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1 An Introduction to Intuitionistic Fuzzy Sets

Intuitionistic sets were introduced by Atanasov [1] as an extension of fuzzy sets.
However, it was observed already by Atanasov [2] that their logical properties differ
in some aspects from those of fuzzy sets. In this note we prove that in the framework
of intuitionistic fuzzy sets can be defined connective systems which satisfy logical
rules analogous to the rules of the constructive logic with strong negation. Since
the rough sets are models of the mentioned logic, we will compare their algebraic
properties with those of intuitionistic sets.

The intuitionistic fuzzy sets are introduced as pairs A D .�T ; �F/ of membership
functions �T ; �FWU �! Œ0; 1� defined on a fixed nonempty universe U such that
�T.x/ C �F.x/ � 1, for all x 2 U. Therefore, to any element x 2 U corresponds
a logical value .�T .x/; �F.x//, where �T .x/ expresses the membership value of the
element x in the set A and �F.x/ the degree of the non-membership of x with respect
to A. Of course, in this interpretation the value 1��T.x/��F.x/ denotes a measure
of non-determinacy or of the incompleteness of our information. Thus the possible
logical values form a lattice

L D f.x1; x2/ 2 Œ0; 1�2 j x1 C x2 � 1g

where the partial order is defined as follows:

.x1; x2/ � . y1; y2/ , x1 � y1 and x2 � y2. (P)
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Remark 1 It is easy to see that the lattice operations in L have the form

.x1; x2/ _ . y1; y2/ D .max.x1; y1/, min.x2; y2//,

.x1; x2/ ^ . y1; y2/ D .min.x1; y1/, max.x2; y2//.

Clearly, the least element of L is 0L D .0; 1/ and its greatest element is 1L D .1; 0/.
In Cornelis et al. [4], it is proved that L is a complete sublattice of Œ0; 1� � Œ0; 1�d,
and this yields that L is completely distributive.

Example 1 A special area of knowledge management focuses on subjective ontol-
ogy (epistemology), see Goertz and Mahoney [6]. A key property of subjective
ontology is that the ontology is created with a learning process where some
information may be incomplete or partial. Thus, the principle of excluded middle
is not met in this domain. The subjective ontology is a conceptual model generated
by cognitive processes. During the learning process, the aggregated input from the
environment is used to build up the conceptual model.

Having an ontology fragment as shown in Fig. 1, every edge correspond to a
statement, elementary proposition. The notation is based on the RDF model. A
complex arc denotes the specialization (is a) relationship, while the simple arcs
refer to the properties of the concepts. As also the properties are concepts, the
specialization can be defined among the properties too.

It is assumed that at person level a proposition may be true, false or unknown.
This approach is very common in data and information systems. For example, the
SQL standard in Grant [7] uses a NULL value to denote the unknown value at a
field level. For example, the truth value of a statement that a person eats apple can
be either T, F or U.

P(eat,Mary, apple) = T
P(eat,Tom, apple) = F
P(eat,Peter, apple) = U

Fig. 1 Sample ontology fragment
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If the engine aggregates the truth values of the different agents to construct the
population level truth value, we get a membership like value.

m(eat,my_friend,fruit,T) = .500
m(eat,my_friend,fruit,F) = .167
m(eat,my_friend,fruit,U) = .333

On this way, we get use intuitionistic fuzzy representation of the relationship
element s in the fuzzy ontology. This representation form allow a more efficient
decision making in the ontology framework.

Application Areas A relevant application area is the fuzzy clustering of a product
palette. The goal of the clustering is to determine the groups of similar objects.
The generated groups can be used to build up the ontology of the products (see e.g.
Liu [12]). This ontology enables an easier management of product categories and
it helps us to discover hidden dependencies between the products. The similarity
evaluation of the products can be based here on a survey or on a sentiment analysis
of natural texts. We can assume that in the survey, the customers can leave some
questions blank if they have no information on a given aspect of the products. In both
cases, the missing data may occur frequently, this fact justifies the application of an
intuitionistic fuzzy model. The intuitionistic model provides additional information
to distinguish the missing value from the other not-missing values. Hence the
clustering based on this model can provide a more sophisticated partitioning than
the base evaluation methods.

Now let F.U/ stand for the set of all membership functions �WU ! Œ0; 1�.
Defining the operations _, ^ for any f ; g 2 F.U/ as usually (see [13]):

. f _ g/ .x/ WD maxf f .x/; g.x/g and . f ^ g/ .x/ WD minf f .x/; g.x/g; for all x 2 U;

we obtain a completely distributive lattice .F.U/; _, ^/. The least element of F.U/

is the constant 0 map on U, denoted by 0, and its greatest element is 1, the constant
1 map. Next, consider the set of intuitionistic fuzzy sets

I.U/ D f.�T ; �F/ 2 F.U/2 j �T.x/ C �F.x/ � 1, for all x 2 Ug,

ordered as follows:

.�T ; �F/ � .�T ; �F/ , �T.x/ � �T.x/ and �F.x/ � �F.x/. for all x 2 U.

.I.U/, �/ is a complete distributive lattice with least element .0; 1/ and greatest
element .1; 0/ (see e.g. Novák et al. [13]). We define a unary operation � on L and
I.U/ by setting

� .x1; x2/ D .x2; x1/, for all .x1; x2/ 2 L, and
� .�T ; �F/ D .�F; �S/, for all .�T ; �F/ 2 I.U/.
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In Cornelis et al. [4] � is called the standard negator on L. Clearly, we have

� .� .x1; x2// D .x1; x2/; and

.x1; x2/ � . y1; y2/ , � .x1; x2/ � � . y1; y2/:

for any .x1; x2/; . y1; y2/ 2 L. It is obvious that any .�T ; �F/; .�T ; �F/ 2 I.U/

satisfy the same rules. These properties mean that .L; _; ^; �; .0; 1/; .1; 0// and
.I.U/; _; ^; �; .0; 1/; .1; 0// are De Morgan algebras.

A De Morgan algebra A D .A; _; ^; �; 0; 1/ is an algebra such that .A; _; ^/ is
a bounded distributive lattice with a least element 0 and a greatest element 1, and �
is a unary operation that satisfies, for all x; y 2 A,

� .� x/ D x and x � y , � x � � y.

This definition yields that � is an isomorphism between the lattice A and its dual
Ad. Therefore, � satisfies the so-called De Morgan equations:

� .x _ y/ D � x^ � y, � .x ^ y/ D � x_ � y. (M)

Intuitionistic sets can be viewed as a common generalization of the fuzzy sets and
of the rough sets. Indeed, fuzzy sets on U can be interpreted as exact intuitionistic
sets .�T ; �F/ with �F D 1 � �T , i.e. they correspond to the family

Ex.U/ D f.�; 1 � �/ j � 2 F.U/g.

Conversely, any intuitionistic fuzzy set .�T ; �F/ can be viewed as a pair of
“exact” fuzzy sets .�T ; 1 � �T/ and .1 � �F ,�F/, and obviously

.�T ; 1 � �T / � .�T ; �F/ � .1 � �F; �F/.

Thus the fuzzy set .�T ; 1 � �T/ can be considered as a “lower approximation”,
and .1 � �F; �F/ as an “upper approximation” of the intuitionistic set .�T ; �F/.
Hence, we can define an upper approximation operator A and a lower approximation
operatorA on the set I.U/ as follows (see Atanasov [2]):

AWI.U/ �! Ex.U/, A.�T ; �F/ WD .1 � �F; �F/,
AWI.U/ �! Ex.U/, A.�T ; �F/ WD .�T ; 1 � �T/.

2 T-norms and T-conorms Defined on the Lattice L

In the literature, the lattice L D f.x1; x2/ 2 Œ0; 1�2 j x1 C x2 � 1g of logical values is
usually equipped with some additional logical connectives different from _ and ^.
For this we need to recall the notion of a t-norm and t-conorm defined on a lattice.
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A t-norm on a bounded lattice L (with least element 0L and greatest element
1L) is an order-preserving, commutative, associative, binary operation TWL2 ! L
satisfying T.1L; z/ D z, for all z 2 L. Dually, a t-conorm S.x; y/ on L is an order-
preserving, commutative, associative binary operation SWL2 ! L, having 0L as a
neutral element. Following the terminology in Cornelis et al. [4], we say that a t-
norm T (respectively a t-conorm S) on L is t-representable if there exists a t-norm
T and a t-conorm S on the lattice .Œ0; 1�; �/ such that, for any x D .x1; x2/ 2 L and
any y D . y1; y2/ 2 L we have

T .x; y/ D .T.x1; y1/; S.x2; y2// (1)

S.x; y/D .S.x1; y1/;T.x2; y2//. (1’)

In [4, Theorem 2] is also proved that for any t-norm T and any t-conorm S on Œ0; 1�

satisfying

T.a; b/ � 1 � S.1 � a; 1 � b/, for all a; b 2 Œ0; 1�; (2)

the mappings T and S defined by the formulas (1) and (1’) are a t-norm and a
t-conorm on L, respectively. If the relation in (2) is satisfied with equality, i.e.

T.a; b/ D 1 � S.1 � a; 1 � b/, for all a; b 2 Œ0; 1�, (2’)

then the operators T and S are called dual (in the sense of L. Zadeh). Obviously, if
T and S satisfies (2’), then S and T also satisfies (2’).

Example 2 Let us consider the Łukasiewitz t-norm TL with TL.x1; x2/ D x1 ~x2 WD
max.x1 C x2 � 1; 0/; for all x1; x2 2 Œ0; 1� and the Łukasiewitz t-conorm SL with
SL.x1; x2/ D x1 ˚x2 WD min.x1 Cx2; 1/; for all x1; x2 2 Œ0; 1�. It is easy to check that
they satisfy relation (3’). Hence they are dual operators, and for any x D .x1; x2/ 2 L
and any y D . y1; y2/ 2 L the operation

.x1; x2/ ~ . y1; y2/ D .x1 ~ y1; x2 ˚ y2/ and

.x1; x2/ ˚ . y1; y2/ D .x1 ˚ y1; x2 ~ y2/

will be a (representable) t-norm and t-conorm on L, respectively. Clearly,

.x1; x2/ ~ .y1; y2/ D.max.x1 C y1 � 1; 0/; min.x2 C y2; 1// (3)

.x1; x2/ ˚ .y1; y2/ D.min.x1 C y1; 1/; max.x2 C y2 � 1; 0//: (3’)

3 Rough Sets and Their Representations

Rough sets were introduced by Pawlak [14] in order to provide a formal approach
to deal with incomplete data. In rough set theory, any set of entities is characterized
by a lower approximation and an upper approximation.
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Approximations are then defined in terms of an indiscernibility space, that is, a
relational structure .U;R/ such that R is a binary relation on U. In original definition
of Pawlak, R is an equivalence relation, but since inception, several generalizations
of his construction had been proposed. Here we will consider R � U � U to be a
quasiorder, i.e. a reflexive, transitive relation, since in this case the induced rough
sets still form a completely distributive lattice (see Järvinen et al. [10]), similar to
the case of an equivalence.

Let R � U�U be a quasiorder defined on the universe U. For any element x 2 U
the set R.x/ D fu 2 U j .x; u/ 2 Rg is called the relational neighbourhood of x.
Now, for any set X � U its lower approximation and its upper approximation are
defined as follows:

XR WD fu 2 U j R.u/ � Xg, XR WD fu 2 U j R.u/ \ X ¤ ;g.

The rough set of X is the pair .XR;XR/, and the set of all rough sets is RS D
f.XR;XR/ j X � Ug. In this approach, XR can be viewed as the set of elements
which certainly belong to X, and XR is interpreted as the set of objects that possibly
are in X, when elements are observed through the knowledge expressed by .U;R/.
The set RS can be ordered by the coordinatewise order:

.XR;XR/ � .YR;YR/ , XR � YR and XR � YR.

It was proved in Järvinen et al. [10] that the ordered set RS D .RS; �/ is a
completely distributive De Morgan algebra, and latter it was shown that a particular
Kleene algebra can be defined on it (see Järvinen and Radeleczki [8]). A Kleene
algebra is a De Morgan algebra K D .K; _; ^; �; 0; 1/ satisfying the (Kleene’s)
axiom:

x^ � x � y_ � y, for all x; y 2 K. (K)

A Heyting algebra L is a bounded lattice such that for all a; b 2 L, there is a
greatest element x 2 L satisfying a ^ x � b. This element x is called the relative
pseudocomplement of a with respect to b, and is denoted by a ) b. It is known that
any completely distributive complete lattice is a Heyting algebra .L; _; ^; ); 0; 1/

where the relative pseudocomplement is defined as follows:

x ) y D
_

fz 2 L j x ^ z � yg.

A Nelson algebra is a Kleene algebra N D .N; _; ^; �; 7!; 0; 1/ such that for any
pair a; b 2 N the relative pseudocomplement a 7! b of the element a with respect
to � a _ b there exists (see Cignoli [3]), and for any c 2 N the equation:

.a ^ b/ 7! c D a 7! .b 7! c/: (N)
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holds. In each Nelson algebra, the weak negation : can be defined as

:a WD a ! 0, for all a 2 N. (4)

Since RS is a completely distributive lattice, a Heyting algebra .RS; _; ^; )/

can be defined on it. Moreover, in Järvinen and Radeleczki [8] it was proved that
RS is a Nelson algebra.

Let P.U/R D fXR; j X � Ug and P.U/R D fXR j X � Ug. In [10] is proved that
.P.U/R; �/ and .P.U/R; �/ are Heyting algebras. Clearly, .XR;XR/ is an element
of P.U/R �P.U/R. Let U�A stand for the complement of a set A � U. It is known
that U � XR is just the set .U � X/R 2 P.U/R. Since each rough set is uniquely
determined by the approximation pair .XR;XR/, one can represent the rough set of
X as a pair .XR;U � XR/ D .XR; .U � X/R/ 2 P.U/R � P.U/R D .P.U/R/2, too.
Therefore, we construct the set

DRS D f.XR;U � XR/ j X � Ug � .P.U/R/2 , (5)

which is ordered as follows:

.XR;U � XR/ � .YR;U � YR/ , XR � YR and U � XR � U � YR.

Thus .XR;U � XR/ � .YR;U � YR/ , �
XR � YR and XR � YR

� , .XR;XR/ �
.YR;YR/, and hence DRS and RS are order-isomorphic; therefore, they are isomor-
phic as Heyting algebras and as Nelson algebras, as well. Since XR and U � XR

are disjoint sets, the above representation is called the disjoint representation
of the rough sets of R. The algebraic operations on DRS are defined for any
.A;B/; .C;D/ 2 DRS as follows:

.A;B/ _ .C;D/ D .A [ C, B \ D/,

.A;B/ ^ .C;D/ D .A \ C, B [ D/,
� .A;B/ D .B;A/

Because RS determines a Nelson algebra, for any pair .XR;XR/; .YR;YR/ 2 RS
the Nelson implication .XR;XR/ 7! .YR;YR/ is also defined. By isomorphism to this
operation 7! corresponds an operation � on DRS, expressed as

.A;B/ � .C;D/ WD .A ) C; A \ D/;

where ) is the Heyting operation of the algebra .P.U/R; _; ^; )/.
Now, we are closing this section by proving that the disjoint representations of

rough sets of R can be interpreted as intuitionistic fuzzy sets. We will do this by
identifying the disjoint representation .XR;U � XR/ of a rough set .XR;XR/ 2 RS

with the pair
�
�.XR/; �.U�XR/

�
formed by the characteristic function of the set XR,

respectively U � XR. Observe that
�
�.XR/; �.U�XR/

�
is an intuitionistic set, since
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XR,U � XR � U and XR \ .U � XR/ � XR \ .U � XR/ D ; imply that for any
element x 2 U, only the following cases are possible:

(1) x 2 XR. Then x … U � XR, hence �.XR/.x/ C �.U�XR/.x/ D 1 C 0 D 1,
(2) x 2 U � XR. Then x … XR, hence �.XR/.x/ C �.U�XR/.x/ D 0 C 1 D 1

(3) x … XR and x … U � XR. Then �.XR/.x/ C �.U�XR/.x/ D 0 C 0 D 0.

Thus for any x 2 U we get �.XR/.x/ C �.U�XR/.x/ � 1.

4 Generalizing Nelson Logic via Intuitionistic Fuzzy Sets

Our aim is to generalize the notion of rough sets by using intuitionistic sets, in such
a way to obtain algebraic structures similar to Nelson algebras, suitable to model
similar logical rules. The significance of the Nelson algebras lies in the fact that
they provide models for Constructive logic with strong negation (cf. Järvinen and
Radeleczki [9]) introduced by D. Nelson. This logic is often called as Nelson logic.
It is an extension of the intuitionistic propositional logic by strong negation �, as
shown by Rasiowa [15]. This logic is axiomatized by extending intuitionistic logic
with the formulas [where p $ q D .p ! q/ ^ .q ! p/]:

(NL1) � p ! .p ! q/;
(NL2) � .p ! q/ $ p ^ � q;
(NL3) � .p ^ q/ $ � p _ � q;
(NL4) � .p _ q/ $ � p ^ � q;
(NL5) � � p $ p;
(NL6) � :p $ p.

Since the rough sets defined by equivalence or quasiorder relations form Heyting
algebras .RS; _; ^; )/ which are very particular objects in fuzzy setting (see
e.g. Novák et al. [13]), first we need to consider a notion which represents a
generalization of Heyting algebras and it is used in the framework of fuzzy sets.

Definition 1 A bounded residuated lattice is an algebra A D .A; _; ^; 	; !; 0; 1/

of type (2,2,2,2,0,0) such that

(a) .A; _; ^/ is a lattice with least element 0 and greatest element 1,
(b) .A; 	/ is a commutative semigroup, such that 1 	 x D x 	 1 D x, for all x 2 L.
(c) A satisfies the adjointness property, for all x; y; z 2 A, that is

x 	 y � z if and only if x � y ! z:

We note the operation i.x; y/ D x ! y is order reversing in the first variable, and
order preserving in its second variable, moreover, for all x; y; z 2 A the rules

x 	 . y _ z/ D x 	 y _ x 	 z;
.x 	 y/ ! z D x ! . y ! z/
x � y , x ! y D 1
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are always satisfied. We say that A satisfies the double negation law if

.x ! 0/ ! 0 D x, (DN)

for each x 2 A. Denote ex WD x ! 0. Then (DN) means e .ex/ D x, and the map
x 7!ex is a De-Morgan operation on the lattice A (see e.g. Galatos et al. [5]).

Observe, that in fact any Heyting algebra is a particular residuated lattice with
	 D ^. It is also well-known that any continuous t-norm T on a complete lattice L
induces a residuated structure on L as follows:

x !T y WD sup fz 2 L j T.x; z/ � yg; for all x; y 2 Lg:

The implication x ! y is called the residuated implication induced by T.

Example 3

(a) Consider the Lukasiewitz t-norm x ~ y D maxf0; x C y � 1g, x; y 2 Œ0; 1�.
Then x !L y D minf1; 1 � x C yg. Clearly, ex D x ! 0 D 1 � x, for all
x 2 Œ0; 1�. Hence e .ex/ D x, for all x 2 Œ0; 1�. Thus B D .Œ0; 1�; max.; /,
min.; /; ~; !L; 0; 1/ is a bounded residuated lattice satisfying (DN). It is well-
known that B satisfies the additional rules

x ~ .x !L y/ D min.x; y/ and max..x !L y/; . y !L x// D 1:

Residuated lattices satisfying these rules and (DN) are called MV-lattices.
(b) Consider the implication induced by TL D ~ defined on f.x1; x2/ 2 Œ0; 1�2 j

x1 C x2 � 1g by (3). In Cornelis et al. [4] it is shown, that

.x1; x2/ )L . y1; y2/ WD .min.1; 1 � x1 C y1; 1 � y2 C x2/, max.0; y2 � x2//,
(6)

for all x; y 2 Œ0; 1�. It is easy to check that .L; _; ^; ~; )L; .0; 1/; .1; 0// does
not satisfies the double negation rule, because eL.x1; x2/ D .x1; x2/ )L .0; 1/ D
.x2; 1 � x2/, and hence it is not an MV-algebra.

Using the residuated implication !L discussed in Example 3(a), we will
define on the lattice L of logical values a new binary operation �L:

.x1; x2/ �L . y1; y2/ WD .x1 !L y1; x1 ~ y2/, for all .x1; x2/; . y1; y2/ 2 L.
(7)

Let L be a lattice with least element 0 and greatest element 1. An implicator on L
is a mapping iWL2 ! L satisfying the conditions: i.0; 0/ D i.0; 1/ D i.1; 1/ D 1 and
i.1; 0/ D 0. This notion is derived from fuzzy logic, where L D Œ0; 1�. An implicator
i satisfies the left neutrality principle, if i.1; x/ D x, for all x 2 L, and i satisfies the
identity principle, if i.x; x/ D x, for all x 2 L.
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Proposition 1 The lattice L is closed with respect to �L. The operation �L is an
implicator on L which satisfies the left neutrality and identity principle.

Proof First, we note the following: Because .Œ0; 1�; max.; / min.; /; ~; !L; 0; 1/ is
a residuated lattice with ex D 1 � x, for any .x1; x2/ 2 L we have

x1 C x2 � 1 , x1 � 1 � x2 Dex2 , x1 ~ x2 D 0:

Hence .x1; x2/ 2 L if and only if x1 ~ x2 D 0.
Now take any .x1; x2/; . y1; y2/ 2 L. Then x1 ~ x2 D 0 and y1 ~ y2 D 0. Since

by definition, .x1; x2/ �L . y1; y2/ WD .x1 !L y1; x1 ~ y2/, in order to prove
.x1; x2/ �L . y1; y2/ 2 L, it suffices to show that .x1 ~ y2/ ~ .x1 )L y1/ D 0.
Because ~ is commutative, associative and order preserving, we obtain:

.x1 ~ y2/ ~ .x1 )L y1/ D y2 ~ x1 ~ .x1 )L y1/ � y2 ~ y1 D y1 ~ y2 D 0:

This proves that .x1; x2/ �L . y1; y2/ 2 L.
Next, recall that the least element and the greatest element in L is .0; 1/,

respectively .1; 0/. Now is a routine to check that

.0; 1/ �L .0; 1/ D .0; 1/ �L .1; 0/ D .1; 0/ �L .1; 0/ D .1; 0/, and

.1; 0/ �L .0; 1/ D .0; 1/.

Thus �L is an implicator on L. We get also
.1; 0/ �L .x1; x2/ D .1 !L x1,1 ~ x2/ D .x1; x2/, meaning that �L satisfies

the left neutrality. Similarly, .x1; x2/ �L .x1; x2/ D .x1 !L x1; x1 ~ x2/ D .1; 0/,
hence the identity principle is also satisfied by �L. �

Finally, we introduce the notion of a quasi Kleene algebra which is defined as a
De Morgan algebra .K; _; ^; ~; ˚; �; 0; 1/ extended with a strong conjunction ~
and a strong disjunction ˚, and such that

� .x ~ y/ D .� x/ ˚ .� y/ , � .x ˚ y/ D .� x/ ~ .� y/ (M�)

x ˝ .� x/ � y ˚ .� y/ , for all x; y 2 K. (K�)

Of course, replacing ˝ by ^ and ˚ by _ we reobtain as a particular case the notion
of a Kleene algebra.

Theorem 1 The algebra .L; _; ^; ~; ˚; �; .0; 1/ ; .1; 0// is a quasi Kleene alge-
bra, and the implicator �L satisfies the identity:

.a ~ b/ �L c D a �L .b �L c/. (N�)

Proof Since .L; _; ^; �; .0; 1/ ; /.1; 0// is a De Morgan algebra, we have to check
only .M�/ .K�/. Take any x D .x1; x2/ 2 L and y D . y1; y2/ 2 L. By definition,
� .x ~ y/ D� .x1 ~ y1; x2 ˚ y2/ D .x2 ˚ y2; x1 ~ y1/ D .x2; x1/ ˚ . y2; y1/ D

D .� x/ ˚ .� y/.
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The equality � .x˚ y/ D .� x/ ~ .� y/ is proved dually. Thus .M�/ is satisfied.
We get also .x1; x2/ ~ .� .x1; x2// D .x1; x2/ ~ .x2; x1/ D .x1 	 x2; x2 ˚ x1/ D

.0; x2˚x1/, because x2 � 1�x1 �ex1 implies x1	x2 � x1	ex1 D x1	.x1 !L 0/ D 0

(by Definition 1(c)). Similarly, we obtain
. y1; y2/ ˚ .� . y1; y2// D . y1; y2/ ˚ . y2; y1/ D . y1 ˚ y2; y2 	 y1/ D . y1 ˚ y2; 0/.
Since .0; x2 ˚ x1/ � . y1 ˚ y2; 0/, we deduce

x ˝ .� x/ D .x1; x2/ ~ .� .x1; x2// � . y1; y2/ ˚ .� . y1; y2// D y ˚ .� y/ ,

proving that the algebra satisfies .K�/.
In order to prove .N�/, take any a D .a1; a2/, b D .b1; b2/, c D .c1; c2/ such that

a; b; c 2 L. Then

.a~b/ �L c D .a1 ~b1; a2 ˚b2/ �L .c1; c2/ D ..a1 ~b1/ !L c1; a1 ~b1 ~c1/:

As .a1~b1/ !L c1 D a1 !L .b1 !L c1/ holds in .Œ0; 1�;max.; /, min.; /; ~; !L

; 0; 1/, we get .a ~ b/ �L c D .a1 !L .b1 !L c1/; a1 ~ b1 ~ c1/ in L.
Since the right side of the equality in .N�/ yields

a �L .b �L c/ D .a1; a2/ �L ..b1; b2/ �L .c1; c2// D

D .a1; a2/ �L .b1 !L c1; b1 ~ c1/ D .a1 !L .b1 !L c1/; a1 ~ b1 ~ c1/,
we obtain that .a ~ b/ �L c D a �L .b �L c/. �

Corollary 1 The intuitionistic sets on U form a quasi Kleene algebra
.I.U/; _^; ~; ˚; �; .0; 1/ ; .1; 0//.

Finally, we will prove that on L can be defined a propositional calculus
that satisfies almost all additional logical rules (NL1)–(NL6) used to extend the
intuitionistic logic into Nelson logic. In order show this, it suffices to prove that
L satisfies some identities corresponding to the tautologies (NL1)–(NL6). More
precisely, defining x $ y D .x �L/ ^ . y �L x/, for all x; y 2 L, we can prove

Theorem 2 The algebra A D .L; _; ^; ~; ˚; �; �L; .0; 1/; .1; 0// satisfies the
identities:

(NL1) � x �L .x �L y/ D .1; 0/;
(NL2’) � .x �L y/ $ .x ~ � y/ D .1; 0/;
(NL3) � .x ^ y/ $ .� x _ � y/ D .1; 0/;
(NL3’) � .x ~ y/ $ .� x ˚ � y/ D .1; 0/;
(NL4) � .x _ y/ $ .� x ^ � y/ D .1; 0/

(NL4’) � .x ˚ y/ $ .� x ~ � y/ D .1; 0/;
(NL5) � � x $ x D .1; 0/;
(NL6) � :x $ x D .1; 0/.

Proof Since �L satisfies the identity principle, we have x $ x D .x �L x/ ^
.x �L x/ D .1; 0/ ^ .1; 0/ D .1; 0/. Therefore, in the case when A D B is an
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identity in L, we obtain A $ B D .1; 0/. Since .L; _; ^; ~; ˚; �; .0; 1/ ; .1; 0//

is a quasi Kleene algebra, the identities .M/ and .M�/ are satisfied. From here it
follows that (NL3),(NL3’),(NL4), (NL4’), (NL5) hold for all x; y 2 L.

(NL6). Here we recall that for any x D .x1; x2/ 2 L, we have by definition

:x DW .x1; x2/ �L .0; 1/ D .x1 !L 0; x1 ~ 1/ D .1 � x1; x1/, therefore
� :x D .x1; 1 � x1/.

Hence for all x 2 L we obtain:

� :x $ x D ..x1; 1 � x1/ �L .x1; x2// ^ ..x1; x2/ �L .x1; 1 � x1// D
D .x1 !L x1; x1 ~ x2/ ^ .x1 !L x1; x1 ~ .1 � x1// D .1; 0/ ^ .1; 0/ D .1; 0/,

and this proves (NL6).
(NL1). As L satisfies .N�/, for any x D .x1; x2/ 2 L, y D . y1; y2/ 2 L we get:

� x �L .x �L y/ D .� x ~ x/ �L y D ..x2; x1/ ~ .x1; x2// �L . y1; y2/ D
D .x2 ~ x1; x1 ˚ x2/ �L . y1; y2/ D .0; x1 ˚ x2/ �L . y1; y2/ D .0 !L y1; 0/ D
.1; 0/, because 0 !L y1 D 1.

(NL2’). Take any x; y 2 L with x D .x1; x2/ and y D . y1; y2/. Then

� .x �L y/ �L .x ~ � y/ D � .x1 !L y1; x1 ~ y2/ �L ..x1; x2/ ~
. y2; y1// D
D .x1 ~ y2; x1 !L y1/ �L .x1 ~ y2; x2 ˚ y1/ D
D ..x1 ~ y2/ !L .x1 ~ y2/; x1 ~ x2 ~ y2 ~ y1// D .1; 0/

(since !L satisfies the identity principle and x1 ~ x2 D y2 ~ y1 D 0).
Similarly, we obtain:

.x ~ � y/ �L� .x �L y/ D .x1 ~ y2; x2 ˚ y1/ �L .x1 ~ y2; x1 !L y1/ D
D ..x1 ~ y2/ !L .x1 ~ y2/; x1 ~ y2 ~ .x1 !L y1// D
.1; y2 ~ .x1 ~ .x1 !L y1/// D .1; 0/, because
x1 ~ .x1 !L y1/ � y1 implies y2 ~ .x1 ~ .x1 !L y1// � y2 ~ y1 D 0.

Thus we deduce (NL2’): � .x �L y/ $ .x ~ � y/ D .1; 0/ ^ .1; 0/ D .1; 0/ �

5 Conclusions

In the previous sections we have shown that there are several analogies between the
intuitionistic fuzzy sets and rough sets.

First, we proved that the rough sets induced by a quasiorder relation R can be
viewed as particular intuitionistic sets. Moreover, rough sets induced by R form
particular Kleene algebras, and analogously, the intuitionistic sets on a universe U
form quasi Kleene algebras.

Secondly, in a logical approach, both rough sets and both the intuitionistic sets
are tools for handling the incomplete information, see e.g. Kovács and Radeleczki
[11]. Rough sets induced by a quasiorder are fundamental models for Constructive
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logic with strong negation (or Nelson logic) which is obtained by extending the
intuitionistic propositional logic with some formulas involving the strong negation
� (see e.g. Järvinen and Radeleczki [9]). We note that the algebraic counterpart of
the intuitionistic logic is formed by Heyting algebras. Similarly, for any continuous
t-norm T defined on the lattice L D f.x1; x2/ 2 Œ0; 1�2 j x1 C x2 � 1g of logical
values a residuated lattice .L; _; ^; T ; !T ; .0; 1/; .1; 0// can be constructed; the
residuated lattices constitute a natural generalization of Heyting algebras. It is
known that the logics defined on several types of residuated lattices belong to the
family of the so called substructural logics (see Galatos et al. [5], or Novák et al.
[13]). Therefore, a connective system defined onL leads to a particular substructural
logic. We proved that in the case of Łukasiewitz t-norm ~, this logic can be extended
by adding to it almost the same rules involving the standard negation � as in the
case of Nelson logic. In fact, all the particular rules of this logic remain valid in the
framework of L, except (NL2), which is replaced by the rule

(NL2’) � .p �L q/ $ .p ~ � q/.
Hence in the case of the intuitionistic sets and their logic, the standard negation

� .x1; x2/ D .x2; x1/ has the same role as the strong negation in Nelson logic.
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