
Paul Grünbacher
Anna Perini (Eds.)

 123

LN
CS

 1
01

53

23rd International Working Conference, REFSQ 2017
Essen, Germany, February 27 – March 2, 2017
Proceedings

Requirements Engineering:
Foundation
for Software Quality

Lecture Notes in Computer Science 10153

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Paul Grünbacher • Anna Perini (Eds.)

Requirements Engineering:
Foundation
for Software Quality
23rd International Working Conference, REFSQ 2017
Essen, Germany, February 27 – March 2, 2017
Proceedings

123

Editors
Paul Grünbacher
Johannes Kepler University
Linz
Austria

Anna Perini
Fondazione Bruno Kessler
Trento
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-54044-3 ISBN 978-3-319-54045-0 (eBook)
DOI 10.1007/978-3-319-54045-0

Library of Congress Control Number: 2017931542

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It is our great pleasure to welcome you to the proceedings of the 23rd International
Working Conference on Requirements Engineering – Foundation for Software Quality!
The REFSQ working conference series is a leading international forum for discussing
Requirements Engineering (RE) and its many relations to quality. The first REFSQ
conference took place in 1994. The conference was organized as a stand-alone meeting
since 2010 and is now well established as Europe’s premier conference series on RE.
This conference publication contains the proceedings of REFSQ 2017, held in Essen,
Germany, from February 27 to March 2, 2017.

Requirements Engineering is a crucial factor for developing high-quality software,
systems, and services. RE methods, tools, and processes are nowadays expected to
support engineering diverse types of systems of different scale and complexity – such
as information systems, safety-critical systems, socio-technical systems, service-based
applications, apps for mobile devices, or cyberphysical systems – and are applied in
diverse domains. The special theme of REFSQ17 was “My RE” to emphasize an
important issue: How can RE evolve to deal with this diversity, still keeping its
ultimate objective: understanding what is the right software system and helping
developing it in the right way.

The exciting program consisted of high-quality contributions selected after a thor-
ough reviewing process. This year we invited four categories of submissions for the
main track of the REFSQ conference: (1) technical design papers that describe and
explain novel solutions for requirements-related problems or significant improvements
of existing solutions; (2) scientific evaluation papers that investigate existing real-world
problems, evaluate existing real-world implemented artifacts, or validate newly
designed artifacts, e.g., by means such as case studies, experiments, simulation, sur-
veys, systematic literature reviews, mapping studies, or action research; (3) vision
papers that state where the research in the field should be heading towards; and
(4) research previews that describe well-defined research ideas at an early stage of
investigation.

This year, 82 abstracts were submitted to the research track, resulting in 74 sub-
missions. The program chairs desk-rejected two papers violating the formatting
instructions or the guidelines stated in the call. The remaining 72 submissions were
reviewed by the members of the Program Committee (PC), with each paper receiving at
least three reviews. We also had a very active online discussion phase, with many long
and detailed discussions among the members of the PC. During a physical PC meeting
held at the paluno Ruhr Institute for Software Technology in Essen on December 2,
2016, the members of the Program Committee selected the 24 papers to be presented at
REFSQ 2017. Specifically, the research track comprised seven technical design papers,
nine scientific evaluation papers, one vision paper, and seven research previews (some
of these were recategorized long papers).

The REFSQ 2017 conference was organized as a three-day symposium: Two
conference days were devoted to presentations and discussions of research papers.
A one-day industry track reported on real-world experiences and applications of RE. In
addition, the REFSQ conference program also included a research methodology track
as well as posters and tools. Furthermore, several workshops and a doctoral symposium
were co-located with the conference. All papers from the Research Track and the
Research Methodology Track can be found in the present proceedings. The papers
included in the satellite events can be found in the REFSQ 2017 workshop proceedings
published with CEUR.

The REFSQ conference program was enriched by two keynote talks: Lionel
C. Briand from the University of Luxembourg on “Analyzing Natural-Language
Requirements: The Not-Too-Sexy and Yet Curiously Difficult Research that Industry
Needs” and Inga Wiele from gezeitenraum on “Design Thinking in a Nutshell-
90 Minutes from Idea to Prototype and Back.”

REFSQ 2017 would not have been possible without the engagement and support of
many individuals who contributed in many different ways. As program co-chairs, we
would like to thank the REFSQ Steering Committee members for their help and
guidance. We are grateful to all the members of the Program Committee for their timely
and thorough reviews of the submissions and for dedicating their time to the online
discussion and the face-to-face meeting. In particular, we thank those PC members who
volunteered to serve as a shepherd or gatekeeper to authors of conditionally accepted
papers. We are grateful to all members of the Organizing Committee, who organized
the different tracks and co-located events. Finally, we would like to thank Christina
Bellinghoven, Eric Schmieders, and Klaus Pohl for their excellent work in coordinating
the background organization, as well as Fitsum Meshesha Kifetew (Fondazione Bruno
Kessler) and Anna Kramer (Springer) for their support in preparing this volume.

February 2017 Paul Grünbacher
Anna Perini

VI Preface

Organization

Organizing Committee

Head of Background Organization

Klaus Pohl paluno, University of Duisburg-Essen, Germany

Local Organization

Christina Bellinghoven paluno, University of Duisburg-Essen, Germany
Eric Schmieders paluno, University of Duisburg-Essen, Germany

Research Track

Paul Grünbacher Johannes Kepler University Linz, Austria
Anna Perini Fondazione Bruno Kessler Trento, Italy

Research Methodology Track

Oscar Dieste Universidad Politécnica de Madrid, Spain
Fabio Massacci Università di Trento, Italy

Industry Track

Joerg Doerr Fraunhofer IESE, Germany
Kim Lauenroth adesso AG, Dortmund, Germany

Workshops

Eric Knauss Chalmers | University of Gothenburg, Sweden
Angelo Susi Fondazione Bruno Kessler Trento, Italy

Doctoral Symposium

Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Jolita Ralyté University of Geneva, Switzerland

Posters and Tools

Fabiano Dalpiaz Utrecht University, The Netherlands
Patrick Mäder Ilmenau Technical University, Germany

Social Media and Publicity

Itzel Morales-Ramirez INFOTEC Center of Research and Innovation in ICT,
Mexico

Norbert Seyff FHNW and University of Zurich, Switzerland

Proceedings

Fitsum Meshesha Kifetew Fondazione Bruno Kessler Trento, Italy

Research Track Program Committee

Joao Araujo Universidade Nova de Lisboa, Portugal
Thorsten Berger Chalmers | University of Gothenburg, Sweden
Daniel Berry University of Waterloo, Canada
Sjaak Brinkkemper Utrecht University, The Netherlands
Eya Ben Charrada University of Zurich, Switzerland
Nelly Condori-Fernández VU University of Amsterdam, The Netherlands
Fabiano Dalpiaz Utrecht University, The Netherlands
Maya Daneva University of Twente, The Netherlands
Joerg Doerr Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Alessio Ferrari ISTI-CNR Pisa, Italy
Xavier Franch Universitat Politècnica de Catalunya, Spain
Samuel Fricker FHNW, Switzerland and Blekinge Institute

of Technology, Sweden
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Renata Guizzardi Universidade Federal do Espirito Santo, Brazil
Irit Hadar University of Haifa, Israel
Patrick Heymans University of Namur (FUNDP)/PReCISE

research centre, Belgium
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Hermann Kaindl Vienna University of Technology, Austria
Erik Kamsties Dortmund University of Applied Sciences and Arts,

Germany
Alessia Knauss Chalmers | University of Gothenburg, Sweden
Eric Knauss Chalmers | University of Gothenburg, Sweden
Anne Koziolek Karlsruhe Institute of Technology, Germany
Kim Lauenroth adesso AG, Dortmund, Germany
Emmanuel Letier University College London, UK
Walid Maalej University of Hamburg, Germany
Patrick Mäder Ilmenau Technical University, Germany
Nazim Madhavji Western University, Canada
Raimundas Matulevic̆us University of Tartu, Estonia
Raul Mazo CRI, Université de Paris 1 Panthéon-Sorbonne, France
John Mylopoulos University of Ottawa, Canada

VIII Organization

Andreas L. Opdahl University of Bergen, Norway
Barbara Paech Heidelberg University, Germany
Elda Paja Università di Trento, Italy
Liliana Pasquale Lero - The Irish Software Engineering Research Centre,

Ireland
Oscar Pastor Lopez Universitat Politécnica de Valéncia, Spain
Klaus Pohl paluno, University of Duisburg-Essen, Germany
Björn Regnell Lund University, Sweden
Mehrdad Sabetzadeh University of Luxembourg, Luxembourg
Camille Salinesi CRI, Université de Paris 1 Panthéon-Sorbonne, France
Nicolas Sannier SNT, University of Luxembourg, Luxembourg
Pete Sawyer Lancaster University, UK
Kurt Schneider Leibniz Universität Hannover, Germany
Norbert Seyff FHNW and University of Zurich, Switzerland
Alberto Siena Delta Informatica S.p.A., Italy
Paola Spoletini Kennesaw State University, USA
Angelo Susi Fondazione Bruno Kessler, Italy
Richard Berntsson Svensson Blekinge Institute of Technology, Sweden
Michael Vierhauser Johannes Kepler University Linz, Austria
Roel Wieringa University of Twente, The Netherlands
Krzysztof Wnuk Blekinge Institute of Technology, Sweden
Tao Yue Simula Research Laboratory and University of Oslo,

Norway
Yuanyuan Zhang University College London, UK
Didar Zowghi University of Technology, Sydney, Australia

Research Methodology Track Program Committee

Kristian Beckers Technische Universität München, Germany
Travis Breaux Carnegie Mellon University, USA
Maya Daneva University of Twente, The Netherlands
Karen Elliott Newcastle University Business School, UK
Katsiaryna Labunets Università di Trento, Italy
Ignacio Panach Universitat de València, Spain
Lutz Prechelt Freie Universität Berlin, Germany
Maria Riaz Google Inc., USA
Riccardo Scandariato Chalmers | University of Gothenburg, Sweden

Additional Reviewers

David Ameller
Fatma Başak Aydemir
Alejandro Catala
Jean-Marc Davril
Carles Farré

Parisa Ghazi
Emitzá Guzmán
Paul Hübner
Anne Hess
Sofija Hotomski

Organization IX

Timo Johann
Matthias Koch
Martina Kolpondinos-Huber
Christian Kücherer
Zijad Kurtanovic
Yan Li
Grischa Liebel
Johan Linåker
Hong Lu
Dominik Pascal Magin
Salome Maro
Ibtehal Noorwali
Marc Oriol Hilari
Raquel Ouriques

Sietse Overbeek
Thomas Quirchmayr
Raquel Quriques
Manuel Rudolph
Marcela Ruiz
Marcus Seiler
Melanie Stade
Christoph Stanik
Marcus Trapp
Joselaine Valaski
Dirk van der Linden
Gerard Wagenaar
Dustin Wüest
Huihui Zhang

Steering Committee

Björn Regnell (Chair)
Kurt Schneider (Vice Chair)
Daniela Damian
Maya Daneva
Jörg Doerr
Samuel Fricker
Rainer Grau
Paul Grünbacher

Eric Knauss
Andreas L. Opdahl
Oscar Pastor
Anna Perini
Klaus Pohl
Richard Berntsson Svensson
Inge van de Weerd

X Organization

Sponsors

Partners

Organization XI

Invited Talks

Analyzing Natural-Language Requirements:
The Not-Too-Sexy and Yet Curiously Difficult

Research that Industry Needs

Lionel C. Briand

University of Luxembourg, Luxembourg, Luxembourg
lionel.briand@uni.lu

Abstract. While often complemented by models at various degrees of formality
and detail, natural-language requirements remain pervasive across all industry
sectors. Decades of research on formal methods and model-based development
have not made a noticeable dent in this practice, and I do not expect the situation
to change in the foreseeable future. The prevalence of natural-language
requirements is largely due to the flexibility and understandability of natural
language, especially when stakeholders with diverse backgrounds are involved.
External factors, such as laws and regulations, further contribute to the popu-
larity of natural language in requirements specifications. Despite inherent
challenges and drawbacks associated with natural language, it is imperative to
provide scalable support for requirements analysts to be able to handle hundreds
and sometimes thousands of natural-language statements. A first question here is
to understand what type of support the analysts need. This varies across domains
or even specific contexts. The examples I will present include checking in a
practical manner the conformance of requirements with pre-defined sentence
templates, extracting glossary terms and domain models from requirements,
analyzing the impact of requirements changes, and deriving system test cases
from requirements. I will report on results obtained from research projects in
collaboration with industry, and reflect on our experience at the Software
Verification and Validation group, SnT Centre, University of Luxembourg.
Providing scalable support for handling natural-language requirements entails,
to various degrees, the use of natural-language processing, as well as constraint
solving, information retrieval and machine learning. Such research endeavours
are therefore fundamentally multidisciplinary. Unfortunately, and probably in
part because of such multidisciplinarity, academic research on the management
and analysis of natural-language requirements is limited and comparatively
dwarfed by the more formal approaches to requirements engineering.

Design Thinking in a Nutshell - 90 Minutes
from Idea to Prototype and Back

Inga Wiele

gezeitenraum, Sankt Peter-Ording, Germany
inga@gezeitenraum.com

Abstract. Creating products and services that really suit peoples’ lives and
needs – that is the goal of Design Thinking. To achieve this goal, you have to
observe peoples’ lives. Empathy is important to better understand the needs of
others. Very often we pass each other without looking or talk without really
perceiving what others really feel and what they need. Design Thinking provides
a structured approach to innovation processes in which human needs are the
focus. You may think to yourself “Are 90 minutes enough to get an under-
standing of Design Thinking? How good are the results that you achieve in one
hour? Is it possible that all participants have their say and have a constructive
outcome in the end?” This talk will approach this venture with you. Based on
the process model of Design Thinking, you experience the different elements of
Design Thinking within 90 minutes and learn how much a team can achieve
when expectations follow the motto “Done is better than perfect”.

Contents

Use Case Models

Incremental Reconfiguration of Product Specific Use Case Models
for Evolving Configuration Decisions . 3

Ines Hajri, Arda Goknil, Lionel C. Briand, and Thierry Stephany

Aligning the Elements of the RUP/UML Business Use-Case Model
and the BPMN Business Process Diagram . 22

Yves Wautelet and Stephan Poelmans

Ecosystems and Innovation

Modeling and Analyzing Openness Trade-Offs in Software Platforms:
A Goal-Oriented Approach. 33

Mahsa H. Sadi and Eric Yu

A Contribution Management Framework for Firms Engaged in Open
Source Software Ecosystems - A Research Preview. 50

Johan Linåker and Björn Regnell

Human Factors in Requirements Engineering

Defect Prevention in Requirements Using Human Error Information:
An Empirical Study. 61

Wenhua Hu, Jeffrey C. Carver, Vaibhav Anu, Gursimran Walia,
and Gary Bradshaw

Requirements Quality Assurance in Industry: Why, What and How? 77
Michael Unterkalmsteiner and Tony Gorschek

The Impact of Specification Structure on Human Memory
Performance - Experiences from a First Experiment. 85

Kim Lauenroth, Erik Kamsties, and Tim Pfeiffer

Goal-Orientation in Requirements Engineering

How Can You Improve Your As-Is Models? Requirements Analysis
Methods Meet GQM . 95

Shoichiro Ito, Shinpei Hayashi, and Motoshi Saeki

Integrating Goal Model Analysis with Iterative Design 112
Claudio Menghi, Paola Spoletini, and Carlo Ghezzi

http://dx.doi.org/10.1007/978-3-319-54045-0_1
http://dx.doi.org/10.1007/978-3-319-54045-0_1
http://dx.doi.org/10.1007/978-3-319-54045-0_2
http://dx.doi.org/10.1007/978-3-319-54045-0_2
http://dx.doi.org/10.1007/978-3-319-54045-0_3
http://dx.doi.org/10.1007/978-3-319-54045-0_3
http://dx.doi.org/10.1007/978-3-319-54045-0_4
http://dx.doi.org/10.1007/978-3-319-54045-0_4
http://dx.doi.org/10.1007/978-3-319-54045-0_5
http://dx.doi.org/10.1007/978-3-319-54045-0_5
http://dx.doi.org/10.1007/978-3-319-54045-0_6
http://dx.doi.org/10.1007/978-3-319-54045-0_7
http://dx.doi.org/10.1007/978-3-319-54045-0_7
http://dx.doi.org/10.1007/978-3-319-54045-0_8
http://dx.doi.org/10.1007/978-3-319-54045-0_8
http://dx.doi.org/10.1007/978-3-319-54045-0_9

Communication and Collaboration

Patterns of Collaboration Driven by Requirements in Agile Software
Development Teams: Findings from a Multiple Case Study 131

Irum Inayat, Sabrina Marczak, Siti Salwah Salim, and Daniela Damian

Common Mistakes of Student Analysts in Requirements
Elicitation Interviews . 148

Beatrice Donati, Alessio Ferrari, Paola Spoletini, and Stefania Gnesi

Process and Tool Integration

How Can Quality Awareness Support Rapid Software Development? –

A Research Preview . 167
Liliana Guzmán, Marc Oriol, Pilar Rodríguez, Xavier Franch,
Andreas Jedlitschka, and Markku Oivo

Using Tags to Support Feature Management Across Issue Tracking
Systems and Version Control Systems: A Research Preview. 174

Marcus Seiler and Barbara Paech

From Requirements Monitoring to Diagnosis Support in System
of Systems . 181

Michael Vierhauser, Rick Rabiser, and Jane Cleland-Huang

Visualization and Representation of Requirements

On the Equivalence Between Graphical and Tabular Representations
for Security Risk Assessment . 191

Katsiaryna Labunets, Fabio Massacci, and Federica Paci

Visualization of Quality of Software Requirements Specification
Using Digital Elevation Model . 209

Diding Adi Parwoto, Takayuki Omori, Hiroya Itoga,
and Atsushi Ohnishi

Agile Requirements Engineering

Quality Requirements in Large-Scale Distributed Agile Projects –
A Systematic Literature Review . 219

Wasim Alsaqaf, Maya Daneva, and Roel Wieringa

Improving User Story Practice with the Grimm Method:
A Multiple Case Study in the Software Industry . 235

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der Werf,
and Sjaak Brinkkemper

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-54045-0_10
http://dx.doi.org/10.1007/978-3-319-54045-0_10
http://dx.doi.org/10.1007/978-3-319-54045-0_11
http://dx.doi.org/10.1007/978-3-319-54045-0_11
http://dx.doi.org/10.1007/978-3-319-54045-0_12
http://dx.doi.org/10.1007/978-3-319-54045-0_12
http://dx.doi.org/10.1007/978-3-319-54045-0_13
http://dx.doi.org/10.1007/978-3-319-54045-0_13
http://dx.doi.org/10.1007/978-3-319-54045-0_14
http://dx.doi.org/10.1007/978-3-319-54045-0_14
http://dx.doi.org/10.1007/978-3-319-54045-0_15
http://dx.doi.org/10.1007/978-3-319-54045-0_15
http://dx.doi.org/10.1007/978-3-319-54045-0_16
http://dx.doi.org/10.1007/978-3-319-54045-0_16
http://dx.doi.org/10.1007/978-3-319-54045-0_17
http://dx.doi.org/10.1007/978-3-319-54045-0_17
http://dx.doi.org/10.1007/978-3-319-54045-0_18
http://dx.doi.org/10.1007/978-3-319-54045-0_18

Natural Language Processing, Information Retrieval and Machine Learning

Semi-automatic Software Feature-Relevant Information Extraction from
Natural Language User Manuals: An Approach and Practical Experience at
Roche Diagnostics GmbH . 255

Thomas Quirchmayr, Barbara Paech, Roland Kohl, and Hannes Karey

Mining User Requirements from Application Store Reviews
Using Frame Semantics . 273

Nishant Jha and Anas Mahmoud

Traceability

Using Interaction Data for Continuous Creation of Trace Links Between
Source Code and Requirements in Issue Tracking Systems. 291

Paul Hübner and Barbara Paech

A Requirements Traceability Approach to Support Mission Assurance
and Configurability in the Military . 308

James Lockerbie, Neil Maiden, Chris Williams, and Leigh Chase

Quality of Natural Language Requirements

On the Ability of Lightweight Checks to Detect Ambiguity in Requirements
Documentation . 327

Martin Wilmink and Christoph Bockisch

Using NLP to Detect Requirements Defects: An Industrial Experience
in the Railway Domain . 344

Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi,
Stefania Gnesi, Iacopo Trotta, and Stefano Bacherini

Research Methodology in Requirements Engineering

Specifying Software Requirements for Safety-Critical Railway Systems:
An Experience Report . 363

Luciana Provenzano and Kaj Hänninen

Usefulness of a Human Error Identification Tool for Requirements
Inspection: An Experience Report . 370

Vaibhav Anu, Gursimran Walia, Gary Bradshaw, Wenhua Hu,
and Jeffrey C. Carver

Author Index . 379

Contents XIX

http://dx.doi.org/10.1007/978-3-319-54045-0_19
http://dx.doi.org/10.1007/978-3-319-54045-0_19
http://dx.doi.org/10.1007/978-3-319-54045-0_19
http://dx.doi.org/10.1007/978-3-319-54045-0_20
http://dx.doi.org/10.1007/978-3-319-54045-0_20
http://dx.doi.org/10.1007/978-3-319-54045-0_21
http://dx.doi.org/10.1007/978-3-319-54045-0_21
http://dx.doi.org/10.1007/978-3-319-54045-0_22
http://dx.doi.org/10.1007/978-3-319-54045-0_22
http://dx.doi.org/10.1007/978-3-319-54045-0_23
http://dx.doi.org/10.1007/978-3-319-54045-0_23
http://dx.doi.org/10.1007/978-3-319-54045-0_24
http://dx.doi.org/10.1007/978-3-319-54045-0_24
http://dx.doi.org/10.1007/978-3-319-54045-0_25
http://dx.doi.org/10.1007/978-3-319-54045-0_25
http://dx.doi.org/10.1007/978-3-319-54045-0_26
http://dx.doi.org/10.1007/978-3-319-54045-0_26

Use Case Models

Incremental Reconfiguration of Product
Specific Use Case Models for Evolving

Configuration Decisions

Ines Hajri1(B), Arda Goknil1, Lionel C. Briand1, and Thierry Stephany2

1 SnT Centre for Security, Reliability and Trust, University of Luxembourg,
Luxembourg City, Luxembourg

{ines.hajri,arda.goknil,lionel.briand}@uni.lu
2 International Electronics & Engineering (IEE), Contern, Luxembourg

thierry.stephany@iee.lu

Abstract. Context and motivation: Product Line Engineering (PLE) is
increasingly common practice in industry to develop complex systems
for multiple customers with varying needs. In many business contexts,
use cases are central development artifacts for requirements engineer-
ing and system testing. In such contexts, use case configurators can
play a significant role to capture variable and common requirements
in Product Line (PL) use case models and to generate Product Spe-
cific (PS) use case models for each new customer in a product family.
Question/Problem: Although considerable research has been devoted to
use case configurators, little attention has been paid to supporting the
incremental reconfiguration of use case models with evolving configura-
tion decisions. Principal ideas/results: We propose, apply, and assess an
incremental reconfiguration approach to support evolving configuration
decisions in PL use case models. PS use case models are incrementally
reconfigured by focusing only on the changed decisions and their side
effects. In our prior work, we proposed and applied Product line Use
case modeling Method (PUM) to support variability modeling in PL use
case diagrams and specifications. We also developed a use case configura-
tor, PUMConf, which interactively collects configuration decisions from
analysts to generate PS use case models from PL models. Our approach
is built on top of PUM and PUMConf. Contributions: We provide fully
automated tool support for incremental configuration as an extension of
PUMConf. Our approach has been evaluated in an industrial case study
in the automotive domain, which provided evidence it is practical and
beneficial.

Keywords: Product Line Engineering · Use case-driven development

1 Introduction

Product Line Engineering (PLE) is becoming common practice in many domains
such as automotive and avionics, due to the increasing complexity of software
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-54045-0 1

4 I. Hajri et al.

systems that warrant better support for reusable software artifacts. In such
domains, many business contexts are use case-driven where use cases are the
main artifacts driving requirements engineering and system testing practices [1–
3]. This is also the case for the industrial context of our work, IEE [4], a leading
supplier of embedded systems in the automotive domain. The current develop-
ment practice at IEE is use case-driven and based on clone-and-own reuse [5].
To develop a new product in a new project, IEE analysts elicit requirements as
a use case diagram and its accompanying use case specifications. For each new
customer of the product, they need to clone the current models, and negotiate
variabilities with the customer to produce new use case models. This is a man-
ual, error prone, and time-consuming practice since variability information is
not explicitly represented.

The need for PLE support in the context of use case-driven development
has already been acknowledged and several product line use case modeling and
configuration approaches have been proposed [6–8]. Existing approaches rely on
feature modeling, including establishing and maintaining traces between fea-
tures and use case models [9]. Due to limited resources, IEE, as well as other
software development companies, find such additional traceability and main-
tainability effort to be impractical. In addition, existing use case configurators
(e.g., [6–8]) do not support incremental reconfiguration of use case models result-
ing from changes in configuration decisions, e.g., a selected variant use case being
unselected.

In practice, for example at IEE and for a variety of reasons, analysts man-
ually assign traces from the configured use case models to other software and
hardware specifications as well as to the customers’ requirements documents for
external systems [10]. Furthermore, configuration decisions frequently change,
resulting in the reconfiguration of Product Specific (PS) use case models. When
the use case models are reconfigured for all decisions, including unchanged and
unaffected decisions, manually assigned traces are lost. The analysts need to
reassign all the traces after each reconfiguration. It is therefore vital to enable
the incremental reconfiguration of use case models focusing only on changed
decisions and their side-effects. With such support, the analysts could then reas-
sign traces only for the parts of the reconfigured models impacted by decision
changes. Our main motivation is to preserve the unimpacted parts of the PS
use case models for evolving configuration decisions, thus avoiding manual effort
during reconfiguration such as manual updating of traces from PS models to
other documents.

In our previous work [11], we proposed and assessed the Product line Use case
modeling Method (PUM) to support variability modeling in Product Line (PL)
use case diagrams and specifications, without making use of feature models,
thus avoiding unnecessary modeling and traceability overhead. PUM includes
existing PL extensions for use case diagrams [12,13] and, for modeling variabil-
ity in use case specifications, we introduced new extensions for the Restricted
Use Case Modeling method (RUCM) [14]. Building on this, we developed a use
case-driven configuration approach [15] supporting three crucial activities. First,

Incremental Reconfiguration of Product Specific Use Case Models 5

the analyst is guided to make configuration decisions in an appropriate order.
Second, the consistency of configuration decisions is ensured by automatically
identifying contradicting decisions. Third, PS use case diagram and specifica-
tions are automatically generated from PL models and configuration decisions.
Our configuration approach is supported by a tool, PUMConf, integrated with
IBM DOORS.

In this paper, we propose, apply and assess an incremental reconfiguration
approach, based on PUM and PUMConf, to support the evolution of configu-
ration decisions for PL use case models. We do not address here evolving PL
use case models, which is an entirely different problem and needs to be treated
in a separate approach. In our proposed solution, the PS use case diagram and
specifications are incrementally reconfigured by focusing only on the changed
configuration decisions and their side effects. To do so, we implemented a model
differencing pipeline which identifies decision changes to be used in the regen-
eration of PS models. There are two sets of decisions: (i) the set of previously
made decisions used to initially generate the PS use case models and (ii) the
set of decisions including decisions changed after the initial generation of the PS
models. Our approach compares the two sets to incrementally regenerate the PS
use case models. We extended our configurator, PUMConf, to fully automate our
approach. We also report an industrial case study demonstrating its applicability
and benefits.

This paper is structured as follows. In Sect. 2, we discuss the related work.
Section 3 provides a short overview of the background on PUM and PUMConf,
proposed in our previous work, on which this paper builds. In Sect. 4, we provide
an overview of the approach. Sections 5 and 6 provide the details of the core
technical parts of our approach. Sections 7 and 8 present our tool support and
industrial case study along with results and lessons learned. We conclude the
paper in Sect. 9.

2 Related Work

Several use case-driven configuration approaches were proposed in the literature
(e.g., [6–8]). These approaches do not support incremental reconfiguration of use
cases for changes in configuration decisions. There are also more general config-
uration approaches that can be customized to configure PS use case models. For
instance, DOPLER [16] supports capturing variability information as a variabil-
ity model, and modeling any type of artifact as asset models. Variability and
asset models are linked by using trace relations. Heider et al. [17,18] propose
an approach as an extension of DOPLER to identify the impact of changes of
variability information on products. For a change in a variability model of a prod-
uct line, the approach identifies whether configuration decisions for the existing
products need to be changed as well. Then, it reconfigures all the products in
the product line and also compares the reconfigured products with the previous
version to inform the analysts about the differences in the products. However, it
focuses on changes in variability information, not changes in decisions. It is also

6 I. Hajri et al.

not incremental, limiting its applicability, as the reconfiguration encompasses all
the decisions, not only the affected ones.

Considerable attention in the model-driven engineering research commu-
nity has been given to incremental model generation/transformation for model
changes (e.g., [19–21]), and this line of work has inspired initiatives in many soft-
ware engineering domains. For instance, Vogel et al. [22] use incremental model
transformation techniques for synchronizing runtime models by integrating a
general-purpose model transformation engine into their runtime modeling envi-
ronment. Bidirectional model transformations are employed by Eramo et al. [23]
to support the synchronization and interoperability of architecture models for
architecture model changes. Alternatively, we could also have employed a generic
model transformation engine and language to implement the incremental gener-
ation of PS use case models. Compared to model transformation languages, in
terms of loading, matching and editing text in natural language, Java provides
much more flexibility for handling plain text use case specifications. As a result,
we used Java to implement the generation of PS use case models in our prior
work [15], and also to implement the incremental reconfiguration of PS models
as a model differencing and reconfiguration pipeline (see Sect. 4). To the best
of our knowledge, our approach is the first work which supports incremental
reconfiguration of PS use case models for evolving configuration decisions in a
product family.

3 Background

In this section we give the background information about elicitation of PL
use case diagram and specifications (Sect. 3.1), and our configuration approach
(Sect. 3.2).

In the rest of the paper, we use Smart Trunk Opener (STO) as a case study.
STO is a real-time automotive embedded system developed by IEE. It provides
automatic, hands-free access to a vehicle’s trunk, in combination with a keyless
entry system. In possession of the vehicle’s electronic remote control, the user
moves her leg in forward and backward directions at the vehicle’s rear bumper.
STO recognizes the movement and transmits a signal to the keyless entry system,
which confirms that the user has the remote. This allows the trunk controller to
open the trunk automatically.

3.1 Elicitation of Variability in PL Use Cases

Elicitation of PL use case models is based on the Product line Use case modeling
Method (PUM) [11]. In this section, we give a brief description of the PUM
artifacts.

Incremental Reconfiguration of Product Specific Use Case Models 7

STO System

Sensors

Recognize
Gesture

Identify System
Operating

Status

Storing Error
Status

Provide System
Operating

Status

Tester
Provide System

User Data

<<include>>

<<Variant>>
Store Error

Status

<<include>>

Clearing
Error Status

<<Variant>>
Clear Error

Status

Method of
Providing

Data

<<Variant>>
Provide System User
Data via Diagnostic

Mode

<<Variant>>
Provide System User

Data via Standard
Mode

<<Variant>>
Provide System User

Data via IEE QC
Mode

<<include>>

0..1

2..20..1

0..1

<<Variant>>
Clear Error Status

via Diagnostic
Mode

<<Variant>>
Clear Error Status
via IEE QC Mode

0..1

<<include>>

Method of
Clearing

Error Status

1..1

<<require>>

STO Controller

<<include>>

Fig. 1. Part of the PL use case diagram for STO

Use Case Diagram with
PL Extensions. For use
case diagrams, we employ the
PL extensions proposed by
Halmans and Pohl [12,13] since
they support explicit repre-
sentation of variants, variation
points, and their dependencies
(Fig. 1). We do not introduce
any further extensions.

A use case is either Essen-
tial or Variant. Variant use
cases are distinguished from
essential (mandatory) use
cases, i.e., mandatory for all
the products in a product
family, by using the ‘Variant’
stereotype. A variation point
given as a triangle is associated
to one, or more than one use case using the ‘include’ relation. The mandatory
variation points indicate where the customer has to make a selection for a prod-
uct (the black triangles in Fig. 1). A ‘tree-like’ relation, containing a cardinality
constraint, is used to express relations between variants and variation points,
which are called variability relations. The relation uses a [min..max] notation
in which min and max define the minimum and maximum numbers of variants
that can be selected for the variation point. A variability relation is optional
where (min = 0) or (min > 0 and max < n); n is the number of variants in
a variation point. A variability relation is mandatory where (min = max = n).
Optional and mandatory relations are depicted with light-grey and black filled
circles, respectively (Fig. 1). For instance, the ‘Provide System User Data’ essen-
tial use case has to support multiple methods of providing data where the meth-
ods of providing data via IEE QC mode and Standard mode are mandatory. In
addition, the customer can select the method of providing data via diagnostic
mode. In STO, the customer may decide the system does not store the errors
determined while the operating status is being identified (see the ‘Storing Error
Status’ optional variation point in Fig. 1). The extensions support the dependen-
cies require and conflict among variation points and variant use cases [13]. Based
on require in Fig. 1, the selection of the variant use case in ‘Storing Error Status’
implies the selection of the variant use case in ‘Clearing Error Status’. Further
variability information is given in PL use case specifications. For instance, only
PL use case specifications indicate in which flows of events a variation point
is included.

8 I. Hajri et al.

Table 1. Some STO use cases in the extended
RUCM

Restricted Use Case Mod-
eling (RUCM) and Its
Extensions. This section
introduces the RUCM tem-
plate and its PL extensions
which we proposed. RUCM
provides restriction rules and
keywords constraining the use
of natural language [14]. Since
RUCM was not designed
for PL modeling, we intro-
duced some PL extensions
(see Table 1). In RUCM, use
cases have basic and alter-
native flows (Lines 2, 8, 13,
16, 22, 27, 33 and 38). In
Table 1, we omit some alter-
native flows and some basic
information such as actors
and pre/post conditions.

A basic flow describes a
main successful path that sat-
isfies stakeholder interests. It
contains use case steps and a
postcondition (Lines 3–7, 23–
26 and 39–43). A step can be
one of the following interac-
tions: an actor sends a request
or data to the system (Line
34); the system validates a
request or data (Line 4); the
system replies to an actor
with a result (Line 7). The
system can alter its internal state (Line 18). The inclusion of another use case
is given in a step with the keyword ‘INCLUDE USE CASE ’ (Line 3). The key-
words are written in capital letters. ‘VALIDATES THAT ’ (Line 4) indicates a
condition that must be true to take the next step, otherwise an alternative flow
is taken.

An alternative flow describes other scenarios, both success and failure. It
always depends on a condition in a specific step of the basic flow. RUCM has
specific, bounded and global alternative flows. A specific alternative flow refers to
a step in the basic flow (Lines 13, 16, and 27). A bounded alternative flow refers
to more than one step in the basic flow (Line 8), while a global one refers to any
step in the basic flow. ‘RFS ’ is used to refer to reference flow steps (Lines 9, 14,
17, and 28). Bounded and global alternative flows begin with ‘IF .. THEN ’ for

Incremental Reconfiguration of Product Specific Use Case Models 9

the conditions under which they are taken (Line 10). Specific alternative flows
do not necessarily begin with ‘IF .. THEN ’ since a guard condition is already
indicated in their reference flow steps (Line 4).

Our extensions are (i) new keywords for modeling interactions in embedded
systems and (ii) new keywords for modeling variability. The keywords ‘SENDS
.. TO ’ and ‘REQUESTS .. FROM ’ are to distinguish system-actor interactions
(Lines 5, 7, 34, and 39–43). We introduce the notion of variation point and
variant, complementary to the extensions in Sect. 3.1, into RUCM. Variation
points can be included in basic or alternative flows with the keyword ‘INCLUDE
<VARIATION POINT : ... >’ (Lines 29 and 35). Variant use cases are given
with the keyword ‘<VARIANT>’ (Line 37).

Some variability cannot be captured in PL use case diagrams due to the
required level of granularity for product configuration. To model such variability,
as part of our extensions, we introduce optional steps, optional alternative flows
and a variant order of steps. Optional steps and alternative flows begin with
‘<OPTIONAL>’ (Lines 8 and 39–43). We use ‘V’ before any step number to
express variant step orders (Lines 39–43).

3.2 Configuration of PS Use Case Models

STO System

Sensors

Recognize
Gesture Identify System

Operating
Status

Provide System
Operating

Status

Tester

Provide System
User Data

<<include>>

Store Error
Status

<<include>>

Clear Error
Status

Provide System
User Data via

Standard Mode

Provide System
User Data via IEE

QC Mode
<<include>>

Clear Error
Status via IEE

QC Mode
<<include>>

STO Controller

<<include>>

<<include>>

Fig. 2. Generated PS use case diagram

PUMConf relies on variability
information given in the PL
use case diagram and specifi-
cations. The user selects (1)
variant use cases in the PL
diagram and (2) use case ele-
ments in the PL specifications,
to generate the PS models.

The user makes decisions
for the variation points in
Fig. 1. PUMConf automati-
cally generates the PS use case
diagram from the PL diagram
and the diagram decisions (see
Fig. 2 generated from Fig. 1). For instance, based on the decision for Method
of Providing Data in Fig. 1, PUMConf creates Provide System User Data via
IEE QC Mode, Provide System User Data via Standard Mode and two include
relations in Fig. 2.

In Table 1, there are two variation points (Lines 29 and 35), one variant use
case (Lines 37–43), five optional steps (Lines 39–43), one optional alternative
flow (Lines 8–12), and one variant order group (Lines 39–43). The user selects
only three optional steps with the order V3, V1, and V5. The optional alternative
flow is not selected.

10 I. Hajri et al.

Table 2. Some of the generated PS specificationsThe PS specifications are
automatically generated from
the PL specifications and the
diagram and specification deci-
sions. (see Table 2 generated
from Table 1). For instance,
based on the diagram deci-
sion for Method of Providing
Data in Fig. 1, PUMConf cre-
ates two include statements for
Provide System User Data via
Standard Mode and via IEE
QC Mode (Lines 31 and 34
in Table 2), a validation step
(Line 30), and a specific alter-
native flow where Provide Sys-
tem User Data via IEE QC
Mode is included (Lines 32–
35). The validation step checks
if the precondition of Provide
System User Data via Standard
Mode holds. If it holds, Provide
System User Data via Standard
Mode is executed in the basic
flow (Line 31). If not, the alter-
native flow is taken to exe-
cute Provide System User Data
via IEE QC Mode (Lines 32–
35). Selected optional steps and
alternative flows are included in
the PS specifications, while variant order groups are ordered (Lines 39–41).

4 Overview of the Approach

The reconfiguration of PS models is implemented as a pipeline (Fig. 3). Config-
uration decisions are captured in a decision model during the decision-making
process. The decision model conforms to a decision metamodel, described in our
prior work [11]. PUMConf keeps two decision models, i.e., the decision model

Fig. 3. Overview of the model differencing and regeneration pipeline

Incremental Reconfiguration of Product Specific Use Case Models 11

Fig. 4. (a) Decision metamodel, (b) Example M1, and (c) Example M2 (Color figure
online)

before changes (M1 in Fig. 3) and the decision model after changes (M2 in
Fig. 3). Figure 4 provides the decision metamodel and the two input decision
models for the PL models in Fig. 1 and Table 1.

The pipeline takes the decision models, and the PS diagram and specifications
as input. The PS models are reconfigured, as output, together with an impact

12 I. Hajri et al.

report, i.e., list of reconfigured parts of the PS models. The pipeline has three
steps given in Fig. 3.

In Step 1, Matching decision model elements, the structural differencing of
M1 and M2 is done by looking for the correspondences in M1 and M2. To
that end, we devise an algorithm that identifies the matching model elements in
M1 and M2. The output of Step 1 is the corresponding elements, representing
decisions for the same variations, in M1 and M2 (Sect. 5).

The decision metamodel in Fig. 4(a) includes the main use case elements
for which the user makes decisions (i.e., variation point, optional step, optional
alternative flow, and variant order). In a variation point, the user selects variant
use cases to be included for the product. For PL use case specifications, the user
selects optional steps and alternative flows to be included and determines the
order of steps (variant order). Therefore, the matching elements in Step 1 are
the pairs of variation points and use cases including the variation points, the
pairs of use cases and optional alternative flows in the use cases, and the triples
of use cases, flows in the use cases, and optional steps in the flows.

In Step 2, Change calculation, decision-level changes are identified from the
corresponding model elements (see Sect. 5). A set of elements in M1 which does
not have a corresponding set of elements in M2 is considered to be a deleted
decision, which we refer to as DeleteDecision in the decision-level changes. Anal-
ogously, a set of model elements in M2 which does not have a correspond-
ing set of elements in M1 is considered to be added (AddDecision). Each set
of corresponding model elements with non-identical attribute values (see the
red-colored attributes in Fig. 4(c)) is considered to be a decision-level change
of the type UpdateDecision. Alternatively, we could record changes during the
decision-making process. However, the user might make changes cancelling pre-
vious changes or implying some further changes. In such a case, we would have
to compute cancelled changes and infer new changes.

In Step 3, Regeneration of PS models, the PS use case diagram and specifi-
cations are regenerated only for the added, deleted and updated decisions (see
Sect. 6). For instance, use cases selected in the deleted decisions are removed
from the PS models, while use cases selected in the added decisions are added
in the PS models.

5 Model Matching and Change Calculation

We devise an algorithm (see Fig. 5) for the first two pipeline steps, Matching
Decision Model Elements and Change Calculation, in Fig. 3. The algorithm calls
some match functions (Lines 7–9 in Fig. 5) to identify the corresponding model
elements, which represent decisions for the same variations, in the input decision
models. The match functions implement Step 1 in Fig. 3.

– matchDiagramDecisions returns the set of pairs (variation point, use case)
matching in the decision models (M1 and M2), which are capturing which
variation points are included in the use cases involved in diagram decisions,

Incremental Reconfiguration of Product Specific Use Case Models 13

– matchFlowDecisions returns the set of pairs (use case, optional alternative
flow) matching in the input decision models (M1 and M2), which are cap-
turing which optional alternative flows are in the use cases involved in flow
decisions,

– matchStepDecisions returns the set of triples (use case, flow, step) match-
ing in the input decision models (M1 and M2), which are capturing which
steps are in the flows of the use cases involved in step decisions.

Fig. 5. Algorithm for Steps 1 and 2 in Fig. 3

The corresponding model ele-
ments in the example decision mod-
els in Fig. 4(b) and (c) are as fol-
lows (Lines 7–9 in Fig. 5):

– For decisions in the variation
points,
U3 = {(B6, B7), (C6, C7)},

– For decisions in the optional
alternative flows, F3 = {∅},

– For decisions in the use case
steps, S3 = {(B11, B12, B13),
(B11, B12, B14), (B11, B12,
B15), (B11, B12, B16), (B11,
B12, B17), (C11, C12, C13),
(C11, C12, C14), (C11, C12,
C15), (C11, C12, C16), (C11,
C12, C17)}.

A variant use case in a varia-
tion point (vp) may include another
variation point (vp′). Changing the
decision for vp may imply another
decision to be added or deleted for
vp′. As part of Step 2, Change Cal-
culation, the algorithm first iden-
tifies deleted and added diagram
decisions by checking the pairs
of variation points and use cases
which exist only in one of the
input decision models ((U1 \U3)
and (U2 \U3) in Lines 10–11).
Similar checks are done for flow and
step decisions in the specifications
(Lines 10–11). For the decision
models in Fig. 4, there is no deleted
or added decision ((U1 \U3 = ∅),
(U2 \U3 = ∅), (F1 \F3 = ∅),
(F2 \F3 = ∅), (S1 \S3 = ∅), and (S2 \S3 = ∅)).

14 I. Hajri et al.

The matching pairs of variation points and their including use cases repre-
sent decisions for the same variation point ((B6 , B7) and (C6 ,C7) in Fig. 4(b)
and (c)). If the selected variant use cases for the same variation point are not
the same in M1 and M2, the corresponding decision in M1 is considered as
updated in M2 (Lines 12–19). The variant use case Provide System User Data
via Diagnostic Mode of the variation point Method of Providing Data is unse-
lected in M1 (B6 , B7 and B9 in Fig. 4(b)), but selected in M2 (C6 , C7 and
C9 in Fig. 4(c)). The diagram decision for the pair (B6 , B7) in M1 is identified
as updated (Line 17). To identify updated specification decisions, the algorithm
compares decisions across M1 and M2 that involve optional alternative flows,
optional steps and steps with a variant order (Lines 22–24, 28–30 and 31–33).
In our example, the triples (B11 ,B12 ,B14), (B11 ,B12 ,B15), (B11 ,B12 ,B16),
and (B11 ,B12 ,B17) in Fig. 4 are identified as updated decisions.

6 Regeneration of PS Use Case Models

After all the changes are calculated by matching the corresponding model ele-
ments in the input decision models, the parts of PS use case models affected by
the changed decisions are automatically regenerated (Step 3 in Fig. 3).

STO System

Sensors

Recognize
Gesture Identify System

Operating
Status

Provide System
Operating

Status

Tester

Provide System
User Data

<<include>>

Store Error
Status

<<include>>

Clear Error
Status

Provide System
User Data via

Standard Mode

Provide System
User Data via IEE

QC Mode<<include>>

Clear Error
Status via IEE

QC Mode
<<include>>

STO
Controller

<<include>>

<<include>>

Provide System
User Data via

Diagnostic Mode

<<include>>

Fig. 6. Regenerated PS use case diagram (Color figure online)

Our approach first handles the diagram decision changes to reconfigure the
PS use case diagram. For selected variant use cases in the added diagram deci-
sions (i.e., in the pairs (vp, uc) in ADD in Line 36 in Fig. 5), we generate the cor-
responding use cases and include relations in the PS diagram. For selected vari-
ant use cases in deleted diagram decisions (i.e., in the pairs (vp, uc) in DELETE
in Line 36), we remove the corresponding use cases and include relations from
the PS diagram. If a selected variant use case is unselected in an updated dia-
gram decision (i.e., in the pairs (vp, uc) in UPDATE in Line 36), we remove

Incremental Reconfiguration of Product Specific Use Case Models 15

the corresponding use case from the PS diagram. For unselected variant use
cases which are selected in the updated diagram decisions, the corresponding
use cases and include relations are added to the PS diagram. Figure 6 gives the
regenerated parts of the PS use case diagram in Fig. 2 for M1 and M2 in Fig. 4.

There is no added or deleted diagram decision in M1 and M2 in Fig. 4.
The decision for the variation point Method of Providing Data (i.e., (B6, B7)
in UPDATE in Line 36) is updated by selecting the variant use case Provide
System User Data via Diagnostic Mode. Only the corresponding use case and its
include relation are added to the PS diagram (red-colored in Fig. 6).

Changes for diagram and specification decisions are used to regenerate the
PS specifications. For diagram decision changes, we add or delete the corre-
sponding use case specifications. Table 3 provides the regenerated parts of the
PS specifications in Table 2, for M1 and M2 in Fig. 4.

Table 3. Regenerated PS use case specifica-
tions

For the variation point Method of
Providing Data included by the use
case Provide System User Data (i.e.,
(B6, B7)), we have one updated dia-
gram decision in which the uns-
elected use case Provide System
User Data via Diagnostic Mode is
selected. The corresponding use case
specification is added (Lines 24–29
in Table 3). A new specific alter-
native flow is also generated for
the inclusion of the newly selected
use case in the specification of the
use case Provide System User Data
(Lines 12–15, red-colored).

The specification decision
changes are about selecting optional
alternative flows, optional steps
and steps with a variant order
(e.g., the triples (B11 ,B12 ,B14),
(B11 ,B12 ,B15), (B11 ,B12 ,B16),
and (B11 ,B12 ,B17) in Fig. 4(b)).
The use case Provide System User
Data via Standard Mode has two
new steps in Lines 19 and 21 in
Table 3 (i.e., (B11 ,B12 ,B14), and
(B11 ,B12 ,B16) in Fig. 4(b)), while one of the steps (red-colored, strikethrough
step) is removed (i.e., (B11 ,B12 ,B15) in Fig. 4(b)). The step number of
one of the steps is changed (Line 22, blue-colored) due to the change
in the order of the steps with a variant order (i.e., (B11 ,B12 ,B17) in
Fig. 4(b)).

16 I. Hajri et al.

7 Tool Support

We implemented our approach as an extension of PUMConf [24] which has been
developed as an IBM DOORS Plug-in. PUMConf uses GATE (http://gate.ac.
uk/), an open source NLP framework, to annotate PL use case specifications to
be used for (re)configuring PS use case specifications. PUMConf relies upon: (i)
IBM DOORS to model PL use case specifications and (ii) Papyrus to model and
save PL use case diagrams as a UML file. To load use cases from IBM DOORS,
it uses DOORS Document Exporter, an API that exports the DOORS content
as text files. The reconfiguration of PS use case models has been implemented
as a Java application. The DOORS eXtension Language (DXL) is employed to
load the configured PS specifications into DOORS. PUMConf is approximately
25K lines of code, excluding comments and third-party libraries. Additional
details about PUMConf, including executable files and a screencast covering
motivations, are available on the tool’s website at https://sites.google.com/site/
pumconf/.

8 Industrial Case Study

We evaluate our reconfiguration approach via reporting an industrial case study
(STO).

Goal: Our goal was to assess, in an industrial context, the feasibility of using
our approach. We assessed whether we could improve reuse and reduce manual
effort by preserving unimpacted parts of PS use case models, when possible, and
their manually assigned traces.

Study Context: STO was selected for the assessment of our approach since it
was a relatively new project at IEE with multiple potential customers requiring
different features. IEE provided their initial STO documentation, which con-
tained a use case diagram, use case specifications, and supplementary require-
ments specifications describing non-functional requirements. To model the STO
requirements according to our modeling method, PUM, we first examined the
initial STO documentation and then worked with IEE engineers to build and iter-
atively refine our models [11] (see Table 4). Due to the confidentiality concerns,
we do not put the entire case study online. However, the reader can download
the sanitized example models from the tool’s website.

Table 4. Product line use cases in the case study

of use
cases

of varia-
tion points

of basic
flows

of alter-
native flows

of
steps

of condi-
tion steps

Essential
use cases

11 6 11 57 192 57

Variant use
cases

13 1 13 131 417 130

http://gate.ac.uk/
http://gate.ac.uk/
https://sites.google.com/site/pumconf/
https://sites.google.com/site/pumconf/

Incremental Reconfiguration of Product Specific Use Case Models 17

Table 5. Configuration results for the selected product

Product # of selected
variant use cases

of selected
optional steps

of selected
optional flows

of decided
variant order

P1 6 1 0 0

Table 6. Decision change scenarios

ID Change scenario Explanation

S1 Update a diagram decision Unselecting selected use cases

S2 Update and delete diagram
decisions

Unselecting selected use cases,
removing other decisions

S3 Update a diagram decision Selecting unselected use cases

S4 Update and add diagram
decisions

Selecting unselected use cases,
implying other decisions

S5 Update a specification decision Selecting unselected optional steps

S6 Update a diagram decision Selecting unselected use cases

S7 Update a diagram decision Unselecting selected use cases

S8 Update a specification decision Updating the order of optional steps

Results and Analysis: By using PUMConf, we, together with the IEE ana-
lysts, configured the PS use case models for four products selected among the
STO products IEE had already developed [15]. The IEE analysts made the deci-
sions on the PL models using the guidance provided by PUMConf. Among the
four products, we chose one product to be used for reconfiguration of PS models
(see Table 5) because it was the most recent one in the STO product family with
a properly documented change history. The IEE engineers identified 36 traces
from the PS use case diagram and 278 traces from the PS use case specifications
to other software and hardware specifications as well as to the customers’ require-
ments documents for external systems (see Fig. 7). We considered eight change
scenarios derived from the change history of the initial STO documentation for
the selected product (see Table 6).

Fig. 7. An example specification with a trace in DOORS

18 I. Hajri et al.

Some change scenarios contain individual decision changes such as selecting
unselected use cases in a variation point, while some others contain a series of
individual changes applied sequentially (see S2 and S4). For instance, S2 starts
with unselecting Clear Error Status in Fig. 1, which automatically deletes the
decision for the variation point Method of Clearing Error Status and implies
another decision change, i.e., unselecting Store Error Status.

Table 7. Summary of the reconfiguration of the PS use case models for STO

Decision Change Scenarios
S1 S2 S3 S4 S5 S6 S7 S8

PS
 M

od
el

C
ha

ng
es # of Added UCs 0 0 1 4 0 1 0 0

of Deleted UCs 1 4 0 0 0 0 1 0
of Added UC Steps 0 0 53 140 3 85 0 0
of Deleted UC Steps 53 140 0 0 0 0 103 0

T
ra

ce
s f

or
 th

e
PS

U

se
 C

as
e

D
ia

gr
am

of Initial Traces 36 34 25 27 36 36 38 38
of Deleted Traces
During Reconfiguration 2 9 0 0 0 0 0 0

of Manually Added
Traces After
Reconfiguration

0 0 2 9 0 2 0 0

of Preserved Traces 34 25 25 27 36 36 38 38
% of Preserved Traces 94.4 73.5 100 100 100 100 100 100

T
ra

ce
s f

or
 th

e
PS

 U
se

C

as
e

Sp
ec

ifi
ca

tio
ns

of Initial Traces 278 265 218 231 278 287 298 278
of Deleted Traces
During Reconfiguration 13 47 0 0 0 0 20 0

of Manually Added
Traces After
Reconfiguration

0 0 13 47 9 11 0 0

of Preserved Traces 265 218 218 231 278 287 278 278
% of Preserved Traces 95.3 82.2 100 100 100 100 93.2 100

Table 7 provides a summary of the reconfiguration of the PS models for the
change scenarios. After each change scenario, we ran PUMConf and checked
the preserved and deleted traces. Our approach preserved all the traces for the
unchanged parts of the PS models, while only the traces for the deleted parts of
the PS models were removed. We had to manually assign traces only for the new
parts of the PS models. In terms of saving traceability effort while reconfiguring,
we can look at the percentages of traces from the use case diagram and the
use case specifications that were preserved over all the change scenarios. From
Table 7, we can see that between 73% and 100% (average ≈96%) of the use case
diagram traces were preserved. Similarly, for the use case specifications, trace
reuse was between 82% and 100% (average ≈96%). We can therefore conclude
that our automated approach to incremental reconfiguration leads to significant
reuse and savings when updating traceability to other documents to account for
changed configuration decisions.

Discussion: We also had semi-structured interviews with IEE engineers to bet-
ter assess their perception. All interview participants agreed that the proposed
approach could help reduce, by a substantial amount, the manual effort in terms
of preserving traces for the unchanged parts of the PS use case models.

Incremental Reconfiguration of Product Specific Use Case Models 19

Threats to Validity: The main threat to the validity of our case study regards
the generalizability of our conclusions. To mitigate this threat, we applied our
approach to an industrial case study that includes nontrivial use cases in an
application domain with many potential customers and numerous sources of
variability. To limit threats to internal validity, we had many interviews with
IEE engineers in the STO project to verify the correctness and completeness of
the PL models and the reconfigured PS models.

9 Conclusion

Product line requirements need to be configured for each product. This paper
presents an incremental reconfiguration approach for use case models in the con-
text of product lines. Our main motivation is to preserve the unimpacted parts
of the Product Specific (PS) use case models, when changing their configuration
decisions, based on a careful analysis of the Product Line (PL) use case models.
Our main goal is to avoid manual effort during reconfiguration due to the manual
updating of traceability links from the PS use case models to other documents
and artifacts, a common practice and requirement in industry. We therefore need
to carefully determine which parts of the PS models remain unchanged and we
do so by carefully analysis decision dependencies in PL models. We aim to incre-
mentally reconfigure PS use case models by minimizing their changes based on
a careful impact analysis of changed decisions. We performed a case study in
the context of automotive embedded system development. The results suggest
that our approach is practical and provides significant savings with respect to
traceability updates during reconfiguration.

This work is an intermediate step to achieve our long term objective [25], i.e.,
change impact analysis and regression test selection in the context of use case-
driven development and testing. Changes can also emerge in variability aspects
of product line models, and they entail impact assessment on decisions for each
individual product and may require reconfiguration and regression test selection
in several products. Our plan for the next steps is to support change impact
analysis to help analysts properly manage changes in PL use case models.

Acknowledgments. Financial support was provided by IEE and FNR under grants
FNR/P10/03 and FNR10045046.

References

1. Nebut, C., Fleurey, F., Traon, Y.L., Jezequel, J.-M.: Automatic test generation: a
use case driven approach. IEEE TSE 32(3), 140–155 (2006)

2. Wang, C., Pastore, F., Goknil, A., Briand, L.C., Iqbal, M.Z.Z.: Automatic genera-
tion of system test cases from use case specifications. In: ISSTA 2015, pp. 385–396
(2015)

3. Wang, C., Pastore, F., Goknil, A., Briand, L.C., Iqbal, M.Z.Z.: UMTG: a toolset
to automatically generate system test cases from use case specifications. In:
ESEC/SIGSOFT FSE 2015, pp. 942–945 (2015)

20 I. Hajri et al.

4. IEE (International Electronics & Engineering) S.A. http://www.iee.lu/
5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.

Addison-Wesley, Boston (2001)
6. Eriksson, M., Börstler, J., Borg, K.: The PLUSS approach – domain modeling

with features, use cases and use case realizations. In: Obbink, H., Pohl, K. (eds.)
SPLC 2005. LNCS, vol. 3714, pp. 33–44. Springer, Heidelberg (2005). doi:10.1007/
11554844 5

7. Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A methodology for the deriva-
tion and verification of use cases for product lines. In: Nord, R.L. (ed.) SPLC
2004. LNCS, vol. 3154, pp. 255–265. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28630-1 16

8. Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template app-
roach based on superimposed variants. In: Glück, R., Lowry, M. (eds.) GPCE
2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005). doi:10.1007/
11561347 28

9. Sepulveda, S., Cravero, A., Cachero, C.: Requirements modeling languages for
software product lines: a systematic literature review. IST 69, 16–36 (2016)

10. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE TSE 27(1), 58–93 (2001)

11. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: Applying product line use case
modeling in an industrial automotive embedded system: lessons learned and a
refined approach. In: MODELS 2015, pp. 338–347 (2015)

12. Halmans, G., Pohl, K.: Communicating the variability of a software-product family
to customers. SoSyM 2, 15–36 (2003)

13. Buhne, S., Halmans, G., Pohl, K.: Modeling dependencies between variation points
in use case diagrams. In: REFSQ 2003, pp. 59–69 (2003)

14. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from use case models
to analysis models: approach and experiments. TOSEM 22(1), 1–38 (2013)

15. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: Configuring use case models in
product families. SoSyM (2016)

16. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-
oriented variability modeling: a multiple case study. ASE 18, 77–114 (2011)

17. Heider, W., Rabiser, R., Grünbacher, P.: Facilitating the evolution of products in
product line engineering by capturing and replaying configuration decisions. STTT
14(5), 613–630 (2012)

18. Heider, W., Rabiser, R., Lettner, D., Grünbacher, P.: Using regression testing to
analyze the impact of changes to variability models on products. In: SPLC 2012,
pp. 196–205 (2012)

19. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg
(2006). doi:10.1007/11880240 23

20. Kurtev, I., Dee, M., Göknil, A., van den Berg, K.: Traceability-based change man-
agement in operational mappings. In: ECMDA-TW 2007, pp. 57–67 (2007)

21. Jahann, S., Egyed, A.: Instant and incremental transformation of models. In: ASE
2004, pp. 362–365 (2004)

22. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model
synchronization for efficient run-time monitoring. In: Ghosh, S. (ed.) MODELS
2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12261-3 13

http://www.iee.lu/
http://dx.doi.org/10.1007/11554844_5
http://dx.doi.org/10.1007/11554844_5
http://dx.doi.org/10.1007/978-3-540-28630-1_16
http://dx.doi.org/10.1007/978-3-540-28630-1_16
http://dx.doi.org/10.1007/11561347_28
http://dx.doi.org/10.1007/11561347_28
http://dx.doi.org/10.1007/11880240_23
http://dx.doi.org/10.1007/978-3-642-12261-3_13
http://dx.doi.org/10.1007/978-3-642-12261-3_13

Incremental Reconfiguration of Product Specific Use Case Models 21

23. Eramo, R., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: A model-
driven approach to automate the propagation of changes among architecture
description languages. SoSyM 11, 29–53 (2012)

24. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: PUMConf: a tool to configure
product specific use case and domain models in a product line. In: FSE 2016, pp.
1008–1012 (2016)

25. Hajri, I.: Supporting change in product lines within the context of use case-driven
development and testing. In: Doctoral Symposium - FSE 2016, pp. 1082–1084
(2016)

Aligning the Elements of the RUP/UML
Business Use-Case Model and the BPMN

Business Process Diagram

Yves Wautelet(B) and Stephan Poelmans

KU Leuven, Leuven, Belgium
{yves.wautelet,stephan.poelmans}@kuleuven.be

Abstract. Context and Motivation: The Business Use Case Model
(BUCM) formalized in the Rational Unified Process (RUP) defines
stereotypes of elements refining the UML Use Case Model for coarse-
grained business processes modeling (BPM). The Business Process Model
and Notation (BPMN) Business Process Diagram (BPD) is designed for
workflow-based (i.e. fine-grained) BPM. These are frameworks that can
possibly be complementary for enterprise modeling. Question/Problem:
The semantically richer BPMN BPD can be used instead of UML activ-
ity diagrams for operational BPM when the BUCM is used for tactical
BPM. Principal ideas/results: The common use of the BUCM and BPMN
BPD requires anchoring of elements in between the frameworks to ensure
traceability. Traceable models increase their overall consistency. Contri-
bution: The paper allowed to set up traceability rules for the combined
use of these frameworks.

Keywords: RUP/UML Business Use-Case Model · Business modeling ·
BPMN

1 Introduction

Within the Rational Unified Process (RUP) [3], the Business Use-Case Model1

(BUCM) offers a syntax and semantic to represent business processes at tactical
and strategic2 levels. The BUCM is an extension of the Unified Modeling Lan-
guage (UML) [8] UCM supported by RUP and many Computer Aided Software
Engineering (CASE) tools. In RUP, operational workflows are represented with
Activity Diagrams (AD) [8].

The RUP/UML BUCM and the Business Process Modeling Notation
(BPMN) [1,7] Business Process Diagram (BPD) have in common that they
are targeted to pure business process modeling so that they dispose of a rich set

1 We do not refer here to the Use Case Model (UCM) as defined by the OMG in [8]
but to the refinement proposed in the business modeling discipline from the RUP
(see [3,6]).

2 The only strategic elements within the BUCM are the business goal and objectives.

c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 22–30, 2017.
DOI: 10.1007/978-3-319-54045-0 2

Aligning the elements of the RUP/UML BUCM and the BPMN BPD 23

of elements associated with precise semantics for this purpose. Even if they come
from different semantic domains, some elements are semantically close enough
that they can be used for anchoring (and traceability) among representation
levels; this paper studies this.

Once correctly integrated, the BUCM allows to represent the strategic and
tactical levels and BPMN BPD to represent the operational level of a business
process set; traceability between knowledge representation levels is ensured. The
conjunct use of these two frameworks is supported by CASE tools like Visual
Paradigm [9] (e.g. [11]).

2 Related Work and Positioning

Process Maps (PM) are included in BPMN. A PM is a tactical level model
(made of coarse-grained elements) but with limited expressiveness. PM are only
constituted by a set of elements representing sets of business processes and the
triggering actors represented as lanes. A PM is comparable to a classical use-
case model. UML AD define a set of elements for operational level (workflow)
modeling but the set of available elements is much poorer for pure business
(enterprise) modeling than the ones of BPMN’s BPD. AD are mostly oriented
on representing software system behavior with user interaction.

[2] suggests to use BPMN BPD instead of UML activity diagrams in the
RUP process. Their study showed that the perceived complexity of the BPMN
BPD is lower than the one of the activity diagrams. The only guideline given
in the paper is the use of one BPMN BPD to depict one particular use-case; no
further traceability rules are given. We define anchoring points for traceability
between the representation levels.

3 Research Method

We distinguish groups of elements both within the ones defined by the
RUP/UML BUCM and BPMN BPD. As presented in Table 1, three categories
of elements are distinguished within the RUP/UML BUCM on the basis of the
study of the RUP knowledge base (see [4–6]). The business objective and goal
have been left out because they are strategic elements and we focus here on
the mapping of tactical elements to operational ones. Similarly, as presented in
Table 2, four categories of elements are distinguished within the BPMN BPD on
the basis of a study of [7].

We start from the categories established for the RUP/UML BUCM to evalu-
ate the semantic mapping to BPMN BPD elements. We take each category of the
RUP/UML BUCM and, within these categories, we firstly evaluate the relevance
of each element for business process modeling. Once an element of a category is
considered relevant, its possible alignment with elements of the BPMN BPD is
overviewed on a pure semantic basis. Possible maps are identified and evaluated
in practice before being adopted.

24 Y. Wautelet and S. Poelmans

Table 1. RUP/UML business use case elements

Inheriting from Use Case (IUC) Inheriting from the Actor (IA) Links (UMLLink)

Use case Business actor Association

Use case realization Business worker Include

Business Use Case (BUC) Business entity Extend

BUC realization Business event Generalization or
specialization

Table 2. Business process modeling notation elements

Events (Evt) Activity (Act) Gateway
(Gwy)

Connections (Cnt) Swimlanes
and
Artifacts
(SwA)

Start event Task Exclusive Sequence flow Pool

Intermediate event Sub-process Event
based

Message flow Lane

End event Transaction Parallel Association Artifacts

Call activity Inclusive Data objects

Actor boundary Exclusive
event based

Group

Complex Annotation

Parallel
event based

4 Studying the Alignment Between the RUP/UML
BUCM’s Elements and BPMN BPD’s Ones

4.1 Elements of the Use Case Category

The four elements defined in IUC category are the Use Case (UC), Business Use
Case (BUC), Business Use Case Realization (BUC Realization) and Use Case
Realization (UC Realization). Only the BUC and BUC Realization are relevant
in the context of general business process modeling since we do not want to
describe behavior with respect to a potential system to-be. Following the RUP
knowledge base, a Business Use Case (instance) is a sequence of actions that a
business performs that yields an observable result of value to a particular
business actor. The notion of sequence of actions explicitly refers to a notion
of (business) process and to the (added) value it provides to a business actor
(i.e. an actor outside the organization interacting with it). Let us further study
the BUC Realization element; following the RUP knowledge base, a Business
Use-Case Realization describes how business workers, business entities, and

Aligning the elements of the RUP/UML BUCM and the BPMN BPD 25

business events collaborate to perform a particular business use case . If
we compare both elements, we notice that they refer to business processes but
the BUC focuses on a prescriptive level – WHAT is done to obtain value – while
the BUC Realization is on a descriptive level HOW value is achieved.

Alignment with BPMN BPD Element: Typically, a BPMN BPD represents
the description of a business process and the alignment can then be envisaged
with the BUC Realization. The latter is a coarse-grained element representing
the business process while the BPMN BPD is a fine-grained representation of
a process. As illustrated in Fig. 1, a BPMN BPD (as a whole) can thus be
encapsulated in a BUC realization for fully documenting how value is achieved
so that we dispose of a tactical representation – the BUC Realization – and an
operational one – the BPMN BPD.

Fig. 1. Tracing business use cases and BPMN BPD.

4.2 Elements of the Actor Category

The Business Actor. The RUP knowledge base defines a business actor
(instance) as someone or something outside the business that interacts with the
business.

Alignment with BPMN BPD Element: Following [7], a Pool ... represents a
Participant in a Collaboration. [10] argues BPMN uses Pools when representing
the interaction between an organization and participants outside of its control.
It then highlights that within a company, a single pool covers its own internal
operations ... only when it interacts with external participants that additional
Pools are required. Since a business actor represents an actor outside the orga-
nization, it could be traced, within the BPMN BPD, as a different pool than
the one containing the activities performed by actors inside the organization (the
Business Workers). Moreover, [7] highlights that a Pool is not required to contain
a Process, i.e., it can be a “black box”; the pool corresponding to the business

26 Y. Wautelet and S. Poelmans

actor can thus be3 a black box. The left part of Fig. 2 shows an example of how
the organization and its identified business actor(s) is/are traced and modeled
when interacting with the organization in a Collaboration context.

Business_Worker

BUC_Realization

Business_Actor
Business_Worker1

BUC_Realization

Business_Worker2

Fig. 2. Business actor interacting with the organization and business workers within it.

The Business Worker. The RUP knowledge base defines a business worker
as ... a role or set of roles in the business. A business worker interacts with
other business workers and manipulates business entities while participating in
business use-case realizations.

Alignment with BPMN BPD Element: Following [7], a Lane is a partition
that is used to organize and categorize activities within a Pool ; it then further
argues that Lanes are often used for such things as internal roles (e.g., Manager,
Associate), systems (e.g., an enterprise application), or an internal department
(e.g., shipping, finance). Similarly, [10] argues that lanes are often assumed to
represent internal business roles within a Process Since the lane refers to
internal roles, each business worker can be envisaged as a lane within the pool
representing the modeled organization; this is the closest semantic map we were
able to achieve with BPMN BPD elements. The right part of Fig. 2 shows an
example of how the organization and its identified business worker(s) is/are
traced and modeled within the organization.

The Business Entity. Following the RUP knowledge base, the business entity
is a piece of information that is manipulated by business actors and business
workers. Furthermore, business entities represent an abstraction of important
persistent information within the business. Stakeholders use business entities to

3 It depends if, from the point of view of the modeler’s organization, the business
actor is involved in a private or public workflow. Indeed, a process purely within
the business actor’s organization is private and not documented (this is known as
Collaboration); a process where realization requires coordination is partially public
because the information and objects needed to be exchanged should be documented
(this is known as Choreography), see [7].

Aligning the elements of the RUP/UML BUCM and the BPMN BPD 27

ensure that the information created and required by the organization is present
in the Business Analysis Model

Alignment with BPMN BPD Element: Following [10], data objects are
used to represent the documents and data that are manipulated by the processes.
[7] argues that data objects provide information about what Activities require to
be performed and/or what they produce, Data Objects can represent a singular
object or a collection of objects A business entity can thus be represented as
a data object in the BPMN BPD; this is the closest semantic map we were able
to achieve with BPMN BPD elements. Due to a lack of space we do not repeat
the icons of these elements here.

The Business Event. Following the RUP knowledge base, the business event
... represents a significant occurrence in the activities of the business that requires
immediate action. Furthermore, a business event describes a significant occur-
rence in space and time that is of importance to the business. ... Useful when
synchronization, interaction, or integration is necessary across business func-
tions, applications, or locations.

Alignment with BPMN BPD Element: Following [7], an Event is ... some-
thing that happens during the course of a Process; it also highlights that Events
affect the flow of the Process and usually have a cause or an impact. The BPMN
cause can be aligned with the significant occurrence found in the definition of
the RUP/UML business event and the impact aligned with the of importance
to the business. [7] later indicates that BPMN has restricted the use of Events
to include only those types of Events that will affect the sequence or timing of
Activities of a Process. The latter property of the event can be seen as aligned
with the business event definition because it is used for synchronization, inter-
action, or integration across business functions, applications, or locations. We
point to the traceability between a RUP/UML business event in the form of a
start, intermediate or end event into the BPMN BPD (depending on its moment
of occurrence in the process realization). Indeed, each of those BPMN BPD ele-
ments originates from a significant occurrence of activities; this is the closest
semantic map we were able to achieve with BPMN BPD elements.

4.3 Links

Association. This association is meant to be the link between an element of
the IA category and an element of the IUC one (see Table 1).

Alignment with BPMN BPD Element: Two possibilities can be
distinguished:

– If the association link is directed from the element of the IA category to the
IUC one, we suggest to interpret this as: “the IA category element triggers
the action so that the Start Event from the BPMN BPD depicting the IUC
category element should be placed in the Swimlane corresponding to the IA
category element”;

28 Y. Wautelet and S. Poelmans

– If the association link is directed from IUC category to the IA one, we suggest
to interpret this as: “the IA category element is involved in the realization of
the process but not triggering the action so that this IA category elements must
be found as a swimlane or pool in the BPMN BPD, but does not host the start
event (it can possibly host an intermediate or an end event)”.

Include. [8] emphasizes that An include relationship defines that a use case
contains the behavior defined in another use case. This definition is extended
here to the whole IUC category elements and we highlight that a IUC category
element is thus necessarily fulfilled into another one’s realization.

Alignment with BPMN BPD: The IUC category element is thus included in
another one so that the IUC element representing the “main” process includes
as a sub-process in its BPMN BPD the second one; the latter must be executed
in any path of achievement of the main process. Left part of Fig. 3 shows the
traceability of an include relationship at business use case level and BPMN BPD.

BUC_Realization2Business_Worker1

BUC_Realization1
<<include>>

BUC_Realization2Business_Worker1

BUC_Realization1
<<extend>>

Fig. 3. Traceability of include and extend relationships.

Extend. [8] emphasizes that A relationship from an extending use case to an
extended use case that specifies how and when the behavior defined in the extend-
ing use case can be inserted into the behavior defined in the extended use case.
This definition is extended here to the whole IUC category elements and we
highlight that a IUC category element is thus possibly fulfilled into another
one’s realization.

Alignment with BPMN BPD: The IUC category element is thus extended
by another one so that the IUC element representing the “main” process includes
as a sub-process in its BPMN BPD the second one; the latter may be executed
in the path of achievement of the main process but not necessarily. Right part of
Fig. 3 shows the traceability of an extend relationship at business use case level
and BPMN BPD.

Aligning the elements of the RUP/UML BUCM and the BPMN BPD 29

Generalization. The RUP knowledge base emphasizes that A parent use case
may be specialized into one or more child use cases that represent more specific
forms of the parent. Neither parent nor child is necessarily abstract, although
the parent in most cases is abstract. A child inherits all structure, behavior, and
relationships of the parent. Children of the same parent are all specializations of
the parent.

Alignment with BPMN BPD Element: A generalization can take place
both between elements of IA category or the IUC one in the RUP/UML BUCM.
Between 2 elements of the IA category, it cannot be traced at the level of the
BPMN BPD. When there is one between two elements of the IUC category and
the parent is abstract, only a BPMN BPD is build for the realization of the child
IUC category element. If it is not abstract, a BPMN BPD is also associated with
the parent IUC category element.

5 Conclusion and Future Work

The BUCM (part of RUP) allows to model business processes at strategic and
tactical levels. The operational level – which is represented using UML AD – how-
ever fails to furnish anchoring points to ensure traceability with the upper level.
For integrated business process modeling – so to increase consistency between
modeling levels by giving modeling guidelines – we have envisaged to use the
BPMN BPD at operational level instead of UML AD. Even if we face different
semantic domains, the RUP/UML BUCM and the BPMN BPD are both made
for enterprise modeling; elements constituting the two frameworks have been
easily aligned on the basis of their semantic. This allows to build a set of rules
to ensure traceability between tactical and operational levels.

The mapping proposal will be further validated in the coming months. Vali-
dation will be performed longitudinally and cross-sectionally. Students of a mas-
ter level project-based course will be made familiar with the traceability rules
and apply them onto a real life case. The same case has already been solved
by a cohort of former students, 3 years ago. These students were made aware of
the importance of traceability, but were not given the specific rules presented
in this paper. Students reports will be given a score in function of the (i) the
quality of the application of traceability in particular (including the cohort not
familiar with the developed rules), and (ii) on the general structural quality and
completeness of the models produced. We will then compare the results of the
2 cohorts (without and with knowledge of the transformation rules). Across the
cohorts, traceability scores will also be correlated to the general scores.

References

1. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput.
Stan. Interfaces 34(1), 124–134 (2012)

2. Herden, A., Farias, P.P.M., Albuquerque, A.B.: An approach based on BPMN
to detail use cases. In: Elleithy, K., Sobh, T. (eds.) New Trends in Networking,
Computing, E-learning, Systems Sciences, and Engineering, pp. 537–544. Springer,
Cham (2015)

30 Y. Wautelet and S. Poelmans

3. IBM: The Rational Unified Process, Version 7.0.1 (2007)
4. Johnston, S.: Ration R©uml profile for business modeling. Technical report (2004)
5. Kruchten, P.: The rational unified process: an introduction. Longman/Addison-

Wesley, Wokingham (2003)
6. Nailburg, E.J., Maksimchuk, R.A.: UML for Database Design, 1st edn. Addison-

Wesley Longman Publishing Co., Inc., Boston (2001)
7. OMG: Business process model and notation (BPMN). Version 2.0.1. Technical

report (2013)
8. OMG: OMG unified modeling language (OMG UML). Version 2.5. Technical report

(2015)
9. Oscar, S.: Visual Paradigm for UML. International Book Market Service Limited,

Beau-Bassin Rose-Hill (2013)
10. White, S.A., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies

Inc., Lighthouse Point (2008)
11. VisualParadigm: from use case to business process (2012). https://www.youtube.

com/watch?v=jkIZuBZ876c

https://www.youtube.com/watch?v=jkIZuBZ876c
https://www.youtube.com/watch?v=jkIZuBZ876c

Ecosystems and Innovation

Modeling and Analyzing Openness Trade-Offs
in Software Platforms: A Goal-Oriented

Approach

Mahsa H. Sadi1(&) and Eric Yu1,2

1 Department of Computer Science, University of Toronto, Toronto, Canada
{mhsadi,eric}@cs.toronto.edu

2 Faculty of Information, University of Toronto, Toronto, Canada

Abstract. Context and motivation: Open innovation is becoming an important
strategy in software development. Following this strategy, software companies
are increasingly opening up their platforms to third-party products for extension
and completion. Question/problem: Opening up software platforms to
third-party applications often involves difficult trade-offs between openness
requirements and critical design concerns such as security, performance, pri-
vacy, and proprietary ownership. Deliberate assessment of these trade-offs is
crucial to the ultimate quality and viability of an open software platform.
Principal ideas/results: We propose to treat openness as a distinct class of
non-functional requirements, and to model and analyze openness requirements
and related trade-offs using a goal-oriented approach. The proposed approach
allows to refine and analyze openness requirements in parallel with other
competing concerns in designing software platforms. The refined requirements
are used as criteria for selecting appropriate design options. We demonstrate our
approach using an example of designing an open embedded software platform
for the automotive domain reported in the literature. Contributions: The pro-
posed approach allows to balance the fulfillment of interacting requirements in
opening up platforms to third-party products, and to determine “good-enough”
and “open-enough” platform design strategies.

Keywords: Requirements engineering � Software design � Decision making �
Open software platforms � Software ecosystems � Open innovation

1 Introduction

“How open is open enough?”–Joel West [1]

Open innovation is becoming an increasingly important strategy in software devel-
opment. Following this strategy, software development organizations open up their
processes and software platforms to external developers and third parties in order to use
external ideas and paths to market (as well as the internal ones) to advance their
technology [2]. External developers become part of a software ecosystem offering
complementary applications and services for the open platforms [3–5]. Google
Android, Apple iOS, and Windows Mobile are a few examples of open software
platforms.

© Crown Copyright 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 33–49, 2017.
DOI: 10.1007/978-3-319-54045-0_3

However, developing open software platforms that are technically sound, socially
sustainable and economically viable is a challenging problem in software development.
First, critical decisions need to be taken in opening up software platforms to third-party
products that raise serious concerns about proprietary ownership and confidentiality of a
platform and its complementary applications. Examples of such decisions include:
deciding between the core features and functionalities that build the core competencies
of a platform, and those that can be opened up to third-party developers [6, 7]; or
identifying the appropriate degree of openness for engaging different third-party
developers, some of whom are also competitors in the market place [7, 8]. Second,
openness introduces a specific set of requirements on the design of a platform which are
in competition with crucial requirements such as security, performance, maintainability,
and controllability. For example, opening up a platform may urge the need for trans-
parency and visibility of platform functionalities and data to third-party applications.
These requirements pose serious risks to the security of the platform. Another example
is that distributing platform features among applications from different parties threatens
the controllability and maintainability of the overall platform [4, 9].

A successful example of an open software platform is Google Android. Lowering
the entry barriers and providing easy access to extend the platform has significantly
increased the adoption of Google Android among mobile manufacturers and applica-
tion developers, introducing this operating system as a leader mobile software platform
in the market [10]. However, Google Android and its complementary applications
suffer from performance and security issues [11].

It is crucial to clearly understand and analyze the requirements that openness
introduces on the design and evolution of a platform, and to carefully assess the related
trade-offs before opening up a platform to third-party applications. To model and
reason about openness requirements and related trade-offs, we propose a goal-oriented
approach. The proposed approach reduces the problem of designing open software
platforms to a decision making problem, treats openness requirements as a distinct class
of non-functional requirements, refines them in parallel with other important design
concerns, and uses the refined requirements as selection criteria to determine an
appropriate design strategy from among alternative options for opening up a platform.

In Sect. 2, we identify some requirements and concerns that have been raised in the
design of open software platforms. We briefly review the main steps of the
Non-Functional Requirement (NFR) engineering approach in Sect. 3. We illustrate
how to model and analyze openness requirements using NFR, in Sect. 4. We review
the related research in Sect. 5 and conclude the paper in Sect. 6.

2 Requirements and Concerns in Open Software Platforms

An open software platform is a platform on top of which third-party applications can be
built [3–5, 12]. Unlike in Free and Open-Source Software (FOSS) [13, 14], the source
code of an open software platform is usually not made available to third parties.
Instead, there are extension mechanisms, such as Application Programming Interfaces
(APIs) or development environments that allow sufficient access to the services and

34 M.H. Sadi and E. Yu

functionalities of the open platform. Moreover, in open software platforms, major
players develop purposive strategies attempting to gain competitive advantage [3, 15].

The requirements that need to be considered in opening up software platforms to
third-party applications can be categorized into two main groups: (1) Openness design
requirements: The specific concerns and quality requirements that openness introduces
on the design; and (2) General concerns in designing software platforms: The
requirements that are possibly violated or at risk when opening up platforms to external
applications. Often, these requirements cannot be fully fulfilled simultaneously in the
design of a platform. A designer may need to compromise between these two types of
requirements. In the following, we identify several of these requirements and concerns.

2.1 Openness Design Requirements

Openness introduces two types of requirements on the design of software platforms:
(1) Business-level openness requirements: These requirements are the main motivations
for opening up a software platform to third-party applications. Business-level openness

Table 1. Business-level openness requirements

Market-related objectives – market reach, market presence, new markets, standardized
market, adoptability, and time to market. A main reason for opening up software platforms
is to expand market reach, open up new markets and communities for a platform, increase the
adoption of a platform among various users and developers communities, increase the number
and variety of innovative and complementary features, and reduce time to market of new and
innovative features [15–17].
Customer-related objectives – attracting new customers and developing new customer
communities, stickiness of the platform, and customer retention. Growing the network size
of complementary applications hardens switching to a different platform, thus increases the
stickiness of a platform. Moreover, growing the variety of platform offerings increases
attractiveness of the platform for new and potential users, and increases value of the core
product to the existing users [15, 16].
Product-related objectives – co-innovation and open-innovation, and variety of software
vendor’s offerings. Innovative features play an important role in the success of a platform,
specifically in knowledge intensive domains. Via growing the network size of developers, the
platform owners can benefit from emerging external innovations [15].
Financial-related objectives – revenue stream, sharing the costs of innovation, and
decreasing total costs of ownership. Collaborating with partners in ecosystems shares the cost
of innovation and decreases the total cost of ownership for commodity and innovative
functionality [15, 16].
Network-effect-related objectives – customer and partner ecosystem gravity, and
community building. Third-party developers play an important role in the success of an open
platform through their contributions and innovations. A larger pool of developers will provide
more innovative output. Thus, platform developers aim to attract and engage a large number of
developers to contribute and develop applications to their platforms. Factors, such as the degree of
openness, low entry barriers of both monetary and technical nature, and the network size of a
platform influence the choice of external developers to join a platform [10, 15, 16].

Modeling and Analyzing Openness Trade-Offs in Software Platforms 35

Table 2. System-level openness requirements

Accessibility. An open software platform needs to be accessible to third-party applications and
have access to the features and services of third-party applications. The ease of access to and
from a software platform is an important quality requirement for opening up a platform. The
accessibility of a platform can be categorized into four levels: (1) accessibility of functionalities
and services; (2) accessibility of data; (3) accessibility of platform structure (i.e., access to
features and components); (4) accessibility of source code [18].
Extensibility – composability, deployability, stability, configurability, and evolvability. An
open software platform needs to be extended and complemented by other software applications
and components over time. Extensibility quality attribute identifies how easy a new application or
feature can be added to a platform. Various quality criteria contribute to the extensibility of a
platform, including: (1) Composability: Open and seamless integration of external modules is an
important requirement for a platform. Factors such as decoupling third-party applications from
each other, eliminating the need for development synchronization, and independent development,
integration, and validation of third-party applications contribute to the composability of an open
platform [12, 19]. Carefully decoupled components with well-defined interfaces enable
third-party developers to modify their applications without disrupting the overall correctness.
Platform interfaces should decouple the platform organization from the third-party applications.
Achieving this objective, allows the platform owner to release new version of the platform or new
components without disabling the externally developed applications operating on top of the
platform [12, 20]. (2) Deployability: Third-party applications must be possible to be deployed
independently of each other, and the platform behavior must not depend on the order in which
applications are deployed [19]. (3) Stability: Open software platforms and their APIs need to be
sufficiently stable over time to provide a stable infrastructure for third-party applications [19].
Backwards compatibility is an important quality attribute contributing to the stability of the
platform. (4)Configurability: Open software platformsmust support variability in configuring the
platform and third-party applications to enable customized products be developed [19]. (5)
Evolvability. In open software platforms, new functionality are continuously added and the size of
the platforms continuously grow. To deal with the growth, it is required to proactively refactor
platform architecture and standardize platform interfaces [20].
Decentralizability and distributability. The functionalities of an open software platform need
to be distributed among several applications, and platform components need to operate in a
decentralized environment. Thus, the ease to operate in a decentralized environment is an
important quality requirement for an open software platform [13].
Interoperability. An open software platform requires to easily cooperate and interact with
third-party applications. Mechanisms are required to coordinate and facilitate the interactions
between the platform and third-party applications and to resolve conflicts that arise in
coordination [4, 13, 20].
Reusability. An open software platform and its components need to be used and re-used in the
development of other software features and applications. The ease to do so is an important
design quality in an open platform.
Modifiability. To use the platform in the development of other applications and software
features, the platform or some parts of its functionalities or structures may need to be modified
and customzied. Thus, the platform should provide mechanisms that enables easy modification
of some features.
Visibility or transparency. To be complemented and extended by third-party applications, the
platform structure, functionalities, and behavior need to be visible and transparent to external
applications to various degrees [21].

36 M.H. Sadi and E. Yu

requirements are non-technical, related to the social, business, and organizational
environment of a software platform, and may indirectly influence the design of an open
platform. These requirements often compete or interact with technical quality
requirements in the design of open software platforms. Thus, specific attention should
be given to this group in choosing effective design strategies for opening up a software
platform. These requirements can be categorized into five main groups described in
Table 1. (2) System-level openness requirements: These requirements are technical,
related to the quality of software design, and directly influence the design decisions.
The technical quality requirements that need to be considered in opening up software
platforms can be classified into seven groups described in Table 2.

2.2 General Concerns in Designing Software Platforms

Aside from openness requirements, there are other considerations applicable to the
design of software platforms that are potentially impacted by openness requirements.
Several instances of these requirements are identified in Table 3.

3 Non-functional Requirements Analysis Method

To deal with interacting and competing requirements, we use the Non-Functional
Requirements (NFR) engineering approach [24]. NFR reduces the problem of
designing a software system into a decision making problem and a search for

Table 3. General design concerns in open software platforms

Security – operational security, integrity, confidentiality, and privacy. The end-users use a
composition of the core of platform and various external applications developed on top of it.
Security concerns arise as possible defective or malicious code in external applications may
disable the overall system [20, 22, 23]. Mechanisms are required: (1) to guarantee the integrity
of platform services and data in the presence of access by third-party applications [19]; (2) to
preserve the confidentiality and privacy of the end-users’ information and platform data when
opening up a platform to third-party developers [7, 20]; and (3) to ensure safe and correct
operation of features and services developed by multiple parties.
Controllability, maintainability, and centralizability. The development and maintenance of
an open platform and its complementary applications is shared among various parties. In this
setting, mechanisms are required to manage software enhancements, extensions, and
architectural revisions in decentralized projects. Moreover, rules are required to govern and
control the applications network [4, 9, 13].
Reliability, trust and accountability. In open software platforms, parties providing and
consuming a software service are easily exposed to cheaters. Therefore, mechanisms are required
to guarantee trustworthiness and accountability of third-party services and functionalities
[13, 23].
Proprietary ownership. The ownership and intellectual property rights of the applications,
components and data produced by external developers is a critical concern in open software
platforms. Mechanisms are required to ensure responsibility and commitment to updating and
supporting third-party modules. Moreover, the alignment of component licenses need to be
checked in the usage and composition of open software components and modules at build time
and deployment [7, 20, 23].

Modeling and Analyzing Openness Trade-Offs in Software Platforms 37

satisfactory design options. To identify an appropriate design option, four main steps
are performed in NFR: (1) Characterizing and Prioritizing Design Requirements: In
this step, the requirements and constraints important to a specific design context are
identified and characterized in terms of a set of non-functional requirements; i.e., a set
of technical and non-technical quality objectives that a design should meet. For this
purpose, two main activities are performed: The design requirements are first identified
and refined, then they are prioritized based on their importance in the specific design
context. (2) Identifying Alternative Design Options: The second step is to identify the
design objective (i.e., the specific functionality to be designed or implemented) and to
explore alternative design options for achieving the specified objective. (3) Evaluating
Design Alternatives against Design Requirements: To choose an appropriate design
option, the design alternatives are evaluated based on the identified design require-
ments. (4) Selecting Satisficing Design Options. The final step is to select the most
appropriate design options from among the available alternatives. To select an
appropriate design option, it is required to formally describe and prioritize the identified
design requirements, and to assess their fulfillment in each design option. For this
purpose, NFR provides a goal-oriented modeling and analysis procedure [25]. The
modeling procedure has two main steps of describing a design decision and modeling
the design decision (explained in Table 4). To analyze the fulfilment of the identified
design requirements in each design option, NFR provides a semi-automatic
goal-oriented forward evaluation procedure. Using this approach, all the design alter-
natives are evaluated against the design requirements, and then the most satisfactory
design option is selected. To analyze the impact of each design alternative on the
design requirements, a labeling system is used, which is explained in Table 4.

Table 4. Modeling and analyzing design decisions using i* goal-oriented language

Modeling. Each design decision is described using three elements: (a) a design objective, (b) at
least two atomic alternative design options (which are non-overlapping and exclusive), and
(c) at least one design requirement which discriminates between the alternative design options.

A design decision is modeled as follows: (1) The design objective is represented using
“Goal” element. (2) Alternative design options are modeled using “Task” element. (3) The
relationship between a design goal and design options are modeled using “Means-Ends” link. (4)
If design requirements are atomic they are modeled using “Soft Goal” element. If design
requirements are non-atomic, they need to be refined and modeled using “Soft Goal
Interdependency Graphs (SIG)”. In SIG graphs, refinement of a design requirement is
modeled using “Help” contribution link. (5) Evaluation of design options against design
requirements are modeled using “Help” and “Hurt” contribution links. (6) Priorities of design
requirements are modeled using three types of priorities: non-critical, critical, and very critical.
Analysis. (1) Label Assignment. The selection of a design option is described using a label
assigned to the “Task” element representing the chosen option. (2) Label Propagation. The
impact of an alternative on immediate design requirements are described using a predefined set
of label propagation rules, which can be redefined in a specific evaluation. (3) Label Resolution.
After each step of performing label propagation, a “Soft Goal” might receive a set of labels
from the underneath “Soft Goal” or “Task” elements. A set of predefined label resolution rules
determine the final label of the “Soft Goal” element, representing a design requirement. Label
resolution step requires human input and is semi-automatic.

38 M.H. Sadi and E. Yu

4 Example Modeling and Analysis

To demonstrate our proposed approach, we use the case study of designing the
AUTOSAR platform for embedded automotive software reported in [19]. We have
chosen this case study for two reasons. First, AUTOSAR is a real-world industrial open
platform and its design process is explained in detail in [19]. The design process is
explained in terms of the design requirements, the decisions taken in the design, and the
final strategies adopted to design the platform. Thus, we add no hypothetical data or
assumption to the requirements of this case. We only extract the explanations about
platform functionalities (Sect. 4.1) and the related design requirements (Table 5), and
then apply our proposed approach. Second, the designers have adopted a structured
approach in identifying requirements and decisions, without using modeling for
analysis. Using this study, we can show how the proposed modeling and analysis
approach might be effective for designing a real-world industrial-scale open platform.

4.1 System Description: An Open Embedded Automotive Platform

The AUTOSAR platform manages the electronic units of a vehicle. Some electronic
units control vehicle steering sensors and actuators, and some are responsible for
accessory functions such as infotainment modules. Different electronic units commu-
nicate via data buses. The platform shares the control of the electronic units with
third-party applications. The platform controls most of critical electronic units in charge
of basic operations of a vehicle (such as the engine, brakes and forward sensing
modules). Less critical functions (such as displaying vehicle speed in the cluster dis-
play, locking the doors or infotainment modules) can be controlled either by certified
third-party applications or by third-party applications developed by undirected devel-
opers. The core of the platform, including the set of software modules providing
necessary services to use a vehicle, will be deployed on a car before delivery to the
end-user. Less critical functions and accessories can be updated or deployed after
delivery on an ongoing basis. The platform should be designed in a way that can
accommodate these kinds of extensions and completion.

In the following, we focus on the scenario of designing data provision service to
third-party applications from the platform. Third-party applications may require to
access to and operate on platform data or data from other third-party applications.
Examples of these data include: the speed and lateral acceleration of the vehicle or the
speed of nearby cars. These data are aggregated from sensors in the wheels. Third-party
applications may require access to platform data such as speed data to simply display it
in the speed display or to automatically adjust the speed of a vehicle with respect to
nearby cars. It is possible that several third-party applications require access to the
same data at the same time. For example, auto-cruise system and direct brake control
system may want to adjust the speed at the same time. Therefore, generic mechanisms
should be designed in the platform to provide data service to present and future
third-party applications. In the following, we demonstrate how to determine an optimal
design strategy for opening up AUTOSAR platform data to third-party applications,
treating openness requirements as a class of non-functional requirements.

Modeling and Analyzing Openness Trade-Offs in Software Platforms 39

4.2 Modeling and Analysis

Determining the most appropriate design strategy for providing data service to
third-party applications consists of four main steps: (1) characterizing and prioritizing
design requirements, including domain-specific requirements (general design concerns)
and the requirements that openness introduces on the design; (2) identifying alternative
design options for opening up platform data to third-party applications; (3) evaluating
the design options against the identified design requirements; and (4) selecting an
appropriate design option. To select an appropriate design option, the identified design
options are modeled, prioritized and analyzed using NFR goal-oriented modeling and
analysis as described in Table 4.

Characterizing domain-specific design requirements. The embedded platform is in
charge of controlling automotive electronic units, many of which have safety-critical
functionalities such as automatic control of the vehicle speed and brakes. Therefore, the
design has to meet stringent dependability requirements with high priority. The
dependability requirements are of two types: (1) Performance requirements: Platform
and individual third-party applications must operate in real-time. Therefore, the
response-time of the platform must be minimized and undesirable interactions between
applications should be eliminated. (2) Security requirements: including integrity and
availability of services to assure operational security of the platform. Relevant aspects
of these requirements need to be fulfilled in the design of data provision service. The
details of domain design requirements and their priorities are provided in Table 5.

Characterizing openness design requirements. The platform shares control of the
electronic units with third-party applications. Opening up the platform imposes
high-priority extensibility requirements on the platform including: (1) Composability:
The automotive platform needs to accommodate and interact with third-party appli-
cations. Therefore, the open platform should enable open and seamless integration of
external modules. (2) Deployability: Third-party applications must be deployed inde-
pendently of each other. Openness requirements also need to be refined and considered
in the design of data provision service. The details of openness design requirements and
their priorities are described in Table 5.

Identifying alternative design options. Three alternative design options can be con-
sidered to provide data service to third-party developers, including: (1) centralized data
provision, (2) semi-centralized data provision and (3) decentralized data provision. In
centralized data provision, all data exchange operations between the platform and
third-party applications are controlled by the platform. Third-party applications cannot
communicate directly with each other. In semi-centralized data provision, third-party
applications are allowed to exchange data directly. However, a supervisor (either the
platform or the end user) mediate the data interactions between third-party applications.
In decentralized data provision, the third-party applications can independently
exchange data with each other. Further details about the design options is provided in
Table 6.

Evaluating design options against the design requirements. The fulfilment of each
domain-specific and openness design requirement (Table 5) should be evaluated in

40 M.H. Sadi and E. Yu

each data provision design option. The details of this evaluation is presented in
Table 7. In Table 7, the contribution of design options to the refined design require-
ments are represented by a (+) or (−) label. A (+) indicates that a design option has a
positive impact on the fulfilment of a design requirement. A (−) indicates that the
design option violates or is negatively co-related with a design requirement. Each
evaluation is accompanied with reasons explaining why a positive or negative label has
been assigned.

Selecting an appropriate design option. As shown in Table 7, each design option has
received a set of (+) and (−) labels in the evaluation against the requirements. This

Table 5. Design requirements important for providing data service to third-party apps

Design requirement Description

Domain design requirements: security | Priority: high
Integrity [Platform Data] Many of platform data are safety critical (such as speed

data). The platform must implement necessary mechanisms
to ensure the integrity, accuracy and consistency of all the
operations performed on safety-critical data.

Availability [Platform] and
[Third-Party Applications]

The platform services should correctly operate at any time.
Mechanism are required to guarantee high-availability and
fast failure recovery of platform operations.

Domain design requirements: performance | Priority: high
*** Response Time [Platform] Access-Time [Data]: Platform and third-party applications

should operate in real-time. Thus, response-time of the
platform and access-time of third-party applications to the
required data should be minimized and platform should
respond to the data access requests in real-time.

Openness design requirements: composability [Platform] | Priority: high
Decoupling (1) [Third-Party Applications]: Third-party applications

must be decoupled from each other and work
independently.
(2) [Platform]: Platform and third-party applications
development and evolution should be decoupled.

Development Asynchronization
[Third-Party Applications]

The design must eliminate the need for development
synchronization and enable third-party applications to
be developed, integrated and validated independently of
other applications. Since non-technical users cannot
integrate and validate the composition themselves, this
requirement must be supported by the platform.

Openness design requirements: deployability [Platform] | Priority: high
Independent Deployment
[Third-Party Applications]

Third-party applications must be deployed independently
from each other.

Independent Behaviour
[Third-Party Applications]

Platform behaviour must not depend on the order in
which the applications are installed and deployed.

*** Response time and access time design requirements were not explicitly mentioned in [19].
We inferred these requirements from the real-time operations that the automotive platform must
perform

Modeling and Analyzing Openness Trade-Offs in Software Platforms 41

means that in choosing each design option, trade-offs should be made between a set of
competing requirements. For example, choosing centralized data provision helps
achieve “Decoupling[TP App]” (an important design requirement for opening up the
platform) but as a result “Access Time[Data]” is violated. However, access time is also
an important requirement for real-time operations of the automotive platform. To take a
final decision between the design options, all the trade-offs between the requirements
need to be carefully examined. For this purpose, the identified requirements, their
priorities and their trade-offs need to be formally modeled and analyzed. We have
modeled the information presented in Tables 5, 6, and 7, and analyzed the impact of
each design option on the design requirements using goal-oriented modeling and
analysis (explained in Table 4). The results are presented in Fig. 1.

In Fig. 1, the design requirements and their refinements are shown in the upper part,
the design options and their evaluation against the immediate refined requirements are
shown at the bottom, and the degree of fulfillment of each design requirement in each
design option is shown by the colored labels besides the requirements. Moreover,
trade-offs points can be recognized in two ways: (1) directly from the “conflict” label
beside a design requirement. For example, “Composability [Platform]” has received a
“conflict” label from two options. The reason for the conflict can be traced back to the
fulfillment of its refinement; i.e., “Decoupling[Platform]” and “Decoupling[TP App]”.
“Centralized data provision” design option helps decouple third-party applications

Table 6. Providing data service to third-party apps: three alternative design options

Design objective: To provide data service to third-party applications.
Design option 1: centralized data provision
The platform controls all data interactions between third-party applications and the platform, and
between one third-party application and another. In this design alternative, all data is stored and
exchanged through the platform, but most data is isolated to a single application through a single
API. Data and provided services are accessed through the platform API by either and explicit
get/set and/or subscribe, both at run-time. There is also and API to determine the available data
set at runtime.
*** Design option 2: semi-centralized data provision
Third-party applications can communicate directly in some cases. Any data access request is
initially submitted to a mediator (end-user or the platform). After checking and allowing the
request, third-party applications can communicate directly. For this purpose, applications declare
what data and information they need at install-time. The platform decides to control data write
operations, data read operations or both.
*** Design option 3: decentralized data provision
Third-party applications can directly exchange data and information with each other. Data and
information exchange between one third-party application and another is controlled and
supervised by the third-party application that provides the requested data. In this design, data
access requests are declared at run-time and third-party applications are responsible for
managing the data access requests from other third-party applications. Data provider application
is in charge of controlling the consistency of data write operations.

*** Design options 2 and 3 did not exist in the original study. They are generated as alternative
options for the design strategy that the original designers have adopted (as a part of the proposed
analysis approach)

42 M.H. Sadi and E. Yu

Table 7. Evaluating design options against identified design requirements

Decoupling
Option 1 (1) [Platform] (−): Centralized data provision increases the interactions between

third-party applications and the platform since all data access operations should
pass through the platform. (2) [Third-Party Applications] (+): Central control by the
platform eliminates any one-to-one interaction between third-party applications.

Option 2 (1) [Platform] (−): Platform is involved in data write operations between
third-party applications. This increases the interactions between the platform and
third-party application. (2) [Third-Party Applications] (−): Since the applications
can interact with each other directly, the interactions between third-party
applications increase.

Option 3 (1) [Platform] (+). Third-party applications can exchange data without platform
control. Application interactions are thus decoupled from the platform.
(2) [Third-Party Applications] (−): Applications can interact with each other
directly. Thus the interactions between third-party applications increase.
Development asynchronization [Third-party applications]

Option 1 (+): Prohibiting direct communications between third-party applications separates
the integration and validation of third-party application from each other.

Option 2 (−): The correctness of the behavior of third-party applications should be
validated in combination with the related third-party applications.

Option 3 (−): This design is similar to Option 2.
Independent behavior [Third-party applications]

Option 1 (+): Since all the data interactions are controlled by the platform, the behavior of
the applications are completely separated and independent from each other.

Option 2 (−): The applications installed later can access the data of the applications that are
installed earlier.

Option 3 (−): This design is similar to option 2.
Independent deployment [Third-party applications]

Option 1 (+): The platform prohibits direct communications between third-party
applications. Therefore, third-party applications can be deployed independently
of each other.

Option 2 (−): Third-party applications can request access to the data of other third-party
applications at install-time. This kind of requests violates the independent
deployment of applications.

Option 3 (−): Third-party applications can send data requests to other applications at any
time (either at install-time or after that).
Availability [Third-party application data]: failure recovery

Option 1 (+): The platform is informed if a third-party application becomes unavailable.
Therefore, data requests for unavailable data can be mitigated proactively.

Option 2 (+): The supervisor (either platform or end-user) is informed of possible unavailability
of third-party applications. Therefore, a data request for an unavailable third-party
application can be mitigated proactively.

Option 3 (−): In decentralized communications, the unavailability of applications is not
known beforehand. Therefore, a data request for an unavailable third-party
application lead to an unmitigated failure.

(continued)

Modeling and Analyzing Openness Trade-Offs in Software Platforms 43

Table 7. (continued)

Integrity [Data]: consistency [Data]
Option 1 (+): Platform controls every data access and modifications between third-party

applications. This centralized access control reduces the chance of inconsistency
in data read and write operations.

Option 2 (+): Data write operation can be supervised by the platform. This supervised
access control reduces the chance of inconsistency in data read and write
operations.

Option 3 (−): Third-party applications can interact with each other without informing
central control. This increases the possibility of data inconsistencies in several
data read and write operations by different third-party applications.
Response time [Platform]: access time [Data]

Option 1 (−): All data operation requests should pass through a central gateway and queue
controlled by the platform. Central checking increases the waiting time of third-
party applications that require to access data around the same time, even if the
requests are for different data from different third-party applications.

Option 2 (+): Many of unwanted waiting time for data requests, specifically data read
operations, can be eliminated, because third-party applications can directly
request data read from other third-party applications.

Option 3 (+): Data read operations are handled similar to option 2. Moreover, there will be
no central queue for data write operations since the third-party application that
provides data is responsible for consistency checking.

Fig. 1. Modeling and analyzing trade-offs between openness and other requirements in
alternative data provision design options using i* goal-oriented language

44 M.H. Sadi and E. Yu

from each other, but in return, it increases the coupling between the platform and
third-party applications. Similarly, “Decentralized data provision” design option has
this conflict in reverse order; (2) indirectly by comparing the labels of the same color
between different design requirements. For example, “Extensibility [Platform]” has
received a “partially satisficed” red label, and “Performance[Platform]” has received a
“partially denied” red label. This difference indicates that by choosing “Centralized
data provision” option, a designer has to sacrifice some degree of performance in order
to gain some degree of extensibility for openness. The fulfillment of the design
requirements in each design option is summarized and compared in Fig. 2. In Fig. 2,
the nested pentagons represent different degrees of design requirements satisfaction
(from denied to satisficed). The nodes of the pentagon depict the main design
requirements for the automotive platform. As Fig. 2 shows, “Centralized data provi-
sion” outperforms other options except in fulfilling “Performance [Platform]”.

4.3 Discussion

Our modeling and analysis (Fig. 1) detects two important trade-off points between the
requirements: One trade-off is between two openness requirements of “Decoupling
[Platform]” and “Decoupling[TP App]”. This means that in choosing each of the
design options, a designer has to comprise between independence of the platform from
third-party applications and independence of third-party applications from each other.
Both of the requirements are important for the platform and their dissatisfaction may
have irreversible impacts. Another trade-off is between the openness requirement of
“Extensibility[Platform]” and “Performance[Platform]”. Performance requirement is
of particular importance for the real-time operations of the automotive platform (e.g.
the real-time adjustment of speed or the real-time activation of brakes). On the other

Fig. 2. Comparing design strategies for opening up platform data to third-party applications
based on important design requirements for the automotive platform

Modeling and Analyzing Openness Trade-Offs in Software Platforms 45

hand, extensibility is also crucial to accommodate third-party applications. The impact
of this trade-off must be carefully assessed before making any final design decision.

In [19], the original designers have implemented “centralized data provision”
strategy for designing the automotive platform, without acknowledging the above
trade-offs. This decision may have two reasons: (1) The designers use an informal and
descriptive method for designing the open platform; i.e., they identify the requirements
and then explain a set of generic design patterns that fulfill the requirements. Since the
design process is comprised of numerous decisions (typical in an industrial-scale
design project), it is possible that the designers have lost the track of some requirements
in the design. (2) It is also possible that the designers have noticed the above trade-offs,
and have decided to sacrifice some degrees of performance to gain higher degrees of
extensibility (i.e. deployability and composability) for openness. According to our
analysis, to alleviate the performance issue, a combination of centralized and
semi-centralized data provision strategies could be considered for providing data to
different types of third-party applications in different layers of the platform.

The presented modeling and analysis is only one design scenario among several
others that we have investigated in the design of AUTOSAR platform. We aim to
confirm our findings with the original designers in a future case study.

5 Related Research

Three groups of research efforts relate to this paper: (1) Designing open software
platforms: Various efforts have been dedicated to the design and development of
software platforms that can smoothly accommodate third-party applications. Most of
these efforts focus on providing best practices and techniques for developing APIs that
enable seamless and secure communications with third-party applications. (e.g. [21]).
Little attention has been given to model-based approaches for designing open software
platforms. In a few research works, the need for systematic modeling and analysis in
open platforms has been discussed (e.g. [26–29]) However, no validated modeling
method has been proposed for this purpose yet. (2) Requirements engineering in open
software platforms: Many recent research efforts have investigated the practice of
requirements engineering in open software platforms (e.g. [7, 8, 30–32]). These efforts
either focus on identifying the challenges of requirements engineering practices in the
presence of multiple development parties or characterising the multi-faceted nature of
requirements in open software platforms. A few research works also emphasize the
need for rigorous modeling and checking of the requirements in open platforms (e.g.
[22]). To support requirements modeling and analysis in open software platforms,
several attempts have been made (e.g. [29, 33, 34]) which are in the early stages of
development. (3) Decision Support for open software platforms. Another group of
research works discuss the need to support systematic decision making of open plat-
forms owners and designers (e.g. [33]). However, these efforts mainly focus on
adopting open-source components rather than design reasoning support for opening up
platforms.

46 M.H. Sadi and E. Yu

6 Conclusions

We presented a goal-oriented method to model and analyze openness requirements and
related trade-offs in designing software platforms. Modeling and analysis of openness
trade-offs allows to formally compare alternative design strategies for opening up a
platform to third-party applications. This systematic comparison helps determine
“good-enough” and “open-enough” design strategies for opening up a platform to
third-party applications. Adopting such balanced design strategies is essential to
developing open software platforms that are technically, socially and economically
balanced, thus having a higher chance of sustainability.

The proposed approach allows to model the relation between business-level and
system-level openness requirements, and provides semi-automated support to assess
alternative design options and to spot trade-off points.

To improve the applicability of the presented method for modeling and analyzing
openness trade-offs, two issues need to be addressed: (1) Scalability of modeling: In
this work, we illustrated trade-off modeling in a single design decision in an open
software platform. Applying trade-off modeling and analysis at the scale of a design
process comprised of numerous interrelated decisions need to be further addressed.
(2) Scalability of analysis: To find appropriate design options, we used the
goal-oriented forward evaluation method, which exhaustively evaluates all the possible
options to reach to the best alternative. To improve the efficiency of analysis, algo-
rithms are required which eliminate this exhaustive search.

Moreover, future work is required to compare the proposed method with existing
methods for analyzing trade-offs, including Architecture Trade-off Analysis Method
(ATAM) [35], and to assess the applicability of the proposed method in real-world
open software projects.

This research work is the first step to support design and decision making in open
software platforms. The next steps towards this ultimate objective aim to enrich the
proposed method in three ways: (1) to provide knowledge support via developing
modules for refining openness design requirements as a class of non-functional
requirements and developing catalogues of options for designing open platforms; (2) to
enrich the analytical and reasoning capabilities of the presented method for incorpo-
rating the priorities and preferences of multiple parties in selecting optimal design
options in open software platforms; and (3) to provide semi-automated tool support for
modeling and analyzing requirements in open software platforms and finding optimal
design options.

References

1. West, J.: How open is open enough?: Melding proprietary and open source platform
strategies. Res. Policy 32(7), 1259–1285 (2003)

2. Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from
Technology. Harvard Business Press, Brighton (2006)

3. Fitzgerald, B.: The transformation of open source software. MIS Q. 30(3), 587–598 (2006)

Modeling and Analyzing Openness Trade-Offs in Software Platforms 47

4. Boudreau, K.: Open platform strategies and innovation: granting access vs. devolving
control. Manag. Sci. 56(10), 1849–1872 (2010)

5. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: opening up a
software producing organization with the open software enterprise model. J. Syst. Softw. 85
(7), 1495–1510 (2012)

6. Munir, H., Wnuk, K., Runeson, P.: Open innovation in software engineering: a systematic
mapping study. Empirical Softw. Eng. 21(2), 1–40 (2015)

7. Knauss, E., Yussuf, A., Blincoe, K., Damian, D., Knauss, A.: Continuous clarification and
emergent requirements flows in open-commercial software ecosystems. Requirements Eng.
21, 1–21 (2016)

8. Valenca, G., Alves, C.M., Heimann, V., Jansen, S., Brinkkemper, S.: Competition and
collaboration in requirements engineering: a case study of an emerging software ecosystem.
In: IEEE 22nd International Requirements Engineering Conference, pp. 384–393 (2014)

9. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contribution in
third-party development: the boundary resources model. Inf. Syst. J. 23(2), 173–192 (2013)

10. Koch, S., Kerschbaum, M.: Joining a smartphone ecosystem: application developers’
motivations and decision criteria. Inf. Softw. Technol. 56(11), 1423–1435 (2014)

11. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google android: a
comprehensive security assessment. IEEE Secur. Priv. 2, 35–44 (2010)

12. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of software
product lines, global development and ecosystems. J. Syst. Softw. 83(1), 67–76 (2010)

13. Scacchi, W.: Free/open source software development: recent research results and methods.
Adv. Comput. 69, 243–295 (2007)

14. Feller, J., Fitzgerald, B.: A framework analysis of the open source software development
paradigm. In: Proceedings of the Twenty First International Conference on Information
Systems, pp. 58–69 (2000)

15. Popp, K.M.: Goals of software vendors for partner ecosystems – a practitioner´s view. In:
Tyrväinen, P., Jansen, S., Cusumano, Michael, A. (eds.) ICSOB 2010. LNBIP, vol. 51,
pp. 181–186. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13633-7_17

16. Bosch, J.: Software ecosystems: taking software development beyond the boundaries of the
organization. J. Syst. Softw. 85(7), 1453–1454 (2012)

17. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., Robinson, W.: The brave new
world of design requirements. Inf. Syst. 36(7), 992–1008 (2011)

18. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software platforms. In:
Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, pp. 85–92, August 2010

19. Eklund, U., Bosch, J.: Architecture for embedded open software ecosystems. J. Syst. Softw.
92, 128–142 (2014)

20. Bosch, J.: Architecture challenges for software ecosystems. In: Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume, pp. 93–95 (2010)

21. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translucence as
an enabler for scalable collaboration. In: Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, pp. 65–72 (2010)

22. Scacchi, W., Alspaugh, T.A.: Processes in securing open architecture software systems. In:
Proceedings of International Conference on Software and System Process (2013)

23. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and challenges.
Computer 39(10), 36–43 (2006)

24. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering, vol. 5. Springer Science & Business Media, Heidelberg (2012)

48 M.H. Sadi and E. Yu

http://dx.doi.org/10.1007/978-3-642-13633-7_17

25. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented satisfaction analysis
techniques. Requirements Eng. 18(3), 199–222 (2013)

26. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design of software
ecosystem architectures–towards the 4S telemedicine ecosystem. Inf. Softw. Technol. 56
(11), 1476–1492 (2014)

27. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem modeling. In:
Proceedings of the 1st International Workshop on Open Component Ecosystems, pp. 41–50
(2009)

28. Sadi, M.H., Yu, E.: Designing software ecosystems: how can modeling techniques help? In:
Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol.
214, pp. 360–375. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19237-6_23

29. Sadi, M.H., Dai, J., Yu, E.: Designing software ecosystems: how to develop sustainable
collaborations? In: Persson, A., Stirna, J. (eds.) CAISE 2015. LNBIP, vol. 215, pp. 161–173.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-19243-7_17

30. Wnuk, K., Runeson, P.: Engineering open innovation–towards a framework for fostering
open innovation. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150,
pp. 48–59. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39336-5_6

31. Linåker, J., Rempel, P., Regnell, B., Mäder, P.: How firms adapt and interact in open source
ecosystems: analyzing stakeholder influence and collaboration patterns. In: Daneva, M.,
Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 63–81. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30282-9_5

32. Linåker, J., Regnell, B., Munir, H.: Requirements engineering in open innovation: a research
agenda. In: Proceedings of the 2015 International Conference on Software and System
Process, pp. 208–212 (2015)

33. Franch, X., Susi, A.: Risk assessment in open source systems. In: Proceedings of the 38th
International Conference on Software Engineering Companion, pp. 896–897 (2016)

34. Sadi, M.H., Yu, E.: Analyzing the evolution of software development: from creative chaos to
software ecosystems. In: 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–11 (2014)

35. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architecture
tradeoff analysis method. In: Proceedings of the Fourth IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS 1998, pp. 68–78. IEEE (1998)

Modeling and Analyzing Openness Trade-Offs in Software Platforms 49

http://dx.doi.org/10.1007/978-3-319-19237-6_23
http://dx.doi.org/10.1007/978-3-319-19243-7_17
http://dx.doi.org/10.1007/978-3-642-39336-5_6
http://dx.doi.org/10.1007/978-3-319-30282-9_5

A Contribution Management Framework
for Firms Engaged in Open Source Software

Ecosystems - A Research Preview

Johan Lin̊aker(B) and Björn Regnell

Lund University, Lund, Sweden
{johan.linaker,bjorn.regnell}@cs.lth.se

Abstract. Context and motivation: Contribution Management helps
firms engaged in Open Source Software (OSS) ecosystems to motivate
what they should contribute and when, but also what they should focus
their resources on and to what extent. Such guidelines are also referred
to as contribution strategies. The motivation for developing tailored con-
tribution strategies is to maximize return on investment and sustain the
influence needed in the ecosystem. Question/Problem: We aim to develop
a framework to help firms understand their current situation and cre-
ate a starting point to develop an effective contribution management
process. Principal ideas/results: Through a design science approach, a
prototype framework is created based on literature and validated iter-
atively with expert opinions through interviews. Contribution: In this
research preview, we present our initial results after our first design cycle
and consultation with one experienced OSS manager at a large OSS
oriented software-intensive firm. The initial validation highlights impor-
tance of stakeholder identification and analysis, as well as the general
need for contribution management and alignment with internal product
planning. This encourages future work to develop the framework further
using expert and case validation.

Keywords: Requirements engineering · Open source · Software ecosys-
tem · Open innovation · Co-opetition · Scoping · Contribution strategy ·
Contribution management

1 Introduction

Requirements Engineering (RE) concerns capturing the needs of the customer
and translating these into a product that satisfies the elicited needs [1]. For
software-intensive firms, RE can therefore be considered as a pivotal part in
the product planning and spans over different time horizons and abstractions,
from requirements management, to release-planning, roadmapping and portfolio
management [2]. Firms operating in an Open Source Software (OSS) ecosystem
have to consider participation in two such RE instances; one that regards the
internal product planning facilitated by themselves, and one that regards the
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 50–57, 2017.
DOI: 10.1007/978-3-319-54045-0 4

A Contribution Management Framework 51

external product planning of the OSS project facilitated by the OSS ecosystem.
In the latter, to impose their own agendas, firms have to collaborate and compete
with other actors in the ecosystem that all have a stake in the OSS project that
underpins the ecosystem [3].

To gain the influence needed in order to impose their agenda, align their
internal RE with the ecosystem’s RE and to maximize Return On Investment
(ROI), firms need consider how to participate in the OSS ecosystem in terms
of what they contribute and when (cf. requirements scoping [4], but also what
they should focus their resources on and to what extent. We choose to label
this process as contribution management and guidelines that come as output
contribution strategies [4]. To create these strategies, we believe that firms need
to understand how they draw value [5] from the OSS project and their ecosys-
tems [3], and identify the related business requirements [6]. Further, firms need
to understand the relation between the OSS projects, their ecosystems, and the
firms’ internal product planning [2], and as a consequence how important is it
to be able to influence the RE in the OSS ecosystems [7]. These factors need to
align with the reasons for why firms make contributions and dedicate resources
to the OSS project and its ecosystem, i.e., the foundations for the contribution
management process.

We aim to develop a contribution management framework to help firms
understand their current situation and create a starting point that can help them
construct guidelines for what they should contribute to the OSS ecosystems and
when, i.e., contribution strategies [4]. We apply a design science approach [8] by
first building on literature [9], and then consult with experts for opinions in an
iterative fashion. In this research preview we present our initial results after our
first design cycle and consultation with an experienced OSS manager at a large
OSS oriented software-intensive firm.

2 Research Methodology

We consider the problem context of aligning the contribution management with
a firm’s internal product planning [2] and business requirements [6] as a design
problem. We adopt a design science approach [8] and define our design problem
to:

– Improve alignment between a firm’s contribution management towards OSS projects
with the firm’s internal product planning and business requirements, by designing a
framework that can help the firm to create guidelines for what should be contributed
and when, in order for its developers to better decide what to contribute and how to
prioritize their work.

The treatment addressing the stated design problem includes the framework
(i.e., the artifact [8]) as well as the interaction between it and the problem
context, which in our case is constituted by firms engaged in an OSS ecosystem.

In our study, we identify and explain the problem based on literature [9]
and develop a prototype of an artifact along with a potential interaction set-
up. As a validation model, we will use expert opinions where the prototype

52 J. Lin̊aker and B. Regnell

and interaction set-up is simulated through interviews. Based on the output of
each interview, the treatment is refined and again validated in a new cycle. The
interviews are semi-structured with introductory questions that covers current
involvement in OSS ecosystems, contribution practices, and how internal RE
functions relative the ecosystems’. In the second part, the framework is presented
for the interviewee with an explanation and open discussion on its structure and
content. In the third part, the interviewee and interviewer walk through the
framework for an OSS ecosystem of the interviewee’s choice. The interview ends
with a discussion of usage scenarios, potential improvements and changes of the
framework. The interviews are audio-recorded and transcribed.

Fig. 1. Overview of the first iteration of the proposed contribution management frame-
work.

In this research preview, the results from the first design cycle is presented
where our initial treatment design was validated with an OSS manager of a
large OSS oriented software-intensive firm. Based on the output from the first
interview, some factors in the original prototype was reordered and made clearer.
E.g., the engagement and revealing strategies, originally elicited from Dahlander
and Magnusson [10] was made more explicit, while the ecosystem stakeholder
analysis and identification was abstracted as a general input to all levels. For
the framework, see Fig. 1.

3 Structure of the Framework

In this section we present the structure of the framework. As illustrated in Fig. 1,
it consists of six levels: Business Criticality, Product Criticality, Engagement
Strategy, Revealing Strategy, Focus Areas, and Contribution Drivers. These lev-
els are used to frame and explain how the firm engages or should engage with
a specific OSS ecosystem. Business and Product Criticality represents the role
and importance of the OSS project and its ecosystem in relation to the firm’s
internal business requirements and product planning. Engagement and Reveal-
ing Strategy represents the way in to the firm interacts and contributes to OSS
project and its ecosystem. Focus areas is used to separate between parts of an
OSS project which are valued differently in terms of previous framework levels.
Contributions Drivers are what motivate what, when and to whom a software

A Contribution Management Framework 53

artifact should be revealed, or where resources should be invested and to what
extent, i.e., contribution management. The framework presents a list of possible
drivers, but not all may be relevant or even listed. These should be identified and
be in alignment with previous framework levels. As input to all framework lev-
els, the firm should perform stakeholder identification and analysis on the OSS
ecosystem. The output from the framework (i.e., how an OSS project is viewed
in terms of Business and Product Criticality, what strategies are used, and what
drivers that are relevant for which focus areas) may differ with time and should
be in alignment with the firm’s internal product planning, why it can be divided
into different time horizons (e.g., Strategic, Tactical, and Operational). Below
we present the each part of the framework in more detail.

Time Horizons: To capture the short to long-range views, three horizons are
defined: (1) the strategic horizon which looks beyond one year, (2) the tactical
horizon which looks up to one year ahead, and (3) the operational horizon which
is the practice at the current point in time. The precise time intervals are to
be adapted relative each firm’s internal product planning [2]. The important
aspect is how the engagement with the ecosystem should be adapted as time
and development progresses.

Ecosystem Stakeholder Population: What stakeholders that are present
and what their agendas are may affect how a firm judges the business criticality
of the OSS project, to what extent the firm should engage the ecosystem, and
what they choose to reveal, and when [9]. E.g., The presence of competitors
may affect what is to be considered differential and not. Some stakeholders may
be unknown and indirect competitors pending on their agendas [11]. Similarly,
the presence of existing and potential partners may offer opportunities for closer
collaborations, some of which are too specific or differential to share with the rest
of the ecosystem. Knowing who are the most influential and what their interests
are may hint how the OSS project’s roadmap aligns with the firm’s, how easy
it is to affect, but also who that should be influenced to create traction in a
direction favorable for the firm [7]. Additionally, it may provide an input to if
the OSS ecosystem is worth engaging in the first place, and also to help monitor
the general health of it [3].

Business Criticality: Refers to how the firm draws value [5] from the OSS
project and its ecosystem, and how the related business requirements [6] are
defined. From a business model perspective, the business criticality of the OSS
may be judged based on the rationale of how it helps the firm to create, deliver,
and capture value [12]. E.g., [13,14], as a direct part of the product offering
through an open core or platform-extension model, as a basis for support, sub-
scriptions and professional services, or as part of a duel-licensing model. However,
it may also be the case that the value comes indirect when the OSS is used as an
enabler for the firms’ product offerings, e.g., as a development component or as
part in the infrastructure supporting the product. It may also a combination of
such direct and indirect factors. E.g., in asymmetric business models, software
is made OSS to instead capture value from additional products, services and

54 J. Lin̊aker and B. Regnell

data gathering that is managed through the OSS [15]. Even though considered
a difficult process [16], firms must be able to determine the strategic importance
of the OSS in regard to differentiation and added value [5] in order to decide if
and how much the firm should invest and interact with the ecosystem [4].

Product Criticality: Refers to how the firm uses the OSS project in their
future plans and actions in regards to their product over a series of releases,
i.e., how integrated the OSS project is with the product and how the internal
product planning [2] needs to align with that of the OSS project. This affects
what requirements need to be present in both or separately, and therefore what
should be contributed or not. Further, if the firm uses a product-line approach
with an underlying platform from which it creates its products, there may be an
interest to contribute back to the OSS project in order to enable reuse. If they
focus on developing single products and reuse more opportunistic, there may be
less of a long-term perspective so less may be contributed back.

Engagement Strategy: Pending on the business and product criticality of the
OSS project, the firm may need to have an influence on the development going
on in the ecosystem. By actively engaging and contributing back to the ecosys-
tem firms can increase their level of influence. Dahlander and Magnusson [17]
describes three types of relationships in regards to activity and influence on the
ecosystem. Firstly, symbiotic relationships imply giving back to the ecosystem
and is associated with a high influence for the firm. Second, commensalistic rela-
tionships imply interacting with the ecosystem but to the required minimum,
and is associated with a low influence for the firm. Finally, parasitic relationships
imply no interaction or giving back to the ecosystem, and is related to no, or
very limited influence. Dahlander and Magnusson [17] highlights that these are
to be considered as a continuum.

Revealing Strategy: Pending on the business and product criticality, and the
level of engagement, different strategies may be enforced in regards of what to
reveal. E.g., by selectively revealing, differentiating parts can be kept closed while
commodity parts can be made open [11,18]. Further, with licensing schemas (cf.
Dual-licensing [13]), parts can be opened fully but under such circumstances that
competitors cannot exploit the OSS that may hurt the focal firm [14]. Alterna-
tively, everything may be disclosed under open and transparent conditions [13],
or even closed for that matter. Different strategies may be applied to different
parts of an OSS project, as well as combined.

Focus Area(s): Areas or modules of strategic importance and/or extra value
to the firm. For some OSS projects, it may necessary to consider different parts
or sub projects separately in regards to this framework.

Contribution Drivers: Pending on previous levels in the framework, the firm
can identify which drivers that motivate what should be contributed and shared
with the OSS ecosystem, and when, but also what resources should be dedicated
and to what extent. Those listed in Table 1 are not to be considered exhaustive,
nor all relevant per default. There may be further drivers which are specific for
the focal firm and how it makes use of the OSS project and its ecosystem.

A Contribution Management Framework 55

Table 1. Contribution drivers for why to contribute to an OSS project and ecosystem.

Compliancy Drivers

Parts required for compliance with licenses, patents, standards, and law.

Development Drivers

Parts that can ease future maintenance and avoid unnecessary internal patch-work

Parts that may allow for better synced release cycles

Parts that may reduce integration costs

Parts that allows for third party products and services

Parts that would benefit from external development and testing due to lack of
internal resources, or a wish for increased quality and innovation

Parts necessary to maintain an absorptive and learning capacity

Parts necessary to keep a low entrance barrier for new developers

Strategic and Governance Drivers:

Parts necessary to maintain a common standard in the ecosystem and at the
market

Parts that may allow for a first-mover advantage, if in the interest of the firm

Parts that may force a competitor to adapt

Parts required to maintain or reach a certain level in the ecosystem governance
hierarchy

Relation and Reputation Drivers:

Parts that may add to the firm’s reputation as a competitive edge

Parts necessary to maintain relationships with ecosystem participants or external
partners

Parts needed to maintain an open attitude internally of firm

Parts necessary to maintain interest among ecosystem participants and attract
others

Parts necessary to maintain competitive edge to other OSS ecosystems

Parts necessary to maintain legitimacy and goodwill among ecosystem participants

Parts requested by ecosystem participants and customers

Parts that may help to identify potential employees

Differential Drivers:

Parts that may enable internally differential parts

Parts that are non-differentiating for possible competitors in the ecosystem

Parts regarded as commodity

4 Discussion and Conclusions

Target audience for the framework are firms engaged in OSS ecosystems. We
believe that the interaction between the firm and the framework should be
managed in a workshop format. Further, as in the traditional roadmapping
process [16], we believe that the participants should be cross-functional and

56 J. Lin̊aker and B. Regnell

include those concerned with the use of OSS in the firm, e.g., legal, manage-
ment, marketing, product managers, project managers, community managers,
and developers. In the workshop, each level of the framework should be addressed
and discussed to create a unified view of the current state of practice and how
it can be optimized in order for the different levels of the framework to align.

By identifying its contribution drivers, firms may understand what the alter-
native cost is to not contribute back to an OSS project and its ecosystem. By
aligning this to their internal product planning and business requirement, we
believe that they can motivate what should be contributed and not. For some
firms this may be part of an improvement and maturity process in which the
firm starts to understand how they should act in order to influence and draw
value from the OSS project and its ecosystem. With time firms may realize how
they can make use of OSS projects and their ecosystems on a general level, e.g.,
how to adapt business models, but also to adopt new ones.

Pending on the ecosystem’s stakeholder population, there may be multiple
agendas present, all of which may not align. The agendas may reveal potential
competitors and partners, of which some stakeholders may hold both roles as
typical in co-opetition. All these factors impact how an OSS project and its
ecosystem should be used and engaged [9]. This highlights the importance for
stakeholder identification and analysis processes to be in place in order to provide
necessary input when working with the framework and the improvement process.
By using the same framework in the analysis to profile other stakeholders, a firm
may benchmark and learn more about how they can adjust their requirements
scoping, e.g., in order to gain better influence in the ecosystem.

In this paper we have created an initial version of our framework based on
one design cycle. The initial validation highlights the importance of stakeholder
identification and analysis, the need for suggested alignment as well as for context
specific contribution strategies in general.

In future work, we plan to reiterate the framework using further expert valida-
tion, and also develop an initial set of workshop guidelines for how the framework
may be used in an interactive manner. After stabilization is reached in the struc-
ture of the framework, it will be piloted in a workshop format with firms engaged
in OSS ecosystems. Consideration will be taken to background of experts and
firms to strengthen external validity, e.g., in regards to size of development orga-
nization and usage of OSS in relation to the business model of firm, but also
type of OSS project and ecosystem population. The long term goal is to create
a strategic support for contribution management based on the proposed frame-
work in this research preview. The strategic support should allow for tailored
contribution strategies to be created, communicated and followed-up through
the development organization. The support should further take input from con-
tinuous stakeholder identification and analysis of the concerned ecosystems. The
work aims to help firms engaged in OSS ecosystems to gain the influence needed
in order to impose their agenda, align their internal RE with the ecosystem’s
RE and to their maximize ROI.

A Contribution Management Framework 57

References

1. Aurum, A., Wohlin, C.: Requirements engineering: setting the context. In: Aurum,
A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 1–15.
Springer, Heidelberg (2005)

2. Fricker, S.A.: Software product management. In: Maedche, A., Botzenhardt, A.,
Neer, L. (eds.) Software for People, pp. 53–81. Springer, Heidelberg (2012)

3. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: a tale of two software ecosystems. In: Proccedings of the 1st
International Workshop on Software Ecosystems, pp. 34–48 (2009)

4. Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.-A.: How can open source software
development help requirements management gain the potential of open innovation:
an exploratory study. In: Proceedings of the ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, pp. 271–280. ACM (2012)

5. Aurum, A., Wohlin, C.: A value-based approach in requirements engineering:
explaining some of the fundamental concepts. In: Sawyer, P., Paech, B., Heymans, P.
(eds.) REFSQ 2007. LNCS, vol. 4542, pp. 109–115. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73031-6 8

6. Wiegers, K., Beatty, J.: Software Requirements. Pearson Education, Upper Saddle
River (2013)

7. Lin̊aker, J., Rempel, P., Regnell, B., Mäder, P.: How firms adapt and interact
in open source ecosystems: analyzing stakeholder influence and collaboration pat-
terns. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 63–81.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-30282-9 5

8. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer, Heidelberg (2014)

9. Munir, H., Wnuk, K., Runeson, P.: Open innovation in software engineering: a
systematic mapping study. Empir. Softw. Eng. 21(2), 1–40 (2015)

10. Dahlander, L., Magnusson, M.: How do firms make use of open source communities?
Long Range Plan. 41(6), 629–649 (2008)

11. Van der Linden, F., Lundell, B., Marttiin, P.: Commodification of industrial soft-
ware: a case for open source. IEEE Softw. 26(4), 77–83 (2009)

12. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Vision-
aries, Game Changers, and Challengers. Wiley, Hoboken (2010)

13. Chesbrough, H.W., Appleyard, M.M.: Open innovation and strategy. Calif. Man-
age. Rev. 50(1), 57–76 (2007)

14. West, J.: How open is open enough? Melding proprietary and open source platform
strategies. Res. policy 32(7), 1259–1285 (2003)

15. Schuermans, S., Constantinou, A., Vakulenko, M.: Assymetric business models: the
secret weapon of software-driven companies (2014)

16. Komssi, M., Kauppinen, M., Töhönen, H., Lehtola, L., Davis, A.M.: Roadmapping
problems in practice: value creation from the perspective of the customers. Requir.
Eng. 20(1), 45–69 (2015)

17. Dahlander, L., Magnusson, M.G.: Relationships between open source software com-
panies and communities: observations from nordic firms. Res. Policy 34(4), 481–493
(2005)

18. Henkel, J.: Selective revealing in open innovation processes: the case of embedded
linux. Res. Policy 35(7), 953–969 (2006)

http://dx.doi.org/10.1007/978-3-540-73031-6_8
http://dx.doi.org/10.1007/978-3-319-30282-9_5

Human Factors in Requirements
Engineering

Defect Prevention in Requirements Using
Human Error Information: An Empirical Study

Wenhua Hu1, Jeffrey C. Carver1(B), Vaibhav Anu2,
Gursimran Walia2, and Gary Bradshaw3

1 University of Alabama, Tuscaloosa, AL, USA
carver@cs.ua.edu

2 North Dakota State University, Fargo, ND, USA
3 Mississippi State University, Starkville, MS, USA

Abstract. Context and Motivation: The correctness of software require-
ments is of critical importance to the success of a software project. Prob-
lems that occur during requirements collection and specification, if not
fixed early, are costly to fix later. Therefore, it is important to develop
approaches that help requirement engineers not only detect, but also
prevent requirements problems. Because requirements engineering is a
human-centric activity, we can build upon developments from the field
of human cognition. Question/Problem: Human Errors are the failings
of human cognition during the process of solving, planning, or execut-
ing a task. We have employed research about Human Errors to describe
the types of problems that occur during requirements engineering. The
goal of this paper is to determine whether knowledge of Human Errors
can serve as a fault prevention mechanism during requirements engineer-
ing. Principal ideas/results: The results of our study show that a better
understanding of human errors does lead developers to insert fewer prob-
lems into their own requirements documents. Our results also indicate
that different types of Human Error information have different impacts
on fault prevention. Contribution: In this paper, we show that the use of
Human Error information from Cognitive Psychology is useful for fault
prevention during requirements engineering.

Keywords: Human errors · Software requirements · Fault prevention ·
Empirical study · Human factors

1 Introduction

The quality of software products largely depends on the quality of the underlying
requirements. Prior research has shown the importance of producing correct
requirements because requirement faults are more expensive to fix later [8], are
among the most severe kinds of faults [6], and cause the majority of software
failures [13]. Due to the large expense to find and fix faults after they occur, it
is crucial to develop effective defect prevention methods.

The software development process, especially during the requirement phase,
is a human-centric activity. As humans are fallible, the potential for error is high.
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 61–76, 2017.
DOI: 10.1007/978-3-319-54045-0 5

62 W. Hu et al.

As defined by IEEE Standard 24765 [1], an error is the failing of human cognition
in the process of problem solving, planning, or execution. These cognitive failures
can then lead to various types of requirements faults. Cognitive psychologists
have long studied these cognitive failures and referred to these cognitive failures
as the term human errors. By understanding how the human mental process can
fail in various situations, human error research has been able to support error
prevention in fields ranging from medicine to aviation.

Of all the software engineering phases, the requirements engineering phase
may be the most human-centric. Therefore the ability to understand and pre-
vent human errors that occur during requirements engineering can be especially
beneficial to software projects. To make this human error information tractable,
human error researchers develop taxonomies to classify the specific types of errors
that occur in each domain. While the underlying theoretical basis is similar
across domains, the specific types of errors differ. In our own previous work, we
have developed two taxonomies of requirement errors, using different approaches:
The Requirement Error Taxonomy (RET) [25] and the Human Error Taxonomy
(HET) [15]. Section 2.3 provides more details on these taxonomies)

Because human errors occur while eliciting and formalizing requirements,
we anticipate that as requirement engineers better understand specific types
of errors, the less likely they will be to make those errors, resulting in higher-
quality requirements. Therefore, the goal of this research is to evaluate whether
an understanding of Human Error reduces the likelihood of making errors and
the resulting faults during the requirements engineering process.

The primary contribution of this paper are (1) evaluation of whether the
knowledge of error information prevents developers from injecting related errors
and faults into a requirements document, (2) comparison the performance of
RET and HET in providing guidelines for developers in developing requirements
document, and (3) an analysis of contribution of the specific error types in RET
and HET in preventing errors and faults.

The remainder of this paper is organized as follows. Section 2 describes related
work. Section 3 provides a description of the study conducted to evaluate the
utility of error information in preventing errors and faults. Section 4 describes
the analysis and results of this study. Section 5 discusses the threats to validity
of this study, followed by a brief conclusion of this paper and ideas for future
studies in Sect. 6.

2 Background

This section provides background information on topics relevant to our study.
Section 2.1 describes previous research about fault prevention. Section 2.2 briefly
describes research related to human error. Section 2.3 briefly describes the two
kinds of error taxonomies (RET and HET) that we have developed.

2.1 Fault Prevention Techniques

The fault prevention process uses information about the types of problems
that are likely to occur (often using historical data, a sample of faults, or

Defect Prevention in Requirements Using Human Error Information 63

expert opinion) to prevent those problems from occurring in the future. Defect
prevention methods utilize the fault injection rate in software development
processes and provide specific strategies to prevent related faults [12]. Further-
more, training and mentoring can also result in dramatic reductions of fault
rates (close to 50%) [4]. There are three types of fault prevention measurement
recently applied:

– Quality improvement techniques – These techniques, that have seen wide-
spread success [5,10,14,19], focus developers attention on different type of
faults (e.g., missing or incorrect functionality) recorded in software artifacts.
Because they only deal with the fault itself, these techniques cannot help
inspectors understand underlying errors (i.e., source of faults) and prevent
the occurrence of these errors.

– Prevention of faults via process improvement – These methods focus
on determining the causes for commonly identified faults. Examples include:
• fault causal analysis [4] - uses a sample of faults to determine their causes

and prevent future faults. An empirical study found that most of the
causes of software faults were due to people-related factors;

• software failure analysis [11] - improves the development and maintenance
process by analyzing a representative sample of faults to understand the
causes of particular classes of faults;

• fault prevention process [20] - determines the source of a fault and sug-
gests preventive actions by classifying faults causes as oversight (e.g.,
developer overlooked something, or something was not considered thor-
oughly), education (developer did not understand some aspect), or tran-
scription (developer knew what to do but simply made a mistake).

• root cause analysis [18] - uses a multi-dimensional fault trigger concept to
help developers determine the root cause of a fault and help them identify
improvement area.

– Error abstraction approach – Lanubile et al. proposed the process of
analyzing a group of related faults to determine the errors that lead their
occurrence [17]. Based on this approach, several fault prevention techniques
have been proposed, including: the fault distribution method [21], fault
based process improvement (DBPI) technique [16], and fault prevention-based
process improvement (DPPI) method [23]. However, these methods lack for-
mal error information to provide guidelines for developers to use. They can
only prevent the errors that have been identified, but cannot provide the type
of information that developers need to learn from those errors.

While all these methods use some representative faults/problem reports to
analyze the root cause, they lack an underlying cognitive theory of how people
make errors. Therefore, there was a need to develop more formal taxonomies,
like the RET and HET, to address this shortcoming.

2.2 Human Error Research

Human error research focuses on understanding how the psychological processes
go awry. For example, choosing an incorrect solution, forgetting to perform a

64 W. Hu et al.

task, or accidentally performing an incorrect task. The process of analyzing
human error in a particular domain includes collecting information, finding com-
mon failure patterns, and interpreting those patterns in light of the limitations
of human information processing facilities and known error patterns. This type
of understanding can provide insight into how to prevent similar errors from
happening in the future. This approach has been used successfully to improve
aviation [26] and medicine [9].

2.3 Error Taxonomies

To make the error information described above useful, researchers classify the
errors into taxonomies. A taxonomy provides a logical, hierarchical organiza-
tion of the error information. Without such an organization, developers will find
it difficult to successfully use the information about errors to have a practical
impact on their work. Earlier work on using error information to improve soft-
ware quality [7,17,18] provided developers with ways to use the sources of faults
(i.e. errors) to improve software quality. While this work provided a significant
step forward, the main weakness was the lack of a formal error taxonomy. To
improve upon these methods, we employed two different approaches to create
taxonomies of human errors that occur in the requirements phase. The remainder
of this section explains each taxonomy in more detail.

Requirement Error Taxonomy (RET). To develop the first taxonomy, we
performed a systematic literature review (SLR) to identify and classify require-
ment errors that were described in the software engineering and cognitive psy-
chology literatures. We developed this taxonomy strictly from the software engi-
neering perspective without input from a human error expert. Therefore, we built
it bottom-up, based primarily on the errors identified in the literature, without
using a formal human error theory as a driver. Figure 1 provides an overview of
the taxonomy, which includes 14 detailed error classes grouped into three high-
level error types. The three high-level error types are: People Errors (arise from
fallibilities of the people involved in the development process), Process Errors
(arise while selecting the appropriate processes for achieving the desired goals
and relate mostly to the inadequacy of the requirements engineering process),
and Documentation Errors (arise from mistakes in organizing and specifying the
requirements) [25]. Initial evaluation of the RET demonstrated that finding more
errors during a training exercise resulted in fewer errors during requirements cre-
ation [24], suggesting that error information can be helpful for prevention.

Human Error Taxonomy (HET). To more closely tie our work to the con-
cept of human error, we collaborated with a human error expert to develop
a new taxonomy. We again performed an SLR to identify specific requirement
engineering human errors reported in the literature. But, this time, we classified
those detailed errors into a predefined set of high-level error types drawn from
human error research [22] (see Fig. 2). Those three high-level error types are:

Defect Prevention in Requirements Using Human Error Information 65

Fig. 1. Requirement Error Taxonomy

Slips (someone carries out a planned task incorrectly or in the wrong sequence),
Lapses (memory related failures; they occur when someone forgets a goal in
the middle of a sequence of actions or omits a step in a routine sequence), and
Mistakes (planning errors in that someone designed an incorrect plan to achieve
the desired goal). The details of the HET are beyond this paper, but have been
described elsewhere [2,15].

Fig. 2. Human Error Taxonomy

66 W. Hu et al.

We have conducted a feasibility study to validate the effectiveness of HET
for detecting human errors and faults, but not for prevention [15]. The results of
this study showed that the use of the HET allowed developers to identify errors
in requirements documents and to find additional faults during a reinspection
guided by knowledge of the existing errors. Thus, in this study, we plan to
evaluate the usefulness of HET in preventing human errors.

3 Experiment Design

The goal of this study is to evaluate whether an understanding of Human Error
helps prevent faults during requirements creation. The following subsections
describe the research questions, the participants, and study procedures.

3.1 Research Hypotheses

To address the overall study goal, we investigate three specific hypotheses. These
hypotheses move from human errors in general to more specific aspects of human
error. Figure 3 provides an overview of the relationship among the hypotheses.

First, our previous work indicated that knowledge of requirement errors can
help in fault prevention (see Sect. 2) [24]. In this study we employ two different
methods for understanding requirement errors (the RET and the HET). Based
on previous work that the information could be useful, our first hypothesis is:

H1 - The better a developer understands human errors the less likely he/she will
be to inject errors and faults into a requirements document

Second, because we built the HET on a stronger cognitive theory of human
errors (compared with the RET), it should provide more help with regard to
preventing errors and faults. Therefore, our second hypothesis is:

H2 - Knowledge of the HET will provide more benefit for error/fault prevention
than knowledge of the RET

Finally, the RET and the HET each have three high-level error types that
represent different types of human errors. We anticipate that the better a devel-
oper understand each type, the fewer of that type of error he or she will make.
Therefore, our third hypothesis is:

H3 - The better a developer understands each error type, the less likely he/she
will be to insert errors/faults related to that type into a requirements document

3.2 Variables

For each hypothesis, this section describes the Independent and Dependent vari-
ables. Section 4 defines how each variable is measured.

Defect Prevention in Requirements Using Human Error Information 67

Fig. 3. Research questions

– H1
• Independent Variables

Ability to classify errors
Ability to use error information to find new faults

• Dependent Variable
Likelihood of injecting new faults

– H2
• Independent Variable

Knowledge of error taxonomy (HET or RET)
• Dependent Variables

Number of faults injected into SRS
Number of errors injected into SRS

– H3
• Independent Variable

Level of understanding of each error type in the HET or RET
• Dependent Variable

Number of each error type injected into SRS

3.3 Participants

The study included 31 senior-level undergraduate computer science enrolled in
the Spring 2016 capstone course at the University of Alabama. In this course,
students worked in teams to iterate through the software lifecycle and build

68 W. Hu et al.

a software system. The course instructor, independent of the research team,
divided the participants into ten 3- or 4-person teams. To address H2, we ran-
domly assigned each team to either the RET group (control) or the HET group
(experimental). Table 1 illustrates the assignment of participant teams to groups.

Table 1. Assignment of participant teams to groups

System Team members Pages Requirements Group

Color coord 3 13 22 HET

GesConnect 3 17 12 HET

PlayMaker 3 31 25 HET

PoliceVideo 3 15 5 HET

Harmedia 3 11 8 HET

CalPal 3 20 14 RET

Coupon Catcher 4 11 11 RET

EnterntainMe 3 17 20 RET

WhatsKitchen 3 14 12 RET

MansBestFriend 3 11 7 RET

3.4 Experiment Procedure

Figure 4 provides an overview of the study procedure, which included one train-
ing session and five experimental steps.

RET or HET Training: We held two training sessions, one for the members
of the RET group and one for members of the HET group. In each of these
90-minute sessions, we trained participants on requirements inspections, fault
detection, fault classes, and on how to use either the RET or HET (depending
upon their group) to abstract and classify requirement errors from faults. We
explained the error abstraction process in detail along with the RET or HET
error classes. Finally, we trained the participants on how to use the abstracted
errors to guide the reinspection of a requirement document.

Step 1 – Error Abstraction and Classification: This step served as a pretest
to measure how well the participants understood human errors based on their
ability to correctly abstract faults into errors and classify those errors. We gave
the participants the SRS for the Parking Garage Control System (PGCS), which
has been used in a number of studies. We also gave the participants a list of
10 of the 35 faults seeded in the PGCS SRS document. We chose these faults
because they were used in a previous study and represent a cross-section of the
error classes [3]. The participants used their knowledge from the RET or HET
Training to abstract the faults into errors and classify those errors, into the
respective taxonomies. Each participant performed this task independently. The
output of this step was 31 PGCS Error Forms (15 from subjects who use the
HET and 16 from subjects who used the RET).

Defect Prevention in Requirements Using Human Error Information 69

Step 2 – Error-Based Inspection of PGCS: This step served as a second pretest
to measure how well the participants understood human errors based on their
ability to use error information to find additional requirement faults. Using the
errors identified in Step 1 and their knowledge of the RET or HET, the partici-
pants individually inspected the PGCS SRS to identify any additional faults. If
the participant identified a fault that was not related to one of the errors from
Step 1, he/she abstracted that fault into its underlying error, added that error
PGCS Error Form, and used that error to identify additional related faults.
The output of this step was 31 PGCS Fault Forms (one per subject).

Step 3 – Development of SRS: In this step each team developed the SRS for
their own respective systems.

Step 4 – Inspection of SRS: Participants individually used the RET or HET
to inspect the SRSs developed by two other teams, one from the RET group
and one from the HET group. The output of this step was 62 Individual SRS
Fault Forms (one per subject).

Step 5 – Consolidate Fault Lists and Abstract Errors: Each team consolidated
the results from Step 4 into one comprehensive fault list. The team used either
the RET or HET to abstract those faults into the underlying errors. The output
of this step was 10 Final Team Fault and Error Forms (one per team).

Fig. 4. Experiment procedure

70 W. Hu et al.

4 Results and Analysis

This section provides a detailed analysis of the data collected during the study
organized around the hypotheses posed in Sect. 3.1.

4.1 H1 - The Better a Developer Understands Human Errors the
Less Likely He/she Will Be to Inject Errors and Faults
into a Requirements Document

To test this hypothesis, we measured understanding in two ways: (1) ability
to classify errors - how accurately participants abstracted faults into errors and
classified those errors (Step 1) and (2) ability to use error information to find
new faults - how effective the participants were at identifying additional faults
based on the identified errors (Step 2). We measured likelihood of injecting
errors and faults as the number faults in each SRS found by inspection (Step
4) and abstracted to errors by the teams (Step 5).

Effect of Correctly Abstracting and Classifying Errors (Step 1).
Because the participants performed Step 1 independently but the SRSs were
developed as a team, we computed the level of understanding for a team as the
average of level of understanding of the team members. Figure 5 plots the average
percentage of errors correctly abstracted and classified in Step 1, by each team,
against the number of unique errors and faults found during inspection (Step 4)
and abstracted to errors (Step 5), for that team’s SRS. Figure 5 also shows the
results of the linear regression analysis between these pairs of variables. For this
analysis, and the remainder in the paper, we used one-tailed significance tests
because our hypotheses were for a negative correlation. The results of the linear
regressions show a very slight, non-significant correlation in both cases. These
results suggest that overall, a developer’s ability to correctly abstract faults to
errors and classify those errors does not seem to have an impact on the number
of faults or errors he/she injects into his/her own SRS document.

Effect of Finding Additional Faults (Step 2). For this analysis, we com-
puted each team’s level of understanding by counting the total number of unique
faults identified by the team members during Step 2. Figure 6 plots that num-
ber against the number of unique faults found during inspection (Step 4) and
abstracted to errors (Step 5) for the SRS developed by the team. Figure 6 also
shows the results of the regression analysis between each pair of variables. In
this case, both linear regression analyses show a strong, significant, negative
correlation.

These results suggest that overall, a developer’s increased ability to use error
information (regardless whether it was learned in the context of the HET or the
RET) to find faults during an error-based inspection is related to a decrease in
the number of faults and errors he/she injects into his/her own SRS document.
Yet, as shown in Fig. 5, the ability to correctly abstract faults to errors and
classify those errors does not seem to have an impact on the number of faults
and errors injected into the requirements.

Defect Prevention in Requirements Using Human Error Information 71

(a) Errors (b) Faults

Fig. 5. Comparison between correctly abstracted errors in Step 1 and the number of
faults/errors found in Step 5

(a) Errors (b) Faults

Fig. 6. Comparison between number of faults identified in Step 2 test and the number
of faults/errors found in Step 5

4.2 H2: Knowledge of the HET Will Provide More Benefit for
Error/Fault Prevention Than Knowledge of the RET

Based on the results of H1, performance on the error-based inspection (Step 2)
has a significant, negative correlation with the number of errors/faults inserted
into the SRS. To compare the performance of the RET and the HET, we analyzed
each approach separately. Figure 7 shows the results for each error taxonomy,
along with the linear regression analysis. While teams in both groups exhibit
a strong, negative correlation, the correlation for the HET teams is stronger.
These results suggest that knowledge of the HET, which is based more closely
on the concepts of human error, is more beneficial than knowledge of the RET.

72 W. Hu et al.

(a) Errors (b) Faults

Fig. 7. Comparison of faults identified in Step 2 and faults/errors identified in Step 5,
separated by error taxonomy (HET and RET)

4.3 H3: The Better a Developer Understands Each Error Type,
the Less Likely He/she Will Be to Insert Errors/Faults
Related to that Type into a Requirements Document

The HET and the RET each organize errors differently at the top level. The
RET uses an organization based on People, Process, and Documentation errors,
developed bottom-up from the literature. The HET uses an organization based
on Slips, Lapses, and Mistakes, based on a common taxonomy from cognitive
psychology [22]. To better understand the results from H2, we performed the
same analysis, but this time separately for each of the high-level error classes.
Figure 8 shows the results for the HET groups. Figure 9 shows the results for the
RET groups. As before, the figures show the results of the regression analyses
performed between the pairs of variables.

We can make a few observations about these results. First, for the HET,
Slips and Mistakes both showed a significant negative correlation. This results
is consistent with our previous studies [15]. Our previous work also found that
Mistake is the most common error type. Therefore, if this approach is able to
help prevent those errors, it can be quite beneficial. Second, for the RET, the
only error type that showed a strong, significant, negative correlation was People
errors. Based on the results from H2 (that HET is more helpful than RET), this
result is not surprising. When comparing the RET to the HET, the People error
type contains errors that are most similar to those contained in the HET.

5 Threats to Validity

This section describes the primary threats, along with the steps taken to mitigate
them where possible.

Internal Validity. First, even though we have no evidence to the contrary, we
have no way of ensuring that the participants followed the specified HET or RET

Defect Prevention in Requirements Using Human Error Information 73

(a) Slips (b) Lapses (c) Mistakes

Fig. 8. HET error details

(a) People (b) Process (c) Documentation

Fig. 9. RET error details

processes. Therefore, this threat is minimal. In Step 4, we did have participants
inspect the SRS documents from two other groups. Second, it is possible that
by the second inspection they became fatigued and did not perform as well. To
mitigate this threat, we gave them enough time to perform both inspections.

External Validity. The study participants were undergraduate students.
Therefore, the results are not directly applicable in an industrial context. Even
so, the students were building a real system, so the activities performed in this
study did have relevance to the projects. We will need additional studies to
understand how these results apply in industry.

Construct Validity. First, we defined understanding of human error in two
ways in Sect. 4.1. Based on our study design, these definitions seemed to be
the most appropriate. It is possible that other definitions would have provided
different results. Second, because the students were building their own systems
(rather than using systems with seeded faults/errors) we do not know the total
number of errors made during SRS development. Our conclusions are based only
on the errors that reviewers identified in Step 4. Third, the students were working
on different projects and it is hard to compare the results.

74 W. Hu et al.

6 Conclusion and Future Work

To summarize, the overall result for each hypothesis is as follows. H1: Impact of
Overall Understanding of Human Errors - The results showed that the better
a developer was able to use error information to find faults in a requirements
document the less likely he/she was to insert errors and faults into his/her own
requirements document. H2: Comparison of HET and RET - The results showed
that learning either taxonomy helped the developers insert fewer faults and errors
into their requirements documents, those who learned the HET saw a stronger
effect than those who learned the RET. H3: Details of the HET and RET - The
results here showed that (1) for the RET, the high-level error type most closely
associated with human errors, People Errors was the only one that showed a
significant effect; and (2) for the HET, two of the high-level error types, including
the most common one of Mistakes, also showed a significant effect.

Therefore, the overall finding of this study is that a proper understand-
ing of human error information can lead a developer to insert fewer
errors and faults into their own requirements documents. This result
is important due to the large cost and delay associate with finding and fixing
requirements errors and faults, especially at later stages of the software lifecycle.
This observation is important for developers and researchers who are interested
in understanding how to improve the quality of their software by reducing the
number of problems that occur early in the software lifecycle.

The primary contribution of this paper are (1) conclusions about the type
of human error knowledge that helps prevent errors and faults during software
development, (2) evidence that a taxonomy based directly on human error infor-
mation (the HET) is more effective in fault prevention, and (3) insight into how
the specific error types in each taxonomy contribute to the overall result.

Our future work includes plans to address some limitations of this study.
First, we are in the process of conducting surveys and interviews with industrial
professionals to gain a deeper understanding of how human error information
impacts practice. By doing this study, we hope to ensure that the results from
this study are applicable in practice and to evolve our approach based on the
findings. Ultimately, our goal is to have a validated error prevention approach
that is effective for industrial practice.

Acknowledgments. This work was supported by NSF awards 1421006 and 1423279.

References

1. Systems and software engineering – vocabulary. ISO/IEC/IEEE 24765:2010(E),
pp. 1–418, December 2010

2. Anu, V., Hu, W., Carver, J.C., Walia, G.S., Bradshaw, G.: Development of a human
error taxonomy for software requirements: a systematic literature review. Techni-
cal report NDSU-CS-TR-16-001, North Dakota State University (2016). http://
vaibhavanu.com/NDSU-CS/TR-16-001.pdf

http://vaibhavanu.com/NDSU-CS/TR-16-001.pdf
http://vaibhavanu.com/NDSU-CS/TR-16-001.pdf

Defect Prevention in Requirements Using Human Error Information 75

3. Anu, V.K., Wali, G.S., Hu, W., Carver, J.C., Bradshaw, G.: Effectiveness of human
error taxonomy during requirements inspection: an empirical investigation. In: 2016
International Conference on Software Engineering and Knowledge Engineering, pp.
531–536 (2016)

4. Card, D.N.: Learning from our mistakes with defect causal analysis. IEEE Softw.
15(1), 56–63 (1998)

5. Carver, J., Nagappan, N., Page, A.: The impact of educational background on the
effectiveness of requirements inspections: an empirical study. IEEE Trans. Softw.
Eng. 34(6), 800–812 (2008)

6. Chen, J.C., Huang, S.J.: An empirical analysis of the impact of software develop-
ment problem factors on software maintainability. J. Syst. Softw. 82(6), 981–992
(2009)

7. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray,
B.K., Wong, M.Y.: Orthogonal defect classification-a concept for in-process mea-
surements. IEEE Trans. Softw. Eng. 18(11), 943–956 (1992)

8. Dethomas, A.: Technology requirements of integrated, critical digital flight systems.
In: Guidance, Navigation and Control Conference, p. 2602 (1987)

9. Diller, T., Helmrich, G., Dunning, S., Cox, S., Buchanan, A., Shappell, S.: The
human factors analysis classification system (HFACS) applied to health care. Am.
J. Med. Qual. 29(3), 1062860613491623 (2013)

10. Freimut, B., Denger, C., Ketterer, M.: An industrial case study of implementing
and validating defect classification for process improvement and quality manage-
ment. In: 11th IEEE International Software Metrics Symposium, 10 p. IEEE (2005)

11. Grady, R.B.: Software failure analysis for high-return process improvement deci-
sions. Hewlett Packard J. 47, 15–24 (1996)

12. Graham, M.: Software defect prevention using orthogonal defect prevention (2005)
13. Hamill, M., Goseva-Popstojanova, K.: Common trends in software fault and failure

data. IEEE Trans. Softw. Eng. 35(4), 484–496 (2009)
14. Hayes, J.H.: Building a requirement fault taxonomy: experiences from a nasa ver-

ification and validation research project. In: 14th International Symposium on
Software Reliability Engineering, pp. 49–59. IEEE (2003)

15. Hu, W., Carver, J.C., Anu, V., Walia, G., Bradshaw, G.: Detection of requirement
errors and faults via a human error taxonomy: a feasibility study. In: 10th Inter-
national Symposium on Empirical Software Engineering and Measurement (2016)

16. Kumaresh, S., Baskaran, R.: Experimental design on defect analysis in software
process improvement. In: 2012 International Conference on Recent Advances in
Computing and Software Systems (RACSS), pp. 293–298. IEEE (2012)

17. Lanubile, F., Shull, F., Basili, V.R.: Experimenting with error abstraction in
requirements documents. In: Proceedings of the Fifth International Software Met-
rics Symposium, Metrics 1998, pp. 114–121. IEEE (1998)

18. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
Proceedings of the 22nd International Conference on Software Engineering, pp.
428–437. ACM (2000)

19. Masuck, C.: Incorporating a fault categorization and analysis process in the soft-
ware build cycle. J. Comput. Sci. Coll. 20(5), 239–248 (2005)

20. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect
prevention. IBM Syst. J. 29(1), 4–32 (1990)

21. Pooley, R., Senior, D., Christie, D.: Collecting and analyzing Web-based project
metrics. IEEE Softw. 19(1), 52 (2002)

22. Reason, J.: Human Error. Cambridge University Press, New York (1990)

76 W. Hu et al.

23. Terzakis, J.: Reducing requirements defect density by using mentoring to supple-
ment training. Int. Adv. Intell. Sys. 6(1 & 2), 102–111 (2013)

24. Walia, G.S., Carver, J.C.: Using error abstraction and classification to improve
requirement quality: conclusions from a family of four empirical studies. Empir.
Softw. Eng. 18(4), 625–658 (2013)

25. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify
software requirement errors. Inf. Softw. Technol. 51(7), 1087–1109 (2009)

26. Wiegmann, D., Faaborg, T., Boquet, A., Detwiler, C., Holcomb, K., Shappell, S.:
Human error and general aviation accidents: a comprehensive, fine-grained analysis
using HFACS. Technical report, DTIC Document (2005)

Requirements Quality Assurance in Industry:
Why, What and How?

Michael Unterkalmsteiner(B) and Tony Gorschek

Software Engineering Research Lab Sweden,
Blekinge Institute of Technology, Karlskrona, Sweden

{mun,tgo}@bth.se

Abstract. Context and Motivation: Natural language is the most com-
mon form to specify requirements in industry. The quality of the specifi-
cation depends on the capability of the writer to formulate requirements
aimed at different stakeholders: they are an expression of the customer’s
needs that are used by analysts, designers and testers. Given this cen-
tral role of requirements as a mean to communicate intention, assuring
their quality is essential to reduce misunderstandings that lead to poten-
tial waste. Problem: Quality assurance of requirement specifications is
largely a manual effort that requires expertise and domain knowledge.
However, this demanding cognitive process is also congested by trivial
quality issues that should not occur in the first place. Principal ideas:
We propose a taxonomy of requirements quality assurance complexity
that characterizes cognitive load of verifying a quality aspect from the
human perspective, and automation complexity and accuracy from the
machine perspective. Contribution: Once this taxonomy is realized and
validated, it can serve as the basis for a decision framework of automated
requirements quality assurance support.

Keywords: Requirements engineering · Requirements quality · Natural
language processing · Decision support

1 Introduction

The requirements engineering process and the artefacts used in coordination
and communication activities influence the performance of downstream develop-
ment activities [6]. While research has proposed myriads of formal, semi-formal
and informal methods to convey requirements, plain natural language (NL) is
the lingua franca for specifying requirements in industry [14,17]. One poten-
tial reason is that NL specifications are easy to comprehend without particular
training [3]. However, NL is also inherently imprecise and ambiguous, posing
challenges in objectively validating that requirements expressed in NL represent
the customers’ needs [1]. Therefore it is common practice to perform some sort
of review or inspection [14] to quality assure NL requirements specifications.
While there exists a plethora of methods to improve requirements specifica-
tions [15], there are no guidelines that would support practitioners in deciding
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 77–84, 2017.
DOI: 10.1007/978-3-319-54045-0 6

78 M. Unterkalmsteiner and T. Gorschek

which method(s) to adopt for their particular need. We think that a first step
to such a decision framework is to characterize the means by which quality
attributes in requirements specifications can be affected. Therefore, we initi-
ated an applied research collaboration with the Swedish Transport Administra-
tion (STA), the government agency responsible for the rail, road, shipping and
aviation infrastructure in Sweden. STA’s overall goal is to improve the com-
munication and coordination with their suppliers, mostly handled through NL
requirements specifications. Infrastructure projects vary in duration (months to
decades) and budget (up to 4 Billion USD), requiring an adaptive quality assur-
ance strategy that is backed by methods adapted to the needs of the particular
project. The large number of requirements (several thousands) and the need
to communicate them to various suppliers makes specifications in NL the only
viable choice. Still, STA needs to quality assure the requirements and decide what
level of quality is acceptable. In this paper we present the basic components for a
taxonomy that will drive, once the research is completed, a requirements quality
assurance decision support framework. To this end, we illustrate a research out-
line aimed at answering our overall research question: How can we support
practitioners in achieving “good-enough” requirements specification
quality?

2 Related Work

Davis et al. [7] proposed a comprehensive set of 24 attributes that contribute
to software requirements specification (SRS) quality. Saavedra et al. [16] com-
pared this set with later contributions that studied means to evaluate these
attributes. Similarly, Pekar et al. [15] reviewed the literature and identified 36
studies proposing techniques to improve SRS quality. While Agile software devel-
opment is notorious for promoting as little documentation as possible [10], Heck
and Zaidman [13] identified 28 quality criteria used for Agile requirements, six
of them being novel and specifically defined for Agile requirements. All these
reviews point to relevant related work potentially contributing to the compo-
nents of a decision support framework for requirements quality assurance. The
importance of providing decision support to practitioners is growing hand-in-
hand with the complexity of today’s developed software products and the avail-
able number of technologies to realize them [12]. To the best of our knowledge,
no framework exists to support the selection of requirements quality assurance
techniques.

3 Characterizing Requirements Quality Assurance

The purpose of this taxonomy is to characterize the components that are involved
in the process to achieve a particular requirements quality (RQ) level (Fig. 1).
This systematization then allows to take informed decisions about effort and
potential impact for RQ improvement.

Requirements Quality Assurance in Industry: Why, What and How? 79

Fig. 1. Requirements quality assurance taxonomy

A goal determines what the improvement of RQ should achieve. Typical
goals could be to improve the communication between stakeholders, to improve
the ability to verify the product, or better cost estimates. Different goals can
also contradict each other. Goals are important as they provide a scope that
limits the potential actions on the operational level to a set that is economically
acceptable - this enables focus of efforts to assure certain quality aspects within
the given opportunities of the resources afforded.

Quality attributes describe the favourable properties of a requirement. For
example, unambiguity is commonly defined as the quality of a statement being
interpretable in a unique way. Quality attributes for requirements have been
described in numerous quality models, reviewed by Saavedra et al. [16]. Quality
attributes are not independent, i.e. one attribute can positively or negatively
influence another. Figure 2 provides an overview of RQ attributes and their rela-
tionships to each other. For example, atomicity positively influences design inde-
pendence, traceability and precision of a requirement, as indicated by the (+) in
Fig. 2. On the other hand, unambiguous requirements, often achieved by higher
formality, are generally also less understandable.

Goals and quality attributes build the conceptual level of the taxonomy. They
can help to answer questions pertaining to why an improvement of RQ is nec-
essary, and what quality attributes are associated with that goal. Taking the
example from earlier, improving the ability to verify the product based on the
stated requirements, one can see in Fig. 2 that many quality attributes influence
requirements verifiability. Depending on constraints in the operational level, dis-
cussed next, one can decide how to reach the stated goal by choosing a set of
quality attributes, which in turn are associated with operators.

Operator is the generic term we use for instruments that tangibly character-
ize quality attributes. An operator provides a definition of how a requirement is
analysed w.r.t. the associated quality attribute. Examples of operators are met-
rics [8,11], requirement smells [9] or rules and constraints on how to formulate
requirements. An operator can be implemented by either a person or a com-
puter program (or both). In either case, we want to characterize the operator

80 M. Unterkalmsteiner and T. Gorschek

Fig. 2. Quality attributes and their relationships (adapted from Saavedra et al. [16];
color coding and numbers are our addition, and used and explained in Sect. 4)

by some notion of cost and accuracy, providing input for the decision on how
and whether at all to realize the operator. We borrow the concept of cogni-
tive load from the field of instruction design where cognitive load theory [18]
is used to describe and improve learning efficiency. Each operator is associated
with a level of intrinsic cognitive load, describing the complexity of applying
the operator on a single requirement or a complete specification. For example,
if the operator is the ambiguous adverbs requirements smell [9], then the intrin-
sic cognitive load is determined by the number of ambiguous terms one has to
remember to detect these terms in the requirements text. Since cognitive load
is additive [18], there are (individual) limits to the efficiency of applying oper-
ators, and is therefore one determinant for the effective cost of RQ assurance.
If an operator is realized through machine-based processing of information, we
characterize this realization by its automation complexity. Continuing with the
example of ambiguous adverbs, the automation complexity of this operator is
low as it can be implemented with a dictionary [9]. On the other hand, some of
the requirements writing rules found in STA are rather complex. For example,
one rule states that repetition of requirements shall be avoided and a reference
to a general requirement shall be made (addressing redundancy). The detection
of rule violations requires the analysis of the complete specification, identify-
ing similar phrased statements. While this is certainly possible (e.g. with code
clone and plagiarism detection [5]), the analytical complexity is higher than for
a dictionary lookup.

4 Research Outline

The taxonomy serves three main purposes which are outlined in this section,
together with six research questions and our planned approaches to answer them.

Requirements Quality Assurance in Industry: Why, What and How? 81

4.1 Prioritize Quality Attributes

We have asked six requirements experts at STA to rank RQ attributes
(definitions were extracted from the review by Saavedra et al. [16]) by their
importance using cumulative voting [2]. Figure 2 shows the five top and bottom
attributes in green and orange respectively. Individual quality attributes have
been researched earlier, focusing on ambiguity, completeness, consistency and
correctness [15]. While the perceived importance of completeness and correct-
ness is matched by research on these attributes, ambiguity and consistency were
ranked by the experts only at position 13 and 16 respectively. At first sight,
this might indicate that research focus needs adjustment. However, taking into
consideration the relationships between quality attributes, we see a moderate
overlap between the needs at STA and past research. Nevertheless, there are
certain quality attributes whose evaluation has seen little research, like trace-
ability [15], while being important for STA since they affect verifiability and
correctness. The relationships between quality attributes inform us also about
potential inconsistencies among the goals of quality improvement. For example,
design independence was ranked by STA’s experts on position 21 while it affects
verifiability, ranked at position 3. This could indicate that, while verifiability
is important for STA, design independence as a related aspect has been over-
looked as a means to achieve this. These examples show how the relationships
between quality attributes can be used to analyse the goals of the company.
However, since Saavedra et al. [16] deduced the relationships shown in Fig. 2 by
interpreting the quality models they reviewed, these dependencies need further
empirical validation, leading to RQ1: To what extent do requirements quality
attributes affect each other? One approach to address this question, dependent
on the answers to the questions in Sect. 4.2, would be to analyse the correla-
tion between operators for different quality attributes. We plan to perform this
analysis at STA, which in turn partially answers RQ2: To what extent can qual-
ity attribute rankings be used for planning quality assurance activities? Further
inquiries at STA are needed to identify factors that affect planning, such as
timing (does quality attribute importance depend on the project phase?) and
implementation cost.

4.2 Determine Operators and Their Accuracy

At STA we have identified 110 operators in the form of requirements writing
rules. These rules describe how requirements shall be formulated and provide
review guidelines. Table 1 shows five examples of writing rules. We have mapped,
where the description allowed it, which quality attribute was primarily targeted
by each rule. The numbers in Fig. 2 indicate how many operators we identified
for each quality attribute. Several quality attributes have no or very few asso-
ciated operators, leading to the question RQ3: Which quality attributes can be
characterized by an operator? We plan to answer this question by systemati-
cally reviewing the literature, extending the work by Saavedra et al. [16], Pekar
et al. [15], and Heck and Zaidman [13]. On the other hand, we have identified

82 M. Unterkalmsteiner and T. Gorschek

110 operators in STA, leading to the questions RQ4: How can NL processing be
used to implement operators? and RQ5: What is the accuracy of these operators
in relation to state-of-practice? We estimated that 40–50% of the writing rules
in STA can be implemented with current techniques, e.g. as proposed by Fem-
mer et al. [9]. However, as indicated in the last column of Table 1, techniques
to implement rules 4 and 5 still need to be determined. In addition we plan to
evaluate the practical benefits of machine-supported RQ assurance compared to
the state-of-practice, i.e. manual quality assurance, at STA.

Table 1. Examples of requirements writing rules at STA

Rule Quality attribute Implementation

1. No time should be specified in the technical
documents. Instead, refer to the Schedule
document

Non-redundant Named entity
extraction

2. Numbering of figures, illustrations and
tables should be consecutively numbered
throughout the document, starting from 1.

Organized Document
meta-data
analysis

3. Numbers “1–12” shall be written as shown in
the following example, “to be at least two (2).”

Unambiguous POS Tagging

4. Terms such as “user”, “dispatcher”,
“operator” should be used consistently

Unambiguous TBD

5. If a functional requirement is supplemented
by additional requirements to clarify fulfilment,
these must be written as separate requirements

Atomic TBD

4.3 Estimate Cognitive Load and Automation Complexity

Applying all 110 operators on a specification consisting of thousands of require-
ments is a cognitively demanding task. For deciding how to implement an opera-
tor, it would be useful to be able to estimate the cognitive load each operator will
cause and the complexity to implement the operator in a computer-based support
system, leading to RQ6: How can the cognitive load and automation complexity
of an operator be estimated? Cognitive load could be approximated by a heuristic
that describes whether the application of the operator requires domain knowl-
edge or not, and to what extent context needs to be considered. Context could
be defined as “local”, referring to a single requirement, “regional” referring to
a section or chapter in the specification, or “global” the whole specification and
beyond, e.g. regulations and standards. There exist also multiple approaches to
measure cognitive load directly [4]. Automation complexity could be estimated
by categorizing operators on the linguistic aspect they address. Operators that
require semantic understanding are more complex than operators that require
syntactic or lexical analyses of a requirement. The least complex operators are
statistical, i.e. analyses that work with letter, word or sentence counts. Since,

Requirements Quality Assurance in Industry: Why, What and How? 83

to the best of our knowledge, no such characterization of operators exists, we
plan to collaborate with experts from both neuropsychology and linguistics to
perform literature reviews and design experiments.

5 Conclusion

In this paper, we have proposed a requirements quality assurance taxonomy that,
once the stated research questions are answered, forms the engine for a decision
framework that allows companies to initiate or improve their requirements qual-
ity assurance program through (a) realizing the consequences of dependencies
between quality attributes in their current manual activities for quality assur-
ance, (b) mapping cognitive load to the prioritized actions for quality assurance,
and (c) enabling the decision on the trade-off between manual and machine-
supported quality assurance, given cost and accuracy of the choices.

References

1. Ambriola, V., Gervasi, V.: Processing natural language requirements. In: Proceed-
ings of 12th IEEE International Conference on Automated Software Engineering,
pp. 36–45. IEEE, Incline Village, USA (1997)

2. Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin,
C. (eds.) Engineering and Managing Software Requirements, Part 1, pp. 69–94.
Springer Verlag, Heidelberg (2005)

3. Carew, D., Exton, C., Buckley, J.: An empirical investigation of the comprehen-
sibility of requirements specifications. In: International Symposium on Empirical
Software Engineering, p. 10. IEEE, Noosa Heads, Australia (2005)

4. Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S., Khawaji, A., Conway, D.: Robust
Multimodal Cognitive Load Measurement. Springer, Heidelberg (2016)

5. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.: Shared information and
program plagiarism detection. IEEE Trans. Inf. Theory 50(7), 1545–1551 (2004)

6. Damian, D., Chisan, J.: An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in
productivity, quality, and risk management. IEEE Trans. Softw. Eng. 32(7), 433–
453 (2006)

7. Davis, A.M., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying and
measuring quality in a software requirements specification. In: Proceedings of 1st
Intrnational Software Metrics Symposium, pp. 141–152. IEEE, Baltimore, USA
(1993)

8. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An automatic quality evaluation
for natural language requirements. In: Proceedings of 7th International Work-
shop on Requirements Engineering: Foundation for Software Quality. Interlaken,
Switzerland (2001)

9. Femmer, H., Méndez Fernández, D., Wagner, S., Eder, S.: Rapid quality assurance
with requirements smells. J. Syst. Softw. (2016, in Print)

10. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)

84 M. Unterkalmsteiner and T. Gorschek

11. Génova, G., Fuentes, J.M., Llorens, J., Hurtado, O., Moreno, V.: A framework
to measure and improve the quality of textual requirements. Requir. Eng. 18(1),
25–41 (2011)

12. Hassan, A.E., Hindle, A., Runeson, P., Shepperd, M., Devanbu, P., Kim, S.: Round-
table: what’s next in software analytics. IEEE Softw. 30(4), 53–56 (2013)

13. Heck, P., Zaidman, A.: A systematic literature review on quality criteria for agile
requirements specifications. Softw. Q. J. (2016, in Print)

14. Kassab, M., Neill, C., Laplante, P.: State of practice in requirements engineering:
contemporary data. Innov. Syst. Softw. Eng. 10(4), 235–241 (2014)

15. Pekar, V., Felderer, M., Breu, R.: Improvement methods for software requirement
specifications: a mapping study. In: Proceedings of 9th International Conference on
the Quality of Information and Communicating Technology, pp. 242–245. IEEE,
Guimaraes, Portugal (2014)

16. Saavedra, R., Ballejos, L., Ale, M.: Software requirements quality evaluation: state
of the art and research challenges. In: Proceedings of 14th Argentine Symposium
on Software Engineering, Cordoba, Argentina (2013)

17. Sikora, E., Tenbergen, B., Pohl, K.: Industry needs and research directions in
requirements engineering for embedded systems. Requir. Eng. 17(1), 57–78 (2012)

18. Sweller, J., Ayres, P., Kalyuga, S.: Intrinsic and extraneous cognitive load. In:
Sweller, J., Ayres, P., Kalyuga, S. (eds.) Cognitive Load Theory. Explorations in
the Learning Sciences, Instructional Systems and Performance Technologies, vol. 1,
pp. 57–69. Springer, New York (2011)

The Impact of Specification Structure
on Human Memory Performance - Experiences

from a First Experiment

Kim Lauenroth1(B), Erik Kamsties2(B), and Tim Pfeiffer1,2

1 Adesso AG, Stockholmer Allee 20, 44269 Dortmund, Germany
{kim.lauenroth,tim.pfeiffer}@adesso.de

2 University of Applied Science and Arts Dortmund,
Emil-Figge-Strasse 42, 44227 Dortmund, Germany

erik.kamsties@fh-dortmund.de

Abstract. Context and motivation: The major workload in Require-
ments Engineering lies with those people who create requirements spec-
ifications. Inevitably, in doing so people use their memory to store and
process related information. Question/problem: This paper examines the
question: does the underlying structure of a requirements specification
(template vs. prose) have an impact on the memory performance of
requirements engineers? Principal ideas/results: We present results from
cognitive psychology that support the assumption that template-based
specifications lead to better memory performance and present an exper-
iment to test this assumption. Contribution: An initial run of our exper-
iment did not provide sufficient results to support or refute our assump-
tion. In this research preview, we report on the design of experiment, our
initial results, and conclusions for future research.

1 Introduction

A core activity of requirements engineering is the documentation of requirements
in order to make the requirements available for further development activities
[12]. The underlying goal of every kind of requirements specification is storing
information independently of the human memory. However, without a certain
recollection of the information stored in a requirements specification, there is
no anchor in the human mind that points to the stored information. The tools
used for making the specification accessible (e.g. tables of content, index, trace-
ability information, or searchable documents) are useless as well because they
also require a minimum anchor to the documented information. For example:
A person is specifying requirements related to an online payment process. If he
does not remember that the existing requirements document already contains
requirements related to online payment, he will not search the document for
such requirements. It is therefore very likely that he will introduce inconsistent
or redundant requirements.

Such examples occur frequently in our industrial practice and motivated us to
investigate the performance of human memory in the RE context. Unfortunately,
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 85–91, 2017.
DOI: 10.1007/978-3-319-54045-0 7

86 K. Lauenroth et al.

our analysis of the related work showed that we are far away from an instrument
to measure the capabilities of the human memory with respect to RE-related
activities. This research preview is a first step to approach such an instrument: we
examine natural language requirements, treat the human memory as a dependent
variable in an experimental setting, and discuss how approaches for natural
language requirements may have an impact on human memory.

This research preview is structured as follows. Section 2 presents the current
state of research on requirements specification and on the human memory from a
psychological and a software engineering perspective. The next section provides
the theoretical background why specification structures are expected to affect
memory performance and how to measure the memory performance. Section 4
discusses the experimental design, Sect. 5 reports on initial results and Sect. 6
closes the paper with our conclusions for future research.

2 Related Work

Human memory performance is one of the core fields of research in cognitive
psychology (cf., e.g., [13]). For example, Miller argues that the typical working
memory size is about 7+/−2 information units [9]. Engle [5] shows that there are
individual differences in the working memory capacity. If the working memory
is stressed during a particular task (e.g. because a person has to keep several
information units in the working memory), the performance of the current task
is decreased and the probability of mistakes is increased [2].

Storing of information in the short- and the long-term memory is explained
by the process of chunking : A chunk is defined ‘as a familiar collection of more
elementary units that have been inter-associated and stored in memory repeat-
edly and act as a coherent, integrated group when retrieved’ [13]. Chunking is
then the process of structuring information in a way that support the recall of
this information. For example, remembering the following sequence of numbers
2 0 1 6 1 2 2 8 is more difficult than remembering 2016 12 28. The second way
of chunking leads to 3 chunks (instead of 8 chunks) and is thus more memory
efficient and easier to remember.

RE literature provides a rich set of techniques for documenting requirements.
Typical examples are (a) formal specifications [6], (b) structured requirements
documents [1], (c) natural language templates [4], and (d) use cases [3]. However,
this work only focuses on the structure of the documentation and does not take
into account aspects that are related to human memory performance.

Software engineering research in general provides only a few contributions
related to cognitive psychology (cf. [8]). Moody studied approaches for devel-
oping visual notations taking the cognitive complexity of models into account
(e.g., the ability to remember notation elements) [10]. Some work on human
memory in software engineering has been presented in the area of psychology of
programming, e.g. [11] examines the relationship between programming tasks,
task-switching, human memory, and programming tool support.

From our own research [7] and based on the results of Lenberg et al. [8], we
conclude that the human memory has not been taken into account as a factor in

The Impact of Specification Structure on Human Memory Performance 87

software engineering or requirements engineering research. However, according
to the results from cognitive psychology, the performance of human memory may
have a significant impact on the performance of requirements engineering tasks.

3 Theoretical Background

In the following, we will develop a theory and an experiment to test the relation-
ship between specification types and memory performance. We first present an
operationalization of memory performance for requirements specifications that
uses the process of chunking as underlying theory.

On a very high abstraction level, a requirements document is a collection
of facts concerning the system under development. A given fact can be part
of the requirements specification or not. A person can remember a fact or not.
These cases can be interpreted as a binary classifier with the classification results
true/false positive (TP/FP) and true/false negative (TN/FN). Several metrics
are commonly in use to rate the quality of a binary classifier, we use the TPR -
True Positive Rate (Recall) to measure memory performance.

Approaches for creating a requirements specification can be subdivided into
two types. A prose specification (e.g., [1]) presents the requirements in terms
of prose text and is structured by headlines for sections and subsections. A
template-based specification (e.g., [4]) presents the requirements in terms of a
structured template. Each requirement is presented by an individual template
including content-related information (e.g. the title and a description of the
requirement) and administrative information (e.g. the status of the requirement,
an identification number, or a change log). A popular example for such templates
are use cases [3].

Comparing prose and template approaches for specifications with the process
of chunking in mind, one can observe the following: (1) a template can be consid-
ered as a chunk that contains a particular requirement, (2) a template provides
key information (the title of the requirement) that supports remembering the
particular requirement, (3) the template structure of a specification offers pre-
defined chunks to the reader whereas the prose specification requires that the
reader performs the chunking of the information on his/her own.

From these observations, we derived the following assumption: Specifications
using templates to structure requirements information provide better chunking of
requirements information and will therefore lead to a better memory performance
than specifications that use a prose approach.

4 Experimental Setup

The goal of the experiment is to compare prose and template-based specifications
with respect to the memory performance.

Hypothesis and Variables. The main hypothesis of this experiment is that
there is a difference between prose - and template - based specifications with

88 K. Lauenroth et al.

respect to the number of correctly remembered facts from the specification.
Independent (controlled) variables are: Style (prose, template) - main controlled
variable, Domain (library system, vacation tracker) - to make sure that our
results do not depend on a particular domain, Order - to control learning effects.
Dependent variables are: Number of correctly answered questions (per question
type, per recall, total), Confidence of the participant in his answer (to be able
to include only those answers in the analysis, where the participant was more or
less sure).

Design. We use a 2 × 2× 2 full factorial design to systematically variate the
style, the domain, and the order (prose → template vs. template → prose), see
Table 1

Table 1. 2× 2× 2 Factorial design of experiment

Group Run 1 Run 2

A1 Vacation tracker, prose Library system, template

A2 Library system, template Vacation tracker, prose

B1 Library system, prose Vacation tracker, template

B2 Vacation tracker, template Library system, prose

Specifications. The target audience of the experiment are students and profes-
sionals. As the authors have access to students of computer science and young
software development professionals in Germany, we have chosen German as the
language for all experimental material for the first runs of the experiment. By
this decision, we avoid one threat to validity (language barriers), the obvious
drawback is that the ability to replicate the experiment is reduced.

The specifications are 10 pages long and contained 40 requirements artefacts
(30 textual requirements and 10 use cases). In the prose specification, the textual
requirements and use cases were presented in two separate sections. The textual
requirements were documented in individual paragraphs and each use case was
presented in an individual subsection. In the template-based specification, each
requirement was documented with an individual template.

Questionnaire. To measure the recall of facts depending on the specification
style, we defined questions addressing two dimensions, open vs. closed, and posi-
tive vs. negative questions. These two dimensions lead to four types of questions:

1. A positive open question asks for a fact that is part of the specification
and is expected to be answered with the corresponding fact. For example:
What the shortcut for creating a new application for leave? Correct answer:
Shift + Ctrl + v.

2. A negative open questions asks for a fact that is not part of the specifica-
tion and is expected to be answered with the statement fact not part of
specification.

The Impact of Specification Structure on Human Memory Performance 89

3. A positive closed question asks for a fact that is part of the specification and
is expected to be answered with yes or true. For example: Is it possible to
cancel a part of a vacation period?

4. A negative closed question asks for a fact that is not part of the specification
and is expected to be answered with no or false.

Additionally, three question types were targeted to the style of the specifica-
tion, e.g. What was the name of the 3rd use case?

We developed a questionnaire for each domain with balanced difficulty to
avoid a bias towards one of the domains. Finally, a questionnaire contained 20
questions with a balanced set of open and closed, positive and negative questions.
It is possible that a participant does not know the answer for sure. To avoid
betting and to measure the level of certainty, each question is complemented
with a confidence level ranging from 0 (“don’t know”) to 5 (“sure”).

Procedure. The experiment reproduces an artificial project situation based on
exemplary specifications. The participants are volunteers and receive an intro-
duction to the motivation and goals of the experiment. No training session takes
place as we do not evaluate a particular technique. The participants shall have
basic RE knowledge, for instance familiarity with the specification styles. The
experiment consists of two runs of several steps each.

(1) Reading. The participant reads the specification. This activity may result in
different familiarity with the specification depending on motivation, personal
habits and so forth.

(2) Working. The participant derives a class/data model from the specification
to acquire a deeper understanding of the requirements. This step helps to
harmonize the familiarity with the specification among the participants.

(3) Recall. The last step is to answer questions about the specification. The
questions have to be answered without access to the specification.
The recall is exercised three times over a week. The first recall is requested
immediately after working with the specification (“Monday”). The second
recall takes places 2 days after the experiment to challenge the long term
memory (“Wednesday”). The third recall happens after another two days
(“Friday”). The order of questions was randomized for each participant to
minimize the effect of particular questions on the result and to minimize the
possibility of cheating.

5 Results from a First Run

24 employees from a German software development company (>1000 employees)
participated in an initial experiment in May 20161. Participation was voluntary,
mostly young software development professionals were involved. They were ran-
domly assigned to the four groups. One participant assigned himself to another
group, another one dropped out. This resulted in slightly different group sizes:
1 Please contact the authors if you are interested in getting the experimental material.

90 K. Lauenroth et al.

A1 (5), A2 (7), B1 (6), B2 (5). The participants were 25 years (+/−2) old and
had 0–3 years of professional experience. The participants were familiar with the
specification styles.

The results from this first run showed no difference between the specification
styles with respect to the number of correctly answered questions. Even when
taking in addition the type of question or phase into account we could not observe
a significant difference.

We repeated our analysis for the subset of answers in which the participants
were sure about their answers (i.e., confidence≥ 4). Still no significant differences
between the styles were found. We found larger differences between the domains
used in the experiment (Library System, Vacation Tracker) in relation to the
phase (immediate recall, recall after 2 days, recall after 4 days), although they
are still not significant. We asked the participants in the week after to comment
on the results. Actually the participants perceived differences between the spec-
ification styles and the participants preferred one or the other. The participants
made a separation between“ease of reading”and“ease of recalling” and stated
that both are not correlated. Instead, a specification style was perceived as not
so easy to read, but easier to recall afterwards. Moreover, it seems that the vaca-
tion tracker domain was more easily accessible that the library, as the former is
used in a quite similar way in the company. Finally, the participants disliked a
question type severely.

The results do not imply that there are no differences between specification
styles at all. We identified a couple of reasons for the lack of significance: (1) we
had a low number of participants in the groups (5–7 per group). (2) The partici-
pants executed the experiment after their daily obligations in the company. That
is, a maturation effect may have happened and a few participants confirmed this
in the interview. (3) Possibly, the specifications are too short, so the facts are
easy to remember independently of the specification style. (4) The operational-
ization of memory performance by counting correct answers to a given set of
questions - we developed different types of questions yet we cannot be sure that
we have identified all important types. (5) The presented experimental design
was developed with a broad approach in mind, i.e., different types of questions
(open vs. closed and positive vs. negative, see Sect. 4). This approach appeared
to be too broad to capture the concept of memory performance in requirements
engineering. Our underlying assumption that memory performance in require-
ments engineering can be treated as a simple variable may be false.

6 Conclusion and Future Research

The results of the experiment indicate no clear superiority of one specification
style over the other. Instead it raises a couple of interesting questions for further
empirical research.

What is an adequate model to operationalize memory performance in require-
ments engineering? As stated above, memory performance appears to be more
than a simple variable. A possible direction for future research could be the
development of a more elaborate model for memory performance in requirements
engineering.

The Impact of Specification Structure on Human Memory Performance 91

Are there different personality types with respect to specification types? The
interview of our participants revealed that some participants prefer a certain
specification type. The origin of this preference is unclear. The preference may
originate from the education or from other factors that are related to cognitive
factors. Searching for such personality types is a possible direction for future
research.

What is a practical perspective on memory performance in requirements engi-
neering? Our experiment created an artificial situation to measure memory per-
formance. A complementing research activity could be an industrial study (e.g.
a series of qualitative interviews) to gain a broader understanding of the impor-
tance of human memory in requirements engineering work. We plan to repeat
various smaller versions of the experiment with students to examine these ques-
tions in more detail.

References

1. IEEE guide for developing system requirements specifications. IEEE Std 1233, 1998
Edition, pp. 1–36, December 1998

2. Baddeley, A., Hitch, G.: Working memory. Psychol. Learn. Motiv.: Adv. Res. The-
ory 8, 47–89 (1974)

3. Cockburn, A.: Writing effective use cases, the crystal collection for software pro-
fessionals. Addison-Wesley Professional Reading, Boston (2000)

4. Durán, A., Bernárdez, B., Toro, M., Corchuelo, R., Ruiz, A., Pérez, J.: Expressing
customer requirements using natural language requirements templates and pat-
terns. In: Proceedings of the IMACS/IEEE CSCC 1999 (1999)

5. Engle, R.W.: Working memory capacity as executive attention. Curr. Dir. psychol.
Sci. 11(1), 19–23 (2002)

6. Heitmeyer, C., Labaw, B., Kiskis, D.: Consistency checking of SCR-style require-
ments specifications. In: Proceedings of the Second IEEE International Symposium
on Requirements Engineering, pp. 56–63. IEEE (1995)

7. Lauenroth, K., Kamsties, E.: People’s capabilities are a blind spot in RE research
and practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp.
243–248. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30282-9 17

8. Lenberg, P., Feldt, R., Wallgren, L.: Behavioral software engineering: a definition
and systematic literature review. J. Syst. Softw. 107, 15–37 (2015)

9. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol. Rev. 63(2), 81 (1956)

10. Moody, D.L.: The physics of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779
(2009)

11. Parnin, C.: A cognitive neuroscience perspective on memory for programming
tasks. In: Programming Interest Group, p. 27 (2010)

12. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques,
1st edn. Springer Publishing Company, Incorporated, Heidelberg (2010)

13. Tulving, E., Craik, F.I.M.: The Oxford Handbook of Memory. Oxford University
Press, Oxford (2000)

http://dx.doi.org/10.1007/978-3-319-30282-9_17

Goal-Orientation in Requirements
Engineering

How Can You Improve Your As-Is Models?
Requirements Analysis Methods Meet GQM

Shoichiro Ito, Shinpei Hayashi(B), and Motoshi Saeki

Department of Computer Science, Tokyo Institute of Technology,
Ookayama 2–12–1–W8–83, Meguro-ku, Tokyo 152–8552, Japan

{ito,hayashi,saeki}@se.cs.titech.ac.jp

Abstract. Context & motivation: To develop information systems pro-
viding high business value, we should clarify As-is business processes
and information systems supporting them, identify the problems hidden
in them, and develop To-be information systems so that the identified
problems can be solved. Question/problem: In this development, we need
a technique to support the identification of the problems, which can be
seamlessly connected to the modeling techniques. Principal ideas/results:
In this paper, to define metrics to extract problems of the As-is system,
following the domains specific to it, we propose the combination of Goal-
Question-Metric (GQM) with existing requirements analysis techniques.
Furthermore, we integrate goal-oriented requirements analysis (GORA)
with problem frames approach and use case modeling to define the met-
rics of measuring the problematic efforts of human actors in the As-is
models. This paper includes a case study of a reporting operation process
at a brokerage office to check the feasibility of our approach. Contribu-
tion: Our contribution is the proposal of using of GQM to identify the
problems of an As-is model specified with the combination of GORA,
use case modeling, and problem frames.

Keywords: Goal-Question-Metric paradigm · Goal-oriented require-
ments analysis · Use case modeling · Problem frames

1 Introduction

An information system should enhance business value in enterprise or organiza-
tion. To develop information systems providing high business value, we should
clarify the current situations of business processes and information systems sup-
porting them, identify the problems hidden in the current situations of business
value, and develop a newer version of the information systems so that the iden-
tified problems can be solved. The current situations are so-called As-is, while
the newer situations are To-be. In requirements analysis phase of developing
an information system, we construct an As-is model, identify problems from
the As-is model, and then develop a To-be model where the problems can be
solved. Although we have many modeling techniques that can be used in require-
ments analysis phase, there are few techniques to support the identification of
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 95–111, 2017.
DOI: 10.1007/978-3-319-54045-0 8

96 S. Ito et al.

the problems, which can be seamlessly connected to the modeling techniques.
Activity-based costing (ABC), which is one of the most popular but too general
techniques to identify problems only from cost effectiveness [10], uses the metrics
to estimate costs necessary to enact business processes. It focuses on costs only,
and we need some effective metrics specific to domains where the As-is system
operates. That is to say, we need a technique to define metrics to extract prob-
lems of the As-is system, following the domains specific to it, and the technique
should be combined with modeling methods of As-is and To-be systems. Goal-
Question-Metric (GQM) is one of the approaches to develop metrics based on
for what we like to measure [1] and we use it in this paper.

Goal-oriented requirements analysis (GORA) is one of the popular techniques
to elicit requirements to business processes, information systems, and software
(simply, systems hereinafter) and is being made into practice [11,17]. It is useful
to identify hierarchical structures and relationships on elicited requirements, in
particular, their rationales why the elicited requirements could be led up to. We
use GORA to construct As-is and To-be models. However, some of their weak
points are clarified; for example, it is difficult to represent the behavior of sys-
tems explicitly. The metrics to measure behavioral properties of As-is and To-be
models are necessary for our objective, and they are difficult to be defined on
GORA. So, we combine GORA with some modeling techniques that can spec-
ify behavioral aspects of models. We adopt two modeling techniques, problem
frames (PFs) [7] and use case modeling, and integrate GORA with them.

In the technique we propose in this paper, we model an As-is with the inte-
grated technique: GORA, PFs and use case modeling, define metrics to identify
problems of the As-is using GQM on the integrated technique, and derive a To-
be model to solve the identified problems based on the values of the metrics. In
addition, when deriving solutions, we should take care of the rationales of the
requirements originated in the As-is model and avoid the conflicts to them of the
requirements newly added as a solution. GORA is useful to explore rationales
of the requirements.

The rest of the paper is organized as follows. In the next section, we have
brief introductions of GORA, PFs, and use case modeling. Section 3 presents
our integrated method and illustrates how to get a To-be model. In Sect. 4,
we develop our metrics to identify problems to be solved in an As-is model
using the GQM approach. A case study is presented in Sect. 5. On account of
space, we pick up the case study of a reporting operation process at a brokerage
office, where brokerage analysts create reports of stocks and distribute them to
their customers. Sections 6 and 7 are for related work and concluding remarks,
respectively.

2 Preliminaries

2.1 Goal-Oriented Requirements Analysis

In goal-oriented requirements analysis (GORA), customers’ needs are modeled as
goals to be achieved finally by software-intensive systems that will be developed,

Requirements Analysis Methods Meet GQM 97

Home delivery
pizza

Receive orders

Can order with an
equipment anyone has

Easy to order
for customers

Receive orders
by telephone

Deliver pizzas

Get payment

Stock control

Fig. 1. Example of a goal graph.

and the goals are decomposed and refined into a set of more concrete sub-goals.
After finishing goal-oriented analysis, the analyst obtains an acyclic (cycle-free)
directed graph called goal graph. Its nodes express goals to be achieved by the
system that will be developed, and its edges represent logical dependency rela-
tionships between the connected goals. More concretely, a goal can be decom-
posed into sub-goals, and the achievement of the sub-goals contributes to its
achievement. We have two types of goal decomposition; one is AND decompo-
sition, and the other is OR. In AND decomposition, if all of the sub-goals are
achieved, their parent goal can be achieved or satisfied. On the other hand, in
OR decomposition, the achievement of at least one sub-goal leads to the achieve-
ment of its parent goal. Figure 1 illustrates a part of the goal graph which has
been obtained from requirements analysis of a home delivery service of pizzas.
Ovals (nodes) and arrows (directed edges) express goals and decomposition rela-
tionships among the goals. The edges attached with an arc outgoing from a
parent node show an AND decomposition, and for example, five goals “Easy
to order for customers”, “Stock control (of ingredients and seasonings such as
cheese and onion)”, “Get payment (when delivering ordered pizzas)”, “Deliver
pizzas (to customers)”, and “Receive orders (of pizzas from customers)” should
be achieved in order to achieve their parent goal “Home delivery pizzas” in the
figure, and this decomposition is AND one. The usage of this type of graph, so
called AND-OR graph, is a common feature in a family of goal-oriented analysis.

2.2 Problem Frames and Use Case Modeling

Problem frames approach (PF) has been proposed by Jackson [7], and it contains
the separated concepts of domains, requirements, and machines. Domains are
elements of the real world and interact with each other via shared events, and
the idea of these interactions is Hoare’s CSP. Requirements are descriptions
that constrain the behavior of the shared events. Furthermore, PF approach
defines two types of diagrams: context diagram and problem diagram. The former
specifies domains, machines, and their shared interactions only, and the latter has

98 S. Ito et al.

requirements. Furthermore, Jackson abstracted and cataloged various problem
diagrams to patterns, so-called problem frames.

A use case model describes the functions of the system from a behavioral view
and the model consists of two parts: use case diagrams and use case descriptions.
A use case diagram presents the relationships among use cases and between
actors and use cases in a diagrammatic form while a use case description is
written in (structured) natural language to specify the flow of actions in the use
case, i.e., the behavior of the use case, as scenarios. In our approach, although
the original version of PF does not specify how to define the inner behavior of
a domain or a machine, we consider that a domain and a machine includes use
cases and therefore its inner behavior of a domain or a machine can be specified
with use cases and their descriptions. The details of integrating GORA, PFs,
and use case modeling will be mentioned in the next section using a simple
illustration.

3 Our Approach

3.1 Integrating GORA, PFs, and Use Cases

Figure 2 shows an example of a part of home delivery service of pizzas, and it
is a combined version of a context diagram of PFs and use case descriptions.
Rectangle boxes stand for domains of PFs, and this example has three domains:
Staff, Customer, and Invoice. A customer calls a telephone to a pizza delivery
shop to order pizzas, and it is specified with the shared event “C! Telephone
ringing” on the dashed line between Customer and Staff. The meaning of this
event is that Customer (C) generates “telephone ringing” to trigger Staff. The
behavior of Staff, when “telephone ringing” is generated, is specified with a
use case description of the use case “Receive orders by telephone”. For brevity,
to avoid a complicated diagram, we omit from the figure the several elements
irrelevant to “Receive orders by telephone”.

Staff (S)

Customer (C)

Invoice (I)
S! Write an invoice

C! Telephone ringing

C! Order

C! Ring off telephone

Use case: Receive orders by telephone
Precondition: Telephone ringing
Basic flow:

1. Pick up telephone
2. (Get) Name, telephone number, address
3. (Get) Order
4. Ring off telephone
5. Write an invoice

C! Name, telephone number, address

Scenario of Receptionist
(Use case description)

<<human>>

<<human>>

Fig. 2. Context diagram and use case.

Requirements Analysis Methods Meet GQM 99

Goal graphs, context diagrams of PF, and use case models have shared com-
ponents. Operational goals in a goal graph correspond to the use cases that
achieve them, and the steps in a use case description may appear as shared events
in a context diagram. The goal “Receive orders by telephone” corresponds to
the use case having the same name in Fig. 2, and the shared events in the con-
text diagram such as “Telephone ringing”, “Name, telephone number, address”,
and “Write an invoice” appear in the use case description of “Receive orders by
telephone” which is executed by the domain Staff. Figures 1 and 2 show an As-is
model of home delivery service of pizzas in our integrated method.

3.2 From As-Is Models to To-Be Models

In this subsection, we illustrate how to derive a To-be model from an As-is model
which is represented with our integrated model by using the example of home
delivery service of pizzas. Our procedure consists of four steps. First of all, we
represent an As-is model with our integrated approach, i.e., goal graphs, context
diagrams of PFs, and use cases (Step 1). Second, we identify the problems from
the As-is model by applying predefined metrics, and the results of measurements
suggest us what problems are included and where they are (Step 3). We pick up
the goal graph of the As-is model and add some goals to solve the problems. We
refine them to sub goals until we obtain operational goals that achieve them.
During refining the goal graph, we can know the rationales of the existing goals
in the As-is model and pay attentions to avoiding conflicts of the newly created
goals to the existing ones. That is to say, the goal model plays a role of navigating
goal refinement. The resulting goal graph is an element of a To-be model. In the
last step (Step 4), we construct use cases and a context diagram of the To-be
model from the goal graph obtained in Step 3. Figure 3 illustrates the flow of
the above steps.

1. Construct a model

4. Construct a model

As-Is

To-Be

3. Refine goals

2. Identify problems

End

Start

Problems exist

No problems

Fig. 3. Steps to derive a To-be model.

Store and
update customers’

information

Retrieve customers’
information

Reduce staffs’ efforts
in getting name, telephone number,

address from a customer

Record and utilize
customers’ information

ordered before

Receive orders
by fax

Home delivery
pizza

Receive orders

Can order with an
equipment anyone has

Easy to order
for customers

Receive orders
by telephone

Deliver pizzas

-

Fig. 4. Goal graph to derive a To-be model.

100 S. Ito et al.

Step 1: Construct an As-Is Model. We construct an integrated model to
capture the current situation of a system to be developed. In our example, we
have the As-is model shown in Figs. 1 and 2. Generally speaking, in the situation
where we do not have any models yet, we begin with the construction of a
goal graph, and for each operational and leaf goal, we specify its scenario to
achieve it as a use case description. We extract actors and steps from the use
case descriptions. To construct a context diagram, we make the extracted actors
correspond to domains or machines in the diagram and use the steps to identify
shared events on the domains.

Step 2: Identify Problems. The As-is model is analyzed to identify problems
in it from a view of human efforts. In Fig. 2, there are many shared events between
Staff and Customer in the PF and actions in the use case descriptions, all of them
should be executed by these human entities. The number of shared events and
steps that should be executed by human actors can be formally calculated as a
metric, and it will be mentioned in the next section, and a set of our metrics is
derived by GQM [1] so that we can identify which domains and use cases have
problems to be solved. In our example, we consider that the domain Staff and
use case “Receive orders” have a problem that Staff has more efforts to achieve
“Receive orders”.

Step 3: Refine Goals. To solve the identified problems, we explore their solu-
tions by refining the goal graph of the As-is model. In the previous step, we
identified the use cases that had problems. We pick up the goals corresponding
to the identified use cases and set up their sub goals for solving the identified
problems. We refine these sub goals considering rationales of and conflicts to
the existing goals, and finally, we obtain a goal graph of a To-be model. In our
example, we identified the problems of more efforts in “Receive orders by tele-
phone”. In particular, we will reduce the Staff’s efforts to get customers’ name,
their telephone numbers, and their addresses by telephone. Thus, we set up a
new goal “Reduce staffs’ efforts in getting name, telephone number, and address
from a customer” as a sub goal of “Receive orders”, as shown in Fig. 4. At first,
we get the sub goal “Receive orders by fax” to solve the problem because a
fax sheet includes all of the customer’s information that the staff needs, and
the staff can get it from the fax sheet without spending time in talking with
the customers. However, every person can have a fax machine in any situation,
so the goal “Receive orders by fax” prevents the achievement of the goal “Can
order with an equipment anyone has”. In the figure, we put the mark “–” on
the dotted arrow between these two goals to show they have a conflict. Next, we
consider the usage of a customers’ database and put an alternative goal “Record
and utilize customers’ information ordered before” as a sub goal. Since we can
resolve the conflict by adopting this goal, we continue its refinement. As a result,
we obtain two operational sub goals “Store and update customers’ information”
and “Retrieve customers’ information”. The usage of a goal graph of an As-is
model allows us to refine goals considering the rationales of and conflicts to the
existing goals, and to avoid unreasonable refinement.

Requirements Analysis Methods Meet GQM 101

Staff (S)

Customer (C)

Invoice (I)
S! Write an invoice

C! Telephone ringing

C! Order

C! Ring off telephone

C! Telephone number

Retrieve

Update

Store

Use case: Receive orders by telephone
Precondition: Telephone ringing
Basic flow:

1. Pick up telephone
2. (Get) Telephone number
3. Retrieve
4. (Get) Order
5. Ring off telephone
6. Write an invoice

Customer Management
System (CM)

S! Retrieve

Reduce staffs’ efforts
in getting name, telephone number,

address from a customer

Record and utilize
customers’ information

ordered before

Store and
update customers’

information

Retrieve customers’
information

includes

<<human>>

<<human>>

Fig. 5. To-be model of home delivery service of pizzas.

Step 4: Construct a To-Be Model. Until the previous step, we get some
operational goals to be achieved, and next, we realize them by specifying their use
case descriptions. This step is the same as Step 1. From the use case descriptions,
the actors and the steps are extracted to add them as new domains, machines,
and shared events. After getting a To-be model, we re-calculate the metrics that
took values of lower quality and which caused the improvement to the To-be
model and check if their values are improved.

Figure 5 shows a part of our final result in the example. We newly add three
use cases “Retrieve”, “Store”, and “Update” and a machine “Customer Man-
agement System (CM)” having these use cases as functions. The existing use
case “Receive orders by telephone” is changed and it has an action “Retrieve”
to call the corresponding use case. As a result, the shared events that should be
executed by Staff are reduced.

4 Evaluating Models via Metrics

For evaluating the As-is and To-be models, we build a GQM model [1] by making
the following a top goal G: Specifying the possible locations of automation
and/or effort reduction (i.e., finding problems of an As-is model). The built
GQM graph is shown in Fig. 6. Based on the derived questions from the goals,
we defined the following five metrics; NE and CE are calculated on a context
diagram, and ACC and ANOS are for a use case.

CE: This metric is the number of distinct events related to each human domain. It
is specified with an attached stereotype “�human�” which domains are human
in the context diagram. The more distinct events a human domain has, the more
various kind of work corresponding human should work, and she/he should have

102 S. Ito et al.

NE ANOSACC

Identifying the locations to
automate/reduce human efforts

Which was frequently
performed by human?

Which was hard
for human?

In which was many kinds
of human work performed?

In which was human work
preformed at many times?

Which work
was complex for human?

Which work was time
consuming for human?

CE

G

Q Q

Q QQQ

MM M M

Fig. 6. GQM graph.

more effort in performing many different kinds of work. In the example of Fig. 2,
Staff is a human domain, and we have five distinct events related to it, and so
CE is 5 for Staff.

NE: This metric is the number of the event occurrences on each human domain
in a context diagram. The more event occurrences related to a human, the more
events she/he should receive, send and/or deal with, and as the result, she/he
should perform work at more times. In the example of Fig. 2, we have five event
occurrences related to Staff, and its NE is 5. Note that on calculating this metric,
we should explore how many times events occur in the corresponding use cases
because the same event may occur at multiple times in the corresponding use
cases, and we should take into account these multiple occurrences. The details
will be mentioned later.

ACC: This metric is calculated for each use case and is the number of its flows
which include the steps related to human actors, i.e., the actors corresponding
to human domains of a context diagram. If a use case includes a basic flow only,
none of alternative flows, it has one flow. A use case can include more than one
flow by branching to alternative flows, and the more branched flows related to
a human, the more complex work she/he may perform. The number of flows
is the number of alternative flows plus 1. This metric is similar to Cyclomatic
complexity number of use cases [3]. The use case “Receive orders by telephone”
of Fig. 2 has only one flow, which includes the steps performed by Staff, so ACC
for this use case is 1.

ANOS: This metric is calculated for each use case and is the number of human-
related steps included in its basic flow and alternative flows. If the flow includes
calling other use cases, the values of their ANOS are added. For example, if a
use case has 10 steps related to a human in a basic flow and two alternative
flows both of which has three human-related steps, ANOS for the use case is 16
(= 10 + 3 + 3). The more steps related to a human are included in a use case,
the longer time she/he should work for the use case, because she/he consumes a
certain time in performing each step. The use case “Receive orders by telephone”

Requirements Analysis Methods Meet GQM 103

of Fig. 2 has five steps, and all of them are related to human actors Staff and
Customer, so its ANOS is 5.

Although these metrics are for identifying where the problems to be improved
are in an As-is model, from the viewpoints of human efforts, we can use them
to check if a To-be model can solve them or not. We observe how the values of
the defined metric are changed from the As-is model to the To-be models, i.e.,
we confirm whether the metric values actually decrease or not.

5 Case Study

The case is the reporting operation of a brokerage office. The reporting opera-
tions are done in the terminal of each brokerage analyst. Analysts upload their
report files to the distribution server as soon as they completed them. For improv-
ing the efficiency in writing a report, the information that analysts were used
in writing a report are stored in the history server so that other analysts can
refer the stored information when writing another report. The history server
can be accessed only via a dedicated terminal. Analysts are required to down-
load their past materials to a USB memory from the dedicated terminal and to
complete their report in their own personal terminal. For distributing the com-
pleted reports, analysts convert their report to a PDF file and upload it to the
distribution server.

On account of space, we start with Step 2, i.e., we have already got the As-is
model. However, clarifying this case study, in the next subsection we explain the
As-is model itself not presenting how to construct it.

5.1 As-Is Model

The use cases for the business process are UC1: Collect data, UC2: Write a
report, UC3: Fetch a report, UC4: Store a report to the distribution server, UC5:
Store a report to the history server, UC6: Fix a report in the history server, and
UC7: Fix a report in the distribution server. For example, UC3, UC4, UC5, and
UC6 are shown in Figs. 7, 8, and 9. These use cases contribute the achievement
of “Reporting operation of a brokerage office”.

UC6: Fix a report in the history server
Precondition: Incorrect report is stored in the history server
Basic flow:

1. Analyst opens a past report via his personal terminal
2. Analyst fixes the format of the report in his personal terminal
3. Call UC5

Alternative flow:
1b. If the report to fix is not stored in the personal terminal
1. Call UC3
2. Returns to the basic flow

Postcondition: A report of a correct format is stored

Fig. 7. Use case description of UC6 (As-is).

104 S. Ito et al.

UC3: Fetch a report
Precondition: Past reports are not stored in the actor’s personal terminal
Basic flow:

1. Analyst accesses the dedicated terminal
2. Dedicated terminal accesses the history server
3. Dedicated terminal receives past reports from the history server
4. Analyst receives past reports from the dedicated terminal via a USB memory
5. Analyst stores past reports to his personal terminal

Postcondition: Past reports are stored in the personal terminal

UC3 : Fetch a report
Precondition: Past reports are not stored in the actor’s personal terminal
Basic flow:

1. Analyst accesses his personal terminal
2. Analyst’s personal terminal accesses the report management system
3. Report management system accesses the history server
4. Report management system receives past reports from the history server
5. Report management system sends past reports to the dedicated terminal

Postcondition: Past reports are stored in the personal terminal

Fig. 8. Use case descriptions of UC3 (As-is) and UC3′ (To-be).

UC4: Store a report to the distribution server
Precondition: A report is created
Basic flow:

1. Analyst converts the report in his personal terminal to PDF file
2. Analyst uploads the PDF file from the personal terminal
3. Personal terminal sends the PDF file to the distribution server

Postcondition: The report is distributed

UC5: Store a report to the history server
Precondition: A report is created
Basic flow:

1. Analyst copies a report to the USB memory from his personal terminal
2. Analyst moves the report to the dedicated terminal via the USB memory
3. Dedicated terminal uploads the report to the history server

Postcondition: The report is stored

UC4–5: Store a report
Precondition: A report is created
Basic flow:

1. Analyst accesses his personal terminal
2. Personal terminal sends the report to the report management system
3. Report management system sends the report to the history server
4. Report management system converts the report to PDF file
5. Report management system sends the PDF to the distribution server

Postcondition:
The report is distributed
The report is stored

Fig. 9. Use case descriptions of UC4, UC5 (As-is), and UC4–5 (To-be).

The goal model is shown in Fig. 10. Leaf goals of the model correspond to the
above seven use cases. The top goal “Reporting operation of a brokerage office”
is refined into two sub goals with AND decomposition; one is “Manage reports”,
and the other is “Create a report”. The goal “Manage reports” has three sub
goals “Fetch a report”, “Fix a report”, and “Store a report”. These goals also
have their children; the goal “Store a report” has the goals of UC4 and UC5,
and the goal “Fix a report” has the goals of UC6 and UC7.

An As-is context diagram was built from the use case descriptions and goal
model. The extracted actors and steps in the use case descriptions were used for
the domains and events in the context diagram, respectively. The built context
diagram is shown in Fig. 11. The ID (U.s) in the figure stands for a specific step

Requirements Analysis Methods Meet GQM 105

Reporting operation
of a brokerage office

Create a report Manage reports

UC1: Collect data UC2: Write a report

UC7: Fix a report
in the distribution server

UC3: Fetch a report

UC5: Store a report
to the distribution server

UC4: Store a report
to the history server

UC6: Fix a report
in the history server

Fix a report Store a report

Fig. 10. As-is goal graph.

Info. Source

Analyst

Dedicated
Terminal

History Server

A! Survey (1.2)

A! Translate (4.1)

A! Upload (4.2)

T! SendPDF (4.3)

T! SendReport (5.1)
IS! ProvideInfo (1.3)

Personal
Terminal

Distribution
Server

A! OpenReport (2.1, 7.1, 6.1)
A! ModifyReport (7.2, 6.2)

A! RequestReport (3.1)
A! Upload (5.2)

PT! SendReport (5.3)
PT! RequestReport (3.2)
HS! SendReport (3.3)

PT! SendReport (3.4)

A! CreateReport (2.2)

A! SendReport (3.5)

<<human>>

Fig. 11. As-is context diagram.

in a use case description; a use case ID and its step number are denoted by U
and s, respectively. In a context diagram, the ID (U.s) specifies which use case
step corresponds to the target event. For example, the event A! OpenReport is
executed by Step 1 of UC2, UC6, and UC7.

5.2 Step 2: Identifying Problems

The metric values were measured for the As-is models of three types (use case
descriptions, goal model, and context diagram) to find problems in the As-is
models. In this approach, the metrics derived from the goal G mentioned in
Sect. 4 were applied, and we focused on the higher values of them. We measured
CE, NE, ANOS, and ACC. Because this case study has only one human domain
Analyst, NE was calculated for Analyst only.

The measured metric values on the As-is model are shown in Table 1. For
calculating the value of NE, we counted the occurrences of each event in use
cases. For example, as shown in Fig. 11, A! OpenReport occurs in UC2, UC7, and

106 S. Ito et al.

Table 1. As-is metric values.

Use cases ANOS ACC

UC1 5 1

UC2 2 1

UC3

UC4

3 1

2 1

UC5

UC6

UC7

2 1

7 2

7 2

Events on Analyst #

A! RequestReport 1

A! Upload 2

A! SendReport 2

A! Translate 1

A! OpenReport 3

A! ModifyReport 2

A! CreateReport 1

A! Survey 1

PT! SendReport 1

IS! ProvideInfo 1

Total (NE) 15

CE
= 12

UC6, and all of its occurrences are in Step 1. Thus, we counted the occurrences
of A! OpenReport as 3. Note that A! OpenReport occurred most frequently in
all of the events related to Analyst. After counting the occurrences of each event,
we obtained the value 15 as NE by calculating its total sum. For CE, we counted
the distinct events related to the only one human domain Analyst and obtained
the value 12.

The values of ANOS and ACC were calculated for each use case. For ANOS,
we should include the steps in alternative flows and the steps of called use cases.
In the case of UC6, it has two steps related to a human actor (Analyst) in its
basic flow, and two calls for the other use cases: UC5 from the basic flow and
UC3 from the alternative flow. Since the ANOS values of UC5 and UC3 were 2
and 3 (see Table 1), we have 2 + 2 + 3 = 7 as ANOS value of UC6. Note that
UC6 (Fig. 7) and UC7 have the highest value in ANOS (=7) over the other use
cases. Also for ACC, UC6 and UC7 were measured as the highest (=2). ACC can
be calculated by counting the basic and the alternative flows that have human-
related steps in a use case. In UC6, it has the human related steps in its basic
flow, e.g., Step 1 (Analyst opens a past report via his personal terminal) having
a human actor as a subject. Although its alternative flow calls UC3 only, UC3
has human-related steps, e.g., Step 1 in UC3. To sum up, we found that UC6
has two flows (one basic and one alternative one), and both of them include
human-related steps. Thus, we can obtain ACC value 2. Note that UC6 and UC7
have the highest ACC value.

As a result, UC6 and UC7 were regarded as having problems because they
execute A! OpenReport and have the highest value of ANOS and ACC. Since
both UC6 and UC7 include UC3 (Fig. 8), it was also regarded as a problematic
one for the analyst.

Requirements Analysis Methods Meet GQM 107

5.3 Step 3: Goal Refinement (Building Solutions)

The To-be goal graph was constructed by applying some solutions against the
problems detected in the analysis of the As-is model. More specifically, solutions
are provided by defining alternatives for the problematic leaf goals or their parent
goals by applying goal decomposition. In this case study, in the As-is goal graph
shown in Fig. 10, the leaf goals corresponding UC6 and UC7 were detected as
problematic. Against them, we focused on their parent goal “Manage reports”
and defined its alternative “Report management system”, which automates the
tasks for the original goal as OR-decomposition.

The goal decompositions to achieve the defined alternative goal was done
by referring the original As-is goal graph. Based on the connectivity of goals in
the As-is goal graph, we can deduce that “Report management system” should
consist of “Fetch a report”, “Store a report”, and “Fix a report”. Also, “Store
a report” and “Fix a report” should achieve the use cases defined in the As-is
model. The defined To-be goal graph is shown in Fig. 12. Note that the dotted
ovals in the figure are not goals of the To-be model, but of the As-is model.
These are for clarifying which use cases of the As-is model were resolved by the
new goals of the To-be model. As will be mentioned later, UC4 and UC5 were
replaced with UC4–5 on account of the improvement of UC3 (As-is model) to
UC3′.

5.4 Step 4: Constructing a To-Be Model

Next, use case descriptions and a context diagram were constructed for achieving
the goals in the To-be goal graph built in the previous step. Based on the To-be
graph, the use case to be modified was UC3, and the use cases to be added
were “Fix a report” and “Store a report”. These two use cases are expected
to contribute “Fix a report in the history server” and “Fix a report in the
distribution server”, and “Store a report to the history server” and “Store a

Reporting operation
of a brokerage office

Create a report Report management system

UC1: Collect data UC2: Write a report

UC7: Fix a report
in the distribution server

UC3': Fetch a report

UC5: Store a report
to the distribution server

UC4: Store a report
to the history server

UC6: Fix a report
in the history server

UC6-7: Fix a report UC4-5: Store a report

Fig. 12. To-be goal graph.

108 S. Ito et al.

Info. Source

Analyst

History Server

A! Survey (1.3)
MS! Translate (8.4)

A! Upload (8.1)

MS! SendPDF (8.5)

MS! SendReport (8.3)

IS! ProvideInfo (1.4)

Personal
Terminal

Distribution Server

A! OpenReport (2.1, 9.1)

A! ModifyReport (9.2)
HS! SendReport (3'.4)

A! CreateReport (2.2)

Management System

A! RequestReport (3'.1)

T! RequestReport (3'.2)

MS! RequestReport (3'.3)
MS! SendReport (3'.5)

T! SendReport (8.2)

<<human>>

Fig. 13. To-be context diagram.

report to the distribution server” in the As-is goal graph, respectively. Then,
the use case descriptions of “Report management system” were newly defined as
shown in Figs. 8 and 9. For example, newly defined UC4–5 in the To-be model
shown in Fig. 9 has special automated steps (3–5) that make the report to be
uploaded to servers for satisfying the postconditions of UC4 and UC5 in the
As-is model. Also, UC3 shown in Fig. 8 substitutes the manual data transfer via
USB memory stick (Steps 1, 4, and 5), which contributed the increase of ANOS
value, with To-be system (UC3′, Steps 3, 4, and 5).

To-be context diagram was defined as shown in Fig. 13 based on the updated
use case descriptions. The steps in newly defined use case descriptions were added
as the events in the context diagram.

To confirm the effectiveness of the defined To-be model, we calculated the
differences of the values of the metrics between the As-is model and the To-be
one. The deltas (the differences) were calculated as: Δ = To-be − As-Is. If the
difference of a metric is a negative number, we can recognize the improvement
in the To-be model from the viewpoint of the metric. In Fig. 13, the values of CE
and NE are 12 and 15, respectively. Thus, changes made provided the deltas of
metric values ΔCE = 7 − 12 = −5, ΔNE = 8 − 15 = −7, which indicate that the
human work was reduced. The changes from UC3 to UC3′ provided the deltas
of metric values ΔACC(UC3) = 0 and ΔANOS(UC3) = −2, which indicate
the reduction of hard work. We conclude that our approach could identify the
effectiveness of To-be model.

5.5 Discussion

The result of this case study indicates that our technique can find problems in the
As-is model and can also show the effectiveness of model updates from the As-is
to the To-be using the defined set of metrics. It also suggests the possibility that
our technique enables us to find problematic use cases and build appropriate To-
be model. In our case study, we used the general metrics, i.e., related to human
efforts. There are some rooms to consider the other various metrics related to
human efforts, for example, the skills or health conditions of a human actor.

Requirements Analysis Methods Meet GQM 109

Some of them cannot be specified in the adopted modeling technique. Although
it was not so difficult to find the metrics used in the case study, to investigate
the difficulties in developing metrics specific to problem domains, we should
have wide varieties of case studies. Generally speaking, there seem to be some
difficulties in finding metrics even using GQM. So guidelines in finding metrics
and/or reusable metrics catalogs may be necessary to make our approach more
practical.

6 Related Work

The techniques of metrics to detect problems included in As-is systems have
been proposed, and Activity-based costing (ABC) is one of the most popular
one [10]. In ABC, a total cost consumed in an organization is allocated into
activities that were performed in the organization, and each activity is assessed
by using the allocated cost and its spent time. As a result, we can identify the
activities whose efficiency should be improved. The measures of ABC are cost
and time while in our approach we can define wide varieties of measures using
GQM. In addition, although ABC can find problematic activities, it does not
have a methodology to get a To-be model and in our approach, we use GORA to
do. Kaiya et al. defined some metrics on strategic dependency (SD) diagrams of
i* to measure efforts on dependency relationships between actors and goals, and
applied graph transformation to the generation of the SD diagram of a To-be
model [9]. Their metrics are subjective and ad-hoc weighted factors attached to
dependency relationships while ours are systematically derived with GQM and
includes behavioral aspects of As-is models. Although the support to generate a
To-be model with graph transformation is useful, their approach does not take
into account the rationales of and the conflicts to the existing goals of the As-is
model.

The idea of integrating GORA and PFs is not new, and we can find some
work. Jin et al. proposed a modeling technique where i* and PFs are com-
bined and applied it to a meeting scheduler system [8]. Furthermore, Yang et al.
identified recurring requirements knowledge from literature and represented it
with their integrated approach as requirements patterns [16]. In their integra-
tion, dependency relationships in a SD model are made to correspond to shared
events appearing a problem diagram, and they did not provide a technique to
specify the behavior of tasks in the SD model or the inner behavior of domains
and machines. In our approach, we adopted use case modeling to bridge GORA
to PFs and to specify detailed behavior, and it allows us to define metrics for
detecting problems included in an As-is model. Mohammadi et al. proposed a
technique to combine KAOS with PFs [12]. In their technique, they make goals
in a KAOS model correspond to requirements in a problem diagram of PFs.
The behavior of domains and machines are illustrated with message sequence
charts (MSCs), and both of the problem diagram and the MSCs are used to
refine the goals. Although their approach contains MSCs, the way how to inte-
grate GORA and PFs in their approach is different from ours. In their approach,

110 S. Ito et al.

a goal corresponds to requirements appearing in a problem diagram, while in our
approach it corresponds to a use case. The approach proposed by Beckers et al.
adopted not KAOS but SI* as GORA to elicit security requirements [2]. The
correspondence of elements of SI* to PFs is similar to the approach of Jin et
al. [8] because SI* is a variant of i* specific to security requirements elicitation
such as trust relationship between actors, while a goal of SI* corresponds to
requirements of PFs. Supakkul et al. made soft goals of NFR framework cor-
respond to requirements of a problem diagram as stakeholders’ problems [14].
Goal refinement of soft goals allows us to clarify interdependency relationships
among the requirements. These approaches do not have a technique to repre-
sent behavioral specification in the same as Jin et al. [8]. There are some work to
establish mapping of GORA to business process description languages which can
specify the behavior of activities in the processes [4,6]. In addition, we can find
the studies to integrate use case modeling or scenarios to GORA [5,13,15]. All
of them did not include the integration of PFs. One of the benefits to use PFs is
the clear differentiation of human domains from machines and the identification
of activities related to the humans. It is very helpful to estimate the complexity
and size of human activities. In fact, some of the metrics that we proposed are
on context diagrams of PFs, and in Sect. 5, CE and NE were very useful to detect
the problems hiding in the As-is model. In our modeling technique, domains of
PFs include several use cases specifying their behavior, and they can be similar
to the concept of system boundary of use case diagrams. In this sense, adopt-
ing PFs allows us to get a bird’s eye view of a business process where humans’
interactions are complicated. Although there are similar work to ours, any of the
above approaches do not include the technique of metrics to find problems in an
As-is model.

7 Concluding Remarks

In this paper, we proposed a technique for modeling As-is and deriving To-be
by combining goal-oriented requirements analysis, problem frames, and use case
modeling. In our technique, the metrics derived using GQM paradigm enables us
to find problematic elements in As-is model automatically. The conducted case
study of a reporting operation of a brokerage office indicated the effectiveness of
our technique.

Possible future work can be listed up as follows:

1. defining more metrics to extract more problems and making guidelines how
to construct GQM trees, furthermore making catalogs of metrics, and

2. automated transformation from As-is to To-be models by defining evolution
patterns as model transformations formally.

Acknowledgements. This work was partly supported by JSPS Grants-in-Aid for
Scientific Research Number 15K00088.

Requirements Analysis Methods Meet GQM 111

References

1. Basili, V., Caldiera, C., Rombach, D.: Goal, question, metric paradigm. Encycl.
Softw. Eng. 1, 528–532 (1994)

2. Beckers, K., Faßbender, S., Heisel, M., Paci, F.: Combining goal-oriented and
problem-oriented requirements engineering methods. In: Cuzzocrea, A., Kittl, C.,
Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 178–
194. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40511-2 13

3. Bernárdez, B., Durán, A., Genero, M.: Empirical evaluation and review of a metrics
based approach for use case verification. J. Res. Pract. Inf. Technol. 36(4), 247–258
(2004)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Cockburn, A.: Structuring use cases with goals. http://alistair.cockburn.us/
Structuring+use+cases+with+goals

6. Guizzardi, R., Reis, A.N.: A method to align goals and business processes. In:
Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER
2015. LNCS, vol. 9381, pp. 79–93. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25264-3 6

7. Jackson, M.: Problem Frames. Addison-Wesley, Boston (2001)
8. Jin, Z., Liu, L.: Requirements analyses integrating goals and problem analysis

techniques. Tsinghua Sci. Technol. 12(6), 729–740 (2007)
9. Kaiya, H., Morita, S., Ogata, S., Kaijiri, K., Hayashi, S., Saeki, M.: Model trans-

formation patterns for introducing suitable information systems. In: Proceedings
of the 19th Asia-Pacific Software Engineering Conference, pp. 434–439 (2012)

10. Kaplan, R.S., Bruns, W.: Accounting and Management: A Field Study Perspective.
Harvard Business School Press, Brighton (1987)

11. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

12. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework
for combining problem frames and goal models to support context analysis during
requirements engineering. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 272–288. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40511-2 19

13. Rolland, C., Achour, C.B.: Guiding the construction of textual use case specifica-
tions. Data Knowl. Eng. 25(1–2), 125–160 (1998)

14. Supakkul, S., Chung, L.: Extending problem frames to deal with stakeholder prob-
lems. In: Proceedings of the ACM Symposium on Applied Computing, pp. 389–394
(2009)

15. Watahiki, K., Saeki, M.: Combining goal-oriented analysis and use case analysis.
IEICE Trans. 87-D(4), 822–830 (2004)

16. Yang, J., Liu, L.: Modelling requirements patterns with a goal and PF integrated
analysis approach. In: Proceedings of the 32nd Annual IEEE International Com-
puter Software and Applications Conference, pp. 239–246 (2008)

17. Yu, E.S.: Social modeling and i*. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P.,
Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol.
5600, pp. 99–121. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02463-4 7

http://dx.doi.org/10.1007/978-3-642-40511-2_13
http://alistair.cockburn.us/Structuring+use+cases+with+goals
http://alistair.cockburn.us/Structuring+use+cases+with+goals
http://dx.doi.org/10.1007/978-3-319-25264-3_6
http://dx.doi.org/10.1007/978-3-319-25264-3_6
http://dx.doi.org/10.1007/978-3-642-40511-2_19
http://dx.doi.org/10.1007/978-3-642-02463-4_7

Integrating Goal Model Analysis with Iterative
Design

Claudio Menghi1(B), Paola Spoletini2, and Carlo Ghezzi1

1 Politecnico di Milano, Milan, Italy
{claudio.menghi,carlo.ghezzi}@polimi.it

2 Kennesaw State University, Marietta, Georgia
pspoleti@kennesaw.edu

Abstract. Context and Motivation: Goal-oriented methods can be used
by analysts to produce a set of system requirements that reflect the cus-
tomer needs and are used as guidelines in the subsequent system design,
in which a model of the system is produced. The design model is used to
analyze the coherence of the system behavior with the requirements.
Question/problem: Design is an exploratory activity. Before the final
model is developed, different alternatives are explored and models evolve
back and forth from partial to complete. Partial models embed portions
that are currently left unspecified and will later be refined. Recent for-
mal verification techniques allow the designers to verify the satisfaction
of requirements even for partial models. However, there is still no way to
interpret the results of the verification over the original goal model. Prin-
cipal idea/results: The ability to reflect the results of verification back to
the goal model would improve the design process by making the developer
aware of the consequences of design choices on goal satisfaction. It would
also support early detection of design errors and improve requirements
negotiation between designers and requirements analysts. Contribution:
This paper proposes COVER, a unified framework to support goal model
analysis during software design. COVER allows the goal model produced
by the requirements analysts to be kept alive and updated while the sys-
tem is designed. At each development round, the model is verified against
the requirements of interest and the verification results can be used to
update either the design model or the goal model.

Keywords: Iterative design · Goal model analysis · Partial models

1 Introduction

Goal models (e.g., KAOS [7], TROPOS [4] and i∗ [31]) are formalisms supporting
the requirements analyst in capturing system goals and high-level requirements
by showing how functional and non-functional goals relate to each other and
eventually how they relate to software requirements and environment assump-
tions [29]. Goal model analysis techniques allow the requirements analyst to
better understand the relation between the satisfaction of different goals. Some
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 112–128, 2017.
DOI: 10.1007/978-3-319-54045-0 9

Integrating Goal Model Analysis with Iterative Design 113

of the existing analysis techniques, such as [16], verify whether a specific goal
is satisfiable. Others, such as [12], analyze the consequences of some goals sat-
isfaction over the other goals of the model. Despite the increasing number of
techniques and tools proposed in literature to analyze goal models, this reason-
ing activity is in the requirements analyst’s hands and not in the developer’s.
The goal of most existing work has been to guide in precisely formulating require-
ments, ensuring that the subsequent design process is only initiated after suc-
cessful completion of the requirements phase. This, however, hardly corresponds
to modern development processes, which are highly iterative and incremental.

Differently from the traditional waterfall process in which each activity has
to be terminated before the next one can start, modern development lifecycles
promote adaptive planning, evolutionary development, early delivery, continu-
ous improvement, and encourage rapid and flexible response to changes. From
the analysis perspective, agile methodologies intrinsically call for techniques sat-
isfying the “verify-while-develop” principle [8]. Verification techniques allow rea-
soning on the behavior of the system by checking whether the system possesses
specific properties. In this incremental development setting, it is often the case
that the designer, rather than having the fully specified design of the system,
only owns at a given time an incomplete and partially specified design. However,
the designer would still like to check the system’s properties when design deci-
sions are taken, e.g., when incomplete parts are refined. This is a primary goal in
particular when a top-down development strategy is adopted. Several techniques
have been proposed to verify requirements satisfaction over incomplete [23] or
uncertain [18,19] models. It would be quite useful to interpret the results of ver-
ification over the original goal model. This would allow the designer to better
understand the consequence of certain design choices and may possibly lead the
requirements analyst in revising goals and requirements.

We believe the lack of integration between requirements and design is a major
issue in the current approaches, most notably in the context of modern adap-
tive systems, as recognized in [26]. Although there has been a lot of work that
attempts to link goal models to design [14], most of this work links requirements
to running systems or just does a straight transformation to design, not explicitly
supporting the co-evolution of design and requirements. To mitigate the prob-
lem, we propose COVER (Change-based gOal VErifier and Reasoner), a unified
framework that enables goal model analysis during software design. In COVER
requirements and design evolve together. The goal model produced to represent
the elicited requirements is kept alive and updated during the iterative design of
the system. At each development round, i.e., whenever the designer produces a
new increment or changes something in the model, the new (incomplete) design
of the system is verified. Since the model is incomplete, the verification procedure
may return three different values: � if the property is satisfied by the current
design, no matter how the undefined parts of the system will be later refined; ⊥ if
the property is not satisfied; ? whether its satisfaction depends on the parts which
still have to be refined. Verification results are used to trigger goal model analy-
sis to examine the consequences of requirement satisfaction over the goals of the

114 C. Menghi et al.

goal model. This technique offers two major benefits. First, it makes designers
aware of the consequences of their design choices. Whenever a new increment
is proposed, designers may analyze the consequences of their changes over the
entire goal model. This allows early detection of design errors. For example,
the designer may realize that the increment she/he has proposed unexpectedly
impacts on the satisfaction of some goals. Second, the requirements analyst may
perceive that some of the requirements must be strengthened or relaxed, or that
the relation between certain goals of the goal model must be changed. These
benefits result in an earlier requirements negotiation between the developer and
the requirements analyst.

To make the contribution concrete, we show an instantiation of COVER
where the variation of the TROPOS modeling language presented in [21], Modal
Transition Systems (MTS) [19], and Fluent Linear Temporal Logic (FLTL) [11]
are chosen as a goal model framework, model for the design of the system, and
specification language for functional requirements, respectively. We use TRO-
POS since it comes with a nicely formalized and implemented label propagation
algorithm that allows the analysis of the goal model [12]. We select MTSs since
they are a standard way to incrementally design the system and FLTL since it
is a logic commonly used to specify properties of MTSs. However, the COVER
framework is independent of the chosen modeling and specification formalism
and can be instantiated also in different ways. The use of this specific instance
of COVER is recommended in case mathematical guarantees on the correctness
of a system design are required and assumes that analysts and designers are
familiar with formal tools, namely TROPOS, MTSs and FLTL. We show the
benefits of the approach on the book seller example, previously used in [21,22]
to assess an algorithm that identifies design alternatives given a set of preference
specifications over the goals of the goal model. In this paper, it will be used to
present the mock-up design process, where we propose three (simple) models
that represent three different refinement rounds performed by the designer.

The paper is organized as follows. Section 2 provides the background over
the formalisms used in the instantiation of COVER presented in this work.
Section 3 describes COVER. Section 4 describes our tool support and evaluates
the approach. Section 5 compares our approach with related work. Finally, Sect. 6
concludes the paper.

2 Background

In order to show how COVER works in practice, we instantiated it using the vari-
ation of the TROPOS goal modeling language presented in [21] as goal modeling
formalism, Fluent Linear Time Temporal Logic [25] to formally specify require-
ments, and Modal Transition Systems [19] to model the system design. This
section presents an overview of these formalisms helpful to understand the rest
of the paper. We will use the book seller as an illustrative example. The full for-
malization of the example can be found at https://github.com/claudiomenghi/
COVER.

https://github.com/claudiomenghi/COVER
https://github.com/claudiomenghi/COVER

Integrating Goal Model Analysis with Iterative Design 115

Reduce
Transactions

Cost

G19

Deliver
Receipt

t21

Separate
Receipt

Sent

G13
Print

Receipt
t19

Send Printed
Receipt

G12Send
Electronic
Receipt

t22

Receipt
Sent

G11

Customer
Issues Money

Order

t16

Customer
Sends Money

Order

Receive
Money Order

t18

Payment via
Money Order

G10

Payment
Received

G8

Use Robust
Legal

Documentation

G23

Avoid
Electronic

Fraud

G22

Establish
Transaction

Security

G20

Deliver to
Customer

After Get CC
Authorization

G25

Charge CC Before
Deliver to Customer

Payment
Traceability

G21

Charge
CC

t15

Get CC
Authorization

t14

Get CC
number

t13

Payment via
Credit Card

G9

Expedite
Process

G15

Reduce Customer
Side Cost

G16

Happy
customer

G14

Customer
Convenience

G17

Courier
Delivers To
Customer

Fulfill Book
Order

t12

G1

Book
Delivered

G6

Deliver
to Courier

t9

Place Receipt
in Shipment

t11

Handle
Receipt

G7

Don't Place
Receipt in
Shipment

t10

Books Arrive
at Warehouse

t6

Supplier
Ships
Books

t7

Book
Available

G3

Customer
Places Order

t3

Book
Acquired

G5

Provide
Quote

t2

Quote
Given

G2

Place
Order to
Supplier

t6

Customer
Requests

Quote

t1

Book
Ordered

G4

Supplier
Provides

Price

t5

Contact
Suppliers

t4

Send Printed
Receipt After

Payment via CC

Supplier Provides
Price Before

Provide Quote
G26

G12

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND

AND
AND

AND

AND

AND AND

AND

AND

AND

OR

AND

AND

OR

AND

AND

AND

OR

AND

AND

AND

AND

AND

AND

AND

AND

AND

Submit
receipt

AND

AND

AND

t17

t20

++

++

++
++

++

--

G24

++

++

--

AND

AND

OR

Fig. 1. Goal model for the wholesale book seller example.

TROPOS. The main entities of TROPOS [21] are goals. Goals are related
to each other and decomposed into sub-goals by means of AND- or OR-
decomposition. When a goal is AND-decomposed, it is necessary to satisfy
all sub-goals for its achievement. For example, consider the goal model of the
book seller example [21], presented in Fig. 1. The Book Available goal is AND-
decomposed into the goals Book Ordered and Book Acquired, meaning that, to
be available in the warehouse (WH), a book must be ordered and received by
the WH. Conversely, when a goal is OR-decomposed it is sufficient to fulfill one
of its sub-goals for its achievement. Goal decomposition allows the definition of
both functional and non-functional requirements. A requirement is a terminal
goal. The AND- and OR-decomposition is also used to decompose requirements
into the tasks that imply their satisfaction. Tasks are specified in Fig. 1 with
hexagonal boxes. For example, the goal Handle Receipt is OR-decomposed into
the tasks Don’t Place Receipt in Shipment and Place Receipt in Shipment. When
a goal g is OR (AND)-decomposed into goals and tasks, the satisfaction of one
of (all) the goals or (and) tasks is necessary for the satisfaction of g. In addi-
tion to AND- and OR-decomposition goals and tasks are connected via break
(−−−−→) and make links (++−−→). Break links indicate that the satisfaction of the
origin causes the denial of the destination. Make links specify that if the origin
is satisfied then the destination is satisfied. For example, the goal Payment via
credit card is connected to the goals Customer Convenience, Reduce Customer
Side Cost, Expedite Process and Payment Traceability through make links.

Fluent Linear Time Temporal Logic (FLTL). FLTL [11] is the formal
language we adopted to specify the properties of interest. A fluent is a property
of the world that holds after it is initiated by an event and ceases when it is

116 C. Menghi et al.

AM QM PM ENDDMOC

{cRequestQuote?,
sProvideQuote?}

{cOrder?}

{cGetBookAvail?}

{cLeft}
{sProvidePrice?, sPlaceOrder?,

bookReceived?, sBookNotAvailable?}

{sRetBookOrd?}

{sRetBookAvail?}

{cMoneyOrder?, sHasCCAuth?,
cSendMoney?, sChargeCreditCard?,
sReceivedMoney?, sReceiptPrinted?}

{cBookOrdered?}

{cLeft}

{sSubmitReceipt?, sCourierStart?,
sReceiptDelivered?, sSendElecReceipt?,

sSendPhysicalReceipt?}

{sBookDelivered?}

{sWaitBook?}

{orderClosed} {end}

Fig. 2. A Modal Transition System.

terminated by another event. Given the set Act, which contains the events of
the system, a fluent Fl is a pair 〈IFl, TFl〉, where IFl ⊂ Act is the set of initiating
events, TFl ⊂ Act is the set of terminal events and IFl ∩ TFl = ∅. A fluent may
be true or false. A fluent is true if it has been initialized by an event i ∈ IFl at
an earlier time point and has not yet been terminated by another event t ∈ TFl;
otherwise, it is false. The initial value of the fluent is specified using the attribute
InitiallyFl [24].

Given a set of fluents Φ and an infinite trace π = l0, l1, . . . over the
set Act, an FLTL interpretation of π is an infinite trace f0, f1, . . . over 2Φ

which assigns to each index i of π the set of fluents that hold in position i.
For example, consider the fluent F PendingQuoteRequest= 〈{cRequestQuote},
{sProvideQuote}〉, which is initially false. F PendingQuoteRequest holds in a
trace from the moment at which the client requests a quote (the cRequestQuote
event occurs) and until the system provides the quote (the sProvideQuote event
occurs).

An FLTL formula is obtained by composing fluents with LTL operators:
(next), (eventually), (always), U (until) and W (weak until).

Modal Transition Systems. Modal Transition Systems (MTSs) [19] extend
Labelled Transition System (LTSs) to allow explicit modeling of unknown behav-
iors. Extensions support specification of a set of possible transitions, i.e., transi-
tions that may exist or not in the final model. Formally, an MTS M is a structure
〈S,Act,Δr,Δp, s0〉, such that Δr ⊆ Δp. S is the set of the states of the MTS; Act
is the set of the events; Δr ⊆ (S ×Act×S) is the set of the required transitions;
Δp ⊆ (S × Act × S) is the set of the possible transitions. We refer to transitions
in the set Δp \Δr as maybe transitions. Graphically, the initial state of the MTS
is marked with an incoming arrow. The events that label maybe transitions are
suffixed with the character ?. An example of MTS is presented in Fig. 2. The
self-loop over the state QM is a maybe transition, while the transition between
state PM and END is required.

An MTS can be iteratively refined into a more precise description as new
knowledge about maybe transitions becomes available. A refinement is obtained
by converting maybe transitions into required transitions or removing them. A
formal definition of refinement is presented in [27]. In this paper we refer to it
informally, with the aid of an example. Figure 3 presents a refinement of the

Integrating Goal Model Analysis with Iterative Design 117

QMq1q2q3 PM END

DMq4q5q6 OC

{cRequestQuote?,
sProvideQuote?}

{cOrder?}

{cGetBookAvail}

{cLeft}

{sRetBookOrd}

{sBookNotAvailable}{sPlaceOrder}

{sRetBookOrd}

{cMoneyOrder?,
sHasCCAuth?,
cSendMoney?,

sChargeCreditCard?,
sReceivedMoney?,
sReceiptPrinted?}

{c
B
oo
kO

rd
er
ed
}

{cLeft}

{sSubmitReceipt?, sCourierStart?, sReceiptDelivered?,
sSendElecReceipt?, sSendPhysicalReceipt?}

{sBookDelivered?}{sWaitBook}{bookReceived}{sProvidePrice}

{sRetBookAvail?}

{orderClosed}

{end}

Fig. 3. A refinement of the Modal Transition System presented in Fig. 2

MTS of Fig. 2. Intuitively, the MTS of Fig. 3 refines the behaviors described
by the MTS of Fig. 2 by restricting the sequences of events that can occur in
state AM as shown by the fragment enclosed in a dotted box in Fig. 3. This
refinement removes all uncertainties that were originally represented in Fig. 2
through the maybe self-loop transitions in state AM and its incoming and out-
going maybe transitions. Notice that the behaviors originally specified by the
MTS in Fig. 2 while in state AM are different in the refinement when the state
is entered from QM or from DM . Specifically, whenever the state is entered
from QM , the refinement allows execution of the transitions labeled sBookNo-
tAvailable and sPlaceOrder, and returns to state QM through the transitions
labeled sRetBookOrd. If it is entered from DM , it allows execution of the transi-
tion labeled bookReceived and sProvidePrice, and returns to state DM through
the transition labeled with the event sRetBookAvail.

Verification of MTSs. The verification of an MTS against FLTL properties
can be done using standard procedures (see for example [28]). The verification
framework chosen in this work is based on the three-valued semantic of LTL
formulae. This semantic is used by MTSA [9], the tool we assume the designer
is using to design the system.

Tropos Goal Model Analysis. We consider the label propagation algorithm
presented in [12]. This algorithm has been proposed to propagate partial evidence
about the satisfiability and deniability of goals. The algorithm introduces the
predicates FS(g) and PS(g) over the goals of the graph, meaning that there exist
a full or partial evidence that the goal g is satisfied, respectively. An additional
proposition ⊥ is used to represent the (trivially true) statement that there is at
least null evidence that the goal is satisfied. The predicates FD(g) and PD(g)
specify that there exists full and partial evidence that goal g is denied. Note that
if there exist full evidence for a goal to be satisfied (denied) there is also partial
evidence.

118 C. Menghi et al.

To check whether there exist full/partial evidence for a goal to be satisfied
(denied), each goal of the graph is associated with a variable Sat(g), which is
initialized with a value defined over the domain {F, P,N}. The values F , P ,
N , such that F > P > N , specify that there is a full, partial and no evidence
for g to be satisfied (denied). The goal model is used to iteratively propagate
these values until a fixed point is reached. The final assignments are used to
detect whether there is a full/partial o null evidence for a goal to be satisfied.
For example, if Sat(g) ≥ P there is at least partial evidence for g to be satisfied.

3 The COVER Framework

COVER is a framework that supports the interplay between requirements analy-
sis and design. It allows the continuous verification of the requirements of the
system throughout design iterations, and enables the analysis of the verification
results over the goal model produced during the requirements analysis. COVER
does not take neither the goal model nor the design model as static oracles, but
rather supports their co-evolution to improve each side iteratively. An overview
of COVER is presented in Fig. 4. Hereafter we illustrate how the components of
COVER shown in Fig. 4 enable the interplay between requirements and design.

Goal Model Design. The requirements analyst develops a goal model for the
system. The goal model specifies goals, requirements, tasks, and the relations
between them. Goals describe what the stakeholders want to achieve, i.e., strate-
gic concerns that have clear-cut definition and clear-cut criteria to judge if they
are satisfied. Goals are refined until requirements are identified. Requirements
are goals that can be defined in terms of variables that can be monitored and
controlled. Once identified, requirements are then decomposed into tasks, i.e.,
executable processes that represents functionalities that operationalize require-
ments. We assume here that the requirements analyst uses TROPOS to analyze
the goals of the system and identify its requirements. For example, the goal
model for the book seller example is presented in Fig. 1.

During goal model development, the requirements analyst may use some
analysis tool to analyze the consequences of requirements/goals satisfaction.

Binding Tasks to System Events. Tasks represent the functionalities the sys-
tem has to provide. By binding the tasks to system events, a bridge is established
between the requirements analyst’s and the designer’s concerns. The completion
of a task is indicated by the designer with an event: the system generates the
event if and only if the task of interest has been accomplished. For example,
assume that the requirements analyst identifies the log in task. This task is
bound to the event userLoggedIn, which is used by the designer to specify that
the task log in has ended.

Requirements Specification. In the requirements specification phase, the
analyst uses the previously identified events to provide a formal description of
some of the goals of the system. The analyst chooses the set of requirements to
be formally specified and the formalism used in the formalization. The selected

Integrating Goal Model Analysis with Iterative Design 119

Fig. 4. An overview of the COVER framework.

formalism should be sufficiently expressive to describe the properties of interest.
For example, depending on whether functional or non-functional properties must
be specified, the analyst may choose a different formalism.

As in [20], we allow the specification of system goals (requirements) with a
textual description for the communication with stakeholders and an FLTL for-
mula which enables formal reasoning. Consider the previously introduced whole-
sale book seller example. The goal Book Delivered may be specified as follows:

Goal. (G6) Book Delivered.
Definition. Before closing an order, the book is delivered to the customer.
FormalDef. (¬F oc)W(F sBookDelivered ∧ ¬F oc)

where the fluents F oc and F sBookDelivered are defined as
〈{orderClosed}, Act \ {orderClosed}〉 and 〈{sBookDelivered}, Act \
{sBookDelivered}〉, respectively, and hold whenever the events orderClosed
and sBookDelivered occur. The FLTL formula specifies that the fluent
F sBookDelivered must hold before F oc. FLTL formulae can be specified
starting from well known specification patters [10] or from subsets of natural
languages [2].

Table 1 contains the definitions of the goals of the book seller example, each
formalized by means of an FLTL formula reported in Table 2. In the formulae,
we used the notation F e to identify a fluent that is true when event e occurs.
Formally, F e is specified as 〈{e}, Act\{e}〉. This formalization does not exploit
all the capabilities of FLTL, but is sufficient to describe the properties of inter-
est. For conciseness, in Table 1, we used F oc, F sProvPrice, F sRcptDel and
F rcvMoney to indicate fluents F orderClosed, F sProvidePrice, F sReceipt-
Delivered and F sReceivedMoney, respectively. Note that, not all goals need
to be formalized. The choice is left to the requirements analyst. For example, in
Table 2 the goals G14-G17 and G19-G23 are not formally specified.

System Design. The requirements of the system are used by the designer as
guidance for the system design. The designer usually starts by producing a high-

120 C. Menghi et al.

Table 1. Definitions of the goals of the wholesale book seller example of Fig. 1 that
are formalized through FLTL formulae.

G Name Definition

G2 Quote Given If the client requests the quote, the system provides the price

G3 Book Available A book is finally available in the WH

G4 Book Ordered If a book is not available in the WH, it is ordered

G5 Book Acquired When the WH waits a book, the book is finally received

G6 Book Delivered Before closing an order, the book is delivered to the customer

G7 Handle Receipt If the WH submits a receipt, it is finally received by the client

G8 Payment Rec A succeeding order requires the payment from the user

G9 Payment via CC A succeeding order requires the money to be charged on the CC

G10 Mon. Payment A succeeding order relies on a bank transfer

G11 Receipt Sent A physical or electronic receipt is sent

G12 Send Print Rec The physical receipt is finally delivered

G13 Separate Rec The receipt is finally received

G18 Price than quote The supplier provides prices before quotes

G24 CC before cust The charge on CC can only occur before delivering to customer

G25 Courier after CC Charging CC can only be performed before the courier starts

G26 Receipt after pay The receipt is received by the user after the payment

level model of the system to be. Then, she/he iteratively decomposes the system
until the behaviors of all of its components are defined. The system design is
not a straightforward activity; it is an incremental process in which the high-
level model of the system is iteratively detailed. For this reason, at a particular
development step, the model can be incomplete and some of its parts may be
detailed in a subsequent refinement round.

We assume that the designer uses MTSs to describe the behavior of the
system. The set of events of the MTS includes the events that are bound to
the tasks and are used by the developer to indicate that specific tasks ended.
For example, the designer may propose the MTS shown in Fig. 2 as an initial
model for the book seller example. The MTS has five states, each representing a
functional component of the system: Quote Manager (QM), which is responsible
for showing the quotes to the user, Book Availability Manager (AM), which is
responsible for checking the book availability, Payment Manager (PM), which
is responsible for managing the payment system, book Delivery Manager (DM),
in charge of supervising book delivery. In addition, state Order Closed (OC)
specifies that the order is closed and End (END) specifies that the user left the
system. The transitions specify how the state of the system changes. Figures 3
and 5 present two MTSs that refine the MTS of Fig. 2 and we assume that they
have been produced by the designer in subsequent refinement rounds.

Design Verification. After the designer has produced a model of the system,
she/he may want to verify whether the requirements of interest are satisfied by
the current design. The verification framework discussed in Sect. 2 is used to

Integrating Goal Model Analysis with Iterative Design 121

QMq1q2q3 PM END

q4q5q6 q7

q8 q9 q10 q11 q12 OC

{cRequestQuote?,
sProvideQuote?}

{cOrder?}

{cGetBookAvail.}

{cLeft}

{sRetBookOrd}

{sBookNotAvailable}{sPlaceOrder}

{sRetBookOrd}

{cMoneyOrder?, cSendMoney?,
sChargeCreditCard?, sHasCCAuth?,
sReceivedMoney?, sReceiptPrinted?}

{cB
oo

kO
rd

er
ed

}
{cLeft}

{sReceiptDelivered} {sBookDelivered}

{sWaitBook}

{sSubmitReceipt} {sCourierStart}

{sProvidePrice} {bookReceived}

{
sR

e
tB

o
o
k
A
v
a
il}

{sSendElecReceipt}

{sSendPhysicalReceipt}

{orderClosed}

{end}

Fig. 5. A refinement of the Modal Transition System presented in Fig. 3

check whether the MTS that describes the system satisfies the FLTL properties
of interest. For each requirement φ, the verification procedure returns “yes” (�),
“maybe” (?), or “no” (⊥), depending on the satisfaction of φ in the current
model. The value � is returned if the property holds, independently of how
currently unknown parts will be designed. The value ⊥ is returned if the property
is violated, no matter how currently unknown parts will be designed. In all
the other cases, the analyzer returns ?, which specifies that the unknown parts
affect the satisfaction of the property. For example, it can be proved that the
design of Fig. 2 only possibly satisfies goal G5 since there is no assurance that
a sWaitBook event is followed by a bookReceived. Instead, since the sWaitBook
event is followed by a bookReceived, the designs of Figs. 3 and 5 satisfy G5. The
results of the verification are used by the designer to check whether the current
design must be revisited to satisfy its requirements.

Goal Model Analysis. Goal model analysis enables the interaction between the
designer and the requirements analyst. The values obtained from the verification
of the system design are used to trigger the analysis of the goal model. Each goal
of the goal model is associated with an initial value, which specifies whether it is
satisfied, possibly satisfied, or not satisfied by the current design. The goals that
have not been formalized are considered as not satisfied. A label propagation
algorithm is then used to propagate the initial values.

The label propagation algorithm defined in TROPOS and recalled in Sect. 2
is used by COVER to analyze goals’ satisfaction. In our context, predicates
FS(g), PS(g) are used to indicate that a goal g is satisfied and possibly satis-
fied, respectively, instead of indicating the existence of full and partial evidences.
Proposition ⊥ indicates that the goal is not satisfied instead of indicating that
there is null evidence for the goal to be satisfied. Predicates FD(g) and PD(g)
are not used by the label propagation algorithm since the algorithm is not used
for identifying contradictory situations on the goal satisfaction. Finally, Sat(g) is

122 C. Menghi et al.

associated with values {�, ?,⊥} (instead of {F, P,N}) meaning that g is satisfied,
possibly satisfied or not satisfied, respectively. This mapping imposes the total
ordering � >? > ⊥, which is commonly used when three-valued logics are con-
sidered (see for example [6]). The choices previously described assume that the
developer agrees on the total ordering relation � >? > ⊥ and with the rules
used by the label propagation algorithm. For example, the label propagation
algorithm associates the value ⊥ with the goals that are destinations of break
links. However, other truth orderings and propagation algorithms can be used.

The obtained results are used by the designer to reason about the impact of
her/his design choices over the goals satisfaction. For example, if the designer
defines a component that aims at satisfying a goal g, and g is not satisfied
after the execution of the label propagation algorithm the current design must
probably be revisited. The execution of the label propagation algorithm allows
the designer to deduce that, for example, g is satisfied if it is AND- decomposed
and all of its sub-goals are satisfied. From the requirements analyst perspective,
the results obtained by running the label-propagation algorithm can be used to
check for errors and improve the goal model. For example, consider a goal g that
is specified through an FLTL formula that is possibly satisfied by the current
design. If g is satisfied after the label propagation, g could be not specified
correctly, or the satisfaction of g can be a consequence of the satisfaction of a
sub-goal of g that has not been identified during the goal model design. Let
us consider the bookshop goal model of Fig. 1 and the goals Payment via Credit
Card (G9) and Payment Received (G8). If G9 is satisfied and G8 is not, the values
of Sat(G9) and Sat(G8) are initialized to � and ⊥, respectively. By propagating
the values, we can deduce that the goal Payment Received is also satisfied.

4 Implementation and an Illustrative Example

We evaluated the proposed approach over the wholesale book seller example.
We used the example to answer the following research questions: RQ1: how can
COVER improve the detection of design errors? RQ2: how can COVER improve
the detection of errors in the goal model?

To answer these questions we used COVER to analyze the consequences of
the design alternatives described in Figs. 2, 3, 5 over the satisfaction of the goals
of the goal model in Fig. 1. For RQ1 we checked how COVER guides the designer
in the development of the model of the system. For RQ2 we verified how COVER
supports the requirements analyst in the improvement of the goal model.

Implementation. We implemented the approach in the COVER framework1.
The COVER framework is a Java 8 application that uses (a) the Goal Reasoning
Tool (Gr-tool) [13] as a design framework of goal models and for the label prop-
agation; (b) the Modal Transition System Analyzer (MTSA) [9] for supporting
the designer in the development of the system design.

1 The tool is available at https://github.com/claudiomenghi/COVER.

https://github.com/claudiomenghi/COVER

Integrating Goal Model Analysis with Iterative Design 123

Results. Table 2 shows the results obtained by COVER when the designs D1,
D2 and D3 presented in Figs. 2, 3, 5 are considered. The columns I and F
show the initial values associated with the goals, i.e., the ones returned by the
model checker, and the final values, i.e., the ones obtained after the execution
of the goal model analysis, respectively. As previously discussed, the value ⊥
is automatically assigned to the goals that are not associated with an FLTL
formula. These goals are marked with a − symbol in the FormalDef column.

Table 2. Goal model analysis results for the designs D1, D2 and D3.

G FormalDef. D1 D2 D3

I F I F I F

G1 − ⊥ ? ⊥ ? ⊥ ?

G2 (F cRequestQuote → F sProvideQuote) ? ? ? ? ? ?

G3 (¬F orderClosed)W(F bookReceived ∧ ¬F orderClosed) ? ? ? � � �
G4 (F sBookNotAvailable → F sP laceOrder) ? ? � � � �
G5 (F sWaitBook → F bookReceived) ? ? � � � �
G6 (¬F oc)W(F sBookDelivered ∧ ¬F oc) � � � � � �
G7 (F sSubmitReceipt → (F sRcptDel)) ? ? ? ? � �
G8 (¬F oc)W(F rcvMoney ∧ ¬F oc) ? ? ? ? ? ?

G9 (¬F oc)W(F sChargeCreditCard ∧ ¬F oc) ? ? ? ? ? ?

G10 (¬F oc)W(F cSendMoney ∧ ¬F oc) ? ? ? ? ? ?

G11 (¬F oc)W(F sSubmitReceipt ∧ ¬F oc) ? ? ? ? � �
G12 ((F sSendPhysicalReceipt) → (¬F ocW(F sRcptDel))) ? ? ? ? � �
G13 (¬F oc)W(F sRcptDel ∧ ¬F oc) ? ? ? ? � �
G14 − ⊥ ? ⊥ ? ⊥ ?

G15 − ⊥ ? ⊥ ? ⊥ ?

G16 − ⊥ ? ⊥ ? ⊥ ?

G17 − ⊥ ? ⊥ ? ⊥ ?

G18 (¬F sProvPrice)W(F sProvideQuote ∧ ¬F sProvPrice) ? ? ? ? ? ?

G19 − ⊥ ? ⊥ ? ⊥ �
G20 − ⊥ ? ⊥ ? ⊥ ?

G21 − ⊥ ? ⊥ ? ⊥ ?

G22 − ⊥ ? ⊥ ? ⊥ ?

G23 − ⊥ ? ⊥ ? ⊥ �
G24 (F sBookDelivered → (¬F sChargeCreditCard)) � � � � � �
G25 (F sCourierStart → (¬F sChargeCreditCard)) ? ? � � � �
G26 ((¬F rcvMoney) ∨ (F rcvMoney ∧ F sRcptDel)) ? ? ? ? ? ?

DesignD1. RQ1 : the initial values inform the designer about the satisfaction
of the FLTL properties over the current design. All the goals associated with

124 C. Menghi et al.

FLTL properties are satisfied or possibly satisfied. Surprisingly, goals G24 and
G6 are already satisfied (despite the unknown parts). Indeed, in the case of G24,
the credit card (CC) is charged before the book is delivered to the customer,
i.e., the event sChargeCreditCard can occur only before sBookDelivered.
RQ2 : the final values describe the consequences of the design choices over the
goal satisfaction. The requirements analyst may manually inspect the results
of the goal model analysis to improve his/her goal model. Thus, the results of
Table 2 are considered w.r.t. the goal model of Fig. 1. Even if the goal Book
Delivered is satisfied, the goal Happy Customer, whose satisfaction is intuitively
related with the delivering of the book, is “only” possibly satisfied after the goal
model analysis. Indeed, the goals Book Delivered and Happy Customer are not
connected with a make link’ in the current goal model.

Design D2. RQ1 : the initial values inform the designer that no properties are
violated by the current design. Goal G4 is satisfied since the design ensures that,
if a book is not available in the WH, it is ordered. Goal G5 is satisfied since, if
the WH waits for a book, the book is finally received. Goal G3 is only possibly
satisfied since the design D2 does not provide any assurance that a book is finally
available. Is this a design error? Should this goal be satisfied?
RQ2 : the final values specify that no goals are violated by the current initial
values. Since both G4 and G5 are satisfied, the label propagation algorithm states
that G3, which was initially possibly satisfied, is also satisfied. The analyst may
wonder why. Specifically, a deep analysis of the goal model raises the following
question: whenever the customer orders a book, is goal Book Available satisfied
if the book is already in the WH? Indeed, in D2, to make the book available,
the transition labeled with sWaitBook must be fired. Should the requirements
analyst add the goal Manage Local WH associated with a task Check Book
Presence in the WH as sub-goal of Book Available?

Design D3. RQ1 : differently from D2 the initial values specify that also G11,
G12, G13 and G7 are satisfied. The first three goals are the goal Receipt Sent and
its (sub-)goals, the last is the goal Courier Deliver To Customer. This gives the
developer more confidence on the correctness of his design, since the only goals
that remain to be satisfied are the ones related with the payment procedure and
the quoting of the books which still have to be refined.
RQ2 : the initial values show that G11, G12, G13 are satisfied together with G7.
This raises the following question: is there any relation between these goals? In
particular, is the sub-goal Handle Receipt of Books Delivered not related with
Receipt Sent? Should these two goals be related? Could Receipt Sent be a sub-
goal of Handle Receipt?

Discussion. The book seller example showed the potential advantages of using
COVER during the development process. COVER proved to be an extremely
useful instrument for the designer perspective to answer the following questions:
is my design correct? does it satisfy its requirements? given the current design,
which goals are satisfied?, while for the requirements analyst perspective it helps
in answering the following questions: given a design, which requirements/goals

Integrating Goal Model Analysis with Iterative Design 125

are satisfied? Should also other requirements/goals be (possibly) satisfied? Is it
necessary to modify the goal model? The potential advantages of using COVER
are witnessed by designs D2 and D3, which showed how COVER can improve
the interaction between the requirements analyst and the designer. For example,
the possible satisfaction of G3 may uncover a design error or may require a
change in the goal model. One problem with TROPOS-style analysis is that it
tends to converge to many conflicting values, thus not really providing helpful
analysis results for the users [30]. A similar problem occurs for propagation of
uncertainty. We can see evidence of this problem in Table 2 for the initial design
rounds. When the design is somewhat uncertain, the goal model analysis results
are very uncertain (and not very useful). This does get better as the design
becomes more certain.

Threats to Validity. The main threat to validity concerns the designs proposed
for the book seller case study. In absence of a real case study in which both the
goal model and the system design are provided, we proposed the models in
Figs. 2, 3 and 5 for the book seller case study.

Scalability. Checking satisfaction of all the requirements took around 1s, for
designs D1, D2 and D3. Instead, the goal model analysis required around 3ms.
The label propagation algorithm used in the goal model analysis has been proved
to be correct and complete and to terminate in at most 6×|G|+1 iterations. As
discussed in [12], this technique can be applied in real life applications where goal
models can count more than hundred goals. The verification of FLTL formulae
over MTS reduces to two classical FLTL model-checking over LTS and has been
used to evaluate realistic case studies, see for example [28]. Hence, the overall
approach seems to be applicable also to realistic case studies.

5 Related Work

The related work includes 1. how to analyze goal models in presence of uncer-
tainty; 2. how to verify incomplete/uncertain system designs; 3. work that relates
the goal model analysis with the verification of the system design.

Uncertainty in the goal model. Several techniques have been proposed in litera-
ture to analyze goal models. An extensive survey can be found in [17]. Some of
these techniques can also be applied in the context of uncertainty, such as [12,15].
However, these techniques do not use the results obtained by the verification of
the system design to trigger the analysis of the goal model.

Uncertainty in the system design. Several techniques have been proposed to
analyze requirements over incomplete and partially specified designs, such as [5,
19,23]. An extensive description of some of these techniques can be found in [27].
However, the impact of the verification results over the original goal model is
usually not considered.

Relating goal modeling and system design. Several techniques have been pro-
posed to derive a model of the system from its goal, e.g., [20], and properties,

126 C. Menghi et al.

e.g., [28]. However, these works do not analyze how changes on the generated
design influence the goal satisfaction. Vice versa, some approaches trigger rea-
soning techniques when the environment in which the application is running
changes [1,3]. However, they usually do not consider goal models as an instru-
ment to enable the verification of the system design. The lack of integration
between requirements analysis and the verification of the system design has also
been evidenced as a major issue in [26]. COVER has been developed exactly to
solve this problem and provides a unified framework which supports the evolu-
tion of the goal model together with the design of the system.

6 Conclusion and Future Work

We presented COVER, a unified framework that enables goal model analysis
during the software development. The goal model produced by the requirements
analyst is kept alive during the design of the system. At each refinement round,
i.e., whenever the designer produces a new increment or changes something in
the model, the new (incomplete) design of the system is verified. The verification
results are used to analyze the set of goals of the goal model that are currently
satisfied, possibly satisfied and not satisfied. We implemented COVER as a Java
8 stand alone application and we evaluated its benefits over the wholesale book
seller example [21]. COVER proved to be useful in supporting the detection
of design errors, as well as to evidence weaknesses of the goal model as the
development proceeds.

As future work, we aim to evaluate the approach over a realistic case study,
which would allow us to establish the effectiveness of the approach in a real
setting. Moreover, we plan to analyze the applicability of COVER with other
modeling formalisms, such as KAOS as a goal model and UML as a design
formalism. Furthermore, we plan to extend COVER by developing algorithms
that helps the requirements analyst and the developer in interpreting the results
of the label propagation algorithm. These algorithms may search for results that
are likely consequences of design errors or require changes in the goal model.
Finally, we would like to consider quantitative reasoning. This might enable
the analysis of contradictory situations where, for example, there is a partial
evidence for a goal to be satisfied and denied.

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requir. Eng. 15(4), 439–458 (2010)

2. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a structured
english grammar. Trans. Softw. Eng. 41(7), 620–638 (2015)

3. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adapta-
tion. In: Requirements Engineering Conference, pp. 125–134. IEEE (2010)

Integrating Goal Model Analysis with Iterative Design 127

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agents Multi-Agent
Syst. 8(3), 203–236 (2004)

5. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

6. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

7. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1), 3–50 (1993)

8. De Roever, W.-P.: Concurrency Verification: Introduction to Compositional and
Non-compositional Methods, vol. 54. Cambridge University Press, Cambridge
(2001)

9. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: the modal transition
system analyser. In: International Conference on Automated Software Engineering,
pp. 475–476. IEEE (2008)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: International Conference on Software Engineering, pp.
411–420. IEEE (1999)

11. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: Symposium on Foundations of Software Engineering, pp. 257–266 (2003)

12. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning tech-
niques for goal models. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on
Data Semantics I. LNCS, vol. 2800, pp. 1–20. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-39733-5 1

13. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18(2), 159–171
(2005)

14. Horkoff, J., Li, T., Li, F., Salnitri, M., Cardoso, E., Giorgini, P., Mylopoulos, J.:
Using goal models downstream: a systematic roadmap and literature review. Int.
J. Sci. Manag. Dev. 6(2), 1–42 (2015)

15. Horkoff, J., Salay, R., Chechik, M., Di Sandro, A.: Supporting early decision-
making in the presence of uncertainty. In: Requirements Engineering Conference,
pp. 33–42. IEEE (2014)

16. Horkoff, J., Yu, E.: Finding solutions in goal models: an interactive backward
reasoning approach. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 59–75. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16373-9 5

17. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose
among them. In Symposium on Applied Computing, pp. 675–682 (2011)

18. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foundation for
three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028,
pp. 155–169. Springer, Heidelberg (2001). doi:10.1007/3-540-45309-1 11

19. Larsen, K.G., Thomsen, B.: A modal process logic. In: Logic in Computer Science,
pp. 203–210. IEEE (1988)

20. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition sys-
tems from goal-oriented requirements models. Autom. Softw. Eng. 15(2), 175–206
(2008)

21. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrating preferences
into goal models for requirements engineering. In: Requirements Engineering Con-
ference, pp. 135–144. IEEE (2010)

http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1007/978-3-642-16373-9_5
http://dx.doi.org/10.1007/978-3-642-16373-9_5
http://dx.doi.org/10.1007/3-540-45309-1_11

128 C. Menghi et al.

22. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Representing and reason-
ing about preferences in requirements engineering. Requir. Eng. 16(3), 227–249
(2011)

23. Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness in automata-
based model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 531–550. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-48989-6 32

24. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axiom-
atizations. Electron. Trans. Artif. Intell. 3(A), 77–105 (1999)

25. Sandewall, E.: Features and Fluents: The Representation of Knowledge about
Dynamical Systems, vol. 1. Oxford University Press, Inc., Oxford (1995)

26. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
aware systems: a research agenda for re for self-adaptive systems. In: Requirements
Engineering Conference, pp. 95–103. IEEE (2010)

27. Uchitel, S., Alrajeh, D., Ben-David, S., Braberman, V., Chechik, M., De Caso, G.,
DIppolito, N., Fischbein, D., Garbervetsky, D., Kramer, J., et al.: Supporting incre-
mental behaviour model elaboration. Comput. Sci.-Res. Dev. 28(4), 279–293 (2013)

28. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. Trans. Softw. Eng. 35(3), 384–406 (2009)

29. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Requirements Engineering Conference, pp. 249–262. IEEE (2001)

30. Lamsweerde, A.: Reasoning about alternative requirements options. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Founda-
tions and Applications. LNCS, vol. 5600, pp. 380–397. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02463-4 20

31. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Requirements Engineering Conference, pp. 226–235. IEEE (1997)

http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-319-48989-6_32
http://dx.doi.org/10.1007/978-3-642-02463-4_20

Communication and Collaboration

Patterns of Collaboration Driven
by Requirements in Agile Software

Development Teams

Findings from a Multiple Case Study

Irum Inayat1(&), Sabrina Marczak2, Siti Salwah Salim3,
and Daniela Damian4

1 Department of Computer Science, FAST National University of Computer
and Emerging Sciences, Islamabad, Pakistan

irum.inayat@nu.edu.pk
2 Computer Science School, PUCRS, Porto Alegre, Brazil

sabrina.marczak@pucrs.br
3 Faculty of Computer Science and Information Technology,

University of Malaya, Kuala Lumpur, Malaysia
salwa@um.edu.my

4 Computer Science Department, University of Victoria, Victoria, Canada
danielad@cs.uvic.ca

Abstract. Context and motivation: Due to their emphasis on communication,
agile methods and requirements engineering activities seem to mutually support
each other in software development. Question/Problem: But how do agile teams
manage the collaboration required to perform requirements related activities,
especially when their members work from geographically distributed locations?
Principle Ideas/Results: In this paper we investigated the requirements-driven
collaboration translated as communication and awareness among agile teams
from four distributed projects. We identified some collaboration patterns that are
similar to those reported in the literature for the traditional, non-agile teams, but
also some more specific to agile teams. For instance, we found that the number
of team members involved in actual collaboration is different than the number of
assigned members, that little communication exists with members outside the
team, and that project managers are still key players in knowledge sharing
patterns. We also found that distance does not matter for knowledge manage-
ment, that familiarity from past projects facilitates awareness, and communi-
cation is still an important source of awareness. Contributions: Our results
suggest an exploration on the role of project managers as the key players in agile
teams. Also, the correlation of distance and communication needs to be inves-
tigated in largely distributed agile teams.

Keywords: Requirements-driven collaboration � Agile development � Social
network analysis � Empirical research � Case study

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 131–147, 2017.
DOI: 10.1007/978-3-319-54045-0_10

1 Introduction

Agile methods are collaborative in nature and entail an organic management of
requirements, unlike traditional software development methods [1]. In such a dynamic
process, requirements are highly volatile and constant collaboration is essential to cope
with ever changing requirements for risk mitigation due to dependencies [2]. Developer
collaboration is dependent on the communication of changes of new tasks, as well as
on the awareness of what others are doing and whether they are available to help [3].

Empirical evidence of collaboration patterns of requirements engineering activities
exists in the literature. Studies such as Damian et al. [5], for example, studied tradi-
tional (i.e., waterfall model) distributed projects of a large multinational company and
identified that such collaboration, referred to as requirements-driven collaboration
(RDC) [4], was highly dynamic and included important cross-site interactions. More
people collaborated during the development of each requirement than was originally
planned, and over one-third of interactions in the team were with people that have not
being assigned to work in the project, named emergent members. Although they found
that team members had general awareness of others working on the same requirements,
regardless of geographical location, more communication was correlated with high
awareness in the project. Distance did affect the frequency as well as ease of com-
munication with remote members. However, very little is still known about the “agile
way” of dealing with requirements and how RDC in such teams takes place.

Unlike traditional teams, agile teams are closely knit, cross-functional, and highly
interactive with constant communication free of imposed organizational barriers. Team
members are self-manageable and empowered to make decisions on their own in
contrast to the traditionally centralized structures dependent on project managers.
Therefore, interesting questions about RDC relate to this new team structure: (RQ1)
Which roles collaborate with each other?, (RQ2) Which members presence emerge
throughout the project?, (RQ3) What kind of communication patterns exist within- and
cross-roles?, (RQ4) What kind of communication and awareness patterns exists within-
and cross sites?, (RQ5) What role distance plays in the communication and awareness
patterns?, and (RQ6) What role communication plays in disseminating awareness to
team members?

Drawing on Damian et al.’ work, we sought to investigate these research questions
and more broadly to identify overall collaboration patterns of agile teams. We report
from a multiple case study of four projects following the agile methodology, in which
we used a combination of on-site observations, interviews and a questionnaire to obtain
detailed information about their collaboration around requirements development. We
also discuss the findings in light of current literature and briefly present implications for
research and practice.

This paper is organized in following sections. Section 1 explains introduction on
the topic. Section 2 describes the background of our work. Section 3 presents the
research methods used to conduct this research study. Section 4 demonstrates the
findings. Section 5 discusses the findings. Section 6 explains the limitations and
Sect. 7 drives the implications of our work. Section 8 concludes this research study.

132 I. Inayat et al.

2 Background and Related Work

The importance of agile methods is undeniable in today’s software development
practice. However, only a small number of studies have explored collaboration patterns
among agile teams so far (e.g. [5, 6]). Cataldo and Ehrlich investigated the impact of
the role of hierarchy and small-world communication structures (i.e. when two nodes
are connected to each other through the smallest path [7]) on iteration performance and
quality in a large distributed agile team. Results showed a strong positive effect for
hierarchy but a marginal negative effect for small-worlds on team performance, and a
negative effect for hierarchy but a very strong positive effect for small-worlds on
quality. Given that requirements drive the development cycle, we decided to take their
lens to collect a more detailed and broader view of how team members collaborate.

Requirements communication has been discussed in literature in terms of investi-
gating what role distance plays in it [8], and how interaction among roles for
requirements communication shape their communication structures [9], among others.
We draw on the work of Damian et al., which examined RDC in traditional teams. We
use the concept of a Requirements-Centric Agile Team based on the Requirement-
Centric Team concept from Damian et al. [4]. The Requirements-Centric Team refers
to the team of people collaborating around a certain requirement, while a
Requirements-Centric Social Network refers to the social network that represents the
collaboration that takes place within that team. Therefore, in our work, a
Requirements-Centric Agile Team is a group of cross-functional and self-organizing
members working on a certain set of interdependent requirements [10]. It includes the
team members that are assigned to work on the project only. However, those members
whose participation ‘emerges’ throughout the life cycle for some reason (e.g. to resolve
some issue or to get clarification on some matter) are also considered a part of the
Requirements-Centric Agile Team. We name these as emergent members. For instance,
if a team members want to clarify certain issues from Management or Technical
Support Team members, they will be considered as emergent members since they were
not a part of assigned team. Similarly, a Requirements-Centric Social Network [4] for
an Requirements-Centric Agile Team (RCAT) represents agile team members as actors
and their established relationships (communication or aware of) as ties between pairs of
actors. We name these Requirements-Centric Agile Social Network (RCASN) [10].

3 Research Method

We have conducted a multiple-case study of four large distributed IT organizations. In
this section we briefly present each of the projects and describe the procedures for data
collection and analysis.

3.1 Projects’ Background

Overall, the four projects follow Scrum to develop their products. The projects were
mid-sized ranging from 3 to 5-months life span each, organized in 2 to 3 iterations

Patterns of Collaboration Driven 133

according to the project size. More specifically, project Case 1 is from an organization
that develops in-house internet security software and focused on developing a Mobile
Internet Security software. The team was composed of 10 members distributed in
Malaysia (MAL) and in Finland (FIN) as presented in Table 1. Atlassian JIRA was
used for requirements management. Project Case 2 is from a company that develops
Graphical System Design Platforms for diverse industries and aimed to track and
monitor the shortfall in supply of components. The team had 5 members distributed in
Malaysia (MAL) and in the United States (USA) as indicated in Table 1. The team uses
Xplanner and JIRA for requirements management. As per project Case 3, it is from a
company that provides extensive solutions and information management consulting.
The project goal was to develop a Web-based physical and electronic data indexing and
cataloging solution for storing, managing, and categorizing core rock samples and
seismic map data stored at variable geographical locations. The team was comprised of
7 members distributed in Pakistan (PK) and in United Kingdom (GB), as per Table 1.
JIRA was used for project management. And project Case 4 belongs to an organization
that produces customized solutions and product suites for business processes. The
project studied was a healthcare revenue cycle management system. The team had 9
members distributed in Pakistan (PK) and in the Republic of Philippines (RP) as
Table 1. IBM Rational Team Concert (RTC) tool was adopted to support the entire
project development life cycle.

3.2 Data Collection Methods

We collected data through observations, interviews, and a questionnaire. We gathered
data for two iterations in each project after spending about a month in each organi-
zation. We observed team members present in PK and MAL only, those from the other
locations attended team meetings on Skype calls, to see how team members collaborate
on a daily basis, how they use the tools, and how they execute the agile practices
adopted by the companies.

Information about the company and the software products were collected from the
observation sessions and through interviews. The first author spent about 4 weeks with
each team on site attending daily sprints, scrum meetings, and daily activities of the

Table 1. Project members details

Project Case 1 Case 2 Case 3 Case 4

Project Manager (PM) 1 FIN 1 USA 1 PK 1 PK
Product Owner (PO) 1 FIN
Developer (Dev) 4 MAL, 1 FIN 2 MAL, 1 USA 1 PK, 2 GB 3 PK, 1 RP
Tester (Test) 1 MAL 1 PK 1 PK, 1 RP
User Exp. Designer (UX) 1 FIN
Software Architect (Arch) 1 USA 2 PK 2 RP
Number of members 10 5 7 9

134 I. Inayat et al.

development teams. The interviews mostly served the purposed of identifying on which
requirements (or user stories) each team was working on and which team members has
been assigned to work on each iteration. During the interviews, the first author also
learned that in all projects team members self-assigned themselves to work on a certain
user story. Information gathered about the requirements and team members was used
later to design the questionnaire. A total of 9 interviews were conducted with project
managers and senior developers, resulting in 5.25 h of voice recorded data and 38
pages of transcribed text.

The questionnaires asked with whom, about what and with what frequency the
respondent communicated in the team. A list of all team members assigned to the
iteration was provided. It also asked whom the respondent was aware of and how aware
she was of others. In addition, we asked the respondent to point out whether she had
communicated (or was aware of) with team members that have not been listed. All team
members responded to the questionnaire. We built the social networks from this data.

The communication RCASN is the social network formed on the basis of com-
munication that happened between team members for variable reasons including: dis-
cussion of bugs, communication of changes, code issues, code refactoring, code
reviews, code synchronization, coordination, management issues, quality issues, sprint
planning, support, user story clarification, and user story negotiation. Similarly,
awareness RCASN is formed on the basis of the perception of awareness. We collected
information on whether project members were aware of each other’s presence, pro-
fessional background, work status, and current tasks. We named these four kinds of
awareness as: (i) availability, how easy is for one to reach a person when one needs help
about the project [11]; (ii) general awareness, how aware one is of a person’s profes-
sional background [11]; (iii) current awareness, how aware one is of the current set of
tasks that a certain person is working on [11]; and (iv) work status awareness, how aware
one is of a colleague’s current progress of work that is related to the project. This fourth
type of awareness has been defined by us given the relevance of constant progress report
in agile teams. The questionnaire was deployed twice, once for each iteration.

3.3 Data Analysis

We used observations and interviews to develop an initial understanding about the
projects, i.e., goal, team structure (roles and responsibilities), means of communication
(media use and frequency), role of tool support, etc. We manually inspected the
transcription of the interviews and used the developed knowledge to fill in the mem-
bers’ list options in the designed questionnaire to later build the RCASN from it.

As previously explained, in the questionnaire, each respondent had to indicate with
whom from the provided team members’ list did she communicate and what was the
conversation about. Also, who from the same provided team members’ list one was
aware of. For instance, if team member A indicated she communicated about changes
with member B a directed tie from A to B was created in the communication of changes

Patterns of Collaboration Driven 135

RCASN. Also, if A reported that she communicated about changes with a member Y
that has not been assigned to the project, then we created a directed tie from A to Y and
marked this tie as emergent in order to represent that the relationship between A–Y
indicates a situation that has not been initially foreseen to take place in the project. Note
that communication and awareness were considered directional, i.e. if a pair
‘source-target’ (A and B) reported communication and this same pair ‘target-source’ (B
and A) also reported communication, we considered that two instances of communi-
cation had taken place.

The data from questionnaires helped us to see who communicated with whom and
for what reason, and also who was aware of whom. This data were then used to build
the respective communication and awareness networks called RCASNs. The RCASNs
were then visualized to collect some initial insights of the collaboration behavior of the
teams (e.g., no emergent participation was detected, member A was the most sought
member to discuss changes, etc.).

The self-reported data from questionnaires were then imported to an Excel
spreadsheet for a descriptive analysis of the communication and awareness reported
relationships. The data were recorded in the Excel sheets in a matrix format such that
all the team members who were identified communicating for a certain reason (or were
aware of each other) were listed on X and Y axis. Then for each existing tie (i.e.
existing communication and awareness) among member A and B we placed a ‘1’ and
‘0’ for otherwise. Likewise, we calculated the number of communication and aware-
ness ties within and cross roles. For examples for cross roles communication we
calculated 29 ties between PM-Dev and for within roles communication 58 ties among
Devs. We call this analysis the “ties statistics”.

Following the aforementioned method, we coded within and cross site communi-
cation and awareness ties as well. Yet another Excel spreadsheet in a matrix format
(with team members on X and Y axis) was built for each communication reason and
awareness type; this time indicating ‘1’ for a communication or awareness tie between
people located in different countries and ‘0’ otherwise. For instance, in Case 1 a
communication tie recorded for bugs discussion between a team member A and a
member B both located in MAL was considered a ‘within-site’ tie (coded as 0) and for
a communication tie between member A located in MAL and a member C located in
the USA, we coded it as a cross-site tie (coded as 1). In addition, we created a distance
matrix (see Sect. 5) to see the effect of distance on team members’ communication
frequency and awareness types. Then correlation is calculated between communication
ties, awareness ties, and distance matrix to find out their effect on each other. The
correlation analysis was performed in UCINet (http://www.analytictech.com/). Results
of these and the other referred analysis are presented next.

136 I. Inayat et al.

http://www.analytictech.com/

4 Findings

In this section we report the patterns we identified across the RCASNs.

4.1 Characterization of the Requirements-Centric Agile Social Networks
(RCASNs)

Communication Within the Actual RCASNs

(a) (RQ1) how many team members actually communicated? For each user story
identified, we generated a RCASN. Table 2 indicates number of team members
who communicated in total for all actual RCASNs for each communication rea-
son. For instance, the first entries of the table (column 1–2 and row 1 after header)
describe that 5 team members from MAL (4 Dev and 1 Test) and 6 from FIN (1
PM, 1 PO, 1 Dev, 1 UX, and 1 emergent member) talked to each other for bugs
discussion in Case 1 iteration 1. However, it can be seen that 5 team members
were in FIN which shows the presence of an emergent member in this commu-
nication network. The majority of the teams involved in the actual communication
networks are slightly smaller than the teams assigned, except for the team in the
UK for Case 3 and the team in Malaysia for Case 2 (Iteration 1 only).

(b) (RQ2) Emergent members in the actual communication RCASNs. Analyzing the
actual communication RCASNs, we found that a small number of emergent
members (members who are not a part of assigned project team, yet their

Table 2. Number of members per actual communication RCASN Iteration 1 and 2

Patterns of Collaboration Driven 137

participation is required by the team members due to any reason) were also
involved in the project communication. Table 2 highlights the presence of emer-
gent members in grey. These emergent members are non-unique, i.e. there are
duplicates across the RCASNs. When present, only one or two members were
emergent per network. Some were contacted more than once. Overall, 4.4% of the
total interaction happened with emergent members for Iteration 1 and 2.4% for
Iteration 2. It indicates that communication with emergent members was very low.
Most of the communication ties with emergent members exist between Project
Manager, Support team, Customer, and Executives (Case 2 and 3), Management
Team (Case 3 and 4), and Area Experts (Case 2).

(c) (RQ3) Roles involved in the actual communication RCASNs. Tables 3 and 4 pre-
sent the number of communication ties between members playing the same and
distinct roles, respectively. Cells indicated no communication as ‘NA’ since there is
only one member playing the respective role. Blank cells indicate a role not
assigned to the project. Given the low instances of emergent communication, we do
not show emergent communication in these tables.

Table 3. Communication within-roles

Table 4. Communication cross-roles

138 I. Inayat et al.

Most of the interactions took place cross-roles (n = 444 for Iteration 1 and n = 413
for Iteration 2). A closer look on within-roles data (Table 2) reveals that most of this
communication is between pairs of developers and that their communication has
increased by 9% in Iteration 2 (n = 256) in comparison to Iteration 1 (n = 235).

Least communication among same roles is between Testers for both iterations.
Technical Architects (Arch) also communicated among themselves.

The communication ties cross-roles (Table 3) decreased in Iteration 2 (= 413) by
7% as compared to Iteration 1 (n = 444). For Iteration 1, Dev is the role who interacted
the most with others (n = 312) and UX is the role who less interacted with teammates
(n = 24) across the four projects. Interestingly, the number of communication ties with
PM is very high (n = 249/444, 56%) if we take into account that each project had only
one PM. For Iteration 2, although with smaller numbers, the patterns repeat themselves.
Dev is the role who most interacted with others (n = 300) and UX is the role who less
interacted with teammates (n = 14) across the four projects. The number of commu-
nication with PM(s) is still quite high (n = 229/413, 55%).

(d) (RQ4) Characterization of interactions and information exchange within the
actual communication RCASNs. We further our analysis by identifying which
communication took place cross-sites and within-sites, i.e. between two members
at different locations and between two members at the same location. Out of the
total of 735 ties of communication reported for Iteration 1, 341 of them (46%) are
cross-sites and 394 (54%) are within-sites. For Iteration 2, out of the 710 ties
reported, 316 are cross-sites (44%) and again 394 (56%) are within-sites.

For the cross-sites communication in Iteration 1, we found that bugs and com-
munication of changes are the two most-often reported interactions for three of the
projects. Similarly, for Iteration 2, bugs and communication of changes are the two
most-often reported interactions for three projects.

For the within-sites communication in Iteration 1, bugs and user story clarifications
are the two most-often discussed topics for two of the projects. A similar trend is
identified for Iteration 2. Communication of changes is the next most discussed topic
for three projects.

Awareness Within the RCASNs

(a) (RQ1) Team members involved in the actual awareness RCASNs. Table 5 indicates
how many members were assigned to work in each iteration as well as reported as
being aware of others in total for all actual RCASNs of each awareness type.

Table 5. Number of members per actual awareness RCASN

Patterns of Collaboration Driven 139

Most of the teams in the actual awareness networks have more members than the
ones assigned to work per iteration, except for the team located in Malaysia for Case 1
and for Case 2, and for the team located in the Philippines for Case 4 that are about the
same size (Iteration 1 and Iteration 2).

(b) (RQ2) Emergent members in the actual awareness RCASNs. Analyzing the actual
awareness RCASNs, we found a small number of emergent members. Table 5
highlights in grey the RCASNs in which emergent members are present. These are
also non-unique members. When present, from 1 to 4 members were emergent per
network. Overall, 8% of the total reported awareness ties involve emergent
members for Iteration 1 and 6% for Iteration 2. These numbers indicate that
awareness of emergent members collaborating with the project is low. Most of the
awareness ties with emergent members were reported by the Project Managers (for
all cases). These emergent members are the Support team and Customer (for all
Cases), Executives (Case 2 and Case 3), the Management Team (Case 3 and Case
4), and Area Experts (Case 2).

(c) (RQ3) Roles involved in the actual awareness RCASNs. Tables 6 and 7 present the
number of awareness ties within- and cross-roles, respectively. The majority of the
awareness ties reported are cross-roles (n = 307 for Iteration 1 and n = 326 for
Iteration 2). A closer look in the awareness within-roles (Table 6) reveals that
developers are the ones who most-often reported being aware of peers (n = 113 for
Iteration 1 and n = 148). The amount of awareness ties reported increased in 31%
from Iteration 1 (n = 127) to Iteration 2 (n = 168).

Table 6. Awareness within-roles

Table 7. Awareness cross-roles

140 I. Inayat et al.

Similarly, Table 6 shows that the amount of ties reported cross-roles has also
increased from Iteration 1 (n = 307) to Iteration 2 (n = 326). The increase is of 6.2%.
We also found that Developer is the role more present in the reported awareness ties
(n = 215/307 for Iteration 1 and n = 235/326 for Iteration 2) while User Experience
Designer is the less present (n = 15 for Iteration 1 and n = 18 for Iteration 2). It is also
important to highlight that project managers are present in a significant number of
cross-roles ties (n = 142/307 for Iteration 1, 46%; and n = 138/326 for Iteration 2,
42%).

(d) (RQ4) Characterization of awareness found in the RCASNs. We further the
characterization of the awareness by identifying awareness of others located in the
remote site (cross-sites) and of others located in the same site (within-sites). Out of
the total of 471 ties of awareness reported for Iteration 1, 189 (39%) of them are
cross-sites and 282 (61%) are within-sites. For Iteration 2, out of the 533 ties
reported, 230 (43%) are cross-sites and 303 (57%) are within-sites.

Awareness ties have increased 13% in iteration 2. For the cross-sites awareness, we
found that Availability and General awareness are the two most-often reported
awareness types for Case 1 to Case 3 in iteration 1. No type of awareness stands out in
Case 4. However, for Case 4 Work status awareness is the most cited by the partici-
pants. For the within-sites awareness for Iteration 1, Availability and General aware-
ness are also the two most-often reported awareness types for Case 2 and Case 4.

4.2 The Interplay Between Distance, Communication, and Awareness

(RQ5) Relationship between distance, communication, and awareness. We performed
multiple correlation tests between distance and the factors of communication frequency
and types of awareness, namely Availability, General awareness, Current awareness,
and Work status awareness. For the factor distance, we coded pairs of people as
‘collocated’ if they were both working in the same country, and as ‘remote’ if they
were working in different countries. The correlation is calculated using QAP (quadratic
assignment procedure). Because network data is not independently measured, tradi-
tional parametric correlation methods cannot be used. Table 8 provides the results of
the QAP correlation tests for each project and per iteration. We can observe that there is

Table 8. Relationship between distance, communication frequency, and types of awareness

Patterns of Collaboration Driven 141

no pattern across all four projects; however, Case 3 indicates an influence of distance in
communication and all types of awareness, except Availability.

For Iteration 1, for Case 3 and Case 4, we found a significant decline of Com-
munication frequency over distance (r = 0.432, r = 0.315 and p < 0.05) and General
awareness over distance (r = 0.613, r = 0.336 and p < 0.05), meaning that the com-
munication with the remote colleagues was less frequent then with the local ones, and
those team members are less familiar with the professional background of their remote
colleagues than with the local ones respectively. There is also a significant decline of
Current awareness for Case 1 and Case 3 (r = 0.233, r = 0.476 and p < 0.05) over
distance, indicating that team members are less aware of the set of tasks the remote
colleagues are working on than the ones the local colleagues are assigned to. Work
status awareness has a significant decline over distance (r = 0.476, p < 0.05) for Case 3
only. This indicates that, for this case, team members were less aware of the current
work progress of remote members than of the local ones.

Table 8 shows a similar trend for Iteration 2, except that Communication frequency
declines over distance for Case 1 and Case 3, and General awareness declines for Case
3 only. In addition, Availability has a significant decline over distance for Case 4
(r = 0.289, p < 0.05), meaning that remote team members are more difficult to reach
than the local ones.

(2) (RQ6) Relationship between communication and awareness. Table 9 shows the
QAP correlation between the communication frequency factor and awareness. For
Iteration 1, we found a significant decline of Availability (r = 0.235, r = 0.444 and
p < 0.05), Current awareness (r = 0.420, 0.377 and p < 0.05), and Work status
awareness (r = 0.330, r = 0.241 and p < 0.05) for Case 1 and Case 4 when frequency
of communication was lower. This indicates that people were more likely to com-
municate with someone who they were aware of. We also found a significant decline of
General awareness when communication frequency was lower for Case 1, Case 3, and
Case 4 (r = 0.308, r = 0.363, r = 0.377 and p < 0.05), indicating that people were
more likely to communicate with those who they know can help in the work. Iteration 2
yields similar results. However, General awareness declines for Case 3 and 4 only, and
Work status for Case 1 and Case 3.

Table 9. Relationship between communication frequency and types of awareness

142 I. Inayat et al.

5 Discussion

Our findings yielded seven main patterns in RDC. We discuss them here.

5.1 Team Members Involvement Was Different Than Assigned

We found that team size for the communication networks were slightly smaller than the
size of the assigned teams in Iteration 1 and Iteration 2. Considering the fact that agile
teams are self-organizing and have the ability and authority to take decisions and
readily adapt to changing demands through constant feedback in short cycles, we found
that people get involved with a user story when they feel they have the expertise to
help. Our finding show that mostly self-assigned team members collaborated on a user
story. This is in contrast to Damian et al. [12]’s finding that the communication
requirements-centric social networks are larger than planned, having about one-third
emergent members. The difference of nature between self-organizing agile teams and
traditional software development teams in which members strictly play allocated roles
is the reason behind this. The on-demand involvement of emergent members in the
team helps the team to get through the hurdles smoothly rather than getting stuck on a
certain point leading to delays and failures.

On the other hand, we found that awareness networks were slightly bigger than
assigned in both iterations. This is justified by the fact that assigned members reported
to be aware of how easy emergent members were to be reached (Availability) and how
their skills could help with the project (General awareness). The fact that they did not
report to be aware of what emergent members were doing (Current awareness) and
their current work status (Work status awareness) suggests that they only contacted
these members to seek for help and not to get them involved in the work to be done.

5.2 Agile Teams are Self-contained

On the basis of the small number of emergent interactions encountered in the com-
munication networks (4.4% of the total interactions in Iteration 1 and 2.4% in Iteration
2), we can say that agile teams are self-contained and no knowledge needs to be sought
from outside the team. It can be considered that the communication with emergent
members decreased to about half in Iteration 2. This finding suggests that gathering
information from outsider members, when applicable, is more necessary at the start of
the project. This is supported by the emergent members roles contacted, namely: the
Support team, the Management team, Customers Area Experts, and Executives.

This finding contrasts the organic patterns of traditional teams found by Damian
et al. [12]. Our current investigation suggests that the collaborative way of agile teams
promotes knowledge to be more easily transferred among team members and reduces
the need for collaboration with former members. We also found that the amount of
awareness ties reported with emergent members was small (8% of the ties in Iteration 1
and 6% in Iteration 2), suggesting that the assigned team members were not aware of
the emergent members, contrary to Damian et al.’s findings [12].

Patterns of Collaboration Driven 143

5.3 Project Managers are Key Players in Communication

Although we found that developers communicated the most with other roles for all
projects in both iterations, the high number of cross-roles ties reported involving PM(s)
(56% in Iteration 1 and 55% in Iteration 2) was surprising. In the awareness networks,
the number of ties involving this role represents 46% and 42% of the total cross-roles
ties. In Scrum, Scrum Master and the Coach roles are the replacement of traditional
PM. These roles aim to mentor the team in how to adopt agile practices and how to
solve overall issues related to the project. Although called ‘project managers’, they
acted as mentors for their teams. Therefore, one would expect they do not get as
involved in the project as a ‘traditional’ PM. Our findings suggest that PM(s) are still
key players distributing information to others and being aware of others, and are
essential to the development of the project requirements. Our findings corroborate the
results of Ehrlich and Cataldo [13] that state the central role of technical leaders in agile
teams communication networks confirming the fact that some roles can be central even
in self-organizing and cross functional agile teams.

5.4 Distance Does not (Seem to) Matter

We found that over 40% of the total communication ties reported for both iterations
(46% in Iteration 1 and 44% in Iteration 2) are between cross-sites. Similarly, about
40% of awareness ties (39% in Iteration 1 and 43% in Iteration 2) are also cross-sites.
These findings suggest that distance seem to not matter for agile distributed teams,
corroborating recent literature on the topic (e.g., [14]). This high presence of interac-
tions with and awareness of remote members might be explained by the teams’ daily
routines. All teams had daily stand up meetings to synchronize information and pro-
gress. Case 2 was an exception due to the large time difference (11 h) as compared to
the others. Therefore, they used to send e-mails at the end of the working day and once
a week meet after hours through Skype. Other team members interacted through Skype
whenever it was necessary simulating collocation. Although not conclusive, our cor-
relation test of the distance factor over communication and awareness supports this
finding to a certain extent. About 40% of the networks showed a significant influence
of distance, replicating Damian et al. [4] finding that distance is not an issue for
development teams despite the approach they are following contrary to Bjarnason and
Sharp’s [8] findings which state that distance impacts requirements communication and
project coordination.

5.5 Bugs Discussion, Communication of Changes, and User Story
Clarification as the Most Discussed Topics

These are the most-often discussed topics among the team members, cross- and
within-sites. Two important characteristics of agile methods are the proximity with the
customer, who allows for detailed clarifications of what needs to be implemented and
delivered; and constant changes, that allows for on-the-fly adjustments of what the
customer considers relevant for the product. Our findings support such characteristics.

144 I. Inayat et al.

As any agile team, the dynamics of the observed teams consisted of defining a product
backlog for certain iteration and then starting the detailed user story clarification process.
Clarifications were requested as the code evolved and verification of the specifications
was done through integrated tests. Bugs identified in these tests were immediately
discussed and fixed as opposed to the traditional development life cycle. Changes
resulting from clarification requests or directly from the customer were constantly
observed, thus justifying this as the most-discussed topic. The clarifying-
changing-fixing cycle imposed by agile methods was indeed in place ensuring the
quality of the product to be delivered. Interestingly, Damian et al. [4] also found that
communication of changes was the most discussed topic. This reinforces anecdotal
knowledge that requirements are by nature volatile. Agile methods better tackle their
constant changes.

5.6 Familiarity from Past Projects Facilitates Awareness

Most of the team members have worked together in previous releases of the product,
being familiar with each other. Such familiarity suggests influencing how easy team
members perceive others to be reachable and how much they believe their colleagues
skills can help with the project. Availability and general awareness are the two type of
awareness that are important to support expertise seeking and task completion [11].
This finding highlights the importance of familiarity to information seeking and cor-
roborates previous literature findings [12].

5.7 Communication is Still an Important Source of Awareness

Our QAP results for the correlation of communication frequency and awareness show a
trend of influence of one over another, corroborating previous findings that commu-
nication is still an important source of awareness [4, 11] despite recent advances in
project management tool support. Collocated agile teams use face to face communi-
cation and daily status meetings to constantly share what is going on in the project. Our
findings show that distributed agile teams also follow these practices despite the
physical distance and potential communication barriers it imposes. Moreover, our
finding also suggests that team members communicate more with those they are more
aware of, partially supporting the earlier finding that team members communicate more
with those they knew who could help [12].

6 Limitations of the Study

We are sensitive to the fact that the data to build the RCASNs, was self-reported.
However, we took actions to minimize the impact of self-reported data. First, we
deployed the questionnaire at the end of each iteration. We also followed-up on missing
questions as the questionnaires were filled out reducing the effort the participant had to
make to provide clarifications. Second, we triangulated data through interviews in order
to learn how participants perceived their collaboration with others in the team.

Patterns of Collaboration Driven 145

Interviews were transcribed and further analyzed in comparison to the questionnaire
responses.

Social networks are dynamic. Therefore, we designed a longitudinal study with two
distinct data collection points to construct the RCASNs and observe their behavior over
time that indicates the stability of our findings. However, by contrasting two iterations
we have valuable indications of changes on collaboration patterns and have overcome
one of the main limitations of Damian et al.’s previous work.

Generalizability of findings is another concern of software engineering empirical
studies. Our multiple case study increased the likelihood of having results that represent
a large sample of the population. This fact in conjunction with the longitudinal study
contributes to a broader contribution than typically seen in software engineering
empirical studies. However, interpretations of the findings could have been supported
by rich details used to support the arguments made in terms of numbers.

7 Implications for Research and Practice

Managers can invest in having well defined infrastructure in place to allow team
members to contact their remote colleagues and practices to allow everyone to know
how to work to achieve similar situations.

Our findings also suggest topics for future academic investigation. Our current
study indicates that distance does not seem to matter, despite the apparent contradiction
between communication frequency and distance. However, the correlation results
between distance, communication, and awareness factors are inconclusive when
looking across the four projects. It would be interesting to investigate other projects
with similar or larger distribution configurations to learn whether our findings hold.

We also found that project managers are still key players in agile teams. Although
the members playing this role acted as mentors, it would be interesting to expand
investigation of this role ideally by collecting self-reported data on how team perceives
the mentors (e.g., Scrum Masters, Coaches) to develop and manage user stories.

8 Final Considerations

Requirements management is a complex activity involving collaboration. Require-
ments documentation or structured processes in the more traditional, non-agile
development teams facilitate further requirements knowledge management. In contrast,
agile teams rely on ad hoc communication and dynamic patterns of knowledge sharing.
In this paper we identified some collaboration patterns of requirements-centric agile
teams in four multinational companies located in distinct parts of the world. Our seven
major patterns of collaboration refer to which roles communicate, as well as which
topics predominate in the requirements-centered discussions, and which factors con-
tribute to awareness in the distributed teams. Some of our findings corroborate patterns
of traditional teams as found in previous related work or are more specific of agile
teams.

146 I. Inayat et al.

Our empirical investigation also yields future research work and implications for
practice. Although this is a multiple case study, generalization of our findings has to be
considered with caution especially while considering other configurations such as
larger team members’ distribution and larger number of user stories per iteration.

References

1. Cao, L.C.L., Ramesh, B.: Agile requirements engineering practices: an empirical study.
IEEE Softw. 25(1), 60–67 (2008)

2. Martakis, A., Daneva, M.: Handling requirements dependencies in agile projects: a focus
group with agile software development practitioners. In: International Conference on
Research Challenges in Information Science, Paris, France, pp. 1–11. IEEE (2013)

3. Damian, D., Izquierdo, L., Singer, J.: Awareness in the wild: why communication
breakdowns occur. In: International Conference on Global Software Engineering, New
Delhi, India, pp. 81–90 (2007)

4. Damian, D., Kwan, I., Marczak, S.: Requirements-driven collaboration: leveraging the
invisible relationships between requirements and people. In: Mistrík, I., Grundy, J., Hoek,
A., Whitehead, J. (eds.) Collaborative Software Engineering, pp. 57–76. Springer,
Heidelberg (2010)

5. Damian, D., Marczak, S., Kwan, I.: Collaboration patterns and the impact of distance on
awareness in requirements-centred social networks. In: International Requirements Engi-
neering Conference, New Delhi, India, pp. 59–68. IEEE (2007)

6. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile
practices on communication in software development. Empirical Softw. Eng. 13(3), 303–337
(2008)

7. Cataldo, M., Ehrlich, K.: The Impact of the Structure of Communication Patterns in Global
Software Development: An Empirical Analysis of a Project Using Agile Methods, pp. 1–17.
IRS, Carnegie Mellon University, Pittsburgh (2011)

8. Bjarnason, E., Sharp, H.: The role of distances in requirements communication: a case study.
Requirements Eng. (2015)

9. Marczak, S., Damian, D.: How interaction between roles shapes the communication structure
in RDC. In: 19th International Conference on Requirements Engineering, Trento, Itlay,
pp. 47–56. IEEE (2011)

10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6),
440–442 (1998)

11. Inayat, I., Marczak, S., Salim, S.S.: Studying relevant socio-technical aspects of
requirements-driven collaboration in agile teams. In: International Workshop on Empirical
Requirements Engineering, in Conjunction with International Requirements Engineering
Conference, Rio de Janeiro, Brazil. IEEE (2013)

12. Ehrlich, K., Chang, K.: Leveraging expertise in global software teams: going outside
boundaries. In: International Conference on Global Software Engineering, Florianópolis,
Brazil, pp. 149–158. IEEE (2006)

13. Ehrlich, K., Cataldo, M.: The communication patterns of technical leaders: impact on
product development team performance. In: International Conference on Computer
Supported Cooperative Work, Baltimore, USA, pp. 733–744 (2014)

14. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile practices reduce
distance in global software development. Inf. Syst. Manag. 23(3), 7–18 (2006)

Patterns of Collaboration Driven 147

Common Mistakes of Student Analysts
in Requirements Elicitation Interviews

Beatrice Donati1, Alessio Ferrari2(B), Paola Spoletini3, and Stefania Gnesi2

1 University of Florence, DILEF, Florence, Italy
beatrice.donati@unifi.it

2 CNR-ISTI, Pisa, Italy
{alessio.ferrari,stefania.gnesi}@isti.cnr.it
3 Kennesaw State University, Marietta, GA, USA

pspoleti@kennesaw.edu

Abstract. Context and Motivation: Customer-analyst interviews are
among the most common techniques for eliciting requirements. How-
ever, students of computer science-related disciplines have little mate-
rial and time for learning how to perform an effective interview. As a
result, once out of the class, the effectiveness of analysts in interview-
ing highly depends on their experience. Question/problem: Since learning
from failures is recognised as a wise strategy for professional improve-
ment, this work aims at identifying communication mistakes of student
requirements analysts. Principal idea/results: We conducted a case study
involving 36 students to which we gave a typical introduction to require-
ments elicitation interviews. Then, we arranged and recorded 18 elici-
tation interviews involving the students. The interview recordings were
analysed by interview experts. The experts produced a list of 9 main
communication mistakes, which we report in this paper. Contribution:
This is the first work that provides a concise list of mistakes of student
analysts, with corrective recommendations and examples. It can be useful
for instructors of software engineering courses, as well as for practition-
ers, who may commit the same mistakes of the students without being
aware of it.

Keywords: Requirements elicitation · Interviews · Student analysts ·
Requirements engineering education · Communication mistakes · Role
playing

1 Introduction

Real-world software development projects often start with an interview between
a customer and a requirements analyst [1,14]. Interviews are indeed recognised
as one of the most effective means to capture requirements, and to transfer
system-relevant knowledge between customer and analyst [8,9,15,29]. Most of
the works on requirements elicitation have studied the effect of specific vari-
ables on the success of interviews and similar techniques (e.g., focus groups,
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 148–164, 2017.
DOI: 10.1007/978-3-319-54045-0 11

Common Mistakes of Student Analysts 149

workshops [33]). In particular, the influence of domain knowledge [3,14,17], and
cognitive strategies [21] were evaluated, as well as the combination of other indi-
vidual factors, such as the expressive ability of the customer, and the absorp-
tive capacity of the analyst [10]. Overall, analyst’s communication talent and
skills are considered among the major factors influencing the success of an inter-
view [14,33].

While talent cannot be taught, skills can be acquired, and learning how to
perform an effective interview is one of the primary objectives of requirements
engineering courses [34]. When teaching requirements elicitation interviews to
students that, one day, may become professional analysts, it is important to
provide guidelines on how to conduct an interview [22,23], but it is also advisable
to allow them to learn from their mistakes [4]. By doing so, students can build
their skills on the solid ground of their personal failures. In this sense, existing
research in the field of Requirements Engineering Education (REE) [19] have
shown that role playing is an effective pedagogical approach to enable students
to learn from experience [24,30,34]. With role playing, students are required to
play the role of analysts – and of customers, in case role reversal is applied [34]
– in a simulated interview. However, understanding personal errors in a fictional
setting is not easy, since the consequences of mistakes are less tangible than in
the real world. For example, Zowghi and Paryani [34] employed tutors to monitor
requirements elicitation activities and provide corrective advice to students, but
this is not always possible due to limitations of resources [12]. Hence, having a list
of communication mistakes committed by other students might allow budding
analysts to monitor themselves, leveraging other people’s failures.

This paper aims to contribute to the field of REE with a list of communi-
cation mistakes of student analysts. Since this is the first work that addresses
this goal, we considered suitable to perform an exploratory case study, in which
expert opinion was used to identify the mistakes. A set of 18 customer-analyst
unstructured interviews were performed at Kennesaw State University (KSU)
involving undergraduate students of the User Centered Design course. Analysts
and customers were both played by students. To identify the mistakes of stu-
dent analysts, interviews were tape recorded, and three experts independently
reviewed them and produced a list of mistakes, together with representative
examples. This paper presents the list of mistakes produced, and some recom-
mendations to avoid them. Although coming from a case study conducted on a
specific university course, with the limitations entailed by this restricted context,
we believe that our experience can provide a useful baseline for future research,
as well as a handy reference for practitioners and teachers.

Related Work. As noted by Aranda et al. [3], although interviews are widely
used for requirements elicitation, little empirical research has been performed
on the topic. Besides the mentioned studies that focus on the impact of specific
variables on the success of interviews [3,10,14,17,21], some works exist that are
specifically oriented to improve communication in interviews. For example, Pitts
and Browne [22] show that using procedural prompts that stimulate cognition,

150 B. Donati et al.

instead of interrogatories ones, lead to more successful interviews. Shuraida and
Barki [28] show that analysts that encourage the use of concrete examples are
more likely to produce satisfactory requirements. From a practitioner’s perspec-
tive, Portugal [23] provides a textbook with general guidelines on how to conduct
interviews. Concerning related studies in REE, existing works (e.g., [24,30,34])
are mainly oriented to analyse the pedagogical effectiveness of role playing strate-
gies. To our knowledge, none of the studies focuses on identifying communication
mistakes of student analysts during role playing.

The remainder of the paper is structured as follows. Section 2 summarises
the methodology followed. Section 3 lists the mistakes. Section 4 discusses the
limitations of our work. Section 5 outlines conclusions and future work.

2 Methodology

A set of 38 students was recruited from Kennesaw State University (KSU). The
recruited sample belonged to the User Centered Design course, composed of
undergraduate students of the third and fourth year. The students were divided
into 2 groups, namely analysts and customers. The customers were required
to think about a novel computer intensive system that they would like to be
developed, and were given a week to think about the product. The analysts were
first asked their degree of experience in conducting interviews (on a 5-points
Likert scale, 33.3% declared to have no or low experience, 22.2% moderately low
experience, 33.3% average, 11.2% moderately high, 0% high). Then, the analysts
were provided with a two hour lecture on requirements elicitation interviews
delivered by the third author, in which they received an introduction on different
types of interviews and general guidelines on how to conduct each of the main
types. The class uses a reference book [27] and additional lecture notes. The
interviews took place simultaneously at KSU, and the time slot allocated for the
interviews was 20 min. The students conducted unstructured interviews. Indeed,
to the best of our knowledge, structured and semi-structured interviews were not
appropriate in this context, where the analyst is exploring for the first time the
idea for new products for which he/she has no previous background information.

The analysts were required to record the audio of their interviews, but not the
video. This choice is motivated by the assumption that most of the requirements-
related information is conveyed through speech. Inspection of behavioural and
gesture aspects would have required a more complex analysis, which would have
been overwhelming at this stage of the work. The output of the interviews was a
set of 19 interview recordings, one of which resulted corrupted. Hence, 18 record-
ings were available for review. Brief summaries of the products discussed along
the interviews, together with their duration, are reported in Table 1 (interviews
will be referred in the rest of the paper as I-<ID>).

The recordings were independently reviewed by the first three authors – one
professional analyst (1st author), one researcher in requirements elicitation (2nd

author), and the students’ instructor (3rd author) –, which are here referred as
experts, who had two weeks to listen to the recordings. Each expert was required

Common Mistakes of Student Analysts 151

Table 1. List of Interviews

ID Title Summary Time

1 Ubiquitous multi-player

video game

Multi-player video game with associated mobile

application to monitor the status of the characters

00:21:04

2 3D file manager 3D holographic visualisation and navigation mechanism to

explore files

00:23:30

3 Timed SMS sender Mobile application to send SMS at a specific date and

time

00:12:57

4 Topic aggregator for

University newsletter

Mobile application to aggregate by topic the information

received from the university newsletter

00:14:22

5 Personal Video

aggregator

Mobile application to aggregate the videos watched by the

user in different websites

00:09:58

6 Soccer gambling

recommender

Mobile application that provides information about soccer

players to support gambling

00:20:55

7 Expriration dates

tracker

Mobile application to keep track of the expiration dates of

the grocery products purchased by the user

00:13:00

8 Multi-ball puzzle game Mobile game with multi-color balls that should go into

holes of their color based on obstacles set by the user

00:13:50

9 Live translator Device with associated mobile application to translate

conversations between two speakers of different languages

00:17:34

10 Diet tracker Mobile application that keeps track of the user’s diet

considering the nutrition facts of the food

00:10:08

11 School-branded tablet Tablet device with educational ebooks specific for a

certain school

00:07:36

12 Travellers’ network Social network specific for travellers 00:17:20

13 Campus navigator Mobile application embedding a GPS navigator

specialised for navigating on a University campus

00:18:14

14 Survival video game Survival video game with focus on crafting 00:13:47

15 Smart pen Pen with different inks and a LCD screen to monitor the

status of inks and battery

00:10:50

16 Date counter Mobile application that given a date D1 and a number of

days N computes the date D2 which is N days after D1.

00:16:44

17 Student’s club app Mobile application to estimate the participation of

students to the activities of a student’s club.

00:11:24

18 Digital shopping list Mobile application to share a shopping list between

people living in the same house.

00:07:29

Total 04:20:42

Average 00:14:29

to provide a list of relevant mistakes of the analysts. For each mistake, the experts
were required to provide representative examples, and possible recommendations
to the students. The experts were not provided with a predefined explicit model
of a good interview, but they used as model their personal, yet diverse, expe-
rience. After this phase, the experts discussed in a three hours workshop the
identified mistakes, and came out with an homogeneous list. An experienced
professor (4th author) reviewed the mistakes, to check that the judgment of the
experts was reasonably tolerant, considering the context of the interviews.

152 B. Donati et al.

3 Mistakes

This section discusses the mistakes identified by the experts, referring examples
from the interviews. Part of the mistakes are errors of commission, for which we
can present speech fragments that show the incorrect behaviour, while others are
errors of omission. In these second cases, we present virtuous examples on how
some of our analysts were able to overcome the difficulties of their colleagues. In
the following, speech fragments marked with (A) are uttered by analysts, and
those marked with (C) belong to customers.

3.1 Wrong Opening

In the entire set of our recordings, analysts start the interview with the sentence
Tell me about your idea, or other expressions with analogous meaning, without
giving any guideline for the customer for structuring his/her discourse. As a
consequence, except in those cases in which the customer is sensitive enough
to start by providing some context for his/her idea, the first sentences of the
customer describes the product that he/she has in mind, normally at a quite
general level. Without a context, these abstract descriptions appear confusing,
or apparently obvious, until the conversation reaches a point in which they start
to make sense.

Example 3.1. One interesting example is the first sentence of the customer in
I-16: (C) My idea is a simple day counter, counts the days between, I don’t know,
one day and a future date. The analyst rephrased: (A) So you input a date in the
software, and then it counts the days from today? At this point, understanding
that his idea was unclear, the customer started to provide some motivation:
(C) I come from background of UPS sales, and in the sales department of UPS,
insurance is done in 45 day increments, and currently this requires UPS sales
persons to pretty much know what is 45 days from any day, and involves a lot
of back-of-the-hand calculations [...], we would like to automate that process.
The analyst asked further clarifications about the insurance process, and the
customer said: (C) UPS is the United Parcel Service, and there are two sites of
that, there is delivering packages, and there is insuring a package against any
damages [...], every bit of the insurance is done out in 45 days increments, [...]
currently an insurance person has to pull out their calendar and count ahead 45
days [to schedule insurance subscriptions]. In this example, the customer started
from the requirements of the system (i.e., counting days), then explained the goal
(i.e., automate the process), and finally described the context (i.e., how the UPS
package insurance system currently works). Only after these further descriptions,
it was clear that the requirement that the customer had in mind actually was:
Given a date D1 and a number of days N, the system shall compute the date D2
that is N days after D1. It is worth noticing that this requirement did not match
with the initial requirement understood by the analyst.

To prevent situations like the one exemplified, in which the idea of the
customer remains unclear for large part of the interview, the customer should
have structured his discourse starting from a description of the context and an

Common Mistakes of Student Analysts 153

explanation of the goal, before stating the requirement. In general, to trigger
such abstract-to-detailed explanations, the analyst should start by saying: First
tell me how are the things now, without the system that you have in mind, and
then explain me how things would change with your system. This incipit is in line
with the recommendations of Pitts and Browne [22] for prompting customer’s
reasoning, and can help the analyst in understanding the system-as-is, and the
domain aspects connected to it, before starting to speak about the system-to-be.

3.2 Ambiguity Not Leveraged

As highlighted in our previous work [11], the detection of ambiguity in the cus-
tomer’s words can be a powerful tool to identify tacit knowledge, i.e., system-
relevant information that is known to the customer and unknown to the ana-
lyst [13]. Indeed, the occurrence of an ambiguity might reveal the presence of
unexpressed, system-relevant knowledge that needs to be elicited. Ambiguity can
be perceived by the analyst in various forms, and the most frequent in interviews
are interpretation unclarity, i.e., when the analyst cannot give any interpretation
to the words of the customer, and acceptance unclarity, i.e., when the analyst
can give an interpretation to what s/he hears, but such interpretation appears
inconsistent or insufficient with respect to his/her view of the problem [11]. In
our interviews, student analysts appear too passive and often accept what the
customer says without asking clarifications, even though the words of the cus-
tomer are evidently unclear or contradictory. In other terms, they do not leverage
ambiguity to disclose tacit knowledge. This general weakness can be detected in
almost all the interviews. Here we provide two examples.

Example 3.2. In I-5, the customer wishes to develop a video aggregator for
anime series. The typical anime series spectator follows several series at the
same time. Multiple Websites are available that provide these series, and it is
complex for the spectator to keep track of the number of episode of each series
that he/she is watching. The software required by the customer is expected to
keep track of watched and not watched episodes of each series that a user is
following. In addition, the software should aggregate in the same user interface
the videos of the episodes coming from different Websites. The analyst tries to
propose a main page for the application: (A) So it records exactly each site you
are watching each one on, and it bring you a link to go to the Website. The
customer replies: (C) No it is more on the line of...where you just put down like
what anime like...it could do that, but I was more thinking on the line of putting
what anime you are watching from each website kind like under-tabs. This answer
is very confusing – as listeners, we perceived an interpretation unclarity – and
does not clarify the customer’s idea. It excludes the possibility of having a link
to an external Website, but it does not specify how to reach the anime episodes.
However, the analyst does not ask any further question to clarify this point.

Example 3.3. In I-9, the customer wants a mobile application with associated
hear device to translate conversations between two speakers in face-to-face con-
versations. She is explaining that the system allows her to write a sentence on

154 B. Donati et al.

a mobile application, and this application translates the sentence in a desired
language. She says: (C) It [the application] will send it [the translated sentence]
back to the hear device, and it [the hear device] will tell in French, slowly, and
so you can like...communicate. If the analyst did not have a passive attitude,
he probably would have perceived and revealed an acceptance unclarity, and
would have asked why the application should repeat the sentence to the user,
instead of repeating it directly to the interlocutor. Probably this hides the goal
of learning a new language through the application (implicit goals are discussed
in Sect. 3.3), but this goal was never explicitly mentioned.

Even when our analysts ask specific questions to discuss some unclear points,
the customer sometimes misunderstands their questions. In these cases, the pas-
sive attitude of our analysts emerges again, since they do not try to rephrase
their questions, as in the following example.

Example 3.4. In I-12, the customer wants to create a social network dedicated
to those travelers interested in nature and wilderness, and, among other features,
he requires users to register to his platform. The analyst is not convinced of
the necessity of a login mechanism. The fact that the analyst is reluctant to
accept this feature is probably a sign of some sort of misunderstanding. The
analyst asks: (A) You want to make it exclusive, only to users who login. Can
you explain more about the reasons why people need to login? (C) Look, I’m a
traveller, a tourist or a naturalistic enthusiast who want to see animals in the
wild. [...] If I want to see a polar bear I have to know that polar bears are not
something that you can find everywhere in the word, you can find it only in the
southern part of the globe [...] and it is the kind of information you find in the
system. The customer clearly misunderstood the question. Instead of solving the
misunderstanding, the analyst decides to let the customer talk. This might be
motivated by the fact that the customer explanation allowed him to partially
answer to his doubt. However, making the reason for logging in more explicit
would have guaranteed that no actual misunderstanding was tacitly occurring.

Overall, our analysts might have thought that interrupting the customer
while s/he is talking could be perceived as a disrespectful behavior. Although
we encourage analysts’ courtesy, it is also important for them to take note of
ambiguities, let the customer finish his/her discourse, and then resolve these
miscommunication events.

3.3 Implicit Goals

In early interviews, identifying goals, i.e., high-level objectives to be satisfied
with the development of the system, is crucial [18]. Our analysts appeared to
find difficult the process of supporting customers in articulating their goals, and,
in several cases, goals remained implicit, as in the following example.

Example 3.5. The first sentence expressed by the customer in I-11 was: (C)
The product I would like to discuss is a sort of a combination, I would say,
between hardware and software, a kind of electronic book, instead of paper book,

Common Mistakes of Student Analysts 155

that high schools could use for students. The analyst asked: (A) Like a Kindle?
The customer started explaining that the product was more similar to a tablet,
with editing capabilities, but after five minutes of interview (the interview lasted
about seven minutes), the analyst asked again: (A) What makes this product dif-
ferent from Kindle? After some discussion, the customer said that he wanted to
develop a new paradigm for educational textbooks, in which a school rents a set
of tablets for its students. These tablets have restricted features oriented solely
to download the educational textbooks selected by the school. Even after these
explanations, the actual goal of the product remained unclear. As listeners, we
could think that the goal could be (a) to reduce the expenses for students, since
the school could purchase e-books on behalf of the students at a more convenient
price; or (b) to facilitate reuse of e-books across different years. However, none
of these goals was explicitly stated.

Situations in which goals are not explicitly stated can be prevented by asking
questions such as the one recommended in Sect. 3.1, in which the customer is
guided to describe the system-as-is and its problems, whose solutions can be
regarded as goals for the system. However, as also noticed by Bubenko et al. [5]
and by Anton [2], customers are not necessarily acquainted with goal-oriented
reasoning, and it is preferable for the analyst to explicitly suggest clear goals,
and ask confirmation to the customer. In the example above, the analyst should
have asked, e.g.: So, the objective of your system would be to reduce students
expenses or to facilitate reuse of books across the years?

The next example is also interesting in terms of goals that remained implicit,
since the analyst appeared to take an effort to understand the goal, but – from
our point of view – without success.

Example 3.6. In I-3, the customer starts as follows: (C) The name of the app
is gonna be Text Later, and basically what it’s gonna do is, I’m gonna put a text
into a field, I’m gonna set a time, I’m gonna set the recipient, and it’s gonna
text that person at that time (A) That’s interesting, do you have a particular
user group in mind? (C) Anyone who wants to...basically the problem happens
when you want to text someone at a certain time, but then you do not remember
to text them at that time, so basically it’s just a timer that goes off, and the text
automatically goes from my phone (A) Can you think of a particular use case
for this? (C) Ok, I sleep late at night at 1 a.m., but I want to text someone
at 6 a.m., I will not wake up at 6, I just put that text in, set a timer, and it’s
good to go (A) Ok. The analyst appears to ask for a particular use case, since
the application does not seem to have a reasonable goal. The use case does not
sound realistic: why should one need to text someone at a specific time? In this
example, we do not know whether the analyst has actually understood the goal,
or if he said Ok just to close this argument and start discussing other aspects.

In cases like the one exemplified, in which the analyst has no clue of the
goal, he should have clarified that he had a doubt, and should have asked more
concrete details: The use case is not totally clear to me. Can you specify, for
example, what would you write in the text? Although arguing on customer’s

156 B. Donati et al.

goals when requirements are clear is not in the best interest of an analyst –
the application will be payed anyway – developing something without having
understood its motivation is not recommended [32], since it could lead to future
misunderstandings with the customer at subsequent development stages.

3.4 Implicit Stakeholders

Our student analysts belong to a User Centered Design course, and appear par-
ticularly active in identifying system users, asking questions such as Which is
your user base?, and Who is going to use this system? However, in all the cases,
they appear to forget to consider one question: does the project depend on the
contribution of some other entity apart from me, the customer, and the users? In
other terms, they do not take into account, or leave implicit, the other stakehold-
ers (e.g., regulators, technical experts, consultants, see [25] for an educational
reference) that should take part to the project.

Example 3.7. A representative example is I-11, already introduced in Exam-
ple 3.5. The customer wants to design a tablet that high schools can provide
to their students. What a student can do with it is strictly controlled, and the
device contains only educational material and school-related utilities. As noted
in Example 3.5, the analyst is not totally convinced of the idea, and asks: (A)
Who should pay for this? The customer hesitates, and then answers: (C) The
school would have to pay for this. Hence, in this case, the analyst was able to
highlight a key stakeholder to involve (i.e., the school representatives). However,
another relevant set of stakeholders, i.e., the companies providing educational
materials, was never mentioned, although publishing companies clearly have a
part in the feasibility of the project. In addition, hardware providers were also
never considered as part of the stakehoders.

A precise identification of all the stakeholders involved in the project is nor-
mally part of a later phase that follows the project blastoff [25]. This is an initial
meeting that gather key stakeholders, and in which other stakeholders are possi-
bly identified. Furthermore, several methods exists to identify stakeholders [20].
In a first interview, especially in a role playing setting, it is important for the
students to at least consider that other parties might have a voice in the project,
and this voice might affect its feasibility. To identify these stakeholders during
the interview, we suggest analysts to ask the customer: If this interview was a
group meeting to discuss the project, who, besides us, do you think should par-
ticipate to the meeting?

In some cases, relevant stakeholders do not necessarily need to participate
to the imaginary workshop, for example when they are providers of services,
software, or hardware. However, in our interviews, analysts seem to neglect the
possibility of introducing third-party providers in the development of the prod-
uct. A representative example in this sense is I-13, in which requirements for
a campus navigator are elicited. The core of the project requires a navigable
map of the campus. This is usually something that a generic software developer
company does not implement autonomously, but can be easily bought from spe-
cific providers. This aspect doesn’t seem to be taken into account by our analyst.

Common Mistakes of Student Analysts 157

3.5 Limitations in Terms of Resources Not Considered

In the first interview with the customer, the analyst should understand the con-
straints of the customer in terms of budget and time. Our analysts rarely dis-
cussed cost-related issues, and did not challenge the customer even when s/he
was proposing a software that was clearly beyond the monetary capabilities of
his/her customer profile. Self-explanatory examples in this sense are the com-
puter games required in I-1 and I-14, both high-budget projects for which no
question was raised about the cost. Although it is normally recommended to stay
at the goal/needs level during early interviews, we argue that having an idea of
the customer’s budget can help the analyst in providing a better guidance during
the interview, evaluating the feasibility of what is required in light of the budget.
In addition, a customer is not required to know how much the implementation
of a certain feature affects the total development effort; discussing the cost and
the opportunity of what s/he proposes forces her/him to express more precisely
if and why s/he needs a particular feature. Our analysts, however, appeared not
to be aware of the consequences in terms of cost of adding specific features to
the product. Examples in this sense are reported below.

Example 3.8. In I-18, the customer wishes to develop an electronic shopping
list to be shared between people living in the same apartment. Push notifications
(i.e., delivery of information from a server to a client, without a request from the
client) are mentioned by the customer, who says: (C) The shopping list has to be
updated each time someone adds some new item, and push notifications would
be nice. The analyst does not provide any comment to this requirement. We
know that including push notifications and shared information in a mobile app
implies at least a dedicated server, and someone to take care of it. This means a
back-end developer and some maintenance strategy. The budget, the resources
involved and the delivery date will be certainly be affected by this choice but
the analyst does not investigate further.

Example 3.9. In I-6 the customer asks for a mobile app to help him in gambling
in soccer matches. He clarifies immediately that the app is developed only for
private use on his private devices; this excludes the need of a user registration
system, and simplifies the security strategy since personal devices already have
controlled access. This aspect seems to be ignored by the analyst when he asks:
(A) Would you like to have your personal account to login? Even if the strategy
of the analyst might be to increase the complexity of the project in order to rise
more money, he should have clarified to the customer that an account registration
mechanism will affect the total amount of work. Especially since the answer of
the customer reveals, in fact, that he doesn’t strongly need it: (C) it is not a big
deal to me, but yes, it would be nice to have it.

One last comment about money estimate: the cost of the development and
the delivery deadlines have to be discussed in a second phase. The aim of the
first interview is indeed to collect all the information necessary in order to pro-
duce a cost estimate and a delivery calendar. Those are products of a feasibility

158 B. Donati et al.

evaluation phase based on the information collected in the interview. This is why
discussing resources with the customer does not mean that the analyst has to
agree on the actual cost during the interview. There is actually only one inter-
view in which money is explicitly mentioned and it is a very good example of
what an analyst should not do.

Example 3.10. In I-13 the customer asks the analyst: (C) How much the appli-
cation is going to cost? Notice that this happens at the very beginning of the
interview – minute 2:00 on an 18 min interview. What happens next is quite
instructive. The analyst provides a putative sum of 8 to 10 thousand dollars,
before terminating the requirements elicitation interview and with no idea of
the customer’s resources. The customer replies: (C) Oh that’s it? Very cheap
application! You don’t pay your developers very much at all! In this case, the
analyst should have stopped the customer after his first question, and refor-
mulate the question in the opposite direction: I can’t give you estimates at the
moment. Can you give me an idea of your maximum budget?

3.6 Non-functional Requirements Not Elicited

Non-functional requirements are qualities to be exhibited by the system, such
as usability, availability, maintainability, compatibility, security, cost, etc. [6].
As noticed, e.g., by Chung and Prado Leite [7], real-world issues are more non-
functionally oriented rather than functionally oriented. In practice, it is more
likely for a customer to complain for the cost of a product or its poor perfor-
mance, rather than about a missing functionality. Although some non-functional
requirements can be decided and evaluated only at later stages of development
(e.g., design decisions, degree of usability), many of them (e.g., OS or hardware
to be used, development time) may have an impact on early decisions, and,
as noticed, e.g., by Mylopoulos et al. [16], dealing with ignored non-functional
requirements once a system is developed is among the most expensive and diffi-
cult activities in a software project.

In our interviews, with the exception of user interface requirements and secu-
rity requirements, which were often discussed, only one of the analysts appeared
to have a clear view of the relevance of non-functional requirements at the early
stages of development, and defined appropriate questions to elicit them. The
questions are not presented in the clearest manner possible – discussion on this
aspect are reported in Sect. 3.8 – but the dialogue with the customer can give
an idea of what are the major concerns to be discussed for a mobile application
from a non-functional perspective.

Example 3.11. In I-13, the customer wants the analyst to develop a mobile
application that works as a GPS navigator for the KSU campus. After one minute
of interview, the analyst started to ask about non-functional aspects: (A) First
let’s start talking about development time (C) [...] About three months [...];
(A) What do you envision your user base to entail? (C) [...] We are targeting
students on campus, mainly first year students [...]; (A) Who do you believe will

Common Mistakes of Student Analysts 159

have access to add, or keep up maintenance with this application (C) Once it is
developed [...], I assume our team of programmers to handle updating the system
if it needs updates [...]; (A) What kind of availability we’re talking about here,
24-7? (C) The application should be available anytime, all the time, unless we
have clearly defined maintenance hours, like from 12 a.m. to 3 a.m. on Sunday,
[...] every week; (A) Now, we’re talking about Android and i-OS development,
what kind of versioning kernels are we talking here, how far back? Are we
talking a couple of years back? Are we talking about a ten years of range (C) [...]
I’d like to support at least [...] six years; (A) What kind of security measures
are we talking about, [...] obviously the most straightforward way would be: all the
students have their own login [...], or would it be totally open? (C) [...] I don’t
think we need a login system for this application; (A) What time is a decent
loading speed? (C) I don’t need to be instant but I would like the application
to load the map in 15 seconds.

3.7 Interrogatory-Like Interviews

One of the main benefit of unstructured interviews is that the questions that the
analyst asks can be based on the previous answers of the customer. To exploit
this benefit, analysts shall be able to listen to the customer, on-the-fly analyze
his/her response, and react accordingly with follow-up/clarifying questions, if
needed. Notice that it is not only important to analyze and react to a response,
but it is needed to do it on the spot, because going back and forth among
topics can be very confusing for the customer who is not guided in presenting
his/her thoughts, but is interrogated with direct questions on different topics.
Our analysts appear to find this task of making the interview a free-form, yet
logical, flow of questions and answers particularly difficult.

Example 3.12. In I-6, the customer asks for a mobile application that provides
information about soccer players and teams to support gambling. After an initial
conversation on system features, the analyst started asking: [10:31] (A) How
would you like to see the search, would you like to see more like a Facebook, where
it suggests the names of the players, or you would like to see more a database
called by a team...? (C) I would like to see a database, per team... nonono, I
think a little bit of both [...] (A) So have statistics on the league too? (C) Yeah,
yeah, absolutely [11.17 – 11.45] (A) What about new recruited members, the
same? You would like to see them? (C) If there’s no statistics, I would like for
them to be included [...] [12.04 – 12:37] (A) How about the attendance of the
stadium [...], the audience can have an influence on how the players play, so
would you like to see [...] how many people from that particular team are going
to attend the stadium? (C) Yeah, more information is useful.

In this example, features appear as a scattered list of items, while in a first
interview it is also important to have a cohesive, procedural, view of the dif-
ferent features [22]. Overall, triggering the customer to use the communication
tactics called imagining by Urquhart [31], and scenario building by Pitts and

160 B. Donati et al.

Browne [22], can provide some help. In example 3.12, the analyst should have
asked: Please, let me visualise the first page of your application, and tell me
step-by-step how should I interact with the application to select the team that I
should bet on. It is important to notice that, as recommended by Portugal [23],
the analysts should ask the customer to act as teacher, to reinforce the idea that
s/he is the expert there.

Another aspect that we noticed with this style of interview, was that the
analyst tended to run out of questions. The reader is encouraged to check the
time intervals between one question and the other in the previous example, to
convince him/herself of the effort of the analyst in inventing new questions.
In the specific example, the analyst also exclaimed: I think I asked a lot of
questions! In other cases, in which the fantasy of the analyst was less fruitful,
interviews were closed much earlier than the 20 min that were allocated for the
task. Triggering scenarios can also help in inventing questions, since, as observed,
e.g., by Rolland and Salinesi [26], scenarios expressed in the form of narratives
can disclose unexplored goals, and hence open other topics of discussion.

3.8 Problems in Phrasing Questions

An important aspect of interviews is how questions are formalized. In struc-
tured interviews, analysts prepare the questions in advance and they have time
to create clear, short and unambiguous questions. In unstructured interviews,
the questions are created on-the-spot, and this requires a prompt effort of clarity
from analysts in phrasing their questions. This effort was rarely observed in our
interviews. Often our analysts ask questions that are too direct and this makes
them difficult to be interpreted by the customers. An amusing example comes
from I-9 (Live Translator, see Example 3.3), in which the analyst suddenly asks:
(A) Does it [the system] have any attachment?, and the customer, after a long
silence, replies: (C) Can you give me another question? As analysts require a
context to understand the requirements (see Sect. 3.1), so the customer needs
some minimal background to understand analyst’s questions. In the previous
case, the analyst should have said: I understand that you want a mobile appli-
cation for translating communications. Does the mobile application require any
external device?

Sometimes our analysts also create too long or articulated questions in which
they ask for different kinds of requirements.

Example 3.13. In I-12, concerning a social network for travellers (Exam-
ple 3.4), the analyst says: (A) Could you tell me more about the kind of interface
and how would you like to distribute this kind of application, which platform?
What kind of platform? Platform and interface choices require at least two artic-
ulated answers, and asking them together overwhelms the customer, who ends
up not describing all the required information: (C) This app should be compat-
ible with all different kinds of operating systems [...]. The question about the
interface remains unanswered.

Common Mistakes of Student Analysts 161

We have also observed that our student analysts often use a computer science-
oriented terminology, which is a jargon that is not necessarily known by cus-
tomers. However, we did not observe too many miscommunication events related
to this issue, since our customers were all computer science students.

3.9 Wrong Closing

The end of interview is as important as its beginning. The majority of our
analysts closed the interview by saying I think I have a good understanding, thank
you. This good understanding needs to be assessed, and the earlier, the better.
To this end, it is important for the analyst to perform a final summary of the
interview to the customer. The role of this summary is twofold. First, it provides
an early, oral contract with the customer. Secondly, in our experience [11], a
summary can trigger novel clarifications from the customer’s side. Although
this did not happen in the few cases in which a summary was provided by our
analysts, it happened when one of our analysts decided to rephrase one of the
features required earlier in the interview.

Example 3.14. In I-5, the customer wishes to develop a video aggregator for
anime series, discussed already in Example 3.2. At minute 1:20, the customer
says: (C) You put what anime you are watching from which site, [...], you would
input yourself manually. At minute 6:50, the analyst says: (A) There’s actually
something I would like to recap on, you said that you input it manually, so
[...] you type the anime you are watching, what episode you’re on, and you go
through everything. The customer interrupts: (C) Well, that would be an issue.
After identifying this issue through the summary, the discussion goes on and
lasts for three additional minutes.

If a summary of the interview is not provided, at the end of interview the
customer is not aware of the real understanding of the analyst. Hence, if the ana-
lyst asks a generic question such as Do you have anything to add?, the customer
might find difficult to answer since he/she cannot be sure about the information
already collected by the analyst.

4 Limitations

This paper reports the results of a case study conducted intentionally in the
absence of a strong experimental scheme. At this stage, our goal was to observe
role playing interviews in their real-world context, to identify an initial set of
mistakes of student analysts, to be further consolidated with a more structured
experiment. Given that, we acknowledge a set of limitations of our work. First
of all, the limited sample, composed of students from a single course of a single
university. This limitation, and the absence of profiling, does not allow us to
evaluate the impact of aspects as culture, technical knowledge, and experience.
Another limitation is the absence of a written output for the interviews. Indeed,
the students were not required to produce a list of requirements, and hence

162 B. Donati et al.

some mistakes might have derived from them not being compelled in producing
written material, as required in other works [3,22]. Without this requirements
document, we could not check the results with the customer, a task that would
have revealed other misunderstandings and mistakes. Finally, although the expe-
rience of our experts is diverse, they are all requirements engineers, and cognitive
scientists/psychologists should be involved, to identify other types of mistakes.

5 Conclusion and Future Work

This paper presents a set of 9 mistakes of requirements analysts in requirements
elicitation interviews, identified by a panel of inflexible teachers. The identified
errors can be used by instructors to better focus their training courses, in which
our examples can be used as a practical list of don’ts for the students. Our final
aim is to provide guidance for conducting unstructured interviews, without losing
the benefit of this method, which resides in the possibility of scoping customer’s
needs following the flow of the dialogue. Our primary objective for future works
is to consolidate the findings of our case study with an appropriate experimental
design, which will take into account the limitations of the current work, and will
complete the current results with reliable quantitative data. Then, our goal will
be to better structure and validate the recommendations provided for avoiding
the mistakes. At this stage, the recommendations are partly taken from the
literature, and partly come from the authors’ experience. Hence, they require
validation with students. Another interesting perspective is to empirically study
how the students’ mistakes found differ from those made by experts.

References

1. Agarwal, R., Tanniru, M.R.: Knowledge acquisition using structured interviewing:
an empirical investigation. JMIS 7(1), 123–140 (1990)

2. Anton, A.I.: Goal-based requirements analysis. In: RE 1996, pp. 136–144. IEEE
(1996)

3. Aranda, A.M., Dieste, O., Juristo, N.: Effect of domain knowledge on elicitation
effectiveness: an internally replicated controlled experiment. TSE 42(5), 427–451
(2016)

4. Argyris, C., Schon, D.A.: Theory in Practice: Increasing Professional Effectiveness.
Jossey-Bass, Hoboken (1974)

5. Bubenko, J., Rolland, C., Loucopoulos, P., DeAntonellis, V.: Facilitating fuzzy to
formal requirements modelling. In: RE 1994, pp. 154–157. IEEE (1994)

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in
Software Engineering. Springer Science & Business Media, Berlin (2012)

7. Chung, L., Prado Leite, J.C.S.: On non-functional requirements in software engi-
neering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual
Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02463-4 19

8. Coughlan, J., Macredie, R.D.: Effective communication in requirements elicitation:
a comparison of methodologies. REJ 7(2), 47–60 (2002)

http://dx.doi.org/10.1007/978-3-642-02463-4_19

Common Mistakes of Student Analysts 163

9. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.M.: Effectiveness of
requirements elicitation techniques: empirical results derived from a systematic
review. In: RE 2006, pp. 179–188. IEEE (2006)

10. Distanont, A., Haapasalo, H., Vaananen, M., Lehto, J.: The engagement between
knowledge transfer and requirements engineering. IJKL 1(2), 131–156 (2012)

11. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in requirements
elicitation interviews. REJ 21(3), 333–355 (2016)

12. Gabrysiak, G., Giese, H., Seibel, A., Neumann, S.: Teaching requirements engineer-
ing with virtual stakeholders without software engineering knowledge. In: REET
2010, pp. 36–45. IEEE (2010)

13. Gervasi, V., Gacitua, R., Rouncefield, M., Sawyer, P., Kof, L., Ma, L., Piwek, P.,
De Roeck, A., Willis, A., Yang, H., et al.: Unpacking tacit knowledge for require-
ments engineering. In: Maalej, W., Thurimella, A.K. (eds.) Managing Requirements
Knowledge, pp. 23–47. Springer, Heidelberg (2013)

14. Hadar, I., Soffer, P., Kenzi, K.: The role of domain knowledge in requirements
elicitation via interviews: an exploratory study. REJ 19(2), 143–159 (2014)

15. Hickey, A.M., Davis, A.M.: A unified model of requirements elicitation. J. Manag.
Inf. Syst. 20(4), 65–84 (2004)

16. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. TSE 18(6), 483–497 (1992)

17. Niknafs, A., Berry, D.M.: An industrial case study of the impact of domain igno-
rance on the effectiveness of requirements idea generation during requirements
elicitation. In: RE 2013, pp. 279–283. IEEE (2013)

18. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: FOSE
2000, pp. 35–46. ACM (2000)

19. Ouhbi, S., Idri, A., Fernández-Alemán, J.L., Toval, A.: Requirements engineering
education: a systematic mapping study. REJ 20(2), 119–138 (2015)

20. Pacheco, C., Garcia, I.: A systematic literature review of stakeholder identification
methods in requirements elicitation. JSS 85(9), 2171–2181 (2012)

21. Pitts, M.G., Browne, G.J.: Stopping behavior of systems analysts during informa-
tion requirements elicitation. J. Manag. Inf. Syst. 21(1), 203–226 (2004)

22. Pitts, M.G., Browne, G.J.: Improving requirements elicitation: an empirical inves-
tigation of procedural prompts. Inf. Syst. J. 17(1), 89–110 (2007)

23. Portugal, S.: Interviewing Users: How to Uncover Compelling Details. Rosenfeld
Media, Brooklyn (2013)

24. Regev, G., Gause, D.C., Wegmann, A.: Experiential learning approach for require-
ments engineering education. REJ 14(4), 269–287 (2009)

25. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley, Boston (2012)

26. Rolland, C., Salinesi, C.: Supporting requirements elicitation through goal/scenario
coupling. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 398–416.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02463-4 21

27. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human Computer
Interaction, 4th edn. Wiley, Hoboken (2015)

28. Shuraida, S., Barki, H.: The influence of analyst communication in is projects. J.
Assoc. Inf. Syst. 14(9), 482 (2013)

29. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns.
In: RE 2013, pp. 92–104. IEEE (2013)

http://dx.doi.org/10.1007/978-3-642-02463-4_21

164 B. Donati et al.

30. Svensson, R.B., Regnell, B.: Is role playing in requirements engineering education
increasing learning outcome? REJ, 1–15 (2016). http://link.springer.com/article/
10.1007/s00766-016-0248-4

31. Urquhart, C.: Exploring analyst-client communication: using grounded theory tech-
niques to investigate interaction in informal requirements gathering. In: Lee, A.S.,
Liebenau, J., DeGross, J.I. (eds.) Information Systems and Qualitative Research,
pp. 149–181. Springer, Heidelberg (1997)

32. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social modeling for requirements
engineering: an introduction. Social Modeling for Requirements Engineering, pp.
3–10 (2011)

33. Zowghi, D., Coulin, C.: Requirements elicitation: a survey of techniques,
approaches, and tools. In: Aurum, A., Wohlin, C. (eds.) Engineering and Man-
aging Software Requirements, pp. 19–46. Springer, Heidelberg (2005)

34. Zowghi, D., Paryani, S.: Teaching requirements engineering through role playing:
lessons learnt. In: RE 2003, pp. 233–241. IEEE (2003)

http://link.springer.com/article/10.1007/s00766-016-0248-4
http://link.springer.com/article/10.1007/s00766-016-0248-4

Process and Tool Integration

How Can Quality Awareness Support Rapid
Software Development? – A Research Preview

Liliana Guzmán1(&), Marc Oriol2, Pilar Rodríguez3, Xavier Franch2,
Andreas Jedlitschka1, and Markku Oivo3

1 Fraunhofer IESE, Kaiserslautern, Germany
{liliana.guzman,

andreas.jedlitschka}@iese.fraunhofer.de
2 Universitat Politècnica de Catalunya, Barcelona, Spain

{moriol,franch}@essi.upc.edu
3 University of Oulu, Oulu, Finland

{pilar.rodriguez,markku.oivo}@oulu.fi

Abstract. Context and Motivation: Rapid software development (RSD) refers
to the organizational capability to develop, release, and learn from software in
rapid cycles without compromising its quality. To achieve RSD, it is essential to
understand and manage software quality along the software lifecycle.
Question/Problem: Despite the numerous information sources related to product
quality, there is a lack of mechanisms for supporting continuous quality man-
agement throughout the whole RSD process. Principal ideas/Results: We pro-
pose Q-Rapids, a data-driven, quality-aware RSD framework in which quality
and functional requirements are managed together. Quality requirements are
incrementally elicited and refined based on data gathered at both development
time and runtime. Project, development, and runtime data is aggregated into
quality-related indicators to support decision makers in steering future devel-
opment cycles. Contributions: Q-Rapids aims to increase software quality
through continuous data gathering and analysis, as well as continuous man-
agement of quality requirements.

Keywords: Software quality � Quality requirements � Rapid software
development

1 Introduction

Agile software development (ASD) enables organizations to adapt to business
dynamics by facilitating more flexible development through iterative methods that rely
on extensive collaboration. ASD is prevalent in the software industry [1]. A recent
evolutionary step from ASD is rapid and continuous software engineering, which refers
to the organizational capability to develop, release, and learn from software in rapid
cycles [2]. This capability is known as Rapid Software Development (RSD) [3]. RSD
combines methods, practices and principles from ASD, lean software development, and
continuous deployment to minimize time-to-market through reduced release cycles [4].

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 167–173, 2017.
DOI: 10.1007/978-3-319-54045-0_12

In RSD, faster and more frequent release cycles should not compromise software
quality. Thus, understanding and managing software quality is essential to ensure that
new releases will lead to progressive improvement. But despite the numerous sources
of information related to product quality that RSD provides (e.g., usage data), there is a
lack of methods to support continuous quality management throughout the whole RSD
process [4]. Recent empirical studies found the deficient management of quality
requirements (QRs) [5] to be the main reason for rework in RSD [1].

In this research preview, we summarize the state of the art and challenges related to
continuously managing QRs along the RSD process (Sect. 2). We also introduce
Q-Rapids as a data-driven, quality-aware RSD framework that jointly manages QRs
and functional requirements (FRs) throughout the RSD process (Sect. 3). Then we
outline the strategy selected to develop and evaluate Q-Rapids (Sect. 4). Finally, we
summarize our contributions and discuss future research (Sect. 5).

2 Challenges in Managing Quality Requirements

Quality Requirements and Their Management. QRs are a subset of non-functional
requirements that state conditions on “characteristics that make the product attractive,
usable, fast or reliable” [6]. An example of a QR is: “The system should provide an
availability of at least 98% for given time period”. Thus, optimal management of
software quality demands proper consideration of QRs in the software lifecycle.
However, QRs have not received the same degree of attention as FRs [6]. Neglecting
QRs is one of the top ten risks of requirements engineering [7], and errors in con-
sidering QRs are the most expensive and difficult to correct [8].

Another problem is the elicitation and specification of QRs. Modern approaches to
elicit QRs rely on explicit user feedback [9]. However, explicit feedback may be
incomplete, biased, or ambiguous. Implicit feedback (usage data) is a promising
alternative to elicit QRs [10]. For example, QRs related to performance can be elicited
by identifying how many users leave the system after waiting two seconds for a system
response. So, QRs regarding response time can be specified by analyzing together the
system and user behavior. Current approaches neither derive QRs automatically nor
combine usage data with other data sources (e.g., software repositories). Furthermore,
whereas FRs have clear-cut satisfaction criteria, QRs are initially elicited as “soft
goals” [8] and need to be elaborated into measurable conditions. Finally, current tools
for managing QRs do not manage them throughout the entire software lifecycle [11].

Thus, there is a need for (1) data-driven QR elicitation and specification; and
(2) data-driven understanding of the strategic impact of QRs on management and
business.

Quality Requirements in Rapid Software Development. Current RSD approaches
are mostly driven by FRs. For example, in Scrum [12] requirements are specified as
user stories stored in the product backlog. User stories are prioritized in each devel-
opment cycle from a customer value perspective. Although QRs are usually included as
acceptance criteria for user stories [13], mainly focusing on customer value when
prioritizing requirements is problematic because other important factors (e.g. security,

168 L. Guzmán et al.

performance, and scalability) tend to be underestimated [1]. More recently, mecha-
nisms such as automation, integration of R&D with operations and maintenance teams
(also referred to as DevOps), and post-deployment customer-data monitoring [4] have
been introduced to further ensure quality and quick delivery in RSD. However, using
mechanisms such as post-deployment data is not free from challenges. The growing
size of data is a challenge, and systematic approaches for collecting, analyzing, and
integrating data into the product development process are missing [14]. Moreover,
there is a lack of methods and tools for integrating, analyzing, and visualizing collected
data to make QRs transparent and support real-time decision-making on QRs [15], and
to jointly manage QRs and FRs along the RSD process [4].

We conclude that there is a need for (1) seamless integration of QRs and FRs;
(2) methods and tools for real-time monitoring of QRs; and (3) flexible, iterative, and
dynamic generation and management of QRs in RSD.

Data-Driven Quality Decision Making. As systems scale and their complexity
increases, data generated and used during the software lifecycle is becoming increas-
ingly important. Source code repositories, bug reports, and runtime logs contain a lot of
hidden information about software quality. Applying analytics to extract this infor-
mation can help decision makers to identify and monitor quality issues and to steer
development activities in order to improve the overall quality in RSD.

However, integrating software analytics research results into tools established in
practice is still challenging [17]. Regarding the analysis of historical data, Mining
Software Repositories is an important research area to uncover information about soft-
ware systems. An overview is given in [16]. Still, there are only a few reports (e.g., [23])
on the practical impact of data mining analytics on the development process. Regarding
the analysis of runtime data, several approaches exist. For example, profiling and
automated instrumentation techniques are usually used to study the runtime behavior of
software systems [18]. Such techniques impose high overhead and slow down the
execution. They also lead to a large volume of results that are impractical to interpret.
Finally, analyzing heterogeneous and time-evolving streaming data can get very com-
plex and lead to poor performance of analysis techniques. MapReduce [19], the Lambda
Architecture [20], and modern analytics like Spark can help to address this problem.

We found there is a need for (1) in-time, scalable, and efficient QR-driven data
analysis to support decision making; and (2) scalable and efficient gathering and
monitoring of heterogeneous data at development time and runtime.

3 The Q-Rapids Framework

Based on the needs identified in Sect. 2, we conclude that the software industry needs
methods and tools for handling software quality in the RSD context. To achieve this, we
propose the Q-Rapids framework (cf. Fig. 1). Q-Rapids relies on a generic data-driven,
quality-aware, rapid development process characterized by integrated management of
QRs and FRs. Q-Rapids aims to: (1) improve the software products’ quality with an
effective and seamless data gathering and analysis; (2) increase the productivity of the
software lifecycle with a seamless integration of QRs into the development process: and
(3) reduce the time to market of software products by making optimal decisions based on

How Can Quality Awareness Support Rapid Software Development? 169

strong evidence and solid experience-based decision making models. Q-Rapids also
aims to be a generic and suitable for managing different types of QRs in different
application domains and project settings. To attain these goals, Q-Rapids will be
developed in collaboration with four European companies in the domains of health,
defense, crisis management, and telecommunication. These companies develop soft-
ware products with different QRs and FRs in different project settings.

Effective and Seamless Data Gathering and Analysis Techniques. Q-Rapids will
systematically and continuously track software quality based on quality-related indi-
cators. It will combine different types of data sources to gather relevant indicators:
project management tools, software repositories, and runtime data about quality of
service and system usage by end users. This information will be selectively collected
and pre-processed, and analyzed to support different decisions makers (e.g., product
owners, developers, and testers). Q-Rapids will propose quality-critical indicators on
the basis of a product-specific quality model based on the QUAMOCO approach [21].
Such approach will enable Q-Rapids to define a generic set of QRs as well as
quality-related indicators that can be tailored according to the application domain,
product characteristics, and project context. Examples of QRs that we plan to address in
the Q-Rapids project include performance, reliability and usability.

Data gathering will be seamlessly integrated into the software lifecycle and later
system usage. Q-Rapids will integrate different data collection instruments. For
example, we plan to gather project data through a monitor of the project management,
development data through a monitor of GIT, data on the system behavior through QoS
monitors, and usage data through an event-tracking monitor. Deployment should be as
easy as providing the URLs or directories for the software project repositories and a
specification of the quality attributes that are of interest for the particular project in
order to deploy only the needed monitors. Monitoring instruments will be deployed in
different contexts considering the lifecycle phase in which they apply [22] and the
architecture type (e.g., service-based architectures or cloud deployments).

Fig. 1. The Q-Rapids framework

170 L. Guzmán et al.

Through the application of data analytics, elicited data will be analyzed, making it
possible to support the comprehension of quality issues that will steer subsequent
development activities, thus improving the overall software quality in a timely manner.
An essential part of the analysis will be to find correlations. For instance, the corre-
lation analysis between bug rate and QR types may help to understand which QR types
are more error-prone and require more effort allocation when planning releases.

Quality-Aware Rapid Software Development Process. Q-Rapids will extend the
RSD process with the comprehensive integration of QRs and FRs. Thus, we will focus
on rapid practices such as product backlogs, release planning, and sprint planning but
with seamless integration of both FRs and QRs. Our goal is to define a generic software
development process based on the principles of RSD and, therefore, being lightweight,
flexible, and adaptable to market fluctuations and customer changes, still properly
considering the management of QRs in a way that rapid releases do not have negative
repercussions on software quality. In particular, a quality-aware RSD process will be
defined including existing practices, tools, and methods to be used in rapid develop-
ment cycles and complex scenarios such as Scrum, Kanban and DevOps. The process
will be based on key characteristics of agile methods and RSD, including the man-
agement of FRs and QRs using a holistic management of product backlogs, continuous
integration, and short release cycles [1, 4, 13]. The quality-aware RSD process will
provide the means needed to elicit, derive, and manage QRs in rapid cycles by
addressing questions like “how should QRs be processed in RSD so that the result will
be high-quality products?” Q-Rapids will focus on success factors for software com-
panies and help managers to balance such issues as time to market and product quality.
It will also consider business-related constraints and domain-specific requirements and
regulations so that the framework can easily be tailored to different company’s needs.

Q-Rapids will provide a novel rapid requirements engineering approach that will
elicit QRs using a data-driven approach, followed by the implementation and assess-
ment of QRs in rapid cycles. It will provide a generic quality-aware RSD process that
can be customized based on the software company setting and their quality demands.

Quality-Aware Decision Making Dashboard. Q-Rapids will extend current tools for
measuring and analyzing software quality (e.g., SonarQubeTM) by providing decisions
makers with a highly informative dashboard to help them make data-driven strategic
decisions related to QRs in rapid cycles. The Q-Rapids dashboard will aggregate the
collected data into key strategic indicators related to, e.g., time to market, development
costs, and overall quality. It will also comprise the product and iteration backlogs that
contain the project requirements. Thus, the dashboard will help decision makers to
analyze, e.g., the impact on time to market of selecting, leaving out, or discarding a
QR. In addition, the dashboard will allow defining project-specific decision rules (e.g.,
how to handle conflicts between time and quality levels) as well as external and internal
constraints. External constraints are conditions beyond the control of decision makers,
e.g., a fixed budget. Internal constraints are development and organizational conditions
influencing decision making, e.g., a maximum number of tasks per developer per week.

The Q-Rapids dashboard will provide models and advanced capabilities to (1) an-
alyze and evaluate alternative solutions to current QR management decisions; (2) pre-
dict and analyze the impact of violations related to key strategic indicators; and

How Can Quality Awareness Support Rapid Software Development? 171

(3) suggest mitigation actions when violations are identified. The underlying rationale
of previous analyses will be transparent to decision makers.

4 Development and Evaluation of the Q-Rapids Framework

Q-Rapids will be developed as part of the H2020 European project Q-Rapids following
an iterative and incremental approach applying RSD principles. Its development will be
driven by four use cases defined in collaboration with four European companies. The
use cases were chosen to show the generalizability and suitability of Q-Rapids. They
will serve as basis for understanding how QRs are managed as well as for evaluating
Q-Rapids. The use cases cover managing QRs of single and multiple product lines in
application domains such as health, defense, crisis management and telecommunica-
tion. The use cases also vary regarding the RSD approaches been used. The Q-Rapids
development approach includes four phases: (1) requirements elicitation, (2) proof-
of-concept, (3) consolidated approach, and (4) final solution.

To assess the impact of Q-Rapids, we plan a formative and summative evaluation.
The outcomes of the proof-of-concept phase will be evaluated by themselves in
small-scale, lab-like environments, with the goal of obtaining information on their
general functionality (formative evaluation). Then, the (ready-to-integrate) intermediate
components and the final framework will be evaluated in real context. Q-Rapids, as a
whole, will be integrated into the industrial partners’ development environments and
evaluated regarding to predefined criteria (summative evaluation). Evaluation criteria
will be derived from the Q-Rapids goals and selected use cases.

5 Summary

In this paper, we identified the challenges that need to be overcome to support decision
makers in managing QRs throughout the whole RSD process. As a response to these
challenges, we introduced the Q-Rapids framework, developed as part of the H2020
European project Q-Rapids. This project will follow an iterative and incremental
approach applying RSD principles itself. A full 3-year validation plan has been
designed, including a formative and summative evaluation involving four European
companies, which will provide real projects that will allow scaling initial small-scale
results produced in lab-like environments to ready-to-transfer solutions.

Acknowledgements. This work is a result of the Q-Rapids project, which has received funding
from the European Union’s Horizon 2020 research and innovation program under grant agree-
ment N° 732253.

References

1. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.A.: Systematic literature
review on agile requirements engineering practices and challenges. Comput. Hum. Behav.
51(B), 915–929 (2014)

2. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

172 L. Guzmán et al.

3. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid releases and
software testing: a case study and a semi-systematic literature review. Empirical Softw. Eng.
25(2), 1384–1425 (2015)

4. Rodríguez, P., Haghighatkhah, A., et al.: Continuous deployment of software intensive
products and services: a systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)

5. Ramesh, B., Baskerville, R., Cao, L.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2010)

6. Wagner, S.: Software Product Quality Control. Springer, Berlin (2013)
7. Lawrence, B., Wiegers, K., Ebert, C.: The top ten risks of requirements engineering. IEEE

Softw. 18(6), 62–63 (2001)
8. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software

Engineering, vol. 5. Springer Science & Business Media, Berlin (2000)
9. Dalpiaz, F., Korenko, M., Salay, R., Chechik, M.: Using the crowds to satisfy unbounded

requirements. In: CrowdRE 2015, pp. 19–24 (2015)
10. Maalej, M., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements

engineering. IEEE Softw. 33(1), 48–54 (2016)
11. Caracciolo, A., Lungu, L.F., Nierstrasz, O.: How do software architects specify and validate

quality requirements? In: ECSA 2014, pp. 374–389 (2014)
12. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
13. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. Addison-Wesley Professional, Boston (2010)
14. Sauvola, T., Lwakatare, L.E., et al.: Towards customer-centric software development: a

multiple-case study. In: Proceedings of Euromicro Conference on SEAA, pp. 9–17 (2015)
15. Yaman, S.G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P., Oivo, M.,

Männistö, T.: Customer involvement in continuous deployment: a systematic literature
review. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp. 249–265.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-30282-9_18

16. Kwan, I., Damian, D.: A survey of techniques in software repository mining. In: Technical
report DCS-340-IR, University of Victoria (2011)

17. Zhang, D.: Software analytics in practice – approaches and experiences. Microsoft research.
In: Keynote PROMISE (2015)

18. Thomas, S.W., Hassan, A.E., Blostein, D.: Mining unstructured software repositories. In:
Mens, T., Serebrenik, A., Cleve, A. (eds.) Evolving Software Systems, pp. 139–162.
Springer, Heidelberg (2014)

19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

20. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real Time Data
Systems. Manning Publications Co., Greenwich (2015)

21. Wagner, S., Goeb, A., et al.: Operationalised product quality models and assessment: the
Quamoco approach. Inf. Softw. Technol. 62, 101–123 (2015)

22. Oriol, M., Franch, X., Marco, J.: Monitoring the service-based system lifecycle with
SALMon. Expert Syst. Appl. 42(19), 6507–6521 (2015)

23. Shihab, E., Hassan, A.E., Adams, B., Jiang, Z.M.: An industrial study on the risk of software
changes. In: Proceedings of the Symposium on the FSE, Article 62 (2012)

How Can Quality Awareness Support Rapid Software Development? 173

http://dx.doi.org/10.1007/978-3-319-30282-9_18

Using Tags to Support Feature Management
Across Issue Tracking Systems and Version

Control Systems

A Research Preview

Marcus Seiler(B) and Barbara Paech

Institute for Computer Science, Heidelberg University, Im Neuenheimer Feld 205,
69120 Heidelberg, Germany

{seiler,paech}@informatik.uni-heidelberg.de

Abstract. Context & motivation: Features are important for many soft-
ware engineering activities, e.g. release planning. Companies document
features in Issue Tracking Systems (ITS) and store feature code in Ver-
sion Control Systems (VCS). Question/Problem: However, companies
do not always manage features systematically. This issue hinders e.g. the
prioritizing of features for release planning. Principal ideas/results: We
want to provide insights into practice regarding feature management.
We have developed first ideas on lightweight feature management using
tags. We conducted semi-structured interviews with eight experts to get
insight into practice and an early evaluation of our idea. Contribution:
The interviews showed that fuzzy feature descriptions, insufficient trace-
ability, and fragmentation of feature knowledge are major practice prob-
lems. The interviews thus confirm the need for a method for managing
features across ITS and VCS. We propose our lightweight method for fea-
ture management and describe future research regarding our approach.

Keywords: Feature management · Tagging · Issue tracking systems ·
Version Control Systems · Expert interviews

1 Introduction

Features are important for many software engineering activities, e.g. release plan-
ning [6]. Feature knowledge such as the requirements related to a feature need to
be known and prioritized [3] prior to release planning. In Issue Tracking Systems
(ITS) feature knowledge is managed in terms of feature requests, bug reports,
and development tasks [2], and is often difficult to identify [8]. Furthermore,
establishing trace links between feature knowledge from ITS and code in Ver-
sion Control Systems (VCS) is labor-intensive. Thus, a lightweight approach for
systematic and explicit feature management in such systems is needed.

Tagging is an effective and lightweight approach for establishing links [12] for
other purposes. For example, Anvik and Storey [1] propose a tool to document

c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 174–180, 2017.
DOI: 10.1007/978-3-319-54045-0 13

Using Tags to Support Feature Management Across ITS and VCS 175

and link details of work-items from ITS in code. Developers specify details of
work-items, e.g. subtasks, directly in the code using tags. The tool associates the
tags to work-items. Hindle et al. [4] propose a semi-automatic tagging approach
to link requirements from ITS to code commits in VCS. The approach uses
Latent Dirichlet Allocation to extract topics from requirements and log messages
from code commits. The topics are used to relate requirements and code commits.

Our goal is to assess whether a lightweight approach based on tagging is a
viable alternative to common approaches for feature management. We define a
feature as a functional or non-functional property of a software system. Exam-
ples are functional properties such as user management or non-functional proper-
ties such as interoperability for user authorization. We use feature knowledge
to denote feature descriptions and all related elements such as requirements,
work items, and code. We define feature management as a process compris-
ing the following activities: (I) Creation, quality assurance, and change of fea-
ture descriptions, (II) Management of traceability between feature knowledge,
(III) Prioritization of features, and (IV) Utilization of the feature knowledge.
It is worth noting that the creation, quality assurance, and management of the
related elements is not part of feature management.

In this paper, we describe the state of practice with respect to feature man-
agement in Sect. 2. We describe our approach for lightweight feature management
and our future research in Sect. 3. Finally, Sect. 4 concludes this paper.

2 State of Practice

2.1 Research Method and Threats to Validity

We conducted a series of qualitative semi-structured interviews [9] with eight
experts to understand current practices and problems of using features in ITS
and VCS. We developed a role description prior to contacting possible experts
in order to ensure the right target group. We contacted 36 experts via mail
using the role description and information about our research area. Overall, we
could attain eight experts for our interview study. Each expert reported her/his
experience from one project in detail. Two interviews were done in person and the
other six interviews were conducted via telephone. The interviews were recorded
with the permission of the interviewees, transcribed, and coded for analysis [11].
We did an upfront mapping of the interview questions to the research question
RQ2 (cf. Sect. 3).

According to Runeson et al. [10], we discuss the four threats: construct valid-
ity, internal validity, external validity, and reliability. We used open questions to
elicit as much information as possible from the experts minimizing prior bias.
The majority of interviews were conducted by phone, which is a possible threat
to construct validity. However, all experts allowed us to record the interviews.
We used our personal relationship to contact experts, which can be a threat to
internal validity. However, we also used data from open source projects to con-
tact experts. The number of interviewed experts is relatively small, which hinders
external validity and thus the extent to which our results can be generalized.

176 M. Seiler and B. Paech

However, due to the diversity of projects we believe that our results are also
representative for other projects. The average project length was 5.4 years, with
a minimum of one year and a maximum of 20 years. The projects were located in
the domains: agriculture, e-commerce, insurance, logistics, pharma, public sec-
tor, semiconductor, and telecommunication. Six projects applied an agile devel-
opment method and two projects used waterfall as development method. Finally,
the interviews and coding was completed by one researcher, which can be a threat
to reliability, but ensured consistency.

2.2 Usage and Benefits of Features in Projects

We describe the results according to the activities of feature management.

Creation of Feature Descriptions: Five projects use separate feature
descriptions and three projects use user stories as feature descriptions. We call
the latter US-projects. Three non-US-projects use general-purpose tools such
as Word. They describe features as business use cases using templates in two
projects, or as prose in one project. The remaining two non-US-projects describe
features in JIRA using a customized issue type, or as prose in Sharepoint.

Quality Assurance of Feature Descriptions: In all projects reviews per-
formed by quality managers, project managers/leaders, and developers ensure
the quality of feature descriptions. Two of the US-projects ensure the quality by
using the Connextra template.

Change of Feature Descriptions: In all projects changes to feature descrip-
tions are made by all project participants. Changes are applied following an
iterative process in seven projects, or after consulting the change control board
in one project. In two projects, slight adaptations to feature descriptions can be
made without consulting the customer as long as the feature was not prioritized.

Management of Traceability: We describe the traceability for each project.
Projects 1–5 are the five non-US-projects and projects 6-8 are the US-projects.
The projects 1–3 store refining requirements in JIRA. Project 1 uses tracing in
JIRA to link features and requirements. Project 2 and 3 use manually assign IDs
to link features and requirements. The projects 1–3 link work-items to require-
ments using tracing in JIRA. Project 4 stores refining requirements in Bugzilla
and uses manually assign IDs to link features and requirements. In addition,
the project links work-items to requirements using tracing in Bugzilla. Project 5
stores refining requirements in Team Foundation Server. The project uses tags to
link work-items to features and to requirements, and to link features to require-
ments. The projects 6-8 link work-items to requirements using tracing in JIRA.
Project 6 links requirements to wiki pages which document additional informa-
tion for features, e.g. supported payment methods. Project 7 links user stories

Using Tags to Support Feature Management Across ITS and VCS 177

to wiki pages which document external specifications. Furthermore, the project
uses epics to group user stories. Epics are larger work-items relevant to more
than one sprint. All projects except project 5 link code commits to work-items
by providing the work-item-ID in the commit message. Project 5 does not trace
work-items to code. No project traces features or requirements directly to code.

Prioritization of Features: Features are prioritized according to the expected
business value in all projects. In addition, three projects consider dependencies
between features for prioritization. Customers and project managers prioritize
features in four projects and in two projects, respectively. Change control boards
prioritize features in the remaining two projects. Three projects prioritize fea-
tures for the next release. Two projects prioritize features for the next two
releases. The remaining three projects prioritize features for the next sprint,
a quarter, or the next half year.

Utilization of Feature Knowledge: The experts confirmed the importance
of feature knowledge documentation for a variety of activities. All experts stated
that release planning benefits from feature management. Seven experts stated
that effort estimation benefits from feature management. The experts utilize fea-
ture knowledge for a variety of activities. Three experts use feature knowledge
to perform completeness checks. Furthermore, feature knowledge is used to per-
form impact analysis, to migrate legacy system, to track feature processes, or to
understand changes during development. Two experts mentioned each activity.

2.3 Problems for Features in Projects and Solution Ideas

The experts stated many problems regarding features. Due to the page limit we
focus on the three major problems. The first problem are P1 fuzzy feature
descriptions. Six experts mentioned the problem. Among others, time pressure
to collect and document feature-relevant information, missing formalization to
describe features, and the customers’ lack of knowledge how to write feature
descriptions are the most notable reasons leading to fuzzy feature descriptions.
Five experts mentioned P2 Insufficient traceability tool-support as a prob-
lem. The traceability is needed to preserve feature-overview and -progress, and
to determine related elements (affected by changes). Four experts stated the P3
fragmentation of feature knowledge as a major problem in agile projects.
Requirements arise continuously in agile projects and can influence existing fea-
tures and thus influence existing requirements. Requirements of existing features
are distributed among multiple individual user stories, which are not always
consistently linked. This can lead to contradicting or duplicate requirements for
features, and thus to fragmentation of feature knowledge.

The experts proposed the following solution ideas to address the problems.
Four experts stated that improving communication between all project partic-
ipants using workshops, training, guidelines, or reviews can provide a solution
for P1. Two experts suggested to use (semi-)automatic traceability tool support

178 M. Seiler and B. Paech

where possible to address P2. One expert each mentioned rigorous documen-
tation of (initial or early) customers’ features in ITS, and the enforcement of
traces between related user stories as solutions for P3.

2.4 Discussion

It is not surprising that experts use ITS to manage refining requirements and
derived work-items, since we only searched for such experts. However, the few
uses of elements for refining features is surprising. One reason could be that ITS
only provide a limited amount of issue types for refining features in its standard
configuration. The results showed that various activities benefit from feature
management. Although all experts use reviews to ensure the quality of feature
descriptions, fuzzy feature descriptions are the major challenge. The experts
would like to use traceability, but the provided traceability is still difficult to
use. Moreover, a major challenge in agile projects is fragmentation of feature
knowledge. Overall, this confirms the need to implement a lightweight approach
for feature management in practice.

3 Research Outline

We propose TAFT, a Tagging Approach to support Feature managemenT as
shown in Fig. 1. We use one tag for each feature of a software, e.g. UserMan-
agement. We relate feature descriptions, requirements, and work-items stored
in Jira ITS to features by tagging them with the corresponding feature tag. A
feature description is tagged with UserManagement if and only if it contains the
definition of this feature. A requirement is tagged with UserManagement if and
only if the requirement refines UserManagement. A work-item is tagged with
UserManagement if and only if the described task addresses specification, qual-
ity assurance, or implementation of UserManagement. We relate code to features
by tagging code files that implement a feature either on class- or method level.
The tags in our approach provide an overview of the features and a lightweight
mechanism to establish traces needed for feature management. The explicit fea-
ture knowledge provided by TAFT helps to improve communication and thus to
minimize fuzzy feature descriptions. Moreover, the solution ideas to rigorously
document features and enforce reasonable traces between feature knowledge are
the core of TAFT.

In our research, we want to answer the following questions:

RQ1 What approaches exist for feature management across ITS and VCS?
1. Which elements from ITS and VCS do other approaches consider as

feature knowledge?
2. How do other approaches manage the feature knowledge?
3. Which problems do other approaches address?
4. What are limitations of the approaches?

Using Tags to Support Feature Management Across ITS and VCS 179

Requirement
As an administrator, I can
remove exis ng users from
the system.

Work-Item
Implement mechanism to
retrieve and remove exis ng
users.

Feature Tag
Feature Descrip on
The system supports user
management. Administrator
creates, modifies or removes users
...

UserManagement

UserManagement UserManagement

@Feature(UserManagement)
public class Administrator {

// Many other code ...
@Feature(UserManagement)
public void removeUser(User user) {

// Code to remove an user ...
}

Fig. 1. TAFT approach

RQ2 What is the state of practice with regard to feature management?
1. How are features created and used in projects?
2. What is the expected benefit of using features?
3. What are problems that prevent projects from using features?
4. What do practitioners suggest to overcome these problems?

RQ3 To what extent can tagging be used to manage feature in ITS and VCS?
1. Does TAFT enable developers to document feature knowledge?
2. Does TAFT enable the use of documented feature knowledge?
3. How do developers assess the feasibility and the acceptance of TAFT?
4. How does feature knowledge provided by TAFT compares to feature

knowledge provided by common trace links?

We answer RQ1 using a literature review according to Kitchenham and Char-
ters [7]. We conducted interviews with experts from practice in order to answer
RQ2. We will relate our findings for RQ2 to findings from other empirical stud-
ies. Based on the findings for RQ1 and RQ2, we develop tool support for TAFT
in order to answer RQ3. Currently, we have implemented TAFT for JIRA and
git. We use labels as tags in JIRA and annotations in Eclipse IDE to provide
code tags in git. We have developed a dashboard that analyzes tagging infor-
mation from JIRA and git in order to support utilization of feature knowledge
by providing visualization of metrics related to features. We currently evalu-
ate feasibility and acceptance of TAFT and the dashboard in a student project
(RQ3.1–RQ3.3).

During the interviews, we also asked the experts to assess the potential of
TAFT for feature management (RQ3.3). This early evaluation showed that
TAFT can be a feasible and beneficial approach for managing features. The
majority of experts considered the clear overview of the features and the light-
weight character as the most notable benefits. However, the experts also pointed
out several problems. The major problems are the effort to assign and main-
tain code tags manually, finding a representative tag to describe a feature, the
difficulty to interpret diverse feature knowledge, and to preserve usability and
consistency of tags.

In order to answer RQ3.4 we will retrospectively apply TAFT to the iTrust
[5] project. We will incrementally refine TAFT during investigation of RQ3.

180 M. Seiler and B. Paech

4 Conclusion

In this paper, we reported on the state of practice regarding feature management
to provide answers for RQ2. In future work, we will perform a literature review to
answer RQ1. We will relate the findings for RQ2 to findings from other empirical
studies. We have started investigating RQ3.1–RQ3.3. We plan to investigate
RQ3.4 in mid of 2017. We expect to finish this research by mid of 2018.

Acknowledgments. We thank all participating experts for their volunteered time
and valuable feedback.

References

1. Anvik, J., Storey, M.A.: Task articulation in software maintenance: integrating
source code annotations with an issue tracking system. In: 2008 IEEE International
Conference on Software Maintenance, pp. 460–461, September 2008

2. Baysal, O., Holmes, R., Godfrey, M.W.: Situational awareness: personalizing issue
tracking systems. In: 2013 35th International Conference on Software Engineering
(ICSE), pp. 1185–1188, May 2013

3. Greevy, O., Ducasse, S., Gı̂rba, T.: Analyzing software evolution through feature
views. J. Softw. Maint. Evol. Res. Pract. 18(6), 425–456 (2006)

4. Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to
implementation via topic analysis: do topics extracted from requirements make
sense to managers and developers? In: 2012 28th IEEE International Conference
on Software Maintenance (ICSM), pp. 243–252, September 2012

5. iTrust: Role-Based Healthcare: http://agile.csc.ncsu.edu/iTrust/wiki/doku.php
6. Jantunen, S., Lehtola, L., Gause, D.C., Dumdum, U.R., Barnes, R.J.: The challenge

of release planning. In: 2011 Fifth International Workshop on Software Product
Management (IWSPM), pp. 36–45, August 2011

7. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (Version 2.3). Technical report, EBSE 2007-001,
Keele University; University of Durham, Keele, Staffs, UK; Durham, UK (2007)

8. Merten, T., Falis, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Software
feature request detection in issue tracking systems. In: 2016 IEEE 24th Interna-
tional Requirements Engineering Conference (RE), pp. 166–175, September 2016

9. Myers, M.D., Newman, M.: The qualitative interview in IS research: examining
the craft. Inf. Organ. 17(1), 2–26 (2007)

10. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples, 1st edn. Wiley, Hoboken (2012)

11. Saldana, J.: The Coding Manual for Qualitative Researchers. SAGE Publications,
Los Angeles (2009)

12. Storey, M.A., Ryall, J., Singer, J., Myers, D., Cheng, L.T., Muller, M.: How soft-
ware developers use tagging to support reminding and refinding. IEEE Trans.
Softw. Eng. 35(4), 470–483 (2009)

http://agile.csc.ncsu.edu/iTrust/wiki/doku.php

From Requirements Monitoring to Diagnosis
Support in System of Systems

Michael Vierhauser1(B), Rick Rabiser1, and Jane Cleland-Huang2

1 Christian Doppler Laboratory MEVSS, ISSE Johannes Kepler University Linz,
Linz, Austria

{michael.vierhauser,rick.rabiser}@jku.at
2 Department of Computer Science and Engineering, University of Notre Dame,

South Bend, IN, USA
janeclelandhuang@nd.edu

Abstract. Context and motivation: Complex industrial software sys-
tems are often systems of systems (SoS) whose behavior only fully
emerges during operation. Techniques such as requirements monitoring
thus have to be used to observe such systems at runtime to detect devi-
ations from their requirements. Question/problem: However, the focus
of existing monitoring approaches is mainly on detecting violations of
expected behavior, while support for subsequent diagnosis of violations
is rather limited and often even neglected. Diagnosis is particularly chal-
lenging in SoS, which are characterized by complex heterogeneous archi-
tectures and a slew of different development and testing tools. Princi-
pal ideas/results: In this research preview paper we discuss the required
capabilities for diagnosis support in SoS and outline a tool-supported
framework based on a runtime artifact model and pre-defined diag-
nosis actions. Contribution: We describe our ongoing development of
the framework and tools for supporting diagnosis in SoS and provide a
research agenda.

Keywords: Requirements monitoring · Systems of systems · Diagnosis

1 Introduction and Motivation

Many industrial software systems today are systems of systems (SoS) character-
ized by decentralized control; support for multiple platforms; inherently volatile
and conflicting requirements; continuous evolution and deployment; as well as
heterogeneous, inconsistent, and changing elements [10]. SoS cannot fully be
tested during development time: interactions between the SoS and its environ-
ment can only be checked during operation when all of its software systems,
including legacy and third-party software, and the hardware interoperate for the
first time. Furthermore, due to unforeseen software changes, hardware failures, or
deterioration of mechanical parts, system behavior may render defined require-
ments invalid. Thus, SoS need to be continuously monitored during operation.

c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 181–187, 2017.
DOI: 10.1007/978-3-319-54045-0 14

182 M. Vierhauser et al.

Several research communities have been developing runtime monitoring
approaches for many different kinds of domains and purposes [15]. Examples
include requirements-based monitoring [12], monitoring of architectural proper-
ties [8], complex event processing [18], or runtime verification [3].

Our previous experience [14] has proven that requirements monitoring is
viable in SoS to detect deviations from requirements at runtime. However, most
existing approaches [15] stop at detecting (and reporting) violations and do
not sufficiently support diagnosis activities, such as uncovering the root cause
of a requirements violation. This limits the practical usefulness of existing
approaches. Particularly in SoS, due to their complexity and technological het-
erogeneity, developers diagnosing a requirements violation are often not familiar
with all systems and requirements related to that particular violation. Thus,
additional support is necessary to guide developers through the process of ana-
lyzing and remediating undesired system behavior. Providing traceability to sys-
tem artifacts – such as requirements specifications, design models, or code – is
essential, as requirements and their violations are related to different parts of
the SoS.

For example, the SoS of our industry partner Primetals Technologies auto-
mates, optimizes, and tracks different stages of the metallurgical production
process. It comprises a system that optimizes the arrangement of steel slabs on
the strand in a continuous casting machine. This system in turn relies on informa-
tion provided by material tracking systems. An essential requirement (monitored
at runtime) specifies that certain data needs to be available from these material
tracking systems before the optimization results can be calculated and that the
results of the optimization calculation need to be sent to yet another component
within a specified time. A violation of this requirement could, for instance, be
caused by missing data from the material tracking systems – causing the opti-
mization system to wait and take longer than anticipated to provide the results.
However, it could also be the result of a database performance problem prevent-
ing completion in time, or it could be caused by a broken communication link
between systems. Furthermore, it could also be the result of a defective hardware
sensor not reporting the correct parameters required to start the process.

A service engineer that is notified about the violation will have a hard time
finding its actual root cause. For instance, the engineer could explore related
source code of the material tracking components and check the technical specifi-
cation regarding the interface between material tracking and optimization. This
would require the engineer to use diverse external tools not integrated with the
monitoring solution – such as development IDEs, document repositories and so
on. Knowing and understanding all the required tasks and tools requires a non-
trivial amount of domain knowledge, which is hard to build up in an SoS context.

We are thus convinced that it is necessary to better integrate diagnosis activ-
ities and tools with a monitoring solution. Particularly, in this research preview
paper we discuss the required capabilities for providing diagnosis support when
monitoring SoS (Sect. 2) and describe such support (Sect. 3) we are currently
developing based on an existing requirements monitoring framework for systems
of systems [14].

From Requirements Monitoring to Diagnosis Support in System of Systems 183

2 Required Capabilities

Together with our industry partner we identified key capabilities for analyz-
ing and diagnosing requirements violations. We also discuss related work and
shortcomings of existing monitoring approaches regarding these capabilities.

C1 – Detailed information about requirements violations. Engineers
analyzing a requirements violation require detailed information to reveal the
root cause of the violation. This includes basic information such as the type of
violation, the time when the violation occurred, or the involved components and
systems in an SoS. Additionally, historical data – such as events, data and viola-
tions recorded in the past – is particularly useful and can help, e.g., to uncover
a gradual degradation of performance. Several existing approaches provide basic
support for analyzing violations. For example, Baresi and Guinea present the
ECoWare framework [1], providing a Dashboard visualizing runtime data using
live charts and providing an event history. Also, the Kieker monitoring frame-
work [4] provides visualization capabilities for analyzing performance violations.
Müller et al. [9] have presented tool support providing explanations of viola-
tions of service-level agreements in service-based systems at runtime. As also
visible from their related work section, however, most existing (service-based
systems) monitoring approaches do not allow a fine-grained and detailed analy-
sis of violations. Some approaches (see related work section in [9]) provide partial
explanations of violations, i.e., provide information about which service has led
to the violation of a service-level agreement. Very few approaches provide a
precise explanation and those that do, tend to be difficult for human users to
understand, e.g., using the Event Calculus [6]. Additionally, we found [15] that
existing monitoring approaches are limited to certain types of requirements (e.g.,
performance) or are restricted to a certain domain (e.g., service-based systems)
and are thus hard to apply in systems of systems [15].

C2 – Easy access to diverse system artifacts related to a violation.
Currently engineers need to investigate a violation by manually searching through
source code and diverse log files, typically at multiple locations and remote
machines. Finding the origin of a violation can become much simpler if trace links
to diverse artifacts are available. For instance, trace links to specification docu-
ments or architectural models ease access to additional information facilitating a
deeper understanding of potential root causes of a violation. While some existing
monitoring approaches link requirements to higher-level models, e.g., goal mod-
els [12] or UML diagrams [4], they are unable to link violations with arbitrary sys-
tem artifacts. Other approaches rely on specifying assertions directly in code [5],
thus providing traceability to related code in case of violations. These approaches,
however, lack trace links to higher-level artifacts.

C3 – Support for heterogeneous tool environments. Diverse tools
are used for analyzing and editing system artifacts in SoS, as engineers of dif-
ferent systems prefer to use their established tools and methods and because
there is simply no single tool satisfying the diversity of needs. Interfaces thus
need to be provided to allow diverse domain-specific tools to be plugged into a
monitoring infrastructure to support diagnosis. For instance, interfaces to IDEs

184 M. Vierhauser et al.

allow inspecting and editing the source code linked to a violation. Other exam-
ples are modeling tools or document editors. While some existing monitoring
approaches [4,12] allow interfacing with other tools by integrating monitoring
views into an existing tool infrastructure, they do not allow triggering third-
party tools, e.g., starting an IDE and automatically finding and highlighting
code related to a violation.

C4 – Providing tool actions supporting diagnosis activities. Engi-
neers will perform different kinds of diagnosis activities, e.g., depending on
whether they analyze an event sequence violation or diagnose a failed data
check [17]. Depending on the activities they perform they will require differ-
ent computational services, i.e., actions in tools which support the respective
activity. Similarly as described before in the area of Activity-Based Comput-
ing [11,13], it is necessary to provide an abstraction mechanism for describ-
ing and collecting different (diagnosis) actions and resources required for these
actions. For instance, source code artifacts may be viewed and edited in an editor
provided by an IDE to find out why a certain event did not occur. The reason for
a failed data check might be found in configuration files or by using a debugger.
For example, certain IDEs support (remote) debugging, allowing automatic cre-
ation of breakpoints for certain classes or methods, and establishing connections
to the system that is monitored.

3 Towards Diagnosis Support for SoS

Software models are increasingly used at runtime to monitor and verify partic-
ular aspects of runtime behavior and to improve runtime decision-making [2].
We have been developing a Requirements Monitoring Model (RMM) [16] con-
taining information on Requirements and Constraints, runtime Events and Data
collected from instrumented systems, and Monitoring Scopes defining the com-
ponents to be monitored in an SoS. Our monitoring framework ReMinds [14]
builds on this model and supports development of probes for collecting events
and data as well as defining and checking constraints to monitor requirements
in SoS at runtime.

Based on this earlier work and the four-layered requirements monitoring
framework proposed by Robinson [12] we are developing an extended tool-sup-
ported Monitoring and Diagnosis Framework (cf. Fig. 1) for SoS. Our key ideas
are to collect detailed results about occurring violations (cf. C1 from above),
to relate RMM elements with system artifacts (cf. C2), and to provide inter-
faces and integrate existing tools (cf. C3) useful to support subsequent diagnosis
activities with these artifacts (cf. C4).

We capture constraint check results and diagnosis data – provided by our
monitoring framework [14,17] – as first-class citizens in a dedicated runtime
artifact model (RAM). This is a prerequisite for supporting extended diagnosis
beyond simple error reporting and involves maintaining a history of evaluated
constraints. Revisiting such past results of checks often is of interest during
diagnosis to detect points of failure or to uncover trends of gradual degradation.

From Requirements Monitoring to Diagnosis Support in System of Systems 185

Event
Layer

Model
Layer

Presenta on
Layer

Applica on
Layer

Monitoring
and

Diagnosis
Tool

Prototype

Run me
Ar fact Model (RAM)

Requirements
Monitoring Model (RMM)

Events
and DataProbes Rqts/

Constraints
Source
CodeRqts Docs Design

Models

Class<<Interface>>

Class<<Interface>>Class<<Interface>>

Open
Rqts
Doc.

View
Related
Code

Create
Issue

Class<<Interface>>

Class<<Interface>>Class<<Interface>>

Developer IDE
Document

ToolIssue Tracker

Diagnosis Ac vi estriggers

defines
diagnosis
ac vi es
for
ar factsoperates on top of RMM & RAM

Further tools can easily be
integrated and triggered via

exis ng or addi onal diagnosis
ac vi es for exis ng or

addi onal ar facts

Test Cases

Fig. 1. Monitoring and diagnosis support along Robinson’s layers [12].

In the domain of static code analysis, machine learning techniques, for
example, have been used to predict potentially defective code parts [7]. Such
approaches may also be adapted and employed for analyzing runtime data. For
each constraint check result, additional diagnosis data can be stored in the RAM
(cf. C1). This data typically varies, e.g., for a data constraint, details on the
violated data condition such as expected vs. actual value are stored, while for
an event sequence constraint information on the actual sequence, on the time
between events, as well as on missing or unsuitable events is stored.

In addition to this information collected by the monitoring framework, in the
RAM we explicitly describe System Artifacts useful for diagnosis and relate them
with the elements of the RMM (cf. C2). Specifically, we support relating con-
crete artifacts such as requirements specification documents or goal models with
requirements and constraints, source code and configuration files with events and
probes, and architecture documentation such as UML models or diagrams with
monitoring scopes. To deal with the wide variety and heterogeneity of artifacts
and tools (cf. C3) that exist in large-scale systems – including specification doc-
uments, system administrator documentation stored in document management
systems (e.g., Microsoft SharePoint), source code kept in SVN or GIT reposito-
ries, and issues collected in an issue tracking system (such as Bugzilla or Jira) –
we employ a meta-modeling approach, i.e., the RAM is based on a meta-model
that allows to define domain-specific artifact types with dedicated attributes.

We also allow the definition of different Diagnosis Activities (cf. C4) on
top of the RAM, which can be performed depending on the type of violation.
For instance, when diagnosing event sequence violations engineers may review
related events or open and view related source code or documents. Documents as

186 M. Vierhauser et al.

well as source code can be opened and viewed in an external tool. Other external
actions could be the creation of an issue in a bug tracking system or starting a
debugging tool for a particular piece of code related with a violation.

We are currently developing tool support based on the RAM that presents
all artifacts related with a violation and additional diagnosis data together with
actions that allow triggering external tools.

4 Summary and Research Agenda

Requirements monitoring in practice needs to provide more than a simple asser-
tion about whether a requirement has been violated or not. Engineers need
detailed information and assistance for diagnosing the violation. In this research
preview paper we have discussed the required capabilities for diagnosis support
in SoS and have briefly summarized our ongoing development of such support
based on an existing requirements monitoring framework for SoS. Specifically,
we extended an existing requirements monitoring model with a runtime artifact
model to take into account multiple heterogeneous artifacts and diverse activities
that can be performed with these artifacts in different tools.

As part of our ongoing research we plan to support different types of artifacts,
trace links, and diagnosis activities and to evaluate our approach using require-
ments, artifacts, and tools from real-world systems. Specifically, our research
agenda is: (1) extend the capabilities of our constraint checker [17] to capture
additional data, e.g., what events actually caused a constraint to fail, and pro-
vide these details to users via the ReMinds monitoring tool; (2) develop (meta-)
modeling support to define arbitrary types of artifacts and relate them with run-
time elements, e.g., relate source code or requirements specifications with con-
straints and violations; (3) develop a framework for defining diagnosis activities
and respective tool actions for different artifacts and integrate concrete actions,
e.g., open an IDE and highlight source code related to a current violation, into
the ReMinds monitoring tool; and (4) evaluate our diagnosis support in a case
study with real users and with a concrete SoS – e.g., from our industry partner
– specifically focusing on the usefulness (utility and usability) of our approach.

Acknowledgements. This work has been conducted in cooperation with Primetals
Technologies and has been supported by the Christian Doppler Forschungsgesellschaft,
Austria.

References

1. Baresi, L., Guinea, S.: Event-based multi-level service monitoring. In: Proceedings
of the 20th International Conference on Web Services, pp. 83–90. IEEE (2013)

2. Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.): Models@run.time.
LNCS, vol. 8378. Springer, Heidelberg (2014)

3. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

From Requirements Monitoring to Diagnosis Support in System of Systems 187

4. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: a framework for application
performance monitoring and dynamic software analysis. In: Proceedings of the 3rd
Joint International Conference on Performance Engineering, pp. 247–248. ACM
(2012)

5. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time
assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004)

6. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service
based systems. In: Proceedings of the 2nd International Conference on Service
Oriented Computing, pp. 84–93. ACM (2004)

7. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)

8. Muccini, H., Polini, A., Ricci, F., Bertolino, A.: Monitoring architectural prop-
erties in dynamic component-based systems. In: Schmidt, H.W., Crnkovic, I.,
Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 124–139.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73551-9 9

9. Müller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortés, A.,
Rodŕıguez, M.: Comprehensive explanation of SLA violations at runtime. IEEE
Trans. Serv. Comput. 7(2), 168–183 (2014)

10. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of
systems engineering: basic concepts, model-based techniques, and research direc-
tions. ACM Comput. Surv. 48(2), 18:1–18:41 (2015)

11. Norman, D.A.: The Invisible Computer: Why Good Products Can Fail, the Per-
sonal Computer Is so Complex, and Information Appliances Are the Solution. MIT
Press, Cambridge (1998)

12. Robinson, W.N.: A requirements monitoring framework for enterprise systems.
Requir. Eng. 11(1), 17–41 (2006)

13. Tell, P., Babar, M.A., Grundy, J.: A preliminary user evaluation of an infrastructure
to support activity-based computing in global software development (ABC4GSD).
In: Proceedings of the 8th International IEEE Conference on Global Software Engi-
neering, pp. 100–109. IEEE, Bari (2013)

14. Vierhauser, M., Rabiser, R., Grünbacher, P., Seyerlehner, K., Wallner, S., Zeisel, H.:
ReMinds: a flexible runtime monitoring framework for systems of systems. J. Syst.
Softw. 112, 123–136 (2016)

15. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks:
a systematic review. Inf. Softw. Technol. 80, 89–109 (2016)

16. Vierhauser, M., Rabiser, R., Grünbacher, P., Aumayr, B.: A requirements monitor-
ing model for systems of systems. In: Proceedings of the 23rd IEEE International
Requirements Engineering Conference, pp. 96–105. IEEE (2015)

17. Vierhauser, M., Rabiser, R., Grünbacher, P., Egyed, A.: Developing a DSL-based
approach for event-based monitoring of systems of systems: experiences and lessons
learned. In: Proceedings of the 30th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 715–725. IEEE (2015)

18. Völz, M., Koldehofe, B., Rothermel, K.: Supporting strong reliability for distrib-
uted complex event processing systems. In: Proceedings of the 13th International
Conference on High Performance Computing & Communication, pp. 477–486.
IEEE (2011)

http://dx.doi.org/10.1007/978-3-540-73551-9_9

Visualization and Representation of
Requirements

On the Equivalence Between Graphical
and Tabular Representations for Security

Risk Assessment

Katsiaryna Labunets1(B), Fabio Massacci1, and Federica Paci2

1 DISI, University of Trento, Trento, Italy
{katsiaryna.labunets,fabio.massacci}@unitn.it

2 ECS, University of Southampton, Southampton, UK
F.M.Paci@soton.ac.uk

Abstract. Context: Many security risk assessment methods are pro-
posed both in academia (typically with a graphical notation) and indus-
try (typically with a tabular notation).Question: We compare methods
based on those two notations with respect to their actual and perceived
efficacy when both groups are equipped with a domain-specific security
catalogue (as typically available in industry risk assessments).
Results: Two controlled experiments with MSc students in computer sci-
ence show that tabular and graphical methods are (statistically) equiv-
alent in quality of identified threats and security controls. In the first
experiment the perceived efficacy of tabular method was slightly bet-
ter than the graphical one, and in the second experiment two methods
are perceived as equivalent. Contribution: A graphical notation does not
warrant by itself better (security) requirements elicitation than a tabular
notation in terms of the quality of actually identified requirements.

Keywords: Security risk assessment method · Empirical study · Con-
trolled experiment · Method evaluation model · Equivalence testing

1 Introduction

Risk analysis is an essential step to deliver secure software systems. It is used to
identify security requirements, to look for flaws in the software architecture that
would allow attacks to succeed, and to prioritize tests during test execution.

Problem. An interesting observation is that there is a difference in notation
between academic proposals and industry standards for security risk assessment
(SRA). Most academic approaches suggest a graphical notation, starting from
the seminal work on Anti-Goals [35] to [6] and more recently [19]. Industry opts
for tabular models like OCTAVE [1], ISO 27005 and NIST 800-30. Microsoft
STRIDE [9] is the exception on the industry side and SREP [22] is the exception
on the academic side.

The initial goal of our long term experimental plan in 2011 [21] was to empir-
ically prove that (academic) SRA methods using a graphical notation (for short
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 191–208, 2017.
DOI: 10.1007/978-3-319-54045-0 15

192 K. Labunets et al.

“graphical methods”) were indeed superior to risk assessment methods using a
tabular notation (for short “tabular methods”). We struggled to prove difference
in our previous experiments [15,16], then maybe we should prove equivalence.
Thus, our study aims to answer the following research questions (RQs):

RQ1: Are tabular and graphical SRA methods equivalent w.r.t. actual efficacy?
RQ2: Are tabular and graphical SRA methods equivalent w.r.t. perceived

efficacy?

Approach. We ran two controlled experiments with 35 and 48 MSc students
who worked in groups of two participants. They applied both methods to four
different security tasks (i.e. 2 tasks per each method) for a large scale assess-
ment lasting 8 weeks. In the first experiment groups analyzed security tasks for
the Remotely Operated Tower (ROT) for Air Traffic Management (ATM). To
prevent learning effect between two experiments, in the second experiment we
asked groups to perform the same security tasks but for a different ATM scenario,
namely Unmanned Aerial System Traffic Management (UTM).

We measured actual efficacy as the quality of threats and security controls
identified with a method as rated by domain-experts. Perceived efficacy is mea-
sured in terms of perceived ease of use (PEOU) and perceived usefulness (PU)
of the methods through a post-task questionnaire administered to participants.
The independent variables were methods and security tasks to assess.

A key difference with our previous studies1 is that we provided to both groups
a industry catalogue with hundreds of domain-specific threats and security con-
trols. In this setting, using the number of identified threats and control as a
measure of quality (as we did in SG2013 study) would have been inappropriate
as anybody could obtain a large number of (potentially irrelevant) threats or
controls just by looking up into the catalogue. So we employed several domain
security experts to rate the result of the students.

We also replaced the academic tabular method SREP [22] which we used
in SG2013 study by a method used in the industry SecRAM [28] which had
very similar tables but a nimbler process, designed by risk-assessment industry
experts to simplify SRA, in the same fashion that the graphical method was
designed by SINTEF to be simple to use in its industry consultancies [19].

Key Findings and Contribution. Our main findings — as unpalatable as
they might be — are that, given the same conditions, the tabular and graphical
methods are equivalent to each other with respect to the actual and perceived
efficacy. Both results are statistically significant when compared with two one-
sided tests (TOST) [23,27] which allows for testing for equivalence of outcomes.

Our study shows that representation by itself is not enough to warrant the
superiority of a graphical model over a tabular model while the presence of clear
process may improve method’s perception.

1 For simplicity, we name our previous experiments as “SG2013” [14] and
“SG2014” [16], where SG stands for Smart Grid domain used in the experiments.

On the Equivalence Between Graphical and Tabular Representations 193

2 Background and Related Work

From an academic perspective, we have seen a significant development in require-
ments engineering towards graphical methods to identify security requirements.
Some were backed up by formal reasoning capabilities [6,35], others offered vari-
ants of graphical notation [8,18,19,24], or minimal model based transformation
analysis [4]. An epiphenomena of this trend was the RE’15 most influential paper
award to the RE’05 paper introducing a graphical notation and sophisticated
reasoning capabilities to verify security properties [6].

In contrast, industry standard development bodies doggedly use tabular rep-
resentations for the elicitation of threats and security requirements. NIST 800-30
and ISO 27005 standards both use tables. Domain specific methodologies such
as SecRAM [28], designed for risk assessment in ATM, also use tables. Most of
tables use essentially the same wordings, with major differences being mostly on
the process (some suggesting to analyze threats first, others suggesting to start
the analysis from assets). Such preference could be due to simplicity, or the need
to produce the documentation (in forms of table) that is often need to achieve
compliance (as opposed to actual security).

As mentioned, our research goal since 2011 [21] has been to prove that graph-
ical methods were actually superior to tabular methods. In all our experiments,
in order to make the comparison fair, the difference between the methods was
purely in the notation and the accompanying modeling process: graphical nota-
tion on one side, tabular on the other side. The formal reasoning capabilities
supported by some methods [6] were never called into play.

This was never considered to be a problem, as the RE trend since 2005 has
“revealed the emergence of new techniques to visualize and animate require-
ments models [. . .] beautifully simple but potentially very effective” [20]. Such
folk knowledge assumes that a graphical RE model would be anyhow better. This
seemed to be partly confirmed by our initial experiment “SG2013”. Yet, our other
experiments failed to produce strong, conclusive evidence in this respect [15,16].

Empirical Comparison of Graphical and Tabular Representations
Graphical and textual notations were empirically investigated in different
domains. In this discussion we focused on the works similar to ours that inves-
tigate these representations in security requirements engineering.

Opdahl and Sindre [25] compared misuse cases with attack trees in a con-
trolled experiment with students and repeated it with industrial practitioners
in [11]. Both studies used Wilcoxon signed-ranks test for difference between two
methods. The results showed that attack trees help to identify more threats than
misuse cases, but both methods have similar perception. St̊alhane et al. have con-
ducted a series of experiments to evaluate two representations of misuse cases: a
graphical diagram and a textual template. In these experiment authors used t-
tests to compare two representations. The results reported in [29] revealed that
textual use cases helped to identify more threats than use-case diagrams. In
more recent experiments [30–32], St̊alhane et al. compared textual misuse cases
with UML system sequence diagrams. The results showed that textual misuse

194 K. Labunets et al.

cases are better than sequence diagrams in identification of threats related to
required functionality or user behavior. In contrast, sequence diagrams outper-
form textual use cases in the identification of threats related to the system’s
internal working. Scandariato et al. [26] evaluated Microsoft STRIDE [9], which
is a mix of graphical (Data Flow Diagrams) and tabular notations. The authors
used Wilcoxon test to compare different aspects of the methodology. The results
showed that STRIDE is not perceived as difficult by the participants but their
productivity in threats identified per hour was very low. Besides, the correct-
ness of the threat is good because the participants identified only few incorrect
threats but the completeness was low because they overlook many threats.

To answer our research questions we cannot use the standard statistical tests
(e.g. t-test, Wilcoxon, etc.) as they attempt to prove difference and the lack of
evidence for difference is not the same as evidence for equivalence.

3 Research Design

We use equivalence testing – TOST, which was proposed by Schuirmann [27]
and is widely used in pharmacological and food sciences to answer the question
whether two treatments are equivalent within a particular range δ [5,23]. We
summarize the key aspects of TOST as it is not well known in SE and refer to
the review paper by Meyners [23] for details. The problem of the equivalence
test can be formulated as follows:

H0 : |μA − μB| > δ vs Ha : |μA − μB | ≤ δ. (1)

where μA and μB are means of methods A and B, and δ corresponds to the
range within which we consider two methods to be equivalent.

Such question can be tested as a combination of two tests, as:

H01 : μA < μB − δ or H02 : μA > μB + δ
Ha1 : μA ≥ μB − δ and Ha2 : μA ≤ μB + δ,

(2)

The p-value is then the maximum among p-values of the two tests (see [23]
for an explanation on why it is not necessary to perform a Bonferroni-Holms
correction). The underlaying statistical test for each of these two alternative
hypothesis can then be any difference tests (eg. t-test, Wilcoxon, Mann-Whitney
etc.) as appropriate to the underlying data.

For variables collected along a 1–5 Likert scale, a percentage test [5] may
grant statistical equivalence too easily and, therefore, we ran an absolute test
with narrower range of δ = ±0.6. A statistical difference would then correspond
to a clear practical difference: a gap in the perception of two methods bigger than
> 0.6 means that around 2/3 of participants ranked one method at least one
point higher than the rank of the other method. For the qualitative evaluation
of the security assessment by the experts it means that, e.g., two out of three
experts gave one point higher to SRA performed with one method comparing to
the results of the other method. It corresponds to 20% range on a 5-item scale
with mean value equal to 3.

On the Equivalence Between Graphical and Tabular Representations 195

Table 1. Experimental variables

Type Name Description

Treatment Tabular,
Graphical

The method used to conduct SRA for a
security task: SESAR SecRAM (Tabular) or
CORAS (Graphical)

IM, AM,
WebApp/DB,
and Network

The groups have to conduct SRA for each of
four security tasks: (1) Identity Management
(IM) and (2) Access Management (AM)
Security, (3) Web Application and Database
Security (WebApp/DB), and (1) Network and
Infrastructural Security (Network)

Experiment X The study consisted of two controlled
experiments: ROT2015 and UTM2016

Actual efficacy QT , QSC The overall quality of threats (QT)and
security controls (QSC) based on the
evaluation from three independent security
experts

Perceived efficacy PEOU, PU Mean of the responses to the eight questions
about perceived ease of use (PEOU) and nine
questions about perceived usefulness (PU)

As treatments we had two methods, four security tasks, and two experiments. As
dependent variables we had quality of threats and security control as a measure
of actual efficacy, and PEOU and PU as a measure of method’s perception.

Study Design and Planning. We chose a within-subject design where each
group applied both methods. To avoid limitations due to domain security knowl-
edge, each group was also given a professional-level domain-specific catalogue.
We showed that catalogues are effective in equalizing non-security experts and
security experts (without a catalogue) in [7]. To avoid learning effects, each group
was asked to perform SRA for a different security task in the same domain.
Table 1 summarizes treatment variables that we used in our study.

In our study each group performed the risk analysis of four security tasks
(see Table 1). To control the effect of security tasks on results we split groups
into two types: type A groups started by using the graphical method on IM, then
the tabular method on AM and so on, alternating methods, while type B groups
did the opposite. Each group was randomly assigned to either type A or B.

Experimental Protocol. Our protocol consists of three main phases:
Training. Participants were administered a short demographics and background
questionnaire. For each SRA method and application scenario participants
attended 2 h lecture given by an author of the paper. Each lecture on method
was followed by a practical exercise on a toy scenario demonstrating applica-
tion of the corresponding method. Next, participants were divided in groups of
two and received training materials including EUROCONTROL EATM security
catalogues and scenario description. Since catalogues and ROT description are

196 K. Labunets et al.

confidential materials for EUROCONTROL, participants received only a paper
version of the documents and had to sign a non-disclosure agreement.

Application. Once trained on the scenario and methods, groups had to apply
each method to four different tasks (two per method). For each task, groups:

– Attended a two hours lecture on the threats and possible security controls
specific to the task but not specific to the scenario.

– Had 2 weeks to apply the assigned methods to identify threats and security
controls specific for the task.

– Delivered an intermediate report.
– Gave a short presentation about the preliminary results of the method appli-

cation and received feedback from one of the authors of this paper.

Evaluation. Three experts independently evaluated the quality of threats and
security controls identified by groups and the overall quality of the report, pro-
viding marks and justifications. Participants received experts’ assessments and
the course final mark. Finally, they were asked to answer the post-task question-
naire to collect their perception of the methods taking into account the feedback.

Data Collection. Table 1 reports dependent variables for actual and perceived
efficacy. To answer RQ1 we measured a method’s actual efficacy by asking exter-
nal security experts to independently evaluate the quality of identified threats
and security controls for each security task on a five-item scale: Bad (1), Poor
(2), Fair (3), Good (4), and Excellent (5). Such choice is motivated by several
factors. At first, the quality of results is considered to be more important in
practice: “the security risk assessment report is expected to contain adequate
and relevant evidence to support its findings, clear and relevant recommenda-
tions” [17] (Our emphasis). Second, as all participants were provided with a
catalogues, they could easily produce a large number of threats and control,
irrespective of the method used. Further, [25] have also reported that differ-
ent methods might help to generate outcomes of difference quality: participants
using attack trees identified mainly generic threats, while misuse cases helped
to identify more domain-specific threats.

To answer RQ2 we collected participants’ opinion PEOU and PU of both
methods using a post-task questionnaire at the very end of our study. The post-
task questionnaire was inspired by the Technology Acceptance Model (TAM) [3]
and a similar questionnaire used in [16,25]. The questions were formulated in one
sentence with answers on a 5-point Likert scale (1 - Strongly agree; 2 - Agree;
3 - Not certain; 4 - Agree; 5 - Strongly agree)2. We followed the approach by
Karpati et al. [11] and used the mean of participants’ responses to PEOU and
PU questions as a consolidated measure of their PEOU and PU. This approach
seems to be more robust against the possible fluctuation of the responses within
the same category.

2 To prevent participants from “auto-pilot” answering, a half of the questions were
given in a positive statement and another half in a negative statement.

On the Equivalence Between Graphical and Tabular Representations 197

Data Analysis. To test for statistical difference, we used the following under-
lying non-parametric tests for difference as our data is ordinal and not normal:

– Mann-Whitney (MW) test to compare two unpaired groups (eg. quality of
threats in two experiments).

– Wilcoxon signed-rank test to compare two paired groups (eg. participants’
perception of two methods).

– Kruskal-Wallis (KW) test to compare more than two unpaired groups (eg.
quality of threats in four security tasks).

– Spearman’s rho coefficient for correlation.

For the hypotheses about equivalence of two treatments we applied TOST with
Wilcoxon test as the underlying test. The TOST and selection of the equivalence
range is discussed in Sect. 3. For all statistical test we adopted 5% as a threshold
for α (i.e. probability of committing Type-I error) [36].

4 Study Realization

The study consisted of two controlled experiments: ROT2015 and UTM2016.
The participants of the study were MSc students enrolled to Security Engineering
course taught by one of the author in Fall semesters of 2014–2015 and 2015–2016
academic years at the University of Trento, Italy. Experiments involved 35 and 48
participants correspondingly. Participants worked in groups of 2 members, except
one participant in ROT2015 who did not have a partner. We had to discard the
results from 5 participants in ROT2015 and 2 participants in UTM2016 because
they failed to complete all necessary steps of the study or provide inconsistent
responses to a post-task questionnaire. If the problem was only with post-task
questionnaire, we discarded the results only from RQ2 analysis and kept the
group’s results in the analysis for RQ1.

Table 2 reports participants’ demographics in ROT2015 (above) and
UTM2016 (below). A half of the participants (53.3%) in ROT2015 and most
participants (76.7%) in UTM2016 reported that they had working experience. In
ROT2015 the participants had basic knowledge of security, while in UTM2016
the participants reported good general knowledge of security. In both experi-
ments the participants had basic knowledge of modeling languages and limited
background in the application scenario.

Application Scenario Selection. In ROT2015 as an application scenario we
selected the Remotely Operated Tower (ROT) which was developed for and used
in our previous study [7]. ROT is a new operational concept proposed by SESAR
in order to optimize the air traffic management in the small and remote airports.
The main idea is that control tower operators will no longer be located at the
airport. The air traffic controllers will use a graphical reproduction of the out-
of-the-window view by means of cameras with a 360-degree view which overlaid
with information from other sources like surface movement radar, surveillance

198 K. Labunets et al.

Table 2. Overall participants’ demographic statistics

Experiment ROT2015

Variable Scale Mean/median Distribution

Age Years 23.1 43.3% were 19–22 years old; 43.3%
were 23–25 years old; 13.3% were
26–31 years old

Gender Sex 75.8% male; 24.2% female

Work
experience

— 1.3 46.7% had no experience; 36.7%
had 1–2 years; 13.3% had 3–5
years; 3.3% had 6 years

Expertise in
security

0(Novice)-
4(Expert)

1 (median) 26.7% novices; 60% beginners;
13.3% competent users

Expertise in
modeling
languages

— 1 (median) 26.7% novices; 26.7% beginners;
40% competent users; 6.7%
proficient users

Expertise in
ATM

— 0 (median) 93.3% novices; 6.7% beginners

Experiment UTM2016

Variable Scale Mean/median Distribution

Age Years 24.4 32.6% were 21–22 years old; 34.9%
were 23–25 years old; 32.6% were
26–30 years old

Gender Sex 78.3% male; 21.7% female

Work
experience

— 2.1 23.3% had no experience; 44.2%
had 1–2 years; 23.3% had 3–5
years; 9.3% had 6–10 years

Expertise in
security

0(Novice)-
4(Expert)

1 (median) 30.2% novices; 41.9% beginners;
11.6% competent users; 11.6%
proficient users; 4.7% experts

Expertise in
modeling
languages

— 1 (median) 11.6% novices; 41.9% beginners;
30.2% competent users; 16.3%
proficient users

Expertise in
ATM

— 0 (median) 69.8% novices; 27.9% beginners;
2.3% competent users

radar, and others. The first implementation of ROT has been done by LFV and
Saab in Sweden in 2015 3.

To control the possible “learning effects” between different experiments, in
UTM2016 we switched to the application scenario on the Unmanned Aerial
System Traffic Management (UTM) based on the documents from NASA [12],

3 LFV: RTS - One Year In Operation. Available: http://news.cision.com/lfv/r/rts---
one-year-in-operation,c9930962.

http://news.cision.com/lfv/r/rts---one-year-in-operation,c9930962
http://news.cision.com/lfv/r/rts---one-year-in-operation,c9930962

On the Equivalence Between Graphical and Tabular Representations 199

Amazon’s memorandum for commercial interests [13], and the thesis on the
integration of drones into the national aerospace system [34].

Tasks. For both application scenarios we asked our groups to conduct SRA for
each security task (see Table 1) using the corresponding method according to the
predefined order. For example, in WebApp/DB task they could identify threats
like SQL injection or DoS attack and propose controls to mitigate them.

Methods Selection. In this study we continued our work reported in [14,
16]. Thus, as an instance of graphical method we kept CORAS method (a) in
order to have a common point of comparison with the previous studies and
(b) because it provides a clear process to conduct SRA. CORAS was design
by SINTEF [19], a research institution in Norway. They use this method to
provide consulting services to their clients. CORAS is a graphical method whose
analysis is supported by a set of diagrams that represent assets, threats, risks and
treatments. This method supports both the ISO 27005 and ISO 31000 standards
and provides guidance through 8-steps SRA process: (1) preparation for the
analysis, (2) customer presentation of the target, (3) approval of the target
description, (4) refining the target description, (5) risk identification, (6) risk
estimation, (7) risk evaluation, and (8) risk treatment.

As a tabular methods we selected another ATM Security Risk Assessment
Method (SecRAM) developed by SESAR (Single European Sky ATM Research
Program) within 16.02.03 project4. The method was used by professionals in the
SESAR program to conduct SRA. This method was designed as an easy to use
step-wise method that can be applied to any operational focus ares of SESAR.
Further when we use SecRAM we refer to SESAR SecRAM unless otherwise
stated. SecRAM process includes 7 main steps: (1) primary assets identification
and impact assessment, (2) supporting assets identification and evaluation, (3)
vulnerabilities and threats identification, (4) likelihood evaluation, (5) impact
evaluation, (6) risk level evaluation, and (7) risk treatment. SecRAM uses tables
to represent results of each step.

5 Results

First, we performed an analysis on the various experimental factors (i.e. experi-
ments and tasks) to determine whether there was a significant difference. Factors
without a significant difference in outcomes were aggregated, whereas outcomes
for factors with a significant difference were reported separately.

Factor - Security Task: The results of pairwise TOST with Wilcoxon test
confirmed the equivalence of each pair of tasks for the quality of threats
(p < 0.021 in ROT2015 and p < 0.002 in UTM2016) and controls (p < 0.004
in ROT2015 and p < 2 ∗ 10−5 in UTM2016). Therefore, we can use the mean

4 SESAR Project 16.02.03 - ATM Security Risk Assessment Methodology, February
2003. Project aims to analyze existing security risk assessment approaches and adopt
them to the ATM domain.

200 K. Labunets et al.

quality of threats and controls identified for two tasks as a measure of actual
efficacy for a method. In this way we can eliminate a possible effect of task order
on the results of Wilcoxon test and compare paired data.

Factor - Experiment: The results of TOST confirmed the equivalence of
two experiments for the mean quality of threats and controls for both meth-
ods (TOST p < 0.005). However, TOST failed to reject the hypothesis about
non-equivalence of two experiments for the mean participants’ PEOU (TOST
p = 0.21) and PU (TOST p = 0.07) for graphical method. Hence, we report the
results of the two experiments separately.

Factor - Background: In both experiments the KW test did not revealed any
statistically significant effect of background variables (see Table 2) on the quality
of threats and controls or mean participants’ PEOU and PU.

RQ1: Actual Efficacy. Figure 1 reports the mean of experts assessment of
threats and security controls identified by groups. In ROT2015 and UTM2016
we had 18 and respectively 24 groups that successfully delivered the final report
and were evaluated by the experts. In total we collected 72 methods applications
in ROT2015 and 96 in UTM2016. The overall quality of the identified threats
and security controls was “fair” or “good”.

Mean of Experts Assessment on Threats

M
ea

n
of

 E
xp

er
ts

 A
ss

es
sm

en
t o

n
S

C

1 (Bad) 2 (Poor) 3 (Fair) 4 (Good) 5 (Exlnt)

1
(B

ad
)

2
(P

oo
r)

3
(F

ai
r)

4
(G

oo
d)

5
(E

xl
nt

)

10

2

1

33

9

5

12

Mean of Experts Assessment on Threats

M
ea

n
of

 E
xp

er
ts

 A
ss

es
sm

en
t o

n
S

C

1 (Bad) 2 (Poor) 3 (Fair) 4 (Good) 5 (Exlnt)

1
(B

ad
)

2
(P

oo
r)

3
(F

ai
r)

4
(G

oo
d)

5
(E

xl
nt

)

7

5

2

45

6

4

22

2

1

2

Fig. 1. Experts assessment by methods and experiments (The figures report experts
overall quality assessment of the threats and controls identified for four security tasks
in ROT2015 (left) and UTM2016 (right). The majority of the groups delivered threats
and controls of “fair” and “good” quality. Only limited number of the reports delivered
“poor” threats and security controls. The quality of the results was better than in
SG2014 study and we did not split groups into “good” and “bad”.)

To provide an idea on the scale of results produced by groups, we report the
number of threats and security controls identified by one of the best groups for

On the Equivalence Between Graphical and Tabular Representations 201

each experiment. In ROT2015 the best group identified in total 49 threats and
120 security controls which composed 178 pairs as some controls can be used
to mitigate different threats. In UTM2016 the best groups identified totally 53
threats and 36 security controls which composed 64 pairs.

Table 3 presents the descriptive statistics, p-values of the TOST with
Wilcoxon test for the equivalence in the mean quality of threats and controls by
experiment and method. In ROT2015 tabular method helped to identify threats
and controls of a slightly better quality than the graphical one. In UTM2016
both methods helped to produce same quality results. For both experiments the
TOST results confirmed the equivalence of two methods in threats and controls
quality.

Table 3. Average quality of threats and sec. controls by experiments and methods

Actual Tabular Graphical δmean TOST

Efficacy Mean Median St. dev. Mean Median St. dev. Tab - Graph p-value

ROT2015 Threats 3.17 3.08 0.53 2.95 2.92 0.53 +0.22 0.0009

Sec. Ctrls 3.28 3.25 0.53 2.97 2.92 0.51 +0.31 0.001

UTM2016 Threats 3.28 3.17 0.58 3.24 3.17 0.57 +0.04 6.3 · 10−6

Sec. Ctrls 3.31 3.25 0.67 3.29 3.25 0.62 +0.02 2.4 · 10−7

Tabular and graphical methods produces very similar quality of threats and controls in both

experiments. The quality of the produced threat is within a 10% range around the mean quality

range (3 - fair). For both experiments this is statistically significant with a TOST for an effect

size of δ = ±0.6 corresponding to less than two experts having a different rate of the outcome of

the risk assessment.

Table 4. Average perception of tabular and graphical SRA methods

Perceived Tabular Graphical δmean TOST

Efficacy Mean Median St. dev Mean Median St. dev Tab - Graph p-value

ROT2015 PEOU 3.63 3.75 0.59 3.20 3.12 0.64 +0.43 0.08

PU 3.54 3.72 0.84 3.05 3.17 0.83 +0.37 0.18

UTM2016 PEOU 3.74 3.75 0.40 3.60 3.69 0.71 +0.14 2.6 · 10−5

PU 3.67 3.78 0.58 3.29 3.44 0.99 +0.38 0.03

ROT2015 results showed that the participants reported higher PEOU and PU for the tabular

method than for the graphical one. However, TOST results did not reveal any equivalence of

two methods and Wilcoxon results did not confirm stat. sig. of the difference. UTM2016 results

revealed that two methods are equivalent with respect to PEOU (stat. sig. with a TOST for an

effect size of δ = ±0.6).

RQ2: Perceived Efficacy. Table 4 reports the descriptive statistics, p-values
of TOST with Wilcoxon test for the equivalence in participants’ PEOU and
PU by experiment and method. In ROT2015 the participants reported better
perception of the tabular model over the graphical one for PEOU and PU. Such
difference in mean was lower than our TOST practical significance threshold of
δ = ±0.6. TOST failed to reject the hypotheses about non-equivalence between
two methods for PEOU and PU. In UTM2016 the perception of the graphical

202 K. Labunets et al.

method significantly increased comparing to ROT2015. So, the two methods
have equivalent PEOU and PU which confirmed by TOST results.

6 Retrospective Analysis

In the previous studies (SG2013 and SG2014) we compared graphical method
CORAS with different tabular methods. In SG2013 as a tabular method we chose
SREP [22] proposed by University of Castilla–La Mancha and used by CMU Soft-
ware Engineering Institute in their tutorials. The participants worked in groups
of two and conducted SRA of four security tasks from SmartGrid scenario using
both methods. The division of groups on good and “not good” was done based
on security experts assessment of the final reports quality. In SG2014 we used
tabular method from industry proposed by EUROCONTROL, SecRAM. The
participants individually conducted SRA of two tasks from SmartGrid scenario
using both methods.

In these experiments we followed the approach by Opdahl and Karpati [25]
and used the number of threats and controls identified using a method as a
measure of the actual efficacy. Thus, we cannot compare current results with
the results from [14,16], but this comparison can be done for the perception
variables.

We re-ran hypothesis testing for the equivalence of two methods in partici-
pants’ PEOU and PU using TOST with MW test. We chose MW test to have
comparable results across all experiments as we cannot used Wilcoxon test when
we analyze the results of good groups where the samples can be unpaired.

The results of the retrospective analysis supports findings of [14]. For good
groups TOST failed to reject the hypothesis about non-equivalence in mean
PEOU (p = 0.25) and PU (p = 0.27). For all groups TOST results confirmed the
equivalence of two methods w.r.t. mean PEOU (p = 0.051) and PU (p = 0.003).

The retrospective analysis of SG2014 for all participants revealed: (a) 10%
significantly better mean PEOU in favor of graphical method (MW p = 0.06) and
(b) 10% significant equivalence of two methods in mean PU (TOST p = 0.08).
For good participants TOST failed to reject hypothesis about non-equivalence
of two methods in mean PEOU (p = 0.85) and PU (p = 0.43).

For SG2014 the difference between the results for the perception reported
in [16] and the results of the retrospective analysis can be due to the different
data collection approach which is discussed in Sect. 3.

The differences between presented experiments can be due to the changes in
treatments. In SG2013 textual and graphical methods have quite clear processed
and textual method is good in security controls identification, while graphical
one is better for threats identification (see [16, Table III]). In SG2014 the tex-
tual method has less clear process which led to better PEOU in favor of graph-
ical method, while both methods have similar PU. In the current experiments
(ROT2015 and UTM2016) both textual and graphical method have similar
PEOU as they provide clear process. The difference in PU between ROT2015 and
UTM2016 can be explained by the change of application scenario. In ROT2015

On the Equivalence Between Graphical and Tabular Representations 203

we used the ROT scenario that was designed by the same organization which
designed tabular method and security catalogues. Possibly this combination is a
“good fit” which led to better perception of the tabular method. In UTM2016
we used UATM scenario by NASA that might be “not a good fit” to the same
combination of tabular method and security catalogues. This could result in a
similar perceived ease of use and usefulness.

7 Threats to Validity

Regarding internal validity, the main concern is that the relations between
the treatment and the outcome are causal and the effects of possible factors are
either controlled or measured. To mitigate this we randomly assigned groups to
the order of methods application. The results of two experiments were reported
and discussed separately to alleviate the possible effect of the differences in
experiments execution. The results of KW test did not reveal any statistically
significant effect of participants’ background and experience on the results.

Another possible factor that could make the difference between two experi-
ment is changes in the feedback process between experiments. In UTM2016 we
provided feedback on typical mistakes that the participants did in the warm-up
SRA of a toy application scenario that was a part of the training. So, the groups
were able to better understand the methods and avoid mistakes from the very
first deliverable. In ROT2015 such feedback on the warm-up exercise was not
provided. Also in ROT2015 the public discussion of groups’ deliverables was at
will and it might happened that not all groups decided to use their possibility to
discuss the work. Besides the discussion in the class, each group received individ-
ual feedback on the mistakes of method application found in their deliverables.
In contrast, in UTM2016 we allocated 15 min slots and asked groups to register
for the open feedback session in advance. Each group participated in at least
one feedback session and gave a 5 min presentation on the intermediate results.
Besides the discussion by groups, for each deliverable we provided groups with
the summary of the typical problems in the application of both methods. To
mitigate this threat we report and analyze the two experiments separately.

The main threats to construct validity are the definition and interpretation
of the metrics that we used to measure the theoretical constructs. We measured
the actual efficacy of a method as the quality of threats and security controls
identified using a method. The relevance of results quality for an SRA is dis-
cussing in Sect. 3. To measure the perceived efficacy we designed the post-task
questionnaires following TAM [3]. The questionnaire includes 8 questions about
PEOU and 9 questions about PU, which were adapted from [14,16].

A main threat to conclusion validity is related to low statistical significance
of the findings. The effect size for the equivalence test was set to δ = ±0.6
which corresponds to 20% difference in actual or perceived efficacy. The practical
meaning of this threshold is discussed inSection 3.

In regard to external validity, the main threat to the generalizability of
the results are the use of students instead of practitioners and the use of simple

204 K. Labunets et al.

scenarios to apply the methods under evaluation [2]. The use of MSc students in
empirical studies is still question of debate. However, some studies have argued
that students perform as well as professionals [10,33]. Regarding the use of simple
scenarios, in our studies we mitigated this threat by asking the participants to
analyze two new operational scenarios introduced in the ATM domain.

8 Discussion

If we consider the threats to validity sufficiently mitigated we obtained the fol-
lowing results:

RQ1: Tabular and graphical methods are equally good w.r.t actual efficacy (i.e.
quality of identified threats and security controls).

RQ2: If there is no fit between SRA components (i.e. method, catalogues, and
application scenario) and methods have equally clear processes then there
will be no difference in perceived efficacy of these methods.

Implication for Research. The research community can benefit from the following
results of our work:

Equivalence Test. Many works in Empirical Software Engineering to compare
different treatments look for the difference between them and use standard sta-
tistical tests (e.g. t-test, Mann-Whitney, Wilcoxon, and etc.) However, they do
not define the range that is sufficient to proof the difference between treatments.
In our study for values of 5-item scale we used δ = ±0.6 meaning that the differ-
ence between treatments A and B is statistically significant if, for example, mean
quality delivered by A is 2.8 and 3.5 for treatment B. To test for the equivalence
between our treatments we used TOST approach.

Actual Efficacy: Quantity vs. Quality. The investigation of the full appli-
cation of security risk assessment requires more thorough tool to measure the
actual efficacy of a method. In the first experiments on the security methods
comparison we measured actual efficacy of methods in terms of number of iden-
tified threats and controls. However, this approach is not precise as, first, it
is important to identify the most critical threats and provide effective mitiga-
tions to them rather to identify any possible threat and control and, second, the
quantitative measure can be biased by use of security catalogues.

Ease of Use. Both tabular and graphical methods can help analysts to produce
SRA of a similar quality, but if a method does not have a clear process it may
affect people’s perception how ease to use is the method. This can be tested by
another controlled experiment where participants apply same process (e.g. from
CORAS method) with tabular and graphical notation, i.e. classical CORAS as
an instance of graphical method and tabular CORAS where tables substitute
the diagrams.

Learning Curve of graphical method is much steep comparing to the tabular
one. The participants had more questions during the warm-up illustrative exer-
cise for graphical method then for the tabular one. Our observation of groups’

On the Equivalence Between Graphical and Tabular Representations 205

intermediate results showed that even after illustrative exercise many groups had
difficulties to produce correct diagrams. Tabular notation had a few challenges
related to understanding the concepts of primary and supporting assets.

Implications for Practice. The main implication of our study for practitioners
is that both tabular and graphical- based methods can provide similar support
for SRA. The most important is that method should provide a clear process
supporting analyst in identification of (a) major threats specific to the scenario
and (b) effective security controls to mitigate them.

The results of retrospective analysis of the previous experiments supports
these findings. In SG2013 study graphical and tabular methods have similar
PEOU and PU as both methods have clear process. In contrast, in SG2014 study
the graphical method has higher PEOU than the tabular one because graphical
method has significantly clearer process comparing to the tabular method.

Also an important role plays the fit between SRA components, i.e. that
method and security catalogues are appropriate to the domain of the scenario. In
ROT2015 experiment we observed slightly better participants’ PEOU and PU,
but the results failed to reveal any statistically significant equivalence nor dif-
ference between two methods in these variables. At the same time, in UTM2016
tabular and graphical methods were found to be statistically equivalent in terms
of participants’ PEOU and PU. The possible explanation is that tabular method,
scenario, and catalogues for ROT2015 were designed by the same organization
and became a “good fit”, while in UTM2016 application scenario was changed
to UATM scenario by NASA that might be “not a good fit” to same method
and catalogues.

9 Conclusion

This paper reported the results of two controlled experiments on comparison
of graphical and tabular methods for security risk assessment. The experiments
involved 35 and 48 MSc students enrolled to Security Engineering course at Fall
2015 and 2016 at the University of Trento.

In this paper we studied how similar are security methods w.r.t. actual and
perceived efficacy. For quality/perception value on 5-item Likert scale we defined
the equivalence range δ = ±0.6. It means, for example, that tabular and graphi-
cal methods are equivalent in terms of threats quality if |Q(Tgraph)−Q(Ttab| < δ.

The results of the experiments revealed that tabular and graphical methods
are equivalent in terms of actual efficacy (RQ1). The groups were able to identify
threats and controls of a fair quality with both methods.

Regarding the difference in methods’ perception (RQ2), the data analysis
results showed that participants perceived tabular method to be slightly better
with respect to perceived ease of use and usefulness than the graphical one in
the first experiments, and in the second experiment the two methods were found
to be statistically equivalent with respect to perception variables.

To summarize, the study shows that tabular and graphical methods for (secu-
rity) requirements elicitation and risk assessment are very similar with respect to

206 K. Labunets et al.

actual and perceived efficacy. Graphical representation only does not guarantee
the better quality of security requirements analysis in comparison to a tabular
method.

Acknowledgment. This work has been partly supported by the SESAR JU WPE
under contract 12-120610-C12 (EMFASE).

References

1. Caralli, R., Stevens, J., Young, L., Wilson, W.: Introducing OCTAVE allegro:
improving the information security risk assessment process. Technical report, Soft-
ware Engineering Institute, Carnegie Mellon University (2007)

2. Carver, J.C., Jaccheri, L., Morasca, S., Shull, F.: A checklist for integrating student
empirical studies with research and teaching goals. Empir. Softw. Eng. 15(1), 35–59
(2010)

3. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Q. 13, 319–340 (1989)

4. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulllment of privacy require-
ments. Req. Eng. 16(1), 3–32 (2011)

5. Food, D.A.: Guidance for industry: statistical approaches to establishing bioequiv-
alence (2001)

6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-
ments through ownership, permission and delegation. In: Proceedings of RE 2005,
pp. 167–176. IEEE (2005)

7. de Gramatica, M., Labunets, K., Massacci, F., Paci, F., Tedeschi, A.: The role of
catalogues of threats and security controls in security risk assessment: an empiri-
cal study with ATM professionals. In: Fricker, S.A., Schneider, K. (eds.) REFSQ
2015. LNCS, vol. 9013, pp. 98–114. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-16101-3 7

8. Haley, C., Laney, R., Moett, J., Nuseibeh, B.: Security requirements engineering:
a framework for representation and analysis. IEEE Trans. Softw. Eng. 34(1), 133–
153 (2008)

9. Hernan, S., Lambert, S., Ostwald, T., Shostack, A.: Threat modeling-uncover secu-
rity design flaws using the stride approach. MSDN Magazine-Louisville, pp. 68–75
(2006)

10. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects: a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng.
5(3), 201–214 (2000)

11. Karpati, P., Redda, Y., Opdahl, A.L., Sindre, G.: Comparing attack trees and
misuse cases in an industrial setting. Inform. Soft. Technol. 56(3), 294–308 (2014)

12. Kopardekar, P.H.: Unmanned aerial system (UAS) traffic management (UTM):
Enabling low-altitude airspace and UAS operations. Technical report (2014)

13. Kopardekar, P.H.: Revising the airspace model for the safe integration of small
unmanned aircraft systems. Technical report (2015)

14. Labunets, K., Massacci, F., Paci, F., Tran, L.M.S.: An experimental comparison
of two risk-based security methods. In: Proceedings of ESEM 2013, pp. 163–172.
IEEE (2013)

http://dx.doi.org/10.1007/978-3-319-16101-3_7
http://dx.doi.org/10.1007/978-3-319-16101-3_7

On the Equivalence Between Graphical and Tabular Representations 207

15. Labunets, K., Paci, F., Massacci, F., Ragosta, M., Solhaug, B.: A first empirical
evaluation framework for security risk assessment methods in the ATM domain.
In: Proceedings of SIDs 2014. SESAR (2014)

16. Labunets, K., Paci, F., Massacci, F., Ruprai, R.: An experiment on comparing
textual vs. visual industrial methods for security risk assessment. In: Proceedings
of EmpiRE Workshop at RE 2014, pp. 28–35. IEEE (2014)

17. Landoll, D.J., Landoll, D.: The Security Risk Assessment Handbook: A Complete
Guide For Performing Security Risk Assessments. CRC Press, New York (2005)

18. Li, T., Horkoff, J.: Dealing with security requirements for socio-technical sys-
tems: a holistic approach. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 285–300. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07881-6 20

19. Lund, M.S., Solhaug, B., Stolen, K.: A guided tour of the CORAS method. In:
Lund, M.S., Solhaug, B., Stolen, K. (eds.) Model-Driven Risk Analysis, pp. 23–43.
Springer, Heidelberg (2011)

20. Maiden, N., Robertson, S., Ebert, C.: Guest editors’ introduction: shake, rattle,
and requirements. IEEE Softw. 22(1), 13 (2005)

21. Massacci, F., Paci, F.: How to select a security requirements method? A Com-
parative study with students and practitioners. In: Jøsang, A., Carlsson, B. (eds.)
NordSec 2012. LNCS, vol. 7617, pp. 89–104. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34210-3 7

22. Mellado, D., Fernández-Medina, E., Piattini, M.: Applying a security requirements
engineering process. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS
2006. LNCS, vol. 4189, pp. 192–206. Springer, Heidelberg (2006). doi:10.1007/
11863908 13

23. Meyners, M.: Equivalence tests a review. Food Qual. Prefer. 26(2), 231–245 (2012)
24. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the

tropos methodology. Int. J. Inform. Syst. Model. Des. 17(02), 285–309 (2007)
25. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse

cases for security threat identification. Inform. Soft. Tech. 51(5), 916–932 (2009)
26. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of Microsoft’s threat

modeling technique. Req. Eng. 20, 1–18 (2014)
27. Schuirmann, D.: On hypothesis-testing to determine if the mean of a normal dis-

tribution is contained in a known interval. In: Biometrics. vol. 37, pp. 617-617.
International Biometric Soc (1981)

28. SESAR: ATM Security Risk Assessment Methodology. SESAR WP16.2 ATM Secu-
rity, February 2003

29. St̊alhane, T., Sindre, G.: Identifying safety hazards: an experimental comparison of
system diagrams and textual use cases. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
-2012. LNBIP, vol. 113, pp. 378–392. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31072-0 26

30. St̊alhane, T., Sindre, G.: Identifying safety hazards: an experimental comparison of
system diagrams and textual use cases. In: Bider, I., Halpin, T., Krogstie, J., Nur-
can, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD
-2012. LNBIP, vol. 113, pp. 378–392. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31072-0 26

31. St̊alhane, T., Sindre, G.: An experimental comparison of system diagrams and
textual use cases for the identification of safety hazards. Int. J. Inform. Syst. Model.
Des. 5(1), 1–24 (2014)

http://dx.doi.org/10.1007/978-3-319-07881-6_20
http://dx.doi.org/10.1007/978-3-642-34210-3_7
http://dx.doi.org/10.1007/978-3-642-34210-3_7
http://dx.doi.org/10.1007/11863908_13
http://dx.doi.org/10.1007/11863908_13
http://dx.doi.org/10.1007/978-3-642-31072-0_26
http://dx.doi.org/10.1007/978-3-642-31072-0_26
http://dx.doi.org/10.1007/978-3-642-31072-0_26
http://dx.doi.org/10.1007/978-3-642-31072-0_26

208 K. Labunets et al.

32. St̊alhane, T., Sindre, G., Bousquet, L.: Comparing safety analysis based
on sequence diagrams and textual use cases. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 165–179. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13094-6 14

33. Svahnberg, M., Aurum, A., Wohlin, C.: Using students as subjects - an empirical
evaluation. In: Proceedings of ESEM 2008, pp. 288–290. ACM (2008)

34. Theilmann, C.A.: Integrating autonomous drones into the national aerospace sys-
tem. Ph.D. thesis, University of Pennsylvania, PA, US, April 2015

35. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of RE 2001, pp. 249–262. IEEE (2001)

36. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-642-13094-6_14
http://dx.doi.org/10.1007/978-3-642-13094-6_14

Visualization of Quality of Software
Requirements Specification Using Digital

Elevation Model

Diding Adi Parwoto(&), Takayuki Omori, Hiroya Itoga,
and Atsushi Ohnishi(&)

Ritsumeikan University, Kusatsu, Japan
diding.parwoto@gmail.com,

{tomori,itoga,ohnishi}@is.ritsumei.ac.jp

Abstract. Context and motivation: Software Requirements Specification
(SRS) is an important document in software development process. In order to
produce high quality software and reduce development cost, SRS should be
correctly written. Several studies have been done in how to measure the quality
of SRS and most of them gave values for every characteristic a numerical value
from 0 to 1. Question/Problem: It is needed to help a user by giving a better
point of view of quality of SRS and show to the user which parts of SRS need to
be improved. Principle ideas/result: The purpose of this research is to visualize
the quality of SRS using a Digital Elevation Model (DEM) metaphor. In this
research, Mountain Fuji is selected as a metaphor since it is a prominent
landscape for Japanese people. Among several SRS characteristics, this research
visualizes three main important characteristics; unambiguity, completeness, and
consistency. Contribution: This visualization is expected to give an improved
point of view of the SRS quality to the user so they can understand and revise
the document faster and more accurate. Moreover, the methodology of this
research could be a base model of other prominent metaphor in different culture
or country.

Keywords: Visualization � Software requirements specification � Quality
of SRS � Digital Elevation Model

1 Introduction

Software requirements specification (SRS) is a specification for a particular software
product, program, or set of programs that performs certain functions in a specific
environment [1]. SRS is a very important document in software development process.
The quality of SRS directly affects the final result of the quality of developed software
and the main important aspect to achieve success in software development process [2].

Quality of SRS is based on several characteristic attributes that are used to assess
the SRS. A good SRS should be unambiguous, complete, correct, consistent, stable,
verifiable, modifiable and traceable [1].

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 209–215, 2017.
DOI: 10.1007/978-3-319-54045-0_16

Several studies have been conducted to assess the quality of SRS by measuring the
quality of characteristic attributes of the SRS. To easily assess and understand the
quality of SRS better, software metric is usually used [2–4]. A software metric is a
measurement derived from a software product, process, or resource. All the three
studies above give value for the quality of SRS characteristics from 0 to 1. These values
show the quality of each SRS characteristics for the whole document, but does not
provide users ability to explore qualities of each sections, subsections, even for para-
graph and sentences.

This research is conducted to visualize the quality of SRS using Digital Elevation
Model (DEM) as metaphor. Hence, the contributions of this paper are proposing a
framework to understand the quality of SRS faster and more accurate, accentuate the
existing numeric quality by prominent metaphor, and proposing a tool to easily and
attractively show where the errors or imperfectness in SRS are.

2 Background

2.1 Related Works

Some related works have been examined to point out the distinctiveness of this re-
search. Davis et al. [2] defined 24 qualities that SRS should exhibit and provided a
metric for 18 cases. Siegemund et al. [3] used an ontology reasoning technique to
detect and repair faulty information and proposed a set of metrics that facilitate
automatic calculation of the quality of the SRS. Saavedra et al. [4] explained that
software metrics are necessary to effectively manage software development.

Metaphors and analogies are commonly voiced as key tools for enhancing creative
design. Both compare a situation in one domain with the situation in another [6].
Colburn and Shute [7] characterized metaphor as “a description of an object or event
using concepts that cannot be applied to the object or event in a conventional way”.

DEM can be described as digital cartographic/geographic dataset of elevations in
xyz coordinates. DEM is widely used to visualize topography map. Skupin has
demonstrated the possibility of creating large format knowledge domain visualizations
that emulate many aspects of traditional geographic depictions [5].

2.2 Visualization Technique

Visualization technique is used by Saito et al. [9] to provide a visual representation of
requirements evolution history. They prove that visualization technique improves the
speed and accuracy of identification of affected artefacts of requirements evolution.

Moody has clearly defined ten principles for designing effective visual notations in
software engineering. These principles can be used to evaluate, compare and improving
existing visual notations as well as to construct a new one [13]. He also said that visual
representations are effective because it uses the capabilities of human visual system.

210 D.A. Parwoto et al.

3 Methodology

3.1 Visualization of Qualities

Three-dimension (3D) model of Mountain Fuji is drawn in a web based environment.
A DEM data is used as a source data for creating the metaphor. Mountain Fuji area was
selected to be the metaphor in this research because it is very famous to Japanese
people. However, the system is designed to be able to draw other mountains DEM data.
Using geographic object, Mountain Fuji in this research, as metaphor has not been
proved suitable for visualizing quality of SRS. This issue will be discussed later in
future work.

The source of data is Shuttle Radar Topography Mission (SRTM). The SRTM
provides a major advance in the accessibility of high quality elevation data for large
portions of the tropics and other areas of the developing world [11]. A 1 arc second
SRTM data was produced, but is not available for all countries [10]. The Mountain Fuji
metaphor is drawn based on SRTM DEM data.

SRTM data used in this research has resolution of 1 Arc-Second, 1 elevation point
of data represent elevation of 30 m � 30 m area of earth’s surface. The data is for-
matted in a Band Interleaved by Line (BIL) format. BIL is a binary raster format with
an accompanying header file which describes the layout and formatting of the file. File
size is approximately 3.4 Megabytes containing 1290 � 1320 elevation points of
Mountain Fuji area.

3.2 Metaphor for Emphasizing

The characteristics of SRS that selected to be analyzed are unambiguity, completeness
and consistency. These characteristics were chosen because they are the important
characteristics and also are late timing measured [8]. More specifically, from eight
characteristics of an SRS which are introduced [14], the incorrectness, inconsistency,
incompleteness and ambiguity are strongly related to errors of an SRS. However, the
correctness of a requirement can be correctly checked by a stakeholder who gives the
requirement. In other words, it is difficult for other people to judge the correctness of
the requirement. So, this research focuses on the consistency, completeness, and
unambiguity.

These values of quality will be shown as imperfectness in the model. By selecting
the imperfectness part on the model, a user will be directed to the error on the SRS as
shown in Fig. 1.

This research focuses on Sect. 3, the most important section of SRS which contain
requirements specifications, based on standard structure of an SRS [14]. Area of the
metaphor is divided into several parts as the number of sub area. This region is used as
a specific area to show the imperfectness of corresponding part in SRS. Figure 2 shows
the example division of the metaphor area in several regions, assuming there are eight
sub area needed. This is a pie cart like division to maintain equality of area of the
mountain, top area and bottom area, for each sub area, so sub area consists of top to
bottom of mountain.

Visualization of Quality of Software Requirements Specification 211

In order to reduce the complexity when dealing with a big SRS that has many
subsection and has huge number of paragraphs on Sect. 3, the metaphor would be
designed as a nested one. Each section, subsection and paragraph will have its own
metaphor.

This modularization reduces the amount of information presented at a time to
within the limitation of working memory, so it improves speed and accuracy of
understanding [13]. As a test case, this research used an example SRS called test case
SRS that has structure as shown in Fig. 3. So, each node in Fig. 3 will have its own
metaphor, same metaphor but different region division of its subsection and different
qualities to show. Except for paragraph level (level 3 on Fig. 3), the division of
metaphor area is based on the number of sentences. So, the qualities shown on this
level is sentence quality.

Fig. 1. Illustration of the system

Fig. 2. Region division

212 D.A. Parwoto et al.

Focus of this research is to visualize quality of three characteristics of SRS using
metaphor, unambiguity, completeness and consistency. These quality characteristics
and errors in the each of quality characteristics are treated equally. This research
assumed that the values of those characteristics are measured by other tools. This work
postulates such metrics calculation tools.

There are several metrics for quality of SRS [2–4]. Using our method, we can
visualize the metrics and provide quality of an SRS more understandably.

Quality projection to the metaphor can be seen on Table 1. These are the projection
notations that the SRS’s characteristics qualities have direct correlation with how the
metaphor is drawn.

To show the imperfectness on the SRS, ambiguity will be drawn as fog covering
the whole area decreasing the visibility of the metaphor, incompleteness as incomplete
part in particular area, especially the height of the mountain and inconsistency as wrong
color on the respective height.

To help users that are not familiar with the model used as metaphor, users are given
ability to see the perfect metaphor so they can get impression of how much the quality
affect the metaphor.

4 Experimentation

An initial attempt to produce visualizations has been conducted to test the metaphor.
Overall ambiguity is displayed by fog covering the whole area with 80%, 60% and
40% visibility of 0.8, 0.6 and 0.4 quality as shown in Fig. 4. Completeness quality is
easily detected by unfinished drawing of the mountain Fuji. Mountain Fuji is drawn
80%, 60% and 40% according to the completeness quality of 0.8, 0.6 and 0.4 as shown

Fig. 3. Modularization of metaphor

Table 1. Primary notations of quality projection

SRS’s characteristic Quality Metaphor

Unambiguous 0–1 0% visible–100% visible (covered by fog)
Complete 0–1 0% mountain height–100% mountain height
Consistent 0–1 0–100% color consistency

Visualization of Quality of Software Requirements Specification 213

in Fig. 5. For this experimentation, consistency quality is visualized by inconsistent
color especially for snow on the top of the mountain. The white color of snow grad-
ually become black as the quality decreased as shown in Fig. 6.

This experimentation is going to be applied in the methodology above to produce
Mountain Fuji metaphor. This metaphor is expected not only show the quality of the
SRS, but significantly give new impression of the quality to the user.

5 Conclusions and Future Work

This research uses three main important characteristics of SRS to be visualized in
metaphor. Using DEM as metaphor gives better understanding of the quality of SRS as
it emphasizes the quality of each characteristic of the SRS. This metaphor also gives
ability to user to explore the quality to sentence level so they can revise the SRS easier
and more accurate. However, it is still needed to conduct an analysis to measure the
effectiveness of understanding and revising SRS using this metaphor.

The advantages of using geographic object, Mountain Fuji in particular, as a
metaphor should be evaluated by comparing with different visualizations. In addition,
as this research is expected to be a base framework for other spatial earth contours, it is
needed to examine and improve the methodology to be suited on any shape of
mountain or spatial contour.

0.8 0.6 0.4

Fig. 4. Unambiguity on metaphor

0.8 0.6 0.4

Fig. 5. Completeness on metaphor

0.8 0.6 0.4

Fig. 6. Consistency on metaphor

214 D.A. Parwoto et al.

Another research on Requirement Management Measures by Loconsole [12] said
that requirement development is a learning process rather than a gathering process. She
studied stability and volatility of requirements and change requests. It would be a good
approach if this metaphor could be extended so it could track requirements changing on
software development process based on Loconsole’s work.

References

1. ISO/IEC/IEEE International Standard - Systems and software engineering – Life cycle
processes –Requirements engineering, ISO/IEC/IEEE 29148:2011(E) (2011)

2. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid, G.,
Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying and measuring
quality in a software requirements specification. In: 1st International Software Metrics
Symposium, pp. 141–152 (1993)

3. Siegemund, K., Zhao, Y., Pan, J.Z., Aßmann, U.: Measure software requirement
specifications by ontology reasoning. In: 8th International Workshop on Semantic Web
Enabled Software Engineering (SWESE 2012) (2012)

4. Saavedra, R., Ballejos, L.C., Ale, M.: Quality properties evaluation for software
requirements specifications: an exploratory analysis. In: WER (2013)

5. Skupin, A.: The world of geography: visualizing a knowledge domain with cartographic
means. Proc. Natl. Acad. Sci. U.S.A. 101, 5274–5278 (2004)

6. Hey, J., Linsey, J., Agogino, A.M., Wood, K.L.: Analogies and metaphors in creative
design. Int. J. Eng. Educ. 24(2), 283 (2008)

7. Colburn, T.R., Shute, G.M.: Metaphor in computer science. J. Appl. Logic 6(4), 526–533
(2008)

8. Farbey, B.: Software quality metrics: considerations about requirements and requirement
specifications. Inf. Softw. Technol. 32(1), 60–64 (1990)

9. Saito, S., Iimura, Y., Tashiro, H., Massey, A.K., Antón, A.I.: Visualizing the effects of
requirements evolution. In: Proceedings of the 38th International Conference on Software
Engineering Companion, pp. 152–161. ACM (2016)

10. Pillot, B., Muselli, M., Poggi, P., Haurant, P., Dias, J.B.: Development and validation of a
new efficient SRTM DEM-based horizon model combined with optimization and error
prediction methods. Sol. Energy 129, 101–115 (2016)

11. Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E.: Hole-filled SRTM for the globe Version 4,
available from the CGIAR-CSI SRTM 90 m Database (2016). http://srtm.csi.cgiar.org

12. Loconsole, A.: Empirical studies on requirement management measures. In: Proceedings of
the 26th International Conference on Software Engineering, pp. 42–44 (2004)

13. Moody, D.: The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756–779 (2009)

14. IEEE Recommended Practice for Software Requirements Specifications. IEEE Standard
830-1998 (R2009) (2009)

Visualization of Quality of Software Requirements Specification 215

http://srtm.csi.cgiar.org

Agile Requirements Engineering

Quality Requirements in Large-Scale
Distributed Agile Projects – A Systematic

Literature Review

Wasim Alsaqaf(&), Maya Daneva, and Roel Wieringa

University of Twente, Enschede, The Netherlands
{w.h.a.alsaqaf,m.daneva,r.j.wieringa}@utwente.nl

Abstract. Context and Motivation: Agile development methods have become
increasingly popular in the last years. However, these methods hardly pay
attention to quality requirements (QRs), which could undermine the profits of
fast delivery by introducing high rework efforts later on. This risk is high
especially in agile large-scale distributed settings. Question/problem: Although
several publications reported on the insufficient attention to quality requirements
in agile methods, still little is known about agile requirements engineering
practices and their impact on quality requirements in large-scale distributed
settings. However, companies increasingly use agile methods in those settings,
where the negative impact of ignoring quality requirements is large. Hence, the
goal of this study is to identify the challenges in the engineering of quality
requirements in large-scale distributed agile projects that have been researched
so far, the agile practices that have contributed to the emergence of these
challenges, and the proposed solutions. Principle ideas/results: Following an
evidence-based research method, we examined 60 papers on quality require-
ments in agile. We found that, while there are multiple proposals to engineer
quality requirements in agile, none of those has been tried out in real-life set-
tings. Evaluating scalability of these proposals, therefore, is a priority for future
research. Contribution: This paper identified 12 challenges in agile projects that
harm the quality requirements. Besides, we identified and evaluated 13 pro-
posals for dealing with quality requirements in agile projects, along with
implications for practice and research.

Keywords: Agile requirements engineering � Quality requirements �
Non-functional requirements � Large-scale distributed agile projects �
Systematic literature review

1 Introduction

Quality requirements (QRs) are those requirements describing the qualities of the
system (e.g. performance requirements, maintainability requirements) [1]. In the
requirements engineering (RE) literature, there is a consensus that the success or failure
of a system is not only decided by the correct implementation of the right functional
requirements, but also by the correct implementation of the QRs [2, 3]. For example, if
the response time of the system does not meet the customer expectations, we cannot say
that the system delivers quality [2].

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 219–234, 2017.
DOI: 10.1007/978-3-319-54045-0_17

A recent systematic literature review (SLR) on agile RE [4] reported that QRs are
neglected in agile RE processes. This may result in systems that do not satisfy the user
expectations. In small co-located projects, this can be repaired relatively easily by
adapting the next batch of requirements and fixing the part of the product already
delivered. This is however not possible in agile large-scale distributed (ALSD) projects
where the teams are spread over multiple locations and there are no possibilities for ad
hoc coordination and communication among team members and with clients.

In response to that problem, we initiated an empirical research project [5] to
develop best practices to help agile practitioners identifying, implementing and testing
QRs in ALSD projects. As a first step, we identified the challenges that agile practi-
tioners are facing concerning QRs and reviewed existing approaches to engineer QRs
in agile projects. We performed a SLR based on the guidelines of Kitchenham et al. [6],
which we present in this paper.

The main contribution of our SLR is twofold: first, we shed light on the empirical
evidence of engineering the QRs in ALSD. As we will see, our review identifies those
agile practices used in ALSD settings that are actually harming the engineering of QRs.
Second, we summarize the reported solutions in literature to cope with engineering
QRs. Our findings indicate that there are some specific solutions proposed and eval-
uated for treating one specific type of QRs (be it security, usability or compliance)
however considering this respective type of QRs in isolation from other types of QRs
that may be relevant in a project (e.g. in many projects, QRs are interdependent and
need to be traded off [7]). Also, we found that there is still no general approach to
engineer the QRs (regardless of type) in ALSD settings that has been evaluated in
real-life projects.

This paper is organized as follows: Sect. 2 is on related work. Section 3 presents
our research questions and our research method. Section 4 describes our findings and
answers the research questions. Section 5 discusses the results and some implications
for research and practice. Section 6 is on limitations. Section 7 concludes.

2 Related Work and Motivation

As a preparation of our work, we searched for SLRs on agile methods in general. We
used the Scopus digital library (www.scopus.com) and identified a large number of
both mapping studies and SLRs on topics pertaining to agile software development and
project management. From those, we selected the ones investigating the RE process of
agile methods to form our related work.

We deliberately did not limit our choice for related work to the context of ALSD
because we did not want to miss any insight that could be brought by studying agile RE
in other contexts. Moreover, reviews that do not mention RE in agile projects
explicitly, are not selected as directly related work because they do not include the
main topic of our investigation.

Based on this selection we have identified three SLRs as directly related to our
work, namely those of Inayat et al. [4], Medeiros et al. [8], and Heikkilä et al. [9].
However, these reviews differ from our SLR in research questions, goal, research
method, search period and primary papers. Medeiros et al. [8] conducted a mapping

220 W. Alsaqaf et al.

http://www.scopus.com

study on agile RE techniques used in industry. They reported user stories as the most
used elicitation technique. Frequent changes of requirements and low customer
involvement were indicated as the main sources of challenges. Heikkilä et al. [9]
performed a systematic mapping of RE in agile software development. They aimed to
identify the strong areas and the knowledge gaps of the subject. The study reported that
the role of agile RE is still vague and needs more research. The study also indicated that
the most documented challenges were related to the use of agile in large and complex
projects and organizations. Moreover, the study concluded that the proposed solutions
for the identified challenges were weak in general and not empirically evaluated. Inayat
et al. [4] investigated RE practices embraced by agile teams, challenges that the agile
teams face when using those practices and traditional RE challenges that were solved
by the use of agile practices. The study concluded that the role of RE in ALSD projects
demands more attention by researchers.

Alongside to these three reviews, we have identified seven other reviews on dis-
tributed agile [10–16] which we checked for information on RE, and specifically on
QRs. The number of reviews found indicates that the community of researchers on
agile software engineering works hard on consolidating the empirical evidence
regarding the strengths and the weaknesses of agile approaches. In particular, a large
part of the above-cited reviews concerns global software development. One review [12]
states explicitly ‘distributed development’ as its focus. While the context of global
projects is recognized as highly important and some papers do report the engineering of
QRs as a problematic sub-area of agile RE [4,17], no study indicates specific challenges
in QRs or solution strategies to solve these challenges in the context of distributed
development. This motivated us to initiate the present review.

3 Research Method

The key steps in our research process used the evidence-based guidelines by
Kitchenham et al. [6] and are described in the subsections below.

3.1 Research Questions

As indicated in the Introduction, our review’s focus is on practices in ALSD and
proposed approaches to cope with QR challenges in ALDS. We are set out to answer
three research questions: RQ1: What are the agile practices used to engineer QRs in
ALSD settings, according to published literature? RQ2: What QRs challenges have
been reported in agile projects, in general? RQ3: What are the existing solutions to
cope with neglected QRs in agile RE in general (not only in ALSD), as per RE
literature? The purpose of RQ1 is to uncover the practices used in ALSD settings to
engineer the QRs. RQ2 is expected to shed light on those challenges reported in
literature regarding the implementation of the QRs in these settings. RQ3 will identify
proposed solutions as per literature and evaluate their fitness in solving the identified
challenges.

Quality Requirements in Large-Scale Distributed Agile Projects 221

3.2 Search and Selection Strategy

To avoid doing a work that already has been done, we searched for existing SLRs that
might have answered our questions. To collect the papers, we chose to use Scopus.
Scopus provides access to high quality peer reviews research abstracts that have been
published by a wide range of prominent publishers like Elsevier, Springer and IEEE
computer society [9,18]. Elsevier even claims that Scopus is the most comprehensive
database of peer-reviewed research.1 After concluding that our specific questions have
not been answered yet, we started extracting research keywords from our research
questions. This was an iterative process. To cover the whole spectrum of candidates of
keywords, we experimented with strings including the terms “requirements engineer-
ing”, “RE”, “Agile”, “agility”, “non-functional requirements”, “quality requirements”,
“quality”, “quality attributes”, “scaled”, “outsourced”, “distributed”. The keywords
related to “large-scale distributed” settings were eventually removed from the search
string because we did not want to miss any knowledge that could be lost if we restricted
our search to a particular setting. Our final string was:

“((Agile OR agility) AND (Requirements OR non-functional requirements OR non-functional
OR quality requirements OR quality attributes OR quality))”.

We formulated the following inclusion criteria: (I1) The paper is peer-reviewed.
(I2) The paper is in English. (I3) The paper discusses two or more of the following
topics: Agile, RE, QRs, distributed and large-scale projects. (I4) The paper is published
between Jan’02 and April’16. Next, we used the following exclusion criteria: (E1) The
paper does not focus explicitly on agile. (E2) The paper does not discuss RE as their
central topic; (E3) The paper is not available for download.

3.3 Conducting the Review

3.3.1 Search and Application of the Inclusion/Exclusion Criteria
We fired our search query on Scopus, which yielded an overwhelming number of
publications: 2830. To reduce this number to a manageable size, we have limited our
search to the ‘Computer Science’ subject in Scopus, which resulted in 612 papers. The
first author has then read the abstracts of these papers to apply the inclusion and
exclusion criteria. He manually removed 446 papers. The reasons for the removal of
those papers were that these papers (1) either did not meet the inclusion criterion I3, or
(2) meet the exclusion criterion E2. The application of the inclusion and exclusion
criteria reduced the number of papers to166. The second author checked the removed
papers separately to ensure that no papers were mistakenly removed. The number of
papers remained intact. After this step, the first two authors have re-read and analysed
the title, keywords, abstract, introduction and conclusion of all the 166 papers in order
to assess their relevance to our topics of interest. We considered a paper ‘relevant’ if it
provides “enough” information to answer one or more of our research questions. The
papers that we deemed ‘relevant’ turned out to be: (i) empirical studies that treated the
RE process within agile methods and papers that compared agile and traditional RE

1 https://www.elsevier.com/solutions/scopus.

222 W. Alsaqaf et al.

https://www.elsevier.com/solutions/scopus

processes – 6 papers in total, (ii) papers that proposed approaches to QRs in agile
context – 18 papers, (iii) papers on the use of agile methods in distributed context – 15
papers, and (iv) papers that discussed two or more of the aforementioned options – 12
papers. This totalled to 51 papers. The papers that we found irrelevant were either SLRs
(16 in total), or papers in which agile, QRs, RE, were part of the context in the papers
but not central to the research reported in them (99 papers were of this nature). An
additional 9 papers were added to the selected primary papers based on the ‘snowball
effect’ [6] which brought the final number of primary papers to 60. The full referenced
list with primary papers is available at this website: https://wasimalsaqaf.files.
wordpress.com/2016/12/primary-papers1.docx. We do not include it here, to save
space. In this website, a reference to a primary paper is labelled with the letter P (e.g.
P1, P2, P3,…,P60). In this paper, we will use the labels P1, P2,…,P60, whenever we
refer to a paper in our list of primary papers.

3.3.2 Thematic Synthesis
Once the primary papers were identified, the process of systematically extracting data
from them started. We used thematic analysis for this purpose [19]. We read the papers
multiple times, first to extract the relevant information − publication information,
context information and findings, and then to do coding based on it. The coding process
has been done by inductively applying descriptive labels (called codes) to segments of
texts of each paper. We have followed Saldana’s open coding approach [20] in which
we assigned codes inductively as we did not want to force any preconceived outcomes.
The process of open coding has resulted in identifying 182 segments of text which
describe the main outcomes of the selected papers. The identified segments were coded
based on their content using 30 codes. Thereafter the codes were categorized based on
their similarity into 7 themes, namely: Process, People, Challenges, Scope, Charac-
teristics, Learning and Challenges. The process of extracting and analysing the data
was conducted using Microsoft Excel 2016 program. We also used it to generate
Figs. 1 and 2. Table 1 provides two examples of how the process of identifying and

6.7%

11.7%

21.7%

58.3%

1.7%

Magazine

Workshop

Journal

Conference

Book

Fig. 1. Distribution of papers according to publication categories

Quality Requirements in Large-Scale Distributed Agile Projects 223

https://wasimalsaqaf.files.wordpress.com/2016/12/primary-papers1.docx
https://wasimalsaqaf.files.wordpress.com/2016/12/primary-papers1.docx

coding a segment of text was conducted. In order to ensure the internal quality of the
data analysis process, the process has been done separately by the first two authors.
Thereafter, the results of both researchers were compared and differences were
re-solved.

4 Results

4.1 General Observations

The 60 papers included in our SLR were distributed according to publication categories
as depicted in Fig. 1. For more information on the venues in each category, we refer
interested readers to download the full venues list from the website: https://
wasimalsaqaf.files.wordpress.com/2016/12/distribution-of-papers-per-publication-
source3.docx.

2
1 1

3

5
4

7

9
8

9

11

0

2

4

6

8

10

12

2002 2003 2005 2008 2009 2010 2011 2012 2013 2014 2015

Fig. 2. Number of publications per year

Table 1. Text and codes

Original text Theme and code

“Our project still faced challenges in practicing TDD (Test
Driven Development) and the development team agreed that the
method should have been utilized more than it was. Quality
assurance was sometimes lacking and many bugs were only
found after completing a feature” [P4]

Theme: Challenges
Code: Validation

“The requirements engineering techniques used in Agile is
some-times not clearly defined so the actual implementation is
dependent on developer. In Agile we need skilled person as
developer. While traditional techniques provide a clear view to
the developer” [P5]

Theme: People
Code: Developer

224 W. Alsaqaf et al.

https://wasimalsaqaf.files.wordpress.com/2016/12/distribution-of-papers-per-publication-source3.docx
https://wasimalsaqaf.files.wordpress.com/2016/12/distribution-of-papers-per-publication-source3.docx
https://wasimalsaqaf.files.wordpress.com/2016/12/distribution-of-papers-per-publication-source3.docx

The conference that published the highest number of papers is SoutheastCon
Conference (www.ewh.ieee.org/reg/3/southeastcon/) with 6 publications. The interna-
tional conferences on Requirements Engineering (RE) and on Global Software Engi-
neering published 3 papers each. The Malaysian Software Engineering conference
published 2 papers, whereas all other conference venues (21 conferences in total) are
represented by one publication each. Regarding magazine papers, IEEE Software was
the only one that published papers included in our SLR (3 in total). In terms of journal
papers, the Journal of Systems and Software published the most (3 papers), followed by
Information and Software Technology (2 papers).

Regarding the year of publication, we found that 53 papers were published after
2008, whereas 7 papers were published in the period of 2002–2008. This indicates that
the topic of our study gained more attention in the past seven years. 2015 was the most
productive year with 11 published papers (Fig. 2).

4.2 Answers to the Research Questions

4.2.1 RQ1: What Are the Agile Practices Used to Engineer QRs in ALSD
Settings According to Published Literature?
Although we did not deliberately search for agile practices concerning specific types of
QRs, we however did find papers that looked at four types of QRs: security [P6][P7]
[P8], safety [P9], compliance [P10] and usability [P11]. Each of these papers focused
on the specific practices currently used for engineering the respective type of QRs
discussed in the paper, independently from other QRs. In essence, these specific
practices suggest (as we would see below) either introducing a new artefacts into agile
RE, or a new role, or new social behaviour, or a new tool, or a combination of those.

Baca et al. [P6] reported about the Security-Enhanced Agile Process that introduced
into the agile RE process two new artefacts − security metrics and risk analysis reports,
as well as three new roles − security manager, security master and security architect. It
was developed and evaluated in an ALSD project delivering a mobile money transfer
system. Next, Savola et al. [P7] presented an approach also based on artefacts:
risk-driven security metrics and visualization. Its pilot evaluation was a project case of
a well-established telecommunication product. Last, Baca and Carlsson. [P8] presented
a set of artefact-based practices: writing security requirements, creating a security
matrix and documenting abuse cases. These practices were evaluated in a large
telecommunication project.

Concerning safety, Gary et al. [P9] report on an open source distributed project
delivering an image-guided surgical environment, for which safety was the most
important QR. The project deployed the practices of: (1) requirements traceability
management practices linked to code management, (2) safety-by-design practices,
(2) continuous integration and (4) architecture validation that involved extracting
models from source code. The project used quality attribute utility trees and scenarios
for specifying the QRs of safety, plus testability and usability −as related to safety.

Regarding compliance requirements, Fizgerald et al. [P10] report on a large dis-
tributed organization delivering a life science application (that is subjected to auditing
by the Food and Drug Administration, ISO, and the Society of Pharma Engineering).

Quality Requirements in Large-Scale Distributed Agile Projects 225

http://www.ewh.ieee.org/reg/3/southeastcon/

Their project introduced the role of the so-called Product Counsel (group of senior
managers who steer the compliance requirements process), the use of compliance
templates, and the practices of continuous compliance related to each iteration, of
‘living traceability’ of compliance requirements, of using risk as the prioritization
criterion for user stories, and the use of various tools (e.g. JIRA, Bamboo, Confluence)
to help with the implementation of these practices.

Concerning usability QRs, Wale-Kolade [P11] presents a large scale distributed
project developing a Scandinavian country’s pension handling system, where usability
roles and artefacts were integrated into agile. The specific practices instrumental to the
project were: integrating a usability design head and usability designers into the
developers’ team, using personas and sketches, engaging expert users, and diffusing
designs.

Although we could not find any paper that examined the ways in which QRs as a
whole are treated in agile projects, there were papers that contained descriptions of
practices that can be interpreted as ways of coping with QRs. To identify these papers,
we looked at the descriptions of context provided in the primary papers. Out of the 60
papers included in our review, 29 were empirical studies. Out of those 29, 21 described
explicitly their own context settings as “large-scale” and/or “distributed”. In those 21
studies, the authors described agile RE practices that hint to practices of coping with
QRs. A summary of those practices can be found in Table 2, where the rightmost
column of the table indicates if the practice concerns artefacts, tools, roles, or social
behaviour (concerning behaviour, see the first and last row in Table 2).

4.2.2 RQ2: What QRs Challenges Have Been Reported in Agile Projects
in General?
Twenty-six papers reported explicitly and implicitly the neglect of QRs in agile pro-
jects. Table 3 summarizes 12 specific challenges caused by agile practices regarding
QRs in general, according to these papers. The identified challenges refer to almost the
whole spectrum of RE activities and lead consciously or subconsciously in the neglect
of QRs.

Table 3 suggests that some characteristics of agile RE pitched as strengths in agile
textbooks (e.g. the role of the product owner, the use of user stories) can be considered
in fact as inhibitors to engineering of QRs. Four of the 12 challenges relate to the
product owner’s role. In this respect, 11 papers point out to various aspects associated
to that role as conductive to QRs difficulties, e.g. insufficient knowledge on product
quality’s side regarding QRs, being overloaded yet serving as a single point of contact
on QRs. This observations agrees with the SLR of Medeiros et al. [8] that pinpoints to
the product owner as a potential source of RE challenges.

4.2.3 RQ3: What Are the Existing Solutions to Cope with Neglected QRs
in Agile RE in General (not Only in ALSD), as Per RE Literature?
We found several solution proposals that however are in their early stage and, in turn,
are not empirically validated. This agrees with the conclusion of Inayat et al. [P30] that
observed a lack of knowledge about the effectivity of solution proposals. Table 4
summarizes our findings. The rightmost column indicates if agility has been considered
explicitly in the design of the proposal. Qumer et al. [P46] stated that for a software

226 W. Alsaqaf et al.

Table 2. Agile practices regarding RE in ALSD settings

Practice Description References Type of
practice

Face-to-face
communication

Communication sessions between
development team and the Product
Owner (PO) to identify the requirements

P2, P4, P12, P13,
P14, P15, P16

Social
behaviour
based

Iterative
emergence of
requirements

The requirements emerge during the
development process instead of defining
them up-front

P2, P4, P12, P17,
P18

Artefact
based

Frequent
prioritization

Continuously prioritizing the user stories
based on the changing business values

P2, P19 Artefact
based

User stories Short and abstract description of the
requirements used to encourage the
face-to-face communication

P2, P4, P14, P17,
P20, P21, P22, P23,
P24, P25

Artefact
based

Product
grooming

Continuously revisiting the set of user
stories to remove obsolete stories, create
new stories and re-assessing their
relative priority

P14 Artefact
based

Delivery story Extended user story with additional
information such as functional
specification, quality requirement’s high
level design and test scenarios

P19 Artefact
based

Wiki Online tool that can be accessed by all
team members to communicate the user
stories

P24, P26 Tool based

Evolutionary
prototyping

A prototype that is built iteratively to be
finally used in Production

P2, P4 Artefact
based

Unit testing A test that is written to test a single
isolated small unit of the code

P27 Artefact
based

Test driven
development

The requirements first of all are turned
into test cases, then the necessary code is
written to pass the test cases

P2, P14, P28 Artefact
based

Continuous
integration

All product copies of all team members
are merged several times a day to
validate the correct working of the
product

P14, P28, P29 Artefact
based

Refactoring Just before the end of each iteration the
internal structure of the product is
getting restructured to enhance the
internal quality

P14 Artefact
based

Pair
programming

Two developers are sitting together
behind one screen. One is programming
and the other is controlling and
validating the code

P14 Social
behavior,
artefact
based

Quality Requirements in Large-Scale Distributed Agile Projects 227

method to be considered Agile, the degree of its agility should be evaluated based on
the presence of five key elements, namely: flexibility, speed, leanness, learning and
responsiveness. Proposals that did not describe the degree of their agility were not
considered as agile.

As Table 4 indicates, some of the presented solutions introduced several new
artefacts to agile (e.g. [P49][P50][P51][P52][P53][P54]). For example, the authors of
the NERV approach [P49] suggest to introduce six new artefacts: NFR Elicitation
Taxonomy, NFR Reasoning Taxonomy, NFR Quantification Taxonomy, NFR Trigger
Card, NFRusCOM Card (Non-Functional Requirements User Story Companion Card)
and NAI (NERV Agility Index, which is essentially a set of metrics). However, one
might think that introducing new artefacts could result in making agile a heavy doc-
umented approach which is misaligned with the second principle of the agile manifesto,
namely “Working software over comprehensive documentation” [21].

Our reviewed literature also reported solutions [P12][P44][P57] that were focused
on integrating specific QRs types in agile. Below (Table 5) we describe them. We note
that those solutions came from the papers only that were returned by our search string,
since we did not look explicitly for solutions to particular QR’s types. Among the
proposals in Table 5, only one [P12] considered the agility factor.

Our review suggests that researchers generated an abundant number of proposals,
some of which focused on integrating specific QRs types in agile. However, if a solution
for every single type of the QRs is proposed and adopted, we would eventually end up
with a huge number of approaches proliferation. Amplifying agile with tools, rols and/or
practices needed to integrate each type of QRs will definitely result in a heavy approach
that does not meet the agile principles defined in the agile manifesto [21].

Table 3. Reported challenges regarding QRs

Challenge References

Agile does not provide a widely accepted technique for
gathering the QRs

P32, P34, P37

Focusing on delivering functionality at the cost of architecture
flexibility

P2, P20, P31, P36, P38,
P39, P40

Ignoring predictable architecture requirements P38, P39
Inability of user stories to document QRs P19, P21, P35, P36
Inability of user stories to document requirements
dependencies

P19, P34, P36

Validating QRs occurs too late in the process P4, P19, P10, P27, P41
The lack of requirements traceability mechanism P10, P30, P32, P33, P42,

P43, P44
Product Owner’s lack of knowledge P14, P16, P19, P36, P38
Product Owner’s heavy workload P14, P16
Insufficient availability of the Product Owner P17
Insufficient requirements analysis P40, P45
Dependence on the product owner as the single point to collect
the requirements

P33, P38, P40

228 W. Alsaqaf et al.

Table 4. Reported solutions

Ref. Proposal in summary Agility
factor
considered?

P47 A suggestion to use todays’ technologies to cope with agile
poor documentation of requirements

No

P5, P38 A suggestion to combine agile and traditional methods in a
hyper approach to deliver successful projects

No

P34 A solution proposal to cope with uncomplete requirements
such QRs during the RE process

No

P40 The solution proposal to cope with agile weaknesses such as
requirements analysis by combining the strengths of agile
and traditional methods in a hybrid solution

No

P35 Proposes SENoR workshop sessions to collect the QRs and
documenting them using use cases

No

P48 Combines two QRs analysis approaches in one namely:
(1) Four layered approach to QR analysis and
(2) Quantitative assessment of QRs. by leveraging their
strengths and eliminating their weaknesses

No

P49 Tackles the neglect of QRs in agile by providing several
artefacts to be used in different requirements activities

No

P50, P51, P52
P53, P54

Proposes several artefacts to identify, model and link QRs to
functional requirements

No

P55 An extension to [P49] and [P50] to include the extraction of
QRs from images

No

P56 Proposed the ACRUM framework to cope with the neglect
of QRs in SCRUM

Yes

Table 5. Reported solutions concerning particular QRs types

Ref. Proposal in summary Agility
factor
considered?

P44 Proposes a traceability model to trace functional requirements and QRs
regarding security and performance issues

No

P12 Proposed a little design up front approach to provide as much user
design information as needed to support the integration of usability in
the agile iterations

Yes

P57 Introduces the security backlog artefact and the security master role in
SCRUM to cope with the neglect of security requirements

No

Quality Requirements in Large-Scale Distributed Agile Projects 229

5 Discussion

We found no study that was dedicated on QRs as a whole. This observation concurs the
statements of other authors indicating the lack of empirical evidence on how agile
projects handle QRs systematically, in their entirety [P2][P16][P21][P25][P26][P30]
[P31][P58]. The fact that there were quite a few proposals without any empirical
evaluation and that the proposals have been put forward by researchers without prac-
titioners’ participation might well be a signal that incorporating QRs in agile in a
seamless way that is also repeatedly successful, is far from straightforward. Another
explanation would be to assume that agile projects more often than not do neglect QRs
in agile settings and agile practitioners so far have not resolved the difficult task of
handling QRs systematically. This agrees with the observation of many authors [P2][P4]
[P30] [P31][P32][P33][P34][P35][P36] who mention the developers’ neglect of QRs.

We also observe that organisations using large scale agile software development,
introduce new roles in order to engineer QRs ([P6][P11]). This indicates that the
Product Owner role is not enough in this context. One might think that these new roles
(e.g. usability head, security master) imply an anti-pattern, as the Product Owner’s role
as a single empowered/engaged individual is fundamental in Scrum [P14][P16].
However, we do not think this finding is surprising, because large organizations usually
attempt to come up with a mix of agile and ‘traditional’ practices – just because they
want to hedge the risk of adopting agile methods in a project with a broad range of
stakeholders, conflicting requirements and needs for explicit knowledge-sharing [P19].

An interesting observation is that no study of those that suggest a security, safety or
usability QRs approach, mentions the role of the requirement engineer or the software
architect. Instead of these general job titles, the papers use specialists’ roles (security
master, usability head). This is in contrast with previously published papers on engi-
neering QRs [P1] that suggested the software architects’ involvement in eliciting,
documenting, negotiating and validating QRs. Do agile methods eliminate those roles?
May we assume that people with these job titles, are part of the development team? We
think this could be an interesting line for future research. More empirical studies in
large scale contexts are needed to understand how these roles submerge and what the
individual contribution of each one is to engineering the QRs in a systematic way.

Another interesting observation regarding agile practices is that practitioners are not
totally agree on how to engineer architectural related requirements (e.g. QRs).in ALSD.
While the co-author of the agile manifesto claims that Just-In-Time (JIT) requirements
[22] is the way to be agile and anticipate on requirements changes, an industrial
experience working paper [23] claims that the agile community encourages the use of
the so-called “Architecture spike” for large-scale projects. The architecture spike was
described in the working paper as a small design upfront to identify and implement the
architectural related requirements. However, the working paper recognized the archi-
tecture spike’s lack of an overall vision on crucial product qualities (e.g. QRs).

The role of the PO was observed as a weakness in agile. We found that. insufficient
knowledge of PO on product quality’s side regarding QRs, the heavy workload and her
act as a single point of contact on QRs are challenges in agile. This observation was
confirmed by an industrial experience article written by an agile practitioner [24].

230 W. Alsaqaf et al.

We observed that organizations adopt social-behaviour-based practices for the
purpose of QRs engineering. This is in line with the agile manifesto [21] which
suggests that people take priority over process. We think this may also be considered
an enrichment to the current approaches to QRs (e.g. security, safety) as described in
empirical studies because too often empirical RE papers on these requirements focus on
their respective method itself and not on the social context in which the method is
applied.

Our results indicate that QRs engineering may well imply introduction of additional
artefacts and tools. This is not surprising because large and distributed systems delivery
organizations share knowledge through artefacts and tools for their management.
However, we think that to keep a process agile, there should be possibly a limit to the
number of artefacts that could be added. What this limit could be is a line for future
research.

We compared our results with the three SLR in Sect. 2. Our finding about the lack
of an empirically evaluated method for QRs agrees with the findings of the three SLRs.
In contrast to these reviews, we found that some of the RE practices that are supposed
to “help” with requirements and overcome challenges in traditional RE (e.g. frequent
requirements change), may well be counterproductive in regard to QRs. For example,
while the product owner is found by Inayat et al. [4] to be instrumental to agile RE, the
primary papers in our review indicated quite a few QR challenges arising out of the
product owner’s role, e.g. insufficient knowledge, massive overload and unavailability.

Our review has some practical implications. First, we found that agile practices no
matter how critical for business value generation, could lead to the detriment of QRs
and ultimately increase the total cost of ownership of a system. Practitioners should
therefore be extremely conscious about treating QRs early enough in their projects. It
might be possible that experienced agile practitioners have accumulated much
knowledge in managing risk related to QRs, however this knowledge so far remained
tacit and needs to be explicated and properly documented in literature, should we want
to build upon it for the purpose of improving QRs in agile in the long run.

Second, existing QR-methods make the tacit assumption that it is generally a good
idea for practitioners to add more tasks (those related to QRs) to their work, be it
adding a new artefact, adopting new behaviours, or introducing a new tool. While this
assumption sounds reasonable, it may not be realistic in all cases, just because com-
panies and development organizations vary in their understanding of how much agility
and waterfall is a healthy combination for their context. Adding more tasks that would
inject waterfall aspects in the agile process may not be attractive to many organizations.

Third, we would like to note that some QR methods are proposed to tackle the
downside of another method. This can result in a situation where one method’s dis-
advantage is other method’s advantage. However, empirical evaluations are needed to
check if the presumed advantages and limitations of each proposal are in fact
observable in real-life settings. Only then, practitioners could receive a recommenda-
tion on which method would be a good addition to their toolbox in their organizational
and project settings.

Quality Requirements in Large-Scale Distributed Agile Projects 231

6 Limitations

We evaluated the possible limitations to our review. First, it might be possible that we
passed selection bias into the process of evaluating the papers for inclusion. This is
because the second author contributed to one of the SLRs on agile RE [4] and also
because she knows in person some of the authors of agile RE case studies. However, to
reduce this bias, the first author did apply the selection criteria on his own and the
second author did so only regarding the papers whose authors were not in professional
relationship with her.

Through snowballing, we found 9 more papers that we added to our list for
inclusion. This could be traceable to our search string, which was limited only to the
‘Computer Science’ subject area in Scopus. Due to the fact that the term “agility” is
used by other disciplines (e.g. business and management sciences) that publish papers
on agile delivery and project management of complex information systems, it might be
possible that we missed some relevant papers. Also, we limited the years to 2002–
2016. This choice however is justified by the fact that the agile manifesto [21] was
created in 2001.

Furthermore, our review included ten papers that took the perspective of a specific
type of QRs - namely - security [P6][P7][P8][P45][P57][P59], usability [P12][P60],
safety [P9][P10], and compliance [P10]. They signalled the inability of agile methods to
handle those respective types of QRs. We assume that there may well be many more
publications that took such a specific QRs perspective, however we did not hit them in
Scopus because our search string was not designed for this purpose. As we wanted to find
published approaches to engineering QRs in general, we deliberately avoided including
specific terms (such as e.g. security, usability) that name a specific type of QRs.

It might be possible that in our coding process we might have misunderstood some
contextual details that we found in the primary papers concerning agile RE. We mit-
igated this by coding the papers independently by the first two authors, both with
experience as practicing software engineers and consultants, and integrating the results
later.

Last, we looked at scientific literature, while it might be the case that industry
events that do not result in papers available in scientific libraries, offer in fact valuable
insights into industrial practices regarding QRs and ALSD projects. It might be
therefore a good idea to include the so-called “grey literature”2 to our review. We
however did not plan such a step, given our resources available.

7 Conclusion

This review shows that very little is known about the evolution of QRs in ALSD
setting. While there are proposals of researchers, very little empirical work has so far
been done to evaluate these proposals’ scalability to real-life settings. More research is
needed to understand the contexts in which these approaches would fit and add value.

2 http://www.greylit.org/about.

232 W. Alsaqaf et al.

http://www.greylit.org/about

While the neglect of QRs in agile projects is already known, this study points out
which agile practices may actually complicate the engineering of QRs, or at least affect
them in a suboptimal way. Table 3 revealed that 12 different elements of the agile
process decrease the focus on QRs. A combined effect of those elements in a project
may result in neglecting the QRs at almost all iterations of the RE process. We
therefore think that more research is needed to fully understand the scope of the
potentially damaging effects of agile on QRs.

Regarding the extent of agility in the proposed approaches, it was a surprise that the
most of the proposals did not go through an agility assessment to ensure the agility
factor remains intact during the application of those solutions. After all an agile
solution should keep the process agile. If the proposed approaches lack agility, these
would not appeal to practitioners to try them out in their projects. An implication is
then that we as a community should develop our proposals together with practitioners
for industry. So, more research via company-university collaborations seems to be
beneficial.

References

1. Lauesen, S.: Software Requirements: Style and Techniques. Pearson Education, London
(2002)

2. Blaine, J.D., Cleland-Huang, J.: Software quality requirements: how to balance competing
priorities. IEEE Softw. 25, 22–24 (2008)

3. Kazman, R., Bass, L.: Toward deriving software architectures from quality attributes. Softw.
Eng. Inst. 1–44 (1994)

4. Inayat, I., Salwah, S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic literature
review on agile requirements engineering practices and challenges. Comput. Human Behav.
51, 915–929 (2014)

5. Alsaqaf, W.: Engineering non-functional requirements in large scale distributed agile
environment. In: REFSQ-JP 2016, p. 7 (2016)

6. Kitchenham, B.A., Budgen, D., Brereton, P.: Evidence-Based Software Engineering and
Systematic Reviews. Chapman and Hall/CRC, London (2015)

7. Daneva, M., Buglione, L., Herrmann, A.: Software architects’ experiences of quality
requirements: what we know and what we do not know? In: REFSQ, pp. 1–17 (2013)

8. Medeiros, J.D.R.V., Alves, D.C.P., Vasconcelos, A., Silva, C., Wanderley, E.: Requirements
engineering in agile projects: a systematic mapping based in evidences of industry. In:
CibSE, pp. 460–473 (2015)

9. Heikkilä, V.T., Lassenius, C., Damian, D., Paasivaara, M.: A mapping study on
requirements engineering in agile software development. In: Euromicro DSD/SEAA,
pp. 199–207 (2015)

10. Razavi, A.M., Ahmad, R.: Agile development in large and distributed environments: a
systematic literature review on organizational, managerial and cultural aspects. In: MySEC,
pp. 216–221 (2014)

11. Jalali, S., Wohlin, C.: Agile practices in global software engineering – a systematic map. In:
ICGSE, pp. 45–54 (2010)

12. Saeeda, H., Ahmed, M., Khalid, H., Sameer, A.: Systematic literature review of agile
scalability for large scale projects. Int. J. Adv. Comput. Sci. Appl. 6, 63–75 (2015)

Quality Requirements in Large-Scale Distributed Agile Projects 233

13. Rizvi, B., Bagheri, E., Gasevic, D.: A systematic review of distributed agile software
engineering. J. Softw. Evol. Process. 27, 723–762 (2015)

14. Šmite, D., Wohlin, C., Gorschek, T., Feldt, R.: Empirical evidence in global software
engineering: a systematic review. Empir. Softw. Eng. 15, 91–118 (2010)

15. Jalali, S., Wohlin, C.: Global software engineering and agile practices: a systematic review.
J. Softw. Evol. Process. 24, 643–659 (2012)

16. Hossain, E., Babar, M.A.: Using scrum in global software development: a systematic
literature review. In: ICGSE, pp. 175–184 (2009)

17. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010)

18. Daneva, M., Damian, D., Marchetto, A., Pastor, O.: Empirical research methodologies and
studies in requirements engineering: how far did we come? Editorial for the JSS special issue
on empirical RE research and methodologies. J. Syst. Softw. 95, 1–9 (2014)

19. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software engineering.
In: 2011 International Symposium on Empirical Software Engineering and Measurement,
pp. 275–284 (2011)

20. Saldaña, J.: The Coding Manual for Qualitative Researchers. SAGE Publications Ltd.,
California (2012)

21. Alliance, A.: Manifesto for Agile Software Development (2001)
22. Robert, C.M., Micah, M.: Agile Principles, Patterns and Practices in C#. Prentice Hall,

New Jersey (2006)
23. Philippus, E.: Architecture Spikes (2009)
24. Vlietland, J.: Waarom Product Owner de meest ingewikkelde rol is in het scrum team. http://

www.agilepractice.nl/story/product-owner-scrum-team/

234 W. Alsaqaf et al.

http://www.agilepractice.nl/story/product-owner-scrum-team/
http://www.agilepractice.nl/story/product-owner-scrum-team/

Improving User Story Practice with the Grimm
Method: A Multiple Case Study in the Software

Industry

Garm Lucassen(B), Fabiano Dalpiaz,
Jan Martijn E.M. van der Werf, and Sjaak Brinkkemper

Utrecht University, Utrecht, The Netherlands
{g.lucassen,f.dalpiaz,j.m.e.m.vanderwerf,s.brinkkemper}@uu.nl

Abstract. Context and motivation: Previous research shows that a con-
siderable amount of real-world user stories contain easily preventable
syntactic defects that violate desired qualities of good requirements.
However, we still do not know the effect of user stories’ intrinsic qual-
ity on practitioners’ work. Question/Problem: We study the effects of
introducing the Grimm Method’s Quality User Story framework and
the AQUSA tool on the productivity and work deliverable quality of
30 practitioners from 3 companies over a period of 2 months. Prin-
cipal ideas/results: Our multiple case study delivered mixed findings.
Despite an improvement in the intrinsic user story quality, practitioners
did not perceive such a change. They explained, however, there was more
constructive user story conversation in the post-treatment period lead-
ing to less unnecessary rework. Conversely, project management metrics
did not result in statistically significant changes in the number of com-
ments, issues, defects, velocity, and rework. Contribution: Introducing
our treatment has a mildly positive effect but a larger scale investiga-
tion is crucial to decisively assess the impact on work practice. Also, our
case study protocol serves as an example for evaluating RE research in
practice.

Keywords: User stories · Requirements engineering · Agile develop-
ment · Empirical study · Multiple case study

1 Introduction

Thanks to the rapid adoption of agile development practices, approximately 50%
of software practitioners capture requirements using the semi-structured natural
language (NL) notation of user stories [8,12,25]: “As a 〈role〉, I want 〈goal〉, so
that 〈benefit〉”.

Despite the simplicity and wide-spread adoption of this requirements engi-
neering (RE) method, practitioners make many mistakes when creating user
stories. In previous work, we analyzed 1,000+ real-world user stories and found
that 56% contain easily preventable syntactic defects [13]. Examples include the
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 235–252, 2017.
DOI: 10.1007/978-3-319-54045-0 18

236 G. Lucassen et al.

use of a non-standard template and the specification of multiple features in one
user story.

Our solution for practitioners to create high-quality user stories was to
introduce two artifacts: the Quality User Story (QUS) framework and the com-
putational linguistics tool Automatic Quality User Story Artisan (AQUSA) [13].
Although we have empirically confirmed that numerous real-world user stories
violate QUS characteristics [13], we still lack evidence of the impact of QUS and
AQUSA on practitioners’ work.

This paper studies the impact of QUS and AQUSA on team communica-
tion frequency, team communication effectiveness, work deliverable quality, and
work productivity. We do this via a multiple case study where we compare the
pre-treatment period with the experimental period (2 months each) with 30
practitioners from 3 companies.

The participants first attended a 2 h training, received a summary of the
training’s content and applied their new skills in a training workshop. After we
integrated AQUSA with the company’s issue tracker, the participants applied
QUS and AQUSA in their work activities for two months. During this period,
we collected software development process metrics, practitioner perception of
the impact, and inherent user story quality. To determine the effect of our treat-
ment, we compared the results against data taken from the issue tracker in the
preceding two months.

The results of our empirical study are summarized by the following findings:

– The intrinsic user story quality generally increased after the treatment, result-
ing in fewer violations of the user story qualities prescribed by the QUS frame-
work;

– The perception on quality by practitioners shows a marginal improvement but
without reaching statistical significance;

– Despite our accurate measurements of the impact on work practices, we could
not identify any significant change, also due to changes in the organizational
context.

The next section of this paper outlines the research method. We then present
the results in Sect. 3 and review related literature in Sect. 4. Finally, Sect. 5
presents a discussion of the findings and concludes this paper with an outline of
future work.

2 Research Method

We study the impact of introducing a tool-supported quality framework for user
stories in agile development. We do this through a multiple case study with three
software product organizations. Over a span of two months, these organizations
incorporated two artifacts into their user story practices: QUS and AQUSA.

QUS [13] defines the quality of user stories via three types of criteria: (i) syn-
tactic (e.g., atomic and well-formed), concerning the textual structure of a user
story; (ii) semantic (e.g., problem-oriented and unambiguous), which focus on

Improving User Story Practice with the Grimm Method 237

the meaning of user stories; and (iii) pragmatic (e.g., unique and uniform), refer-
ring to how user stories are being used in RE. AQUSA automatically verifies
some QUS criteria using computational linguistics algorithms. In particular,
AQUSA supports those criteria for which we can reach close to 100% recall:
unique, minimal, well-formed, uniform and atomic.

We combine QUS and AQUSA into a package called Grimm Method, which
provides an easy-to-remember term for practitioners and explains our artifacts’
use during user story creation, poker planning, and software development.

We investigate the impact of the Grimm Method (our independent variable)
by presenting data that test the following four hypotheses (each defining one
dependent variable): “Applying the QUS framework accompanied by the AQUSA
tool” . . . :

H1 - “increases communication frequency”
H2 - “fosters more effective communication”
H3 - “improves work deliverable quality”
H4 - “increases work productivity”

2.1 Grimm Method Treatment Design

To minimize threats to the internal validity of our study and to ensure uni-
form data collection, we devised a stepwise treatment design. All the phys-
ical materials described in each of the steps below are available online [11].
Also, video/audio-recordings of the training sessions can be made available upon
request.

1. Baseline measurement - Two months before applying the treatment we
start collecting software development process metrics. We refer to this time
frame as the pre-treatment period.

2. Intake survey - On the treatment application day, each experiment partic-
ipant fills out a brief intake survey to learn more about his/her knowledge of
user stories and professional experience.

3. Training - The experimental treatment consists of a 2-h training session
during which the participants: (1) attend a presentation by the first author
on the Grimm Method [11], (2) discuss analysis of their stories by AQUSA, (3)
apply the QUS framework in a training workshop and (4) receive a summary
of the training’s content as reference material.

4. Experimental period - Upon completing the training, the team kicks off the
two-month experimental period by integrating AQUSA with their issue tracker.
From this moment, the team applies QUS in their daily work activities, sup-
ported by AQUSA that automatically analyzes any updated or newly added
user stories and collects data on company’s software development processes.

5. Exit survey - At the end of the experimental period each team member
completes an exit survey on the impact of introducing the Grimm Method.
The exit survey consists of 24 questions to capture the participant’s percep-
tion of H1–H4, subdivided in four distinct parts. The first and second part

238 G. Lucassen et al.

include questions on the pre-treatment period and experimental period in isolation,
the third part has questions that directly compare the two periods, and the
fourth part includes four open questions for respondents to provide further
feedback.

6. Project Manager Evaluation - Together with the team’s project manager
we evaluate the experimental period. The goal of this conversation is to validate
our interpretation of the data. In particular, we ask the project manager to
clarify outliers and to explain context-specific responses to the exit survey.

7. Interviews - We go through the responses to the exit survey to identify
participants who give inconsistent, particularly positive, remarkably nega-
tive and/or opinionated answers. We invite these participants to clarify their
responses in a follow-up interview to gather in-depth qualitative data.

These steps result in three types of data to test the hypotheses: (1) the intrin-
sic user story quality as reported by AQUSA, (2) the practitioners’ perception
of the Grimm Method’s impact on work processes and user story quality, and
(3) metrics about the software development process. We detail each data type
in the following subsections. We employ methodological triangulation to reduce
bias and to strengthen the validity of our results to form a more detailed and
balanced picture of the actual situation [18].

2.2 Measures

User Story Quality. The first type of collected data is the intrinsic user story
quality reported by AQUSA. As a direct measure of the impact of introducing
the Grimm Method, the results indicate whether the experiment participants
actually started creating syntactically better user stories. We apply AQUSA
analyses to user stories created during the pre-treatment period and experimental

period to detect the total number of violations for five quality criteria: well-
formed, atomic, minimal, uniform and unique [13]. Note that this is a subset of
the full QUS framework based on the characteristics that can be automatically
checked with high precision and recall accuracy. We expect the total number of
violations to decrease after introducing the Grimm Method.

Perceived Impact on Work Practice. We collect the second type of data by
means of the exit survey and follow-up interviews. In both cases, the experiment
participants self-report how they perceive the impact of the Grimm Method
on their work. In total, the exit survey includes 12 Likert-Type statements on
whether the respondents perceive the user stories to contribute to H1, H2, H3 and

H4. Examples include “The user stories improved my productivity” and “User
story conversation occurs more frequently since the Grimm Method training”.
Furthermore, the survey contains 4 questions and statements on respondents’
perception of the intrinsic quality of the user stories themselves such as “How
would you rate the quality of the user stories?” and “The quality of our user
stories is better since the Grimm Method training”. For the complete list of

Improving User Story Practice with the Grimm Method 239

survey questions we refer the reader to the online materials [11]. Note that
similar to our previous work [12], the survey relies on the participants’ own
understanding of productivity and work deliverable quality rather than enforcing
our own definition.

Process Metrics. Over the years, a large corpus of software development met-
rics has been proposed in the literature. The available metrics span from inherent
code quality metrics such as cyclomatic complexity [15] to team well-being met-
rics like the Happiness Index [10]. For RE alone, a literature review by Holm
et al. [6] distilled 298 unique dependent variables from 78 articles. In RE research,
however, it is unclear when and why which specific metrics are applicable [6].

Although the quality of user stories can potentially impact code quality met-
rics, the primary intention of user stories is to streamline the processes facili-
tating software development. By capturing and communicating the discussion
around the features to be implemented, user stories aim to enable developers to
produce software that stakeholders actually want [2] and practitioners perceive
a key quality of user stories to be enabling creation of the right software [12]. For
this reason this study looks at a specific type of metrics related to the (human)
processes around software development [14].

We select the following five metrics from literature for their relevance to our
hypotheses and their availability from project management software like Jira1:

Formal communication - We measure the frequency of communication in a
team (H1) as the number of comments added to the stories completed in a
2-week sprint.

Rework - We measure the amount of rework in a project by calculating the
recidivism rate: the rate at which user stories move backward in the soft-
ware development process [4]. When a developer assigns the status ‘done’ to
a user story, but it is not complete or has bugs, it is re-assigned ‘to-do’ or ‘in
progress’, causing the recidivism rate to go up. A high recidivism rates is an
indicator of ineffective communication causing misunderstanding among the
stakeholders. We calculate recidivism rate as: 200 ∗ (Backward/(Forward +
Backward)). Note that we include a multiplier of 200 to get a natural
0–100% range, instead of 0–50 as in [4]. This metric measures communication
effectiveness thereby relating to H2.

Pre-release defects - The number of bugs added to the issue tracker during a
2-week sprint. Inspired by defect prediction literature [19,20,26], which base
their metrics on all the defects in a six-months period before a new release.
Unlike these works, we focus on the narrow 2-week period of a sprint as Scrum
prescribes every sprint to be a potentially releasable increment. This metric
measures work deliverable quality, which is used to assess if H3 holds.

Post-release defects - The number of bugs related to user stories in a sprint,
as reported in the two sprints after that sprint. This choice is inspired by
defect prediction literature, which counts all defects in the first six months

1 https://www.atlassian.com/software/jira.

https://www.atlassian.com/software/jira

240 G. Lucassen et al.

after a release. Again, we substantially shorten this time-frame because of
Scrum’s quick feedback cycle. Moreover, summing the defects as reported in
twelve sprints would make the defect count differences between consecutive
sprints negligibly small. This metric measures work deliverable quality that
is used to test H3.

Team productivity - To measure the productivity of the development team
(H4) we sum the story points a team completes in a sprint: the so-called
velocity [2].

2.3 Experiment Participants

We announced the experiment within our professional networks. Based on orga-
nizational details and selection criteria such as development sprint length and
compatibility of the issue tracker with AQUSA, we invited 11 companies to par-
ticipate and sent them the exact details of the experiment. 5 companies with
headquarters in the Netherlands registered for participation. Unforeseen tech-
nical difficulties integrating AQUSA with firewalled enterprise editions of Jira
reduced the number of companies to 3.

eCommerce Company is a large company with over 2000 employees. One
team working on a next generation edition of the platform consisting of 6
developers, 2 UX designers and 3 project managers participated in the study.

Health Company is a medium-sized software producing organization that has
multiple products for delivering digital healthcare. A team working on a
new product consisting of 4 software developers, 1 software architect, 1 UX
designer, 1 scrum master and 1 project manager participated in the study.

RealEstate Company is a medium-sized software producing organization
that develops a product for a housing cooperative. The participating team of
11 employees has 6 software developers, 3 testers, one product owner and one
product manager.

In total, 30 practitioners from six different countries participated in the exper-
iment. The roles of these participants are: 16 software developers, 7 managers,
3 testers, 3 UX designers and 1 CTO. All the teams use Scrum as their primary
software development method and employ user stories. All practitioners report
they capture user stories in the Connextra template “As a 〈role〉 , I want 〈goal〉,
[so that 〈benefit〉]”, 11 of which ensure their quality by applying the INVEST
framework, while 8 defined their own guidelines instead and the remaining 11
participants do not use any guidelines. Note that the majority of practitioners
from RealEstate company indicated they did not use quality guidelines, while 2
selected INVEST and 2 others chose self-defined guidelines. For the eCommerce
company, it was a tie between INVEST and self-defined guidelines with 4 each,
followed by 3 saying they are not aware of any guidelines. The Health company
participants are more in agreement with 6 employing INVEST and just 1 each
choosing self-defined or no guidelines at all. The average participant has 3.1 years
of experience in working with user stories while his or her organization has 4.7

Improving User Story Practice with the Grimm Method 241

years of experience. Concerning their expertise with user stories, 2 participants
indicate they are at the novice stage, 5 are beginner, 15 are intermediate and 8
are advanced.

3 Results

This section presents the results of our multiple case study. We first look at
the change in intrinsic quality between the pre-treatment period and the experi-

mental period (Sect. 3.1). We then investigate the participants’ perception of the
effectiveness of the Grimm Method (Sect. 3.2). Finally, we analyze the software
development process itself by comparing the metric computed on the basis of
issue trackers data (Sect. 3.3).

3.1 Intrinsic User Story Quality

We collected all user stories created by the companies during the pre-treatment

period and the experimental period. We analyzed them running AQUSA’s defect
detection algorithms. We observe a reduced number of defects in the second
period in Table 1.

In particular, there are 38.3% fewer defects per user story (see the last row)
for eCommerce company and 47.5% fewer defects for RealEstate company in the
experimental period. The number of defects remained practically stable for Health
company (one additional defect: 23 instead of 22) (4.5% more). Aggregating all
the results, the post-period reveals 116 fewer defects for nearly as many user
stories. The companies produced 241 user stories in the pre-treatment period with
266 defects versus 239 user stories with 150 defects in the experimental period.
Due to the small number of defects for Health company, there is a substantial
difference between the 27% macro-average and 43.14% weighted micro-average
defect reduction [22].

Looking beyond the averages, the distribution of defects mostly remained the
same for eCommerce and RealEstate companies, while they changed for Health
company. The number of uniformity and uniqueness defects (almost) doubled
whereas the number of well-formed and atomic defects (more than) halved.

The results suggest that applying the Grimm Method treatment generally
had a positive effect on the intrinsic quality of user stories. On the other hand,
the improvement is to be expected considering we measure quality with the
exact same criteria as prescribed by the treatment. To further test the quality
of the textual requirements, we considered using algorithms that assess single
sentence complexity. Unfortunately, this field is still immature [24]; while many
metrics for readability of texts exist, they require passages of text with 100+
words. Nevertheless, we applied multiple readability metrics to our user story
collections but found no substantial change between the pre-treatment period and
the experimental period. For example: the Gunning fog indexes [5] of our three sets
are 11.0 vs. 10.8, 12 vs. 12.1, and 9.3 vs. 8.7, while the New Dale-Chall scores [1]
are 5 vs. 5.3, 5.3 vs. 5.4, and 5.5 vs. 4.9 for eCommerce, Health and RealEstate,
respectively.

242 G. Lucassen et al.

Table 1. Intrinsic user story quality analysis by AQUSA, comparing the pre-treatment
period (pre) and the experimental period (exp).

Number of user stories eCommerce Health RealEstate

Pre Exp Pre Exp Pre Exp

105 71 33 33 103 135

Defects breakdown

- Well formed : each story has at least a role
and a means

63 27 7 4 33 22

- Atomic: each story expresses a
requirement for one feature

10 1 6 2 6 8

- Minimal : each story contains only role,
means, and ends

20 11 0 0 30 16

- Uniform: all written stories employ the
same template

38 19 7 13 24 18

- Unique: each story is unique, duplicates
are avoided

20 5 2 4 0 0

Total defects 151 63 22 23 93 64

Defects per user story 1.44 0.89 0.67 0.70 0.90 0.47

3.2 Participant Perception

At the end of the experimental period each participant completed an exit survey on
the perceived impact of introducing the Grimm Method. 27 participants submit-
ted a complete and valid survey. Due to the limited sample size we mostly report
on the aggregate answers of all respondents; a per-company discussion is pre-
sented at the end of the subsection. We first analyze the participants’ responses,
illustrated with quotes from 6 follow-up interviews. After perceived user story
quality, we focus on the treatment’s impact (H1–H4). Note that we use H#a

to highlight questions that directly compare the pre-treatment and experimental

periods, and H#b for questions on an individual period.

User Story Quality. The exit survey asks the participants to rate user story
quality on a scale from 0–10 twice: first for the pre-treatment period and then again
for the experimental period. Overall, the responses show a small user story quality
improvement after applying the treatment: an average score of 6.96 vs. 7.15 with
standard deviations of 1.34 vs. 1.29. In total, 9 respondents report a positive user
story quality change after the experimental period, 12 report no change at all
and 6 indicate the quality of the user stories decreased. However, when analyzing
the distribution of responses via a Wilcoxon signed-rank test, we obtain no
statistically significant difference between the two periods (Z = −.984, p = .325).
Thus, concerning the introduction of the Grimm Method’s QUS and AQUSA,
we could not observe statistically significant changes in practitioner’s perception
of user story quality.

Improving User Story Practice with the Grimm Method 243

Yet, when asked to directly compare the pre-treatment period with the exper-

imental period the responses are less neutral. The majority of respondents (16
or 59%) state they agree with the Likert-Type statement “The quality of our
user stories is better since the Grimm Method training”, while 10 respondents
neither agree nor disagree (37%) and just 1 respondent disagrees (4%). Also, 14
respondents (52%) agree with the statement “My satisfaction of our user stories
is higher since the Grimm Method training”, 11 neither agree nor disagree (41%)
and 2 respondents disagree (7%).

In follow-up interviews, we asked respondents to motivate their answers and
to explain why they did not report a change in the user story quality score,
yet they do agree that the quality of their user stories improved. Two eCom-
merce Company and two RealEstate Company interviewees emphasize that their
reported increase in user story quality was moderate, if present at all. They indi-
cate that introducing the Grimm Method did not result in a meaningful, lasting
process change, but that they themselves and their colleagues did become more
aware of the relevance of capturing user stories in a diligent manner. The UX
designer from eCommerce Company notes “I believe that someone coming from
outside the organization to tell us how you are supposed to do this has had the
most influence. It aligns everyone’s ideas on user stories. It helps that the method
presents everything in a piecemeal fashion.”

These results reveal a discrepancy between the intrinsic and perceived change
in user story quality. While the number of defects dropped by 43.14%, just
9 participants reported a (marginal) positive change in user story quality.
Although respondents did respond positively to the Likert-Type statements,
follow-up interviews clarified that the respondents do not believe user story qual-
ity improved substantially.

One possible explanation for this mismatch is AQUSA’s focus on highlighting
simple, easy to detect issues. This results in highly accurate yet seemingly trivial
output. The importance of fixing a uniformity mistake, for example, can be
difficult to comprehend, and those improvements may be regarded as too small
to lead to an improvement.

Communication Frequency and Communication Effectiveness. We
study participants’ perception of conversation by breaking it down into two
dimensions: frequency and constructiveness. Respondents do not report a signif-
icant change in H1b: communication frequency between the pre-treatment period

and experimental period (see Fig. 2). 21 respondents did not change their answer
after the training (78%), 4 reported a decrease in conversation frequency (15%)
and 2 reported an increase (7%). The majority of respondents still experienced
excessive communication around user stories; however, 3 out of the 4 partici-
pants from eCommerce Company that reported a communication decrease did
no longer perceive the amount of conversation to be excessive.

The number of respondents that agree with statement H2b “The user stories
contributed to constructive conversation concerning the software to be made”
after the treatment grew from 14 to 18 (52% to 67% as per Fig. 2). Notably,

244 G. Lucassen et al.

the respondent that indicated he strongly disagreed with the statement for the
pre-treatment period agreed with the statement after the treatment. When directly
comparing the pre-treatment period with the experimental period, most respondents
agreed that conversation was more frequent (H1a, 13 or 48%) and was more
effective (H2a, 14 or 52%, see Fig. 1).

Again, the data exhibits a discrepancy. Participants self-report small commu-
nication differences between the pre-treatment period and experimental period, yet
agree with statements that communication frequency and effectiveness improved
after attending the Grimm Method training. Follow-up interviewees gave diverse
motivations of their answers and clarifications of this discrepancy. The answers
regarding whether conversation frequency increased or decreased after apply-
ing the treatment varied in particular. One respondent indicated the amount
of conversation increased by up to 40% while another thought the amount of
conversation decreased substantially.

Regardless of the increase or decrease, however, the interviewees agreed on
the positive impact on conversation effectiveness. The same UX designer from
eCommerce Company reported a positive change in communication frequency
and effectiveness: “Previously we lost a lot of time talking about trivial things. By
trying to create better user stories as a team the discussion became more focused
which resulted in more in depth conversation on why and how to approach a
problem. Although this means more conversation it also saved time”.

A software developer from eCommerce Company who contributed to the
exhibited discrepancy explained his choice as follows: “I think the conversation
effectiveness did change positively, but the Grimm Method training made me
more critical of what to expect from user story conversation in terms of effec-
tiveness”. This explanation highlights an unexpected phenomenon: although the
treatment achieved its intended effect, it simultaneously influenced the way we
measure that effect. These consequences cancel each other out, leading to a nul-
lification of the impact measurement.

0%

7%

7%

11%

52%

48%

37%

30%

48%

44%

56%

59%H4a. Work Productivity

H3a. Work quality

H2a. Communication effectiveness

H1a. Communication frequency

Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Fig. 1. Answers to Likert-Type statements directly comparing pre-treatment and
experimental periods. The shown percentages (left-to-right) refer to Strongly Dis-
agree + Disagree, Neither Agree nor Disagree and Agree + Strongly Agree, respectively.

Improving User Story Practice with the Grimm Method 245

Work Deliverable Quality and Work Productivity. Although respondents
reported little change in work deliverable quality (H3b) after the experimental
treatment in Fig. 1, 10 respondents (37%) agreed with H3a “The quality of my
work deliverables is better since the Grimm Method training” in Fig. 2. In follow-
up interviews, we asked respondents to clarify this discrepancy. Interviewees’
responses were unanimous: the technical quality of the developed software did
not improve, whereas the treatment clarified the goals of user stories thereby
making it easier to develop software with less rework. This sentiment is illus-
trated by a software engineer from RealEstate Company: “More effective and
efficient conversation on user stories has reduced the amount of surprises later
on. As a developer you have the responsibility to continue posing questions until
you know what you are working on. The actual work deliverable quality is the
same.”

7%

4%

56%

56%

37%

41%

H1b. Communication frequency

Post

Pre

Not at all Perfect Excessive amount

7%

7%

67%

52%

26%

41%

11%

7%

63%

56%

26%

37%

19%

19%

56%

41%

26%

41%

H2b. Communication effectiveness

H3b. Work Quality

H4b. Work Productivity

Post

Pre

Post

Pre

Post

Pre

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Fig. 2. Answers to Likert-Type statements for pre-treatment and experimental periods.

Responses were more consistent for work productivity. For H4b, 7 respon-
dents indicated a positive change (26%), 16 did not change their answer (59%)
and 4 experienced a decrease in work productivity (15%). Similarly, 8 or 30% of
respondents agreed with H4a “My work productivity is higher since the Grimm
Method training” (Fig. 2). Again, interviewees did not find user stories to have a
direct impact on developers productivity because programming tasks do not sub-
stantially change due to better user stories. The interviewees, however, perceived

246 G. Lucassen et al.

more efficient processes around software development. The product manager of
Health Company says “I do not think the productivity itself increased, but we
are more efficient in getting to the stage of being productive” and a software
developer from eCommerce Company “I do not think my personal productiv-
ity increased, but for the entire team it did. As a team you can collaborate and
communicate more efficiently and effectively which improves productivity”.

Note that we found no correlation between a participant’s role and his or
hers perceived change in work deliverable quality and work productivity. It is
likely, however, that this is due to the study’s sample size. A future study at a
larger scale could confirm our earlier results [12] that project managers perceive a
more positive impact than software developers. Similarly, there is no statistically
significant difference between the three case companies concerning their change
in perception due to the limited sample size. Inspecting the Likert-Type graphs
per company available online [11] reveals that:

– RealEstate Company employees clearly indicated a positive impact in all
questions concerning both H#a and H#b.

– Health Company employees are mostly neutral concerning H#a: slightly
positive on communication frequency (H1a) and communication effectiveness
(H2a), and mildly negative on work quality (H3a) and work productivity (H4a).
In H#b questions, they report no change concerning communication effective-
ness (H2b) and work quality (H3b), and a minor positive change about work
productivity (H4b).

– eCommerce Company employees are in between. They report both positive
and negative change after introducing the Grimm Method, with more positive
results concerning communication (H1a, H2a, H2b), slightly negative results on
work quality (H3b), and neutral results for the other questions.

3.3 Software Process Metrics

The raw metric data is presented in Tables 2, 3 and 4, one for each participating
company. The columns capture the following data: sprint identifier, number of
comments, issues and defects within the sprint, number of post-release defects,
recidivism rate and velocity. Note that we separate each table in two: the pre-

treatment period corresponds to sprints 1–4 and the experimental period spans across
sprints 5–8.

A visual, qualitative inspection of the results reveals three main concerns:

1. The total number of comments, issues, defects and velocity varies greatly
between companies; compare, for example, the number of comments in the
eCommerce company and in the Health company.

2. Some sprints include data outliers such as the number of defects in RE7.
3. The impact of the Grimm Method is likely to be small and can hardly be

detected by visual inspection.

Improving User Story Practice with the Grimm Method 247

Table 2. eCommerce metric data

Sprint Issues Comments Def Post
Def

Recidivism Velocity

EC1 50 1 15 24 0.00 24
EC2 67 1 12 18 4.11 34
EC3 59 2 11 10 4.62 8
EC4 71 3 8 6 2.21 15
Treatment applied

EC5 21 6 3 7 8.00 18
EC6 21 4 2 22 0.00 18
EC7 28 14 4 21 4.84 16
EC8 48 9 17 6 3.06 16

Table 3. Health metric data

Sprint Issues Comments Def Post
Def

Recidivism Velocity

HE1 56 54 2 7 14.32 47
HE2 42 64 4 4 9.36 63
HE3 17 26 4 2 3.23 23
HE4 19 46 1 5 7.96 33
Treatment applied

HE5 20 24 1 12 3.69 32
HE6 21 56 3 12 0.93 50
HE7 30 36 9 3 2.56 37
HE8 26 40 1 0 9.55 42

To learn the actual impact of the Grimm Method we investigate whether the
pre-treatment period and experimental period produce statistically different means.
To reduce the numbers’ variety we normalize them to a 0 to 100 scale, where
100 is the highest score per columns per company. For example: eCommerce
Company’s sprint EC7 has the most comments, 14, and is assigned 100. EC6
has 4 comments and gets normalized to 4/14 ∗ 100 = 28.57.

Table 4. RealEstate metric data

Sprint Issues Comments Def Post
Def

Recidivism Velocity

RE1 130 5 9 15 3.57 18
RE2 136 7 1 15 4.05 14
RE3 137 10 4 15 8.23 7
RE4 117 5 2 44 6.67 8
Treatment applied

RE5 113 12 8 106 3.31 22
RE6 96 2 18 94 7.14 18
RE7 268 18 59 85 8.13 33
RE8 230 9 20 27 6.77 22

Table 5. Wilcoxon signed-rank tests

Issues Comments Def Post
Def

Recidivism Velocity

Z −1.177 −1.490 −.178 −1.557 −.275 −.628
Sig. .239 .136 .859 .120 .784 .530

To test if the mean ranks differ between the pre-treatment and the experi-

mental period we apply the Wilcoxon signed-rank test for non-parametric data
(see Table 5). None of the tests produce a significant difference between the pre-

treatment period and experimental period groups with all Z < ±1.960. This indicates
that introducing the Grimm Method and Tool did not produce a statistically sig-
nificant change in number of comments, issues, pre-release defects, post-release
defects, recidivism rate nor velocity.

Although no statistically significant effect is observable, outliers in the data
suggest that some change did occur. The outliers’ significant divergence from
the means make them eligible for removal in case the data has been unfairly
influenced. For instance: the number of pre-release defects in EC7 is 3 times
as high as the second highest value. We asked the in-charge project managers
to clarify the outliers in their data. Their explanations reassured us of their
validity. Two of the three project managers attribute the outliers to company-
specific irregularities. In summary:

– The eCommerce company team lost productivity starting from EC3 due to
internal discussions concerning the product direction.

248 G. Lucassen et al.

– For the RealEstate company the merger of two project teams into one in
RE3 resulted in productivity loss. Furthermore, an upcoming release in RE7
resulted in the reporting of many defects.

– The Health company project manager did notice a steady increase in produc-
tivity during the experimental period. However, he did not believe the Grimm
Method has been the primary driver of this improvement, which he attributed
to how the team started achieving what it is capable of after a period of under
performance.

Yet, each project manager agreed that the frequency and effectiveness of user
story conversation improved after the Grimm Method training. A replication of
this study on a larger scale is necessary to confirm whether the phenomenon of
experiencing a positive change without actively attributing it to the treatment
is universal.

4 Related Literature

Although many evaluations exist on the impact of new RE methods, we could
not identify any study where an RE treatment was experimented by comparing
months-long periods with companies. A review of empirical papers on software
process improvement [23] shows that just 8 out of 148 studies applied experi-
mentation as their research method. None of these 8 both (1) relate to RE and
(2) apply a pre-post comparison. However, the literature includes several closely
related case study reports.

Kamata and Tamai investigated the relationship between requirements qual-
ity and project success or failure [7]. They analyzed 32 projects completed in a
Japanese company which produces thorough quality reports for all requirements.
They detected a weak relationship between SRS quality and project outcome,
with five SRS criteria having a strong impact: overview, product perspective,
apportioning of requirement, functions and purpose. Similarly, Knauss et al.
found that in 40 student projects’, success relates to the quality of the SRS
they produce. For their specific context, they were even able to define a quality
threshold that can be used to predict risk of failure [9].

Damian et al. introduced a formal RE process to the daily work processes
of 31 project members of one Australian company [3]. They collected data over
6 months via a questionnaire, interviews and document inspection to measure
practitioner’s perception and development performance in terms of estimated
effort vs. expended effort. Their analysis of the data indicated a positive effect
of improving requirements management process in industry on downstream soft-
ware development, especially in terms of more accurate estimations, improved
project planning, and enhanced project scoping.

Sommerville and Ransom investigated whether improvements in RE process
maturity lead to business improvements [21]. Over a period of 18 months, 9
case study companies incorporated advice on RE process improvement and self-
reported on business key performance indicators (KPIs). After the experimental
period, for each company both the RE process maturity and relevant business

Improving User Story Practice with the Grimm Method 249

KPIs had improved. In spite of this, the authors could not statistically correlate
the two due to incompatible KPIs.

Napier et al. explored the feasibility of an RE improvement process based on
the RE Good Practice Guide that considers stakeholders’ perception of which
problems are most relevant [17]. The authors evaluate this method during a
three-year action research process with one company. The results show a 69%
increase in the number of implemented RE guidelines and unanimous positive
perception by the participants.

Méndez Fernández and Wagner [16] explored the effect of the RE improve-
ment approach ArtREPI that applies the RE best practice database AMDiRE.
The impact of ArtREPI in two case studies is measured via two post-treatment
questionnaires: one on the support of process engineers and one about project
participants’ rating of ArtREPI’s output. ArtREPI meets practitioners’ process
improvement needs when problem and artifact orientation are important, but
the authors call for larger-scale replications.

Our research incorporates elements from each of the aforementioned stud-
ies. We consider the relevance of little direct author involvement [16], allow the
companies to choose themselves which quality criteria to apply [17], introduce
our treatment to multiple companies [21] and collect both qualitative percep-
tion data and quantitative metrics [3]. Differently from Damian’s study [3], our
metrics include quantitative and qualitative data on indirectly related human
processes around software development.

There are many other possible metrics. Holm et al.’s systematic litera-
ture review [6] provides an overview of how previous literature conceptualizes
and operationalizes RE. Their examination of 78 studies reveals that in total
researchers used 298 dependent variables corresponding to 37 unique classes and
they find there is no agreement on how to measure RE success and unclarity
in the choice of the variables. However, RE validation studies like ours do per-
form best: 60% of all dependent variables are of the type defects found and the
majority of dependent variables include a motivation.

5 Discussion and Outlook

We studied the effect of applying the Grimm Method’s QUS framework and the
AQUSA tool into existing user story practices through a multiple case study.
Although the number of user story quality defects decreased by 43.14% after
applying the treatment, participants did not perceive a meaningful change in
user story quality. Yet, the respondents agreed that communication frequency
and effectiveness improved.

On the negative side, we found no statistically significant difference in com-
munication frequency, communication effectiveness, work quality and work pro-
ductivity perception between the pre-treatment and experimental periods. Further-
more, our study of the impact on work practices by measuring software process
metrics (number of comments, issues, defects, velocity and recidivism rate) did
not lead to statistically significant results, perhaps also due to organizational
changes between the two periods.

250 G. Lucassen et al.

Taking our results into account, we cannot accept our hypotheses H1–4 from
Sect. 2. Further investigation is required to obtain more decisive results. However,
the results make us hypothesize that improving user stories’ intrinsic quality
in itself is not essential, but that highlighting quality criteria defects seems to
stimulate relevant and meaningful discussion around user stories (a key activity
according to Cohn [2]). For example, the quality criterion minimal is seldom
resolved by simply removing the text between two brackets, as the in-brackets
text is often important: during Grimm Method workshops, defects of this type
often indicated an insufficiently refined user story to be further discussed prior
to assigning it to the sprint backlog. The consequence of these dynamics is not
necessarily a higher quality user story or a direct increase in productivity, but a
team that may more quickly agree upon the requirements.

Another explanation for the outcome is that the treatment is wrong, incom-
plete or even overcomplete. Although the QUS framework describes 13 quality
characteristics, the individual relevance is unknown. Replacing or removing some
criteria could improve the results. Also, in this study we focused on just the 5
(out of 13) characteristics that the AQUSA tool automatically detects. It would
be interesting to conduct a study on all of QUS framework’s criteria and to
assess their individual impact.

Threats to Validity. Multiple human factors should be considered and many
aspects of the study design are hard to control for. Two important internal valid-
ity threats are the Hawthorne Effect and good participant response bias which
causes participants that are aware of being observed to (sub)conciously mod-
ify their behavior. Related is the first confounding variable: simply instructing
participants to pay attention to user story quality when creating them could be
enough to explain the change in intrinsic user story quality. Additionally, there
is a risk of regression toward the mean: if the user stories’ quality was very poor,
they would have improved regardless of the applied quality criteria. Although
we tried to control for the latter two validity threats by selecting case companies
with multiple years of user story experience, their relevance persists due to the
absence of control groups. Note that all four of these threats could explain why
we did not detect statistically significant positive changes, yet participants do
agree that communication frequency and effectiveness improved after applying
the treatment.

Our application of the treatment and measurement of the results introduce
two other validity threats. After attending the training, the participants could
have attempted hypothesis guessing : knowing the desired result changes their
actions. In a larger scale study it is possible to control for this threat by leaving
participation in the study open ended and not informing participants of data
collection. A large scale study also allows taking into account other potentially
confounding variables such as the number of people in the project or the company
size. For example, in the large eCommerce company, frequent team composition
changes could influence the team’s acceptance of new methods. Furthermore,
there is an evident history threat: events outside of the researchers’ control affect

Improving User Story Practice with the Grimm Method 251

the outcome of the results. In the chaotic environment of software companies,
many unforeseen events occur over a two month period that can affect the col-
lected data. Although unavoidable in empirical research, substantially increasing
the scale of the study is likely to reduce the impact of on the data.

Finally, there is a potential bias in the experimental design: the number of
comments in Jira is not sufficient to measure the intended effect of increasing
communication. In agile software development, much of the communication is
verbal and informal. Unfortunately, it is extremely hard to accurately measure
and record verbal communication.

Future Work and Outlook. The mildly positive participant perception is not
confirmed by software development process metrics. As in similar studies [16,
21], a large scale replication is necessary to generalize our conclusions, also to
reduce threats to validity by controlling for confounding variables as company
and project size. Additionally, we want to study the implications of specific
quality criteria; what are the consequences of a minimality or uniformity defect
in isolation? Also, we aim to devise tools that learn how to suggest improvements
based on the most common resolution strategies.

Finally, we invite the RE community to undertake similar studies with the
aim of measuring the actual effect of RE methods on work practices; our mixed
results emphasize the importance of replication studies but also highlight some
of the problems that other researchers could encounter in the evaluation of their
own solutions.

References

1. Chall, J.S., Dale, E.: Readability Revisited: The New Dale-Chall readability for-
mula. Brookline Books, Brookline (1995)

2. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley,
Boston (2004)

3. Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y.: Requirements engineering
and downstream software development: Findings from a case study. Empir. Softw.
Eng. 10(3), 255–283 (2005)

4. Davis, C.W.H.: Agile Metrics in Action: Measuring and Enhancing the Performance
of Agile Teams, 1st edn. Manning Publications Co., Greenwich (2015)

5. Gunning, R.: Technique of Clear Writing. McGraw-Hill, New York (1968)
6. Holm, H., Sommestad, T., Bengtsson, J.: Requirements engineering: the quest for

the dependent variable. In: Proceedings of IEEE International Requirements Engi-
neering Conference (RE), pp. 16–25 (2015)

7. Kamata, M.I., Tamai, T.: How does requirements quality relate to project suc-
cess or failure? In: Proceedings of IEEE International Requirements Engineering
Conference (RE), pp. 69–78 (2007)

8. Kassab, M.: The changing landscape of requirements engineering practices over the
past decade. In: Proceedings of International Workshop on Empirical Requirements
Engineering (EmpiRE), pp. 1–8. IEEE (2015)

9. Knauss, E., Boustani, C., Flohr, T.: Investigating the impact of software require-
ments specification quality on project success. In: Bomarius, F., Oivo, M., Jaring, P.,
Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 28–42. Springer, Hei-
delberg (2009). doi:10.1007/978-3-642-02152-7 4

http://dx.doi.org/10.1007/978-3-642-02152-7_4

252 G. Lucassen et al.

10. Kniberg, H.: What is Crisp? (2010). http://blog.crisp.se/2010/05/08/henrikknib
erg/what-is-crisp. Accessed 25 May 2016

11. Lucassen, G.: Experimental materials QUS and AQUSA evaluation (2016). http://
www.staff.science.uu.nl/lucas001/qus aqusa eval materials.zip. Accessed 02 Oct
2016

12. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ
2016. LNCS, vol. 9619, pp. 205–222. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-30282-9 14

13. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving
agile requirements: the quality user story framework and tool. Requir. Eng. 21(3),
383–403 (2016)

14. Madeyski, L., Jureczko, M.: Which process metrics can significantly improve defect
prediction models? An empirical study. Softw. Qual. J. 23(3), 393–422 (2015)

15. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320
(1976)

16. Méndez Fernández, D., Wagner, S.: A case study on artefact-based re improvement
in practice. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES
2015. LNCS, vol. 9459, pp. 114–130. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-26844-6 9

17. Napier, N.P., Mathiassen, L., Johnson, R.D.: Combining perceptions and prescrip-
tions in requirements engineering process assessment: an industrial case study.
IEEE Trans. Softw. Eng. 35(5), 593–606 (2009)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

19. Schröter, A., Zimmermann, T., Premraj, R., Zeller, A.: If your bug database could
talk. In: Proceedings of International Symposium on Empirical Software Engineer-
ing (ISESE), pp. 18–20 (2006)

20. Shihab, E., Jiang, Z.M., Ibrahim, W.M., Adams, B., Hassan, A.E.: Understanding
the impact of code and process metrics on post-release defects: a case study on the
Eclipse project. In: Proceedings of International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 4:1–4:10. ACM (2010)

21. Sommerville, I., Ransom, J.: An empirical study of industrial requirements engi-
neering process assessment and improvement. ACM Trans. Softw. Eng. Methodol.
14(1), 85–117 (2005)

22. Tague-Sutcliffe, J.: The pragmatics of information retrieval experimentation, revis-
ited. Inf. Process. Manag. 28(4), 467–490 (1992)

23. Unterkalmsteiner, M., Gorschek, T., Islam, A.K.M.M., Cheng, C.K., Permadi, R.B.,
Feldt, R.: Evaluation and measurement of software process improvement - a sys-
tematic literature review. IEEE Trans. Softw. Eng. 38(2), 398–424 (2012)

24. Vajjala, S., Meurers, D.: Readability-based sentence ranking for evaluating text
simplification (2016). arXiv e-prints arXiv:1603.06009

25. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering
practices in agile development: an empirical study. In: Zowghi, D., Jin, Z. (eds.)
Requir. Eng. CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43610-3 15

26. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for Eclipse. In: Pro-
ceedings of PROMISE 2007 Workshop (2007)

http://blog.crisp.se/2010/05/08/henrikkniberg/what-is-crisp
http://blog.crisp.se/2010/05/08/henrikkniberg/what-is-crisp
http://www.staff.science.uu.nl/lucas001/qus_aqusa_eval_materials.zip
http://www.staff.science.uu.nl/lucas001/qus_aqusa_eval_materials.zip
http://dx.doi.org/10.1007/978-3-319-30282-9_14
http://dx.doi.org/10.1007/978-3-319-30282-9_14
http://dx.doi.org/10.1007/978-3-319-26844-6_9
http://dx.doi.org/10.1007/978-3-319-26844-6_9
http://arxiv.org/abs/1603.06009
http://dx.doi.org/10.1007/978-3-662-43610-3_15
http://dx.doi.org/10.1007/978-3-662-43610-3_15

Natural Language Processing,
Information Retrieval and Machine

Learning

Semi-automatic Software Feature-Relevant
Information Extraction from Natural Language

User Manuals

An Approach and Practical Experience at Roche
Diagnostics GmbH

Thomas Quirchmayr1(B), Barbara Paech1, Roland Kohl2, and Hannes Karey2

1 Institute for Computer Science, University of Heidelberg, Heidelberg, Germany
{thomas.quirchmayr,barbara.paech}@informatik.uni-heidelberg.de

2 Roche Diagnostics GmbH, Mannheim, Germany
{roland.kohl,hannes.karey}@roche.com

Abstract. Context and motivation: Mature software systems comprise
a vast number of heterogeneous system capabilities which are usually
requested by different groups of stakeholders and which evolve over
time. Software features describe and bundle low level capabilities log-
ically on an abstract level and thus provide a structured and com-
prehensive overview of the entire capabilities of a software system.
Question/problem: Software features are often not explicitly managed.
Quite the contrary, feature-relevant information is often spread across
several software engineering artifacts (e.g., user manual, issue track-
ing systems). It requires huge manual effort to identify and extract
feature-relevant information from these artifacts in order to make feature
knowledge explicit. Principal ideas/results: Our semi-automatic app-
roach allows to identify and extract atomic software feature-relevant
information from natural language user manuals by means of a domain
glossary, structural sentence information, and natural language process-
ing techniques with a precision and recall of over 94% and 96% respec-
tively. Contribution: We provide an implementation of the atomic soft-
ware feature-relevant information extraction approach together with this
paper as well as corresponding evaluations based on example sections of
a user manual taken from industry.

Keywords: Software feature · Information extraction · Natural
language processing

1 Introduction

The necessity of feature-based software system descriptions is manifold: release
planning in software product management (see, e.g., [41], software product
line engineering (see, e.g., [5]), requirements feature interaction detection (see,
e.g., [36]), stakeholder communication (see, e.g., [35]), as well as software product
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 255–272, 2017.
DOI: 10.1007/978-3-319-54045-0 19

256 T. Quirchmayr et al.

comparison (see, e.g., [16]). However, features are often not explicitly managed,
at least not from scratch. Rather, feature-relevant (FR) information is spread
across several software engineering (SE) artifacts. Thus, these artifacts need to be
searched in order to uncover FR information. In our prior paper [34], we pointed
out that user manuals can serve as an appropriate source to gather FR infor-
mation from a user workflow-driven perspective. Depending on the size of the
software system and thus the size of the corresponding user manual, manual FR
information extraction is cumbersome, error-prone, and costly (see, e.g., [38]).
As a consequence, our overall research goal is to provide automated support to
extract features and related FR information from natural language (NL) user
manuals.

In this paper, we report on an approach which semi-automatically extracts
atomic FR information from NL user manuals based on lexical and syntactic
text characteristics. Furthermore, we evaluate our approach based on data of a
user manual of a bespoke in-house customer relationship management (CRM)
software system of Roche Diagnostics GmbH (in the following Roche). Roche is a
globally operating company with more than 5000 employees. The in-house devel-
opment department focuses on the implementation of bespoke software systems
and the customization of buy-in standard software. The CRM software system
is called Global Deal Calculator (GDC) and it supports contract life cycle man-
agement. Roche started to manage features for GDC recently. However, they
do not have a complete feature-based description of the entire GDC. Therefore,
Roche wants to complete the GDC features with minimal manual effort from
the existing and up-to-date GDC user manual retrospectively.

We did a first exploration of Roche’s user manual. It showed, that it is impos-
sible to extract features directly from the user manual, because (1) features are
often only implicitly mentioned (e.g., the sentence “The quantificator calculates
materials.” describes the feature price calculation only implicitly as the term
“price” is not mentioned in the sentence) and (2) relevant information is spread
across the entire user manual. Therefore, we follow a bottom-up approach, that is
to extract atomic FR information and cluster it logically into features afterwards.

The remainder of this paper is structured as follows: Sect. 2 gives an overview
of the feature concept as well as insight into natural language processing tech-
niques used in our approach. Section 3 describes our approach for atomic FR
information extraction and Sect. 4 provides an evaluation based on example data
from the GDC user manual. Section 5 discusses threats to validity followed by
a discussion of related work in Sect. 6. Finally, Sect. 7 concludes the paper and
discusses future contributions.

2 Background

The term feature is widely used in computing: from image processing (e.g., image
structure [33]), signal processing (e.g., aiming to capture specific aspects of audio
signals in a numeric way [33]) to computer linguistics (e.g., property of a class of
linguistic terms which describes individual members of this class [15]), machine

Semi-automatic Software Feature-Relevant Information Extraction 257

learning (e.g., specification of an attribute and its value [8]), and software
engineering (e.g., characteristic of a software item [20]). Even within the domain
of software engineering, there is neither a common understanding nor a precise
definition of a feature in literature (see, e.g., [4,14,30]) as well as in practice.
Therefore, in the context of this paper, we define a feature as follows (inspired
by [9,17]):

A feature describes an abstract unit of behaviour of a software system at a
high level and bundles atomic information which describe the unit of behaviour
at a detail level. The latter is called atomic feature-relevant information.

As an example, “Quantificator calculates materials” is an atomic FR unit of
information of the feature “Price Calculation”. An atomic unit of information,
in contrast to combined information, cannot be broken down into other simpler
units of information without losing information (see, e.g., [11,24]). In short,
we want to extract smallest bits of information. Based on the requirement of
information atomicity, we define a linguistic information model (LIM) for
atomic FR information (see Fig. 1).

Predicate Property

Verb Verb
Phrase

Verb
Complement

Preposition Preposition
Complement

Preposition
Phrase

Phrase

Modifier

SubjectObject

Noun
Phrase Noun

Clause

Information

Wh
Clause

Conditional
Clause

Clause
Term

To
Clause

That
Clause

* *

1 1

0..1
0..1

1
0..1

1

1

0..1

1

0..1

1

*

Fig. 1. Linguistic information model (LIM)

An atomic unit of Information is a Clause and comprises at most one Subject
and one Predicate. A Clause contains one Clause Term and is either a To Clause,
a Conditional Clause, a That Clause, or a Wh Clause. Additionally, Clauses

258 T. Quirchmayr et al.

comprise Information. In contrast to the other Clauses, a Conditional Clause
might contain more than one atomic unit of Information as combined conditions
(e.g., If the quantificator runs AND the error is shown) cannot be separated.
A Predicate requires a Verb Phrase which comprises at least one Verb and
optional Verb Complements. Furthermore, a Predicate might include an Object.
Both Subject and Object are a Property, which contains a Noun Phrase. A Noun
Phrase consists of Nouns and Modifiers. For simplification, adverbs are included
in Verbs, and adjectives are included in Nouns. Figure 2 depicts some components
of the LIM based on two example sentences.

1 32332 4 1

A B C

1 3 1 132

D

A
B
C
D

1
2
3
4

Wh Clause
Preposition Phrase
To Clause
Condition Clause

Noun (with adjective)
Clause Term
Verb (with adverb)
PrepositionSubject Predicate Predicate's Object

The materials which are calculated by GDC are used to calculate prices.

If the quantificator ran erroneous, GDC displays a warning.

1
prices

Fig. 2. LIM components based on 2 example sentences

Our approach utilizes NL processing (NLP) techniques (see, e.g., [21]) in
order to extract FR information on detail level and split them into atomic units of
FR information. Basically, we use a part-of-speech (POS) parser (see, e.g., [21])
in order to determine the syntax of NL texts. A POS parser determines the
syntax of a sentence providing a parse tree as output. A parse tree is a rooted
and ordered tree which represents the syntax of a given textual sentence based on
some context-free grammar (see, e.g., [12]). In order to measure the performance
of a POS parser, we refer to the accuracy as the ratio of the amount of correct
parse trees (|PTc|) and the total amount of parse trees (|PT|) as output of a
POS parser:

accuracy =
|PTc|
|PT| , PTc ⊂ PT

3 Atomic Feature-Relevant Information Extraction

In general, gathering and extracting FR information from NL user manuals poses
the challenge, that the manual’s textual content is usually not structured along
features. More precisely, these documents lack FR meta data [2]. The analysis
of the GDC user manual showed that we are able to identify potentially FR
sentences by means of domain terms: each sentence which contains at least one
domain term is considered to potentially contain FR information.

Figure 3 shows our approach to semi-automatically extract atomic FR infor-
mation. Each process step is described in detail in the following.

User Manual Revision (manual, optional): NLP techniques require a syn-
tactically correct textual basis in order to deliver correct results. Therefore, in a

Semi-automatic Software Feature-Relevant Information Extraction 259

Information
Identification

Information
Extraction

doc

Domain
Termi-
nology

Feature-
relevant
Inform.

Document
Preparation

Terminology
Extraction

Pre-
processing

User
Manual

User Manual
Revision

OPT

Process Flow

Artefactural In-/Output

Artifact

Optional process step

Legend

Automated process
step

Manual process step

OPT

Fig. 3. Atomic feature-relevant information extraction process

first step, a user manual revision might be performed in order to ensure syntac-
tical correctness. In case the user manual is already syntactically correct, this
process step can be skipped. When our approach is fully developed, this will be
the only manual step in the approach. Clearly, the effort depends on the quality
of the user manual. In any case, this revision can be done by a non-expert (e.g.
we asked a student helper from translation studies for support). Thus, the effort
is acceptable.

Terminology Extraction (manual) deals with the extraction of domain-
specific terms (domain terms in short) from the user manual. The domain terms
are required to further identify potentially FR sentences (see, e.g., [39]). At the
current state of our research, this step is still a manual task: domain experts
need to extract a set of domain-specific terms (Domain Terminology) from the
user manual. In the context of our approach, the last two authors of this paper
act as GDC domain experts. In the future, we plan to automatically support
terminology extraction (see, e.g., [25]).

Document Preparation (automated) aims to automatically extract all
relevant data (NL text and corresponding structural information) from a user
manual as Microsoft Word document (*.docx). Compared to other document
formats (e.g., *.pdf), the extraction of structural information (e.g., bullet point,
heading, etc.) is easy and open source by means of available APIs (e.g., Apache
POI1). The data are then transformed into an internal data model (doc) which
eases further processing. This step is illustrated in Fig. 4. The contents of a
users’ manual might contain both text and associated images (see left hand side
of Fig. 4). The text is split into paragraphs containing at least one sentence

1 https://poi.apache.org/.

https://poi.apache.org/

260 T. Quirchmayr et al.

Fig. 4. Document preparation (left: user manual excerpt, right: doc) (Color figure
online)

(see, e.g., red, green, and yellow rim). A sentence can be either complete (blue
rim) or incomplete (yellow rim). In contrast to an incomplete sentence, a com-
plete sentence contains at least a subject and a predicate. Additionally, incom-
plete sentences appear to convey only parts of a complete thought, lacking some
components which are grammatically necessary to complete the thought [37].

The entire content of a user manual is usually structured (e.g., (sub-)sections,
bullets, listings). This structural information (we call it sentence type) conveys
additional implicit semantic information to the reader (e.g., an enumeration
indicates a conjunction of the enumerated sentences). Figure 4 depicts example
sentence types in blue square brackets on the left hand side (they are not part
of the user manual itself). The GDC user manual comprises 8 different sentence
types, namely text, bullet, bullet text, sub-bullet, sub-bullet text, step, section,
and result. By means of the Apache POI API, the NL text as well as the sen-
tence types are extracted (indicated by Parser in Fig. 4). Furthermore, we apply
some minor automated adjustments to correct wrong sentence types (e.g., a text
cannot directly be followed by a sub-bullet, therefore it is changed to a bullet
automatically).

Information Identification (automated) determines potentially FR sen-
tences by means of predefined exclusion patterns, the sentence type, and
the extracted domain terminology. In the course of the analysis of the GDC
user manual, we uncovered general lexical exclusion patterns which allow to

Semi-automatic Software Feature-Relevant Information Extraction 261

Fig. 5. Information identification example (Color figure online)

automatically identify feature-irrelevant sentences or phrases (part of a sentence)
in sentences, namely:

– phrases in brackets, e.g., The quantificator needs to run (see the picture below).
– phrases or sentences starting with “e.g.”
– phrases or sentences including “section” or “figure”, e.g., Section “Quantifi-

cation of Materials” describes [. . .].
– phrases or sentences which represent formulas, e.g., x= 120 pc/60 pc * 100

First, all feature-irrelevant sentences and phrases which match the exclusion
patterns are removed in order to decrease the amount of data to be processed
(see phrases crossed out with blue lines in Fig. 5). Second, sentences of the types
section, result, and step are filtered (see phrases crossed out with red lines in
Fig. 5). Finally, the remaining sentences are investigated regarding domain terms:
each sentence which contains at least one domain term is considered to poten-
tially contain FR information, all the others are ignored (see phrases crossed out
with green lines in Fig. 5).

Preprocessing (automated): Our approach extracts atomic FR information
based on syntactic patterns in parse trees. Thus, the approach highly depends
on correct parse trees. We use the Stanford POS parser2 [26] to generate a parse
tree for each FR sentence. Without textual or parse tree based modifications,
the accuracy of Stanford’s POS parser is not sufficient (see Sect. 4). In order to
improve the POS parser accuracy, we apply two automated preprocessing steps:

(a) Lexical-based textual modifications (automated): we apply lowercas-
ing to the entire text. Afterwards, we search for domain terms (e.g., mater-
ial list) and quoted terms (e.g., “start quantificator”) contained in the text.

2 http://nlp.stanford.edu/software/lex-parser.shtml.

http://nlp.stanford.edu/software/lex-parser.shtml

262 T. Quirchmayr et al.

 the user tries to open the material list,
 but gdc detects invalid test data
(S
 (NP (DT the) (NN user))
 (VP
 (VP (VBZ tries)
 (S
 (VP (TO to)
 (VP (VB open)
 (NP (DT the (NN material) (NN list))))))
 (, ,)
 (CC but)
 (VP (VBP gdc)
 (NP
 (ADJP (JJ detects) (JJ invalid))
 (NN test) (NNS data))))))

(a) Without textual modifications

 the user tries to open the DTmaterialDTlist,
 but DTgdc detects invalid DTtest data
(S
 (NP (DT the) (NN user))
 (VP (VBZ tries)
 (S
 (VP (TO to)
 (VP (VB open)
 (NP (DT the (NN DTmaterialDTlist)))))))
(, ,)
(CC but)
(S
 (NP (NNP DTgdc)
 (VP (VBZ detects)
 (NP (JJ invalid) (NN DTtest) (NNS data))))))

(b) With textual modifications

Fig. 6. POS parser accuracy increases with domain term (bold) bundling (Color figure
online)

They are then equipped with prefixes and finally bundled (e.g. material list
becomes DTmaterialDTlist, “start quantificator” becomes QDstartQDquan-
tificator). As a consequence, the Stanford NLP parser treats them as single
nouns instead of trying to parse the terms separately (see, e.g., [18]). Figure 6
shows the difference of the resulting parse trees: Fig. 6a treats gdc, which is a
domain term, as verb (blue rim) which actually distorts the entire parse tree
structure. Figure 6b shows the same sentence with the textual modifications
applied. DTgdc is correctly treated as a noun (blue rim) and thus the entire
parse tree becomes correct too.

(b) Pattern-based parse tree transformations (automated): In total, we
identified 7 recurring patterns in parse trees which indicate incorrect parts
of a parse tree. By means of Tregex [27], which is a utility for matching
patterns in parse trees, the incorrect parts of a parse tree can be identified.
Tsurgeon [27], which is a tree-transformation utility built on top of Tregex,
allows to manipulate the identified parse trees as desired. Figure 7 shows an
example of an incorrect parse tree (left hand side), which is corrected (right
hand side) by means of a Tregex pattern and Tsurgeon (see upper part).

Information Extraction (automated): After successfully identifying poten-
tially FR sentences and normalizing their parse trees, FR information is
extracted in four iterative steps: (1) syntactic information extraction, (2) infor-
mation simplification, (3) enumeration resolution, and (4) syntactical relevance
determination.

(1) Syntactic Information Extraction (automated): FR information is
extracted from each sentence by traversing the parse tree and determin-
ing relevant LIM-elements iteratively by means of POS patterns (e.g., a
preposition following a noun phrase like “number of reportables” indicates
a modifier of the type preposition phrase):
1. subjects (noun phrases + modifiers)
2. predicates (verb phrases + complements)
3. objects of predicates (noun phrases + modifiers)
4. conditional clauses

Semi-automatic Software Feature-Relevant Information Extraction 263

(ROOT
 (NP
 (NP (DT the) (JJ optimal) (NN pack))
 (NP
 (NP (NNS sizes))
 (PP (IN of)
 (NP (DT each) (NNP material))))))

(ROOT
 (NP
 (NP (DT the) (JJ optimal) (NN pack) (NNS sizes))
 (PP (IN of)
 (NP (DT each) (NNP material)))))

String patternString = "NP=par $+ (NP=del <+(NP) (NP < __=mov $+ __=mov2))";
TregexPattern tregexPattern = TregexPattern.compile(patternString);
String surgeryString = "[move mov >-1 par][move mov2 $- par][delete del]";
TsurgeonPattern surgery = Tsurgeon.parseOperation(surgeryString);
Tree tree = Tsurgeon.processPattern(tregexPattern, surgery, tree);

Fig. 7. Parse Tree Transformation Example in Java

Fig. 8. Information simplification example

Each potential FR sentence results in exactly one unit of potential FR
information which might not be atomic yet.

(2) Information simplification (automated): In order to retrieve atomic
units of information, all conjunctions in phrases, clauses (except conditional
clauses), complements, and modifiers are resolved; each conjunction element
becomes part of a new atomic unit of information (see Fig. 8).

(3) Enumeration Resolution (automated): The user manual excerpt on the
left hand side of Fig. 4 shows a paragraph with a bullet list. Paragraphs which
contain bullet lists need to be resolved in order to retrieve atomic informa-
tion. Resolving a bullet list means to combine the potential FR information
from the introducing sentence (e.g., The quantificator calculates) with each
potential FR information of the related bullet sentence (e.g., the optimal
pack size of each material), depending on the corresponding syntax of the
information (see Fig. 9). In total, we identified 11 different syntactical pat-
terns which entail different combinations.

Fig. 9. Enumeration resolution example

264 T. Quirchmayr et al.

(4) Syntactical Relevance Determination (automated): Finally, we dif-
ferentiate between truly FR information and feature-irrelevant informa-
tion based on the syntax. An unit of information is syntactically rele-
vant (and thus FR) if its syntax (based on the LIM) equals one out of
11 predefined patterns; else it is considered syntactically irrelevant and
thus feature-irrelevant. A pattern defines the LIM-elements (e.g., sub-
ject + predicate + object) which need to be present in a FR unit of infor-
mation (e.g., the quantificator calculates materials.) On the other hand,
each potentially FR information which does not match a predefined pat-
tern (e.g., “The quantificator runs.” contains only subject + predicate) is
feature-irrelevant.

4 Evaluation

In order to evaluate the performance of our approach, we created three gold stan-
dards: the gold standards feature-relevant sentences as well as atomic feature-
relevant information from the FR sentences were provided by the GDC experts.
The gold standard correct parse trees was provided by the first author as there
is no GDC-specific knowledge required.

The GDC user manual contains more than 600 pages in its current ver-
sion. The example sections chosen for evaluation comprise in total 43 pages.
The sections contain 1161 sentences (complete as well as incomplete). The sen-
tences are distributed over the different sentence types as follows: 46.7% text (543
sentences), 29.6% bullet text (343), 7.9% bullet (92), 5.2% step (60),
3.9% section (45), 3.5% result (41), 2.3% sub-bullet text (27), and 0.9% sub-
bullet (10). The GDC experts investigated the sentences and determined whether
or not they contain FR information: 639 sentences are feature-relevant and 522
are not. Furthermore, the GDC experts extracted the atomic FR information
from the 639 feature-relevant sentences. In total, they determined 849 atomic
FR units of information (1.33 FR units of information per FR sentence). We
evaluated the accuracy using the standard metrics precision (P), recall (R) and
F1-score (F1). Precision is the fraction of retrieved instances which are rele-
vant, whereas recall is the fraction of relevant instances which are retrieved. The
F1 score considers both precision and recall as their harmonic mean. They are
calculated as follows:

Pi =
TPi

TPi+ FPi

Ri =
TPi

TPi+ FNi

F1i =
Pi × Ri

Pi+ Ri

The subordinated i in precision, recall and F1 refers to the actual type we are
investigating in the corresponding evaluation context: in context of information
identification and information extraction, i refers to FR sentences and atomic FR
information respectively. True positives (TPi) are instances which are classified
as and actually are of type i. False positives (FPi) are instances which are
classified as but actually are not of type i. False negatives (FNi) are instances

Semi-automatic Software Feature-Relevant Information Extraction 265

which are classified as type j �= i but actually are of type i. Last, true negatives
(TNi) are instances which are classified as and actually are of type j �= i.

Fig. 10. Evaluation overview

Figure 10 shows an overview of the different evaluations for our approach. The
left hand side depicts the selected steps of our approach (see Fig. 3 in Sect. 3)
which are evaluated. The right hand side shows the three gold standards. The
upper part shows two evaluations (Id-E #1) in context of Information
Identification. Id-E #1 compares the FR sentences A identified by means of
domain terms without considering sentence types with the FR sentences from
the gold standard. Id-Eval #2 compares the FR sentences B identified by means
of domain terms considering sentence types with the FR sentences from the gold
standard. Regarding Document Processing, we provide two evaluations: the first
one does not consider textual modifications and parse tree transformation (Pr-E
#1), while the second one (Pr-E #2) does. Information Extraction is based on
the identified FR sentences. Therefore, we provide three evaluations. As a basis
for increasing extraction accuracy, the first evaluation (Ex-E #1) uses the FR
sentences A and does not consider syntactical relevancy determination. Both,
evaluation Ex-E #2 and #3 are based on the FR sentences B . They differ with
respect to the consideration of syntactical relevancy determination: Ex-E #2
does not consider, and Ex-E #3 considers syntactical relevancy determination.

(1) Information Identification: The first two columns of Table 1 represent
the evaluation results for the identification of FR sentences. Initially, we
only use the domain terms in order to identify FR sentences (see Id-E #1).
We achieve a precision and recall of 73.54% and 98.75% respectively, which

266 T. Quirchmayr et al.

results in a F1 score of 84.30%. Considering sentence types and feature-
irrelevant patterns (see Information Identification in Sect. 3) improves the
precision and F1 score to 80.69% and 88.81% respectively (see Id-E #2).

(2) Preprocessing: The evaluation of preprocessing is different compared to
information identification and information extraction. It solely evaluates the
accuracy of the POS parser related to both FR and feature-irrelevant sen-
tences. The accuracy of the Stanford POS parser in context of the 1161
example sentences without any textual modifications and parse tree trans-
formation (see Preprocessing in Sect. 3) is 76.41%. By applying the textual
modifications, the sentence accuracy increased to 95.26%; by applying the
parse tree modifications, we finally reach an accuracy of 98.43%.

(3) Information Extraction: The last three columns in Table 1 refer to the
evaluation results of the different evaluations related to information extrac-
tion. Ex-E #1 is based on the FR sentences A . Based on the 639 (631
TP + 8 FP) FR sentences from Id-E #1, our approach identifies 99.06% of
all atomic units of FR information, but with a precision of 77.23% only.
Based on the identified FR sentences B which considered sentence types,
the precision increased to 83.02% (Ex-E #2). Finally, by considering syntac-
tical relevance, the precision remarkably increased to 94.06% which results
in a final F1 score of 95.48% (Ex-E #3). The recall decreases, because 18
units of information which are actually FR do not match our syntactical
patterns (e.g., The correction factor can be switched off) and are therefore
considered feature-irrelevant.

Table 1. Evaluation results

Metrics Identification Extraction

Id-E #1 Id-E #2 Ex-E #1 Ex-E #2 Ex-E #3

TP 631 631 841 841 823

TN 295 371 301 377 497

FP 227 151 248 172 52

FN 8 8 8 8 26

R 98.75% 98.75% 99.06% 99.06% 96.94%

P 73.54% 80.69% 77.23% 83.02% 94.06%

F1 84.30% 88.81% 86.79% 90.33% 95.48%

5 Threats to Validity

This section discusses the threats to internal and external validity of our results
and the measures taken to minimize these threats.

Semi-automatic Software Feature-Relevant Information Extraction 267

5.1 Threats to Internal Validity

Internal validity refers to the extent to which the procedure influenced the result.
User manual revision was applied on two different sections of the user manual.
The first section was revised by the first author of the paper, the second section
was revised by a non-author who got instructed a priori. In order to compute
precision and recall we compared the results of our approach with two gold stan-
dards (see Sect. 4). These gold standards were created by the two last authors of
our paper which are domain experts. As they did not participate in the develop-
ment and implementation of our approach, the gold standard is not influenced
by the developed approach.

5.2 Threats to External Validity

External validity refers to the extent to whether the approach can be applied
in other contexts. In the following we discuss the effort needed to adapt our
approach to another context. Our approach utilizes different techniques in four
iterative process steps in order to extract atomic FR information automatically.
Document Preparation extracts NL text and sentence types from a user man-
ual. The sentence types might differ between different user manuals, but can
be simply exchanged in a configuration file of our tool after determining them
manually with low effort. Information Identification aims to identify sentences
which potentially contain FR information by means of domain terms, their sen-
tence type and basic lexical exclusion patterns. The exclusion patterns can be
defined via regular expressions in the configuration file too. These patterns refer
to e.g., formulas, examples, and sections. This information is feature-irrelevant,
independent of the domain. The patterns can be adapted again with low effort.
Preprocessing generates a parse tree for each potentially FR sentence by means of
a POS parser as well as automated textual and parse tree modifications; neither
textual nor parse tree modifications are domain-specific. Information Extrac-
tion: Based on the sentence type of a sentence, the potentially FR information
are then automatically extracted and simplified into atomic units of informa-
tion. Finally, the FR units of information are determined based on predefined
syntactical patterns. However, the results of the approach highly depend on the
syntax of the natural language text provided in the user manual and furthermore
the accuracy of the POS parser. This approach was developed in the context of
GDC. We developed it based on one section with considerable effort. The adap-
tations for the next sections were minor. Thus, we believe that this approach
will work well for the whole manual. We believe that this approach could work
well for other domains too. However, the adaptations for other user manuals are
difficult to judge without knowing the specifics. Altogether, our approach should
be adaptable to other domains with acceptable effort.

6 Related Work

Berry et al. [7] define four broad categories of tools which analyze NL texts in
context of requirements engineering (RE): (a) finding defects and deviations in

268 T. Quirchmayr et al.

NL RE documents, (b) generating models from NL descriptions, (c) inferring
trace links between NL RE artifacts, and (d) identifying key abstractions from
NL documents. We follow a bottom-up approach, that is to extract atomic FR
units of information from a user manual first and determine corresponding fea-
tures (by logically clustering the atomic FR information) afterwards. Thus, our
approach is related to category (b) as well as category (d). In the following, we
focus on related work from both categories.

Several approaches exist which extract features and corresponding mod-
els from textual requirements documents in an automated (e.g., [28]), semi-
automated (e.g., [29]), or manual (e.g., [23]) way. Besides user manual revision
and terminology extraction, our approach is fully automated.

Bakar et al. [5] provide a recent overview about feature extraction. They
identified several kinds of requirements documents used for feature extraction,
ranging from software requirements specifications (see, e.g., [10]), to product
description (see, e.g., [1]) to user comments (see, e.g., [19]), issue tracking sys-
tems (e.g., [31]), and online software reviews (e.g., [6]). In a previous work [34]
we found, that user manuals provide consistent FR information. Especially for
mature software systems (e.g., Roche’s GDC), user manuals may often be the
most up-to-date and valuable source for FR information.

Bakar et al. also identified different types of output from existing feature
extraction approaches: trees or models (see, e.g., [38]), keywords (see, e.g., [10]),
NL phrases (see, e.g., [32]), or clustered requirements (see, e.g., [3]). Depend-
ing on the stakeholder’s viewpoint and intention regarding features, the desired
level of information might differ: whilst IT managers (e.g., CIO) might want to
overview abstract software features (e.g., in order to evaluate alternative soft-
ware), project managers might need more detailed information (e.g., regarding
communalities/variabilities), and developers might furthermore need even more
detailed information (e.g., displayed columns of a screen). Therefore, we chose
a bottom-up approach to hierarchically capture and provide FR information
throughout different levels in the future: features (and sub-features) on higher
levels and related atomic FR units of information on detailed level.

Many feature extraction approaches use NLP (see, e.g., [10]) or information
retrieval techniques (see, e.g., [3,31]) to identify and extract relevant information.
The range of NLP techniques used, is very broad (e.g., POS tagging, stemming,
lemmatization [21]). Information retrieval techniques (e.g., clustering, classifica-
tion) often utilize machine learning (ML) algorithms, most of them are super-
vised. Supervised algorithms in context of ML refer to algorithms which learn
from labeled training data (pair of input and desired output) in order to make
predictions on unlabeled data. The preparation of training data requires huge
manual effort. Thus, our approach relies on (automated) process steps utilizing
NLP techniques which need little - compared to supervised ML training data -
manually prepared input.

Some feature extraction approaches (see, e.g., [28,32,40] require syntactically
and/or lexically restricted textual input (e.g., noun + verb + noun [40]) in order
to extract the desired output. Our approach uses syntactical and lexical patterns
too. But in contrast, our basic lexical patterns (e.g., exclude phrases starting

Semi-automatic Software Feature-Relevant Information Extraction 269

with “e.g.”) are used as exclusion and not as inclusion criteria. Furthermore,
we do not combine lexical and syntactic patterns (e.g., noun + “have” + noun)
as this limits the application of an approach considerably. To the best of our
knowledge, we present the first semi-automatic domain-independent approach
which extracts atomic feature-relevant information by means of a domain ter-
minology in combination with syntactical patterns.

7 Conclusion and Future Work

In this paper, we present an approach to semi-automatically extract atomic FR
information from NL user manuals. Besides the process steps User Manual Revi-
sion (optional) and Terminology Extraction, our approach is fully automated.
In order to evaluate the practical application and feasibility, we conduct a case
study in a real-world industrial setting and report their results. Through the
application of several automated textual modifications and parse tree trans-
formations, we are able to show increasing POS parser accuracy. Based on the
resulting parse trees, our approach allows to extract atomic FR information with
both a precision and recall of above 94%.

The long term goal of our research is to extract related features and corre-
sponding information from user manuals. Therefore, future work comprises three
main parts:

1. Domain Terminology Extraction: Currently, the domain terminology
must be provided by domain experts. Similar to feature extraction itself,
manual terminology extraction involves a huge effort. Therefore, we plan
to support terminology extraction with a pipeline of NLP-technologies (see,
e.g., [22,25]).

2. Software Feature Clustering: As already mentioned in Section 2, features
are composed of logically related atomic FR units of information. Therefore,
we need to cluster logically related FR units of information to generate super-
ordinate features (bottom-up approach) by means of information retrieval
technologies (see, e.g., [13,28]).

3. Application on entire GDC User Manual: As a last step, we will apply
our approach to the entire GDC user manual in order to provide a compre-
hensive and structured overview of the GDC features and corresponding FR
information.

Acknowledgements. We would like to thank Roche Diagnostics GmbH for the finan-
cial support of this research project. Many thanks also to the GDC experts for their
participation in the case study and valuable discussions of the results.

References

1. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,
Lahire, P.: On extracting feature models from product descriptions. In: Proceed-
ings of 6th International Workshop on Variability Modeling of Software-Intensive
Systems (VaMoS 2012), pp. 45–54. ACM (2012)

270 T. Quirchmayr et al.

2. Aggarwal, C., Zhai, C.: Mining Text Data. Springer, Heidelberg (2012)
3. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P.,

Pohl, C., Rummler, A.: An exploratory study of information retrieval techniques
in domain analysis. In: Proceedings of 12th International Software Product Line
Conference (SPLC 2008), pp. 67–76 (2008)

4. Apel, S., Kästner, C.: An overview of feature-oriented software development.
Object Technol. 8(5), 49–84 (2009)

5. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural
language requirements for reuse in software product lines. Syst. Softw. 106(C),
132–149 (2015)

6. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Terms extractions: an approach for require-
ments reuse. In: 2nd International Conference on Information Science and Security
(ICISS), pp. 1–4 (2015)

7. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The case for dumb requirements
engineering tools. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol.
7195, pp. 211–217. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28714-5 18

8. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
9. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a

Product-line Approach. ACM Press, New York (2000)
10. Boutkova, E., Houdek, F.: Semi-automatic identification of features in require-

ment specifications. In: Proceedings of 19th International Requirements Engineer-
ing Conference (RE 2011), pp. 313–318 (2011)

11. Chandrasekar, R., Doran, C., Srinivas, B.: Motivations and methods for text simpli-
fication. In: Proceedings of 16th Conference on Computational Linguistics (COL-
ING), pp. 1041–1044 (1996)

12. Charniak, E.: Statistical parsing with a context-free grammar and word statistics.
In: AAAI/IAAI, pp. 598–603 (1997)

13. Chen, K., Zhang, W., Zhao, H., Mei, H.: An approach to constructing feature
models based on requirements clustering. In: Proceedings of 13th International
Requirements Engineering Conf. (RE 2005), pp. 31–40 (2005)

14. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a feature: a requirements
engineering perspective. In: Proceedings of 11th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2008), pp. 16–30 (2008)

15. Corbett, G.: Linguistic features. Afr. Aff. 87, 25–54 (2006)
16. Earls, A., Embury, S., Turner, N.: A method for the manual extraction of business

rules from legacy source code. BT Technol. 20(4), 127–145 (2002)
17. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. Trans.

Softw. Eng. 29(3), 210–224 (2003)
18. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Arsenal: auto-

matic requirements specification extracting from natural language. In: Proceedings
of 8th Interantional Symposium of NASA Formal Methods (NFM 2016), pp. 41–46
(2016)

19. Guzman, E., Maalej, W.: How do users like this feature? A fine grained senti-
ment analysis of app. reviews. In: Proceedings of 22nd International Requirements
Engineering Conference (RE 2014), pp. 153–162. IEEE (2014)

20. IEEE: IEEE Standard Glossary of Software Engineering Terminology. IEEE Std,
pp. 610–612 (1990)

21. Indurkhya, N., Damerau, F.J.: Handbook of Natural Language Processing, vol. 2.
CRC Press, Boca Raton (2010)

22. Ittoo, A., Bouma, G.: Term extraction from sparse, ungrammatical domain-specific
documents. Expert Syst. App. 40(7), 2530–2540 (2013)

http://dx.doi.org/10.1007/978-3-642-28714-5_18

Semi-automatic Software Feature-Relevant Information Extraction 271

23. John, I., Dörr, J.: Elicitation of requirements from user documentation. In: 9th
International Workshop on Requirements Engineering: Foundation for Software
Quality (REFSQ 2003) (2003)

24. Jonnalagadda, S., Tari, L., Hakenberg, J., Baral, C., Gonzalez, G.: Towards effec-
tive sentence simplification for automatic processing of biomedical text. In: Pro-
ceedings of Human Language Technologies (NAACL HLT 2009), pp. 177–180
(2009)

25. Kim, S.N., Baldwin, T., Kan, M.-Y.: An unsupervised approach to domain-specific
term extraction. In: Proceedings of Australasian Language Technology Association,
Workshop, pp. 94–98 (2009)

26. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural
language parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems, vol. 15, pp. 3–10. MIT Press, Cambridge
(2003)

27. Levy, R., Andrew, G.: Tregex and tsurgeon: tools for querying and manipulating
tree data structures. In: Proceedings of 5th International Conference on Language
Resources and Evaluation (LREC 2006), pp. 2231–2234 (2006)

28. Li, Y., Guzman, E., Tsiamoura, K., Schneider, F., Bruegge, B.: Automated require-
ments extraction for scientific software. Procedia Comput. Sci. 51, 582–591 (2015)

29. Loughran, N., Sampaio, A., Rashid, A.: From requirements documents to feature
models for aspect oriented product line implementation. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 262–271. Springer, Heidelberg (2006). doi:10.
1007/11663430 27

30. Marciuska, S., Gencel, C., Abrahamsson, P.: Automated feature identification in
web applications. In: Proceedings of 14th International Conference on Software
Quality (QSIC 2014), pp. 100–114 (2014)

31. Merten, T., Falis, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Soft-
ware feature request detection in issue tracking systems. In: Proceedings of 24th
International Requirements Engineering Conference (RE 2016), pp. 166–175 (2016)

32. Mu, Y., Wang, Y., Guo, J.: Extracting software functional requirements from free
text documents. In: Proceedings of 1st International Conference on Information
and Multimedia Technology (ICIMT 2009), pp. 194–198 (2009)

33. Nixon, M.: Feature Extraction & Image Processing. Academic Press, Cambridge
(2008)

34. Paech, B., Hübner, P., Merten, T.: What are the features of this software? An
exploratory study. In: Proceedings of 9th International Conference on Software
Engineering Advances (ICSEA 2014), pp. 114–125 (2014)

35. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of
agile practices on communication in software development. J. Empir. Softw. Eng.
13(3), 303–337 (2008)

36. Shaker, P., Atlee, J.M., Wang, S.: A feature-oriented requirements modelling lan-
guage. In: Proceedings of 20th International Requirements Engineering Conference
(RE 2012), pp. 151–160 (2012)

37. Ward, L.J., Woods, G.: English Grammar for Dummies. Wiley, Hoboken (2013)
38. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically

composable feature models from natural language requirements. In: Proceedings of
13th International Software Product Line Conference (SPLC 2009), pp. 211–220
(2009)

39. Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduc-
tion and a survey of current approaches. Inf. Sci. 36(3), 306–323 (2010)

http://dx.doi.org/10.1007/11663430_27
http://dx.doi.org/10.1007/11663430_27

272 T. Quirchmayr et al.

40. Zapata, J.C.M., Losada, B.M., Gonzalez-Calderon, G.: An approach for using pro-
cedure manuals as a source for requirements elicitation. In: Proceedings of 38th
Conference Latinoamericana En Informatica (CLEI 2012), pp. 1–8 (2012)

41. Zorn-Pauli, G., Paech, B., Wittkopf, J.: Strategic release planning challenges for
global information systems - a position paper. In: Proceedings of 6th International
Workshop on Software Product Management (IWSPM 2012), pp. 186–191 (2012)

Mining User Requirements from Application
Store Reviews Using Frame Semantics

Nishant Jha and Anas Mahmoud(B)

The Division of Computer Science and Engineering, Louisiana State University,
Baton Rouge, LA 70803, USA

njha1@lsu.edu, mahmoud@csc.lsu.edu

Abstract. Context and motivation: Research on mining user reviews
in mobile application (app) stores has noticeably advanced in the past
few years. The majority of the proposed techniques rely on classify-
ing the textual description of user reviews into different categories of
technically informative user requirements and uninformative feedback.
Question/Problem: Relying on the textual attributes of reviews often
produces high dimensional models. This increases the complexity of the
classifier and can lead to overfitting problems. Principal ideas/results:
We propose a novel semantic approach for app review classification. The
proposed approach is based on the notion of semantic role labeling, or
characterizing the lexical meaning of text in terms of semantic frames.
Semantic frames help to generalize from text (individual words) to more
abstract scenarios (contexts). This reduces the dimensionality of the data
and enhances the predictive capabilities of the classifier. Three datasets
of user reviews are used to conduct our experimental analysis. Results
show that semantic frames can be used to generate lower dimensional
and more accurate models in comparison to text classification methods.
Contribution: A novel semantic approach for extracting user require-
ments from app reviews. The proposed approach enables a more efficient
classification process and reduces the chance of overfitting.

Keywords: Requirements elicitation · Application stores ·
Classification

1 Introduction

Mobile application markets, or app stores (e.g., Google Play and Apple App
Store), represent a unique model of service-oriented business. Such platforms
have created an unprecedented opportunity for app developers to directly moni-
tor the opinions of a large population of end-users of their software [25]. Through
app stores feedback services, app users can directly share their experience in
the form of textual reviews and meta-data (e.g., star ratings). Analyzing large
datasets of app store reviews has revealed that they contain substantial amounts
of up-to-date technical information. Such information can be leveraged by app
developers to help them maintain and sustain their apps in a highly-competitive
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 273–287, 2017.
DOI: 10.1007/978-3-319-54045-0 20

274 N. Jha and A. Mahmoud

and volatile market [25]. These realizations have encouraged researchers to look
for automated methods to detect such informative reviews and further classify
them into fine-grained software user requirements (feature requests) and main-
tenance tasks (bug reports) [6,7,20,26]. Automated support is necessary to help
app developers to quickly filter through junk reviews, identify bugs in their
applications, and understand contemporary end-user requirements.

In general, app store mining techniques rely on the textual attributes of user
reviews to classify them into technically informative and uninformative reviews.
Such techniques range from detecting the presence/absence of certain indicator
words (e.g. “crash”, “bug”), to more advanced techniques that rely on automated
text classification and modeling [6,12,20,26]. While these techniques have shown
decent accuracy levels, they typically suffer from several drawbacks. For instance,
users tend to express their reviews using informal language which often includes
colloquial terminologies. Such a broad range of words (classification features)
often results in complex models, which in turn might lead to overfitting problems.
In particular, due to the rapid manner in which natural language evolves online,
a classifier trained using a vocabulary collected at a certain point in time might
not be able to accurately generalize for newer apps [22].

To work around these limitations, in this paper, we propose a novel seman-
tically aware approach for mining and classifying user reviews in app stores.
The proposed approach is based on the notion of semantic role labeling (SRL).
The primary assumption behind SRL is that words can be grouped into seman-
tic classes, called frames. A semantic frame describes an event that occurs in a
sentence along with its participants (e.g., people, objects). The main aim is to
capture the meaning of the sentence at a higher level of abstraction. More specif-
ically, by annotating words and phrases in text with various frame elements (or
roles), we can generalize from specific sentences to scenarios. Such annotations
can be generated using the FrameNet [2] project. FrameNet provides an online
lexical repository of semantic frames and their roles.

SRL and frame semantics have been successfully exploited in a plethora of
text classification tasks, such as predicting the stock market movement by ana-
lyzing the textual content of financial news articles [32], extracting social net-
works from unstructured text [1], question answering tasks [29], and stance clas-
sification in political debates [13]. In this paper, we follow this line of research
to describe a light-weight and accurate approach for identifying informative user
reviews and classifying them into different types of actionable requests that app
developers can effectively utilize. Our approach is evaluated using a large dataset
of user reviews, sampled from a diverse set of apps that are selected from a broad
range of application domains.

The remainder of this paper is organized as follows. Section 2 reviews sem-
inal work in app user review classification. Section 3 introduces the FrameNet
project and the notion of semantic frames. Section 4 describes our experimental
setup. Section 5 presents our results and discusses our main findings. Section 6
identifies the threats to the study’s validity. Finally, Sect. 7 concludes the paper
and discusses prospects for future work.

Mining User Requirements from Application Store Reviews 275

2 Related Work

The research on mining app reviews for software engineering purposes has notice-
ably advanced in the past few years. Chen et al. [7] presented AR-Miner, a
computational framework that helps developers to identify the most informative
user app reviews. Uninformative reviews were initially identified and filtered out
using Expectation Maximization for Naive Bayes— a semi supervised text clas-
sification algorithm. The remaining reviews were then analyzed and categorized
into different groups using topic modeling [3]. These groups were ranked by a
review ranking scheme based on their potential information value. The proposed
approach was evaluated on a manually classified dataset of app reviews col-
lected from four popular Android apps. The results showed high accuracy levels
in terms of precision, recall, and the quality of ranking.

Panichella et al. [26] proposed a supervised approach for classifying mobile
app reviews into categories relevant to software maintenance (e.g., bug reports
and user requirements). The authors extracted a set of linguistic features from
each review, including most important words, the main sentiment of the review,
and linguistic patterns that may represent a potential maintenance request. Dif-
ferent types of classifiers were then trained using different combinations of these
features. The results showed that decision trees [28], trained over recurrent lin-
guistic patterns and sentiment scores, achieved the best performance in terms of
precision and recall.

Carreño and Winbladh [6] proposed an approach for mining user comments
to extract software requirements for future releases of software systems. The
proposed approach applies topic modeling techniques and sentiment analysis
classification (Aspect and Sentiment Unification Model) to identify comments
relevant with regards to requirement changes. Evaluating the proposed approach
over three datasets of manually classified user reviews showed promising perfor-
mance levels in terms of accuracy and effort-saving.

Guzman and Maalej [12] proposed an automated approach to help devel-
opers filter, aggregate, and analyze app reviews. The proposed approach used
a collocation finding algorithm to extract fine-grained requirements mentioned
in the review. Extracted requirements were then grouped into more meaningful
high-level features using topic modeling. The author used over 32,210 reviews
extracted from seven iOS and Android apps to conduct their analysis. The results
showed that the proposed approach managed to successfully extract the most
frequently mentioned features in these reviews. These features were also grouped
into coherent coarse-grained sets of app requirements.

Maalej and Nabil [20] introduced several probabilistic techniques for clas-
sifying app reviews into bug reports, feature requests, user experiences, and
ratings. The authors experimented with several binary and multi-class classi-
fiers, including Naive Bayes, decision trees, and maximum entropy. A dataset
of 4400 manually labeled reviews from Google Play and the Apple App Store
was used to evaluate the performance of these different classifiers. The results
showed that binary classifiers (Naive Bayes) were more accurate for predicting
the review type than multi-class classifiers. The results also revealed that review

276 N. Jha and A. Mahmoud

features, such as star-rating, tense, sentiment scores, and length, as well as cer-
tain text analysis techniques, such as stemming and lemmatization, enhanced
the classification performance.

Iacob and Harrison [14] introduced MARA, a tool for automatic retrieval
of mobile app feature requests from user reviews in app stores. The proposed
approach is based on identifying sentences expressing feature requests based on
a set of predefined linguistic rules. These rules were mined from analyzing most
frequent keywords and linguistic patterns associated with feature requests. Such
keywords were abstracted into a set of 237 linguistic rules. The approach was
evaluated over a sample of 480 reviews extracted from Google Play. The results
showed that 23.3% of reviews represented feature requests.

3 Frame Semantics

Housed and maintained by the International Computer Science Institute in
Berkeley, California, the FrameNet project [2] provides a massive machine read-
able database of manually annotated sentences based on the theory of Frame
Semantics [10]. This theory states that the meanings of lexical items (predi-
cates) are best defined with respect to larger conceptual chunks, called Frames.
Technically, the FrameNet1 project works to identify significant frames in sen-
tences, their frame elements, and lexical units. A semantic frame (or simply
frame) can be described as a schematic representation of a situation (events,
actions) involving various elements. A frame element (FE) can be defined as a
participant entity or a semantic role in the action described by the frame. Lexi-
cal units (LU) are basically the words that evoke different frame elements. For
instance, the frame commerce buy describes a basic commercial transaction
involving a buyer and a seller exchanging money and goods. This frame has the
core frame elements buyer (can be evoked by lexical units such as buy) and
goods. A core FE is an element that is necessary for the frame to occur. The
frame also has other FEs such as place, purpose, seller, and time.

Commerce Buy

Commerce Buy.Target

bought

FE.Buyer

John

FE.Goods

a car

FE.Seller

Kristina

FE.Time

June

Fig. 1. Semantic annotation of the sentence “John bought a car from Kristina in June”
under the Commerce Buy semantic frame

Figure 1 shows the tree representation of the semantic annotation of the sen-
tence “John bought a car from Kristina in June.” under the semantic frame com-
merce buy. This sentence includes the frame elements buyer, goods, seller,
1 https://framenet.icsi.berkeley.edu/fndrupal/.

https://framenet.icsi.berkeley.edu/fndrupal/

Mining User Requirements from Application Store Reviews 277

and time, evoked by the lexical units John, car, Kristina, and June respec-
tively. This unique form of semantic annotation represents an invaluable source
of knowledge that can be exploited to support several computational linguistic
tasks. For example, the FrameNet database has been used in tasks such as seman-
tic classification of text [11], question answering [17] and information extrac-
tion [24]. Following this line of research, in this paper, we utilize the FrameNet
project to tackle the problem of app review classification. Our expectation is
that FrameNet tagging will enable a deep understanding of the meaning of indi-
vidual user reviews. This in turn should help in training more accurate app
review classifiers. Consider, for example, the sentence “I can’t see the pictures
fix it please!!” extracted from a review of the photo-sharing app Imgur. Tagging
this sentence using FrameNet results in the following frames:

I [can’t]CAPABILITY [see]GRASP the [pictures]PHYSICAL ARTWORKS

[fix]PREDICAMENT it [please]STIMULUS FOCUS.

The key semantic frame in this example is Predicament, which according
to FrameNet data dictionary refers to a situation where “An Experiencer is in
an undesirable Situation, whose Cause may also be expressed”. This frame can
also be evoked by other words such as problem, trouble, and jam. In general, any
situation of inconvenience might evoke this frame. From a classification point of
view, this frame represents a feature that can be used to predict bug reports.

Another example is the two review sentences “I wish you could add a func-
tionality to use this app with any POP3 mailboxes” and “I wanted to be able
to use Gmail with all POP3 mailboxes.” extracted from two different reviews
of the Gmail app. Both sentences convey the same message, describing a user
requirement for the app to support all POP3 mailboxes, but with different ter-
minologies. Tagging these two sentences using FrameNet generates the following
representations:

I [wish]DESIRING you [could]CAPABILITY [add]STATEMENT a functionality
to [use]USING this app with [any]QUANTITY POP3 mailboxes.

I [wanted]DESIRING to be [able]CAPABILITY to [use]USING Gmail with
[all]QUANTITY POP3 mailboxes.

In the first sentence, the words wish, could, add, use, and any evoke the
frames Desiring, Capability, Statement, Using, and Quantity respec-
tively. In the second sentence, the words wanted, able, use, and all evoke the
frames Desiring, Capability, Using, and Quantity respectively. This exam-
ple shows how similar frames are evoked by different words that share the same
meaning in a specific context. For instance, in the above two sentences, the

278 N. Jha and A. Mahmoud

words wish and wanted are two different words that share the same meaning in
the given context, and therefore, evoke the same frame Desiring. Similarly, the
words could and able evoke the semantic frame Capability in both sentences.

Form a classification point of view, this kind of semantic abstraction is
expected to enhance the predictive capabilities of classifiers as general mean-
ing, rather than exact words, are considered as classification features. In par-
ticular, in text classification tasks, each individual word of the text is treated
as a separate classification feature, such that the input text is represented as
an unordered vector of its words. This approach, known as Bag-of-Words, or
BOW classification, relies on the presence or absence of certain indicator terms
in the text to make a decision. For instance, in the context of app review clas-
sification, words such as {bug, crash, fix, problem, issue, defect, solve, problem,
trouble} tend to be associated with bug reporting reviews, while words such as
{add, please, would, hope, improve, miss, need, prefer, suggest, want, wish} are
typically associated with feature requests or user requirements [20]. Such words
are used by text classifiers to make sense of the input text and classify it under
a certain label.

The approach we present in this paper can be described as a Bag-of-Frames,
or BOF, approach. In particular, the frames generated from each review, rather
than each word, are used as classification features. Therefore, the review’s text is
represented as an unordered vector of frames. Our assumption is that the BOF
representation of the data is expected to generate lower dimensional and more
semantically abstract models, thus enabling more accurate predictions than the
BOW representation. To test this assumption, we collect a dataset of app reviews
from a set of apps sampled from a broad range of application domains. These
reviews are semantically annotated to generate their BOF representations. Two
different classifiers, including Naive Bayes (NB) and Support Vector Machines
(SVM), are then used to classify these reviews into different actionable software
engineering requests. Generated classifiers are evaluated over a set of unseen
before reviews that were sampled from a new set apps to test for overfitting.
Next is a description of our experimental analysis in greater detail.

4 Experimental Settings

In this section, we describe our experimental settings, including the dataset used
to carry out our analysis, the classifiers used to classify the data, and the per-
formance measures used to assess the performance under different classification
settings.

4.1 Experimental Dataset

Our ground-truth dataset of app reviews is compiled from two external datasets
and an internal dataset obtained from different sources. Using such a diverse
dataset enhances the internal and external validity of our results by reducing
any potential sampling bias, a problem commonly known as the app sampling

Mining User Requirements from Application Store Reviews 279

problem [21]. The external datasets include the data collected by Maalej and
Nabil [20] and the data provided by Chen et al [7]. Random sampling is used to
select instances from these two datasets.

The internal dataset includes reviews that were locally collected from three
iOS apps, including CreditKarma, FitBit, and Gmail. The most recent user
reviews of each app were collected using the RSS feed generator of the iOS
app store. These reviews, along with the reviews sampled from the two exter-
nal datasets, were manually classified by the researchers into user requirements,
bug reports, and others. In case of a conflict, a discussion was held to reach
a consensus. Instances where agreement could not be reached were discarded.
In total, 13 instances were discarded from all datasets. Table 1 summarizes the
characteristics of our dataset, including the source of data, the number of bug
reports, user requirements, and other instances collected from each source2.

Table 1. The dataset used in our analysis

Source Sampled Discarded Bugs Req. Others Total

Internal data 705 3 170 65 467 702
Data from [20] 725 8 318 199 200 717
Data from [7] 1500 2 854 537 107 1498
Total 2930 13 1342 801 774 2917

4.2 Classifiers

To classify our data, we use two classifiers that have been showing consistently
good performance in app store mining research. These classifiers include:

– Support Vector Machines (SVM): SVM is a supervised machine learn-
ing algorithm that is used to recognize patterns in multidimensional data
spaces [5]. SVM tries to find optimal hyperplanes for linearly separable pat-
terns in the data and then maximizes the margin around the separating hyper-
plane. Technically, support vectors are the critical elements of the training set
that would change the position of the dividing hyperplane if removed. SVM
classifies the data by mapping input vectors into an N-dimensional space, and
deciding in which side of the defined hyperplane the point lies. SVMs have
been empirically shown to be effective in high dimensional and sparse text
classification tasks [15].

– Naive Bayes (NB): NB is a simple, yet efficient, linear probabilistic clas-
sifier that is based on Bayes’ theorem [18]. NB is based on the conditional
independence assumption which implies that the attribute values of the data
are independent of each other given the class. In the context of text classifica-
tion, the features of the model are the individual words of the text artifacts.

2 Our data is publicly available at http://seel.cse.lsu.edu/data/refsq17.zip.

http://seel.cse.lsu.edu/data/refsq17.zip

280 N. Jha and A. Mahmoud

Such data is typically represented using a 2-dimensional word x document
matrix. The entry i,j in the matrix can be either a binary value that indi-
cates whether the document di contains the word wj or not (i.e. {0,1}), or the
relative frequency of the word wj appearing in the document di [22].

4.3 Implementation and Classification Settings

To implement NB and SVM, we use Weka3, a data mining software that imple-
ments a wide variety of machine learning and classification techniques. SVM is
invoked through Weka’s SMO, which implements John Platt’s sequential mini-
mal optimization algorithm for training a support vector classifier [27]. To eval-
uate our classifiers, we use 10-fold cross validation. This method of evaluation
creates 10 partitions of the dataset such that each partition has 90% of the
instances as a training set and 10% as an evaluation set. The evaluation sets
are chosen such that their union is the entire dataset. The benefit of this tech-
nique is that the results exhibit significantly less variance than those of simpler
techniques such as the holdout method (i.e., 70% for training and 30% for test-
ing) [16].

To generate the BOF representation of our data (i.e. annotate the review sen-
tences), we use Semafor

4— a probabilistic frame semantic parser [8]. Semafor
automatically processes English sentences according to the form of semantic
analysis in Berkeley FrameNet. The generated annotations are represented using
XML. A special parser was created to extract the semantic frames of each anno-
tated sentence from the XML output.

For the BOW analysis, we use the Weka’s stemmer IteratedLovinsStemmer
to stem the reviews in our dataset [19]. Stemming reduces words to their mor-
phological roots. This leads to a reduction in the number of features (words) as
only one base form of the word is considered. Most common words (words that
appear in all reviews) along with words that appear in one data instance (review)
are removed from the data since they are highly unlikely to carry any general-
izable information. English stop-words were not removed from our data. This
decision was based on the previous observation that some of these words (e.g.,
would, should, will) carry important distinctive information for user requirement
reviews. Therefore, removing such words typically leads to a decline in the per-
formance. Furthermore, in our analysis, we use Multinomial NB, which uses the
normalized frequency (TF) of words in their documents [22]. Multinomial Naive
Bayes is known to be a more robust text classifier, consistently outperforming
the binary feature model (Multi-variate Bernoulli) in highly diverse real-world
corpora [22].

4.4 Evaluation Measures

Recall, precision, and the F-measure are used to evaluate the performance of
the different classification techniques used in our analysis. Recall is a measure of
3 www.cs.waikato.ac.nz/∼ml/weka/.
4 www.cs.cmu.edu/∼ark/SEMAFOR/.

www.cs.waikato.ac.nz/~ml/weka/
www.cs.cmu.edu/~ark/SEMAFOR/

Mining User Requirements from Application Store Reviews 281

coverage. It represents the ratio of correctly classified instances under a specific
label to the number of instances in the data space that actually belong to that
label. Precision, on the other hand, is a measure of accuracy. It represents the
ratio of correctly classified instances under a specific label to the total number of
classified instances under that label. Formally, if A is the set of data instances in
the data space that belong to the label λ, and B is the set of data instances that
were assigned by the classifier to that label, then recall (R) can be calculated
as Rλ = |A ∩ B|/|A|, and precision (P) can be calculated as Pλ = |A ∩ B|/|B|.
We also use the F measure to report our results. This measure, which represents
the harmonic mean of recall and precision, can be calculated as Fβ = ((β2 +
1)PR)/(β2P + R). In our analysis, we use β = 1.

5 Results and Discussion

The results of our classification process are shown in Table 2. The results show
that, under the BOF representation, SVM managed to outperform NB, achieving
Fbugs = 0.86 and Freq. = 0.74, while NB achieved Fbugs = 0.81 and Freq. = 0.70.
A similar behavior was observed under the BOW representation; SVM managed
to achieve Fbugs = 0.85 and Freq. = 0.75, in comparison to NB which achieved
Fbugs = 0.79 and Freq. = 0.72. In general, SVM outperforms NB, achieving
almost equivalent performance under the two different representations of the
data. The relatively better performance of SVM can be attributed to its overfit-
ting avoidance tendency— an inherent behavior of margin maximization which
does not depend on the number of features [4]. Therefore, it has the potential to
scale up to high-dimensional data spaces with sparse instances [15], given that
the right kernel is selected. Choosing a proper kernel function can significantly
affect SVM’s generalization and predictive capabilities [30]. In our analysis, the
best results of the BOW representation was achieved using the Normalized Poly
Kernel, while the BOF classifier hit a maximum using the Pearson VII function-
based universal kernel (Puk) with σ = 8 and ω = 1 [31].

Table 2. The performance of NB and SVM over the BOF and the BOW representations
of the data in Table 1

Bug reports User requirements

Classifier p r F1 p r F1

BOF + NB 0.80 0.83 0.81 0.70 0.69 0.70
BOF + SVM 0.84 0.88 0.86 0.73 0.75 0.74
BOW + NB 0.81 0.77 0.79 0.71 0.73 0.72
BOW + SVM 0.78 0.93 0.85 0.83 0.69 0.75

To assess the generative capabilities of our classifiers, we test their perfor-
mance on an external set of reviews that was sampled from apps that were

282 N. Jha and A. Mahmoud

not included in our original dataset, including Google Chrome, Facebook, and
Google Maps. Similar to the reviews in original dataset (Table 1), the newly sam-
pled reviews were classified manually by the researchers (See Sect. 4.1). Table 3
describes the final test dataset5. Our main objective is to test the ability of
the generated models to generalize over unseen-before data, in other words, test
for overfitting. In automated classification, overfitting refers to a phenomenon
where the classifier learns separate data instances (i.e., model the training data),
rather than learning general categories. Formally, the model M overfits the data
if there exists some other model M’, such that, M has a smaller error over the
training data than M’, however M’ has a smaller error than M over the entire
distribution [23].

Table 3. A test set of app reviews sampled from three apps

Source Bugs Req. Others Total

Google chrome 125 26 91 242
Facebook 56 7 32 95
Google maps 108 17 50 175
Total 289 50 173 512

To test for overfitting, the original models generated using the data in Table 1
were saved, reloaded, and reevaluated using the test set. The performance of our
different classifiers on the external test set is shown in Table 4. The results show
that the BOF classifiers managed to outperform the classifiers generated using
the BOW representation. More specifically, BOF+SVM achieved Fbugs = 0.96
and Freq. = 0.75. In contrast, the BOW classifiers’ performance has drastically
dropped over the set of user requirements in the test set to Freq. = 0.54 for SVM
and Freq. = 0.39 for NB, failing to match the performance levels achieved on the
training dataset.

Table 4. The performance of the different classifiers over the test set (Table 3)

Bug reports User requirements

Classifier p r F1 p r F1

BOF + NB 0.85 0.92 0.88 0.41 0.73 0.53
BOF + SVM 0.94 0.99 0.96 0.62 0.96 0.75

BOW + NB 0.84 0.71 0.77 0.28 0.62 0.39
BOW + SVM 0.78 0.97 0.86 0.45 0.68 0.54

5 http://seel.cse.lsu.edu/data/refsq17.zip.

http://seel.cse.lsu.edu/data/refsq17.zip

Mining User Requirements from Application Store Reviews 283

In general, the results over the test dataset suggest that the NB and SVM
classifiers trained under the BOW representation of the data suffered from over-
fitting. This behavior can be attributed to the fact that the feature space (num-
ber of words) is typically very large [15]. Larger number of features causes the
vector representation (BOW) of reviews to be very sparse (only very few entries
with non-zero weights). This in turn forces the classifier to learn specific data
instances rather than the general classification categories. The BOF representa-
tion, on the other hand, seems to be overcoming this problem by raising the level
of abstraction from specific words to more abstract semantic representations.
Reducing the number of features that the classifier needs to consider reduces the
chances of overfitting and leads to better generalizations over unseen before data
instances. For example, Table 5 shows the frames generated for the words that
were semantically distinctive to our classifiers. The BOW training dataset did
not have the word desire. As a results, the user requirement “another window is
highly desired” in our BOW test set was miss-classified as others. However, under
the BOF representation, this review was correctly classified as a user require-
ment since the word desire evoked the frame Desiring, which is one of the most
distinctive frames of the user requirement reviews.

Table 5. Popular frames in our dataset and their evoking words

Semantic frame Evoking words

Temporal collocation when, now, current
Capability can, cannot, able, unable, capable
Desiring eager, hoping, want, desire
Predicament problem, error, fix, trouble
Measure duration year, month, week, day, minute, time,

awhile, endless

A smaller number of features not only reduces the chances of overfitting, but
also speeds up the training process by reducing the computational requirements
of the classifier. In our analysis, the BOF representation required 10 s to build the
model and 96 s to evaluate the classifier using the 10-fold evaluation strategy,
while the BOW representation required 32 s to build the model and 293 s to
evaluate the classifier. This can be explained based on the fact that only 552
unique frames were used to build the BOF model, while the BOW model was
built using 1592 unique words (features). On average, the BOF representation
of the data saves up to 60% of space and time requirements needed to build a
model using the BOW representation. The running time was measured on an
Intel(R) Core(TM) i5-2500 CPU 2.3 GHz, with 8.0 GB of RAM.

In terms of operation overhead, the semantic frames approach is fully auto-
mated and requires minimum to no calibration from the user. This gives this
approach an advantage over other text-reduction strategies typically applied in

284 N. Jha and A. Mahmoud

related research. For instance, methods that rely on mining recurrent linguistic
patterns from reviews help to reduce the dimentionality of the text by using
sentence templates rather than individual words (e.g., “[someone] should try
to [verb]”). However, preparing a complete catalog of such patterns can be a
laborious and time-consuming process [26] as researchers have to manually mine
hundreds of reviews to capture and isolate such patterns [14]. Topic modeling has
also been used as a means to classify and organize app reviews (e.g. [6,12]). The
main objective is to reduce the dimentionality of the review text by grouping
their words into thematic groups known as topics. However, most state-of-the-art
topic modeling techniques (e.g., LDA, PLSI) require an exhaustive calibration
of several parameters in order to generate meaningful output [3]. Furthermore,
generated topics are often not trivial to interpret and rationalize, and going
through a large number of topics (100–200) can be an exhaustive and error-
prone process [6]. This level of operational complexity limits the practicality of
any tools built on top of these techniques. In terms of limitations, the seman-
tic frames approach requires downloading the FrameNet database locally. This
database requires around 500 megabytes of space. However, this space overhead
could be saved by using an online semantic parser6.

6 Threats to Validity

The study presented in this paper has several limitations that might affect the
validity of the results. Internal validity refers to confounding factors that might
affect the causal relations established in the experiment [9]. A potential threat
to the proposed study’s internal validity is the fact that human judgment is
used to prepare our ground-truth dataset. This might result in an experimental
bias as humans tend to be subjective in their judgment. However, it is not
uncommon in text classification tasks to use humans to manually classify the
data. Therefore, these threats are inevitable. However, they can be partially
mitigated by following a systematic classification procedure using multiple judges
at different levels of experience to classify the data.

Threats to external validity impact the generalizability of results [9]. In par-
ticular, the results of our experiment might not generalize beyond the specific
experimental settings used in this paper. A potential threat to our external valid-
ity stems from the datasets used in our experiment. In particular, our dataset
is limited in size and was generated from a limited number of apps. To miti-
gate this threat, we compiled our dataset from several sources, including two
external datasets that have been used before in the literature and a dataset that
we collected locally. We also made sure that our reviews were selected from a
diverse set of apps, covering a broad range of application domains. Other threats
might stem from the tools we used in our analysis. For instance, we used Weka
as our classification platform; and we used Semafor to semantically annotate

6 http://demo.ark.cs.cmu.edu/parse.

http://demo.ark.cs.cmu.edu/parse

Mining User Requirements from Application Store Reviews 285

our review sentences. However, these tools have been extensively used in the lit-
erature and have been shown to generate robust results. Furthermore, such tools
are publicly available which allows other researchers to replicate our results.

Construct validity is the degree to which the various performance measures
accurately capture the concepts they purport to measure [9]. In our experi-
ment, there were minimal threats to construct validity as the standard perfor-
mance measures (Recall, Precision, and F1), which are extensively used in related
research, were used to assess the performance of different methods. We believe
that these measures sufficiently quantified the different aspects of performance
we were interested in.

7 Summary and Future Work

User reviews in mobile application stores represent a rich and a timely source of
information for app creators. Such information can be mined to enable a more
adaptive and a more responsive software engineering process. The main objective
is to arrive at user satisfaction in an effective and a timely manner. Following
this line of research, in this paper we presented a novel semantically aware app-
roach for classifying users reviews in app stores. The proposed approach relies
on semantic role labeling. In particular, individual user review sentences are
extracted and annotated to identify the semantic roles played by the words that
appear in each sentence. Such roles, known as semantic frames, capture the
underlying meaning of the review. An underlying assumption is that relying on
the meaning of the text enhances the predictive capabilities of the classifier.

To conduct our analysis, an experimental dataset of user reviews was com-
piled from three different sources, including two datasets collected by other
researchers [7,20], and a dataset that was prepared locally. Individual reviews
were semantically annotated using FrameNet. Annotated sentences, represented
as Bags-of-Frames (BOF) were then classified using Naive Bayes (NB) and Sup-
port Vector Machines (SVM) and compared to standard Bag-of-Words (BOW)
text classification. The results showed that, the Bag-of-Frames (BOF) approach
achieved competitive results in comparison to the BOW approach on the train-
ing dataset. However, classifiers trained under the BOF representation were able
to generalize better over the set of user requirements in a test set of never-seen
before reviews, suggesting that the initial BOW classification models suffered
from overfitting. The main advantage of the BOF approach stems from the
drastic reduction in the number of features required for classification. Smaller
number of features can produce lower dimensional models which can generalize
better for new data.

Finally, the line of research in this paper has opened several research direc-
tions to be pursued in our future work, including:

– Data collection: A major part of our future effort will be devoted for prepar-
ing larger datasets collected from a more diverse set of apps. More data will
enable us to better evaluate our approach and train more robust classifiers.

286 N. Jha and A. Mahmoud

– Analysis: In our future work, other classification features (star-rating, author
information, number of likes and downloads), that are often used in app store
mining research will be investigated. Our objective is to identify combinations
of features that can complement the BOF approach to achieve higher accuracy
levels.

– Tool support: A working prototype which implements our findings in this
paper will be developed. This prototype will enable app developers to extract,
semantically annotate, and classify their apps’ reviews in an effective and
accurate manner.

Acknowledgment. This work was supported in part by the Louisiana Board of
Regents Research Competitiveness Subprogram (LA BoR-RCS), contract number:
LEQSF(2015-18)-RD-A-07.

References

1. Agarwal, A., Balasubramanian, S., Kotalwar, A., Zheng, J., Rambow, O.: Frame
semantic tree kernels for social network extraction from text. In: Conference of the
European Chapter of the Association for Computational Linguistics, pp. 211–219
(2014)

2. Baker, C., Fillmore, C., Lowe, J.: The Berkeley framenet project. In: International
Conference on Computational Linguistics, pp. 86–90 (1998)

3. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

4. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): The Adaptive Web: Methods and
Strategies of Web Personalization. Springer, Heidelberg (2007). pp. 335–336

5. Burges, C.: A tutorial on support vector machines for pattern recognition. Data
Min. Knowl. Discov. 2(2), 121–167 (1998)

6. Carreńo, G., Winbladh, K.: Analysis of user comments: an approach for software
requirements evolution. In: International Conference on Software Engineering, pp.
582–591 (2013)

7. Chen, N., Lin, J., Hoi, S., Xiao, X., Zhang, B.: AR-Miner: mining informative
reviews for developers from mobile app marketplace. In: International Conference
on Software Engineering, pp. 767–778 (2014)

8. Das, D., Schneider, N., Chen, D., Smith, N.: SEMAFOR 1.0: A probabilistic frame-
semantic parser (2010)

9. Dean, A., Voss, D.: Design and Analysis of Experiments. Springer, Heidelberg
(1999)

10. Fillmore, C.: Frame semantics and the nature of language. In: Annals of the New
York Academy of Sciences: Conference on the Origin and Development of Language
and Speech, pp. 20–32 (1976)

11. Fleischman, M., Kwon, N., Hovy, E.: Maximum entropy models for FrameNet
classification. In: Empirical Methods in Natural Language Processing, pp. 49–56
(2003)

12. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: Requirements Engineering Conference, pp. 153–162
(2014)

13. Hasa, K., Ng, V.: Frame semantics for stance classification. In: Computational
Natural Language Learning, pp. 124–132 (2013)

Mining User Requirements from Application Store Reviews 287

14. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from
online reviews. In: Mining Software Repositories, pp. 41–44 (2013)

15. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). doi:10.1007/BFb0026683

16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: International Joint Conference on Artificial Intelligence, pp.
1137–1143 (1995)

17. Kumar Sinha, S.: Answering Questions About Complex Events. University of Cal-
ifornia at Berkeley (2008)

18. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: National
Conference on Artificial Intelligence, pp. 223–228 (1992)

19. Lovins, J.: Development of a stemming algorithm. Mech. Transl. Comput. Linguist.
11, 22–31 (1968)

20. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On auto-
matically classifying app reviews. In: Requirements Engineering Conference, pp.
116–125 (2015)

21. Martin, W., Harman, M., Jia, Y., Sarro, F., Zhang, Y.: The app sampling problem
for app store mining. In: Working Conference on Mining Software Repositories,
pp. 123–133 (2015)

22. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text
classification. In: AAAI-98 Workshop on Learning for Text Categorization, pp.
41–48 (1998)

23. Mitchell, T.: Machine Learning. McGraw-Hill, New York City (1997)
24. Moschitti, A., Morarescu, P., Harabagiu, S.: Open domain information extraction

via automatic semantic labeling. In: The Florida Artificial Intelligence Research
Society Conference, pp. 397–401 (2003)

25. Pagano, D., Maalej, W.: User feedback in the AppStore: an empirical study. In:
Requirements Engineering Conference, pp. 125–134 (2013)

26. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C., Canfora, G., Gall, H.:
How can I improve my app? Classifying user reviews for software maintenance and
evolution. In: International Conference on Software Maintenance and Evolution,
pp. 281–290 (2015)

27. Platt, J.: Fast training of Support Vector Machines using sequential minimal opti-
mization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge (1998)

28. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
29. Shen, D., Lapata, M.: Using semantic roles to improve question answering. In: Joint

Conference on Empirical Methods in Natural Language Processing and Computa-
tional Natural Language Learning, pp. 12–21 (2007)

30. Steinwart, I.: On the influence of the kernel on the consistency of Support Vector
Machines. J. Mach. Learn. Res. 2, 67–93 (2001)

31. Üstün, B., Melssen, W., Buydens, L.: Facilitating the application of support vector
regression by using a universal Pearson VII function based kernel. Chemometr.
Intell. Lab. Syst. 81, 29–40 (2006)

32. Xie, B., Passonneau, R., Wu, L., Creamer, G.: Semantic frames to predict stock
price movement. In: Annual Meeting of the Association for Computational Lin-
guistics, pp. 873–883 (2013)

http://dx.doi.org/10.1007/BFb0026683

Traceability

Using Interaction Data for Continuous Creation
of Trace Links Between Source Code and
Requirements in Issue Tracking Systems

Paul Hübner(B) and Barbara Paech

Institute for Computer Science, Heidelberg University, Im Neuenheimer Feld 205,
69120 Heidelberg, Germany

{huebner,paech}@informatik.uni-heidelberg.de

Abstract. Context and Motivation: Information retrieval (IR) trace link
creation approaches have insufficient precision and do not perform well
on unstructured data which is typical in issue tracker systems (ITS).
Question/problem: We are interested in understanding how interaction
tracking on artifacts can help to improve precision and recall of trace
links between requirements specified unstructured in an ITS and source
code. Principal ideas/results: We performed a study with open source
project data in which artifact interactions while working on requirements
specified in an ITS have been recorded. Contribution: The results of our
study show that precision of interaction-based links is 100% and recall
is 93% for the first and 80% for the second evaluated data set relative to
IR-created links. Along with the study we developed an approach based
on standard tools to automatically create trace links using interactions
which also takes into account source code structure. The approach and
the study show that trace links creation in practice can be supported
with little extra effort for the developers.

Keywords: Traceability · Continuous · Interaction · Requirement ·
Source code

1 Introduction

Existing trace link creation approaches are typically based on information
retrieval (IR) and on structured requirements like use cases or user stories. Also,
they often focus on links between requirements [5]. It is known that precision
of IR created links is often not satisfying [14] even in the case of structured
requirements. Thus, handling of false positive IR created trace links requires
extra effort in practice which is even a research subject on its own [12,15,29].

Still, the research focus in RE is to improve recall, since security critical
domains like the aeronautics and automotive industry require complete link sets
and thus accept the effort to remove many false positives [6]. These links are
created periodically, when needed for certification to justify the safe operation
of a system.
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 291–307, 2017.
DOI: 10.1007/978-3-319-54045-0 21

292 P. Hübner and B. Paech

However, in many companies requirements are managed in issue tracking
systems [22]. For open source projects ITS are even the de facto standard for
all requirements management activities [26]. In ITS the requirements text is
unstructured, since ITS are used for many purposes, e.g. development task and
bug tracking in addition to requirement specification. This impairs the results
of IR-based trace link creation approaches [27]. Furthermore, for many develop-
ment activities it is helpful to consider links between requirements and source
code during development, e.g. in maintenance tasks and for program comparison
[23]. If these links are created continuously, that means after each completion of
an issue, they can be used continuously during the development. In these cases,
large effort for handling false positives and thus, bad precision is not desir-
able. Therefore, a trace link creation approach for links between unstructured
requirements and code is needed with good precision and recall. It is the goal
of our research to develop such an approach [16] based on interaction logs and
code relations. Interaction logs capture the source code artifacts touched while
a developer works on an issue. We already provided a trace link creation app-
roach based on version control system (VCS) change logs [11]. Interaction logs
provide more fine-grained interaction data than VCS change logs. Code relations
such as references between classes provide additional information. In this paper
we explore the potential of interaction logs and code relations aiming at 100%
precision.

To facilitate the usage of such fine-grained interaction logs we provide a trace
link creation approach which we call interaction link (IL). We study the precision
and recall of our approach in comparison with IR created trace links. The overall
research question which we answer with our study is

Is there a difference between the application of IR and IL based
trace link creation regarding precision and relative recall?

Since it is not possible to get a project from industry or open source which
provides both, fine-grained interaction logs and a gold standard for trace links,
we do not look at precision and recall of IR and IL wrt. a gold standard. Instead
we directly evaluate the precision of IL and IR. Furthermore, we compute the
relative recall of IR and IL. Relative recall compares the correct links found by
one approach with the correct links found by both trace link creation approaches
[13]. This kind of recall is well established in domains in which a gold standard
creation and thus absolute recall calculation is not possible, e.g. in the field of
search engine comparison [20].

For our study we use the interaction log data, requirements and source code
from the Mylyn1 development project. This interaction log data has also been
used by others for different research purposes [18,21].

The results of the study show that IL has 100% precision and is better than
the precision of IR. In addition we show that IL with code relations has also bet-
ter relative recall than IR. The remainder of this paper is structured as follows.
Section 2 gives a short introduction into IR, the creation of trace links, ITS as

1 http://www.eclipse.org/mylyn.

http://www.eclipse.org/mylyn

Using Interaction Data for Continuous Creation of Trace Links 293

data source for requirements, the evaluation of trace link creation approaches
and interaction tracking. In Sect. 3 we discuss related work. Section 4 introduces
our trace link creation approach. Section 5 states the research questions which
are derived from the general research question introduced above and introduces
the experimental design along with the selection of data sets for our study. In
Sect. 6 we present the results of the study and answer the research questions
including a discussion. Section 7 discusses the threats to validity of the study.
Section 8 concludes the paper and discusses future work.

2 Background

This section introduces the background of our approach and the study.

2.1 IR and the Creation of Trace Links

IR is the computer based search for information within a set of artifacts. IR
algorithms are used to execute search queries aiming to retrieve all relevant arti-
facts while minimizing the non-relevant artifacts [4]. When using IR for trace
link creation the query concerns textual similarity between two artifacts. Tex-
tual similarity is determined by calculating the cosine similarity and defining
a threshold for the calculated cosine similarity. Cosine similarity measures the
similarity between the two term vectors representing the artifacts based on the
cosine of the angle between the term vectors by a numerical value between 0 and 1
[5]. 0 indicates no similarity between two artifacts and 1 that two artifacts are
identical. In order to define if two artifacts are related with each other and should
be linked a threshold value for the cosine similarity is used [7]. Thus, varying
this threshold value also varies the number of created trace link candidates.

In our study the artifacts are requirements issues and implementation arti-
facts. There are different IR algorithms. The most common IR algorithms used
for trace link creation are vector space model (VSM) and latent semantic index-
ing (LSI) [5,14]. Thus, we used these two IR algorithms for comparison with our
new trace link creation approach. The difference between VSM and LSI is that
VSM uses a more strict term comparison than LSI. Whereas VSM measures the
similarity based on terms, LSI measures the similarity based on concepts, which
are high level abstractions of the used terms and can been seen as the topics of
the artifacts [4]. Thus LSI enables similarity matches between artifacts which do
not contain the exactly same terms.

The preprocessing of artifact is essential for the application of an IR algo-
rithm. Typically, preprocessing consist of several steps. Some of them are funda-
mental and some are specific to the used data sources. In our study we applied the
following common preprocessing steps [4,5,24]. First we used stop word removal
to remove common words which have no impact on the similarity of artifacts
(e.g. for, the, a, etc.). Then we performed stemming with the Porter Stemmer
algorithm. And we removed punctuation characters. As a specific step we per-
formed camel case identifier splitting (e.g. BugzillaTask becomes Bugzilla Task).

294 P. Hübner and B. Paech

Since camel case notation is common in java source code while requirements
use separate words [1,9], this splitting can significantly improve the similarity of
source code and requirements artifacts.

2.2 ITS as Data Source for Requirements

ITS are a common platform for information exchange in software development
projects [22]. Often ITS are used as a central information data source and
thus also for the definition and management of requirements. Requirements are
described as issues which at least consist of a title and a description. A basic
feature of ITS is the discussion functionality of issues so that users can create
comments for issues. These comments may contain requirement relevant content,
e.g. a feature description.

2.3 Evaluation of IR Created Trace Links

Approaches on trace link creation, e.g. as described in the overview papers [5,14],
by default use a gold standard to evaluate and compare the approach. Such a
gold standard consists of the set of all correct trace links for a given set of arti-
facts. The creation of such a gold standard is labor intensive as it is necessary
to manually check if trace links exist for each pair of artifacts. Therefore many
approaches use data sets which are specifically created for the purpose of evalu-
ation, e.g. within a student project [10]. We also plan to evaluate our approach
in a student project where we can create the gold standard in parallel to the
project. As a first step we wanted to explore the usefulness of interaction logs
on existing data.

There are only few realistic data sets with interaction logs (cf. next Sub-
sect. 2.4). The creation of a complete gold standard for such a project is not
feasible. Therefore we only evaluate the precision of the links found by IR or IL
and we compute the relative recall.

Precision (P) is the amount of correct links (true positives, TP) within all
links found by an approach, i.e. the sum of TP and not correct (false positive,
FP) links. Recall (R) is the amount of TP links found by an approach within all
existing correct links, i.e. the sum of TP and false negative (FN) links:

P =
TP

TP + FP
R =

TP

TP + FN

According to [15] values for P and R of IR for structured requirements can be
categorized in three quality levels. Acceptable values for R are between 60 and
69% and for P between 20 and 29%. Good values for R are between 70 and
79% and for P between 30 and 49% and excellent values for R are between 80
and 100% and for P between 50 and 100%. Merten et al. [27] reported varying
results for using IR on unstructured requirements data from ITS, i.e. they tried
to achieve a 100% for R with different IR algorithms and different preprocessing
steps. Then their best values for P were up to 11%. Considering other approaches

Using Interaction Data for Continuous Creation of Trace Links 295

for link creation between code and requirements using open source projects as
data source Ali et al. also used VSM for trace link creation [2] and achieved
similar but also very project specific results for P (between 15 and 77%). De
Lucia et al. [10] report values of 90% for R and 25% for P for link creation
between structured requirements and source code by using LSI in combination
with categorization.

To evaluate our trace link creation approach we use the relative recall measure
[13] as we do not have a gold standard. Relative recall is used if it is not possible
to get all correct values for a data set due to the size of the data set. It is a well-
established standard measure in the domain of web search engine performance
and quality measuring [20]. Relative recall uses all correct links available as
comparison measure for calculating the recall of a single approach. Therefore
the relative recall for IL (RRIL) and for IR (RRIR) are defined as:

RRIR =
TPIR

TPIR + TPIL
RRIL =

TPIL

TPIL + TPIR

2.4 Interaction Logs and Code Structure

Interaction logs are all developer interactions with artifacts managed by an IDE.
Common IDEs like Eclipse2 provide the functionality to record these interactions
[28]. For the development of our approach we used interactions recorded with the
Eclipse Mylyn extension during the open source development of Mylyn. Mylyn
logs edit, select and other events after a developer has selected an issue from an
associated ITS and activated the recording. Interactions for an issue are recorded
until the developer finishes working on the issue, e.g. by closing the issue, by
switching to another issue or by explicitly stopping the recording of interactions.
For the development of Mylyn the developers use Mylyn together with the ITS
Bugzilla3 which is also used for requirements capture. The Mylyn developers
are encouraged to trigger recording when they work on the implementation of a
requirement. These interaction logs are accessible as attachments of the issues
in the Mylyn Bugzilla ITS.

Interaction logs can have different event types e.g. edit and select events
triggered by a developer and system generated events like propagation, command
and preference. An interaction log entry comprises the event type E touching
the implementation artifact I while working on requirement A. Based on such an
interaction log entry a trace links can be created between A and I. Interaction
logs enable the link creation on class (file), method and attribute granularity
level, i.e. all parts of the source code abstract syntax tree (AST) model.

We use the term code structure to denote the following relations between
two classes in the Mylyn name space: a class implements an interface, a class
extends another class or a class references other classes in its attributes. These
relations can be used for link creation as follows: If a trace link (A → X) from
requirement A to class X has been created, for each class Y which is related
2 http://www.eclipse.org.
3 https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn.

http://www.eclipse.org
https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn

296 P. Hübner and B. Paech

with X also a trace link to the requirement A is created (A → Y). These related
classes are likely relevant to the implementation of A. Clearly, this can be applied
transitively and in consequence it is theoretically possible that from a single class
all existing classes are linked. Therefore we explored different nesting levels in
our study.

3 Related Work

In the following we first discuss related work on IR-based trace link creation
approaches for structured and unstructured requirements and for consider-
ing code structure. Then we discuss related work on the usage of interaction
logs. Borg et al. [5] present a current overview of IR based trace link cre-
ation approaches based on a systematic literature review. 46 of the 79 analyzed
approaches deal with trace link creation between source code and requirements.
In contrast to our study most of the approaches use laboratory settings (i.e.
student projects) instead of real (open source) projects. We used the assessment
of IR algorithms presented by Borg to select VSM and LSI as comparison algo-
rithms for our approach. De Lucia et al. [10] is an example for such a study in
which the usage of LSI and VSM are compared. As a result this study reports
about possible improvements when using LSI. Our study setup is similar to
theirs, since we share the research goal of improving trace link creation. McMil-
lan et al. [25] use source code structure information to improve results of trace
links created by VSM. We adapt the use of source code structure in our app-
roach. Instead of using the structure only for verification of already created links
by IR we use the source code structure to create additional new links.

Merten et al. [26] have evaluated the application of IR-based trace link cre-
ation algorithms in ITS and thus on unstructured requirements data. One of their
findings was that preprocessing of the unstructured data is essential for reason-
able application of IR. Another finding was that it is not possible to achieve
good results for both, precision and recall. In our study we create links between
(requirements) issues and source code instead of links between issues.

To identify related work using interaction data we completely explored the
Mining Software Repositories conference proceedings, but did not find any
approaches using interactions for trace link creation. In consequence we also
partly searched in the ICSE and RE proceedings and identified the following
relevant publications.

Kersten et al. [17] describe the initial version of Mylyn called Mylar. The basic
idea of Mylyn is to reduce the information overload in an IDE by exploiting the
interactions of a developer. To do so Mylyn provides the functionality to associate
interactions to issues from an ITS within the IDE. With our approach we use
these interaction logs available in Mylyn by filtering and aggregating the logs on
different levels of granularity and directly providing links in the ITS to the code.

Konopka et al. [19] show that interaction logs are helpful to derive links
between development artifacts. They also use Mylyn generated interaction logs

Using Interaction Data for Continuous Creation of Trace Links 297

and data from the Mylyn project for development and evaluation of their app-
roach. We adopt interaction based link creation for our trace link creation app-
roach, but in contrast to their focus on code relations we derive links between
unstructured requirements and source code. Omoronyia et al. [30] capture inter-
actions between source code and structured requirements specified as use cases
to infer trace links based on statistical evaluation of the interactions. We adopt
their approach using select and edit events for trace link creation. In contrast to
our goal their tool support focuses on visualizing the trace links after a task has
been performed and not on direct availability and usage of trace links. Asun-
cion and Taylor [3] describe the principle of recording interaction for trace link
creation, but do not provide a tool. In contrast to our approach their focus has
been trace link creation between structured requirements and design oriented
artifacts. In our earlier work we used VCS based changed logs, a coarse-grained
form of interaction logs, using work items as intermediate elements to create
trace links between source code and requirements [11]. Our actual approach
improves this earlier work. With more fine grained interactions more detailed
trace links can be created.

4 Interaction Log Trace Link Creation Approach

Figure 1 shows the overview of our IL approach. After the capture of the inter-
action logs in Mylyn there are two steps to create links. In the first step links
are created based solely on interaction logs. In the second step the source code
structure is used to create further trace links between requirements and code. We
implemented both trace link creation steps in a Python and Java based tool. The
NLTK library4 is used to create the trace links. In the second step Eclipse JDT
library5 is used to create the code structure considered for trace link creation.
The used interaction logs are based on the selected requirement in the ITS and
the implementation artifacts managed within a VCS. In our approach we only
use edit and select events, since these are directly triggered by a developer and
indicate relations between the affected artifacts and the processed requirement
(filtering). Trace links are created between a requirement and all source code
artifacts touched by select or edit interaction events. We support aggregation of
links, e.g. if trace links are created to multiple methods of a class, these links are
aggregated to a single link on file level. In our tool the granularity level of the
created trace links is configurable. To be comparable with IR created trace links,
which only support file granularity we configure our approach in the study to
aggregate interaction log created links to file level. Also the usage of source code
structure is configurable wrt. the nesting level of source code relations. E.g. if
there are classes A, B, C and D with the relations A → B → C → D and there
is a trace link, created by interaction logs, between requirement R and class A
(R → A), then the nesting level two will result in the creation of two additional
trace links R → B and R → C.
4 http://www.nltk.org/, Python Natural Language Toolkit.
5 http://www.eclipse.org/jdt/, Eclipse Java development tools.

http://www.nltk.org/
http://www.eclipse.org/jdt/

298 P. Hübner and B. Paech

Capture of Interaction
Events during the
Implementation of

selected Requirement

(1) Trace Link CreationRequi-
rement
From ITS

Inter-
action
Log

Trace
Links

(2) Trace Link Creation

Impl.
Artifacts
from
VCS

Interaction
Log filtering

Interaction Log
aggregation

Granu-
larity
Level

Event
Types

Source
Code
Struct.

Trace
Links

Nest-
ing
Level

Python NLTK

Data Approach Step Data usage Sequence Flow

Source Code Structure
generation Eclipse JDT

Python NLTK
Mylyn

Fig. 1. IL approach overview

5 Experiment Design

In this section we describe the design of our evaluation experiment. Figure 2
shows the overview of the activities for the experimental design of our study. It
is guided by the detailed research questions stated in the following Sect. 5.1. In
the experiment we evaluate two different data sets both taken from the Mylyn
project. The detailed characteristics of the data sets and our process to select
the two data sets are described in Sect. 5.2. For each of the two data sets the
experiment steps are:

Link Creation. Creation of trace links with our IL approach and the two
selected IR algorithms VSM and LSI (cf. 5.3) and consideration of the source
code structure. We apply this to both IR and IL.

Evaluation. Manual evaluation of trace links created with IL followed by man-
ual evaluation of trace links created with IR. In the evaluation of IR trace
links we could use the links already verified in the manual evaluation of IL
trace links (cf. 5.4).

EvaluationLink CreationPreparation

Definition of Research
Questions

Selection of Data Sets IL and IR Trace Link Creation Manual Evaluation of IL
created Links

Manual Evaluation of IR
created Links using Results of

IL Link Evaluation

1.

2. 3. 5.

6.Consideration of
Code Structure

4.

Fig. 2. Experimental design: Overview of performed activities

5.1 Research Questions

Our overall research question is Is therea difference between the applica-
tion of IR and IL based trace link creation regarding precision and
relative recall? We divide this into three sub-questions:

RQ1: What is the precision of IR and IL created trace links? Our hypothesis is
that the precision of IL is better than IR, since link creation in IL is based
on developers’ expert knowledge.

Using Interaction Data for Continuous Creation of Trace Links 299

RQ2: What is the relative recall of IR and IL created trace links? Our hypothesis
is that the relative recall of IL is at least as good as the relative recall of IR. On
the one hand IL can find links between artifacts which are not textual similar.
On the other hand artifacts found by IR are also covered by interactions.

RQ3: What is the impact of using code structure? Our hypothesis is that using
the code structure in addition to IL and IR improves the relative recall of
both trace link creation approaches.

5.2 Selection of Data Sets

The data sets used in our study consist of data from the Bugzilla ITS for require-
ments and interaction logs and from the Git VCS for implementation artifacts.
For trace link creation with our IL approach we used all three data sources
(requirements, implementation artifacts, interaction logs) whereas for IR-based
trace link creation only requirements and implementation artifacts have been
used. Issues in the Mylyn project have been created starting from early 2005,
however the open source development of Mylyn really started at the beginning
of 2007 when its source code first was made publicly available. The development
activity of Mylyn decreased in the last years but is still ongoing. A reason for
this is that the major features are already implemented and development efforts
mostly concern bug fixing.

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

500

1000

1500

2000

413

654

583

244

750

266
148

66
38

17

1319
845

1281

433

1202 1084 1045

514 378 210

#
Is

su
es

without interactions

with interactions

Fig. 3. Issue in the Mylyn Bugzilla ITS per year

Figure 3 shows the number of issues with and without interaction per year
until mid of June 2016 when we fetched the data for our study. Till then there
were a total of 11490 issues from which 3179 (27.7%) have interaction logs
attached and therefore are suitable for our study. In total the 3179 issues have
over 3 million interaction log entries attached. Based on these general data char-
acteristics we decided to evaluate only a subset of the existing interaction logs by
selecting a suitable subset of requirements issues. We used the following criteria
for the requirements selection:

300 P. Hübner and B. Paech

C1: There should be two distinct data sets from different project phases, i.e.
from early phase and later phase. Thereby we want to check whether IL trace
link creation is applicable for different project circumstances.

C2: The number of interactions in the two sets should be as similar as possible to
ensure the comparability of the two data sets. Due to the data characteristics
this criteria could only be fulfilled up to a certain extent, since also the number
of interactions by issue decreases during the years.

These criteria resulted in the creation of two data sets. The first data set R2007

consists of the first 50 requirements issues in 2007 (and the corresponding inter-
action log and code) and the second data set R2012 consists of the first 50 require-
ments issues in 2012 (and the corresponding interaction logs and code). We used
the first requirements of the years, as the Mylyn project employs an annual
release cycle with a major release every June. Therefore, new requirements are
mostly created at the beginning of a year whereas around the release date more
bugs are created. Requirements are described as natural language text using
the Bugzilla issue format, i.e. a title, a description text and technical meta-data
like the affected components and the assignee. For each data set requirement
issues including the comments and interaction logs have been downloaded from
Bugzilla. Comments have been included, since they often contain requirement
relevant information, e.g. changes to the functionality initially stated in the
description. Since there is no explicit classification of the issues as requirement
or as bug, we performed this classification for the issues by ourselves. First we
fetched an overview list with all issue titles and then manually performed the
classification of the issues by reading their title. If classification was not possible
by only using the title, we also read the issues description. The two require-
ments sets have slightly different characteristics. In the first phase of the Mylyn
project more complex requirements concerning the basic functionality and in
the later phase of the project more requirements concerning small and advanced
functionality have been implemented.

To identify the code related to the requirements we used a specific VCS
version tag. For each data set we sorted all interaction log entries of the inter-
action logs in chronological order and then used the first version tag after the
last interaction log entry. We assume the so selected VCS version comprises the
implementation of the 50 requirements. From these implementation artifacts we
removed all artifacts which are not textual and cannot be processed with IR
such as pictures or binaries.

Table 1 shows the overview of both data sets. As expected there are much
more implementation artifacts in the second (later) data set than in the first
data set. In contrast, the amount of interaction log entries, overall and also for
each requirement, in the second data set is lower than in the first data set.
Therefore, only a minor part of all implementation artifacts are directly touched
by interactions.

Using Interaction Data for Continuous Creation of Trace Links 301

Table 1. Study data sets overview

Data set #Requirements #Int. Log
entries

VCS
version tag

#Impl. Artifacts

All Textual Touched by IL

R2007 50 7687 R 2 0 RC1 1103 756 585

R2012 50 1660 R 3 8 3 3451 2119 172

5.3 IR-based Trace Link Creation

For IR-based trace link creation we applied both IR algorithms VSM and LSI to
the two data sets R2007 and R2012. Upfront we applied the preprocessing steps as
described in Sect. 2.1 to all used artifacts. We restricted the trace link candidate
generation to links from requirements to implementation artifacts.

Table 2. Thresholds and number of candidate links for IR algorithms

Thresholds* 0.9 0.8 0.7 0.6 0.5 0.4 0.3

R2007
VSM 0 50 596 2347 6419 13798 24040
LSI 0 3 8 40 142 354 1058

R2012
VSM 185 2268 6431 12333 22397 39434 64284
LSI 1 14 86 297 920 2424 6014

* Selected values are highlighted

To determine a reasonable threshold for the IR algorithms we initially used
approved threshold values of 0.7 for VSM [8] and 0.3 for LSI [10]. While this
worked well for R2007, we had to choose different thresholds for R2012. As can
be seen from Table 2, which shows the number of candidate links for different
IR thresholds, for the second data set the number of generated links increases
very quickly with lowering the threshold. To limit the effort for the verification
of the links, we used thresholds with less than 1000 links. Clearly, the results
for R2012 can only be seen as a first indication and can be improved with lower
thresholds.

5.4 Data Evaluation

To evaluate the trace links created with our IL approach we compared the created
links from both data sets (R2007 and R2012) with links created by IR. We used
two settings for trace link creation: one with code structure and one without.
We performed the following steps to determine TP and FP for these link sets.
We manually verified links created by IL in R2007 and R2012. Subsequently, we
removed these verified links from the IR trace link candidate sets. This resulted
in sets of link candidates only found by IR. We also manually verified these links.

302 P. Hübner and B. Paech

Finally, we use the verified IR links and the verified IL links to determine the
set of links only found by IL.

6 Results

In the following subsections we answer the research questions of our study and
discuss the results. In Sect. 6.1 we answer RQ1 and RQ2 concerning precision and
relative recall of IL and IR created trace links. This is followed by the answer to
RQ3 concerning the consideration of code structure in Sect. 6.2.

6.1 Precision (RQ1) and Relative Recall (RQ2)

Table 3 shows the overview of the number of created trace link candidates, used
implementation artifacts, used requirements, correct trace links, implementation
artifacts involved in correct trace links, requirements involved in correct trace
links, sum of correct trace links created by all approaches together, precision and
relative recall for both data sets. Thus, we can answer our research questions as
follows.

Table 3. Comparison of IR and IL trace link creation

R2007 R2012

IL IR (V SM0.7) IR (LSI0.3) IL IR (V SM0.9) IR (LSI0.5)

#Link cand. (LC) 1148 596 1058 240 185 920

#Impl. ArtifactLC 585 203 384 172 171 444

#RequirementsLC 50 23 46 37 4 34

#True positive (TP) 1148 204 328 240 25 274

Trace links (118IL + 17LSI +

69)

(184IL +

37V SM + 107)

(6IL+24LSI+1) (41IL +

24V SM + 250)

#Impl. ArtifactTP 585 126 200 240 24 169

#RequirementsTP 50 19 41 172 3 28

#Trace linksTP by 1324 491

all Approaches (1148IL + 69V SM + 107LSI) (240IL + 1V SM250LSI)

Precision 1 0.341 0.310 1 0.135 0.298

Relative recall 0.867 0.154 0.247 0.418 0.051 0.534

RQ1: What is the precision of IR and IL created trace links? For both data
sets all links created with our IL approach were correct (100% precision). For IR
precision values vary between 13% and 34% with little difference between VSM
and LSI for the standard thresholds in the first data sets and big difference for
the higher thresholds in the second data set. Thus, IL clearly outperforms IR.
Moreover, IL is independent from setting a threshold and finds more correct links
than IR for the R2007 data set. Nevertheless, there are also links only discovered
by IR in this data set.

For our R2012 data set the situation is different due to the smaller number of
IL created trace links and much larger amount of used implementation artifacts

Using Interaction Data for Continuous Creation of Trace Links 303

for IR. Note that not all requirements are involved in interaction links in this
set. This is due to the fact that some interactions concerned code outside of the
VCS tag (e.g. used framework). LSI finds in total more correct trace links for
the second data set than IL. This can be explained by the amount of considered
requirements and implementation artifacts, i.e. IL considered 37 requirements
and 172 implementation artifacts whereas LSI considered 34 and 444. In com-
parison with the values achieved by current approaches as discussed in Sect. 2.3
we can state that the 100% precision of IL in a real world setup is unique. The
precision of IR is acceptable for the first and good for the second data set. The
values for precision are in the range reported by DeLucia [10] (LSI), Ali [2](VSM)
and Merten [27] (LSI, VSM, ITS as data source).

RQ2: What is the relative recall of IR and IL created trace links? The used
setting in our experiment resulted in relative recall rates between 5% and 53%
(cf. Table 3) for IR and in relative recall rates of 86% and almost 42% for IL. As
expected and reported by others [7,14], IR creates a lot of false positive trace
links even with the moderate threshold setting we used for the second data set
in our experiment. The difference in relative recall rates between the R2007 and
R2012 data sets in our IL approach can be explained by the characteristics of the
data sets which resulted in a lower number of interactions for the second R2012

data set (cf. Sect. 5.2, Table 1: R2007 has 7687 interactions on 756 used imple-
mentation artifacts, R2012 has 1660 interactions on 2119 used implementation
artifacts).

6.2 Using Code Structure (RQ3)

As mentioned in Sect. 2.4 the first results concern the setting of an appropriate
nesting level. Table 4 shows the differences according to the number of created
links and their precision for considering code structure with different nesting lev-
els for the R2007 data sets. R2007IL refers to links generated by our IL approach
and R2007IR to links generated by IR. Since precision for IL drops when con-
sidering a nesting level of code relations greater than four, we used this nesting
level for the answer of RQ3. It also can be seen that precision of IR only drops
for nesting level 10. As our current focus is to maximize the precision of the IL
approach, we choose level 4. Clearly, the results for IR could be improved with
higher nesting level. We also performed this analysis for our second data set.
Since the results are quite similar, we skip their detailed report here.

RQ3: What is the impact of using code structure? As shown in Table 5 for
both data sets all links created with our IL approach were also correct (100%
precision) when considering code structure. Furthermore, relative recall was
increased considerably for the second data set. Comparing Tables 3 and 5 we
can see that the code structure consideration for IL results in five times more
trace links for the second data set and twice as much links for the first data set.
This can be explained by the more complex code structure due to the maturity
of the project in the second data set.

Both IL and IR considered about 1/3 more implementation artifacts when
using code structure. For VSM and LSI in the R2007 data set this resulted in an

304 P. Hübner and B. Paech

Table 4. Trace links for different code nesting levels

Nesting

level

R2007IL R2007IR

#Link cand. #TP links Precision #Link cand. #TP Linksa Precision

V SM0.7 LSI0.3 V SM0.7 LSI0.3 V SM0.7 LSI0.3

0 1148 1148 1.000 596 1058 120 184 0.201 0.174

1 1446 1446 1.000 858 1718 234 338 0.273 0.197

2 1831 1831 1.000 1108 2181 363 562 0.328 0.258

3 2204 2204 1.000 1382 2706 499 805 0.361 0.297

4 2565 2565 1.000 1624 3214 639 1083 0.393 0.337

5 3027 2854 0.943 1915 3927 781 1349 0.408 0.344

6 3531 3202 0.907 2253 4510 947 1612 0.420 0.357

10 5805 3639 0.627 3374 5488 1258 1779 0.373 0.324
a Compared to IL

Table 5. IR and IL trace links considering code structure

R2007 R2012

IL IR (V SM0.7) IR (LSI0.3) IL IR (V SM0.9) IR (LSI0.5)

#Link Cand. (LC) 2565 1624 3143 1126 458 2766

#Impl. ArtifactLC 627 333 516 363 343 702

#RequirementsLC 50 23 46 37 4 34

#TP trace links of 2565 698 1214 1126 108 784

Trace links (581IL +

63LSI + 54)

(1010IL +

62V SM + 142)

(91IL +

17LSI + 0)

(491IL +

11V SM + 282)

#Impl. ArtifactTP 627 229 308 363 73 354

#Requirements (TP) 50 22 41 37 4 35

#Trace linksTP by 2761 1408

all Approaches (2565IL + 54V SM + 142LSI) (1126IL + 0V SM + 282LSI)

Precision 1 0.425 0.386 1 0.236 0.283

Relative recall 0.929 0.253 0.440 0.800 0.077 0.557

increase of precision and relative recall. This is also true for the R2012 data set,
except for the precision value of LSI which slightly drops.

In our experiments we could reduce the number of links only found by IR
to almost zero by increasing the nesting levels of code relations. However, this
also resulted in false positive links for IL which is contrary to our research goal
to create trace links with 100% precision. Altogether, we can see that by using
code structure we could achieve our research goal of 100% precision and excellent
relative recall and that IL outperforms IR for both Mylyn project data sets.

7 Threats to Validity

In this section we discuss the threats to validity of our study. The internal
validity is threatened as manual validation of trace links was only performed by

Using Interaction Data for Continuous Creation of Trace Links 305

one researcher. However, this researcher is very familiar with the Mylyn project
in general, its source code, the used development infrastructure, and has Mylyn
specific development experience for almost ten years.

When comparing the results achieved with our approach to IR the setup
of the IR algorithms is a crucial factor. Wrt. preprocessing we performed all
common steps including the identifier splitting which is specific to our used data
set. However, the higher threshold for the second data set and the nesting level
restriction impairs the results for IR. Thus, further comparison of IL and IR for
data sets with few interactions is necessary.

Clearly, the external validity depends on the availability of interaction logs
and respective tooling and usage of the tooling by developers. Up to now we have
only studied one open source project retrospectively. While the generalizability
based on one project is clearly limited, we think that using an open source project
is not a limitation: Since IL performed quite well in the loosely organized and
structured open source project, we expect even better results when applying the
approach to a more strictly structured industry project.

8 Conclusion

The results for our IL approach are encouraging. With IL we could create trace
links with 100% precision for two different data sets. Also our calculated relative
recall values are excellent, i.e. almost 96% for the first and 80% for the second
data set. Thus, the approach and the study show that trace link creation in
practice can be supported with little extra effort for the developers. Clearly, the
comparison with IR is only preliminary. We did not use the common thresholds
for the second data set and we could only compute relative recall.

We already created a tool to assess created trace links in detail. The tool
enables the automation of all steps necessary to compare two trace link sets on
the basis of single requirements. The usage of this tool for detailed trace link
evaluation and the determination of absolute recall values are part of our planed
follow up study.

We will investigate the application of our approach including the evaluation
of its practicability in a real project. The project started in Fall 2016 and lasts
until Spring 2017. In this project we evaluate IL in a different context (Scrum,
IntelliJ, Jira) where we can create both, interaction logs and a gold standard,
and thus compute recall and provide a full comparison with IR. Furthermore, we
evaluate the usage of IL created trace links by incorporating them into the ITS.
To improve our approach further, we will investigate the use of existing trace
links in combination with IL [16].

Acknowledgment. We thank the open source community for providing the data for
our research.

306 P. Hübner and B. Paech

References

1. Ali, N., Gueheneuc, Y.G., Antoniol, G.: Requirements traceability for object ori-
ented systems by partitioning source code. In: Conference on Reverse Engineering,
pp. 45–54. IEEE, October 2011

2. Ali, N., Gueheneuc, Y.G., Antoniol, G.: Trustrace: mining software repositories to
improve the accuracy of requirement traceability links. IEEE TSE 39(5), 725–741
(2013)

3. Asuncion, H.U., Taylor, R.N.: Automated techniques for capturing custom trace-
ability links across heterogeneous artifacts. In: Cleland-Huang, J., Gotel, O.,
Zisman, A. (eds.) Software and Systems Traceability, pp. 129–146. Springer, Lon-
don (2012)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. Pear-
son, Addison-Wesley, Harlow, Munich (2011)

5. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empir. Softw. Eng.
19(6), 1–52 (2013)

6. Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML
design slices to support safety inspections. ACM ToSEM 23(1), 1–43 (2014)

7. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best prac-
tices for automated traceability. Computer 40(6), 27–35 (2007)

8. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact man-
agement system with traceability recovery features. In: ICSM, pp. 306–315. IEEE
(2004)

9. De Lucia, A., Di Penta, M., Oliveto, R.: Improving source code lexicon via trace-
ability and information retrieval. IEEE TSE 37(2), 205–227 (2011)

10. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods. ACM
ToSEM 16(4), 1–50 (2007)

11. Delater, A., Paech, B.: Tracing requirements and source code during software devel-
opment: an empirical study. In: International Symposium on Empirical Software
Engineering and Measurement, pp. 25–34. IEEE/ACM, Baltimore, October 2013

12. Falessi, D., Di Penta, M., Canfora, G., Cantone, G.: Estimating the number of
remaining links in traceability recovery. Empir. Softw. Eng. (2016)

13. Fricke, M.: Measuring recall. J. Inf. Sci. 24(6), 409–417 (1998)
14. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher, P.,

Antoniol, G.: The quest for ubiquity: a roadmap for software and systems trace-
ability research. In: RE, pp. 71–80. IEEE, September 2012

15. Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for
requirements tracing: the study of methods. IEEE TSE 32(1), 4–19 (2006)

16. Hübner, P.: Quality improvements for trace links between source code and
requirements. In: Joint Proceedings of REFSQ Workshops, Doctoral Symposium,
Research Method Track, and Poster Track. CEUR-WS, Gothenburg, Sweden
(2016)

17. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering - SIGSOFT 2006/FSE 2014, pp. 1–11. ACM,
New York, November 2006

18. Konopka, M., Navrat, P.: Untangling development tasks with software developer’s
activity. In: International Workshop on Context for Software Development, pp.
13–14. IEEE/ACM, May 2015

Using Interaction Data for Continuous Creation of Trace Links 307

19. Konopka, M., Navrat, P., Bielikova, M.: Poster: discovering code dependencies by
harnessing developer’s activity. In: ICSE, pp. 801–802. IEEE/ACM, May 2015

20. Kumar, B., Prakash, J.: Precision and relative recall of search engines: a com-
parative study of Google and Yahoo. Singap. J. Libr. Inf. Manag. 38(1), 124–137
(2009)

21. Maalej, W., Ellmann, M.: On the similarity of task contexts. In: International
Workshop on Context for Software Development, pp. 8–12. IEEE/ACM, May 2015

22. Maalej, W., Kurtanovic, Z., Felfernig, A.: What stakeholders need to know about
requirements. In: EmpiRE, pp. 64–71. IEEE, August 2014

23. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empir. Softw. Eng. 20(2), 413–441
(2015)

24. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
1st edn. Cambridge University Press, Cambridge (2008)

25. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural
analysis of software artifacts for traceability link recovery. In: ICSE Workshop
on Traceability in Emerging Forms of SE, pp. 41–48. IEEE, May 2009

26. Merten, T., Falisy, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Soft-
ware feature request detection in issue tracking systems. In: RE, IEEE, September
2016

27. Merten, T., Krämer, D., Mager, B., Schell, P., Bürsner, S., Paech, B.: Do infor-
mation retrieval algorithms for automated traceability perform effectively on issue
tracking system data? In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol.
9619, pp. 45–62. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30282-9 4

28. Murphy, G., Kersten, M., Findlater, L.: How are Java software developers using
the elipse IDE? IEEE Softw. 23(4), 76–83 (2006)

29. Niu, N., Mahmoud, A.: Enhancing candidate link generation for requirements trac-
ing: the cluster hypothesis revisited. In: RE, pp. 81–90. IEEE, September 2012

30. Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., Wood, M.: Use case to source
code traceability: the developer navigation view point. In: RE, pp. 237–242. IEEE,
Los Alamitos, August 2009

http://dx.doi.org/10.1007/978-3-319-30282-9_4

A Requirements Traceability Approach
to Support Mission Assurance

and Configurability in the Military

James Lockerbie1(&), Neil Maiden1, Chris Williams2,
and Leigh Chase3

1 City, University of London, London, UK
{James.Lockerbie.1,N.A.M.Maiden}@city.ac.uk

2 Dstl Porton Down, Salisbury, UK
cwilliams@dstl.gov.uk

3 IBM UK Ltd., Winchester, UK
Leigh_chase@uk.ibm.com

Abstract. Context & motivation: A challenge facing military mission planning
is how to relate high-level mission objectives down to available human and
technical assets. Understanding how changes in requirements affect the objec-
tives, and how requirements can be revised to meet changing objectives, is
critical to the design and implementation of mission configurable systems.
Question/problem: Whilst current toolsets provide support for static require-
ments approaches, there is a need for a new approach to meet the dynamic
nature of operational mission assurance and configuration. Principal
ideas/results: Therefore, we have developed a new mission aware approach
based on requirements traceability and metric measurements to enable the
propagation of system performance to goal impacts. The approach is delivered
through REDEPEND, an i* goal modelling tool, underpinned with a controlled
natural language reasoning engine, CEStore. Contribution: We report the
approach and provide lessons learned from applying it to a real-world military
scenario.

Keywords: Requirements traceability � Goal modelling � Controlled english �
Mission assurance � Mission configurability

1 Introduction

Mission planning in the military involves the definition of mission objectives, the
processes that deliver the objectives, and the capabilities and assets required to enable
them. Relating high-level mission objectives down to available assets is a significant
challenge facing the military – a challenge which can be viewed from two perspectives.
First, mission assurance considers how changes in the performance and behaviors of a
given configuration of human and technical assets impacts the mission objectives. In
practical terms, mission assurance could provide military commanders and operators
with prior warning of asset degradation to afford them more time to mitigate risks.
Second, mission configurability considers how the available personnel, processes and

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 308–323, 2017.
DOI: 10.1007/978-3-319-54045-0_22

technologies need to be reconfigured to deliver changes in mission objectives. In
practice, commanders and operators could be provided with greater scope for assessing
the impact of reconfigurations prior to asset redistributions being carried out.

Existing work has sought to model the elements of a mission thread, from objec-
tives down to assets, an example being the System of Systems Metamodel [1]. Whilst
this model provides an architectural view of the layers in the system and how they
connect, it lacks any notion of the required quality levels and any subsequent indica-
tions of risk to the overall system. Although an approach such as the NATO model [2]
provides an example of traceability with quality measures across a mission thread, it
does not support the writing of requirements. Whilst commercial toolsets support static
requirements capture, they do not provide the support needed in a dynamic military
environment. Through a static approach a system may deliver against the original
design requirements, but as mission objectives change and evolve, or assets are taken
into environments not foreseen as part of the original requirements capture, there is a
lack of support for military personnel to handle this. Therefore, our work sought to
provide solution ideas for these needs by drawing upon research in the areas of
requirements engineering and conceptual modeling. The result was a new approach
called MANGO, which integrates goal modelling, rich traceability and measurable
requirements with a conceptual model that supports machine reasoning and automated
deduction capability. This proof of concept approach was applied to a real-world
military scenario and implemented though an integrated software prototype.

In this paper, we report project work undertaken for the Defence Science and
Technology Laboratory (Dstl), an agency of the UK Ministry of Defence (MOD) that
provides science and technology advice to MOD and wider Government. The next
section of the paper outlines the requirements problem and describes the current mil-
itary approach. Section 3 describes our development approach and Sect. 4 presents our
method, called MANGO, in detail. In Sect. 5 we present a case study and show a
worked example of our approach. Section 6 provides lessons learned and the paper
ends with our plans for future development of our approach and tool support.

2 The Requirements Problem

Changes to the dynamics of the military environment and technology landscape have
led to changes in the needs of military stakeholders over recent decades. Requirements
include the need to shift towards more agile operations and to improve situational
awareness whilst dealing with the resulting increases in infrastructure demands.

The background to our mission assurance and configurability problem has been
well documented within the military, and three clearly defined aims were presented to
us to address in our project work:

1. To enable modelling of a mission covering objectives, process, capabilities and
assets, along with more complex dependencies between requirements.

2. To provide support for rich traceability to justify the requirements and how
sub-requirements are combined to meet a higher level requirement.

3. To provide the means to show impacts on goals through automated reasoning.

A Requirements Traceability Approach to Support Mission Assurance 309

Along with these three requirements, we also needed to consider how the overall
approach would be delivered to users through a new toolset.

As mentioned earlier, the System of Systems Metamodel [1] provides us with a
conceptual model of mission awareness across a complex system in its broadest con-
text, shown in Fig. 1. The model illustrates the system layers from mission objectives
down to assets.

Mission objectives captures the high level strategic objective that the commander
seeks to attain. A single top level objective may be defined along with a number of
sub-objectives that may require coordination/deconfliction during an operation.
Process/information shows a mission task, or a unified series of tasks, from a logical
perspective rather than relating to any physical implementation. The process views
enable critical processes to be identified and show how they contribute to the mission,
and provide a mapping to the capabilities that enable their implementation. Capabilities
refers to the services or functions required to enable the process to be carried out in
practice – they are not particular systems or equipment. In this model, capabilities are
delivered through packages that link operational outcomes (mission objectives) to
assets. At this layer, Systems of Sytems (SoS) are created, bringing together individual
systems that are designed to operate autonomously. Assets are the means to implement
capability in practice. The Physical assets element represents data exchanges between
assets that support information flows identified by the Process element. The Human/
social element includes knowledge, such as experience and situational awareness (SA),
which is stored and used in context towards decision making.

However, this conventional architectural view only shows how elements are con-
nected in the system and does not give any indication of the required levels of per-
formance. It fails to provide support for answering important questions concerning
what quality levels are acceptable and what are the risks. Whilst individual systems and
their behaviors are typically well understood, combining such systems at the capability
layer adds uncertainty, compounded by the limited time available for testing opera-
tional systems, particularly in a coalition arrangement. Therefore, there is a need to
capture functional requirements of the subsystems and their metrics.

An example of metrics traceability within a military context is provided by the
NATO model [2] which shows a hierarchy of measures covering policy at the mission
objective layer, measures of effectiveness at the process and capability layers, and

Mission objectives

Process
Information

Capabilities/Services

Applications
Physical Assets

Decisions
Human/socialActions

SA

Fig. 1. System of systems conceptual model of a mission

310 J. Lockerbie et al.

performance measures at the asset layer. However, the NATO model does not provide
the necessary framework for writing requirements and providing traceability in a
dynamic environment. Moreover at present, performance metrics are usually commu-
nicated in very different ways at each level of the system hierarchy. There is a need for
a whole system view which presents performance in a meaningful way from the lower
levels through to command levels, not least to avoid information overload for the
commander. In simple terms, requirements and metrics need to be captured at each
level, along with traceability between the architectural layers.

3 Development of a New Approach

Our research method followed a design cycle, iterating over design and investigation as
described in [3]. We undertook three distinct project phases, each of which investigated
the problem, considered treatments for the problem and presented the results to
stakeholders for validation. First, we undertook a scoping study to determine whether
requirements traceability could be a solution to the problems of mission assurance and
mission configurability. Our study, reported in [1], investigated research in require-
ments engineering and conceptual modeling, including i* goal modelling [4] Goal
Structuring Notation (GSN) [5], satisfaction arguments [6] and Controlled English [7].
Our findings were reported to Dstl and presented to a wider military audience of
stakeholders including commanders in the armed forces. It was concluded that the
problems of mission assurance and configurability could be addressed by a combina-
tion of i* goal modelling backed by a conceptual model implemented using Controlled
English (CE). The second phase focused on requirements definition and semantic
processing through the integration of i* and CE. Formative evaluation was undertaken
during the project and stakeholder feedback and lessons learned informed further
development of the tool-based approach during the third phase of our project. We
report our approach in the next section.

4 The MANGO Approach

The MANGO (Mission Assurance aNd Goal Orientation) approach is based on goal-
oriented requirements engineering and a core conceptual model for Mission Assurance
and Configuration. The approach is delivered through a goal modelling tool that provides
visualizations to users and interoperates with a reasoning engine to demonstrate goal
propagation outcomes. We describe each aspect of our approach as follows.

4.1 Goal-Based Modelling with Hierarchical i*

Goal modelling is a well-established requirements engineering technique with reported
advantages that include the ability to show vertical traceability, from high-level
strategic concerns to low-level technical details, and to provide a comprehensible
structure to requirements in one single framework [8]. These advantages, amongst

A Requirements Traceability Approach to Support Mission Assurance 311

others, allow for a richer description of relationships than the existing model-based
approaches used by the military [e.g. 2].

For our approach, we adopted the i* framework [4, 9] supported in a new version of
our Microsoft Visio based i* modelling tool, REDEPEND [10]. Unlike other goal
modelling approaches, such as KAOS [11], i* contains a vivid visual representation of
actor boundaries, useful for representing responsibilities and identifying vulnerabilities
in socio-technical systems. Indeed, a primary aim of using i* was to provide a one
model visualization with usable viewpoints for presenting complex systems and con-
cepts to military stakeholders. Our previous work in this area, for example in Air
Traffic Management [12] proved its effectiveness as a communication tool and suitable
for complex analysis through tool support. Despite the advantages of i* and REDE-
PEND, there was a need to adapt the modeling for the needs of the stakeholders in the
military domain.

We integrated the actor-based approach with the architectural view of the mission
thread to enable responsibilities and complex dependencies to be presented within a
context familiar to the users. The use of actors enables the users to specify and view
requirements and associated concepts on a specific area of the model whilst being
aware of dependencies to other actors. In addition to the mission layers, we imple-
mented organizational boundaries for the divisions of the Permanent Joint Headquar-
ters (PJHQ) in which to group actors. These Joint Functions, J1 to J9, are well
understood by military users and useful tool for communicating our approach visually.

Following the presentation of our original scoping study we received a recom-
mendation to simplify the number of constructs and relationships provided from the
traditional i* approach. A key requirement was that stakeholders, with limited time,
could receive the benefits of the analysis without the overhead of learning a raft of
modelling syntax. For example, rather than modelling tasks we model the goal state the
task function achieves. Furthermore, the military already model tasks using Business
Process Modelling Notation (BPMN) [13] which capture temporality that is unavail-
able in traditional i* modelling. Figure 2 shows the organizational constructs and
relationships of our adapted i* modelling notation, as drawn in the REDEPEND tool.

Fig. 2. Organizational constructs of the i* model adapted for use in the military

312 J. Lockerbie et al.

4.2 Rich Traceability Through i* Modelling

Requirements capture and system design for missions are not independent processes in
the military and thus dependencies and assumptions need to be captured to provide an
audit trail of how the design was developed [1]. Therefore, the MANGO approach
includes concepts for capturing rich traceability that lie behind the i* goal model. Rich
traceability, defined by Hull et al. [14], concerns capturing the rationale associated with
relationships, and can be applied in the form of a satisfaction argument [15]. Whilst
satisfaction arguments have been applied to goal models before, for example KAOS [16]
and GSN [6], our approach introduces actor ownership and provides traceability for
metrics classes and non-functional requirements types typical of the military domain –

shown in the schema in Fig. 3. We look at the main aspects of our schema in turn.

Requirements. Each goal is associated with a functional requirement that provides a
realization of the goal’s intent, and a set of non-functional requirements (NFRs) with a
range of quality attributes that need to be met. Our treatment of the NFRs applies the
military taxonomy for information requirements [17], from which 3 classifications of
information types can be derived:

1. Information Needs.
2. Information Service Flow Requirements.
3. Information Exchange Requirements.

Taking this taxonomy, our approach aligns these requirement classes with our
layered goal model to provide structure and ownership by allocating requirements to
actors (also described as owners that are present/not present in our conceptual model).
Another driver for us using a goal-based approach is the need for a Commander and
their staff to express their information needs rather than the processes and/or systems
they are familiar with, as mentioned in [17]. Starting with the task layer, the infor-
mation needs (INs) specified by the Commander are associated with specific tasks.

Fig. 3. Schema that relates goals to underlying requirements concepts

A Requirements Traceability Approach to Support Mission Assurance 313

These INs include the quality attributes of timelines, integrity, availability and confi-
dentiality. The INs are then translated through an architecture of core services to derive
the information service flow requirements (ISFRs) that capture information flows
within and between services. The ISFRs have an additional set of quality attributes
relating to throughput (shown later in Sect. 5). Once the information flows between
services have been defined, it is possible to identify where the detailed information
exchange requirements (IERs) exist in the asset layer e.g. between operational nodes.

The requirements are stored in an Excel spreadsheet, taken from an original Dstl
source and embedded within REDEPEND. As these requirements are traced through
our conceptual model we were able implement a requirements tree view in the
REDEPEND tool, as shown in Fig. 4. This particular example shows a simple trace
from the IN derived from the selected C2 goal to an ISFR, and then onto an IER. The
form also shows the goal’s details and the non-functional requirements’ attributes.

Metrics. A metricated approach is important for military planning as along with
specifying requirements on the services and assets (what is needed) there needs to be a
way of identifying whether the requirements are being met (have we got it?). In the
MANGO approach, metrics are defined with values to determine whether a goal is
achieved or not, with an invalid metric leading to the non-achievement of the goal.
Each metric falls within one of three metric categories – survivability, longevity or
range. These are typical categories used by the military, along with other metric types
like security and resilience. In our study, survivability concerns measures such as
bandwidth, longevity includes the time of unsupported mission duration, and range
features various distances expressed within the location of the mission.

Fig. 4. An example of requirements presentation within REDEPEND

314 J. Lockerbie et al.

The metrics are stored and presented in a similar way to the requirements. Figure 5
shows metrics in the Excel worksheet, along with their attributes, including the metrics
classes and units of measure mentioned above.

Assumptions. As mentioned earlier, there is a need to capture assumptions during the
process so that the rationale behind certain decisions can be retrieved if needed in the
future. Therefore, policy or domain assumptions are captured that validate or invalidate
goal achievement.

The user form enables assumptions to be captured, along with a strategy to form
a GSN satisfaction argument [6], as shown in Fig. 6. The satisfaction arguments
provide rich traceability and rationale for the goal and its refinement into sub-goals.
For example, there are a number of policy assumptions that must hold true for the
goal Urban area clearance of red force to be achieved, along with some domain
assumptions such as the urban area is hostile. The strategy behind this satisfaction
argument is to identify the key military tasks to meet the objective. These tasks are
represented by sub-goals that need to be sufficiently achieved for the mission objective
to be met.

Fig. 5. Metrics captured in an excel spreadsheet embedded within REDEPEND

Fig. 6. Satisfaction argument for the mission objective, displayed in REDEPEND

A Requirements Traceability Approach to Support Mission Assurance 315

4.3 Core Conceptual Model

In parallel with the i* model development we also implemented the underlying
semantic conceptual model using ITA Controlled English (CE). CE is a Controlled
Natural Language within which formal statements can be made that enable
model-based reasoning [18]. Based on first-order predicate logic [7], it provides an
unambiguous representation of information for machine processing that is also readable
by humans [18]. Indeed, a main reason for using CE in the MANGO approach is that
the CE syntax is fundamentally motivated by human understandability [7], unlike many
other sematic modelling approaches, for example ontologies such as OWL [19]. CE is
directly targeted at non-technical domain-specialist users such as military planners [18],
providing them with a simple and understandable syntax, rather than a computer
language, for interacting with machine reasoning capabilities.

The CE language is implemented in a standalone, self-contained environment
called CEStore, which comprises the following components:

The domain model – a natural language model containing concepts, relationships
and properties, for example:

conceptualise a ~ goal ~ G that
has the value D as ~ descriptive text.

conceptualise the actor A
~ owns ~ the goal G.

conceptualise the goal G
~ is an objective of ~ the actor A.

A set of rules – the logic governing the interaction of entities, relationships and
outcome/output, for example:

if
(the goal G is an objective of the actor A)

then
(the actor A owns the goal G).

A set of facts – describes the instantiation of entities and relationships, as defined
within the domain model and governed by the set of rules, for example:

there is a goal named '{goalUID}' that is an objective of the actor
'{actorUID}' and has 'Urban area clearance of red force' as
descriptive text.

When the rules are run they generate new facts that were not necessarily stated
when the model was instantiated, for example:

the actor {actorUID} owns the goal {goalUID}.

These three artefacts are intuitive to both humans and machines – the former being
important in driving the user experience and ensuring knowledge is accurately repre-
sented. The fundamental value of using CE in this context is three-fold: (i) the domain
model forces unambiguous definition of the scenario, its entities and relations – only
the words defined by the analyst as part of a conceptual model are used; (ii) it provides
objective, deductive machine reasoning about the scenario; and (iii) abstracts the user

316 J. Lockerbie et al.

(and model definition processes) away from the reasoning functions – consistent with
sound architectural practices for functional separation. The importance of CE herein is
found in its capacity to make meaningful deductions within a multi-faceted, dynamic
and complex problem domain. This is brought into sharp focus when considering the
difficulty experienced by humans in making decisions and fully comprehending their
impact within a high-dimension decision space. Here the CEStore is able to both model
and reason within this environment, serving to supplement and support human analysis.
Furthermore the CEStore provides the reasoning applied and logic as to what is behind
the deductions it makes – for instance:

The goal 'C2' has the achievability 'UNACHIEVABLE' because
The goal 'C2' is dependent on the goal 'Local C2' and
The goal 'Local C2' has the achievability 'UNACHIEVABLE'

In this instance the CEStore reasons that ‘C2’ cannot be achieved because it
depends on second goal (‘Local C2’) that is itself unachievable. From this example we
can infer the rule which relates these concepts – viz. that a goals achievement is
predicated upon the achievement of those goals on which it depends. Whilst a trivial
example, one can consider how complexity could grow quickly as a scenario becomes
more detailed and comprehensively modeled. CE applies this logic recursively in both
the upward and downward direction; meaning any change in the status of the scenario
will see the reasoning propagated in both directions. The statement of reasoning is
specifically important in this context, where human analysts must be able to fully
understand and account for the deductions made within the decision space.

4.4 Combining i* and Controlled English – REDEPEND:CEStore

Although REDEPEND includes the syntax of i* modelling it lacks an underlying
semantic representation of the graphical model, unlike some of the other i* tools. An
example is OpenOME [20], which includes a metamodel of the i* concepts and
relationships along with a formal representation that uses propositional logic to capture
the semantics for enabling reasoning [21]. Therefore, we needed to extend REDE-
PEND to enable its integration with the underlying CE conceptual model in the
CEStore, as described above. A requirement for our approach was to implement the
goal model and conceptual model as separate concerns, as REDEPEND would remain
a graphical interface providing visualizations to users, while CEStore would contain the
core conceptual model and handle semantic concepts, rules and inferences.

The integration between the 2 tools is enabled through the CEStore API which
allows for RESTful HTTP requests. The REDEPEND:CEStore interface is asyn-
chronous and therefore non-blocking, meaning the approach works well within mul-
tiple network settings and configurations. Using Visual Basic for Applications
(VBA) program code, REDEPEND sends data to the CEStore via HTTP POST
requests and receives data via HTTP GET requests. As the CEStore is not persistent, all
data concerned with the i* model is stored within REDEPEND. This includes not only
the i* constructs and attributes but also all the requirements, assumptions and metrics.
To begin any analysis, REDEPEND loads the conceptual model in the CEStore and

A Requirements Traceability Approach to Support Mission Assurance 317

posts facts to instantiate the relevant aspects of the conceptual model. It also calls for
the rules to be run to trigger the automated reasoning within the CEStore. Responses
are sent back to REDEPEND in JSON format and parsed to provide feedback to the
user, for example which goals are no longer achieved due to an invalid metric, as
shown later in Fig. 8(b).

5 Case Study on a Network-Enabled System

For our case study, proof of concept of the process and tool support was investigated
using a network-enabled system scenario. The study was undertaken with Dstl, and we
applied our MANGO approach to existing Dstl work on specifying requirements and
modelling mission threads.

5.1 Overview of the Military Scenario

Our scenario focused on connectivity, as complex military systems require connectivity
between disparate systems to support a range of military stakeholders. Whilst con-
nectivity can provide beneficial support to personnel, processes and technologies, it can
also introduce unexpected interactions between systems and the propagation of vul-
nerabilities. As described earlier, understanding how high level mission objectives can
be related down to the technical and human assets available is critical to the design and
implementation of such a system. We describe the scenario as follows:

The mission objective of Blue Force is the clearance of an urban area largely
controlled by Red Force, the opposition force. Blue Force is stationed in a Forward
Operating Base (FOB) 10 km away from the urban area. It needs to patrol the urban
area to take over control of it by sending in patrols of 8 personnel for 4 h at a time. The
patrol is supported by a video feed from an Unmanned Airborne Vehicle (UAV). There
are threats to the work of the patrols including congestion and conflict in the use of the
electromagnetic spectrum, such as from other patrols or between communication and
electronic warfare (EW) equipment. The patrols use policy based radio, and a Com-
munication Information System (CIS) management function creates the policies and
sends them to the radios. In the event of a resource requirement conflict for the radio
spectrum, a decision needs to be made on which traffic stream should be stopped.

Given this scenario, our aim was to demonstrate requirements traceability in the
context of a mission thread featuring communications systems, policy based radio and
radio spectrum.

5.2 Applying the MANGO Approach to the Case Study

Our first task was to model the scenario using the i* framework in REDEPEND. An
informal system model created in MS Visio was provided by Dstl as the baseline for
the i* model development. The i* model was developed in REDEPEND iteratively
over a 4-month period which included 4 half-day meetings with a Dstl analyst to refine
and validate the latest model. The completed i* model reflected the complexity of the
scenario, including 1 actor at the mission layer, 10 actors in the task layer, 13 actors in

318 J. Lockerbie et al.

the capability/service layer, and 15 actors in the asset layer. Given the scale of the
model, shown in Fig. 7, we highlight some of its important elements below.

Starting with the mission layer, the mission objective Urban area clearance of red
force is owned by the Mission Commander actor as part of J3: Current operations.
From this high-level objective the tasks are defined in the next layer, covering the areas
of current operations (J3), operational intelligence (J2), communication and informa-
tion systems (J6), Policy, legal and media operations (J9), and logistics/medical (J4).
The next layer details the services required to carry out the military tasks, such as
Command & Control (C2), Situational Awareness (SA), medical support, Communi-
cation and Information Systems (CIS), Short Range Communication (SRC) and
Medium Range Communication (MRC) services. In the asset layer, the SRC and DSA
radio system are of particular importance in the described scenario. Finally, the radio
spectrum is modelled as a resource in the resource layer.

Alongside the development of the i* model, we refined the underlying CE con-
ceptual model and cross-checked the concepts to ensure consistency. To complete the
full picture, requirements, assumptions and metrics were captured and documented by a
Dstl domain expert. We focused on a detailed example from the scenario based on the
Short Range Communications (SRC) service in order to demonstrate the MANGO
approach. The example covered the full scope of the i* model, looking at the
requirements trace from the top down to the radio and from the bottom up through goal
propagation, as described in detail below.

Mission
Urban area clearance of red force

Tasks

Services

Assets

Resource Spectrum

E.g. SRC service

E.g. Command &
Control in current
operations

E.g. SRC System,
DSA radio system

SRC

SRC

DSA radio

Fig. 7. i* model of the network-enabled system developed in REDEPEND

A Requirements Traceability Approach to Support Mission Assurance 319

The SRC service is required to carry aggregated short range traffic, as per the
allocation defined in the information service flow requirements. These ISFRs are
derived from information needs from tasks such as spectrum battlespace management
and CIS provision. Associated with the SRC goal is the metric MS.SRC.1, shown
earlier in Fig. 5, which measures the aggregated ISFRs. An underlying calculation
behind this metric computes a traffic threshold value based on bespoke Quality of
Service (QoS) class values. The logic applied aggregates average rate/volume data
transfer rates for near real-time and best effort service provision, and adds maximum
max rate/volume data transfer rates for real-time services. In our example, the design
time requirement is a threshold of 2.3 megabits per second (Mbps). This requirement is
met by the spectrum resource that is specified to have 3 channels with channel
bandwidth of 1 MHz and spectrum efficiency of 1 bps/Hz. However, needs can change
during the course of a mission resulting in greater demands on the spectrum. In this
case, we can change the values of one or more ISFRs accordingly and run a propa-
gation to discover the impacts on goal achievement across the whole model.

A

B
C

Fig. 8. User interfaces in REDEPEND for propagation analysis

320 J. Lockerbie et al.

Figure 8(a) shows an increase in the spectrum demand of the Command and
Control (C2) application and a new calculated threshold of 4.2 Mbps which exceeds the
capacity of the spectrum resource. The user receives feedback from the CEStore, in
Fig. 8(b), informing them that the invalid metric has made the SRC service goal
unachievable, along with the metrics that trace down from this goal through the DSA
radio system, in turn making these system goals unachievable. Figure 7 shows how this
example is propagated across the wider model, with the unachieved goals represented
in a darker shade of orange. It shows upwards propagation through goal dependencies
to the mission objective and downwards propagation via the metrics trace through the
DSA radio and down to the spectrum resource. Finally, it is then possible for the user to
reset the visualization and make further changes to the ISFRs or change the capacity of
the spectrum resource via a simple form, shown in Fig. 8(c).

6 Lessons Learned

Following the completion of this case study we presented our tool-based approach to
Dstl stakeholders and received formative feedback. Based on this feedback, and our
own experiences, we outline the main lessons learned.

Our specialized use of i*, with a layered hierarchy and simplified syntax, was well
received by the Dstl stakeholders, certainly in comparison to the traditional i* repre-
sentation presented in our original scoping study. Not only was the actor-based rep-
resentation seen as useful for determining and displaying ownership, but the
introduction of the J Functions gave an additional dimension for representing
responsibilities within a mission thread. Furthermore, it was stated that the approach
may also be useful at a micro level by, for example, modelling individual teams. In
terms of syntax, it has been widely reported that i* would benefit from a simplified
notation, for example in [22].

The explicit modelling of metrics with traces across the whole mission was seen to
have potential for encouraging military stakeholders to take a more metricated
approach to designing mission configurable systems. For example, it is not only the
users at the network layer that can see the benefits of a metricated approach, but
through the propagation of goal impacts it is possible for at the top of the command
chain to see tangible benefits. It was stated that defining metrics is currently a difficult
challenge for users, but MANGO providing metrics classes and exemplars to follow
should be a useful tool.

There was a concern expressed relating to the real-time capability of the approach.
Whilst we demonstrated the design time analysis of ISFRs and the potential for run-time
propagation of goal impacts, it was felt that extending this example to the IERs in the
asset layer would be too challenging. The next step for us is to look into existing
research on runtime goal modeling, for example the work of Dalpiaz et al. [23], who
provide a framework for bridging across from design-time goal models to runtime
behavior. We also acknowledge the relevance of work on requirements montors such as
Robinson’s requirements monitoring framework [24] and also work on awareness
requirements, as defined by Souza et al. [25] as those requirements which refer to other
requirements or domain assumptions and their success or failure at runtime.

A Requirements Traceability Approach to Support Mission Assurance 321

7 Conclusion and Future Work

This paper reports the design and implementation of a new approach delivered through
an integrated software prototype and applied to the problems of mission assurance and
mission configurability in the military domain. Whilst we have demonstrated the
potential benefits of the approach through our case study with Dstl, we need to further
develop and validate the approach with military stakeholders.

The successful integration of REDEPEND and the CEStore provides huge potential
for the development of further analytical capabilities. For example, we need to intro-
duce prioritization information into our spectrum resource example to provide the user
with resource reallocation solutions. To further support the user, we plan to further
exploit the advantages of the CE interface – that is, to enable the user to provide CE
input into the model and receive feedback from the CEStore during system design, for
example warnings of missing traces. This feeds into collaborative working. Whilst our
work to date suggests that the MANGO approach is useful for capturing domain
expertise, we have not researched how the approach would work when the require-
ments, assumptions and metrics are being defined by multiple individuals. There is a
need to consider how owners of different parts of the system interact – how should we
facilitate ownership, coordination and the resolution of conflict in the development
process?

From a visual perspective, work is needed on the REDEPEND user interface. The
software needs greater requirements management capabilities supported by more
user-friendly forms and analysis functions. REDEPEND also needs improved visual-
izations to support the collaborate working mentioned above, for example, allowing for
different user perspectives through visual layers and collapsing actor boundaries. Also,
given the simplified goal-based nature of our use of i*, a plan for future work is to
integrate BPMN with the task layer of the model.

Finally, despite the upfront modelling effort needed in the MANGO approach,
along with the capture of domain knowledge, the utility of such rich models suggests
that they have a future role as mission templates to be reused in multiple projects to
analyse systems for mission assurance and configurability.

References

1. Williams, C., Ibbotson, J., Lockerbie, J., Attwood, K.: Mission assurance through require-
ments traceability. In: IEEE Military Communications Conference, pp. 1645–1650 (2014)

2. NATO Code of Best Practice for Command and Control Assessment, RTO TR-081 (2004)
3. Wieringa, R.J.: Design Science Methodology for Information Systems and Software

Engineering. Springer, Heidelberg (2014)
4. Yu, E.: Modelling strategic relationships for process engineering, Ph.D. thesis, University of

Toronto (1995)
5. Goal Structuring Notation. http://www.goalstructuringnotation.info/. Accessed 04 Oct 2016
6. Attwood, K., Kelly, T., McDermid, J.: The use of satisfaction arguments for traceability in

requirements reuse for system families: position paper. In: Proceedings of the International
Workshop Requirements Reuse in System Family Engineering, Eighth International
Conference on Software Reuse, pp. 18–21 (2004)

322 J. Lockerbie et al.

http://www.goalstructuringnotation.info/

7. Mott, D.: Summary of Controlled English, ITACS. http://nis-ita.org/science-library/paper/
doc-1411a. Accessed 04 Oct 2016

8. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceed-
ings of the Fifth IEEE International Symposium on Requirements Engineering (RE 2001),
pp. 249–263. IEEE Computer Society, Washington (2001)

9. iStar Language. https://sites.google.com/site/istarlanguage/home. Accessed 04 Oct 2016
10. Lockerbie, J., Maiden, N.A.M.: Extending i* modeling into requirements processes. In:

Proceedings of 14th IEEE International Conference on Requirements Engineering, pp. 361–
362. IEEE Computer Science Press (2006)

11. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20, 3–50 (1993)

12. Lockerbie, J., Maiden, N.A.M., Engmann, J., Randall, D., Jones, S., Bush, D.: Exploring the
impact of software requirements on system-wide goals: a method using satisfaction
arguments and i* goal modelling. Requir. Eng. 17(3), 227–254 (2012)

13. Business Process Model and Notation. http://www.bpmn.org/. Accessed 04 Oct 2016
14. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer-Verlag, London (2002)
15. Dick, J.: Design traceability. IEEE Softw. 22(6), 14–16 (2005). IEEE Computer Society
16. van Lamsweerde, A.: Engineering requirements for system reliability and security. In:

Software System Reliability and Security. NATO Security Through Science Series - D:
Information and Communication Security, vol. 9, pp. 196–238. IOS Press, (2007)

17. JDP6-00, Communications and Information Systems Support to Joint Operations, Joint
Doctrine Publication 6-00, Third Edition, Ministry of Defence (MOD) (2008)

18. Ibbotson, J., Braines, D., Mott, D., Arunkumar, S., Srivatsa, M.: Documenting Provenance
with a Controlled Natural Language, IBM United Kingdom Ltd., Hursley Park. Whitepaper

19. Web Ontology Language (OWL). https://www.w3.org/OWL/. Accessed 04 Oct 2016
20. Horkoff, J., Yu, Y., Yu, E.: OpenOME: an open-source goal and agent-oriented model

drawing and analysis tool. In: Proceedings of the 5th International i* Workshop (iStar 2011),
pp. 154–156 (2011)

21. Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineering.
Requir. Eng. 21(1), 29–61 (2016)

22. Moody, D.L., Heymans, P., Matulevicius, R.: Visual syntax does matter: improving the
cognitive effectiveness of the i* visual notation. Requir. Eng. 15(2), 141–175 (2010)

23. Dalpiaz, F., Borgida, A., Horkoff, J., Mylopoulos, J.: Runtime goal models: keynote. In:
Proceedings RCIS 2013, pp. 1–11 (2013)

24. Robinson, W.: A roadmap for comprehensive requirements monitoring. IEEE Comput. 43
(5), 64–72 (2010)

25. Souza, V., Lapouchnian, A., Robinson, W., Mylopoulos, J.: Awareness requirements for
adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 60–69. ACM (2011)

A Requirements Traceability Approach to Support Mission Assurance 323

http://nis-ita.org/science-library/paper/doc-1411a
http://nis-ita.org/science-library/paper/doc-1411a
https://sites.google.com/site/istarlanguage/home
http://www.bpmn.org/
https://www.w3.org/OWL/

Quality of Natural Language
Requirements

On the Ability of Lightweight Checks to Detect
Ambiguity in Requirements Documentation

Martin Wilmink1 and Christoph Bockisch2(B)

1 Open Universiteit, Heerlen, The Netherlands
m.wilmink67@kpnmail.nl

2 Philipps-Universität Marburg, Marburg, Germany
bockisch@mathematik.uni-marburg.de

Abstract. Context & motivation: The quality of requirements docu-
mentation, which is often written in natural language, directly influences
the quality of subsequent software engineering tasks. Ambiguity is one of
the main quality risks, but unfortunately natural language has a natural
tendency towards ambiguity.

Question/problem: Precisely identifying ambiguity in specifications is
virtually impossible fully automatically due the complexity and variabil-
ity of natural language. Ignoring grammar and context in the analysis,
on the other hand, makes an implementation and application feasible,
but also reduces the accuracy. The question researched in this paper is
whether such a lightweight check can still sufficiently accurately detect
which requirements are formulated ambiguously or certainly.

Principal ideas/results: To investigate this research question, we have
implemented a lightweight analysis tool based on a finite dictionary com-
bining different results from the literature. The tool, called tactile check ,
adds annotations to phrases in requirements documents, which are weak
respectively strong with regard to non-ambiguity. Within an embedded
single case study, tactile check is applied to two real requirements doc-
uments (totaling 293 requirements) from KLM Engineering & Mainte-
nance and the results (454 annotations in total) are assessed by three
expert business analysts. In our study, the tool achieved a precision and
recall of at least 77% respectively 59%. Annotations of weak phrases have
prevalently been perceived as helpful for reducing ambiguity.

Contribution: In this paper, we establish that simple textual analyses
with low overhead can detect ambiguity in requirements with significant
accuracy. Our experts assessed the analysis’ findings as helpful input to
reducing the ambiguity. The tool and dictionary used in our study are
provided for download to support repeatability of the study. Further-
more, we provide an extended dictionary for download that incorporates
suggestions by our experts.

Keywords: Requirements engineering · Business requirements · Nat-
ural language · Ambiguity · Software quality · Context-insensitive
analysis · tactile check

c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 327–343, 2017.
DOI: 10.1007/978-3-319-54045-0 23

328 M. Wilmink and C. Bockisch

1 Introduction

The requirements engineering process covers all elements, from business require-
ments elicitation to detailed baseline build definition. Requirement documenta-
tion forms one of the important artifacts of this process. Requirements describe
the product services within its given boundaries [15,16]. They are initially spec-
ified at a very high level of abstraction and subsequently refined by adding
technical details. In this paper, we focus on requirements documents at the first
level of this process, which is called business requirements.

One key quality attribute of requirements is non-ambiguity, since ambiguity
easily leads to misinterpretation and thus failing to satisfy the expectations of the
business [2,10,11,13]. In practice, the business requirements are typically written
in natural language. However, natural language is inherently ambiguous.

In the context of this study, we mean by ambiguity (or level of ambiguousness)
of requirements whether (or to which degree) a requirement has the potential
to be interpreted differently by different readers targeted by the requirements
document. Thus, if, e.g., all members of the development team and the customer
understand the requirement in the same way, we consider it to be certain even if
the phrasing potentially also has multiple meanings. Referring to the Ambiguity
Handbook [1], the kind of ambiguity considered in our study intersects with the
categories semantic ambiguity, pragmatic ambiguity and vagueness.

Several studies [3,4,6,9,18] describe attributes, indicators and metrics for
quality characteristics including non-ambiguity. The studies are typically accom-
panied by a tool to identify these indicators. Often, ambiguity is caused by the
unintended usage of words or phrases that induce ambiguity in the text. The
tools developed in the aforementioned studies, therefore, use finite dictionaries
and complex techniques from natural language processing to determine the qual-
ity. However, the validation presented in these papers primarily takes place in an
academic context. From our experience, one reason could be that existing tools
are perceived as too heavy-weight by practitioners.

The first author of this paper is a functional application manager at KLM
Engineering & Maintenance for various IT related projects, and is deeply
involved in the definition of requirements. The study on which we report in this
paper is thus carried out in an industrial context. In our study we investigate if
a simple and practical tool, only based on a finite dictionary, has the potential
to improve the ambiguity-awareness of the analyst writing the document and
by doing so improving the overall quality of the specification document. Besides
performing the study in an industrial environment, another contribution of our
work is the combination of the concepts of two previously conducted studies:

– The NASA ARM tool [18] and its reconstruction [3] check for ambiguity in
the form of weak and strong phrases using a finite dictionary approach. Addi-
tionally it checks the document structure, including cross references.

– The tool SMELL [6] detects various subjective and non-verifiable terms as
ambiguity forms without the objective of being 100% correct. Advanced text
analytics is used to recognize inflections of predefined words.

On the Ability of Lightweight Checks to Detect Ambiguity 329

We adopt the approach of using a finite dictionary, ignoring context and
grammar from the ARM tool and the incentive that 100% accuracy is unnec-
essary from the SMELL tool, into a lightweight analysis tool, which we call
tactile check . We take over the dictionary of ARM as well as most inflections
of words recognized by SMELL, but we omit context analyses like structural
checks or text analytics. Tactile check is implemented as a macro for Microsoft
Word and adds annotations to phrases in requirements documents, which are
weak respectively strong with regard to non-ambiguity. It is very lightweight as
it ignores context and grammar, which may reduce the precision of annotations
and impact the usefulness in practice. We therefore investigate in our study the
research question: How do business analysts perceive the effectiveness of the tac-
tile check in accurately detecting which requirements are formulated ambiguously
or certainly?

We apply tactile check in an embedded single case study to two actual require-
ments documents from KLM E & M with 199 respectively 94 requirements. A
total of 454 phrase annotations are inspected by three expert requirements ana-
lysts from KLM E & M. For one of the documents, the experts affirmed a preci-
sion of at least 96% and a recall of at least 89%. For the other, they affirmed a
precision of 77% and a recall of at least 59%. The weak annotations were predom-
inantly perceived as helpful for reducing ambiguity, while annotations of strong
phrases were considered not helpful. This paper is based on the first author’s
master thesis [17], where additional information can be found. We summarize
the contributions of our work as follows:

– We establish that simple textual analyses with low overhead can accurately
detect ambiguity in requirements.

– To make our study repeatable, we make the tactile check tool as well as the
collected data available for download.1

2 Research Design

We split our general question into three sub-questions:

RQ-Weak. To what extent does the annotation of weak phrases with tactile
check accurately detect ambiguous requirements?

RQ-Strong. To what extent does the annotation of strong phrases with tactile
check accurately detect certain requirements?

RQ-Helpful. To what extent are the presented tactile check annotations per-
ceived as helpful by business analysts to reduce the overall ambiguousness?

To answer these questions, we follow an approach [14] where the proposed
tactile check tool is evaluated with the use of existing requirement documents
as input data. The annotated phrases in the requirements document are the
starting point for the assessment by three expert requirements analysts. This

1 See the Tactile Check homepage: https://github.com/mwmk67/TactileCheck.

https://github.com/mwmk67/TactileCheck

330 M. Wilmink and C. Bockisch

relates to an interpretivism research philosophy where data samples are limited
but analyzed with in-depth knowledge. The expert assessment is based on a set
of categories to be assigned to each annotated phrase. This follows an abduction
research method where a new model is formed based on the collected data, which
is a natural fit with the interpretivism philosophy.

In line with the research method and philosophy an embedded single case
study is performed, where the case subject will be KLM Engineering & Main-
tenance and two different Business IT related projects as subject to analysis.
From both projects the business requirements chapters are included for usage in
this research. There is only one limitation on the document usage: No financial
information may be disclosed.

– e-EGS (field loadable software solution to support Boeing 787). The require-
ments are written in natural language using the business stakeholder’s vocab-
ulary. The document revision state is “Approved”.

– CMS-plus (logistics solution for aircraft maintenance execution and adminis-
tration). The document is written in partially structured natural language as
use cases/user stories. The document revision state is “Approved”.

2.1 The Tactile Check Tool

First of all, we have developed a tool, called tactile check , to perform the light-
weight, dictionary-based annotation of phrases in the requirements documents.
This is to make the annotation process reliable and repeatable. To allow other
researchers to re-assess our method with other requirements documents and
other analysts, we make the tool and the dictionary available for download.2

Tactile check essentially combines the approaches of the NASA ARM tool
[18] and the SMELL tool [6]. Both tools use dictionaries to identify weak and
strong phrases, but they also both perform additional complex analyses, e.g.,
of the document structure or using text analytics. We limit our implementa-
tion to the dictionary-based analysis combining the dictionaries of ARM and
SMELL. Instead of performing text analytics, we have extended the dictionary
with inflections of its words.

Since requirements documents are written in MS Word at KLM E & M, we
have developed the tactile check tool as a Visual Basic for Applications (VBA)
macro. The dictionary is placed in a separate file to enable amendments to
the dictionary without changing the VBA code. Annotations are represented by
changing the phrase’s font presentation, italic for weak, bold for strong phrases.
The name of the quality indicator as defined by the loaded dictionary and a
unique identification (sequence) number of the finding are added in the form
of a comment. An example annotation of a weak as well as a strong phrase
annotation is shown in Fig. 1.

Our tool it is provided as a Word macro and can thus be executed in the
same environment as is used to write the requirements document. The results are

2 See the Tactile Check homepage: https://github.com/mwmk67/TactileCheck.

https://github.com/mwmk67/TactileCheck

On the Ability of Lightweight Checks to Detect Ambiguity 331

Fig. 1. Example of the annotation output.

also immediately displayed in the Word document. Annotations are provided as
regular comment, a presentation format well known to requirements engineers.
We therefore envision that requirements engineers can apply our tool very fre-
quently, e.g., right after a new requirement has been specified or at the end of
each day.

2.2 Data Collection

A detailed description of the data and data collection process for each research
question can be found in annex 2 to the thesis of the first author [17]. In the
following we give an overview of this process.

Accuracy of Weak and Strong Phrase Annotation. In research questions
RQ-Weak and RQ-Strong, we address the reliability of the tactile check anno-
tation of weak and strong phrases. To investigate these questions, the experts
assess all3 phrases in the requirements documents and their annotations by tak-
ing the context of the phrase into account.

Following the binary classification diagram shown in Fig. 2, they determine
a label for each annotated phrase. These labels (cf. Table 1) indicate to which
degree the expert agrees that the identified phrase is formulated ambiguously (for
weak phrase annotations) or non-ambiguously (for strong phrase annotations).
The table is based on Femmer et al. [6], extended with labels for strong phrases.
For each label we specify the type of result (true or false positive) and whether
a such annotated phrase influences ambiguity (A-Y) or not (A-N).

For requirements that are not annotated with weak or strong phrases, we
determine together with the experts, whether the requirement is ambiguous or
certain, and, thus, should have contained an annotated phrase. These “missed
phrases” form the false negatives. Since our expert analysts only have limited
time available for this project, we can only investigate samples of the require-
ments to identify missed phrases.

Perceived Helpfulness. In research question RQ-Helpful, we address whether
the annotations actually have the potential to improve the non-ambiguity of
requirements. To determine the perceived helpfulness, the experts perform a
3 The strong phrases “and” and “should” occur extremely frequently in similar sen-

tence patterns. To save the limited time of our expert analysts, we asked them to
only assess 15 occurrences of these two phrases. All assessments are almost identical.

332 M. Wilmink and C. Bockisch

Table 1. Weak (based on [6]) and strong labels and associated attributes. (true:
true positive, false: false positive, A-Y: influencing ambiguity, A-N: not influencing
ambiguity)

Label code Description Type Infl. ambig.

Weak Strong Weak Strong

W-1 – This finding revealed a potential
problem

true A-Y –

W-2 – This requirement needs a review true A-Y –

W-3 – There is some explicit knowledge,
which should be written down

true A-Y –

W-4 – There should be a reference at this
point

true A-Y –

W-5 – This is a major issue that must be
addressed

true A-Y –

W-6 S-1 While this is not an issue here, it
must be further explained and refined
at a different point

true A-N A-Y

W-7 S-2 This could be problematic, but this
part of the specification is not so
important

true A-N A-N

W-8 S-3 This finding seems problematic, but is
clear to a domain expert

true A-N A-Y

W-9 S-4 This is not a problem here true A-N A-N

W-10 S-5 The tactile check did not work correct false A-N A-N

critical review of each assessed phrase within its context and determine whether
the phrase annotation is helpful to “trigger” the expert to further clarify or
enhance the requirement.

Interviews. When experts complete the analysis of both requirement data sets,
they are interviewed to elaborate on their experience using the tactile check . This
interview is semi-structured and includes the following questions:

– What is the view on the chosen approach?
– What is the view on the usefulness of weak phrase annotations?
– What is the view on the usefulness of strong phrase annotations?
– Would the tactile check be useful as additional method to assist a business

requirements author to reduce the overall ambiguity of business requirements?

2.3 Reliability and Internal Validity Aspects

To ensure that the research outcome is valid it is important to identify pos-
sible threats to the validity. Reliability relates to the ability to repeat the

On the Ability of Lightweight Checks to Detect Ambiguity 333

Fig. 2. Phrase classification diagram.

measurements and yield the same results. Saunders et al. [14] identify the threats
to reliability and validity, which we discuss below.

Participant Error. Time pressure, distraction and knowledge influence our
judgment and can lead to false assessment. To mitigate the influence of time
pressure and distraction the experts are requested perform the classification and
assessment in a time slot with a minimum of 2 h. Preferably the assessment is
carried out at a distraction free office location.

The “knowledge” element is elusive to quantification. As minimum require-
ment, the expert must work at least 5 years with KLM E & M and a minimum
of 3 years as business analyst. Nevertheless, this will not eliminate the risk of dif-
ferent knowledge levels between the individual domain specialists. Therefore it is
to be expected that variations in classification will occur. To counter this effect
three domain experts will perform the assessment. In case that a participant
provides an extreme different interpretation, an additional review and argumen-
tation can possibly clarify the differences. Additionally, we use the Fleiss’ Kappa
measure to determine inter-rater reliability.

Participant Bias. The result of this research has no direct impact on the daily
activities of the domain specialist. And, as assessment will be performed on an
individual basis, no deliberation between the participants is expected. There is no
foreseen incentive to develop tactile check as a supported method in their daily
work routines. Therefore, it is not expected that the analysts will consciously
steer the interpretation and classification to a perceived favorable outcome.

Each data set (e-EGS and CMS-plus) is analyzed by one expert who par-
ticipated in the analyzed project. This holds the risk of bias, as one expert is
validating work in which he was previously involved.

334 M. Wilmink and C. Bockisch

Researcher Error. Due to the nature of the first author’s curriculum (part-
time student), there is a risk that the time frame in which the research is
performed becomes fragmented. To mitigate this risk, a research project plan
including detailed and realistic time schedules is used to measure the progress
and identify at an early stage deviations from the planning.

Researcher Bias. In this research, the researcher is part of the organization
where the research is conducted (internal researcher, cf. [14]). While the advan-
tages are for example easy access to data and resources, the disadvantage is
familiarity with the organization. In this research setting it is not anticipated
as influential, as the researcher is not part of the business analyst team that
will perform the assessments. During the assessment it is envisioned that only
minimal assistance from the researcher is required hence limiting the risk of
influencing the assessor. When evaluating the acquired data using the nominal
measuring level limits the complexity of the applicable calculations and risk of
interpretation bias.

Construct Validity. For this research setup the following elements that influ-
ence the construct validity are identified:

Consistency of Input Data. To create a consistent annotation of phrases from
the finite dictionary an automated tool is developed. The automated approach
ensures that annotation of the weak and strong phrases as defined in the dictio-
nary is consistent and repeatable.

Measurement Scale. The measurement level at which the data is classified is
nominal. This suits the objective of classifying the different findings and count-
ing totals for weak and strong categories. Measurement at the nominal level
accommodates basic counting of elements.

Consistency of Data Collection. Each domain specialist performs the assessment
based on his own level of experience and proficiency, i. e., while the results can
be arithmetically correct, there is room for variance in the outcome. All data of
each assessment is used to compare and evaluate the influence of this variance.

Triangulation. To be able to value the findings of the assessment and classifi-
cation a semi-structured interview is conducted with each participating analyst.
The results of the semi-structured interviews are to be compared with the results
of assessment analyses.

External Validity. The used single case study research strategy limits the
ability to generalize the outcome of this result. The result may be specific to the
domain and the context of the data used. Based on the small and domain-specific
data set and limited group of domain specialists who evaluate the annotated data
the external validity is uncertain.

On the Ability of Lightweight Checks to Detect Ambiguity 335

3 Data Analysis

Each data item contains the unique phrase identifier, an identifier of the analyst
whose assessment is recorded, the classification label assigned by the analyst
and whether the analyst perceives the annotation as helpful. The classification
label is further split up into its characteristics, namely the type (true/false pos-
itive/negative) and whether it influences ambiguity (A-Y or A-N).

Table 2 shows the generic breakdown of the analyzed requirements and
phrases. It can be seen that volume of the requirements and annotated phrases
in the e-EGS data set is considerable bigger than in the CMS-plus data set.

Table 2. Overall count of requirements and phrases.

Description e-EGS CMS-plus
∑

Requirements in document 199 94
∑

Requirements annotated 188 40
∑

Requirements with weak phrases annotated 55 10
∑

Requirements with strong phrases annotated 187 37
∑

Phrases annotated 367 87
∑

weak phrases annotated 67 20
∑

strong phrases annotated 300 67

For e-EGS, the sum of requirements with weak phrases and requirements
with strong phrases is larger than the total number of requirements. The reason
is that requirements can contain phrases with weak annotations and phrases
with strong annotations at the same time. The data shows that the number
of weak annotations is relatively low and much smaller than the number of
strong annotations. This is not surprising, considering that both requirements
documents already have finalized status.

Generally, a requirement contains multiple phrases and we have collected and
analyzed the data per requirement as well as per phrase. Both approaches have
yielded almost identical results with at most 2% variation. Therefore, we only
discuss the results at the granularity of requirements in the following. The full
data sets can be found in [17].

To discuss the research questions RQ-Weak and RQ-Strong, we analyze the
correctness of the annotations as seen by the expert analysts. The questions
revolve around the accuracy of the weak and strong annotations. Important
components of accuracy are the precision and recall, this is the percentage of
correctly annotated requirements and the percentage of missing requirements
annotations, respectively. Both measures can be combined, equally weighted,
using the balanced F-score (F 1-score). To calculate these measures, we determine
the values of true and false positives as well as false negatives (cf. Sect. 2.2). The
formulas of for precision, recall and the F1-score are given below. Other measures

336 M. Wilmink and C. Bockisch

such as miss rate or specificity can also be calculated from the data presented
in this paper. This can answer additional questions such as the likelihood of
missing ambiguous requirements, which are however not the objective of the
study presented here.

precision =
true positives

true positives + false positives
(1)

recall =
true positives

true positives + false negatives
(2)

F1 = 2 · precision · recall

precision + recall
(3)

The data analysis presented in this section is based on the classification of
items (i.e., the annotations provided by tactile check) by three different experts
to increase the reliability of the classifications. To assess this reliability, we use
Fleiss’ Kappa measure [7] to determine the agreement between our raters. Gen-
erally, a positive κ value means that there is agreement between raters beyond
what would be expected by chance; a value of 1 means complete agreement. We
are limited to this instrument for assessing the inter-rater agreement, since we
use a nominal scale for the classification.

Some annotations have not been rated by all experts due to time constraints.
For the inter-rater reliability test we only considered those annotations rated by
all three experts (this are 20 annotations for the CMS-plus data set and 43 for
e-EGS). In both cases the confidence level was set to 95%, and in both cases
we have a very low p-value (9.687 · 10−13, respectively 3.379 · 10−5); this means
that the statistical significance of our results is very high. Finally, the κ values
of 0.586 (CMS-plus) and 0.202 (e-EGS) show that there is agreement between
our experts, in the case of CMS-plus even largely so.

In the remainder of this section, we first discuss the data analysis from
the perspective of our three research questions and finally combine the results
obtained for the accuracy-related research questions (RQ-Weak and RQ-String)
with the results of the perceived helpfulness (RQ-Helpful).

3.1 Accuracy of Weak Phrase Annotations

Our first research question, RQ-Weak, was: To what extent does the annotation of
weak phrases accurately detect ambiguous requirements? To answer this question,
we first need to establish whether the precision and recall values indicate that our
method is usable with respect to weak phrase annotations. For each document
and for each analyst Table 3 shows the number of annotations that were identified
as true and false positives, and the number of false negatives found by the analyst
for weak phrase annotations.

For the evaluated weak phrases in the e-EGS data set, the values for preci-
sion and recall are close to 90% or above. This indicates that most results are
considered relevant and that most relevant results are shown. The F1-score of
92% and above confirms a good accuracy for detecting weak phrases.

On the Ability of Lightweight Checks to Detect Ambiguity 337

Table 3. Collected data from e-EGS and CMS-plus with regard to weak phrases.

Analyst #1 Analyst #2 Analyst #3

e-EGS CMS-plus e-EGS CMS-plus e-EGS CMS-plus
∑

true positives 55 10 55 10 38 10
∑

false positives 2 3 1 3 1 3
∑

false negatives 7 6 7 7 4 0

Precision 96% 77% 98% 77% 97% 77%

Recall 89% 63% 89% 59% 90% 100%

F1-score 92% 69% 93% 67% 94% 87%

For the CMS-plus data set, the values are considerably lower than those
gathered from the e-EGS data set. But at least the value for precision is still
relatively high with 77%, meaning that only one out of four annotations is wrong.
For analysts #1 and #2, the recall drops to 59%, indicating that according to
them almost half the weak phrases are left out. Analyst #3 did not identify any
false negatives, leading to a recall of 100%. This result should be considered an
outlier. The accuracy calculated by the F1-score is therefore between 67% and
69%, which can still be considered good.

The low recall for CMS-plus is partially caused by phrases deemed weak by
the assessors that are not explicitly listed in the dictionary and therefore not
annotated in the text. Investigation shows that synonyms of these phrases are
in the dictionary.4 Analyst #3, however, classifies these additional phrases as
W-10 (“not a problem”) and thus not as “missed”, hence his 100% score.

When discussing the lower recall values for the CMS-plus data set, the ana-
lysts indicate that despite the lower score, the values are sufficient to use the
tactile check to annotate weak phrases. The overall experience by the experts is
that annotating the weak phrases is consistent and precise enough to be valuable.

3.2 Accuracy of Strong Phrase Annotations

The second research question we want to investigate is RQ-Strong: To what
extent does the annotation of strong phrases accurately detect certain require-
ments? We investigate this analogously to Sect. 3.1. Table 4 shows the number
of annotations that were identified as true and false positives, and the number
of false negatives.

For the evaluated strong phrases in both the e-EGS and CMS-plus data sets,
the values for precision and recall are close to 90% or above. score of 88% and
above shows that the accuracy with regard to detecting strong phrases is very
good.

4 An extended dictionary containing the additional phrases can be found at https://
github.com/mwmk67/TactileCheck.

https://github.com/mwmk67/TactileCheck
https://github.com/mwmk67/TactileCheck

338 M. Wilmink and C. Bockisch

Table 4. Collected data from e-EGS and CMS-plus with regard to strong phrases.

Analyst #1 Analyst #2 Analyst #3

e-EGS CMS-plus e-EGS CMS-plus e-EGS CMS-plus
∑

true positives 59 19 59 16 25 22
∑

false positives 4 0 4 0 3 0
∑

false negatives 2 4 5 0 4 1

Precision 94% 100% 94% 100% 89% 100%

Recall 97% 83% 92% 100% 86% 96%

F1-score 95% 90% 93% 100% 88% 98%

3.3 Helpfulness of Annotations

The last research question is RQ-Helpful: To what extent are the presented tactile
check annotations perceived as helpful by business analysts in order to reduce the
overall ambiguousness?

For each label, the experts are asked to rate whether they consider it helpful
or not with regard to reducing the ambiguousness level of the requirements
document. Figures 3 and 4 show the distribution of the answers of each expert
per requirements document.

Fig. 3. Weak phrases helpful or not. Fig. 4. Strong phrases helpful or not.

For the weak phrases, only analyst #1 ranks the annotations predominantly
not helpful for the CMS-plus document. He explains that although the phrase
“all” (which occurs multiple times) is indicated as weak, in his opinion it does
not influence the overall ambiguity of the given requirements. In all other cases,
the weak annotations are mostly rated helpful.

The strong annotations are predominantly rated not helpful more often than
helpful with only one exception: The annotations in the CMS-plus document as
rated by analyst #2. When asked to elaborate on this exceptional ranking, this

On the Ability of Lightweight Checks to Detect Ambiguity 339

is related to the combination of the used strong phrases in combination with the
adjacent weak phrases and that the requirement could be further improved by
also rephrasing the strong phrase.

3.4 Effectiveness of a Lightweight Tactile Check

Fig. 5. Four-quadrant evaluation matrix.

To answer the main research ques-
tion, the results from our research
sub-question are combined and fur-
ther analyzed. The classification label
assigned to each annotated require-
ment by the experts encodes whether
the annotation really indicates an
impact on ambiguousness (A-Y) or
not (A-N). Furthermore, the experts
specify for each annotation whether
they perceive it as helpful (Y) or not
(N) to improve the requirement. The
ratings for the requirements can be plotted in a four-quadrant matrix as shown
in Fig. 5.

For the different data sets we determine the number of annotations, which
fall in the different categories of each quadrant. Figure 6 shows this matrix for
each data set whereby the number of weak annotations falling in the different
categories are written in the respective quadrant. The quadrant with the largest
count is highlighted.

Fig. 6. Four quadrant evaluation for weak phrases. (T: true positive, F: false positive)

The matrices show that annotations are predominantly ranked as helpful,
although not (seriously) influencing the ambiguity. Nevertheless, for the e-EGS
case, still a significant number of weak annotations are regarded as helpful and
influencing ambiguity. Only analyst #1 classifies most weak phrases of CMS-plus
as not helpful.

340 M. Wilmink and C. Bockisch

Fig. 7. Four quadrant evaluation for strong phrases. (T: true positive, F: false positive)

Figure 7 shows the same analysis for strong annotations. The strong phrases
are predominantly ranked as not helpful and not influencing ambiguousness—in
the e-EGS case even unanimously.

3.5 Discussion

To further elaborate on the perceived effectiveness of the lightweight ambigu-
ity analysis of requirements, the analysts are asked for their expert opinion on
several questions in a semi-structured interview. All three analysts are skeptical
about the usefulness of annotating strong phrases, i. e., of marking requirements
that are already perceived as good. In general, all experts express that the cho-
sen approach is useful and applicable in practice, although it should be limited
to annotating weak phrases.

Already during the assessments of the weak phrases, the analysts were
indicating that the annotation made them “rethink” the formulation of single
requirements. Even if a requirement has not been seen as severely ambiguous,
options to clarify and simplify the requirement often become apparent. The anno-
tations give an additional opportunity to reflect on the written requirements and
can even provide the incentive to discuss this further with the stakeholders.

An important remark made by two analysts is that using the proposed tactile
check would be more beneficial during the initial phase of compilation of the
requirements. A critical note is that a consequence of applying the approach
could be that requirements engineers (involuntarily) adapt to avoiding the usage
of known weak phrases defined in the finite dictionary. Another consequence may
be that requirements engineers are lead to not reviewing requirements without
weak annotations, although these may still be ambiguous.

4 Related Work

There are several studies concerned with automatic quality assessment for
requirements documents, of which we only present a few here. Gleich et al. [8]

On the Ability of Lightweight Checks to Detect Ambiguity 341

detection ambiguity based on Part-Of-Speech tagging (POS), which is a tech-
nique from computational linguistics to identify for each word in a sentence,
which syntactic role it plays. Patterns are defined that match sentences of tagged
words to recognize lexical, syntactic, semantic, pragmatic or vagueness ambigu-
ity. When a pattern matches, this also gives a short explanation in how far the
sentence may be ambiguous.

The tool SMELLS introduced by Femmer et al. [5,6] further refines and
employs techniques from Natural Language Processing (NLP): POS tagging,
morphological analysis, finite dictionaries and lemmatization to identify possible
ambiguous language usage. The tool is validated in an academic and industrial
setting. Like in our study the specialists indicate that lightweight feedback early
in the requirements specification cycle is seen as very beneficial.

These works and others [3,4,6,9,18] commonly describe some quality indi-
cators together with analyses (sometimes supported by a tool) to determine the
quality of requirements. In contrast to the approach evaluated in this study, these
works apply relatively heavy-weight analyses using natural language processing
or structural analyses of the whole document. In our study, we showed in an
industrial context that a significantly simpler approach, i.e., purely dictionary-
based, can also be employed to good effect.

5 Conclusions and Future Work

In this study, we analyzed whether a lightweight tactile check to detect weak and
strong phrases with respect to non-ambiguity can effectively improve the quality
of requirements documents. To ensure a consistent annotation of such phrases,
we have developed a tool performing the checks as macro for MS Word together
with a finite dictionary. To make our study repeatable, we provide both the tool
and the dictionary, as well as an extended dictionary for download.5 Within
the study, we have applied this check to two actual requirements documents
from KLM Engineering & Maintenance. Analyzing a total of 293 requirements
with the tactile check resulted in 454 annotated phrases, which were assessed by
three business analysts from KLM E & M. The analysts generally perceived the
approach as effective in practice. The gathered data shows, in line with the qual-
itative assessment of the experts, that annotations for ambiguous requirements
could be identified with a high precision and recall of 92% respectively 87% on
average. For the annotated weak phrases, 58% were valued as helpful and 28%
as helpful and positively influencing the overall ambiguity level.

The analysts confirmed that annotating the weak phrases is beneficial in
reducing the ambiguousness level in the written business requirements. Dur-
ing the interviews, the analysts indicated that using the tactile check method
to identify the weak phrases early during the initial phase of the requirements
specification would be most beneficial. This would provide an additional incen-
tive to discuss the annotated requirements with the stakeholders to clarify the
requirements.
5 See https://github.com/mwmk67/TactileCheck.

https://github.com/mwmk67/TactileCheck

342 M. Wilmink and C. Bockisch

For the strong phrases, the analyzed data show that the tactile check method
is not perceived as beneficial in reducing ambiguity influences of requirements
written in natural language. The reason is that the attention is drawn to require-
ments, which are already identified as non-ambiguous. Thus, it is expected that
no action needs to be taken on these requirements and therefore the annotation
does not lead to a reduction in the ambiguousness level. Also the quantita-
tive analysis has shown that there is no perceived benefit to annotating strong
phrases. A better alternative could be to annotate requirements that lack strong
phrases.

The difference in build-up of the two requirements documents used in this
case study was visible in the phrases annotated and in the assessment. The e-
EGS requirements are stated in plain natural language, and showed more variety
in the annotations than the CMS-plus requirements that are written using a use
case/user story structure. This difference in writing styles was not taken into
account when the documents were selected. The CMS-plus document did not
show a high number of strong phrases that are part of the strong dictionary and
the annotated weak phrases showed little variation. We believe that this shows
that the tactile check method is less effective on semi-structured documents.

During the interviews the experts also mentioned potential risks of the app-
roach. A consequence of applying the approach could be that requirements engi-
neers (involuntarily) adapt to avoiding the usage of known weak phrases defined
in the finite dictionary. Another consequence may be that requirements engineers
are lead to not reviewing requirements without weak annotations, although these
may still be ambiguous.

As future work, we would like to adapt our approach according to the conclu-
sions above and to repeat the study. In particular, it should be assessed whether
the identified risks actually materialize. And the hypothesis should be investi-
gated that the lightweight tactile check approach is even more advantageous for
documents in an early stage of the requirements engineering process.

The ISO standard 29148 [12] includes natural language criteria for require-
ments specifications including weak and strong phrases. We did not consider
the standard in our study, but will collate the phrases from there and our finite
dictionary.

References

1. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software
specification: linguistic sources of ambiguity. In: A Handbook (2003). http://cs.
uwaterloo.ca/∼dberry/handbook/ambiguityHandbook.pdf. Accessed 31 Dec 2016

2. Boehm, B., Basili, V.R.: Software Defect Reduction Top 10 List. Computer 34(1),
135–137 (2001)

3. Carlson, N., Laplante, P.: The NASA automated requirements measurement tool:
a reconstruction. Innov. Syst. Softw. Eng. 10(2), 77–91 (2014). http://dx.doi.org/
10.1007/s11334-013-0225-8

http://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://cs.uwaterloo.ca/~dberry/handbook/ambiguityHandbook.pdf
http://dx.doi.org/10.1007/s11334-013-0225-8
http://dx.doi.org/10.1007/s11334-013-0225-8

On the Ability of Lightweight Checks to Detect Ambiguity 343

4. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A.,
Kincaid, G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.:
Identifying and measuring quality in a software requirements specification. In:
Proceedings First International Software Metrics Symposium, pp. 141–152. IEEE
(1993)

5. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

6. Femmer, H., Fernández, D.M., Juergens, E., Klose, M., Zimmer, I., Zimmer, J.:
Rapid requirements checks with requirements smells: two case studies. In: Proceed-
ings of the 1st International Workshop on Rapid Continuous Software Engineering,
pp. 10–19 (2014). http://doi.acm.org/10.1145/2593812.2593817

7. Fleiss, J., et al.: Measuring nominal scale agreement among many raters. Psychol.
Bull. 76(5), 378–382 (1971)

8. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: towards a tool explaining
ambiguity sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol.
6182, pp. 218–232. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14192-8 20

9. Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F., Fusani, M.: An automatic tool
for the analysis of natural language requirements. Int. J. Comput. Syst. Sci. Eng.
20(1), 53–62 (2005)

10. Hairul, M., Nasir, N., Sahibuddin, S.: Critical success factors for software projects
: a comparative study. Sci. Res. essays 6, 2174–2186 (2011)

11. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in soft-
ware projects. IEEE Softw. 18(4), 58–66 (2001)

12. IEEE: ISO/IEC/IEEE 29148: 2011 Systems and software engineering - Life cycle
processes - Requirements engineering, pp. 1–94. ISO (2011)

13. Kamata, M.I., Tamai, T.: How does requirements quality relate to project success
or failure?. In: 15th IEEE International Requirements Engineering Conference (RE
2007), pp. 69–78. IEEE, October 2007

14. Saunders, M., Lewis, P., Thornhill, A.: Research Methodes for Business Students,
6th edn. Pearson Benelux, London (2012)

15. Sommerville, I.: Software Engineering, 10th edn. Pearson Education Limmited,
Harlow (2016)

16. Wiegers, K., Beatty, J.: Software Requirements, 3rd edn. Microsoft Corporation,
Redmont (2013)

17. Wilmink, M.: Requirements ambiguousness pitfalls. Master’s thesis, Open Univer-
siteit Nederland (2016)

18. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement
specifications. In: Proceedings of ICSE, pp. 161–171. ACM Press, New York, USA,
May 1997

http://doi.acm.org/10.1145/2593812.2593817
http://dx.doi.org/10.1007/978-3-642-14192-8_20

Using NLP to Detect Requirements Defects:
An Industrial Experience in the Railway Domain

Benedetta Rosadini1, Alessio Ferrari3(B), Gloria Gori2, Alessandro Fantechi2,
Stefania Gnesi3, Iacopo Trotta1, and Stefano Bacherini1

1 Alstom Ferroviaria S.p.A., Florence, Italy
{benedetta.rosadini,iacopo.trotta,

stefano.bacherini}@transport.alstom.com
2 University of Florence, DINFO, Florence, Italy
{gloria.gori,alessandro.fantechi}@unifi.it

3 ISTI-CNR, Pisa, Italy
{alessio.ferrari,stefania.gnesi}@isti.cnr.it

Abstract. Context and motivation: In the railway safety-critical
domain requirements documents have to abide to strict quality crite-
ria. Rule-based natural language processing (NLP) techniques have been
developed to automatically identify quality defects in natural language
requirements. However, the literature is lacking empirical studies on the
application of these techniques in industrial settings. Question/problem:
Our goal is to investigate to which extent NLP can be practically applied
to detect defects in the requirements documents of a railway signalling
manufacturer. Principal idea/results: To address this goal, we first iden-
tified a set of typical defects classes, and, for each class, an engineer of the
company implemented a set of defect-detection patterns by means of the
GATE tool for text processing. After a preliminary analysis, we applied
the patterns to a large set of 1866 requirements previously annotated for
defects. The output of the patterns was further inspected by two domain
experts to check the false positive cases. Contribution: This is one of the
first works in which defect detection NLP techniques are applied on a
very large set of industrial requirements annotated by domain experts.
We contribute with a comparison between traditional manual techniques
used in industry for requirements analysis, and analysis performed with
NLP. Our experience tells that several discrepancies can be observed
between the two approaches. The analysis of the discrepancies offers hints
to improve the capabilities of NLP techniques with company specific solu-
tions, and suggests that also company practices need to be modified to
effectively exploit NLP tools.

Keywords: NLP · Requirements · Ambiguity · Defect detection ·
Quality

1 Introduction

The CENELEC norms provide standards for the development of railway safety-
critical systems in Europe. The CENELEC EN 50128:2011 [6], specific for
c© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 344–360, 2017.
DOI: 10.1007/978-3-319-54045-0 24

Using NLP to Detect Requirements Defects: An Industrial Experience 345

software, asks requirements documents for railway systems to be complete, clear,
precise, unequivocal, verifiable, testable, maintainable, and feasible. To ensure
that these quality attributes are met, companies developing railway products
have a Verification Engineer (VE) who reviews for defects any requirements
document produced along the development process. This review activity is time
consuming and error prone, and an automated review assistant might help VEs
in their task. As well known, requirements are normally edited in natural lan-
guage (NL) [19], and the railway domain makes no exception. Several natural
language processing (NLP) approaches have been developed to assist require-
ments review. Part of these works focuses on the identification of typical defective
terms and constructions [2,4,11,14,15,20], while other focus on artificial intel-
ligence techniques [7,13,21]. However, the literature is lacking large-scale case
studies concerning industrial applications of NLP approaches for defect detection
[11]. This papers aims at filling this research gap, by providing the experience
done within a collaboration between a world-leading railway signalling company,
the University of Florence, and ISTI-CNR to investigate the feasibility of using
NLP for defect identification in the requirements documents of the company.
This experience, which involved three professional VEs and a large-scale exper-
imentation on 1866 requirements, shows that NLP technologies can be used to
develop in-house tools for defect identification. The internal development of the
tools can enable the VEs of the company to tune the tools to account for part
of the discrepancies that occur between manual reviews and automated ones.

The remainder of the paper is structured as follows. Section 2 summarises
related works. In Sect. 3, we provide an overview of the current work. In Sect. 4 we
describe the patterns adopted for defect detection. Sections 5 and 6 provide the
results of a preliminary and a large-scale study, respectively, on the application
of the patterns. In Sect. 7 we provide an analysis of the false positive cases
performed on the large-scale study. Section 8 highlights the lessons learned.

2 Related Works

The literature counts several contributions concerning the application of NLP
techniques to detect defects in NL requirements. These works can be categorised
into those that use rule-based approaches [2,4,11,14,15,20] and those that lever-
age artificial intelligence approaches [7,13,21]. Our contribution falls into the
first category, which collects all the works in which defects are identified based
on linguistic patterns. Hence, we briefly discuss relevant works in this category.

The Ambiguity Handbook of Berry et al. [4] includes one of the most influ-
ential classification of ambiguity-related defects in requirements, and provides
a large set of examples of typically dangerous words and constructions. Gnesi
et al. [15] present QuARS, a tool for defect detection based on a quality model
developed by the authors. Similarly, Gleich et al. [14] implemented a grep-like,
pattern-based technique to detect defects, supported by statistical NLP tech-
niques such as POS tagging. Tjong and Berry [20] developed SREE, a tool that
identifies defects based on a pre-defined list of dangerous terms. Arora et al. [2]
use patterns of linguistic defects as the other works, and, in addition, checks the

346 B. Rosadini et al.

conformance of the requirements to a given template. All these works were used
as fundamental references to define the defect detection patterns of our study.
On the other hand, all the listed works provide limited validation in real indus-
trial contexts, as noted also by Femmer et al. [11]. In some cases, e.g., Gleich
et al. [14], validation datasets are limited, while in other cases, e.g., Tjong and
Berry [20], datasets are annotated for defects by one of the authors instead of
domain experts. Large data-sets annotated by experts were considered by Falessi
et al. [10]. However, their focus is solely on redundancy defects (i.e., equivalent
requirements), detected by means of information retrieval techniques. The task
of finding couples of equivalent requirements is radically different from the one
we are dealing with in our study, in which multiple linguistic defects occurring in
single requirements are considered. To our knowledge, the more general indus-
trial work on defect detection is the one presented by Femmer et al. [11], who
experimented their tool named Smella on several datasets belonging to three
companies. Although domain experts were interviewed to assess the effective-
ness of the tool, analysis of the results was performed by two researchers.

Compared to these studies, in the current work the validation of the app-
roach is performed on a large set of industrial requirements annotated by domain
experts. Another novelty is that defect detection NLP techniques are imple-
mented in-house by a domain expert.

3 Overview

To experiment the feasibility of using defect detection NLP techniques, the com-
pany allocated one VE (VE1, 1st author) dedicated to the task, ISTI-CNR pro-
vided an Expert in defect detection through NLP (NLP-E, 2nd author), and the
University of Florence provided a second VE (VE2, 3rd author), who worked
at the company as VE, and then moved to the academia. NLP-E considered
that assessing the effectiveness of a domain-generic tool for defect detection
(e.g., QuARS [15]) would have required a strong expertise in the domain of the
requirements documents. In addition, he considered that, if the tool would have
provided too many false positive cases, e.g., innocuous ambiguities [7], the com-
pany would not have considered the tool as appropriate for its needs. Hence, it
was decided to let VE1 develop the tool in-house, with the support of NLP-E.
VE1 was initially required to study the papers of Berry et al. [4], Gnesi et al.
[15], Gleich et al. [14], Tjong and Berry [20] and Arora et al. [2]. Then, she was
required to perform the tutorials provided by GATE (General Architecture for
Text Engineering [8]), which was the generic NLP tool selected to be tailored
to support defect detection. The tool was chosen since it was considered suffi-
ciently easy to use for an engineer, and sufficiently powerful for the task. After
this autonomous training, VE1 and NLP-E met to define the defect classes on
which to focus (Sect. 4). Priority was given to those defect classes that were con-
sidered more relevant from the point of view of VE1, and whose identification was
considered feasible by NLP-E. For each defect class, VE1 used GATE to define
a set of patterns for identification of defects. The patterns were experimented on

Using NLP to Detect Requirements Defects: An Industrial Experience 347

a dataset annotated by VE1 herself, with the objective of maximizing recall, as
suggested by Berry et al. [3] (Sect. 5). After the first encouraging results, a large-
scale experiment was conducted on 1866 requirements, previously annotated by
another VE of the company (VE3, 6th author) (Sect. 6). In this case, the results
appeared particularly poor in terms of precision. Hence, VE1 and VE2 decided
to analyse the false positive cases (Sect. 7). This analysis showed that many true
linguistics defects were not considered in the validation performed by VE3. After
marking these cases as true positives, several false positive cases remained, which
could be in principle addressed by further tailoring the patterns to the specific
language of the company. At the end of the experience, all the authors discussed
about the lessons learned from the case study (Sect. 8).

4 A Rule-Based Approach to Predict Defects

4.1 NLP Technologies

Before describing the patterns that we defined to identify the defects, it is useful
to list the natural language processing (NLP) technologies included in the tool
GATE [8] that was adopted to define the patterns:

– Tokenization: This technology partitions a document into separate tokens,
e.g., words, numbers, spaces, and punctuation.

– Part-of-Speech (POS) Tagging: This technology associates to each token
a Part-of-Speech, e.g., noun (NN), verb (VB), adjective (JJ), etc. Common
POS taggers are statistical in nature, i.e., they are trained to predict the POS
of a token based on a manually annotated corpus.

– Shallow Parsing: This technology identifies noun phrases (NP) – in this case
we speak about Noun Chunking – and verb phrases (VP) – in this case we
speak about Verb Chunking – in sentences. For example, given the sentence
Messages are received by the system, a shallow parser identifies {Messages, the
system} as NP, and {are received} as VP.

– Gazetteer: This technology searches for occurrences of terms defined in a list
of terms. In our case, we used it to check the presence of vague terms.

– JAPE Rules: This technology allows defining rules (i.e., high-level regular
expressions) over tokens and other elements in a text [8]. A rule identifies
sequences of elements that match the rule. Rules are expressed in the intuitive
JAPE grammar, which is similar to regular expressions. JAPE rules can be
rather long to report. In this paper, for the sake of space, to describe JAPE
rules we will use a more concise and intuitive pseudo-code inspired to the
JAPE grammar. In JAPE, and in our rules, the following symbols are used:
“|” indicates logical or; “,” indicates logical and; “!” indicates logical not;
“<expr>+” indicates one or more elements matching the preceding expression
expr; “<expr>∗” indicates zero or more elements; “<expr>?” indicates zero
or one elements. When we use a term in capital letters, this indicates a form
of macro that identifies terms of the specific type, e.g., NUMBER identifies

348 B. Rosadini et al.

numbers, while ELSE identifies the term else in its various orthographic forms.
Although these macros differ in terms of semantics, we expect that the reader
can infer their meaning.

Table 1. Pattern adopted for each defect class.

Defect class Pattern

Anaphoric
ambiguity

PANA = (NP)(NP)+

(Split)[0,1]

(Token.POS == PP | Token.POS =∼ PR*)

Coordination
ambiguity

PCO1 = ((Token)+ (Token.string == AND | OR)) [2]

PCO2 = (Token.POS == JJ) (Token.POS == NN | NNS)

(Token.string == AND | OR) (Token.POS == NN | NNS)

Vague terms PV AG = (Token.string ∈ Vague)

Modal adverbs PADV = (Token.POS == RB | RBR),
(Token.string =∼ “[.]*ly$”)

Passive voice PPV = (AUXVERB)(NOT)?(Token.POS == RB | RBR)?
(Token.POS ==VBN)

Excessive length PLEN = Sentence.len > 60

Missing condition PMC = (IF)(Token, !Token.kind == punctuation)*

(Token.kind == punctuation)(!(ELSE | OTHERWISE))

Missing unit of
measurement

PMU1 = (NUMBER)((Token)[0, 1](NUMBER))?(!MEASUREMENT)

PMU2 = (NUMBER)((Token)[0, 1](NUMBER))?(!PERCENT)

Missing reference PMR = (Token.string == “Ref”)(Token.string == “.”)
(SpaceToken)?(NUMBER)

Undefined term PUT = (Token.kind == word, Token.orth == mixedCaps)

4.2 Patterns for Defect Prediction

This section lists the classes of language defects considered, together with the
patterns (i.e., JAPE rules) defined to identify them. Patterns are defined in terms
of sequences of tokens to be matched within a requirement. Hence, the output
produced by one pattern when applied to a requirement is zero or n requirement
fragments (i.e., contiguous sequences of tokens in the requirement) that match
the pattern. The patterns were defined by VE1 with the idea of identifying the
defects that she perceived as more relevant for her job, and taking into account
the defect classes provided by Berry et al. [4], and by the other papers she had
studied [2,14,15,20]. In Table 1 we report the patterns in a compact version.
The JAPE implementation of the patterns is available in our public repository1.
Below, we describe the defect classes addressed by each pattern.

1 https://github.com/BenedettaRosadini/QuARS-/tree/master/jape.

https://github.com/BenedettaRosadini/QuARS-/tree/master/jape

Using NLP to Detect Requirements Defects: An Industrial Experience 349

– Anaphoric ambiguity. Anaphora occurs in a text whenever a pronoun (e.g.,
he, it, that, this, which, etc.) refers to a previous part of the text. The referred
part of the text is normally called antecedent. An anaphoric ambiguity occurs
if the text offers more than one antecedent options [21], either in the same
sentence (e.g., The system shall send a message to the receiver, and it provides
an acknowledge message - it = system or receiver?) or in previous sentences.
The potential antecedents for the pronouns are noun phrases (NP), which can
be detected by means of a shallow parser. The pattern PANA matches any
sequence of two or more noun phrases (NP), followed by zero or one sentence
separators (Split), followed by a personal pronoun (PP), or other types of
pronouns (PR*).

– Coordination ambiguity. Coordination ambiguity occurs when the use of
coordinating conjunctions (e.g., and or or) leads to multiple potential interpre-
tations of a sentence [7]. Two types of coordination ambiguity are considered
here. The first type includes sentences in which more than one coordinating
conjunction is used in the same sentence (e.g., There is a 90◦ phase shift
between sensor 1 and sensor 2 and sensor 3 shall have a 45◦ phase shift).
The second type includes sentences in which a coordinating conjunction is used
with a modifier (e.g., Structured approaches and platforms – Structured can
refer to approaches only, or also to platforms). The VE defined two patterns,
one for each type. PCO1 matches exactly two occurrences (notation “[2]”) of
one or more Tokens followed by a coordinating conjunction. PCO2 matches
cases in which an adjective (JJ) precedes a couple of singular (NN) or plural
nouns (NNS), joined by and or or.

– Vague terms. Vagueness occurs whenever a sentence admits borderline cases,
i.e., cases in which the truth value of the sentence cannot be decided [4].
Vagueness is associated with the usage of terms without a precise semantics,
such as minimal, as much as possible, later, taking into account, based on,
appropriate, etc. In our context, we use the list of 446 vague terms provided
by the QuARS tool [15]. The list includes single-word and multi-word terms
that were collected as source of vagueness in requirements. PV AG matches any
term included in the set Vague of vague terms.

– Modal adverbs. Modal adverbs (e.g., positively, permanently, clearly) are
modifiers that express a quality associated to a predicate. As noted by Gleich
et al. [14], adverbs are discouraged in requirements as potential source of
ambiguity. VE1 noticed that, in the requirements of the company, most of the
adverbs causing ambiguity were modal adverbs ending with the suffix -ly. For
this reason, PADV matches adverbs in normal form (RB) or in comparative
form (RBR) that terminate ($ indicates string termination) with -ly.

– Passive voice. The use of passive voice is a defect of clarity in requirements,
and can lead to ambiguous interpretations in those cases in which the passive
verb is not followed by the subject that performs the action expressed by the
verb (e.g., The system shall be shut down – by which actor?). Passive voice
detection is also considered by Gelich et al. [14] and by Femmer et al. [12]. To
identify passive voice expressions, PPV matches auxiliary verbs followed by a
verb in past participle (VBN), possibly with negations and adverbs.

350 B. Rosadini et al.

– Excessive length. Longer sentences are typically harder to process than
short sentences, and can be source of unclarity. The VE decided to identify
all the sentences that are longer than 60 tokens. Although this is a rather
weak threshold – for generic English texts, Cutts recommends not to exceed
40 tokens [9] –, the VE considered this value appropriate for the length of the
sentences in her domain.

– Missing condition. To be considered complete, each requirement expressing
a condition through the if clause, shall have a corresponding else or otherwise
clause. PMC checks whether an if clause is followed by an else/otherwise clause
in the same sentence.

– Missing unit of measurement. Each number is required to have an asso-
ciated unit of measurement, unless the number represents a reference (see
below). Hence, the patterns check whether a number has an associated unit,
or a percentage value associated to it.

– Missing reference. This defect occurs when a reference that appears in the
text in the form Ref. <X> does not appear in the list of references of the
requirements document. To detect this defect we leverage the pattern PMR to
extract references in the text, and then – through Java code not reported here
– we check whether each number found appears in the list of references.

– Undefined term. This pattern searches all the terms that follow the tex-
tual form used in the company for defining glossary terms (e.g., restrictiveA-
spect), which are expressed in camelCase format. As for the missing reference
case, we leverage the PUT pattern to search for terms expressed in camelCase
(i.e., mixedcap orthography), and then we automatically search the glossary
to check whether the term is present or not.

5 Preliminary Study

After the definition and implementation of the patterns, we performed a first
assessment of the patterns on a real-world dataset of the company. In this phase,
the goal was to establish whether the patterns were able to achieve a value of
recall close to 100%. As noted by Berry et al. [3], defect detection techniques
shall favor recall over precision since the cost of undetected true defects is much
higher than the cost of manually discarding false positive cases. To perform
the evaluation, the dataset was first manually annotated by VE1, and then she
compared the output of the patterns with her annotations. In the following,
we describe the annotation process, the evaluation measures adopted, and the
observation on the results obtained.

5.1 Dataset and Annotation

For the analysis, a dataset of 241 system requirements was considered. This
dataset was randomly selected from the requirements document of a wayside
Automatic Train Protection (ATP) system and from the requirements docu-
ment of an interlocking system. VE1 annotated the dataset. The requirement

Using NLP to Detect Requirements Defects: An Industrial Experience 351

was labeled as accepted if it appeared to fulfill the criteria normally adopted by
the company. These criteria are derived from the more general guidelines pro-
vided by the CENELEC EN 50128:2011 norm [6]. In particular a requirement
was labeled as accepted if it was: (a) feasible: what is required is physically and
technologically possible, can be done with available resources and is not against
laws and regulations; (b) testable: can be demonstrated through repeatable tests
or is at least verifiable through inspection; (c) complete: stand-alone, no missing
references, undefined terms, to-be-defined parts, or missing conditions; (d) clear
and unambiguous; (e) uniquely identifiable; (f) consistent : no internal contradic-
tion and no contradiction with other requirements. The requirement was labeled
as rejected in case it did not fulfill one of the criteria. In case the requirement
was marked as rejected for criterion (c) or criterion (d), VE1 stated whether
the rejection was due to one or more linguistic defect classes associated to the
patterns listed in Sect. 4.2. In this case, VE1 labelled as defective(i) each require-
ment fragment that included the i -th defect. After this annotation activity, 120
requirements were marked as rejected, while 121 were marked as accepted2.

5.2 Evaluation Measures

Evaluation Measures by Defect. To measure the effectiveness of the patterns, we
first provide a set of measures that focus on single defective fragments identified
by the patterns. Given the pattern associated to the i -th defect, we consider the
amount of true positive tpD as the number of requirements fragments labeled as
defective(i) and correctly identified by the pattern; the amount of false positive
fpD as the number of requirements fragments wrongly identified as defective by
the pattern; the amount of false negative fnD as the number of requirements
fragments labeled as defective(i) that are not discovered by the pattern. Based
on these definitions, we define the measure of precision (pD) and recall (rD) as:

pD =
tpD

tpD + fpD
rD =

tpD

tpD + fnD

The precision pD is negatively influenced by the amount of defects wrongly
identified (fpD). The recall rD is negatively influenced by the amount of unde-
tected defects (fnD).

Evaluation Measures by Requirement. To have a view of the effectiveness of the
patterns applied together, we provide a set of measures that focus on the number
of requirements, instead of on the number of defective fragments.

Here, we consider the amount of true positive tpR as the number of require-
ments labeled as rejected for which at least one of the patterns correctly iden-
tified a defective requirement fragment; the amount of false positive fpR as the
number of requirements wrongly identified as defective (i.e., at least one of the

2 The dataset appears balanced since VE1 continued to select requirements until a
balanced number of accepted and rejected requirements was obtained.

352 B. Rosadini et al.

patterns triggered a defect while the requirement was marked as accepted); the
amount of false negative fnR as the number of requirements marked as rejected
for which none of the patterns triggered a defect. The measures of precision pR

and recall rR are defined as for pD and rD, but considering tpR, fpR, and fnR.

5.3 Results and Observations

In Table 2 we report the different evaluation measures. We see that, although
the patterns for anaphoric ambiguity and coordination ambiguity are both based
on shallow parsing, which normally has an accuracy of 90–95% [16], we achieve
the objective of 100% recall. Similarly, for modal adverbs and passive voice, we
achieve 100% recall, although these patterns employ POS tagging, which has an
accuracy around 97% [18]. Two of the patterns that employ only lexical-based
pattern matching, namely missing reference and undefined term, also achieve
100% recall. Lower values of recall are instead achieved for the patterns associ-
ated to vague terms (67.74%), excessive length (60.06%), missing unit of mea-
surement (50%) and missing condition (97.05%).

Table 2. Preliminary study results for single defects and requirements.

Defect Class tpD fpD fnD pD rD

Anaphoric ambiguity 22 8 0 73.33% 100%

Coordination ambiguity 16 8 0 66.66% 100%

Vague terms 21 16 10 56.75% 67.74%

Modal adverbs 28 14 0 66.66% 100%

Passive voice 343 60 0 85.11% 100%

Excessive length 200 30 133 86.95% 60.06%

Missing condition 66 14 2 82.5% 97.05%

Missing unit of measurement 2 2 2 50% 50%

Missing reference 10 0 0 100% 100%

Undefined term 208 76 0 73.23% 100%

Requirements tpR fpR fnR pR rR

106 59 14 64.24% 88.33%

– Vague terms. By inspecting the ten false negative defects for vague terms,
VE1 found that they were all due to the absence of the quantifier some in
the list of vague terms provided by QuARS. Hence, requirements such as the
following were not marked as defective by the pattern: In case the boolean
logic evaluates the permissive state, the system shall activate some redundant
output – which output shall be activated? VE1 resolved the problem by simply
adding the term some to the list of vague terms. Since also pD was particularly
low (56.75%), VE1 inspected the false positives and saw that they were due
to domain-specific terms, namely raw data, hard disk, short-circuit, logical
or, logical and, green LED. These terms were added to a stop-list to discard
false positives in future analysis.

Using NLP to Detect Requirements Defects: An Industrial Experience 353

– Excessive length. By inspecting the false negative cases for excessive length,
VE1 saw that they were due to a limitation of the GATE Tokenizer. For nested
bullet point lists, the Tokenizer considers each item as a separate sentence.
Hence, very long and deeply nested bullet point lists were not considered as
sentences of excessive length. However, VE1 also argued that the length of a
sentence, and the hard readability due to complex nested lists are different
kinds of defects. Hence, she decided not to change the pattern for excessive
length, and to consider the problem of nested lists as a defect that, at the
moment, was left uncovered.

– Missing unit of measurement. Concerning the two false negative cases for miss-
ing unit of measurement, VE1 observed that these were due to the presence
of ranges of numerical values, e.g., [4,20], without the specification of the unit
of measurement. To address these cases, the pattern was adjusted.

– Missing condition. The two false negative cases for missing condition appeared
to be due to the presence of multiple if statements in the same sentence, with
one else statement only, as in the following case: If the initialization starts, if
the board is plugged in and if the operator has sent the running command the
system shall start, else it shall go in failure mode. For requirements as the one
presented, it is difficult to understand which specific if is covered by the else
statement. Since the majority of missing condition defects were identified (66
out of 68), and considering that a VE has to manually review the requirements
anyway, as required by the norm [6], VE1 decided not to add additional rules
for this defect class.

False Negative Requirements. It is also useful to look at the values of false nega-
tive cases fnR and recall rR for the requirements. These 14 false negative cases
not only include those already discussed, but also cases of defective requirements
that could not be identified with our patterns – but which were annotated by
VE1 following the guidelines of the company. In particular, interesting cases are
those in which we have inconsistent requirements (e.g., 1: The system shall accept
only read access to file X ; 2: The system shall accept read and write access to file
X.) that violate guideline (f), which asks requirements to be consistent. Other
cases are those for which we have problems of testability (guideline (b)), as in
the case of under-specified statements (e.g., The system shall go in error mode
when an internal asynchronism has been detected ; asynchronism among which
components?), or incomplete statements (e.g., The system shall make available
its internal status; through which interface?). Finally, other cases are those asso-
ciated to other defects of completeness of the requirements document, as in the
case of requirements for which it is expressed only the best-case scenario, and not
the worst-case (e.g., The system shall go at runtime state from power off state in
3min in the best case.; which is the requirement for the worst case?). Although
some false negative cases were found, the evaluation of the patterns was consid-
ered successful in terms of recall by VE1. Hence, we decided to experiment the
use of the patterns on a larger requirements dataset.

354 B. Rosadini et al.

6 Large-Scale Study

The objective of the second study was to perform an assessment of the patterns
on a larger requirements set of the company, previously validated by another
VE (i.e., VE3), to understand to which extent the approach could be applicable
more widely within the company.

6.1 Dataset, Annotations and Evaluation Measures

For this study a dataset of 1866 requirements was considered. The requirements
belonged to a requirements document concerning a system that includes an inter-
locking, an ATP, a CTC (Centralised Traffic Control) and an Axle Counter. The
defects of the document were previously annotated by VE3, following the crite-
ria of the company already outlined in Sect. 5.1, and employed by VE1 for the
preliminary study. Since this task was performed before this work was conceived,
the annotation of the defective fragments was not performed by VE3, who just
marked requirements as accepted or rejected, and described the reasons for rejec-
tion in a specific requirements validation document. From the 1866 requirements,
1733 were marked as accepted, while 93 were marked as rejected.

For the annotations performed by VE3, the measures adopted for evaluating
the effectiveness of the patterns in identifying defective requirements are tpR,
fpR, fnR, pR and rR as defined in Sect. 5.2. Intuitively, these measures indicate
whether the application of the different patterns simultaneously allows to identify
requirements that were marked as rejected by VE3. Since VE3 did not annotate
fragments, for this analysis we do not consider evaluation measures for the single
defects as in the first analysis.

6.2 Results and Observations

In Table 4 we report the output of the patterns on the dataset in terms of defects
identified (D), and in terms of defective requirements (R) – the other columns
of the table will be discussed in Sect. 7. We see that the majority of the defects
are due to passive voice. This is in line with the results of Femmer et al. [12]. The
use of passive voice appears to be a sort of writing style of these requirements,
since 615 out of 1866 (33%) include this defect. However, the most interesting
– and disappointing – aspect comes from the evaluation presented in Table 3.
The number of false positive requirements is extremely high, and the precision
is only 5.7%. This value is comparable with the precision obtained through a
random predictor [1] (for which pR = rR = 93/1866% = 5%). Hence, it appears
not acceptable if the tool needs to be used in a real-world setting. Furthermore,
also the value of rR (74.19%) is not too encouraging. Hence, let us first focus on
false negative cases, which impact the value of rR, and in Sect. 7 we will discuss
the analysis performed on false positive cases, which impact on pR.

Using NLP to Detect Requirements Defects: An Industrial Experience 355

Table 3. Large-scale analysis results: requirements.

tpR fpR fnR pR rR

69 1148 24 5.7% 74.19%

False Negative Cases. As for the preliminary analysis, the false negative cases
are due to requirements that include defects that were not considered by any
of the patterns, but that violate one or more criteria adopted by the company.
Interesting examples are requirements that do not fulfill the criterion of testability
(guideline (b)), as e.g., The system shall be in continuous operation for 24 h a
day and 7 days a week ; requirements that are not feasible (guideline (a)), e.g.,
The core of the system shall use TCP/IP protocol in order to communicate with
peripheral boards – in this case, this requirement was considered not feasible
since the only communication protocol that was considered applicable was UDP;
requirements that include inconsistent statements (guideline (f)), e.g., The brake
symbol shall be able to show the following colors: Green when the brake is not
active, Grey when the brake is not active. Overall, these cases show that there is
a variety of defects that are hardly identifiable with NLP techniques, and hence
require a human expert to accurately assess them.

7 False Positive Analysis

Given the poor results in terms of precision, VE1 inspected the output of the tool,
and saw that part of the false positive requirements were, in her opinion, actu-
ally defective. For example, the following requirement marked as accepted, was
evidently defective due to several vague terms (highlighted in bold): Depending
on the technical or functional solution selected, there shall be time parameters in
the control system, that the Purchaser shall be able to adjust during operation in
order for the registration/deregistration to be made as effectively as possible.3

In other terms, her opinion was that VE3, when evaluating the requirements,
actually tolerated several linguistic defects, and marked as rejected only those
requirements that appeared to include severe conceptual defects. To assess how
many of the false positive cases could be considered as linguistic defects from
the point of view of a more strict annotator, a second annotation process was
performed to evaluate the false positive cases.

7.1 Annotation and Evaluation Measures

A second annotation process was performed on the requirements marked as
defective by at least one of the patterns. In this annotation process, two VEs
(VE1 and VE2) independently annotated the output of the patterns as follows.
For each requirement fragment labelled as defective according to pattern i, each
3 The requirement was not rejected since it was clarified by other subsequent require-

ments. This violates the guideline (c) that require requirements to be stand-alone,
but the defect was not considered crucial.

356 B. Rosadini et al.

VE annotated the fragment as defective(i), if the VE considered the defect as
a true defect. The annotator agreement was estimated with the Cohen’s Kappa
[17], resulting in k = 0.8225, indicating an almost perfect agreement. Overall, if
a fragment was annotated as defective(i) by at least one annotator, the frag-
ment was marked as defective(i) in the annotated set used for the evaluation.
In this analysis, we use evaluation measures for single defects, and for entire
requirements. Since in this analysis we focus solely on the output produced by
the patterns, we consider neither the amount of false negative cases, nor the mea-
sure of recall (for this reason the structure of Table 4 differs from that of Table 2).
Hence, we consider pD (for each defect class i) and pR as defined as in Sect. 5.2.

Table 4. Evaluation of the results for the large-scale study.

Defect class D R tpD fpD pD

Anaphoric ambiguity 387 327 258 129 66.6%

Coordination ambiguity 263 213 190 73 72.24%

Vague terms 496 306 290 206 58.46%

Modal adverbs 476 373 331 145 69.53%

Passive voice 1265 615 1242 23 98.1%

Excessive length 16 16 16 0 100%

Missing condition 188 148 129 59 68.61%

Missing unit of measurement 0 0 0 0 -

Missing reference 4 2 4 0 100%

Undefined term 54 49 43 11 79.62%

Average 79.24%

Requirements tpR fpR pR

1042 175 85.6%

7.2 Results and Observations

Table 4 reports the results of this phase. For each defect class, the precision
reaches an average value of 79.24% for what concerns the number of defects
(average of different pD). Overall pR resulting from the application of all the
patterns together, raises from the 5.7% of Table 3, to 85.6%. However, there is
still a significant amount of false positive cases that should be noticed. For the
sake of space, we will present examples for vague terms, since these are the defects
for which the false positive cases had a major impact on the precision value
(pD = 58.46%). False positive cases of anaphoric ambiguity are studied by Yang
et al. [21], while Chantree et al. [7] studied false positive cases of coordination
ambiguity. Our false positive cases for these defect classes are similar to those
addressed by these studies. For modal adverbs, false positives occur when adverbs
form domain-specific names, e.g., normally closed to refer to relay status.

Vague Terms. A large number of false positive cases (206) is identified for this
defect. These cases are due to the fact that many of the vague terms are lexically

Using NLP to Detect Requirements Defects: An Industrial Experience 357

ambiguous. For example, the term light, considered as adjective, is vague, but
when playing the role of noun, as in the requirement Yellow Stop lights do not
have to be monitored, is not vague. Cases such as the one in this example can be
potentially detected by applying POS tagging, and considering a term as vague
only if it plays the role of adjective. Other cases occur when a vague word is part
of a domain-specific multi-word term, as for the term distant of the following
example: The operator shall use “distant signalling distance” to apply the brake.
To discard these cases, techniques for multi-word term identification [5] should
be applied. Finally, many cases were due to the usage of the term possible in the
phrase It shall be possible [. . .], considered an accepted requirement preamble
within the company. This phrase was included in a stop-phrase list, to discard
false positives, and allowed to increase the precision pD for vague terms from
58.46% to 78.37% (about 20% increase). This shows that small adjustments
to the patterns can radically improve the results in terms of precision, since
requirements appear to present systematic sources of false positives.

8 Discussion and Conclusion

This paper presents the experience of a railway signalling manufacturer in imple-
menting a set of NLP patterns to detect defects in NL requirements. From the
experience, a set of lessons learned were discussed among the authors, and are
reported below.

In-house NLP. Our experience shows that NLP technologies are available for
requirements analysts with limited NLP training, and that these technolo-
gies can be proficiently used for the detection of several typical requirements
defects. Rule-based NLP patterns tend to generate large numbers of false
positives [7,21]. If the results come from a tool that the requirements ana-
lyst cannot control, the analyst is likely to distrust the tool. Instead, if the
analyst understands the inherent principles of the tool – and implementing
the tool is a proper way for understanding its principles –, s/he can under-
stand its weaknesses and use it at its best. Furthermore, it is also important
to internally develop the tools, since, to reduce the amount of false positive
cases, tailoring the patterns for the specific needs of the company is required.
If the VE implements the patterns, s/he can customise them according to
the language used in the domain, as, e.g., to account for terms such as raw
data, hard disk (Sect. 5.3), and phrases such as it shall be possible. This last
customisation allowed to increase pD for vague terms by 20% (Sect. 7.2).

Requirements Language Counts. Looking at the large number of passive
voice defects in the large-scale analysis, it appeared that the use of passive
voice was a form of writing style. As a consequence, the patterns generated a
large number of detected defects (i.e., 1265). This tells us that, to effectively
use NLP, one cannot simply implement appropriate defect detection patterns:
one should change also the language adopted in the requirements, to make it
more error free, so that the VE can focus on a smaller amount of defects. For
this reason, we argue that NLP tools should be first used by the requirements

358 B. Rosadini et al.

editors, to limit the amount of poor writing style, and only afterwards by a
VE. However, this is not always practicable, especially in those cases in which
requirements are produced by the customer, and assessed by the company who
has to develop the product.

Validation Criteria Count. Comparing the results of the preliminary analysis
with those of the large-scale study, we saw that a large part of the false positive
cases encountered in the second analysis could be associated with a weaker
validation performed by VE3, who did not focus on linguistic defects, but
more on severe conceptual defects. For this reason, the results obtained in
terms of precision were extremely poor. When changing criteria (Sect. 7), pR

varied from 5.7% to 85.6%. Hence, to perform an appropriate validation of
rule-based NLP patterns, it is advisable to start from an annotated dataset
that has been defined knowing the classes of defects that will be checked by
the patterns. Otherwise, the results might be misleading. This observation
might appear counter-intuitive, since we suggest to adapt human operators
to tools. However, when dealing with the complexity of NL, we argue that
the adaptation between humans and NLP tools should be bi-directional.

NLP is Only a Part of the Answer. In our large-scale study, several false
negative cases occurred, which can hardly be detected with NLP. These are
examples of conceptual defects that require a human with knowledge of the
domain and of the specific project. The amount of these cases – 24 out of 93
defects in total – is not negligible. Furthermore, it is worth noting that 69 out
of 93 conceptual defects could be actually detected by looking at linguistic
defects that can be identified with NLP. Although computing the correlation
between linguistic defects and conceptual defects is out of the scope of this
work, this result suggests that some form of relation between the two might
exist, and this is an aspect that is worth further exploration.

Statistical NLP vs Lexical Techniques. Our patterns make use of POS
tagging and shallow parsing, which are statistical techniques that can hamper
the objective of 100% recall [3]. However, in Sect. 5, we showed that 100%
recall was achieved for those patterns that used these techniques, while it was
not achieved for the pattern adopted for vague terms, which uses a lexical
based approach. Hence, we argue that the argument in favour of a“dumb”
lexical-based defect detection approach instead of an approach that leverages
statistics-based technique [3] should be partially revised. If one wants to use
lexical-based detection approaches, then one should use only defect indicators
belonging to closed word classes (e.g., pronouns, conjunctions). Instead, if one
uses open word classes (e.g., adjective, adverbs), the problems are not different
from those that might emerge with statistical techniques. As these latter may
fail, also lists of dangerous adjectives and adverbs may fail, because they
might not include words that were not considered until they appear in the
requirements (as e.g., the word some, as noted in Sect. 5.3).

Overall, the experience was considered extremely useful by the company.
In particular, VE1 says that, after studying the literature on defect identifi-
cation, and implementing the patterns, also her way of judging requirements

Using NLP to Detect Requirements Defects: An Industrial Experience 359

defects became more strict. This is also the reason why requirements marked as
accepted by VE3, were afterwards rejected by VE1 and VE2. In future works,
appropriate adjustments will be defined to address the false positives identified
in this study. Concerning false negative cases, it is worth remarking that, unless
the tool for defect detection is appropriately validated, a VE has to manually
inspect the requirements anyway to produce the verification report, as required
by the CENELEC EN 50128:2011 norm [6]. Although human review cannot be
replaced, NLP support can help a VE in prioritising the requirements to be
manually analysed for defects, or, as suggested by Berry et al. [3], to check for
defects left behind after a manual analysis has been performed.

References

1. Alvarez, S.A.: An exact analytical relation among recall, precision, and classifi-
cation accuracy in information retrieval. Technical report BCCS-02-01. Computer
Science Department, Boston College (2002)

2. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of con-
formance to requirements templates using natural language processing. IEEE TSE
41(10), 944–968 (2015)

3. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The case for dumb requirements
engineering tools. In: Regnell, B., Damian, D. (eds.) REFSQ 2012. LNCS, vol.
7195, pp. 211–217. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28714-5 18

4. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: linguistic sources of ambiguity (2003)

5. Bonin, F., Dell’Orletta, F., Montemagni, S., Venturi, G.: A contrastive approach
to multi-word extraction from domain-specific corpora. In: LREC 2010 (2010)

6. CENELEC: EN 50128: 2011: Railway applications - communication, signalling and
processing systems - software for railway control and protection systems. Technical
report (2011)

7. Chantree, F., Nuseibeh, B., Roeck, A.N.D., Willis, A.: Identifying nocuous ambi-
guities in natural language requirements. In: RE 2006, pp. 56–65 (2006)

8. Cunningham, H.: GATE, a general architecture for text engineering. Comput.
Humanit. 36(2), 223–254 (2002)

9. Cutts, M.: The Plain English Guide. Oxford University Press, Oxford (1996)
10. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case

study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Trans. Softw. Eng. 39(1), 18–44 (2013)

11. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

12. Femmer, H., Kučera, J., Vetrò, A.: On the impact of passive voice requirements
on domain modelling. In: ESEM 2014, p. 21. ACM (2014)

13. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: RE 2012, pp. 191–200 (2012)

14. Gleich, B., Creighton, O., Kof, L.: Ambiguity detection: towards a tool explaining
ambiguity sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol.
6182, pp. 218–232. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14192-8 20

15. Gnesi, S., Lami, G., Trentanni, G.: An automatic tool for the analysis of natural
language requirements. Comput. Syst. Sci. Eng. 20(1), 53–62 (2005)

http://dx.doi.org/10.1007/978-3-642-28714-5_18
http://dx.doi.org/10.1007/978-3-642-14192-8_20

360 B. Rosadini et al.

16. Kang, N., van Mulligen, E.M., Kors, J.A.: Comparing and combining chunkers of
biomedical text. J. Biomed. Inform. 44(2), 354–360 (2011)

17. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977)

18. Manning, C.D.: Part-of-speech tagging from 97% to 100%: is it time for some
linguistics? In: Gelbukh, A.F. (ed.) CICLing 2011. LNCS, vol. 6608, pp. 171–189.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19400-9 14

19. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis
using linguistic tools. REJ 9(1), 40–56 (2004)

20. Tjong, S.F., Berry, D.M.: The design of SREE — a prototype potential ambiguity
finder for requirements specifications and lessons learned. In: Doerr, J., Opdahl,
A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 80–95. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-37422-7 6

21. Yang, H., Roeck, A.N.D., Gervasi, V., Willis, A., Nuseibeh, B.: Analysing anaphoric
ambiguity in natural language requirements. REJ 16(3), 163–189 (2011)

http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://dx.doi.org/10.1007/978-3-642-37422-7_6

Research Methodology in Requirements
Engineering

Specifying Software Requirements
for Safety-Critical Railway Systems:

An Experience Report

Luciana Provenzano1,2(&) and Kaj Hänninen2

1 Bombardier Transportation, Västerås, Sweden
2 Mälardalen University, Västerås, Sweden

{luciana.provenzano,kaj.hanninen}@mdh.se

Abstract. Context and motivation: Software safety requirements are funda-
mental in the definition of risk reduction measures for safety critical systems,
since they are developed to satisfy the system safety constraints as identified by
mandated safety analyses. It is therefore imperative that the requirements are
defined clearly and precisely. Question/Problem: We describe our experiences
in introducing a safety compliant method of writing safety software require-
ments for railway projects in a distributed organization. Our goal was twofold,
to develop requirements specifications that comply with the EN 50128 standard
and that are understandable by the persons involved in the software develop-
ment. Principal ideas/results: We introduced methods to transform natural
language requirements to functional requirements described as scenarios,
sequence, use-case and state-machine diagrams. Contribution: Our experience
shows that new ways of expressing requirements, even if proper to solve
technical issues such as compliance with standards, bring other challenges to the
organization like people’s reluctance to changes in working routines and process
updates.

Keyword: Software requirements � Safety critical system � Railway domain �
Compliance with safety standards

1 Introduction

In large-scale distributed development organizations, projects are often executed by
people and teams from different working-sites and countries. Teams with specific
responsibilities and differences in safety cultures are cooperating and contributing with
their knowledge and resources to develop parts of products that will be integrated into a
final system. Assuring safety and compliance with a safety standard is often a challenge
in distributed organizations.

In this paper we describe our experiences of introducing new ways of specifying
safety requirements in a development organization. The aim of the work was to
transform the way requirements were expressed, from a natural language, to
semi-formal descriptions in the form of diagrams according to the EN 50128 railway
standard [1]. This implied that a new way of working and new processes, that affected
people dealing with requirements engineering, had to be introduced.

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 363–369, 2017.
DOI: 10.1007/978-3-319-54045-0_25

In modern safety critical systems, the software is a vital part of the risk reduction
measures in the sense that software functions are used to control or reduce the risk of
hazards that may cause a system to fail with catastrophic consequences for human life,
the environment and facilities. For this reason, software safety requirements and design
constraints are the fundamentals in the definition of risk reduction measures for these
types of systems, since they are developed to satisfy the system safety constraints as
identified by mandated safety analyses. It is therefore imperative that the software
safety requirements are defined clearly and precisely so that difficulties and ambiguities
in interpreting them are avoided. In the railway domain, the EN 50128 standard pre-
scribes best practice processes to be followed when developing the software, so that it
achieves the necessary level of safety, called safety integrity level (SIL). With regard to
the software safety requirements, the standard addresses both the requirements content,
by pointing out the need to define failure modes, and the software properties that shall
be considered, such as safety, robustness, maintainability, and so on. Depending on the
criticality of the system, the standard also suggests techniques and measures that have
to be applied when structuring requirements. This should be done so that the resulting
specifications are understandable, testable, realizable, consistent and complete.

In reality, techniques and descriptions used to specify requirements shall be
understandable by all the persons involved in a software life-cycle. This implies that
people from different teams and with different experiences of requirements have to be
able to use them in their daily work. In this paper, we describe the approach used to
comply with the standard. We discuss the impact of this approach on the current
process through different stakeholder’s feedback and we conclude with some lessons
learned.

2 Software Safety Requirements

The software safety requirements subject of this report concern the Train Control
Management System (TCMS) for a high-speed train. The TCMS is a real-time
on-board system in charge of the execution of the train control functions, the trans-
mission of data inside and outside the train, and the collection of diagnostic data.

Software safety requirements for the TCMS system are derived from the vehicle
safety requirements that are identified during the system hazard analysis. These
requirements together with design constraints constitute the mitigation measures that
have to be implemented to reduce any risks with the product to acceptable levels.

2.1 The Project Context and the Need for Change

When we began to document and assess the TCMS safety requirements, the project had
been running for approximately two years. The most of the non-safety critical
requirements had been written in natural language. With this situation, both designers
and testers of the TCMS system expressed their issues concerning the quality of the
existing requirements for the following reasons:

364 L. Provenzano and K. Hänninen

• Some requirements were not testable, mainly because of conditions that contained
many implicit assumptions due to the fact that they were written by the most
experienced persons with deep domain knowledge. These assumptions resulted in
ambiguities for the testers.

• The sources of the input conditions and the destinations of the output results were
not defined for all the requirements. This made the integration test very difficult to
perform. The testers had to check the details of the implementation to understand
the overall functionality.

• Requirements were not complete with regard to failure cases definitions. So deci-
sions on possible alternative behaviors were taken by the designers. The testers had
little or no chance to discover the alternative behaviors when performing the
functional test, without checking the actual implementation.

• Many of the software requirements had been purely copied from system require-
ments without refinement for their actual use.

2.2 The Approach Towards Safety Compliance

Based on the above observations, our choice was to introduce a safety compliant
method of writing requirements that aimed at:

• Improving the requirements’ content to obtain clear, precise, unambiguous, testable,
and feasible requirements;

• Including in the requirements the description of the required failure modes
according to the EN 50128 standard;

• Describing ways to express the requirements’ properties required by the standard,
such as safety, robustness, maintainability, performance, efficiency;

• Identifying and documenting the internal and external interfaces of the TCMS.

Our methodology to write and structure the TCMS software safety requirements was
driven by the EN 50128 standard. To evaluate the applicability and feasibility of the
new method within our organization, this approach was submitted for approval to the
project leads and line managers.

Clear, Precise, Unambiguous, Testable and Feasible Requirements through Sce-
narios. We applied use cases to identify the functional safety requirements. Each use
case was described by a success scenario (basic scenario) “and a set of scenario
fragments as extensions of it” [5]. Even if scenarios are not directly suggested by the
EN 50128 standard, we decided to use them due to the following reasons:

• The requirements expressed as scenarios were more precise and clearer than the
ones written in natural language. In particular, each step of the scenario was
specified according to a well-defined style. This contributed to reduce possible
ambiguities caused by natural language sentences while keeping requirements easy
to understand by the persons using them.

• The resulting requirements described the failure cases, due to the possibility of
defining alternatives and exceptions for each step in scenarios.

• We were able to check the consistency and the completeness of the input
requirements, by examining input requirements with the aim of writing scenarios.

Specifying Software Requirements for Safety-Critical Railway Systems 365

In fact, by searching for use cases out of a set of input requirements we could
discover the overall function/s, i.e. understand what the TCMS was supposed to
offer with regard to a specific set of requirements. Then by building the steps in the
scenario for a given use case, we could check if the input requirements were
consistent according to the overall goal, and/or if some requirements were missing
or incorrect.

Interfaces Through Sequence Diagrams. We described the interfaces of the safety
functions by a sequence diagram for each basic scenario. The description of the
interfaces covered both internal and external input/output to perform a particular
function. Sequence diagrams are a “highly recommended” technique suggested by the
EN 50128 standard when modeling is chosen to specify safety requirements. We used
the sequence diagrams for interfaces description because we believed that a graphical
representation was a more intuitive and concise way to show the interactions of a safety
function, and particularly useful when performing the integration test. We intentionally
kept the sequence diagrams simple, i.e. they were not used to design the function logic.
We did it to reduce the need of extensive training of those using the requirements.

Non-functional Requirements. The EN 50128 standard requires non-functional
requirements to be included in the safety requirements specification, but it does not
suggest how they should be specified. Since functional safety requirements were
written as scenarios, we tried to figure out how these non-functional properties (i.e.
robustness, efficiency, etc.) could be specified by stating the following questions:

• Can scenarios also be used to describe some of the non-functional properties?
• If non-functional requirements cannot be specified by scenarios, what is the typical

content of a non-functional requirement?
• Are non-functional requirements only applicable to specific functional requirements

or generic for all requirements? Which of the non-functional properties can be
considered generic for all requirements?

By doing a literature review of current state of art, see for example [2–4], we dis-
covered that non-functional requirements generally consist of a requirement identifier, a
title, a description, and a list of sources and standards for the traceability.

So we decided to create a specific section for the non-functional requirements, to
include all software properties (such as performance) that were not specific for any
particular safety function. These non-functional requirements were specified using the
above-mentioned format that was based on state of art. Non-functional requirements
that concerned a specific safety function were described as part of the functional
requirement by extending the scenario of that function.

3 Outcomes and Impact on Users and Process

Based on our new approach, we reviewed and accepted approximately 140 system
safety requirements, which corresponded to the 10% of the whole set of system
requirements allocated to the TCMS. From the system safety requirements, we

366 L. Provenzano and K. Hänninen

identified about 70 use cases and we described each use case through scenarios. The
safety software requirements specification was assessed by the safety assessor.

An interesting question out of this work was to understand if this method could be
employed to manage safety requirements within other projects and to which extent so
as to establish a common process issued from this experience to be used in the orga-
nization. To address this question, we collected data by informal interviews with the
different stakeholders, and discussed with the test, design, change management and
quality assurance leads within the project. Informal interviews with team members
working with this new method were performed throughout the duration of the project to
adapt the approach to the users’ feedback. We therefore discuss in this section the
impact of this method on the current process and the feedback from the persons who
experienced it.

3.1 Impact on the Current Process

To identify use cases and scenarios, we needed to review the input requirements
in-depth to grasp the overall functional behavior for each set of safety requirements.
The review process was an opportunity to discuss and clarify the safety functions with
the customers at a very early stage. This resulted in a better quality of the input
requirements and in more involvement of the customer in the software development.

However, a need for a well-defined acceptance process of the input requirements
became fundamental as well as the definition of a new role of the requirements
manager. Managing requirements with this new approach required more activities than
the ones performed to manage the non-safety requirements. This implied that the
project needed to invest more time and resources into the requirements phase, and new
skills, especially in software engineering, became necessary.

3.2 How Did People Accept This Approach?

Eleven team members who worked at the same site adapted the new method in their
daily work. The team members consisted of: one safety manager and a safety engineer,
two requirements engineers, three designers, one test lead and two testers, and a
software quality manager. Four internal customers from different sites of the company
collaborated with the safety manager and the requirements engineer to clarify the input
safety requirements using this method as basis for discussions. An independent safety
assessor was in charge of the assessment of the safety requirements specified according
to this new approach.

Independent Safety Assessor (ISA). The ISA found the safety software requirements
very easy to assess since all the EN 50128 standard recommendations had been taken
into account (see Sect. 2.2). We were able to provide the assessor with a clear
explanation of how each clause had been fulfilled and where in the safety software
requirements specification the corresponding information could be found.

Specifying Software Requirements for Safety-Critical Railway Systems 367

Management. The management appreciated that the safety requirements were asses-
sed, which resulted in time-saving and reduced cost for any reworking activities.
However, they judged this new method expensive due to the need for additional
training of the personnel involved.

Designers. According to the designers, the new way of expressing requirements was
too much detailed and overworked. Moreover, they argued that the precise description
of the function behavior through scenarios constrained their possible interpretation of
the requirements. We think that this was due to the fact that designers were the most
experienced engineers in the project (most of them had been working on the TCMS for
more than 10 years). They stated that the new way of expressing the requirements
constrained them from using their skills and domain knowledge in their daily work.
However, designers appreciated the description of the failure cases.

Testers. Testers needed extensive discussions with the requirements engineers to
understand how to use the new requirements in order to build the test cases. They were
used to work with non-safety requirements which were written in natural language, i.e.
they were not familiar with requirements specified as scenario. Initially they claimed
that they did not derive any tangible benefit from the sequence diagrams to perform the
integration test. We observed that they had difficulties in understanding the relation-
ships among the different use cases and the sequence diagrams. A possible explanation
to this may be the way in which the software safety requirements were structured in
DOORS [7]. In fact, sequence diagrams were described through DOORS objects
tagged as “Information”. As a result, sequence diagrams were not considered as actual
requirements but as descriptions and, as such, discarded. They also thought that the
number of test cases was considerably increased since they were obliged to test all the
alternatives and exceptions for each scenario.

Safety Manager. The safety manager found the modeling very useful in discovering
potential errors, oversights and inconsistencies in the input requirements. The manager
also observed that the number of undefined behaviors identified when performing a
Failure Mode and Effects Analysis (FMEA) [8] was drastically reduced due to the
failure modes described in the alternative and/or exceptions sections of the scenarios.

Stakeholders. The stakeholders from different sites in the distributed organization
appreciated the use of semi-formal modeling with a clear and precise semantics. This
provided the stakeholders with a common formalism for discussions. Modeling
therefore became the primary means of communication and understanding of the safety
requirements.

4 Conclusions and Lessons Learned

In this paper, we introduced a safety compliant method of writing software safety
requirements for railway projects in a distributed organization. Our experience shows
that dealing with safety requirements was a great challenge that went beyond the
technical aspects of producing a requirements specification that complied with the EN
50128 standard. We observed that most of the time and effort was devoted to make this

368 L. Provenzano and K. Hänninen

new approach accepted by the persons involved in the software development, rather
than to interpret the standard and propose a suitable solution. The reasons behind
people’s reluctance to change the working routines are many. In the organization, the
use of semi-formal models to specify requirements was the most difficult and per-
plexing change. Models were not understood as being part of the requirements.
However, in the long term the sequence diagrams and the scenarios were used by the
testers and the designers to reason about functions. This resulted in constructive dis-
cussions, especially during the review meetings, that contributed to a deeper and better
understanding of the safety functions.

We believe that the introduction of new methods must be enforced by the top
management to be effective, especially in large-scale organizations. Moreover, the
working processes have to be updated accordingly for the new techniques to be effi-
ciently adopted. In fact, changes in the way of writing requirements impact the project
management in terms of new review processes, new change management routines, new
roles and broadened skills, new tools set-up, etc.

This approach pushed the organization to further realize that requirements have “a
crucial importance… in critical software systems engineering” [6], and efforts are now
made to further improve the requirements management.

References

1. CENELEC EN 50128 Railway applications – Communication, signaling and processing
systems – Software for railway control and protection systems (2011)

2. Shahrokni, A., Feldt, R.: Towards a framework for specifying software robustness
requirements based on patterns. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, pp. 79–84. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14192-8_9

3. Gustavsson, J., Österlund, M.: Requirements on maintainability of software systems – an
investigation of the state of the practice. In: SERPS 2005 5th Conference on Software
Engineering and Practice in Sweden (2005)

4. Bondi, A.B.: Best practices for writing and managing performance requirements: A tutorial.
In: ICPE 2012 Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, pp. 1–8 (2012)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2011)
6. Larrucea, X., Combelles, A., Favaro, J.: Safety-critical software [Guest editors’ introduction].

IEEE Softw. 30(3), 25–27 (2013)
7. IBM Rational DOORS. http://www-03.ibm.com/software/products/en/ratidoor
8. FMEA. https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Specifying Software Requirements for Safety-Critical Railway Systems 369

http://dx.doi.org/10.1007/978-3-642-14192-8_9
http://www-03.ibm.com/software/products/en/ratidoor
https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis

Usefulness of a Human Error Identification
Tool for Requirements Inspection:

An Experience Report

Vaibhav Anu1(&), Gursimran Walia1, Gary Bradshaw2, Wenhua Hu3,
and Jeffrey C. Carver3

1 North Dakota State University, Fargo, USA
vaibhav.anu@ndsu.edu

2 Mississippi State University, Starkville, USA
3 University of Alabama, Tuscaloosa, USA

Abstract. Context and Motivation: Our recent work leverages Cognitive Psy-
chology research on human errors to improve the standard fault-based
requirements inspections. Question: The empirical study presented in this
paper investigates the effectiveness of a newly developed Human Error
Abstraction Assist (HEAA) tool in helping inspectors identify human errors to
guide the fault detection during the requirements inspection. Results: The results
showed that the HEAA tool, though effective, presented challenges during the
error abstraction process. Contribution: In this experience report, we present
major challenges during the study execution and lessons learned for future
replications.

1 Introduction

Designing and performing empirical studies to evaluate the effectiveness of a newly
developed software method, tool or technique poses a number of unique challenges
(e.g., selecting representative set of subjects and artifacts; preparing training material;
variables selection). The challenges are even greater when the novel Software Engi-
neering (SE) technique borrows concepts from disciplines other than SE (e.g., Psy-
chology) because of the issues faced by subjects in successfully comprehending
theories from the other discipline and applying them to SE experimental tasks.

On those lines, our recent work [1, 4] uses a Cognitive Psychology perspective on
human errors to improve the practice of requirements inspections. Human errors are
understood as purely mental events, failings of human cognition in the process of
problem solving, planning, and acting. Errors, in turn, will produce faults, a physical
manifestation of the error. In the context of this paper, it is important that the reader
makes a clear distinction between human errors (mental events) vs program errors
(related to coding or programmatic failures).

Traditional fault-based requirements inspection techniques (like Fault Checklist
inspection) focus inspectors’ attention on different type of faults (e.g., incorrect or
incomplete or ambiguous requirements) [6]. Even a faithful application of validated
fault-based techniques does not help inspectors in finding all faults. As a result, a larger

© Springer International Publishing AG 2017
P. Grünbacher and A. Perini (Eds.): REFSQ 2017, LNCS 10153, pp. 370–377, 2017.
DOI: 10.1007/978-3-319-54045-0_26

part (40–50%) of the development effort is spent fixing the issues that should have been
fixed in an earlier phase. We propose that inspections focused on identifying human
errors (i.e., the underlying cause of faults) are better at identifying requirements faults
when compared to inspections focused on faults (which essentially are manifestation of
human error). To that end, the proposed inspection approach extends the traditional
fault-checklist (FC) inspection approach by adding the following steps: (1) assisting
inspectors in abstracting human errors from the faults found during the FC inspection,
and (2) using the abstracted errors to locate additional related faults.

To help inspectors in identifying human errors, the authors over the past two years,
have worked on developing the Human Error Taxonomy (HET) that classifies most
commonly occurring human errors during requirements engineering [2]. We have also
developed a human error analysis framework called the Human Error Abstraction
Assist (HEAA) tool that can guide inspectors in analyzing and abstracting (i.e.,
extracting) human error information from requirements faults, a process referred to as
Error Abstraction (EA) by Psychologists. Description of HET and HEAA appears in
Sect. 2.

This paper discusses an empirical study to evaluate the usefulness of the HEAA
tool during the error-based inspection, the challenges faced when designing and con-
ducting the empirical study, and lessons learned to help improve future replications.

2 Background

In this section, we briefly describe human error based inspections and tools that have
been developed to support human error based inspections.

(1) Human Error Based Requirements Inspections: Error based inspections [5],
include two main tasks: (1) Error Abstraction - EA, wherein inspectors identify
and extract human errors from previously found faults, and (2) error-inspection,
wherein inspectors use the abstracted human errors to guide the detection of
remaining faults.

(2) Human Error Taxonomy (HET): HET was developed to support the Error
Abstraction (EA) leg of human error based inspections. HET provides a list of
most common human errors that occur during the requirements engineering phase.
The motivation for creating the HET was that, without a tangible list of
requirements phase human errors, the inspectors would have to rely on their
creativity when abstracting human errors. Detailed information about HET
development can be found in [2].

(3) Human Error Abstraction Assist (HEAA): Although the HET provides a
concrete list of the most commonly occurring human errors, EA is still a sub-
jective process that different people might perceive in different ways. In order to
reduce the subjectivity and complexity of EA we developed the HEAA tool,
which can be found in [2].

The HEAA tool was created after performing pilot empirical evaluation of human
error based inspections with different set of subjects [1, 4]. During these empirical
studies, subjects performed EA using an ad hoc process, wherein subjects used their

Usefulness of a Human Error Identification Tool 371

creativity when abstracting human errors from faults. After the studies, the subjects
provided feedback that EA can be improved by focusing the inspector’s attention on
various requirements engineering (RE) activities (elicitation, analysis, specification,
and management). Hence, to create HEAA, we further distributed the 15 human error
classes of HET across the various RE activities. We created HEAA (which can be
found in [2]) to act as an intuitive frame-work to systematically guide inspectors during
EA. Inspectors have to answer a set of questions to trace a fault to a human error. The
current study evaluated the effectiveness of human error based inspections supported
by the HEAA tool and how can it be effectively used by researchers for future
investigations.

3 Empirical Study Design

The main goal of this study was to evaluate and improve the use of the EA process
(supported by the HEAA tool) in helping inspectors find requirements faults that are
left undetected when using the fault checklist (FC) inspection technique.

(1) Research Questions:

RQ 1: Does the HEAA tool help inspectors detect significantly large number of
faults during requirements inspection compared to the fault-checklist inspec-
tion technique?
RQ 2: Are inspectors able to use the HEAA tool to accurately abstract and
classify human errors that occurred during the requirements development
process?

(2) Subjects and Artifacts:

Subjects: Sixteen (16) graduate students enrolled in the Software Require-
ments Engineering course at NDSU participated in this study. The course was
a breadth course on software requirements encompassing analysis, docu-
mentation, and verification.
Artifacts: Two SRS documents were used during the course of this study.
Initially, subjects were trained on the EA process (and the HEAA tool) using
an SRS document that specified requirements for a Parking Garage Control
System (PGCS). Post training, subjects applied their knowledge of EA (and
used the HEAA tool) to inspect a document that specified requirements fora
Restaurant Interactive Menu (RIM) system.

(3) Experiment Procedure: The experiment was designed as a quasi-experimental
repeated measures investigation and conducted in two phases: pre-test and post-
test. During pre-test, subjects were trained on how to use the HEAA tool to
abstract errors from a subset of PGCS faults (that were provided to them), and use
the identified error information to re-inspect PGCS SRS for remaining faults.
During the post-test phase, subjects applied FC and used the HEAA tool to
inspect RIM SRS for errors and faults. The experiment procedure is shown in
Fig. 1 and the steps are described below:

372 V. Anu et al.

Fault checklist (FC) training: Subjects had been trained on FC inspections and
had inspected SRS’s using FC inspection prior to the beginning of this
experiment.
Training 1 – Error abstraction (EA) training: During an in-class session,
subjects were trained on human errors (via HET), and EA (supported by the
HEAA tool).
Step 1 – Abstraction of human errors in PGCS SRS: Subjects were supplied
with PGCS SRS along with 6 (out of 35 seeded) faults. Subjects used the
HEAA tool to abstract and classify human errors from these 6 faults. The
output of this step was 16 individual Error Report Forms (one per subject).
Step 2 – Inspection of PGCS SRS using error information: Subjects inspected
PGCS for faults using the human error information contained in their own
error report form (from Step 1). The output of this step was 16 individual New
Fault Forms.
Step 3 – FC inspection of RIM SRS: Subjects performed FC inspection of
RIM SRS. The output of this step was 16 individual Fault Forms (one per
subject).
Step 4 – Abstraction of human errors in RIM SRS: Subjects abstracted human
errors from the faults they found (during Step 3) using the HEAA tool. The
output of this step was 16 individual Error Report Forms.
Step 5 – Re-inspection of RIM SRS: Subjects re-inspected the RIM SRS for
new faults using the human error information contained in their error report
form (from Step 4). The output of this step was 16 individual New Fault
Forms (one per subject).

4 Data Analysis and Results

This section describes the analysis performed to answer RQs.

RQ1: Effectiveness of RIM Inspection guided by Faults vs. Errors

For each subject, Fig. 2 compares the effectiveness (# of faults found) during the
fault-based inspection of RIM (Step 3 in Fig. 1) vs the new faults found during the

Fig. 1. Empirical study procedure

Usefulness of a Human Error Identification Tool 373

error guided inspection of RIM document (Step 5). As shown in Fig. 2, subjects were
generally able to use underlying human errors to locate additional faults (that were
either missed or undetected during FC inspection of RIM SRS). For example, subject
S2 identified 8 faults during the FC inspection of RIM, then used the HEAA tool to
abstract human errors (from 8 previously found faults) and reported 7 new faults during
the re-inspection of RIM SRS using the identified error information.

A one-sample t-test was performed to evaluate whether the average number of
faults found in RIM using human error information were significantly greater than the
average number of faults found in RIM using FC. The result of the one-sample test
(p = 0.000221) showed that the average number of faults found using underlying
human error information (i.e., 14 faults) was significantly higher than the average
number of faults found during FC (i.e., 6.75 faults).

RQ2: Error Abstraction and Classification using the HEAA Tool

To understand the usefulness of the HEAA tool, this section evaluates whether
inspectors were correctly able to make a distinction between human error mechanisms
(Slip, Lapse, and Mistake) and accurately classify the error into one of the 15 human
error classes of HET. Using the error-report form for each subject (output at Step 4 in
Fig. 1), EA accuracy was analyzed at two levels (Fig. 3) and described below:

Fig. 2. Effectiveness of FC inspections vs human error based inspection

Fig. 3. Error abstraction (EA) accuracy

374 V. Anu et al.

(1) Error-Mechanism: Accuracy with which subjects were able to distinguish
between Slips, Lapses, and Mistakes (black colored columns in Fig. 3). To
determine the EA accuracy when identifying the human error mechanisms, we
calculated the percentage of total human errors for which human error mecha-
nisms were correctly identified by each subject. Figure 3 shows the EA accuracies
(when identifying error mechanisms) for 16 subjects. For example, subject S2
reported eight (8) human errors of which, five (5) were abstracted to the correct
error mechanisms (i.e., 62.50% accuracy). The mean EA accuracy (when iden-
tifying error mechanisms) was found to be around 62%.

(2) Error Class: Accuracy with which subjects were able to identify the detailed
human errors class (grey colored columns in Fig. 3). EA accuracy when identi-
fying and classifying human error classes was calculated as the percentage of total
human errors that were correctly classified into a human error class (from HET).
The mean EA accuracy of abstracting error classes computed to be around 38%,
considerably lower than the accuracy of abstracting error mechanisms (found to
be 62%). This trend in the downgrade of EA accuracy going from error mech-
anism to error classes was evident across all the subjects, with an average dif-
ference of around 24% per subject. This trend showed that while the HEAA tool
and EA training helped subjects identify errors that led to detection of faults, both
the HEAA and the EA training needs to be improved in order to help subjects
identify the right error classes.

5 Validity Threats and Lessons Learned

Validity Threats

(1) External Validity: Generalization of this study’s results is limited by the facts that
that it was conducted on a very small scale with only 16 participants and under
classroom settings, rather than with requirements experts and professionals in real
environment.

(2) Internal Validity: Owing to the comprehensiveness and length of the study, it is
possible the participants became fatigued and did not perform certain tasks like
EA properly, which might be the reason behind lower EA accuracy (Fig. 3)
Another internal validity threat to a study likes ours is the effect of intellectual
maturation. That is, subjects naturally performed better during error-informed
reinspection of RIM SRS as they were inspecting/reviewing RIM for the second
time (first inspection was FC inspection. See Fig. 2). We were able to control this
threat to some extent by keeping the FC inspection and the error-informed rein-
spection 8 to 10 days apart from each other.

Lessons Learned: The lessons learned are discussed under five major headings:

(1) Replicating the Study with Requirements Experts: Although the study results
were promising, in order to generalize the results, the study needs to be replicated
with higher number of participants and also with requirements experts, who are
likely to be able to perform important steps like EA with better accuracy.

Usefulness of a Human Error Identification Tool 375

(2) Training Subjects on Cognitive Psychology Concepts: EA required subjects to
demonstrate some understanding of error patterns (i.e., inattentiveness, forget-
fulness, knowledge-deficit, etc.) and make inferences in light of situational data
(which is difficult when one was not involved during the requirements develop-
ment). As results showed, subjects showed an understanding of the error mech-
anisms (slips, lapses, mistakes), but struggled to correctly identify the right human
error classes. This motivated the development of new decision tree based error
abstraction approach [2], with a simpler navigation method to help inspectors
abstract and classify human errors.

(3) Subjectivity of Tasks (During EA) Makes for Challenging Data Analysis:
Analyzing EA data provided by the subjects required careful attention to detail as
subjects had varying accounts of human errors. A bigger challenge is to make a
decision about the correctness of errors abstracted by subjects. For analyzing the
EA data in the current study, we compared each subject’s results of error
abstraction with our error abstraction results (agreed upon by authors). This type
of absolute analysis disregards a subject’s reasoning behind why they selected a
particular human error. In future, we intend to improve our data analysis process
by using the concepts of Contextual Content Analysis [3], wherein the verbal or
textual data is divided into small meaningful pieces that can be analyzed both
qualitatively and quantitatively.

(4) Challenge of Academic Environment: An empirical study performed in academic
environment poses certain challenges that are difficult to avoid. One of the
important issues is the lack of adequate time during the class hours. We had to
give a few important but time-consuming experimental tasks (Step 4 and Step 5 in
Fig. 1) as homework assignments. This resulted in subjects not recording properly
the time they took for completing these tasks. This caused the efficiency (number
of faults found per unit time) data to be rather skewed. In future experiments, we
intend to address this by having students perform experimental tasks during class
hours or at predefined schedules.

(5) Involvement of Domain Experts: When performing a cross-disciplinary research,
involvement of domain experts (from SE and Psychology fields) can allow
interdisciplinary learning. The frequent communication between the domain
specific accounts of SE errors and theories of human cognition in Psychology
were integrated during the development of HET, the HEAA tool and during the
planning of study. The psychology expert, Dr. Bradshaw provided timely and
much needed advice throughout our study with real life examples of slips, lapses,
and mistakes during the training (which can be found in [2] and can be used by
other researchers).

6 Conclusions

A critical look at the empirical methodology followed to evaluate the performance of a
newly developed human error based requirements inspection tool (HEAA) showed that
both the HEAA tool and the EA training, even though effective, need tobe improved.

376 V. Anu et al.

Major challenges we encountered and the lessons learned during the empirical study
were portrayed for future replications and also for the benefit of other researchers.

Acknowledgment. This work was supported by NSF Awards 1423279 and 1421006. The
authors would like to thank the students of the Software Requirements course at North Dakota
State University for participating in this study.

References

1. Anu, V., Walia, G.S., Hu, W., Carver, J.C., Bradshaw, G.: Effectiveness of human error
taxonomy during requirements inspection: an empirical investigation. In: Software Engi-
neering and Knowledge Engineering, SEKE 2016 (2016)

2. Anu, V., Walia, G.S., Hu, W., Carver, J.C., Bradshaw, G.: The Human Error Abstraction
Assist (HEAA) tool (2016). http://vaibhavanu.com/NDSU-CS-TP-2016-001.html

3. Hsieh, H.F., Shannon, S.E.: Three approaches to qualitative content analysis. Qual. Health
Res. 15(9), 1277–1288 (2005)

4. Hu, W., Carver, J.C., Anu, V., Walia, G.S., Bradshaw, G.: Detection of requirement errors
and faults via a human error taxonomy: a feasibility study. In: 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2016 (2016)

5. Lanubile, F., Shull, F., Basili, V.R.: Experimenting with error abstraction in requirements
documents. In: Proceedings of the 5th International Symposium on Software Metrics (1998)

6. Porter, A.A., Votta, L.G., Basili, V.R.: Comparing detection methods for software
requirements inspections: a replicated experiment. IEEE Trans. Softw. Eng. 21(6), 563–575
(1995)

Usefulness of a Human Error Identification Tool 377

http://vaibhavanu.com/NDSU-CS-TP-2016-001.html

Author Index

Alsaqaf, Wasim 219
Anu, Vaibhav 61, 370

Bacherini, Stefano 344
Bockisch, Christoph 327
Bradshaw, Gary 61, 370
Briand, Lionel C. 3
Brinkkemper, Sjaak 235

Carver, Jeffrey C. 61, 370
Chase, Leigh 308
Cleland-Huang, Jane 181

Dalpiaz, Fabiano 235
Damian, Daniela 131
Daneva, Maya 219
Donati, Beatrice 148

Fantechi, Alessandro 344
Ferrari, Alessio 148, 344
Franch, Xavier 167

Ghezzi, Carlo 112
Gnesi, Stefania 148, 344
Goknil, Arda 3
Gori, Gloria 344
Gorschek, Tony 77
Guzmán, Liliana 167

Hajri, Ines 3
Hänninen, Kaj 363
Hayashi, Shinpei 95
Hu, Wenhua 61, 370
Hübner, Paul 291

Inayat, Irum 131
Ito, Shoichiro 95
Itoga, Hiroya 209

Jedlitschka, Andreas 167
Jha, Nishant 273

Kamsties, Erik 85
Karey, Hannes 255
Kohl, Roland 255

Labunets, Katsiaryna 191
Lauenroth, Kim 85
Linåker, Johan 50
Lockerbie, James 308
Lucassen, Garm 235

Mahmoud, Anas 273
Maiden, Neil 308
Marczak, Sabrina 131
Massacci, Fabio 191
Menghi, Claudio 112

Ohnishi, Atsushi 209
Oivo, Markku 167
Omori, Takayuki 209
Oriol, Marc 167

Paci, Federica 191
Paech, Barbara 174, 255, 291
Parwoto, Diding Adi 209
Pfeiffer, Tim 85
Poelmans, Stephan 22
Provenzano, Luciana 363

Quirchmayr, Thomas 255

Rabiser, Rick 181
Regnell, Björn 50
Rodríguez, Pilar 167
Rosadini, Benedetta 344

Sadi, Mahsa H. 33
Saeki, Motoshi 95
Salim, Siti Salwah 131
Seiler, Marcus 174
Spoletini, Paola 112, 148
Stephany, Thierry 3

Trotta, Iacopo 344

Unterkalmsteiner, Michael 77

van der Werf, Jan Martijn E.M. 235
Vierhauser, Michael 181

Walia, Gursimran 61, 370
Wautelet, Yves 22
Wieringa, Roel 219
Williams, Chris 308
Wilmink, Martin 327

Yu, Eric 33

380 Author Index

	Preface
	Organization
	Invited Talks
	Analyzing Natural-Language Requirements: The Not-Too-Sexy and Yet Curiously Difficult Research that Industry Needs
	Design Thinking in a Nutshell - 90 Minutes from Idea to Prototype and Back
	Contents
	Use Case Models
	Incremental Reconfiguration of Product Specific Use Case Models for Evolving Configuration Decisions
	1 Introduction
	2 Related Work
	3 Background
	3.1 Elicitation of Variability in PL Use Cases
	3.2 Configuration of PS Use Case Models

	4 Overview of the Approach
	5 Model Matching and Change Calculation
	6 Regeneration of PS Use Case Models
	7 Tool Support
	8 Industrial Case Study
	9 Conclusion
	References

	Aligning the Elements of the RUP/UML Business Use-Case Model and the BPMN Business Process Diagram
	1 Introduction
	2 Related Work and Positioning
	3 Research Method
	4 Studying the Alignment Between the RUP/UML BUCM's Elements and BPMN BPD's Ones
	4.1 Elements of the Use Case Category
	4.2 Elements of the Actor Category
	4.3 Links

	5 Conclusion and Future Work
	References

	Ecosystems and Innovation
	Modeling and Analyzing Openness Trade-Offs in Software Platforms: A Goal-Oriented Approach
	Abstract
	1 Introduction
	2 Requirements and Concerns in Open Software Platforms
	2.1 Openness Design Requirements
	2.2 General Concerns in Designing Software Platforms

	3 Non-functional Requirements Analysis Method
	4 Example Modeling and Analysis
	4.1 System Description: An Open Embedded Automotive Platform
	4.2 Modeling and Analysis
	4.3 Discussion

	5 Related Research
	6 Conclusions
	References

	A Contribution Management Framework for Firms Engaged in Open Source Software Ecosystems - A Research Preview
	1 Introduction
	2 Research Methodology
	3 Structure of the Framework
	4 Discussion and Conclusions
	References

	Human Factors in Requirements Engineering
	Defect Prevention in Requirements Using Human Error Information: An Empirical Study
	1 Introduction
	2 Background
	2.1 Fault Prevention Techniques
	2.2 Human Error Research
	2.3 Error Taxonomies

	3 Experiment Design
	3.1 Research Hypotheses
	3.2 Variables
	3.3 Participants
	3.4 Experiment Procedure

	4 Results and Analysis
	4.1 H1 - The Better a Developer Understands Human Errors the Less Likely He/she Will Be to Inject Errors and Faults into a Requirements Document
	4.2 H2: Knowledge of the HET Will Provide More Benefit for Error/Fault Prevention Than Knowledge of the RET
	4.3 H3: The Better a Developer Understands Each Error Type, the Less Likely He/she Will Be to Insert Errors/Faults Related to that Type into a Requirements Document

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Requirements Quality Assurance in Industry: Why, What and How?
	1 Introduction
	2 Related Work
	3 Characterizing Requirements Quality Assurance
	4 Research Outline
	4.1 Prioritize Quality Attributes
	4.2 Determine Operators and Their Accuracy
	4.3 Estimate Cognitive Load and Automation Complexity

	5 Conclusion
	References

	The Impact of Specification Structure on Human Memory Performance - Experiences from a First Experiment
	1 Introduction
	2 Related Work
	3 Theoretical Background
	4 Experimental Setup
	5 Results from a First Run
	6 Conclusion and Future Research
	References

	Goal-Orientation in Requirements Engineering
	How Can You Improve Your As-Is Models? Requirements Analysis Methods Meet GQM
	1 Introduction
	2 Preliminaries
	2.1 Goal-Oriented Requirements Analysis
	2.2 Problem Frames and Use Case Modeling

	3 Our Approach
	3.1 Integrating GORA, PFs, and Use Cases
	3.2 From As-Is Models to To-Be Models

	4 Evaluating Models via Metrics
	5 Case Study
	5.1 As-Is Model
	5.2 Step 2: Identifying Problems
	5.3 Step 3: Goal Refinement (Building Solutions)
	5.4 Step 4: Constructing a To-Be Model
	5.5 Discussion

	6 Related Work
	7 Concluding Remarks
	References

	Integrating Goal Model Analysis with Iterative Design
	1 Introduction
	2 Background
	3 The COVER Framework
	4 Implementation and an Illustrative Example
	5 Related Work
	6 Conclusion and Future Work
	References

	Communication and Collaboration
	Patterns of Collaboration Driven by Requirements in Agile Software Development Teams
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Projects’ Background
	3.2 Data Collection Methods
	3.3 Data Analysis

	4 Findings
	4.1 Characterization of the Requirements-Centric Agile Social Networks (RCASNs)
	4.2 The Interplay Between Distance, Communication, and Awareness

	5 Discussion
	5.1 Team Members Involvement Was Different Than Assigned
	5.2 Agile Teams are Self-contained
	5.3 Project Managers are Key Players in Communication
	5.4 Distance Does not (Seem to) Matter
	5.5 Bugs Discussion, Communication of Changes, and User Story Clarification as the Most Discussed Topics
	5.6 Familiarity from Past Projects Facilitates Awareness
	5.7 Communication is Still an Important Source of Awareness

	6 Limitations of the Study
	7 Implications for Research and Practice
	8 Final Considerations
	References

	Common Mistakes of Student Analysts in Requirements Elicitation Interviews
	1 Introduction
	2 Methodology
	3 Mistakes
	3.1 Wrong Opening
	3.2 Ambiguity Not Leveraged
	3.3 Implicit Goals
	3.4 Implicit Stakeholders
	3.5 Limitations in Terms of Resources Not Considered
	3.6 Non-functional Requirements Not Elicited
	3.7 Interrogatory-Like Interviews
	3.8 Problems in Phrasing Questions
	3.9 Wrong Closing

	4 Limitations
	5 Conclusion and Future Work
	References

	Process and Tool Integration
	How Can Quality Awareness Support Rapid Software Development? – A Research Preview
	Abstract
	1 Introduction
	2 Challenges in Managing Quality Requirements
	3 The Q-Rapids Framework
	4 Development and Evaluation of the Q-Rapids Framework
	5 Summary
	Acknowledgements
	References

	Using Tags to Support Feature Management Across Issue Tracking Systems and Version Control Systems
	1 Introduction
	2 State of Practice
	2.1 Research Method and Threats to Validity
	2.2 Usage and Benefits of Features in Projects
	2.3 Problems for Features in Projects and Solution Ideas
	2.4 Discussion

	3 Research Outline
	4 Conclusion
	References

	From Requirements Monitoring to Diagnosis Support in System of Systems
	1 Introduction and Motivation
	2 Required Capabilities
	3 Towards Diagnosis Support for SoS
	4 Summary and Research Agenda
	References

	Visualization and Representation of Requirements
	On the Equivalence Between Graphical and Tabular Representations for Security Risk Assessment
	1 Introduction
	2 Background and Related Work
	3 Research Design
	4 Study Realization
	5 Results
	6 Retrospective Analysis
	7 Threats to Validity
	8 Discussion
	9 Conclusion
	References

	Visualization of Quality of Software Requirements Specification Using Digital Elevation Model
	Abstract
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 Visualization Technique

	3 Methodology
	3.1 Visualization of Qualities
	3.2 Metaphor for Emphasizing

	4 Experimentation
	5 Conclusions and Future Work
	References

	Agile Requirements Engineering
	Quality Requirements in Large-Scale Distributed Agile Projects – A Systematic Literature Review
	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Research Method
	3.1 Research Questions
	3.2 Search and Selection Strategy
	3.3 Conducting the Review
	3.3.1 Search and Application of the Inclusion/Exclusion Criteria
	3.3.2 Thematic Synthesis

	4 Results
	4.1 General Observations
	4.2 Answers to the Research Questions
	4.2.1 RQ1: What Are the Agile Practices Used to Engineer QRs in ALSD Settings According to Published Literature?
	4.2.2 RQ2: What QRs Challenges Have Been Reported in Agile Projects in General?
	4.2.3 RQ3: What Are the Existing Solutions to Cope with Neglected QRs in Agile RE in General (not Only in ALSD), as Per RE Literature?

	5 Discussion
	6 Limitations
	7 Conclusion
	References

	Improving User Story Practice with the Grimm Method: A Multiple Case Study in the Software Industry
	1 Introduction
	2 Research Method
	2.1 Grimm Method Treatment Design
	2.2 Measures
	2.3 Experiment Participants

	3 Results
	3.1 Intrinsic User Story Quality
	3.2 Participant Perception
	3.3 Software Process Metrics

	4 Related Literature
	5 Discussion and Outlook
	References

	Natural Language Processing, Information Retrieval and Machine Learning
	Semi-automatic Software Feature-Relevant Information Extraction from Natural Language User Manuals
	1 Introduction
	2 Background
	3 Atomic Feature-Relevant Information Extraction
	4 Evaluation
	5 Threats to Validity
	5.1 Threats to Internal Validity
	5.2 Threats to External Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	Mining User Requirements from Application Store Reviews Using Frame Semantics
	1 Introduction
	2 Related Work
	3 Frame Semantics
	4 Experimental Settings
	4.1 Experimental Dataset
	4.2 Classifiers
	4.3 Implementation and Classification Settings
	4.4 Evaluation Measures

	5 Results and Discussion
	6 Threats to Validity
	7 Summary and Future Work
	References

	Traceability
	Using Interaction Data for Continuous Creation of Trace Links Between Source Code and Requirements in Issue Tracking Systems
	1 Introduction
	2 Background
	2.1 IR and the Creation of Trace Links
	2.2 ITS as Data Source for Requirements
	2.3 Evaluation of IR Created Trace Links
	2.4 Interaction Logs and Code Structure

	3 Related Work
	4 Interaction Log Trace Link Creation Approach
	5 Experiment Design
	5.1 Research Questions
	5.2 Selection of Data Sets
	5.3 IR-based Trace Link Creation
	5.4 Data Evaluation

	6 Results
	6.1 Precision (RQ1) and Relative Recall (RQ2)
	6.2 Using Code Structure (RQ3)

	7 Threats to Validity
	8 Conclusion
	References

	A Requirements Traceability Approach to Support Mission Assurance and Configurability in the Military
	Abstract
	1 Introduction
	2 The Requirements Problem
	3 Development of a New Approach
	4 The MANGO Approach
	4.1 Goal-Based Modelling with Hierarchical i*
	4.2 Rich Traceability Through i* Modelling
	4.3 Core Conceptual Model
	4.4 Combining i* and Controlled English – REDEPEND:CEStore

	5 Case Study on a Network-Enabled System
	5.1 Overview of the Military Scenario
	5.2 Applying the MANGO Approach to the Case Study

	6 Lessons Learned
	7 Conclusion and Future Work
	References

	Quality of Natural Language Requirements
	On the Ability of Lightweight Checks to Detect Ambiguity in Requirements Documentation
	1 Introduction
	2 Research Design
	2.1 The Tactile Check Tool
	2.2 Data Collection
	2.3 Reliability and Internal Validity Aspects

	3 Data Analysis
	3.1 Accuracy of Weak Phrase Annotations
	3.2 Accuracy of Strong Phrase Annotations
	3.3 Helpfulness of Annotations
	3.4 Effectiveness of a Lightweight Tactile Check
	3.5 Discussion

	4 Related Work
	5 Conclusions and Future Work
	References

	Using NLP to Detect Requirements Defects: An Industrial Experience in the Railway Domain
	1 Introduction
	2 Related Works
	3 Overview
	4 A Rule-Based Approach to Predict Defects
	4.1 NLP Technologies
	4.2 Patterns for Defect Prediction

	5 Preliminary Study
	5.1 Dataset and Annotation
	5.2 Evaluation Measures
	5.3 Results and Observations

	6 Large-Scale Study
	6.1 Dataset, Annotations and Evaluation Measures
	6.2 Results and Observations

	7 False Positive Analysis
	7.1 Annotation and Evaluation Measures
	7.2 Results and Observations

	8 Discussion and Conclusion
	References

	Research Methodology in Requirements Engineering
	Specifying Software Requirements for Safety-Critical Railway Systems: An Experience Report
	Abstract
	1 Introduction
	2 Software Safety Requirements
	2.1 The Project Context and the Need for Change
	2.2 The Approach Towards Safety Compliance

	3 Outcomes and Impact on Users and Process
	3.1 Impact on the Current Process
	3.2 How Did People Accept This Approach?

	4 Conclusions and Lessons Learned
	References

	Usefulness of a Human Error Identification Tool for Requirements Inspection: An Experience Report
	Abstract
	1 Introduction
	2 Background
	3 Empirical Study Design
	4 Data Analysis and Results
	5 Validity Threats and Lessons Learned
	6 Conclusions
	Acknowledgment
	References

	Author Index

