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Abstract. Context and motivation: Research on mining user reviews
in mobile application (app) stores has noticeably advanced in the past
few years. The majority of the proposed techniques rely on classify-
ing the textual description of user reviews into different categories of
technically informative user requirements and uninformative feedback.
Question/Problem: Relying on the textual attributes of reviews often
produces high dimensional models. This increases the complexity of the
classifier and can lead to overfitting problems. Principal ideas/results:
We propose a novel semantic approach for app review classification. The
proposed approach is based on the notion of semantic role labeling, or
characterizing the lexical meaning of text in terms of semantic frames.
Semantic frames help to generalize from text (individual words) to more
abstract scenarios (contexts). This reduces the dimensionality of the data
and enhances the predictive capabilities of the classifier. Three datasets
of user reviews are used to conduct our experimental analysis. Results
show that semantic frames can be used to generate lower dimensional
and more accurate models in comparison to text classification methods.
Contribution: A novel semantic approach for extracting user require-
ments from app reviews. The proposed approach enables a more efficient
classification process and reduces the chance of overfitting.

Keywords: Requirements elicitation · Application stores ·
Classification

1 Introduction

Mobile application markets, or app stores (e.g., Google Play and Apple App
Store), represent a unique model of service-oriented business. Such platforms
have created an unprecedented opportunity for app developers to directly moni-
tor the opinions of a large population of end-users of their software [25]. Through
app stores feedback services, app users can directly share their experience in
the form of textual reviews and meta-data (e.g., star ratings). Analyzing large
datasets of app store reviews has revealed that they contain substantial amounts
of up-to-date technical information. Such information can be leveraged by app
developers to help them maintain and sustain their apps in a highly-competitive
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and volatile market [25]. These realizations have encouraged researchers to look
for automated methods to detect such informative reviews and further classify
them into fine-grained software user requirements (feature requests) and main-
tenance tasks (bug reports) [6,7,20,26]. Automated support is necessary to help
app developers to quickly filter through junk reviews, identify bugs in their
applications, and understand contemporary end-user requirements.

In general, app store mining techniques rely on the textual attributes of user
reviews to classify them into technically informative and uninformative reviews.
Such techniques range from detecting the presence/absence of certain indicator
words (e.g. “crash”, “bug”), to more advanced techniques that rely on automated
text classification and modeling [6,12,20,26]. While these techniques have shown
decent accuracy levels, they typically suffer from several drawbacks. For instance,
users tend to express their reviews using informal language which often includes
colloquial terminologies. Such a broad range of words (classification features)
often results in complex models, which in turn might lead to overfitting problems.
In particular, due to the rapid manner in which natural language evolves online,
a classifier trained using a vocabulary collected at a certain point in time might
not be able to accurately generalize for newer apps [22].

To work around these limitations, in this paper, we propose a novel seman-
tically aware approach for mining and classifying user reviews in app stores.
The proposed approach is based on the notion of semantic role labeling (SRL).
The primary assumption behind SRL is that words can be grouped into seman-
tic classes, called frames. A semantic frame describes an event that occurs in a
sentence along with its participants (e.g., people, objects). The main aim is to
capture the meaning of the sentence at a higher level of abstraction. More specif-
ically, by annotating words and phrases in text with various frame elements (or
roles), we can generalize from specific sentences to scenarios. Such annotations
can be generated using the FrameNet [2] project. FrameNet provides an online
lexical repository of semantic frames and their roles.

SRL and frame semantics have been successfully exploited in a plethora of
text classification tasks, such as predicting the stock market movement by ana-
lyzing the textual content of financial news articles [32], extracting social net-
works from unstructured text [1], question answering tasks [29], and stance clas-
sification in political debates [13]. In this paper, we follow this line of research
to describe a light-weight and accurate approach for identifying informative user
reviews and classifying them into different types of actionable requests that app
developers can effectively utilize. Our approach is evaluated using a large dataset
of user reviews, sampled from a diverse set of apps that are selected from a broad
range of application domains.

The remainder of this paper is organized as follows. Section 2 reviews sem-
inal work in app user review classification. Section 3 introduces the FrameNet
project and the notion of semantic frames. Section 4 describes our experimental
setup. Section 5 presents our results and discusses our main findings. Section 6
identifies the threats to the study’s validity. Finally, Sect. 7 concludes the paper
and discusses prospects for future work.
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2 Related Work

The research on mining app reviews for software engineering purposes has notice-
ably advanced in the past few years. Chen et al. [7] presented AR-Miner, a
computational framework that helps developers to identify the most informative
user app reviews. Uninformative reviews were initially identified and filtered out
using Expectation Maximization for Naive Bayes— a semi supervised text clas-
sification algorithm. The remaining reviews were then analyzed and categorized
into different groups using topic modeling [3]. These groups were ranked by a
review ranking scheme based on their potential information value. The proposed
approach was evaluated on a manually classified dataset of app reviews col-
lected from four popular Android apps. The results showed high accuracy levels
in terms of precision, recall, and the quality of ranking.

Panichella et al. [26] proposed a supervised approach for classifying mobile
app reviews into categories relevant to software maintenance (e.g., bug reports
and user requirements). The authors extracted a set of linguistic features from
each review, including most important words, the main sentiment of the review,
and linguistic patterns that may represent a potential maintenance request. Dif-
ferent types of classifiers were then trained using different combinations of these
features. The results showed that decision trees [28], trained over recurrent lin-
guistic patterns and sentiment scores, achieved the best performance in terms of
precision and recall.

Carreño and Winbladh [6] proposed an approach for mining user comments
to extract software requirements for future releases of software systems. The
proposed approach applies topic modeling techniques and sentiment analysis
classification (Aspect and Sentiment Unification Model) to identify comments
relevant with regards to requirement changes. Evaluating the proposed approach
over three datasets of manually classified user reviews showed promising perfor-
mance levels in terms of accuracy and effort-saving.

Guzman and Maalej [12] proposed an automated approach to help devel-
opers filter, aggregate, and analyze app reviews. The proposed approach used
a collocation finding algorithm to extract fine-grained requirements mentioned
in the review. Extracted requirements were then grouped into more meaningful
high-level features using topic modeling. The author used over 32,210 reviews
extracted from seven iOS and Android apps to conduct their analysis. The results
showed that the proposed approach managed to successfully extract the most
frequently mentioned features in these reviews. These features were also grouped
into coherent coarse-grained sets of app requirements.

Maalej and Nabil [20] introduced several probabilistic techniques for clas-
sifying app reviews into bug reports, feature requests, user experiences, and
ratings. The authors experimented with several binary and multi-class classi-
fiers, including Naive Bayes, decision trees, and maximum entropy. A dataset
of 4400 manually labeled reviews from Google Play and the Apple App Store
was used to evaluate the performance of these different classifiers. The results
showed that binary classifiers (Naive Bayes) were more accurate for predicting
the review type than multi-class classifiers. The results also revealed that review
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features, such as star-rating, tense, sentiment scores, and length, as well as cer-
tain text analysis techniques, such as stemming and lemmatization, enhanced
the classification performance.

Iacob and Harrison [14] introduced MARA, a tool for automatic retrieval
of mobile app feature requests from user reviews in app stores. The proposed
approach is based on identifying sentences expressing feature requests based on
a set of predefined linguistic rules. These rules were mined from analyzing most
frequent keywords and linguistic patterns associated with feature requests. Such
keywords were abstracted into a set of 237 linguistic rules. The approach was
evaluated over a sample of 480 reviews extracted from Google Play. The results
showed that 23.3% of reviews represented feature requests.

3 Frame Semantics

Housed and maintained by the International Computer Science Institute in
Berkeley, California, the FrameNet project [2] provides a massive machine read-
able database of manually annotated sentences based on the theory of Frame
Semantics [10]. This theory states that the meanings of lexical items (predi-
cates) are best defined with respect to larger conceptual chunks, called Frames.
Technically, the FrameNet1 project works to identify significant frames in sen-
tences, their frame elements, and lexical units. A semantic frame (or simply
frame) can be described as a schematic representation of a situation (events,
actions) involving various elements. A frame element (FE) can be defined as a
participant entity or a semantic role in the action described by the frame. Lexi-
cal units (LU) are basically the words that evoke different frame elements. For
instance, the frame commerce buy describes a basic commercial transaction
involving a buyer and a seller exchanging money and goods. This frame has the
core frame elements buyer (can be evoked by lexical units such as buy) and
goods. A core FE is an element that is necessary for the frame to occur. The
frame also has other FEs such as place, purpose, seller, and time.

Commerce Buy

Commerce Buy.Target

bought

FE.Buyer

John

FE.Goods

a car

FE.Seller

Kristina

FE.Time

June

Fig. 1. Semantic annotation of the sentence “John bought a car from Kristina in June”
under the Commerce Buy semantic frame

Figure 1 shows the tree representation of the semantic annotation of the sen-
tence “John bought a car from Kristina in June.” under the semantic frame com-
merce buy. This sentence includes the frame elements buyer, goods, seller,
1 https://framenet.icsi.berkeley.edu/fndrupal/.

https://framenet.icsi.berkeley.edu/fndrupal/


Mining User Requirements from Application Store Reviews 277

and time, evoked by the lexical units John, car, Kristina, and June respec-
tively. This unique form of semantic annotation represents an invaluable source
of knowledge that can be exploited to support several computational linguistic
tasks. For example, the FrameNet database has been used in tasks such as seman-
tic classification of text [11], question answering [17] and information extrac-
tion [24]. Following this line of research, in this paper, we utilize the FrameNet
project to tackle the problem of app review classification. Our expectation is
that FrameNet tagging will enable a deep understanding of the meaning of indi-
vidual user reviews. This in turn should help in training more accurate app
review classifiers. Consider, for example, the sentence “I can’t see the pictures
fix it please!!” extracted from a review of the photo-sharing app Imgur. Tagging
this sentence using FrameNet results in the following frames:

I [can’t]CAPABILITY [see]GRASP the [pictures]PHYSICAL ARTWORKS

[fix]PREDICAMENT it [please]STIMULUS FOCUS.

The key semantic frame in this example is Predicament, which according
to FrameNet data dictionary refers to a situation where “An Experiencer is in
an undesirable Situation, whose Cause may also be expressed”. This frame can
also be evoked by other words such as problem, trouble, and jam. In general, any
situation of inconvenience might evoke this frame. From a classification point of
view, this frame represents a feature that can be used to predict bug reports.

Another example is the two review sentences “I wish you could add a func-
tionality to use this app with any POP3 mailboxes” and “I wanted to be able
to use Gmail with all POP3 mailboxes.” extracted from two different reviews
of the Gmail app. Both sentences convey the same message, describing a user
requirement for the app to support all POP3 mailboxes, but with different ter-
minologies. Tagging these two sentences using FrameNet generates the following
representations:

I [wish]DESIRING you [could]CAPABILITY [add]STATEMENT a functionality
to [use]USING this app with [any]QUANTITY POP3 mailboxes.

I [wanted]DESIRING to be [able]CAPABILITY to [use]USING Gmail with
[all]QUANTITY POP3 mailboxes.

In the first sentence, the words wish, could, add, use, and any evoke the
frames Desiring, Capability, Statement, Using, and Quantity respec-
tively. In the second sentence, the words wanted, able, use, and all evoke the
frames Desiring, Capability, Using, and Quantity respectively. This exam-
ple shows how similar frames are evoked by different words that share the same
meaning in a specific context. For instance, in the above two sentences, the
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words wish and wanted are two different words that share the same meaning in
the given context, and therefore, evoke the same frame Desiring. Similarly, the
words could and able evoke the semantic frame Capability in both sentences.

Form a classification point of view, this kind of semantic abstraction is
expected to enhance the predictive capabilities of classifiers as general mean-
ing, rather than exact words, are considered as classification features. In par-
ticular, in text classification tasks, each individual word of the text is treated
as a separate classification feature, such that the input text is represented as
an unordered vector of its words. This approach, known as Bag-of-Words, or
BOW classification, relies on the presence or absence of certain indicator terms
in the text to make a decision. For instance, in the context of app review clas-
sification, words such as {bug, crash, fix, problem, issue, defect, solve, problem,
trouble} tend to be associated with bug reporting reviews, while words such as
{add, please, would, hope, improve, miss, need, prefer, suggest, want, wish} are
typically associated with feature requests or user requirements [20]. Such words
are used by text classifiers to make sense of the input text and classify it under
a certain label.

The approach we present in this paper can be described as a Bag-of-Frames,
or BOF, approach. In particular, the frames generated from each review, rather
than each word, are used as classification features. Therefore, the review’s text is
represented as an unordered vector of frames. Our assumption is that the BOF
representation of the data is expected to generate lower dimensional and more
semantically abstract models, thus enabling more accurate predictions than the
BOW representation. To test this assumption, we collect a dataset of app reviews
from a set of apps sampled from a broad range of application domains. These
reviews are semantically annotated to generate their BOF representations. Two
different classifiers, including Naive Bayes (NB) and Support Vector Machines
(SVM), are then used to classify these reviews into different actionable software
engineering requests. Generated classifiers are evaluated over a set of unseen
before reviews that were sampled from a new set apps to test for overfitting.
Next is a description of our experimental analysis in greater detail.

4 Experimental Settings

In this section, we describe our experimental settings, including the dataset used
to carry out our analysis, the classifiers used to classify the data, and the per-
formance measures used to assess the performance under different classification
settings.

4.1 Experimental Dataset

Our ground-truth dataset of app reviews is compiled from two external datasets
and an internal dataset obtained from different sources. Using such a diverse
dataset enhances the internal and external validity of our results by reducing
any potential sampling bias, a problem commonly known as the app sampling
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problem [21]. The external datasets include the data collected by Maalej and
Nabil [20] and the data provided by Chen et al [7]. Random sampling is used to
select instances from these two datasets.

The internal dataset includes reviews that were locally collected from three
iOS apps, including CreditKarma, FitBit, and Gmail. The most recent user
reviews of each app were collected using the RSS feed generator of the iOS
app store. These reviews, along with the reviews sampled from the two exter-
nal datasets, were manually classified by the researchers into user requirements,
bug reports, and others. In case of a conflict, a discussion was held to reach
a consensus. Instances where agreement could not be reached were discarded.
In total, 13 instances were discarded from all datasets. Table 1 summarizes the
characteristics of our dataset, including the source of data, the number of bug
reports, user requirements, and other instances collected from each source2.

Table 1. The dataset used in our analysis

Source Sampled Discarded Bugs Req. Others Total

Internal data 705 3 170 65 467 702
Data from [20] 725 8 318 199 200 717
Data from [7] 1500 2 854 537 107 1498
Total 2930 13 1342 801 774 2917

4.2 Classifiers

To classify our data, we use two classifiers that have been showing consistently
good performance in app store mining research. These classifiers include:

– Support Vector Machines (SVM): SVM is a supervised machine learn-
ing algorithm that is used to recognize patterns in multidimensional data
spaces [5]. SVM tries to find optimal hyperplanes for linearly separable pat-
terns in the data and then maximizes the margin around the separating hyper-
plane. Technically, support vectors are the critical elements of the training set
that would change the position of the dividing hyperplane if removed. SVM
classifies the data by mapping input vectors into an N-dimensional space, and
deciding in which side of the defined hyperplane the point lies. SVMs have
been empirically shown to be effective in high dimensional and sparse text
classification tasks [15].

– Naive Bayes (NB): NB is a simple, yet efficient, linear probabilistic clas-
sifier that is based on Bayes’ theorem [18]. NB is based on the conditional
independence assumption which implies that the attribute values of the data
are independent of each other given the class. In the context of text classifica-
tion, the features of the model are the individual words of the text artifacts.

2 Our data is publicly available at http://seel.cse.lsu.edu/data/refsq17.zip.

http://seel.cse.lsu.edu/data/refsq17.zip
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Such data is typically represented using a 2-dimensional word x document
matrix. The entry i,j in the matrix can be either a binary value that indi-
cates whether the document di contains the word wj or not (i.e. {0,1}), or the
relative frequency of the word wj appearing in the document di [22].

4.3 Implementation and Classification Settings

To implement NB and SVM, we use Weka3, a data mining software that imple-
ments a wide variety of machine learning and classification techniques. SVM is
invoked through Weka’s SMO, which implements John Platt’s sequential mini-
mal optimization algorithm for training a support vector classifier [27]. To eval-
uate our classifiers, we use 10-fold cross validation. This method of evaluation
creates 10 partitions of the dataset such that each partition has 90% of the
instances as a training set and 10% as an evaluation set. The evaluation sets
are chosen such that their union is the entire dataset. The benefit of this tech-
nique is that the results exhibit significantly less variance than those of simpler
techniques such as the holdout method (i.e., 70% for training and 30% for test-
ing) [16].

To generate the BOF representation of our data (i.e. annotate the review sen-
tences), we use Semafor

4— a probabilistic frame semantic parser [8]. Semafor
automatically processes English sentences according to the form of semantic
analysis in Berkeley FrameNet. The generated annotations are represented using
XML. A special parser was created to extract the semantic frames of each anno-
tated sentence from the XML output.

For the BOW analysis, we use the Weka’s stemmer IteratedLovinsStemmer
to stem the reviews in our dataset [19]. Stemming reduces words to their mor-
phological roots. This leads to a reduction in the number of features (words) as
only one base form of the word is considered. Most common words (words that
appear in all reviews) along with words that appear in one data instance (review)
are removed from the data since they are highly unlikely to carry any general-
izable information. English stop-words were not removed from our data. This
decision was based on the previous observation that some of these words (e.g.,
would, should, will) carry important distinctive information for user requirement
reviews. Therefore, removing such words typically leads to a decline in the per-
formance. Furthermore, in our analysis, we use Multinomial NB, which uses the
normalized frequency (TF) of words in their documents [22]. Multinomial Naive
Bayes is known to be a more robust text classifier, consistently outperforming
the binary feature model (Multi-variate Bernoulli) in highly diverse real-world
corpora [22].

4.4 Evaluation Measures

Recall, precision, and the F-measure are used to evaluate the performance of
the different classification techniques used in our analysis. Recall is a measure of
3 www.cs.waikato.ac.nz/∼ml/weka/.
4 www.cs.cmu.edu/∼ark/SEMAFOR/.

www.cs.waikato.ac.nz/~ml/weka/
www.cs.cmu.edu/~ark/SEMAFOR/
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coverage. It represents the ratio of correctly classified instances under a specific
label to the number of instances in the data space that actually belong to that
label. Precision, on the other hand, is a measure of accuracy. It represents the
ratio of correctly classified instances under a specific label to the total number of
classified instances under that label. Formally, if A is the set of data instances in
the data space that belong to the label λ, and B is the set of data instances that
were assigned by the classifier to that label, then recall (R) can be calculated
as Rλ = |A ∩ B|/|A|, and precision (P) can be calculated as Pλ = |A ∩ B|/|B|.
We also use the F measure to report our results. This measure, which represents
the harmonic mean of recall and precision, can be calculated as Fβ = ((β2 +
1)PR)/(β2P + R). In our analysis, we use β = 1.

5 Results and Discussion

The results of our classification process are shown in Table 2. The results show
that, under the BOF representation, SVM managed to outperform NB, achieving
Fbugs = 0.86 and Freq. = 0.74, while NB achieved Fbugs = 0.81 and Freq. = 0.70.
A similar behavior was observed under the BOW representation; SVM managed
to achieve Fbugs = 0.85 and Freq. = 0.75, in comparison to NB which achieved
Fbugs = 0.79 and Freq. = 0.72. In general, SVM outperforms NB, achieving
almost equivalent performance under the two different representations of the
data. The relatively better performance of SVM can be attributed to its overfit-
ting avoidance tendency— an inherent behavior of margin maximization which
does not depend on the number of features [4]. Therefore, it has the potential to
scale up to high-dimensional data spaces with sparse instances [15], given that
the right kernel is selected. Choosing a proper kernel function can significantly
affect SVM’s generalization and predictive capabilities [30]. In our analysis, the
best results of the BOW representation was achieved using the Normalized Poly
Kernel, while the BOF classifier hit a maximum using the Pearson VII function-
based universal kernel (Puk) with σ = 8 and ω = 1 [31].

Table 2. The performance of NB and SVM over the BOF and the BOW representations
of the data in Table 1

Bug reports User requirements

Classifier p r F1 p r F1

BOF + NB 0.80 0.83 0.81 0.70 0.69 0.70
BOF + SVM 0.84 0.88 0.86 0.73 0.75 0.74
BOW + NB 0.81 0.77 0.79 0.71 0.73 0.72
BOW + SVM 0.78 0.93 0.85 0.83 0.69 0.75

To assess the generative capabilities of our classifiers, we test their perfor-
mance on an external set of reviews that was sampled from apps that were
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not included in our original dataset, including Google Chrome, Facebook, and
Google Maps. Similar to the reviews in original dataset (Table 1), the newly sam-
pled reviews were classified manually by the researchers (See Sect. 4.1). Table 3
describes the final test dataset5. Our main objective is to test the ability of
the generated models to generalize over unseen-before data, in other words, test
for overfitting. In automated classification, overfitting refers to a phenomenon
where the classifier learns separate data instances (i.e., model the training data),
rather than learning general categories. Formally, the model M overfits the data
if there exists some other model M’, such that, M has a smaller error over the
training data than M’, however M’ has a smaller error than M over the entire
distribution [23].

Table 3. A test set of app reviews sampled from three apps

Source Bugs Req. Others Total

Google chrome 125 26 91 242
Facebook 56 7 32 95
Google maps 108 17 50 175
Total 289 50 173 512

To test for overfitting, the original models generated using the data in Table 1
were saved, reloaded, and reevaluated using the test set. The performance of our
different classifiers on the external test set is shown in Table 4. The results show
that the BOF classifiers managed to outperform the classifiers generated using
the BOW representation. More specifically, BOF+SVM achieved Fbugs = 0.96
and Freq. = 0.75. In contrast, the BOW classifiers’ performance has drastically
dropped over the set of user requirements in the test set to Freq. = 0.54 for SVM
and Freq. = 0.39 for NB, failing to match the performance levels achieved on the
training dataset.

Table 4. The performance of the different classifiers over the test set (Table 3)

Bug reports User requirements

Classifier p r F1 p r F1

BOF + NB 0.85 0.92 0.88 0.41 0.73 0.53
BOF + SVM 0.94 0.99 0.96 0.62 0.96 0.75

BOW + NB 0.84 0.71 0.77 0.28 0.62 0.39
BOW + SVM 0.78 0.97 0.86 0.45 0.68 0.54

5 http://seel.cse.lsu.edu/data/refsq17.zip.

http://seel.cse.lsu.edu/data/refsq17.zip
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In general, the results over the test dataset suggest that the NB and SVM
classifiers trained under the BOW representation of the data suffered from over-
fitting. This behavior can be attributed to the fact that the feature space (num-
ber of words) is typically very large [15]. Larger number of features causes the
vector representation (BOW) of reviews to be very sparse (only very few entries
with non-zero weights). This in turn forces the classifier to learn specific data
instances rather than the general classification categories. The BOF representa-
tion, on the other hand, seems to be overcoming this problem by raising the level
of abstraction from specific words to more abstract semantic representations.
Reducing the number of features that the classifier needs to consider reduces the
chances of overfitting and leads to better generalizations over unseen before data
instances. For example, Table 5 shows the frames generated for the words that
were semantically distinctive to our classifiers. The BOW training dataset did
not have the word desire. As a results, the user requirement “another window is
highly desired” in our BOW test set was miss-classified as others. However, under
the BOF representation, this review was correctly classified as a user require-
ment since the word desire evoked the frame Desiring, which is one of the most
distinctive frames of the user requirement reviews.

Table 5. Popular frames in our dataset and their evoking words

Semantic frame Evoking words

Temporal collocation when, now, current
Capability can, cannot, able, unable, capable
Desiring eager, hoping, want, desire
Predicament problem, error, fix, trouble
Measure duration year, month, week, day, minute, time,

awhile, endless

A smaller number of features not only reduces the chances of overfitting, but
also speeds up the training process by reducing the computational requirements
of the classifier. In our analysis, the BOF representation required 10 s to build the
model and 96 s to evaluate the classifier using the 10-fold evaluation strategy,
while the BOW representation required 32 s to build the model and 293 s to
evaluate the classifier. This can be explained based on the fact that only 552
unique frames were used to build the BOF model, while the BOW model was
built using 1592 unique words (features). On average, the BOF representation
of the data saves up to 60% of space and time requirements needed to build a
model using the BOW representation. The running time was measured on an
Intel(R) Core(TM) i5-2500 CPU 2.3 GHz, with 8.0 GB of RAM.

In terms of operation overhead, the semantic frames approach is fully auto-
mated and requires minimum to no calibration from the user. This gives this
approach an advantage over other text-reduction strategies typically applied in
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related research. For instance, methods that rely on mining recurrent linguistic
patterns from reviews help to reduce the dimentionality of the text by using
sentence templates rather than individual words (e.g., “[someone] should try
to [verb]”). However, preparing a complete catalog of such patterns can be a
laborious and time-consuming process [26] as researchers have to manually mine
hundreds of reviews to capture and isolate such patterns [14]. Topic modeling has
also been used as a means to classify and organize app reviews (e.g. [6,12]). The
main objective is to reduce the dimentionality of the review text by grouping
their words into thematic groups known as topics. However, most state-of-the-art
topic modeling techniques (e.g., LDA, PLSI) require an exhaustive calibration
of several parameters in order to generate meaningful output [3]. Furthermore,
generated topics are often not trivial to interpret and rationalize, and going
through a large number of topics (100–200) can be an exhaustive and error-
prone process [6]. This level of operational complexity limits the practicality of
any tools built on top of these techniques. In terms of limitations, the seman-
tic frames approach requires downloading the FrameNet database locally. This
database requires around 500 megabytes of space. However, this space overhead
could be saved by using an online semantic parser6.

6 Threats to Validity

The study presented in this paper has several limitations that might affect the
validity of the results. Internal validity refers to confounding factors that might
affect the causal relations established in the experiment [9]. A potential threat
to the proposed study’s internal validity is the fact that human judgment is
used to prepare our ground-truth dataset. This might result in an experimental
bias as humans tend to be subjective in their judgment. However, it is not
uncommon in text classification tasks to use humans to manually classify the
data. Therefore, these threats are inevitable. However, they can be partially
mitigated by following a systematic classification procedure using multiple judges
at different levels of experience to classify the data.

Threats to external validity impact the generalizability of results [9]. In par-
ticular, the results of our experiment might not generalize beyond the specific
experimental settings used in this paper. A potential threat to our external valid-
ity stems from the datasets used in our experiment. In particular, our dataset
is limited in size and was generated from a limited number of apps. To miti-
gate this threat, we compiled our dataset from several sources, including two
external datasets that have been used before in the literature and a dataset that
we collected locally. We also made sure that our reviews were selected from a
diverse set of apps, covering a broad range of application domains. Other threats
might stem from the tools we used in our analysis. For instance, we used Weka
as our classification platform; and we used Semafor to semantically annotate

6 http://demo.ark.cs.cmu.edu/parse.

http://demo.ark.cs.cmu.edu/parse
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our review sentences. However, these tools have been extensively used in the lit-
erature and have been shown to generate robust results. Furthermore, such tools
are publicly available which allows other researchers to replicate our results.

Construct validity is the degree to which the various performance measures
accurately capture the concepts they purport to measure [9]. In our experi-
ment, there were minimal threats to construct validity as the standard perfor-
mance measures (Recall, Precision, and F1), which are extensively used in related
research, were used to assess the performance of different methods. We believe
that these measures sufficiently quantified the different aspects of performance
we were interested in.

7 Summary and Future Work

User reviews in mobile application stores represent a rich and a timely source of
information for app creators. Such information can be mined to enable a more
adaptive and a more responsive software engineering process. The main objective
is to arrive at user satisfaction in an effective and a timely manner. Following
this line of research, in this paper we presented a novel semantically aware app-
roach for classifying users reviews in app stores. The proposed approach relies
on semantic role labeling. In particular, individual user review sentences are
extracted and annotated to identify the semantic roles played by the words that
appear in each sentence. Such roles, known as semantic frames, capture the
underlying meaning of the review. An underlying assumption is that relying on
the meaning of the text enhances the predictive capabilities of the classifier.

To conduct our analysis, an experimental dataset of user reviews was com-
piled from three different sources, including two datasets collected by other
researchers [7,20], and a dataset that was prepared locally. Individual reviews
were semantically annotated using FrameNet. Annotated sentences, represented
as Bags-of-Frames (BOF) were then classified using Naive Bayes (NB) and Sup-
port Vector Machines (SVM) and compared to standard Bag-of-Words (BOW)
text classification. The results showed that, the Bag-of-Frames (BOF) approach
achieved competitive results in comparison to the BOW approach on the train-
ing dataset. However, classifiers trained under the BOF representation were able
to generalize better over the set of user requirements in a test set of never-seen
before reviews, suggesting that the initial BOW classification models suffered
from overfitting. The main advantage of the BOF approach stems from the
drastic reduction in the number of features required for classification. Smaller
number of features can produce lower dimensional models which can generalize
better for new data.

Finally, the line of research in this paper has opened several research direc-
tions to be pursued in our future work, including:

– Data collection: A major part of our future effort will be devoted for prepar-
ing larger datasets collected from a more diverse set of apps. More data will
enable us to better evaluate our approach and train more robust classifiers.
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– Analysis: In our future work, other classification features (star-rating, author
information, number of likes and downloads), that are often used in app store
mining research will be investigated. Our objective is to identify combinations
of features that can complement the BOF approach to achieve higher accuracy
levels.

– Tool support: A working prototype which implements our findings in this
paper will be developed. This prototype will enable app developers to extract,
semantically annotate, and classify their apps’ reviews in an effective and
accurate manner.
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