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Abstract. This paper presents a review of segmentation methods of
basic shapes represented by polygonal meshes. For a fair algorithms com-
parison, common training data was used. In this work, 11 methods of
3D Mesh segmentation were tested using four different measures of seg-
ments similarity. Namely, Cut Discrepancy, Hamming Distance, Rand
Index, Consistency Error were used. All measures mentioned above were
characterised in the paper. The results of the comparisons provide means
of understanding strengths and weaknesses of the tested algorithms and
provide the foundation for the further developments of 3D Objects seg-
mentation methods.

Keywords: Shape characteristics · Machine learning · 3D models ·
Object segmentation

1 Introduction

The main goal of this paper is to provide the reader with an extensive comparison
of existing methods of 3D objects segmentation. Such algorithms are intensively
developed in computer graphics community, where the segmentation might be
useful for classification purposes but also it could provide some semantic mean-
ing to the object. The robotic systems could also exploit this information. For
example, if one is able to segment a handle of a mug, the robot could use this
information to perform a successful grasp. The proliferation of the methods pre-
sented in this paper to the robotics community will be beneficial, as it will ease
the development of semantic robotics. Most of the methods presented in this
review are based on machine learning (ML) techniques making 3D object seg-
mentation a very promising field of application for this group of algorithms. The
main contribution of this paper is an extensive comparison of existing methods of
3D objects segmentation. The following section of the paper describes a dataset.
Then, the overview of used methods is given, together with a short presentation
of each algorithm. Next, the description of the measures used for comparing the
algorithms is provided. Subsequently, the results are presented and discussed.
Finally, concluding remarks are given.
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2 Materials and Methods

2.1 Dataset Used for Testing

We will start our presentation of the dataset used for algorithms comparison
from the short description of 3D shapes representations. Mainly, there are three
possibilities: voxels, point clouds and meshes. The first one is primarily used
in robotics, and its main advantage is a possibility of representing a volume of
an object. The second one only provides the information about the points on a
surface of the object, e.g. from object scanning. However, the information about
the topology of the surfaces is lost, no connectivity data available. Hence, two
points close to each other in a Euclidean space are always close to each other
in this representation, when in reality they belong to two different surfaces. The
third representation addresses such situation. The use of a mesh allows us to
represent inner and outer part of the object and provide the means of repre-
senting a volume of watertight objects implicitly. Thus, it provides advantages
of both previous representations; we are able to represent real objects scanned
with the appropriate device (Point Clouds) and to some extent account for the
volume of the object (Voxel Representation).

Taking into account the properties of meshes we chose it as a most convenient
representation for our tests and selected a dataset which provides such data.
Namely, it is Watertight Track of SHREC 2007 [1]. It contains a large number of
categories (20). Additionally, the dataset provides segmentation file. Line number
in this file represents the vertex number in the object file. The information given
in each line is a segment number which this vertex belongs to.

2.2 Tested Methods

Having the dataset 11 methods of 3D objects segmentation were tested. In the
following paragraphs, each of them is shortly described.

– Learning 3D Mesh Segmentation and Labelling (LMS) [5] – for segmentation
Conditional Random Fields (CRF) with conditions assessing conformity of
neighbouring surfaces constituting an object were used. LMS is supervised
learning algorithm. It uses already prepared templates with appropriate geo-
metrical features.

– Unsupervised 3D Shape Segmentation and Co-Segmentation via Deep Learn-
ing (Deep Learning) [11] – this algorithm initially divides the objects into
segments formed of the surfaces of the object. From each segment, the infor-
mation about its centre of gravity is found. Subsequently, using Shape Diam-
eter Function, which measures the area diameter, being in a neighbourhood
of this centre point and an average geodesic distance to other centres, most
similar surfaces are found.

– Mesh Segmentation with Concavity-aware Fields (Isoline Cuts) [7] – in this
algorithm, it was assumed that the highest probability of segment borders
is assigned to concave parts of the objects. Such borders are found through
solving a Laplacian which is sensitive to such areas.
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– Spectral 3D Mesh Segmentation with a Novel Single Segmentation Field
(SSF Seg) [12] – the operation of this algorithm is based on hierarchical
grouping of surfaces constituting an object. Firstly, each surface is a sepa-
rate segment, next they are joined based on appropriate transformation of
eigenvectors of a matrix found using Laplace operator.

– Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter
Function (Shape Diam) [9] – similarly to [11] this algorithm used Shape Diam-
eter Function. In the beginning, this function is used for finding a centre of
gravity of each surface of an object. The surfaces are joined to form a segment
based on appropriate energy function.

– Normalized Cuts for 3D Mesh Analysis (Norm Cuts) [4] – is based on the
hierarchical grouping. It begins with the assumption that each surface is a
separate segment. Next, the surfaces with the least joint circumference divided
by their joint area are merged to form a single segment. The stopping criterion
is set by the user by providing the number of segments the object should
contain.

– Randomised Cuts for 3D Mesh analysis (Rand Cuts) [4] – the method pre-
sented in the same work as in a previous paragraph. Its operation is the oppo-
site to the Norm Cuts. It starts with the assumption that the whole object is a
single segment and next it is divided into smaller segments till the appropriate
number of segments is achieved.

– Mesh Segmentation Using Feature Point and Core Extraction (Core
Extra) [6] – this is another hierarchical segmentation method. It does not
require the information about the number of segments. The algorithm process
the data as long as it is able to find characteristic points in a given segment.
Such characteristic points are high convexities or concavities.

– Fast Mesh Segmentation Using Random Walks (Rand Walks) [8] – first, all the
surfaces of the object are assumed to be separate segments and next based
on random walks and the highest probability of reaching next surface the
segments are joined to give a larger segment. The stopping criterion is based
on the number of segments provided by the user.

– Hierarchical Mesh Segmentation Based on Fitting Primitives (Fit Prim) [2] –
is based on grouping hierarchically and relies on matching adjacent surfaces to
the arbitrary given geometrical primitives (surface, sphere, and cylinder). The
segmentation starts with the assumption that all the surfaces of the object
are separate segments and ends when the number of segments set by the user
is reached.

– Metamorphosis of Polyhedral Surfaces Using Decomposition (K-Means) [10] –
is based on computing centroids. For a given number of k-segments, the algo-
rithm initially sets the k-centres of concentration producing k-segments and
based on Euclidean distance assigns subsequent vertexes to the closest centres.
Next, the centres of concentration are recomputed, and the algorithm stops
when there are no changes in centres positions.

– Human – is given here as a reference. It provides the information how the
inexperienced user will segment objects in provided dataset, without knowing
the proper annotation.
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3 Measures

Cut Discrepancy – it is a distance calculated along the segment borders provided
in the reference file. The geodesic distance was used here. The distance of point
pi, forming a border of a segment and belonging to a set of points C1, to a border
of a reference segment represented by a set of points C2 is given by:

dG(pi, C2) = min{dG(pi, pj),∀pj ∈ C2}, (1)

where:
dG(pi, pj) – geodesic distance between points pi and pj .

Directional Cut Discrepancy is computed as an average distance of all points
from C1 to the border of reference segment represented as a set of points C2:

DCD(S1 ⇒ S2) = mean{dG(pi, C2),∀pi ∈ C1}. (2)

where:
S1 - segmentation provided by the algorithms,
S2 - reference segmentation.

Finally, the discrepancy of the borders is given by:

CD(S1, S2) =
DCD(S1 ⇒ S2) + DCD(S2 ⇒ S1)

avgRadius
, (3)

where:
avgRadius - average distance of points from the object’s Centre of Gravity [3].

Hamming Distance – is a measure of divergence of two sets (the segmentation
provided by the algorithm and the reference one). Therefore, the sum of the
differences between two sets is obtained. Since the tested objects were of different
size, the distance was normalised by dividing the result by the area of the object,
as it was described in [3].

A directional form of a Hamming distance is given by:

DH(S1 ⇒ S2) =
∑

i

‖S2i\S1it‖ (4)

where:
\ - segments difference operator,
‖x‖ - size of x (overall area of the surfaces constituting an object),
S1 - segmentation provided by the algorithms,
S2 - reference segmentation,
i - given segment,
it = maxk‖S2i

⋂
S1k‖.
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Hamming distance is a directional average measured in both directions, scaled
by the object area:

HD(S1, S2) =
DH(S1 ⇒ S2) + DH(S2 ⇒ S1)

2‖S‖ (5)

where:
S - overall surface of the object.

In the tests provided in Sect. 4, the results for each direction are given:

Rm(S1, S2) =
DH(S1 ⇒ S2)

‖S‖ , (6)

Rf (S1, S2) =
DH(S2 ⇒ S1)

‖S‖ . (7)

Rand Index – it is a measure of a membership of the same object surfaces
(computed and reference one) to the same segment. For S1, S2 representing
computed and reference segmentations respectively and for s1i , s

2
i representing

segment number of i-th surface from S1 and S2 and assuming coefficients:

Cij = 1 ⇐⇒ s1i = s1j , (8)

Pij = 1 ⇐⇒ s2i = s2j , (9)

Rand Index could be computed as follows:

RI(S1, S2) =
(

2
N

)−1 ∑

i,j,i<j

[CijPij + (1 − Cij)(1 − Pij)], (10)

where:
N - is the overall number of surfaces within the object.

Because the coefficients Cij and Pij are equal to 1 when compared surfaces
belong to the same segment, RI is greater for better segmentations, in contrary
to previous measures. For this reason the results in Sect. 4 were provided as
1 − RI(S1, S2) [3].

Consistency Error – measures similarities and discrepancies between computed
and reference segments. It consists of two results – global (GCE) and local (LCE),
which are calculated in the following way: Assuming S1, S2 to be segmentations
(computed and reference respectively), \ – difference operator, ‖x‖ – size of x
and fi - i-th object surface, local error for a single surface is given by:

E(S1, S2, fi) =
‖R(S1, fi)\R(S2, fi)‖

‖R(S1, fi)‖ (11)

where:
R(S, fi) - segment (set of connected surfaces) inside segmentation S, which

contains surface fi.
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Finally:

GCE(S1, S2) =
1
N

min{
∑

i

E(S1, S2, fi),
∑

i

E(S2, S1, fi)}, (12)

LCE(S1, S2) =
1
N

∑

i

min{E(S1, S2, fi), E(S2, S1, fi)}, (13)

where:
N - is the overall number of surfaces within the object [3].

4 Results

Taking the measures described in Sect. 3 a comparison of 11 different approaches
presented in Sect. 2.2 (plus human annotator) is given. In most cases, the perfor-
mance of the algorithms was tested by using the code provided by the research
groups who developed each method. Only for [7,11,12], the results were taken
directly from the papers. First, we focused our attention on Cut Discrepancy
measure. The results of the comparison are shown in Fig. 1. As it can be observed
from this figure the best results are achieved by LMS method.

Fig. 1. Average Cut Discrepancy (CD) for each algorithm.

Second, we tested the algorithm against Hamming Distance measure. The
results of the comparison are shown in Fig. 2. For each algorithm three measures
are given. Namely, directional Rm, Rf and an average. As in the previous case
the best results are achieved by LMS method.

Third, Rand Index measure was applied. The results of the comparison are
shown in Fig. 3. Once more the best results were achieved for LMS method.

Taking into account Consistency Error the best results were obtained for
LMS algorithm. The results of the comparison are shown in Fig. 4, where one
can see both global and local error.
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Fig. 2. Average Hamming Distance (HD) for each algorithm together with directional
distances Rm and Rf .

Fig. 3. Average Rand Index (RI) for each algorithm.

4.1 Discussion of the Results

From the previous section, one can get the impression that the LMS algorithm
is the best of all presented algorithms. However, it is not always the case. All
the Figures presented so far shows the average error, but taking a closer look at
class by class comparison given in Table 1 one can see that Deep Neural Networks
performs better for selected classes. LMS and Deep Neural Networks are the best
of all algorithms for seven object classes each.
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Fig. 4. Average global (G-) and local (L-) Consistency Error (CE) for each algorithm.

5 Conclusions

In this paper, we provided an extensive comparison of existing methods of 3D
objects segmentation. The results clearly show that currently a method called
LMS outperforms other approaches and for certain measures, it even surpass
inexperienced human annotator. However, if we perform class by class compari-
son, comparable results are achieved by Deep Learning method. This review is a
basis for indicating future ways of improving existing approaches and also serves
as a guide for using these algorithms in applications such as service robotics,
where the segmentation might help in providing semantic meaning to the parts
of the object.
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nology grant DSMK/0154-2016.

References

1. Watertight track of shrec (2007). dostpny w Internecie: http://watertight.ge.imati.
cnr.it/

2. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmenta-
tion based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006).
http://dx.doi.org/10.1007/s00371-006-0375-x

3. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmenta-
tion. ACM Trans. Graphics (Proc. SIGGRAPH) 28(3), August 2009

4. Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3D mesh analysis. ACM
Trans. Graphics (Proc. SIGGRAPH ASIA) 27(5), December 2008

5. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D Mesh Segmentation and
Labeling. ACM Trans. Graphics 29(3) (2010)

http://watertight.ge.imati.cnr.it/
http://watertight.ge.imati.cnr.it/
http://dx.doi.org/10.1007/s00371-006-0375-x


604 M. Wencka and K. Walas

6. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core
extraction (2005)

7. Kin-Chung Au, O., Zheng, Y., Chen, M., Xu, P., Tai, C.L.: Mesh segmentation
with concavity-aware fields. IEEE Trans. Vis. Comput. Graph. 18(7), 1125–1134
(2012). http://dx.doi.org/10.1109/TVCG.2011.131

8. Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Fast mesh segmentation using
random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical
Modeling, SPM 2008, pp. 183–191. ACM, New York (2008). http://doi.acm.org/
10.1145/1364901.1364927

9. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeleton-
isation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008).
http://dx.doi.org/10.1007/s00371-007-0197-5

10. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decom-
position. In: Computer Graphics Forum, pp. 219–228 (2002)

11. Shu, Z., Qi, C., Xin, S., Hu, C., Wang, L., Zhang, Y., Liu, L.: Unsupervised 3D
shape segmentation and co-segmentation via deep learning. Comput. Aided Geom.
Des. 43(C), 39–52 (2016). http://dx.doi.org/10.1016/j.cagd.2016.02.015

12. Wang, H., Lu, T., Au, O.K.C., Tai, C.L.: Spectral 3D mesh segmentation
with a novel single segmentation field. Graph. Models 76(5), 440–456 (2014).
http://dx.doi.org/10.1016/j.gmod.2014.04.009

http://dx.doi.org/10.1109/TVCG.2011.131
http://doi.acm.org/10.1145/1364901.1364927
http://doi.acm.org/10.1145/1364901.1364927
http://dx.doi.org/10.1007/s00371-007-0197-5
http://dx.doi.org/10.1016/j.cagd.2016.02.015
http://dx.doi.org/10.1016/j.gmod.2014.04.009

	Review of 3D Objects Segmentation Methods
	1 Introduction
	2 Materials and Methods
	2.1 Dataset Used for Testing
	2.2 Tested Methods

	3 Measures
	4 Results
	4.1 Discussion of the Results

	5 Conclusions
	References


