epoint(x, s;Q) + λcontourEcontour(x, s; C1, . . . , CN ) + λinternalEinternal(x) (1)

where λcontour and λinternal are scalar weights specific to the organ category.
The set Ci denotes all pixels on the contour fragments in keyframe i.

We construct Epoint using an Iterative Closest Point (ICP)-based energy.
This works using a set of virtual point correspondences P = {p1, . . .pM} with
pj ∈ ∂Ω denoting the unknown position of point j on the organ’s surface mesh.
For a given (x, s) we compute Epoint as follows. First we transform the organ’s
surface mesh according to f(·;x) and rescale the point cloud with q̂j ← sqj .
We then set pj as the closest point to q̂j on the surface’s mesh. We define Epoint

using a robust point-to-plane distance function, which is inspired by point-to-
plane ICP with rigid objects. This allows the model to slide over the point cloud
without resistance, and is defined as follows:

Epoint(x, s;Q) =
1
M

M∑

j=1

ρ (dplane (vj(x), q̂j)) (2)

The function vj(x) ∈ R
4 gives the organ surface’s tangent plane at f(pj). The

function dplane(v,q) gives the signed distance between a plane v and a 3D point
q. The function ρ : R → R

+ is an M-estimator and is crucial to achieve robust
registration. Its purpose is to align the reconstructed point q̂j with the organ’s
surface, but to do so robustly to account for non-organ points being in Q or
poorly reconstructed points. The model should not align these points, and the
M-estimator facilitates this by reducing the influence of their alignment error on
E. We have tested various types and good results are obtained with pseudo-L1
ρ(x) def=

√
x2 + ε with ε = 10−3 being a small constant, which is used to make ρ

differentiable everywhere.
We construct Econtour similarly with virtual point correspondences. Specifi-

cally, for a given pair (x, s) and a given keyframe i we construct a set of virtual
correspondences Ri = {r1, . . . , rC(i)} where rk ∈ ∂Ω denotes the unknown posi-
tion of the kth contour fragment pixel ck on the model’s surface. The virtual
correspondences are points on the organ surface mesh’s occluding contours, and
are computed as follows. First we transform the organ’s surface mesh accord-
ing to f(·;x), then transform it to laparoscope coordinates using (Ri, s ti). We
then render the surface mesh using OpenGL, using the same intrinsic parame-
ters as the laparoscope. We then take the render’s silhouette and extract all the
pixels on the render’s boundary, which is put into a set B. For each contour
fragment pixel ck ∈ Cj we compute its closest point bk ∈ B and form a corre-
spondence with it. We then compute the 3D position of bk in model coordinates,
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which is easy to do with an OpenGL shader, and assign it to rk. We then evaluate
Econtour as the alignment error from all correspondences:

Econtour(x, s; C1, . . . , CN ) =
1
C

N∑

i=1

∑

(ck∈Ci,rk∈Ri)

ρ (‖π (f(rk)) − ck‖2) (3)

where π([x, y, z]�) def= 1/z[x, y]� is the perspective projection function and C is
the total number of contour fragment pixels. Here the M-estimator ρ is also used
to handle the fact that some of the contour fragment pixels may be erroneous,
which can sometimes occur if the intelligent scissoring fails to snap correctly at
low-contrast edges.

Optimisation. We optimise E by iterative non-linear optimization using a stiff-
to-flexible strategy. This is used to improve convergence by starting with a
stiff model, optimising E, then reducing the stiffness to account for more and
more deformation. We use a default of l = 6 stiffness levels with λinternal(l) =
2λinternal(l−1). For each level we alternate between computing the virtual corre-
spondence sets (Ri and P) and optimising E, which is done with a Gauss-Newton
iteration and backtracking line search. This continues until either convergence
is reached or 10 iterations have passed. At the final stiffness level we optimize
until convergence. Convergence however is not guaranteed because of the point-
to-plane distance function in Epoint. Specifically, the energy may increase after
P is re-computed. We handle this by using the point-to-point distance at the
final level, because this ensures E will decrease at each iteration.

2.4 The Tracking Stage

Having solved the initial registration we initiate the tracking stage, which
updates the initial registration in real-time using live images streamed from
the laparoscope. We solve this with an existing feature-based method [3]. This
works by first extracting 2D features in the keyframe images, then matching them
with RANSAC-based rigid registration to each new image. The advantages of
[3] are it is robust to occlusions from e.g. surgical tools, handles partial views
and viewpoint changes. Unlike SLAM-based tracking methods it does not use
frame-to-frame tracking. Instead it performs tracking-by-detection. This allows
it to register over long durations and can trivially recover when the organ is
not visible for certain periods, such as when the surgeon removes and then rein-
serts the laparoscope or cleans the lens. In cases when the organ is assumed
to be fixed relative to background structures, we can track using features from
both the organ and background structures. This improves stability if the organ’s
texture is weak, and we do this in the ex-vivo user study.

2.5 AR Guidance with Tool Access Visualisation

Having registered, the final task is AR visualisation. We briefly describe Trans-
parent Blending (TB) visualisation, which is the previous approach used with
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Fig. 2. (a) AR with Transparent Blending (TB) visualisation taken from [4]. (b) Our
AR visualisation combining Transparent Blending with Tool Access Visualisation. (c)
Our AR system in live operation during the ex-vivo user study.

Fig. 3. The difference between typical AR visualisation of a tumour (a), which does
not take into account the position and access direction of the incision tool, and the
proposed Tool Access Visualisation (b) which does.

monocular laparoscopes. It works by first rendering the tumours on the laparo-
scope’s image plane, then a composite image is made by blending the render with
the real image to give the impression the organ is transparent. An example from
[4] is shown in Fig. 2(a) where two myomas are visualised with TB. TB however
has a serious limitation which has not been previously addressed, and we find it
can actually mis-guide the surgeon. The problem is illustrated in Fig. 3(a) and
is as follows. When a surgeon actually uses TB to resect a tumour they usually
assume it indicates where they should cut to access the tumour. This however
is incorrect. It just shows the position of the tumour from the viewpoint of the
laparoscope. Often they assume the tumour’s centre would be reached by cutting
into the organ from the rendered tumour’s centre c ∈ R

2. This is not the case
as shown in Fig. 3(a). In our user study we found this is a significant problem
with smaller and/or deeper tumours, and can cause them to be missed.

What the surgeon actually wants is to be shown how to reach the tumour
using the incision tool. Furthermore, surgeons typically want to also see the
tumour’s safe tissue margin. We provide both information with what we call
Tool Access Visualisation, which is shown in Fig. 2(b). Its associated geometry
is shown in Fig. 3(b). Tool Access Visualisation works by showing the tumour’s
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safe tissue margin projected onto the organ’s surface as a ring, which we call the
tumour guidance ring. The idea is that if the surgeon were to cut into the organ
along the guidance ring, they would segment the tumour with a minimal margin
of w mm. At present we do not visualise uncertainty in the margin’s location,
which is important for real clinical use, and leave this to future work.

We achieve Tool Access Visualisation with two projections. The first is a
perspective projection of the margin’s surface onto the organ’s surface, using
a centre-of-projection located at the incision tool’s port centre p ∈ R

3. The
second is a perspective projection of the projected margin’s perimeter onto the
laparoscope’s optical image (shown as rings in Fig. 2(b)). To achieve this we need
to know p. Recall that the organ has been registered in laparoscope coordinates,
therefore we need p in laparoscope coordinates. It may be possible to estimate
p automatically using external and/or internal tool tracking, however this is left
to future work. Here we assume p is given a priori. In our user study, where
the ports are located on a pelvic trainer, this is simple and can be done offline
by taking physical measurements. We complete the visualisation by combining
Tool Access Visualisation with TB visualisation (Fig. 2(b)) to show tumours
(solid fill), organ (wireframe) and safe tissue margins (wireframe).

3 Evaluation

This section is divided into two parts. The first is the main part describing
our ex-vivo user study. The second part shows our system doing live in-vivo
registration of a porcine kidney during a laparoscopic training exercise. All the
procedures were performed in the operating room of the International Centre of
Endoscopic Surgery (CICE), France, approval number C63 18 113.

3.1 Ex-vivo User Study Evaluation

We used 29 porcine kidneys recovered from pigs operated after resident training.
For each kidney pseudo-tumours were created by injecting alginate, a harden-
ing hydrocolloid, of between 4 mm and 10 mm in diameter. In total 59 pseudo-
tumours were injected at arbitrary sub-surface positions, with an average of 2.5
per kidney. We used safe tissue margins of 5 mm. Kidney models were made as
described in Sect. 2.1 from 3T MRI images (0.4 mm resolution and slice thick-
ness 1.5 mm). The interventional equipment is shown in Fig. 2(c) and consisted
of a Karl Storz 10 mm laparoscope column with CLARA image enhancement,
a surgical grasper, an incision tool, a laparoscopic pelvic trainer and an instru-
ment with a surgical marker pen attached at the tip (referred to as the marker
instrument). The AR software ran on a mid-range Intel i7 desktop workstation
with an NVidia 980 Ti GPU, with visualisations shown on a 26 inch monitor.
Laparosurgery was performed by a skilled final-year resident. The resident spent
time training before evaluation to familiarise the task, the guidance software and
to provide feedback to improve visualisation. In total 28 pseudo-tumours were
resected during this time.
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3.2 Interventional Protocol and Equipment

Laparosurgery was performed using the pelvic trainer, with the kidney inserted
on a ground surface and the laparoscope and instruments inserted through three
ports. The same port configuration was used in all cases. The surgeon was tasked
to remove each tumour by cutting out a conic tissue section which included the
tumour and its safe tissue margin. The kidneys were divided into two groups
(non-randomised): the AR group and the Non-AR group, with 13 kidneys in
the AR group with 29 tumours, and 19 kidneys in the Non-AR group with 33
tumours. Kidneys in the AR group were operated with the AR guidance system
activated. Recall that the guidance system is not designed to handle significant
deformation or topology change after the initial registration, which occurs when
a tumour is resected. This was dealt with in the protocol by having the surgeon
first mark dots along the tumour guidance ring using the marker instrument,
guided by the AR visualisation. Once completed they used the marks to guide
the resection with AR disactivated. For the Non-AR group, the surgeon first
consulted the MRI using interactive slice-based visualisation [14]. The task was
then performed without AR guidance using the same safe tissue margin of 5 mm.

3.3 Results

We present results with the negative margin rate. A negative margin occurs
when the tumour is contained entirely within the resected tissue. A positive
margin occurs when either the tumour is completely absent from the resected
tissue (a complete miss), or if it is partially contained (a contact). For three
tumours the protocol was not completed properly (the conic section did not cut
fully through the kidney) and were excluded. There were 13 negative margins
in the Non-AR group (41.9%), with 4 complete misses and 14 contacts. There
were 23 negative margins in the AR group (85.2%), with 0 complete misses and
4 contacts. Statistical significance was measured with Fisher’s exact two-tailed
test with p = 0.0010. Therefore the user study indicates a very significant benefit
for using the AR guidance system.

3.4 Live In-vivo Registration of a Porcine Kidney

We finish by showing our system in live use for registering in-vivo a porcine
kidney during a laparoscopic training exercise (Fig. 4). The kidney did not con-
tain a tumour and no ground truth information was available, so the results
are merely to demonstrate that the registration system works live and in-vivo.
The biomechanical kidney model was build as described in Sect. 2.1. The same
Storz laparoscope column was used as the user study. An exploratory video was
captured lasting approximately 30 s. We show sample keyframes in Fig. 4(b–d)
with contour fragments overlaid. Note that only the kidney’s upper silhouette
contours are visible, with the lower ones being occluded by intestine and peri-
toneum, which is why there are no contour fragments on the lower half. In
Fig. 4(e) we overlay the registered model’s surface onto one of the keyframes,
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(a) )d()c()b(
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Fig. 4. Live in-vivo registration of a porcine kidney. (a) the organ model’s surface
mesh. (b–d) contour fragments in three keyframes. (e) the surface mesh overlaid on a
keyframe after the initial registration with its silhouette contours in red. (f–g) Snapshots
of the surface mesh during live tracking, with ground-truth silhouette contours shown
in green. Note that the kidney’s lower portion is occluded by intestine and peritoneum.
Best viewed in colour. (Color figure online)

showing the upper contours aligning well with the image. In Fig. 4(f,g) we show
frames from the live tracking stage, which shows robustness to tool occlusions
and mild deformations.

4 Conclusion

We have presented a complete system for AR guided laparoscopic tumour resec-
tion, and a quantitative ex-vivo user study to measure its benefit in live use,
which is the first of its kind. The system has been based on [4] with several
major improvements. These include supporting general biomechanical models
as inputs, less manual processing and a new visualisation method, called Tool
Access Visualisation (TAV), which shows the surgeon how to access a tumour
and its safe tissue margin with an incision tool. In future work we aim to conduct
a similar user study in-vivo, and to test with stereo laparoscopic images, where
the point cloud reconstruction would come from stereo triangulation. We also
aim to extend Tool Access visualisation to handle non-straight incision tools,
such as articulated ones used in robotic laparosurgery.
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