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Abstract. Descriptor fractional continuous-time linear systems are addressed.
Three different methods for finding the solution to the state equation of the
descriptor fractional linear system are considered. The methods are based on:
Shuffle algorithm, Drazin inverse of the matrices and Weierstrass-Kronecker
decomposition theorem. Effectiveness of the methods is demonstrated on simple
numerical example.
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1 Introduction

Descriptor (singular) linear systems have been considered in many papers and books
[1–3, 6, 8, 12]. First definition of the fractional derivative was introduced by Liouville
and Riemann at the end of the 19th century [18, 19], another one was proposed in 20th
century by Caputo [20] and next one in present times by Caputo-Fabrizio [16]. This
idea has been used by engineers for modeling different processes [4, 5]. Mathematical
fundamentals of fractional calculus are given in the monographs [17–20]. Solution of
the state equations of descriptor fractional continuous-time linear systems have been
given in [8, 12] and for discrete-time in [13, 14]. Application of the Drazin inverse
method to analysis of descriptor fractional discrete-time and continuous-time linear
systems have been given in [7, 9]. Solution of the state equation of descriptor fractional
continuous-time linear systems with two different fractional orders has been introduced
in [22]. Comparison of three different methods for finding the solution of descriptor
fractional discrete-time linear system has been given in [21].

In this paper three different methods for finding the solution to descriptor fractional
continuous-time linear systems will be considered and illustrated on single example.

The paper is organized as follows. In Sect. 2 the basic informations on the descriptor
fractional continuous-time linear systems are recalled. Shuffle algorithm method is
described in Sect. 3. Drazin inverse method is given in Sect. 4. Section 5 recalls
Weierstrass-Kronecker decomposition method. In Sect. 6 single numerical example,
illustrating three methods is presented. Concluding remarks are given in Sect. 7.
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The following notation will be used: < – the set of real numbers, <n�m – the set of
n� m real matrices, Zþ – the set of nonnegative integers, In – the n� n identity matrix.

2 Preliminaries

Consider the descriptor fractional continuous-time linear system described by the state
equation

E 0D
a
t xðtÞ ¼ AxðtÞþBuðtÞ; ð2:1Þ

where a is fractional order, xðtÞ 2 <n is the state vector uðtÞ 2 <m is the input vector,
E;A 2 <n�n, B 2 <n�m and k � 1\a\k, k 2 W ¼ f1; 2; . . .g,

0D
a
t f ðtÞ ¼

daf ðtÞ
dta

¼ 1
Cðk � aÞ

Z1

0

f ðkÞðsÞ
ðt � sÞaþ 1�k ds; f

ðkÞðsÞ ¼ dkf ðsÞ
dsk

ð2:2Þ

is the Caputo definition of a 2 < order derivative of xðtÞ and CðxÞ ¼ R1
0
tx�1e�tdt is the

Euler gamma function.
Main property of the descriptor system is that

detE ¼ 0 ð2:3Þ

that is the matrix E is not full row (or column since E is square), rank E ¼ n1 ¼ n� q
and matrix E contains only n1 linearly independent rows (columns). Integer q often
serves as index of singular matrices when it satisfy condition rank Eq ¼ rank Eqþ 1 or as
index of nilpotency of nilpotent matrices if it satisfy the condition Nq ¼ 0 and Nq�1 6¼ 0.

Considering pencil (E, A) of the system (2.1) we can distinguish two types of
descriptor systems:

– regular system where the pencil (E, A) is regular, i.e.

det½Esa � A� 6¼ 0 for some s 2 C ðthe field of complex numbers) ð2:4Þ

– singular system where the pencil (E, A) is singular, i.e.

det½Esa � A� ¼ 0 for some s 2 C: ð2:5Þ

Finding the solution to the Eq. (2.1) can be accomplished by the use of at least
three different methods. That is: Shuffle algorithm method [10], Drazin inverse method
[9], Weierstrass-Kronecker decomposition method [12]. Further in the paper, these
method will be used to compute the solution of the descriptor fractional continuous-
time linear system. MATLAB computational environment will be used to check the
solution in according to number of historical elements of the system (length of practical
realization).
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3 Shuffle Algorithm Method

First method is based on row and column elementary operations [11] and use the
Shuffle algorithm to determine the solution [10].

According to fact that det E = 0, by performing elementary row operations on the
array

E A B ð3:1Þ

we always can rewrite (3.1) in the form

E1 A1 B1

0 A2 B2
ð3:2Þ

which lead to following notation of state Eq. (2.1)

E1
daxðtÞ
dta

¼ A1xðtÞþB1uðtÞ; ð3:3aÞ

0 ¼ A2xðtÞþB2uðtÞ; ð3:3bÞ

where E1 has full row rank equal n1. Now performing shuffle, that means a order
differentiation of (3.3b) with respect to time, yields

�A2
daxðtÞ
dta

¼ B2
dauðtÞ
dta

: ð3:4Þ

The Eqs. (3.3a) and (3.4) formulate new state equation of the form

E1

�A2

� �
daxðtÞ
dta

¼ A1

0

� �
xðtÞþ B1

0

� �
uðtÞþ 0

B2

� �
dauðtÞ
dta

: ð3:5Þ

In this case the system array (like (3.2)) has the form

E1 A1 B1 0
�A2 0 0 B2

: ð3:6Þ

If matrix

E1

�A2

� �
ð3:7Þ

of the Eq. (3.5) is nonsingular, then we obtain standard differential equation

daxðtÞ
dta

¼ E1

�A2

� ��1
A1

0

� �
xðtÞþ B1

0

� �
uðtÞþ 0

B2

� �
dauðtÞ
dta

� �
: ð3:8Þ
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If the matrix (3.7) is singular, then we perform next shuffle, this time on matrix
(3.6). Assuming regular pencil, after q steps we obtain a nonsingular matrix [15]

Eq

�Aqþ 1

� �
ð3:9Þ

which lead to following differential equation

daxðtÞ
dta

¼ �AxðtÞþ �B0uðtÞþ �B1
dauðtÞ
dta

þ . . .þ �Bq
dqauðtÞ
dtqa

¼ �AxðtÞþ �B�uðtÞ; ð3:10Þ

where

�A ¼ Eq

�Aqþ 1

� ��1 Aq

0

� �
; �B0 ¼

Eq

�Aqþ 1

� ��1 Bq

0

� �
; �B1 ¼

Eq

�Aqþ 1

� ��1 Cq

0

� �
; . . .; �Bq�1 ¼

0

Hq

� �
;

�B ¼ ½ �B0 �B1 . . . �Bq � 2 <n��n; �n ¼ ðqþ 1Þm; �uðtÞ ¼

uðtÞ
dauðtÞ
dta

..

.

dqauðtÞ
dtqa

2
666664

3
777775
:

ð3:11Þ

In this process, we reduce the descriptor system to standard system with derivative of
the inputs. To compute the solution x(t) of (3.10), well-known formula [11] can be used

xðtÞ ¼ U0ðtÞx0 þ
Z t

0

Uðt � sÞ�B�uðsÞds; ð3:12aÞ

where x0 is the admissible initial condition and the matrices U are determined by

U0ðtÞ ¼
X1
k¼0

�Aktka

Cðkaþ 1Þ; UðtÞ ¼
X1
k¼0

�Aktðkþ 1Þa�1

C½ðkþ 1Þa�: ð3:12bÞ

4 Drazin Inverse Method

Second method use Drazin inverses of the matrices �E and �A [9].
A matrix �ED is called the Drazin inverse of �E 2 <n�n if it satisfies the conditions [9]

�E�ED ¼ �ED�E; �ED�E�ED ¼ �ED; �ED�Eqþ 1 ¼ �Eq; ð4:1Þ

where q is the index of �E. The Drazin inverse �ED of a square matrix �E always exist and
is unique [1]. If det �E 6¼ 0 then �ED ¼ �E�1.

Assuming that for some chosen c 2 C, det½Ec� A� 6¼ 0 and premultiplying (2.1) by
½Ec� A��1 we obtain
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�E 0D
a
t xðtÞ ¼ �AxðtÞþ �BuðtÞ; ð4:2aÞ

where

�E ¼ ½Ec� A��1E; �A ¼ ½Ec� A��1A; �B ¼ ½Ec� A��1B: ð4:2bÞ

Following [9], the solution to the Eq. (4.2a) with an admissible initial condition x
(0), is given by

xðtÞ ¼ U0ðtÞ�E�EDvþ �ED
Z t

0

Uðt � sÞ�BuðsÞdsþð�E�ED � InÞ
Xq�1

k¼0

ð�E�ADÞk�AD�BuðkaÞðtÞ;

ð4:3aÞ

where q is the index of �E and

U0ðtÞ ¼
X1
k¼0

ð�ED�AÞktka
Cðkaþ 1Þ; UðtÞ ¼

X1
k¼0

ð�ED�AÞktðkþ 1Þa�1

C½ðkþ 1Þa� ; uðkaÞðtÞ ¼ 0D
ka
t uðtÞ ð4:3bÞ

and the vector v 2 <n is arbitrary.
From (4.3) for t = 0 we have the formula for admissible initial conditions

xð0Þ ¼ x0 ¼ �E�EDvþð�E�ED � InÞ
Xq�1

k¼0

ð�E�ADÞk�AD�BuðkaÞð0Þ: ð4:4Þ

5 Weierstrass-Kronecker Decomposition Method

Third method use the following property of descriptor systems, upon which the
solution to the state equation will be derived.

If (2.4) holds (descriptor system with regular pencil), then there exist nonsingular
matrices P;Q 2 <n�n such that [11, 15]

PEQ ¼ diagðIn1 ;NÞ; PAQ ¼ diagðA1; In2Þ; ð5:1Þ

where N 2 <n2�n2 is nilpotent matrix with the index µ, A1 2 <n1�n1 and n1 is equal to
degree of the polynomial

det½Esa � A� ¼ an1s
an1 þ . . .þ a1s

a þ a0; n1 þ n2 ¼ n: ð5:2Þ

Premultiplying the Eq. (2.1) by the matrix P 2 <n�n and introducing new state
vector
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�xðtÞ ¼ Q�1xðtÞ ¼ x1ðtÞ
x2ðtÞ

� �
; x1ðtÞ 2 <n1 ; x2ðtÞ 2 <n2 ; ð5:3Þ

we obtain

PEQQ�1 d
a

dta
xðtÞ ¼ PEQ

da

dta
Q�1xðtÞ ¼ PAQQ�1xðtÞþPBuðtÞ: ð5:4Þ

Applying (5.1) and (5.3) to (5.4) we have

In1 0
0 N

� �
da

dta
�x1ðtÞ
�x2ðtÞ

� �
¼ A1 0

0 In2

� �
�x1ðtÞ
�x2ðtÞ

� �
þ B1

B2

� �
uðtÞ; ð5:5Þ

where

B1

B2

� �
¼ PB; B1 2 <n1�m; B2 2 <n2�m: ð5:6Þ

From (5.5) we obtain

da

dta
�x1ðtÞ ¼ A1�x1ðtÞþB1uðtÞ ð5:7Þ

and

N
da

dta
�x2ðtÞ ¼ �x2ðtÞþB2uðtÞ: ð5:8Þ

The solution �x1ðtÞ to the Eq. (5.7) with admissible initial condition �x10 is similar as
in (3.12) and it is given by the formula

�x1ðtÞ ¼ U0ðtÞ�x10 þ
Z t

0

Uðt � sÞB1uðsÞds; ð5:9aÞ

where

U0ðtÞ ¼
X1
k¼0

Ak
1t
ka

Cðkaþ 1Þ; UðtÞ ¼
X1
k¼0

Ak
1t
ðkþ 1Þa�1

C½ðkþ 1Þa�: ð5:9bÞ

The solution �x2ðtÞ of the Eq. (5.8) with admissible initial condition �x20 can be found
by the use of straight and inverse Laplace transform and is given by [12]

�x2ðtÞ ¼ �B2uðtÞ � N�x20
t�a

Cð1� aÞ �
Xl�1

i¼1

NiB2
dia

dtia
uðtÞþNiþ 1 d

ðiþ 1Þa�1

dtðiþ 1Þa�1
�x20

� �
: ð5:10Þ
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From (5.3), for known �x1ðtÞ and �x2ðtÞ, we can find the desired solution of the
Eq. (2.1).

6 Example

Find the solution x(t) of the descriptor fractional continuous-time linear system (2.1)
with the matrices

E ¼
1 0 0
0 1 0
0 0 0

2
4

3
5; A ¼

1 0 1
0 1 0
�1 0 �1

2
4

3
5; B ¼

1
0
�1

2
4

3
5 ð6:1Þ

for a = 0.5, constant input u(t) = u = 1 and initial condition xð0Þ ¼ ½ 1 2 �2 �T
(T denotes the transpose).

In this case, detE ¼ 0 and the pencil of the system (2.1) with (6.1) is regular since

det½Esa � A� ¼ saðsa � 1Þ: ð6:2Þ

6.1 Case of Shuffle Algorithm Method

Following Sect. 3 we have

½E A B � ¼
1 0 0 1 0 1 1
0 1 0 0 1 0 0
0 0 0 �1 0 �1 �1

2
4

3
5 ¼ E1 A1 B1

0 A2 B2

� �
ð6:3Þ

and the Eqs. (3.3) have the form

1 0 0
0 1 0

� �
daxðtÞ
dta

¼ 1 0 1
0 1 0

� �
xðtÞþ 1

0

� �
uðtÞ; ð6:4aÞ

0 ¼ ½� 1 0 �1 �xðtÞ � uðtÞ: ð6:4bÞ

a order differentiation of (6.4b) with respect to time yields

�½�1 0 �1 � d
axðtÞ
dta

¼ � dauðtÞ
dta

: ð6:5Þ

Now, as in (3.5), we can write (6.4a) and (6.5) in the form

1 0 0
0 1 0
1 0 1

2
4

3
5 daxðtÞ

dta
¼

1 0 1
0 1 0
0 0 0

2
4

3
5xðtÞþ

1
0
0

2
4

3
5uðtÞþ

0
0
�1

2
4

3
5 dauðtÞ

dta
: ð6:6Þ
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The state Eq. (6.6) can be written as

daxðtÞ
dta

¼ �AxðtÞþ �B0uðtÞþ �B1
dauðtÞ
dta

¼ �AxðtÞþ ½ �B0 �B1 �
uðtÞ
dauðtÞ
dta

� �
¼ �AxðtÞþ �B�uðtÞ; ð6:7Þ

where

�A ¼ E1

�A2

� ��1
A1

0

� �
¼

1 0 1
0 1 0
�1 0 �1

2
4

3
5; �B0 ¼ E1

�A2

� ��1
B1

0

� �
¼

1
0
�1

2
4

3
5; �B1 ¼ E1

�A2

� ��1 0
B2

� �
¼

0
0
�1

2
4

3
5 ð6:8Þ

and the solution of the descriptor fractional continuous-time linear system (2.1) with
(6.1) can be computed by the use of the following formula

xðtÞ ¼ U0ðtÞx0 þ
Z t

0

Uðt � sÞ�B0uðsÞds ¼
X1
k¼0

�Aktka

Cðkaþ 1Þx0 þ
X1
k¼0

�Aktðkþ 1Þa�B0

C½ðkþ 1Þa�ðkþ 1Þau

ð6:9Þ

since for constant input dau
dta ¼ 0.

6.2 Case of Drazin Inverse Method

Following Sect. 4, using (4.2b) for c = 2 we have the matrices

�E ¼
0:5 0 0
0 1 0

�0:5 0 0

2
4

3
5; �A ¼

0 0 0
0 1 0
�1 0 �1

2
4

3
5; �B ¼

0
0
�1

2
4

3
5: ð6:10Þ

Using rank factorization we obtain

�E ¼ VeWe ¼
0:5 0
0 1

�0:5 0

2
4

3
5 1 0 0

0 1 0

� �
and �A ¼ VaWa ¼

0 0
1 0
0 1

2
4

3
5 0 1 0

�1 0 �1

� �
ð6:11Þ

and using formula FD ¼ V ½WFV ��1W we compute

�ED ¼
2 0 0
0 1 0
�2 0 0

2
4

3
5; �AD ¼

0 0 0
0 1 0
�1 0 �1

2
4

3
5: ð6:12Þ

The desired solution for the descriptor fractional continuous-time linear system
(2.1) with (6.1) has the form
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xðtÞ ¼ U0ðtÞ�E�EDvþ �ED
Z t

0

Uðt � sÞ�BuðsÞdsþð�E�ED � I3Þ�AD�BuðtÞ

¼
X1
k¼0

ð�ED�AÞktka�E�ED

Cðkaþ 1Þ vþ �ED
X1
k¼0

ð�ED�AÞktðkþ 1Þa�B
C½ðkþ 1Þa�ðkþ 1Þa uþð�E�ED � I3Þ�AD�Bu;

ð6:13Þ

since the index of �E is equal 1 (l = 1).
From (6.13) for t = 0 we have

xð0Þ ¼ x0 ¼ �E�EDvþð�E�ED � I3Þ�AD�Buð0Þ ¼
1 0 0
0 1 0
�1 0 0

2
4

3
5vþ

0
0
�1

2
4

3
5u0; ð6:14Þ

hence, for given u0 = u = 1, the initial condition v ¼ x0 ¼ ½ 1 2 �2 �T satisfy (6.14)
and it is admissible.

6.3 Case of Weierstrass-Kronecker Decomposition Method

In this case the for (6.1) matrices P and Q have the form

P ¼
0 1 0
1 0 1
0 0 �1

2
4

3
5; Q ¼

0 1 0
1 0 0
0 �1 1

2
4

3
5 ð6:15Þ

and decomposition (5.1) is possible since

PEQ ¼
1 0 0

0 1 0

0 0 0

2
64

3
75 ¼ In1 0

0 N

� �
; PAQ ¼

1 0 0

0 0 0

0 0 1

2
64

3
75 ¼ A1 0

0 In2

� �
; PB ¼

0

0

1

2
64

3
75 ¼ B1

B2

� �
;

ðn1 ¼ 2; n2 ¼ 1Þ:

ð6:16Þ

The Eqs. (5.7) and (5.8) have the form

da

dta
�x1ðtÞ ¼ 1 0

0 0

� �
�x1ðtÞ; ð6:17aÞ

0 ¼ �x2ðtÞþ uðtÞ; ð6:17bÞ

since A1 ¼ 1 0
0 0

� �
; B1 ¼ 0; N ¼ 0; B2 ¼ 1:

Taking under considerations (5.9) and (5.10), the solution of the Eq. (6.17a) has the
form
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�x1ðtÞ ¼
X1
k¼0

Ak
1t
ka

Cðkaþ 1Þ�x10 ð6:18Þ

and of the Eq. (6.17b) has the form

�x2ðtÞ ¼ �uðtÞ: ð6:19Þ

The desired solution of the descriptor fractional continuous-time linear system (2.1)
with (6.1) is given by

xðtÞ ¼ Q
�x1ðtÞ
�x2ðtÞ

� �
¼

0 1 0
1 0 0
0 �1 1

2
4

3
5 P1

k¼0

Ak
1t

ka

Cðkaþ 1Þ�x10

�uðtÞ

2
4

3
5; ð6:20Þ

where �x0 ¼ Q�1x0 ¼ �x10
�x20

� �
and�x10 ¼ 2

1

� �
:

6.4 Computational Results

Continuous-time systems give some numerical problems in computation of exact
solution, since matrices U given by formula (3.12b), (4.4b) and (5.9b) assume infinite
memory. In practical case infinite memory is substituted by finite number n called
length of practical implementation and the matrices U takes the form

U0ðtÞ ¼
Xn
k¼0

Aktka

Cðkaþ 1Þ; UðtÞ ¼
Xn
k¼0

Aktðkþ 1Þa�1

C½ðkþ 1Þa�: ð6:21Þ

This, approach allows us to compute desired solution, however new problem arise,
how to find number n? In the paper, this problem, was solved by testing the solution of
the system with matrices (6.1). Figure 1 shows solution for a = 0.5 and t = 1 in the
function of the number n. Figure 2 shows response of the descriptor system
(Weierstrass-Kronecker decomposition method only) for constant a = 0.5 and t = 1,
t = 10, t = 100. As we can see, all three methods gives the same results, so they are
equivalent. General conclusion is that, the further in time we go, the more historical
elements is necessary, e.g. for a = 0.5 and t = 1 we have n � 10, for a = 0.5 and
t = 100 we have n � 300. Length of practical implementation n also strongly depend
on row a. The smaller the row a is, the more historical elements is necessary, e.g. for
t = 1 and a = 0.9 we have n � 5, for t = 1 and a = 0.1 we have n � 50. Based on
computational results, the following condition has been found

n � 5t=a: ð6:22Þ

From practical point of view, Drazin inverse method is most suitable for practical
implementation, since computation of Drazin inverse of the square matrices can by
accomplished by singular value decomposition (SVD) (see Listing 1).
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function [d_inv] = drazin_inv(A) 
[u,s,d]=svd(A); n=rank(s); d=d'; 
V=u(:,1:n); W=s(1:n,1:n)*d(1:n,:); 
d_inv=V*inv(W*A*V)*W; 

Fig. 1. Solution for a = 0.5 and t = 1.

Fig. 2. Solution for a = 0.5 and t = 1, t = 10, t = 100.
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7 Concluding Remarks

The descriptor fractional continuous-time linear systems have been recalled. Three
different methods for finding the solution to the state equation of the descriptor frac-
tional continuous-time linear system have been considered. Comparison of computa-
tional effort of the methods have been demonstrated on single numerical example.

In Drazin inverse method admissible initial conditions should be applied. In Shuffle
algorithm method admissible initial conditions as well as derivative of the inputs
should be known. The weak point of Weierstrass-Kronecker decomposition approach is
computation of the P and Q matrices, where elementary row and column operations
method is recommended. The same method uses Shuffle algorithm. In summary, the
Drazin inverse method seems to be most suitable for numerical implementation. An
open problem is extension of these considerations to the system with different frac-
tional orders.
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