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Abstract. Logistics is a highly competitive industry; large hauliers use
their size to benefit from economies of scale while small logistics compa-
nies are often well placed to service local clients. To obtain economies of
scale, small hauliers may seek to cooperate by sharing loads. This paper
investigates the potential for cost savings and problems associated with
this idea. We study dynamic scheduling of shared loads for real-world
truck haulage in the UK and model it as a dynamic pickup and mul-
tiple delivery problem (PMDP). In partnership with Transfaction Ltd.,
we propose realistic cost and revenue functions to investigate how com-
panies of different sizes could cooperate to both reduce their operational
costs and to increase profitability in a number of different scenarios.

1 Introduction

With over six thousand hauliers in the UK alone [15], competition is fierce.
Hauliers face the orthogonal demands of short notice from customers, an expec-
tation of low-cost service, and environmental sustainability concerns [12,21,24].
Because larger carriers can leverage economies of scale to benefit in routing and
scheduling, competition is getting ever stronger. If smaller carriers could work
together, they could increase scheduling efficiency, save on mileage costs, and
improve flexibility. In this paper we quantify the savings possible when carriers
outsource some of their customer consignments to other carriers, working either
independently or as a group.

As a real-world problem, there are constraints that must be satisfied, such as
vehicle capacity, soft time windows and driver working hour rules. The problem
is defined in terms of consignments which include a single pickup location and
one or more delivery locations. Consignments vary in size, and may be able to
share one delivery vehicle, to save cost. A key constraint is that each vehicle must
be unloaded in the reverse order to the loading order: deliveries from one vehicle
are constrained to a last-in, first-out (LIFO) order. Concretely, consignment A
may be interrupted by another if all of the second consignment’s deliveries are
serviced before continuing with consignment A’s deliveries. We call this a pickup
and multiple delivery problem (PMDP). This paper investigates the cost savings
which are possible if carriers distributed across a country share consignments.
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2 Related Work

Research on PDPs usually concentrates on static models of small scale problems
such as servicing taxi requests, or ride sharing schemes [29] — dial-a-ride prob-
lems (DARPs). [13] present a widely accepted mathematical formulation for the
generic PDP, which they refer to as the vehicle routing problem with pickup and
delivery and time windows.

Variations of the PDP handle constraints on the number of vehicles used,
time windows on requests, capacities and number of depots. However, most of the
existing research is on static problems, in which all requests are known in advance
[4]. Exact solutions to static PDPs favour branch-and-cut-and-price algorithms
using column generation techniques, for example, [16] uses this approach to solve
a multi-depot PDP for problems with up to 55 requests. No indication is given
of whether their approach scales to larger problem sizes.

Exact solutions to dynamic problems include a variation of the column gener-
ation approach [19], used to solve DARPs of up to 96 requests, with either static
or dynamic time windows. [30] solve a PDP based on real-world logistics with
multiple carriers, vehicle types and LIFO constraints using a set partitioning
formulation containing an exponential number of columns. However, in general,
exact methods do not scale well, so heuristic and hyper-heuristic approaches
that can quickly find near-optimal solutions, have become popular for large-
scale, real-world problems. [20] provides a good overview of exact and heuristic
methods for vehicle routing problems. More recently, heuristic approaches have
been applied to scheduling with LIFO loading constraints [3,9,11].

[9] use a three phase approach. First, multiple routes are created using
a greedy randomised adaptive search procedure; next variable neighbourhood
descent (VND) applies local search to derive new solutions using a diversifica-
tion strategy derived from [26]. Finally, crossover is used to combine solutions to
form further candidate solutions. [3] use a multi-start tabu search approach that
uses Clarke and Wright savings [10] as well as two random schedule heuristics
to build seed routes. The tabu search improves solutions by repeatedly remov-
ing and re-inserting consignments, using traditional strategies to prevent cycling
and promote diversification.

Existing approaches to dynamic scheduling of PDPs (summarised in [8]) often
use a two-phase hyper-heuristic [5]: requests are first inserted into a schedule,
then optimisation is performed, either on a route that has been changed or on an
entire schedule. Research has focused on different insertion, removal and local
search operators, and on the heuristics that choose between operators at any
point. For example, [17] use neighbourhood search heuristics and ejection chains
to tackle same-day courier PDP. [22] use a double horizon approach with routing
and scheduling sub-problems to schedule similar problems of a larger size. [1] use
probabilistic information to inform their routing of a multi-period VRP.

We are concerned with efficient solution of scheduling under just-in-time
logistics, where the customer expectation is that hauliers respond quickly
to delivery requests, and where same-day delivery often attracts premium
payment rates. In the traditional approach used by small haulage companies,



144 P. Mourdjis et al.

static scheduling is re-run daily. However, static scheduling cannot be used for
real-time response to orders, and does not take account of the existing sched-
ule and loading. We propose a dynamic scheduler that intelligently adapts to
incoming requests, a novel variant of dynamic PDP [5].

Our model of the PMDP is based on the generic PDP model of [13]. Our vari-
able neighbourhood descent with memory (VNDM) hyper-heuristic takes inspi-
ration from the hybrid variable neighbourhood tabu search (VNTS, [2]), which
outperforms tabu and variable neighbourhood approaches for static VRPs. A
schedule is built up by repeatedly inserting requests then performing optimisa-
tion. The strict LIFO constraint in PMDP, along with constraints such as the
vehicle capacity, makes it difficult to find improving moves in PMDP, so we
develop a descent based algorithm and local search operators tailored to PMDP,
with roots in classic VRP and PDP solutions. Once a solution has been built,
we perform optimisation whilst aiming to minimise ordering inversions within
a vehicle’s schedule, as these are unlikely to improve results in problems with
tight time windows and LIFO constraints on deliveries. Local search techniques
that affect delivery order, such as those presented by [28] and [7], and the GENI
technique [18], are unsuitable for direct use on our problem because they cause
large changes in schedule ordering.

3 Model

The PMDP is defined on a directed graph DG = (N, A) where A is the arc
set and N is the node set. Each request 7 is identified by (n,, I, [t5tert, tend],
ttservice) where n,. is the location, [,. is the load (where the summation of pickup
load and delivery loads for a consignment is equal to zero). [t5t7t, 1"9] represents
the start and end times of the arrival window respectively where the service time
ttservice must begin (for clarity we use double letters to represent quantities). R
is the set of requests where R = P U D U O, P being the set of pickup-requests
and D the set of delivery-requests. O is the set of origins which are dummy
requests used to represent the multiple depot locations of the problem. The arc
between two requests 7 and u (that is, between nodes (n,,n,,)) is the arc (r,u).
A consignment c¢ is identified by (p., De, t.) where p. is the pickup-request and
D.=d}, ..., d* is the sequence of delivery-requests. Each consignment has a
received time t., which is the time at which the order is entered in the system. C'
is the set of consignments. Ay, C A represents the feasible arcs for vehicle k. The
binary flow variable b, is set to one if arc (r,u) € Ay is used by the vehicle
k, and to zero otherwise. [l is the load of vehicle k at request r and is not
fixed but dependent on the other arcs in the vehicle’s route. It is calculated as
a running sum where each request either adds to the load (pickup) or subtracts
from the load (delivery). A vehicle starts and ends its route at one of the depots
with load equal to zero.
The goal is to minimise the total cost of servicing all requests r € R:

min Z Z Cruk * bruk (1)

keEK (ryu)eAy



Competition and Cooperation in Pickup and Multiple Delivery Problems 145

where:
Cruk = ne(Myy, leg) + te(ruk) + dc(ttizlay) (2)

subject to the constraints in Sect.3.1. C,, is the cost of vehicle k servicing
(r,u), calculated using running cost estimations for a 44-tonne articulated truck
based on 2014 data from the UK Road Haulage Association (RHA) [14]. The
component costs are: nc(nng,, k), the cost of travelling distance nn,., (the
length of arc (r,u)) with load il,x; te(ruk), the cost of the time taken by vehicle
k to travel arc (r,u); and de(t£%€"Y), the cost of the penalty for arriving late at
request u. We use a stepwise function (increasing every hour) after an initial grace
period, in line with industry practice. Consignments may be either customer
orders or backhauls (post-delivery return to pickup location, for instance to
dispose of packaging), these differ only in that backhauls are usually mostly
empty loads.

3.1 Constraints

The constraints for the PMDP are laid out in Tables1 and 2. The constraints
in Table 1 have been adapted and expanded from the formulation for the PDP
presented by [13]; Table 2 presents the additional new constraints for the PMDP.

Table 1. Adapted constraints from [13], here = implies that this constraint is equiva-
lent to a constraint presented by Desaulniers et al. and * implies that this constraint
has been modified for the PMDP.

bruk 2 0Vk € K, (r,u) € Ay (1)
bruk binary Vk € K, (r,u) € Ay (16)

= >kek Zuer, bruk =1Vr €R 3)
* ZuEPk bruk * | Dj| _ZweDj brwk =0Vk € K,r € Ry “4)
* Removed (5)
* Removed (6)
" Removed @)
= bruk (trk + 57 + bty — tur) < 0VEk € K, (r,u) € Ag ®)
* tptert <o 3t <ty Yk € Ko7 € Ry ©)
* brk + U7 + Uty < i, Vh € K, 7 € Py,u € Dy (10)
= bruk (Urk + 1y — Uuk) =0VEk € K, (r,u) € Ay (11)
* 0<l <l <lyVkeK,r € P, (12)
* lr+Yuep, lu=0VrepP (13)
= lo(k)=0Vk € K (14)

Constraints (3) and (4) ensure that each arc is only included once and that a
pickup and all its corresponding deliveries are handled by the same truck. Here,
|D,| is the number of delivery-requests for pickup-request u. Constraint (4) is
non-standard for the PDP and is necessary as there may be multiple delivery-
requests per pickup-request. It states that for each pickup request there exists a
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Table 2. New constraints for the PMDP.

|P|=1Viel 17)

|Dc| >1Viel (18)

trk <tur Yk € K,r € Pr,u € D, 19)

trk < tuk = tox < twr Yk € K, Vr,u € Py, Yv € Dy, Yw € D, (20)

Z(r,u)eA,c bruk (ttvsﬂermce + ttru) <ttty Vk e K (21)

brur = 1 and that this multiplied by the number of deliveries is the same as the
number of arcs that end at each of the corresponding delivery requests. Unlike
[13], we are not interested in multicommodity flow, so we omit constraints (5)
to (7). Constraint (8), imposing total schedule duration, remains unchanged.
Constraints (9) and (10) have been modified to allow for soft time windows.
Constraints (11) to (13) specify that a pickup node must have positive load and
that deliveries must have negative load, also that the sum of pickup and delivery
loads is zero. The initial vehicle load, non-negativity and binary requirements are
the same as [13]. The following constraints have been added for the PMDP: (17)
and (18) specify that a request has exactly one pickup and may have arbitrarily
many deliveries. (19) specifies the precedence between a pickup and its deliveries
while (20) expresses the LIFO constraint. Finally, (21) specifies that the length
(in time) of any vehicles route is less than a value Ej, which may be set according
to local conditions.

Minimising k, the number of vehicles used, is not considered as part of this
problem, though it is kept low as a side effect of the heuristics used. For each
truck, requests may be nested within other requests if LIFO and capacity con-
straints are not violated.

4 Solution Approach

Our PMDP solution, Like other hyper-heuristic approaches, is a two-phase
process. An initial set of routes is built using a greedy constructive heuristic and
then optimised with the variable neighbourhood descent with memory (VNDM)
hyper-heuristic. This manages a set of low level heuristics (LLHs), introduced in
Sect. 4.3.

4.1 Constructive Heuristic

As consignments enter the system dynamically and are not known in advance,
the insertion heuristic treats each consignment atomically, finding the lowest
cost insertion location across all routes for a pickup and all its deliveries (guar-
anteeing LIFO), such that no previously inserted consignment incurs a delay.
This process is a greedy exhaustive search over all potential insertion locations
and the position with the lowest cost is chosen.
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4.2 VNDM Hyper-heuristic

After the insertion of each new consignment, VNDM is used for optimisation,
running for a constant amount of CPU time. A fixed CPU time is used as there
is no need to find a global optimum when new consignments that arrive will force
changes to any schedule created. VNDM is a descent-based first-improvement
heuristic. Routes are first ordered by length, then each LLH generates a list of
potential moves. Since the majority of a schedule is unaltered after a modifica-
tion, VNDM limits revisiting parts of the search space by maintaining a record of
LLHs that give no improvement on each route (pairs of route and LLH identifiers
are stored). If a LLH fails to produce an improving move, it is added to a tabu
list. The tabu list is re-initialised when a route is subsequently modified, as a
LLH may now be able to find improvement where none was previously possible.

VNDM differs from other published PDP solution approaches in a number of
ways, notably in the choice of local moves used (specific to the PMDP), the use
of route ordering to focus the search on promising areas, and the use of a route
memory to reduce repeated searching. The search space is further reduced by
imposing distance and time limits on nodes chosen for potential moves, which
are different for each LLH and determined through extensive testing.

4.3 Low-Level Heuristics

The nature of PMDP, with strict LIFO ordering of consignments, guides our
selection of LLHs to apply to route optimisation. Since a pickup request must
occur before its delivery requests, reversing a section of a schedule and repairing
infeasible pickup / delivery ordering will significantly alter the distance of the
route. Because time windows are usually tight, increased distance may result in
significant delay in servicing requests.

In selecting LLHs to modify routes, a consignment may only be rescheduled
if the modification results in a valid schedule. A consignment may be scheduled
such that other pickups or deliveries occur between the consignment’s pickup and
final delivery, providing load and LIFO constraints are not violated. However,
if the consignment is rescheduled, the nested pickups or deliveries from other
consignments remain in the original schedule, thus allowing modifications to
undo nested consignments.

Highly disruptive LLHs that introduce partial route inversions cannot
improve our schedules as these would invalidate either the LIFO or precedence
constraints of pickups and their deliveries. This rules out LLHs such as GENI
[18] and iCROSS [6]. However, we can use the CROSS exchange of [27] (used by
[28]) as it does not reverse chains of requests. Additional LLHs, such as GENI-
PO [23], have been chosen or developed to preserve existing schedule ordering
as much as possible. By keeping the pickup and deliveries of one consignment in
the same schedule (rather than splitting the consignment across loads and using
precedence constraints), we facilitate the use of LLHs from the widely-researched
area of one-many-one VRPs [7].
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We provide four LLHs that can be applied to a single route. If a single
route operator can generate more than one resulting route, that which is least
disruptive to existing schedule ordering is used. LLHs that would reverse the
order of a chain of requests are not allowed, hence we do not use 2-Opt.

8-Opt moves one consignment to a different position in the route schedule,
whilst 4-Opt swaps the positions of two consignments in the route schedule.
Nest Consignment moves a whole consignment to a position within the delivery
schedule of another consignment, thus nesting the first consignment within the
second. Finally, Nest Two Consignments nests two consignments inside other
consignments, a useful move where single-level nesting produces no improvement.

We provide four further LLHs that operate on more than one route at a time.
GENI-PO [23] is a non-inverting variant of GENT [18]. The other three LLHs are
from [27]. Relocate moves one consignment to a valid position in a different route
schedule, which may introduce nesting. Geni-PO is a variation of relocate that
preserves as much previous ordering as possible by moving a consignment to
be geographically close to other consignments: all possible insertion position
pairs are considered to find the most improving relocation. Swap exchanges
consignments from two different routes, whilst Cross exchanges two chains of
consignments between routes, preserving the existing ordering within each chain.
Cross considers chains of all lengths when used.

Use of Local Moves. Of the eight LLHs, three consume only small amounts
of CPU time for problems of the size we study (3-Opt, 4-Opt and Nest consign-
ment), whilst the others (Nest two consignments, Relocate, Geni-PO, Swap and
Cross) are considered hard and take a significant amount of time. However, the
hard LLHs generate several orders of magnitude more potential moves than the
computationally trivial moves. There is no intuitive reason to prefer one hard
LLH to another, and there is little advantage to running more than one hard
LLH at a time. Thus, to prevent VNDM optimisation simply running out of time
whilst applying too many hard LLHs, each call of VNDM uses a neighbourhood
structure comprising the three low-CPU LLHs in the order above, then one hard
LLH, selected at random. The random selection ensures that all the hard LLHs
are used over a series of optimisations, and thus provides ample diversification.

5 Computational Results

In collaboration with Transfaction Ltd., we have access to real scheduling data
and manually-scheduled consignments for small UK hauliers (referred to as real
data). The real data are insufficient, in quantity and quality, for our scheduling
research, but provide us with indicative distributions and other information,
from which we generate larger, realistic, data sets on requests and consignments
(referred as generated data).

We generate 100 scenarios from a data set of 27,153 real-world consignments.
The scenarios are built by selecting 200 real consignments at random from this
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set and building pairs of consignments representing outbound linehaul and return
backhaul legs. Each consignment consists of at least two requests.

Initially, each haulage company (carrier) is assumed to have an unlimited
number of vehicles and is represented by a depot, randomly located within the
area encompassing the consignments. Consignments are assigned to the carrier,
from the set of carriers with the fewest consignments, that is geographically
closest to the midpoint between a consignment’s pickup and final delivery loca-
tions. Thus, the initial schedule systematically distributes consignments evenly
across many carriers. To analyse a dynamic system in silico, we use discrete
event simulation.

5.1 Discrete Event Simulation (DES)

DES [25] is used to simulate the dynamic receipt of consignment requests. In
order to add new consignments to a schedule that is already being serviced,
we keep track of simulation time (an internal representation of current time,
stored so that requests which in reality would have already happened cannot
be modified by our optimisation procedure). If the scheduled start time of any
request is before the current simulation time, it is marked as “fixed”. Additional
requests cannot be inserted before these fixed requests, and the routing of a fixed
request cannot be altered in any optimising moves.

For each experiment we simulate one dynamic scheduling week, and limit
optimisation to 5min of CPU time. Each scenario is run 30 times, using a het-
erogeneous cluster of Intel Xeon based servers, totalling 72 cores and 120GB of
RAM. The results presented here thus represent thousands of CPU hours.

5.2 Simple Cooperative Strategies

The first set of results compares the average per request costs for five carriers,
exploring the effect on one carrier (the sample) under four different configu-
rations of cooperation with the other four carriers. All Contracted has each
consignment assigned to a specific carrier. Optimisation is only possible between
vehicles belonging to the same carrier. Out-sourcing starts with a competitive
model, but allows re-assignment of consignments from the sample to any of the
other carriers, if cost savings can be made. Out-sourcing to coop(erative) adds
the out-sourcing model for the sample carrier into a model in which the other
carriers can exchange consignments if savings can be made; the sample carrier
does not accept any additional consignments. Finally, the cooperative model ini-
tially assigns all consignments to individual carriers (as in Contracted) but allows
unrestricted re-allocation during optimisation, if cost savings are possible.

The costs presented in Fig. 1 show that for the sample carrier, an average 9%
saving can be made by out-sourcing to the four other carriers, whilst the con-
figuration that allows other carriers to also cooperate results in average savings
of nearly 14%, because the cooperation allows more efficient routing across the
carriers. If the sample carrier also cooperates in efficient scheduling, the total
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Fig. 1. Average cost for a single carrier (sample carrier) and a group of carriers (other
carriers), with four different models of cooperation.

average saving for the sample carrier rises to 18%. Cooperation is also benefi-
cial for the other carriers: accepting orders from the single carrier can produce
benefits of 3%, whilst cross-group cooperation produces savings to averaging
15%.

The results shown should drive all carriers towards cooperation. Competi-
tion favours carriers with the lowest costs; the sample carrier achieves this in
configuration 2, by outsourcing to other carriers who are not cooperating. How-
ever, rational competitors would be expected to copy this behaviour, moving
the system towards a reallocation of consignments as seen in configuration 3;
here, the competitors are cooperating, and the sample carrier is at a competitive
disadvantage. However, if all carriers cooperate, as in configuration 4, the lowest
costs for all carriers are observed.

Increasing cooperation allows a greater number of consignments to be han-
dled. Figure 2 shows that the schedule in which all carriers operate alone covers
on average less than 70% of their assigned consignments. However, the fully
cooperative model can schedule over 85% of consignments. (Note that random
scenario generation means that there is no guarantee that all consignments are
feasible given the number of carriers, their locations and that even with an infi-
nite number of vehicles, some consignments are too far apart to be serviced
whilst adhering to driver working hour rules: since we do not consider driver
sleeping arrangements and all routes must begin and end at the depot, these
consignments are impossible in our current model.)

Table 3 shows the percentage of consignments that are re-allocated from the
sample carrier in each configuration. Both out-sourcing and out-sourcing to a
cooperative allow almost two-thirds of the carrier’s consignments to be assigned
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Fig. 2. Percentage of assigned consignments serviced across the four different models
of cooperation.

Table 3. Percentage of the sample carrier’s consignments re-allocated in different
configurations.

Config | Cooperation Mode | Re-allocated
1 Competitive 0%

2 Out-sourcing 65.6%

3 Out-sourcing to coop | 67.2%

4 Cooperative 57.2%

to others: because our scheduling algorithm minimises cost, these re-allocations
can be interpreted as being carried more cheaply, due to more efficient use of
resources, when assigned to other carriers. We are most interested in the per-
centage of consignments that are re-allocated away from the sample carrier.
When outsourcing and cooperation are combined (configuration 3), the sample
carrier’s re-assigned loads are most cost-effective, as, in this configuration, the
other carriers can also re-allocate loads among themselves (but not to the sample
carrier). In the fully cooperative model, the sample carrier’s consignments are
less cost-effectively reassigned than in other reallocation configurations. How-
ever, the overall cost-effectiveness of the 5 carriers is significantly better than in
other configurations: 62.5% of other carriers’ consignments were reallocated in
this model, leading to the reduction in cost observed for cooperation in Fig. 1.
These results also strongly support the contention that savings can accrue to
small hauliers who cooperate to carry each others’ consignments efficiently.
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5.3 More Group Configurations

We seek to further investigate the effects of different sized groups of carriers on
both cost and network capacity. Using the same 100 scenarios as investigated
previously, we now investigate how efficiently 10 carriers can service the con-
signments, split into a number of different group configurations. Cooperation is
allowed within but not between these groups. In the Competing configuration
each of the 10 carriers works independently, in the second configuration, carriers
work in Pairs. In 1 vs 3s, one carrier, the sample, is compared against 3 groups
of 3 carriers. In 5 vs 5, 3 vs 7 and I vs 9 the 10 carriers are divided into 2
groups of differing sizes accordingly. In the final configuration, Cooperative, the
10 carriers work together.

’ 0O First group B8 Second group

05|
Q@ B
Z 901
& A
=1
o
=
- 85|
1)
o
2
[}
O 80|

75

T T T T T T
Competing Pairs 1vs3s S5vs5 3vs7 1vs9 Cooperative

Fig. 3. Cost per request for different carrier group configurations.

Figure 3 confirms our earlier findings that working as a group can substan-
tially reduce costs and additionally shows that larger groups can attain bigger
cost reductions than smaller groups.

In each configuration, consignments are divided equally between groups, not
carriers, such that, for example in the 1 vs 3s configuration each group of carriers
is assigned 100 consignments out of 400 but in the 1 vs 9 configuration, each
group is assigned 200 consignments. Because of this, carrier 1 has more choice
in the 1 vs 9 configuration and can achieve slightly better results than in the 1
vs 3s configuration, however the number of consignments that can actually be
served is dramatically reduced as can be seen in Fig. 4.
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Fig. 4. Percentage of scheduled consignments for different carrier group configurations.

Figure 4 shows again the increase in network capacity made possible through
cooperation. It is also clear that the largest savings are made quickly: just pairing
with one other carrier can increase the number of scheduled deliveries from 72%
to 80%.

5.4 Carrier Group Size

Extending our analysis, we seek to identify if there are diminishing returns for
increasing the number of carriers in a cooperative group. Figure 5 shows how both
the cost per request and the percentage of consignments scheduled improve as
the size of a cooperative group increases. Though there are linear savings evident
above 10 carriers, the majority of benefit is found between 1 and 5 carriers. These
results must be qualified by stating that our consignments cover the UK and our
carriers are randomly located across this area; since distance costs are a dominant
factor in real-world pricing; if larger distances are involved, for instance across
Europe, America or Asia, a larger number of well distributed carriers would
likely be necessary to produce these savings. These results can be thought of
more as suggesting that 10 major transport hubs is sufficient for efficient vehicle
routes in the UK.

So far, we have assumed an infinite number of vehicles at each carrier location;
in practice there will be a limited supply of vehicles at each carrier and therefore
multiple carriers in the same area would need to work together. The following
section investigates cooperation in resource constrained situations.
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Fig.5. Cost per request and number of consignments successfully scheduled as the
number of carriers working together increases.

5.5 Competition

The experiments so far have assumed an infinite number of vehicles available for
all carriers and looked at cooperation from the assumption that all companies
work together to reduce total costs. We use the same 100 scenarios each with
10 carriers and 200 orders (assigned as before). However, companies now have
a fixed number of vehicles. If a company cannot satisfy an order assigned to it,
instead of creating additional vehicles, the customer is re-assigned to a random
company that can service it. This means that a better utilisation of assets will
lead to more customers for a given company. We also introduce a model for order
revenue, enabling us to estimate carrier profitability. We assume that companies
will not share their orders if it results in them loosing money, therefore, when
cooperation is allowed between two companies, the company originally assigned
an order always receives the profit it would make. For a different company to
fulfil this order, it must yield sufficient profit to pay off the original company
and still cover the associated delivery costs. The revenue model for an order is:

Revenue(c) = I, Z nny_1,r (22)
r€D.

where the revenue of consignment c¢ is a linear function of the total distance
between all requests in the consignment multiplied by the pickup load. A com-
pany’s total profit is the revenue of all the consignments it delivers minus the
total cost of serving these, as specified in Sect. 3.
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We now consider variants of the scenarios previously investigated, but, in
each case, the number of vehicles is fixed at 40. We consider the impact of
cooperation in scenarios with different distributions of these vehicle between the
10 companies, to simulate different competitive environments.

Equally Sized Companies. First, to validate our previous findings the 10
companies are set to have equal size, with 4 vehicles each. As expected, Fig. 6
shows that cooperation increases the profitability of all companies.

Scenario [l 1No Cooperation Il B Full Cooperation

10,000 |- £ -
E3 7 ] 7
@ B = E3 ==
&
e
[a W)
5,000
0 I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Company

Fig. 6. Effect of cooperation on the total profits for ten equally sized companies.

Differently Sized Companies. The ten companies are now given different
numbers of vehicles, set to: “2, 2, 3, 3, 4, 4, 5, 5, 6 and 6” respectively. Figure 7
shows the increased profitability of the first three companies when they work
together as a cooperative assuming that all other companies continue to work
independently. Profit increases of 12-18% demonstrate that even the smallest
companies benefit from cooperation.

Looking at the group of heterogeneously sized companies in more detail,
Fig.8 shows how company size affects both raw profitability and the benefit
of cooperation. Larger companies are able to produce more optimal routes and
service more customers, generating more profit. When all parties cooperate, the
profits for companies of all sizes increases. We can see that, as a percentage,
small companies stand to gain the most from working cooperatively, with gains
of up to 50%. Compared to the 12-18% result, above, it is again clear that more
companies working together produces better results.
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Fig. 8. Effects of cooperation across different sized companies.

Large Vs Small Companies. In this scenario we compare the profitability of
large and small companies competing in the same market. The ten companies are
now set to: “8,2,2,2,2,2, 2,29 and 9” vehicles respectively. Figure 9 shows that,
initially (when no companies are cooperating), the 2 largest companies produce
the most profit. When the small companies work together they can increase their
profitability and reduce the profits of the larger companies. Finally we observe
that if the first large company joins the cooperative it can massively outperform
its competitors. Other companies’ profits fall, and the cooperative can more effec-
tively handle orders (so orders are not stolen by the large companies).
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Fig. 9. Profit in a scenario with large and small companies. Company 1 has 8 vehicles.
Companies 2-8 have 2 vehicles each. Companies 9 and 10 have 9 vehicles each.

6 Discussion and Conclusions

We have presented the VNDM hyper-heuristic as an effective schedule optimisa-
tion for PMDP under dynamic consignment requests. The objective and ordering
constraints of the problem are set out and a set of LLHs optimised for these is
given. We use data from the RHA to explore pricing and marginal costs of con-
signments, and show that cost savings of 15% to 18% are possible when hauliers
cooperate. Cooperation also increases the capacity of a group of hauliers, by as
much as 21%. The benefits of cooperation see diminishing returns above 10 sepa-
rate carrier locations working together assuming sufficient numbers of vehicles to
meet demands. Larger cooperatives will always have lower operating costs than
smaller ones as they are able to more efficiently schedule their consignments to
the most optimal company locations.

We have carried out further investigation into how savings from cooperation
could be turned into increased profit in resource constrained problems with a
fixed number of vehicles. We propose that the revenue of a customer be modelled
as a linear combination of distance and load and define company profit as the
sum of revenues over all delivered consignments minus the costs associated with
delivering these loads. We consider that each company aims to maximise its own
profit by only reassigning customers when a cooperating company can pay off
the original company’s profit and still cover its delivery costs. The cooperating
company makes the cost saving as its profit on such orders. We have shown
that this more realistic model of cooperation still leads to increased profits for
all cooperating parties in a variety of different scenarios with differing company
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sizes. A particularly interesting result is that competing large companies stand
to significantly benefit by cooperating with a group of smaller companies. Ben-
efits of cooperation scale with the number of companies in the cooperative but
generally lie within 15-20%.

We do not consider issues of vehicle reliability, for example, who pays the
costs associated with missed delivery slots and what effect this has on customer
perceptions. We have not considered the fixed costs associated with carrier-
owned vehicles in this research; implementing the strategies outlined in this paper
may result in reduced usage of carrier owned assets as cooperation allows for an
increase in capacity, allowing the same fixed cost assets to be more productive,
assuming there is sufficient demand for service.
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Systems (LSCITS) project of the EPSRC. The authors would like to thank Transfaction
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