
123

Cyrille Artho
Peter Csaba Ölveczky (Eds.)

5th International Workshop, FTSCS 2016
Tokyo, Japan, November 14, 2016
Revised Selected Papers

Formal Techniques for
Safety-Critical Systems

Communications in Computer and Information Science 694

Communications
in Computer and Information Science 694

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Cyrille Artho • Peter Csaba Ölveczky (Eds.)

Formal Techniques for
Safety-Critical Systems
5th International Workshop, FTSCS 2016
Tokyo, Japan, November 14, 2016
Revised Selected Papers

123

Editors
Cyrille Artho
KTH Royal Institute of Technology
Stockholm
Sweden

Peter Csaba Ölveczky
Department of Informatics
University of Oslo
Oslo
Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-53945-4 ISBN 978-3-319-53946-1 (eBook)
DOI 10.1007/978-3-319-53946-1

Library of Congress Control Number: 2017931545

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the Fifth International Workshop on Formal
Techniques for Safety-Critical Systems (FTSCS 2016), held in Tokyo on November
14, 2016, as a satellite event of the ICFEM conference.

The aim of this workshop is to bring together researchers and engineers who are
interested in the application of formal and semi-formal methods to improve the quality
of safety-critical computer systems. FTSCS strives to promote research and develop-
ment of formal methods and tools for industrial applications, and is particularly
interested in industrial applications of formal methods. Specific topics include, but are
not limited to:

– case studies and experience reports on the use of formal methods for analyzing
safety-critical systems, including avionics, automotive, railway, medical, and other
kinds of safety-critical and QoS-critical systems;

– methods, techniques, and tools to support automated analysis, certification,
debugging, etc., of complex safety/QoS-critical systems;

– analysis methods that address the limitations of formal methods in industry (us-
ability, scalability, etc.);

– formal analysis support for modeling languages used in industry, such as AADL,
Ptolemy, SysML, SCADE, Modelica, etc.; and

– code generation from validated models.

The workshop received 23 regular paper submissions. Each submission was
reviewed by at least three referees. Based on the reviews and extensive discussions, the
program committee selected nine papers for presentation at the workshop and inclusion
in this volume. Another highlight of the workshop was an invited talk by Naoki
Kobayashi.

Many colleagues and friends have contributed to FTSCS 2016. We thank Naoki
Kobayashi for giving an excellent invited talk and the authors who submitted their
work to FTSCS 2016 and who, through their contributions, made the workshop an
interesting event. We are particularly grateful that so many well-known researchers
agreed to serve on the program committee, and that they provided timely, insightful,
and detailed reviews. We also thank the editors of Communications in Computer and
Information Science for agreeing to publish the proceedings of FTSCS 2016 as a
volume in their series, and Shaoying Liu and Shin Nakajima for their help with the
local arrangements.

December 2016 Cyrille Artho
Peter Csaba Ölveczky

Organization

Program Chairs

Cyrille Artho KTH Royal Institute of Technology, Sweden
Peter Csaba Ölveczky University of Oslo, Norway

Program Committee

Étienne André University Paris 13, France
Toshiaki Aoki JAIST, Japan
Cyrille Artho KTH Royal Institute of Technology, Sweden
Kyungmin Bae Pohang University of Science and Technology, Korea
Eun-Hye Choi AIST, Japan
Alessandro Fantechi University of Florence and ISTI-CNR, Pisa, Italy
Bernd Fischer Stellenbosch University, South Africa
Osman Hasan National University of Sciences & Technology, Pakistan
Klaus Havelund NASA JPL, USA
Jérôme Hugues Institute for Space and Aeronautics Engineering, France
Marieke Huisman University of Twente, The Netherlands
Ralf Huuck Synopsys, Australia
Fuyuki Ishikawa National Institute of Informatics, Japan
Takashi Kitamura AIST, Japan
Alexander Knapp Augsburg University, Germany
Thierry Lecomte ClearSy System Engineering, France
Yang Liu Nanyang Technological University, Singapore
Robi Malik University of Waikato, New Zealand
Frédéric Mallet Université Nice Sophia Antipolis, France
Roberto Nardone University of Naples Federico II, Italy
Vivek Nigam Federal University of Paraíba, Brazil
Thomas Noll RWTH Aachen University, Germany
Kazuhiro Ogata JAIST, Japan
Peter Csaba Ölveczky University of Oslo, Norway
Charles Pecheur Université catholique de Louvain, Belgium
Markus Roggenbach Swansea University, UK
Ralf Sasse ETH Zürich, Switzerland
Martina Seidl Johannes Kepler University Linz, Austria
Oleg Sokolsky University of Pennsylvania, USA
Sofiène Tahar Concordia University, Canada
Carolyn Talcott SRI International, USA
Tatsuhiro Tsuchiya Osaka University, Japan

András Vörös Budapest University of Technology and Economics,
Hungary

Chen-Wei Wang State University of New York (SUNY), Korea
Mike Whalen University of Minnesota, USA
Huibiao Zhu East China Normal University, China

Additional Reviewers

Beillahi, Sidi Mohamed
Bukhari, Syed Ali Asadullah
Du, Xiaoning
Fang, Huixing
Gentile, Ugo

Gillard, Xavier
Oortwijn, Wytse
Qasim, Muhammad
Sardar, Muhammad Usama
Van Zijl, Lynette

VIII Organization

On Two Higher-Order Extensions
of Model Checking

(Invited Talk)

Naoki Kobayashi

The University of Tokyo, Bunkyō, Japan
koba@is.s.u-tokyo.ac.jp

Inspired by the success of finite state model checking [2] in system verification, two
kinds of its higher-order extensions have been studied since around 2000. One is model
checking of higher-order recursion schemes (HORS) [3, 13], where the language for
describing systems to be verified is extended to higher-order, and the other is higher-
order modal fixpoint logic (HFL) model checking of finite-state systems [18], where the
logic for specifying properties to be verified is extended to higher-order. Table 1
summarizes those extensions. In general, HORS model checking can be used for
precisely modeling and verifying a certain class of infinite state systems, and HFL
model checking can be used for checking non-regular properties of systems. HORS
model checking has been successfully applied to automated verification of higher-order
programs [5, 6, 8, 9, 10, 12, 14, 16, 17, 19], whereas HFL model checking has been
studied for verification of concurrent systems [11, 18]. Although both HORS and HFL
model checking problems are k-EXPTIME complete for the order-k fragments (where
the order is the largest type-theoretic order of functions used in HORS and HFL
respectively), practical model checking algorithms have been developed, which do not
always suffer from the k-EXPTIME bottleneck [1, 4, 15]. We provide a brief intro-
duction to the HORS and HFL model checking problems, their applications, and the
state-of-the-art of higher-order model checkers and tools built on top of them. We also
touch upon our recent result on the relationship between HORS and HFL model
checking [7].

Table 1. Finite state model checking and its higher-order extensions

Models Logic
Finite state model
checking

Finite state systems Modal µ-calculus
(or, LTL/CTL/CTL*)

HORS model
checking

Higher-order recursion schemes
(HORS)

Modal µ-calculus
(or, tree automata)

HFL model checking Finite state systems Higher-order modal fixpoint
logic (HFL)

References

1. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order recursion
schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)
3. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen,

M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg
(2002)

4. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP 2009,
pp. 25–36. ACM Press (2009)

5. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-order
programs. In: Proceedings of POPL, pp. 416–428. ACM Press (2009)

6. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3) (2013)
7. Kobayashi, N., Étienne Lozes, Bruse, F.: On the relationship between higher-order recursion

schemes and higher-order modal fixpoint logic. In: Proceedings of POPL 2017 (2017, to
appear)

8. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-order model
checking. In: Proceedings of PLDI, pp. 222–233. ACM Press (2011)

9. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree transducers and
recursion schemes for program verification. In: Proceedings of POPL, pp. 495–508. ACM
Press (2010)

10. Kuwahara, T., Sato, R., Unno, H., Kobayashi, N.: Predicate abstraction and CEGAR for
disproving termination of higher-order functional programs. In: Kroening, D., C.S. Păsăreanu
(eds.) Proceedings of CAV 2015. LNCS, vol. 9207, pp. 287–303. Springer, Switzerland
(2015)

11. Lange, M., Lozes, É., Guzmán, M.V.: Model-checking process equivalences. Theor.
Comput. Sci. 560, 326–347 (2014)

12. Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal verification of
higher-order functional programs. In: Proceedings of POPL 2016 (2016, to appear)

13. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes. In:
LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)

14. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching algebraic
data types. In: Proceedings of POPL, pp. 587–598. ACM Press (2011)

15. Ramsay, S., Neatherway, R., Ong, C.H.L.: An abstraction refinement approach to higher-
order model checking. In: Proceedings of POPL 2014, pp. 61–72. ACM (2014)

16. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker for higher-
order programs. In: Proceedings of PEPM 2013, pp. 53–62. ACM Press (2013)

17. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verification of
higher-order functional programs. In: The 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2013. pp. 75–86. ACM (2013)

18. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR. LNCS, vol. 3170, pp. 512–528. Springer, Heidelberg (2004)

19. Watanabe, K., Sato, R., Tsukada, T., Kobayashi, N.: Automatically disproving fair termi-
nation of higher-order functional programs. In: Proceedings of ICFP 2016, pp. 243–255.
ACM (2016)

X N. Kobayashi

Contents

Specification and Verification

Specification and Verification of Synchronization with Condition
Variables . 3

Pedro de Carvalho Gomes, Dilian Gurov, and Marieke Huisman

An Interval Logic for Stream-Processing Functions:
A Convolution-Based Construction . 20

Brijesh Dongol

Automotive and Railway Systems

Automating Time Series Safety Analysis for Automotive Control Systems
in STPA Using Weighted Partial Max-SMT . 39

Shuichi Sato, Shogo Hattori, Hiroyuki Seki, Yutaka Inamori,
and Shoji Yuen

Uniform Modeling of Railway Operations . 55
Eduard Kamburjan and Reiner Hähnle

Circuits and Cyber-Physical Systems

Formal Verification of Gate-Level Multiple Side Channel Parameters
to Detect Hardware Trojans . 75

Imran Hafeez Abbasi, Faiq Khalid Lodhi, Awais Mehmood Kamboh,
and Osman Hasan

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework
for IoT Applications . 93

Maissa Elleuch, Osman Hasan, Sofiène Tahar, and Mohamed Abid

Shared-Variable Concurrency, Continuous Behaviour and Healthiness
for Critical Cyberphysical Systems . 109

Richard Banach and Huibiao Zhu

Parametrized Verification

Applying Parametric Model-Checking Techniques for Reusing Real-Time
Critical Systems . 129

Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat,
Olivier H. Roux, Didier Lime, and Étienne André

http://dx.doi.org/10.1007/978-3-319-53946-1_1
http://dx.doi.org/10.1007/978-3-319-53946-1_1
http://dx.doi.org/10.1007/978-3-319-53946-1_2
http://dx.doi.org/10.1007/978-3-319-53946-1_2
http://dx.doi.org/10.1007/978-3-319-53946-1_3
http://dx.doi.org/10.1007/978-3-319-53946-1_3
http://dx.doi.org/10.1007/978-3-319-53946-1_4
http://dx.doi.org/10.1007/978-3-319-53946-1_5
http://dx.doi.org/10.1007/978-3-319-53946-1_5
http://dx.doi.org/10.1007/978-3-319-53946-1_6
http://dx.doi.org/10.1007/978-3-319-53946-1_6
http://dx.doi.org/10.1007/978-3-319-53946-1_7
http://dx.doi.org/10.1007/978-3-319-53946-1_7
http://dx.doi.org/10.1007/978-3-319-53946-1_8
http://dx.doi.org/10.1007/978-3-319-53946-1_8

Parameterised Verification of Stabilisation Properties via Conditional
Spotlight Abstraction . 145

Nils Timm and Stefan Gruner

Author Index . 161

XII Contents

http://dx.doi.org/10.1007/978-3-319-53946-1_9
http://dx.doi.org/10.1007/978-3-319-53946-1_9

Specification and Verification

Specification and Verification of Synchronization
with Condition Variables

Pedro de Carvalho Gomes1(B), Dilian Gurov1, and Marieke Huisman2

1 KTH Royal Institute of Technology, Stockholm, Sweden
pedrodcg@kth.se

2 University of Twente, Enschede, The Netherlands

In this paper we propose a technique to specify and verify the correct synchro-
nization of concurrent programs with condition variables. We define correctness
as the liveness property: “every thread synchronizing under a set of condition
variables eventually exits the synchronization”, under the assumption that every
such thread eventually reaches its synchronization block. Our technique does not
avoid the combinatorial explosion of interleavings of thread behaviors. Instead,
we alleviate it by abstracting away all details that are irrelevant to the synchro-
nization behavior of the program, which is typically significantly smaller than
its overall behavior. First, we introduce SyncTask, a simple imperative language
to specify parallel computations that synchronize via condition variables. We
consider a SyncTask program to have a correct synchronization iff it terminates.
Further, to relieve the programmer from the burden of providing specifications
in SyncTask, we introduce an economic annotation scheme for Java programs
to assist the automated extraction of SyncTask programs capturing the synchro-
nization behavior of the underlying program. We prove that every Java pro-
gram annotated according to the scheme (and satisfying the assumption) has a
correct synchronization iff its corresponding SyncTask program terminates. We
show how to transform the verification of termination into a standard reachabil-
ity problem over Colored Petri Nets that is efficiently solvable by existing Petri
Net analysis tools. Both the SyncTask program extraction and the generation
of Petri Nets are implemented in our STaVe tool. We evaluate the proposed
framework on a number of test cases as a proof-of-concept.

1 Introduction

Condition variables (CV) are a commonly used synchronization mechanism to
coordinate multithreaded programs. Threads wait on a CV, meaning they sus-
pend their execution until another thread notifies the CV, causing the waiting
threads to resume their execution. The signaling is asynchronous: if no thread
is waiting on the CV, then the notification has no effect. CVs are used in con-
junction with locks; a thread must acquire the associated lock for notifying or
waiting on a CV, and if notified, must reacquire the lock.

Marieke Huisman — Supported by ERC grant 258405 for the VerCors project.

c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-53946-1 1

4 P. de Carvalho Gomes et al.

Many widely used programming languages feature condition variables. In
Java, for instance, they are provided both natively as an object’s monitor [6],
i.e., a pair of a lock and a CV, and in the concurrent API, as one-to-many
Condition objects associated to a Lock object. The mechanism is typically
employed when the progress of threads depends on the state of a shared variable,
to avoid busy-wait loops that poll the state of this shared variable. Nevertheless,
condition variables have not been addressed sufficiently with formal techniques,
mainly because of the complexity of reasoning about asynchronous signaling. For
instance, Leino et al. [14] acknowledge that verifying the absence of deadlocks
when using CVs is hard because a notification is “lost” if no thread is waiting
on it. Thus, one cannot verify locally whether a waiting thread will eventu-
ally be notified. Furthermore, the synchronization conditions can be quite com-
plex, involving both control-flow and data-flow aspects as arising from method
calls; their correctness thus depends on the global thread composition, i.e., the
type and number of parallel threads. All these complexities suggest the need for
programmer-provided annotations to assist the automated analysis, which is the
approach we are following here.

In this work, we present a formal technique for specifying and verifying that
“every thread synchronizing under a set of condition variables eventually exits
the synchronization”, under the assumption that every such thread eventually
reaches its synchronization block. The assumption itself is not addressed here, as
it does not pertain to correctness of the synchronization, and there already exist
techniques for dealing with such properties (see e.g. [16]). Note that the above
correctness notion applies to a one-time synchronization on a condition variable
only; generalizing the notion to repeated synchronizations is left for future work.
To the best of our knowledge, the present work is the first to address a liveness
property involving CVs. As the verification of such properties is undecidable in
general, we limit our technique to programs with bounded data domains and
numbers of threads. Still, the verification problem is subject to a combinato-
rial explosion of thread interleavings. Our technique alleviates the state space
explosion problem by delimiting the relevant aspects of the synchronization.

First, we consider correctness of synchronization in the context of a synchro-
nization specification language. As we target arbitrary programming languages
that feature locks and condition variables, we do not base our approach on a sub-
set of an existing language, but instead introduce SyncTask, a simple concurrent
programming language where all computations occur inside synchronized code
blocks. We define a SyncTask program to have a correct synchronization iff it
terminates. The SyncTask language has been designed to capture common pat-
terns of CV usage, while abstracting away from irrelevant details. SyncTask has a
Java-like syntax and semantics, and features the relevant constructs for synchro-
nization, such as locks, CVs, conditional statements, and arithmetic operations.
However, it is non-procedural, data types are bounded, and it does not allow
dynamic thread creation. These restrictions render the state-space of SyncTask
programs finite, and make the termination problem decidable.

Specification and Verification of Synchronization with CVs 5

Next, we address the problem of verifying the correct usage of CVs in real
concurrent programming languages by showing how SyncTask can be used to
capture the synchronization of a Java program, provided it is bounded. There is a
consensus in Software Engineering that synchronization in a concurrent program
must be kept to a minimum, both in the number and complexity of the synchro-
nization actions, and in the number of places where it occurs. This avoids the
latency of blocking threads, and minimizes the risk of errors, such as dead- and
livelocks. As a consequence, many programs present a finite (though arbitrarily
large) synchronization behavior. To assist the automated extraction of finite syn-
chronization behavior from Java programs as SyncTask programs, we introduce
an annotation scheme, which requires the user to (correctly) annotate, among
others, the initialization of new threads (i.e., creation of Thread objects), and
provide the initial state of the variables accessed inside the synchronized blocks.
We establish that for correctly annotated, bounded Java programs, correctness of
synchronization is equivalent to termination of the extracted SyncTask program.

As a proof-of-concept of the algorithmic solvability of the termination prob-
lem for SyncTask programs, we show how to transform it into a reachability prob-
lem on hierarchical Colored Petri Nets1 (CPNs) [7]. We define how to extract
CPNs automatically from SyncTask programs, following a previous technique
from Westergaard [18]. Then, we establish that a SyncTask program terminates
if and only if the extracted CPN always reaches dead markings (i.e., CPN con-
figurations without successors) where the tokens representing the threads are
in a unique end place. Standard CPN analysis tools can efficiently compute the
reachability graphs, and check whether the termination condition holds. Also,
in case that the condition does not hold, an inspection of the reachability graph
easily provides the cause of non-termination.

We implement the extraction of SyncTask programs from annotated Java
and the translation of SyncTasks to CPNs as the STaVe tool. We evaluate the
tool on two test-cases, by generating CPNs from annotated Java programs and
analyzing these with CPN Tools [8]. The first test-case evaluates the scalability
of the tool w.r.t. the size of program code that does not affect the synchronization
behavior of the program. The second test-case evaluates the scalability of the
tool w.r.t. the number of synchronizing threads. The results show the expected
exponential blow-up of the state-space, but we were still able to analyze the
synchronization of several dozens of threads.

In summary, this work makes the following contributions: (i) the SyncTask
language to model the synchronization behavior of programs with CVs, (ii) an
annotation scheme to aid the extraction of the synchronization behavior of Java
programs, (iii) an extraction scheme of SyncTask models from annotated Java
programs, (iv) a reduction of the termination problem for SyncTask programs

1 The choice of formalism has been mainly based on the simplicity of CPNs as a
general model of concurrency, rather than on the existing support for efficient model
checking. For the latter, model checking tools exploiting parametricity or symmetries
in the models may prove more efficient in practice.

6 P. de Carvalho Gomes et al.

to a reachability problem on CPNs, (v) an implementation of the framework by
means of STaVe, and (vi) its experimental evaluation.

The remainder of the paper is organized as follows. Section 2 introduces Sync-
Task. Section 3 describes the mapping from annotated Java to SyncTask, while
Sect. 4 presents the translation into CPNs, and presents test-cases. We discuss
related work in Sect. 5. Section 6 concludes and suggests future work.

2 SyncTask

SyncTask abstracts from most features of full-fledged programming languages.
For instance, it does not have objects, procedures, exceptions, etc. However, it
features the relevant aspects of thread synchronization. We now describe the
language syntax, types, and semantics.

2.1 Syntax and Types

The SyncTask syntax is presented in Fig. 1. A program has two main parts:
ThreadType*, which declares the different types of parallel execution flows, and
Main, which contains the variable declarations and initializations and defines
how the threads are composed, i.e., it statically declares how many threads of
each type are spawned.

Fig. 1. SyncTask syntax

Each ThreadType consists of adjacent SyncBlocks, which are mutually exclu-
sive code blocks, guarded by a lock. A code block is defined as a sequence of
statements, which may even be another SyncBlock. Notice that this allows nested
SyncBlocks, thus enabling the definition of complex synchronization schemes
with more than one lock.

There are four primitive types: booleans (Bool), bounded integers (Int),
reentrant locks (Lock), and condition variables (Cond). Expressions are evaluated
as in Java. The boolean and integer operators are the standard ones, while max
and min return a variable’s bounds. Operations between integers with different

Specification and Verification of Synchronization with CVs 7

bounds (overloading) are allowed. However, an out-of-bounds assignment leads
the program to an error configuration.

Condition variables are manipulated by the unary operators wait, notify,
and notifyAll. Currently, the language provides only two control flow con-
structs: while and if-else. These suffice for the illustration of our technique,
while the addition of other constructs is straightforward.

The Main block contains the global variable declarations with initializa-
tions (VarDecl*), and the thread composition (StartThread*). A variable is
defined by its type and name, followed by the initialization arguments. The
number of parameters varies per type: Lock takes no arguments; Cond is initial-
ized with a lock variable; Bool takes either a true or a false literal; Int takes
three integer literals as arguments: the lower and upper bounds, and the initial
value, which must be in the given range. Finally, start takes a positive number
and a thread type, signifying the number of threads of that type it spawns.

Fig. 2. Modelling of synchronization via a shared buffer in SyncTask

Example 1 (SyncTask program). The program in Fig. 2 models synchroniza-
tion via a shared buffer. Producer and Consumer represent the synchronization
behavior: threads synchronize via the CV m cond to add or remove elements,
and wait if the buffer is full or empty, respectively. Waiting threads are woken
up by notifyAll after an operation is performed on the buffer, and compete for
the monitor to resume execution. The main block contains variable declarations
and initialization. The lock m lock is associated to m cond. b els is an integer
in the interval [0,1] (initially set to 1), and represents the number of elements in
the buffer. One Producer and two Consumer threads are spawned with start.

2.2 Structural Operational Semantics

We now define the semantics of SyncTask, to provide the means for establishing
formal correctness results.

The semantic domains are defined as follows. Booleans are represented as
usual. Integer variables are triples Z × Z × Z, where the first two elements are
the lower and upper bound, and the third is the current value. A lock o is a pair
(Thread id ∪ {⊥}) × N of the id of the thread holding the lock (or ⊥, if none),

8 P. de Carvalho Gomes et al.

and a counter of how many times it was acquired. A condition variable d simply
stores its respective lock, which is retrieved with the auxiliary function lock(d).

SyncTask contains global variables only and all memory operations are syn-
chronized. Thus, we assume the memory to be sequentially consistent [11]. Let
μ represent a program’s memory. We write μ(l) to denote the value of variable l,
and μ[l �→ v] to denote the update of l in μ with value v.

A thread state is either running (R) if the thread is executing, waiting (W)
if it has suspended the execution on a CV, or notified (N) if another thread has
woken up the suspended thread. The states W and N also contain the CV d
that a thread is/was waiting on, and the number n of times it must reacquire
the lock to proceed with the execution. The auxiliary function waitset(d) returns
the id’s of all threads waiting on a CV d.

Fig. 3. Operational rules for synchronization

We represent a thread as (θ, t,X), where θ denotes its id, t the executing
code, and X its state. We write T = (θi, ti,Xi)|(θj , tj ,Xj) for a parallel thread
composition, with θi �= θj . Also, T |(θ, t,X) denotes a thread composition, assum-
ing that θ is not defined in T . For convenience, we abuse set notation to denote
the composition of threads in the set; e.g., T d

W = {(θ, t, (W,d, n))} represents
the composition of all threads in the wait set of d. A program configuration is
a pair (T, μ) of the threads’ composition and its memory. A thread terminates
if the program reaches a configuration where its code t is empty (ε); a program
terminates if all its threads terminate.

Specification and Verification of Synchronization with CVs 9

The initial configuration is defined by the declarations in Main. As
expected, the variable initializations set the initial value of μ. For example,
Int i(lb,ub,v) defines a new variable such that μ(i) = (lb, ub, v), lb ≤ v ≤ ub,
and Lock o() initializes a lock μ(o) = (⊥, 0). The thread composition is defined
by the start declarations; e.g., start(2,t) adds two threads of type t to the
thread composition: (θ, t, R)|(θ′, t, R).

Figure 3 presents the operational rules, with superscripts a−h denoting condi-
tions. For readability, we just present the rules for the synchronization statements,
as the rules for the remaining statements are standard (see [2, Sect. 3.4-8]).

In rule [s1], a thread acquires a lock, if available, i.e., if it is not assigned to
any other thread and the counter is zero. Rule [s2] represents lock reentrancy
and increases the lock counter. Both rules replace synchronized with a primed
version to denote that the execution of synchronization block has begun. Rule
[s3] applies to the computation of statements inside synchronized blocks, and
requires that the thread holds the lock. Rule [s4] preserves the lock, but decreases
the counter upon exiting a synchronized block. In rule [s5], a thread finishes the
execution of a synchronized block, and relinquishes the lock.

In the [wt] rule, a thread changes its state to W , stores the counter of the
CV’s lock, and releases it. The rules [nf1] and [na1] apply when a thread notifies
a CV with an empty wait set; the behavior is the same as for the skip statement.
By rule [nf2], a thread notifies a CV, and one thread in its wait set is selected
non-deterministically, and its state is changed to N . Rule [na2] is similar, but
all threads in the wait set are awoken. By the rule [rd], a thread reacquires all
the locks it had relinquished, changes the state to R, and resumes the execution
after the control point where it invoked wait.

Finally, we define a SyncTask program to have a correct synchronization iff
it terminates.

3 From Annotated Java to SyncTask

The annotation process supported by STaVe relies on the programmer’s know-
ledge about the intended synchronization, and consists of providing hints to the
tool to automatically map the synchronization to a SyncTask program. In this
section we present an annotation scheme for writing such hints, and sketch a
correctness argument for the extraction.

3.1 An Annotation Language for Java

An annotation in STaVe binds to a specific type of Java declaration (e.g.,
classes or methods). The annotation starts in a comment block immediately
above a declaration, with additional annotations inside the declaration’s body.
Annotations share common keywords (though with a different semantics), and
overlap in the declaration types they may bind to. The ambiguity is resolved by
the first keyword (called a switch) found in the comment block. Comments that
do not start with a keyword are ignored.

10 P. de Carvalho Gomes et al.

Fig. 4. Annotation language for Java programs

Figure 4 presents the annotation language. Arguments given within square
brackets are optional, while text within parentheses tells which declaration types
the annotation binds to. The programmer has to (correctly) provide, by means of
annotations, the following three types of information: resources, synchronization
and initialization.

A resource is a data type that is manipulated by the synchronization. It
abstracts the state of a data structure to a bounded integer, which is potentially
a ghost variable (as in [12]), and defines how the methods operate on it. For
example, the annotation abstracts a linked list or a buffer to its size. In case
a resource is mapped to a ghost variable, we say that the variable extends the
program memory. Resources bind to classes only, and the switch @resource
starts the declaration. @value and @capacity define, respectively, which class
member, or ghost variable, stores the abstract state, and its maximum value.
The keyword @operation binds to method declarations, and specifies that the
method potentially alters the resource state. Similarly, @predicate binds to
methods and specifies that the method returns a predicate about the state.

There are two ways to extract an annotated method’s behavior. @code tells
STaVe not to process the method, but instead to associate it to the code
enclosed between @{ and }@, while @inline tells STaVe to try to infer the
method declaration with the potential aid of @maps, which syntactically replaces
a Java command (e.g., a method invocation) with a SyncTask code snippet.

The synchronization annotation defines the observation scope. It binds to
synchronized blocks and methods, and the switch @syncblock starts the dec-
laration. Nested synchronization blocks and methods are not annotated; all its
information is defined in the top-level annotation. The keywords @lock and
@condvar define which mutex and condition object to observe. @monitor has
the combined effect of both keywords for an object’s monitor, i.e., a pair of a
lock and a CV. Here, @resource annotates that a local variable is a reference
to a global object in the heap, which is observed and is represented by an alias.

Specification and Verification of Synchronization with CVs 11

Initialization annotations define the global pre-condition for the elements
involved in the synchronization, i.e., they define the lock, condition variable
and resource declarations with initial value, and the global thread composition.
They bind to methods, and the switch @synctask starts the declaration. Here,
@resource, @lock, @condvar and @monitor define the objects being observed,
and assign global aliases to them. Finally, @thread defines that the following
object corresponds to a spawned thread that synchronizes within the observed
synchronization objects. The object’s type must have been annotated with a
synchronization annotation.

Example 2 (Annotated Java). The SyncTask program in Fig. 2 was generated
from the Java program in Fig. 5. We now discuss how the annotations delimit
the expected synchronization. The example also illustrates the extraction.

The @syncblock annotations (lines 5/19) add the following synchronized
blocks to the observed synchronization behavior, and its arguments @monitor
and @resource (lines 6/20 and 7/21, respectively) map local references to global
aliases. The @resource annotation (line 29) starts the definition of a resource
type. @value, @object, @capacity (lines 29/30/31) define how the abstract state

Fig. 5. Annotated Java program synchronizing via shared buffer

12 P. de Carvalho Gomes et al.

is represented by a bounded integer; in this example, the state is equivalent
to els, which is an abstraction of the number of elements in a buffer. The
@operation (lines 34/36) and @predicate (lines 38/40) annotations define how
the methods operate on the state. Notice that the annotated methods have been
inlined in Fig. 2, i.e., add is inlined in lines 5 and 6. The @synctask annotation
above main starts the declaration of locks, CVs and resources, and @thread
annotations add the underneath objects to the global thread composition.

3.2 Synchronization Correctness

The synchronization property of interest here is that “every thread synchroniz-
ing under a set of condition variables eventually exits the synchronization”. We
work under the assumption that every such thread eventually reaches its syn-
chronization block. There exist techniques (such as [16]) for checking the liveness
property that a given thread eventually reaches a given control point; checking
validity of the above assumption is therefore out of the scope of the present work.

The following definition of correct synchronization applies to a one-time syn-
chronization of a Java program. However, if it can be proven that if the initial
conditions are the same every time the synchronization scheme is spawned, then
the scheme is correct for an arbitrary number of invocations. This may be proven
by showing that a Java program always resets the variables observed in the syn-
chronization before re-spawning the threads.

Definition 1 (Synchronization Correctness). Let P be a Java program
with a one-time synchronization such that every thread eventually reaches the
entry point of its synchronization block. We say that P has a correct synchro-
nization iff every thread eventually reaches the first control point after the block.

We defined both synchronization correctness and the termination of the cor-
responding SyncTask program relative to the correctness of the annotations pro-
vided by the programmer. Although out of the scope of the present work, the
annotations can potentially be checked, or partially generated, with existing sta-
tic analysis techniques. Further, we assume the memory model of synchronized
actions in a Java program to be sequentially consistent.

We now connect synchronization schemes of annotated Java programs with
SyncTask programs. We shall assume that the programmer has correctly anno-
tated the program, as described in Sect. 3.1.

Theorem 1 (SyncTask Extraction). A correctly annotated Java program
has a correct synchronization iff its corresponding SyncTask terminates.

Proof (Sketch). To prove the result, we define a binary relation R between the
configurations of the Java program and its SyncTask, and show it to be a weak
bisimulation (see [15]), implying that the SyncTask program eventually reaches a
terminal configuration (i.e., all threads terminate) if and only if the original Java
program has a correct synchronization. We refer to the accompanying technical

Specification and Verification of Synchronization with CVs 13

report [5] for the full formalization, and for the most interesting cases, namely
the notify and wait instructions.

The Java annotations define a bidirectional mapping between (some of) the
Java program variables and ghost variables and the corresponding bounded vari-
ables in SyncTask. Thus, we define R to relate configurations that agree on com-
mon variables. Similarly, we define the set of visible transitions as the ones that
update common variables, and treat all other transitions as silent. We argue
that R is a weak bisimulation in the standard fashion: We establish that (i) the
initial values of the common variables are the same for both programs, and
(ii) assuming that observed variables in a Java program are only updated inside
annotated synchronized blocks, we establish that any operation that updates a
common variable has the same effect on it in both programs.

To prove (i) it suffices to show that the initial values in the Java program are
the same as the ones provided in the initialization annotation, as described in
Sect. 3.1. (Here we rely on the correctness of the annotations; however, existing
techniques such as [13,14] can potentially be used for checking this.) The proof
of (ii) requires to show that updates to a common variable yield the same result
in both programs. It goes by case analysis on the Java instructions set. Each case
shows that for any configuration pair of R, the operational rules for the given
Java instruction and for the corresponding SyncTask instruction lead to a pair
of configurations that again agree on the common variables. As the semantics
of SyncTask presented in Sect. 2 has been designed to closely mimic the Java
semantics defined in [2], the elaboration of this is straightforward. �

4 Verification of Synchronization Correctness

In this section we show how termination of SyncTask programs can be reduced
to a reachability problem on Colored Petri Nets (CPN), and present an experi-
mental evaluation of the verification with STaVe and CPN Tools.

4.1 SyncTask Programs as Colored Petri Nets

Various techniques exist to prove termination of concurrent systems. For Sync-
Task, it is essential that such a technique efficiently encodes the concurrent
thread interleaving, the program’s control flow, synchronization primitives, and
basic data manipulation. Here, we have chosen to reduce the problem of termi-
nation of SyncTask programs to a reachability problem on hierarchical CPNs
extracted from the program. CPNs allow a natural translation of common lan-
guage constructs into CPN components (for this we re-use results from Wester-
gaard [18]), and are supported by analysis tools such as CPN Tools. We assume
some familiarity with CPNs, and refer the reader to [7] for a detailed exposition.

The color set THREAD associates a color to each Thread type declaration,
and a thread is represented by a token with a color from the set. Some compo-
nents are parametrized by THREAD, meaning that they declare transitions, arcs,

14 P. de Carvalho Gomes et al.

or places for each thread type. For illustration purposes, we present the para-
metrized components in an example scenario with three thread types: blue (B),
red (R), and yellow (Y).

The production rules in Fig. 1 are mapped into hierarchical CPN compo-
nents, where substitute transitions (STs; depicted as doubly outlined rectangles)
represent the non-terminals on the right-hand side. Figure 6a shows the compo-
nent for the start symbol SyncTask. The Start place contains all thread tokens in
the initial configuration, connected by arcs (one per color) to the STs denoting
the thread types, and End, which collects the terminated thread tokens. It also
contains the places that represent global variables.

Figure 6b shows the modelling of wait. The transition wait cond produces
two tokens: one into the place modelling the CV, and one into the place modelling
the lock, representing its release. The other transition models a notified thread
reacquiring the lock, and resuming the execution. Figure 6c shows the modelling
of notify. The Empty cond transition is enabled if the CV is empty, and the
other transitions, with one place per color, model the non-deterministic choice
of which thread to notify. The component for notifyAll (not shown) is similar.

The initialization in Main declares the initial set of tokens for the places
representing variables, and the number and colors of thread tokens. A Lock
creates a place containing a single token; it being empty represents that some
thread holds the lock. The color set CPOINT represents the control points of
wait statements. A Condition variable gives rise to an empty place representing
the waiting set, with color set CONDITION. Here, colors are pairs of THREAD
and CPOINT. Both data are necessary to route correctly notified threads to the
correct place where they resume execution.

4.2 SyncTask Termination as CPN Reachability

We now enunciate the result that reduces termination of a SyncTask program
to a reachability problem on its corresponding CPN.

Theorem 2 (SyncTask Termination). A SyncTask program terminates iff
its corresponding CPN unavoidably reaches a dead configuration in which the
End place has the same marking as the Start place in the initial configuration.

Proof (Sketch). A CPN declares a place for each SyncTask variable. Moreover,
there is a clear correspondence between the operational semantics of a SyncTask
construct and its corresponding CPN component. It can be shown by means of
weak bisimulation that every configuration of a SyncTask program is matched
by a unique sequence of consecutive CPN configurations. Therefore, if the End
place in a dead configuration has the same marking as the Start place in the
initial configuration, then every thread in the SyncTask program terminates its
execution, for every possible scheduling (note that the non-deterministic thread
scheduler is simulated by the non-deterministic firing of transitions). �

CPN termination itself can be verified algorithmically by computing the
reachability graph of the generated CPN and checking that: (i) the graph has

Specification and Verification of Synchronization with CVs 15

Fig. 6. Top-level component and condition variables operations

no cycles, and (ii) the only reachable dead configurations are the ones where the
marking in the End place is the same as the marking in the Start place in the
initial configuration.

4.3 The STaVe Tool

We have implemented the parsing of annotated Java programs to generate Sync-
Task programs, and the extraction of hierarchical CPNs from SyncTask, as the
STaVe [4] tool. We now describe the experimental evaluation of our frame-
work. This includes the process of annotating Java programs, extraction of the
corresponding CPNs, and the analysis of the nets using CPN Tools.

16 P. de Carvalho Gomes et al.

Our first test case evaluates the scalability of STaVe w.r.t. the size of the
part of program that does not affect the synchronization. For this, we anno-
tated PIPE [3] (version 4.3.2), a rather large CPN analysis tool written in Java.
It contains a single (and simple) synchronization scheme using CVs: a thread
that sends logs to a client via a socket waits for a server thread to establish the
connection, and then to notify. This test case illustrates that synchronization
involving CVs is typically simple and bounded. Manually annotating the pro-
gram took just a few minutes, once the synchronization scheme was understood.
The CPN extraction time was negligible, and the verification process took just
a few milliseconds to establish the correctness.

Our second test case evaluates the scalability of STaVe w.r.t. the number
of threads. We took the example program from Sect. 2, and instantiated it with
a varying number of threads, buffer capacity, and initial value. Table 1 presents
the practical evaluation for a number of initial configurations.

Table 1. Statistics for producer/consumer

We observe an expected correlation between the number of tokens represent-
ing threads, the size of the state space, and the verification time. Less expected
for us was the observed influence of the buffer capacities and initial states. We
conjecture that the initial configurations that model high contention, i.e., many
threads waiting on CVs, induce a larger state space. The experiments also show
how termination depends on the thread composition and the initial state. Hence,
a single change in any parameter may affect the verification result.

Specification and Verification of Synchronization with CVs 17

5 Related Work

Leino et al. [14] propose a compositional technique to verify the absence of dead-
locks in concurrent systems with both locks and channels. They use deductive
reasoning to define which locks a thread may acquire, or to impose an obligation
for a thread to send a message. The authors acknowledge that their quantita-
tive approach to channels does not apply to CVs, as messages passed through a
channel are received synchronously, while a notification on a condition variable
is either received, or else is lost.

Popeea and Rybalchenko [16] present a compositional technique to prove
termination of multi-threaded programs, which combines predicate abstraction
and refinement with rely-guarantee reasoning. The technique is only defined for
programs that synchronize with locks, and it cannot be easily generalized to
support CVs. The reason for this is that the thread termination criterion is the
absence of infinite computations; however, a finite computation where a waiting
thread is never notified is incorrectly characterized as terminating.

Wang and Hoang [17] propose a technique that permutes actions of execu-
tion traces to verify the absence of synchronization bugs. Their program model
considers locks and condition variables. However, they cannot verify the prop-
erty considered here, since their method does not permute matching pairs of
wait-notify. For instance, it will not reorder a trace where, first, a thread waits,
and then, another thread notifies. Thus, their method cannot detect the case
where the notifying thread is scheduled first, and the waiting thread suspends
the execution indefinitely.

Kaiser and Pradat-Peyre [9] propose the modelling of Java monitors in Ada,
and the extraction of CPNs from Ada programs. However, they do not precisely
describe how the CPNs are verified, nor provide a correctness argument about
their technique. Also, they only validate their tool on toy examples with few
threads. Our tool is validated on larger test cases, and on a real program.

Kavi et al. [10] present PN components for the synchronization primitives in
the Pthread library for C/C++, including condition variables. However, their
modelling of CVs just allows the synchronization between two threads, and no
argument is presented on how to use it with more threads.

Westergaard [18] presents a technique to extract CPNs for programs in a toy
concurrent language, with locks as the only synchronization primitive. Our work
borrows much from this work w.r.t. the CPN modelling and analysis. However,
we analyze full-fledged programming languages, and address the complications
of analyzing programs with condition variables.

Finally, Van der Aalst et al. [1] present strategies for modelling complex
parallel applications as CPNs. We borrow many ideas from this work, especially
the modelling of hierarchical CPNs. However, their formalism is over-complicated
for our needs, and we therefore simplify it to produce more manageable CPNs.

18 P. de Carvalho Gomes et al.

6 Conclusion

We presented a technique to prove the correct synchronization of Java programs
using condition variables. Correctness here means that if all threads reach their
synchronization blocks, then all will eventually terminate the synchronization.
Our technique does not avoid the exponential blow-up of the state space caused
by the interleaving of threads; instead, it alleviates the problem by isolating the
synchronization behavior.

We introduced SyncTask, a simple language to capture the relevant aspects of
synchronization using condition variables. Also, we define an annotation scheme
for programmers to map the expected synchronization in a Java program to
a SyncTask program. We establish that the synchronization is correct w.r.t.
the above-mentioned property iff the corresponding SyncTask terminates. As
a proof-of-concept, to check termination we define a translation from SyncTask
programs into Colored Petri Nets such that the program terminates iff the
net invariably reaches a special configuration. The extraction of SyncTask from
annotated Java programs, and the translation to CPNs, is implemented as the
STaVe tool. We validate our technique on some test-cases using CPN Tools.

Our current results hold for a number of restrictions on the analyzed pro-
grams. In future work we plan to address and relax these restrictions, integrate
special-purpose static analyzers for the separate types of required annotations,
incorporate more sophisticated model checkers for checking termination of Sync-
Task programs, and perform a more diverse experimental evaluation and com-
parison with other verification techniques.

References

1. Aalst, W.M.P., Stahl, C., Westergaard, M.: Strategies for modeling complex
processes using colored petri nets. In: Jensen, K., Aalst, W.M.P., Balbo, G.,
Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VII. LNCS, vol. 7480, pp. 6–55. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38143-0 2

2. Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: An event-based structural oper-
ational semantics of multi-threaded java. In: Alves-Foss, J. (ed.) Formal Syntax
and Semantics of Java. LNCS, vol. 1523, pp. 157–200. Springer, Heidelberg (1999).
doi:10.1007/3-540-48737-9 5

3. Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: A tool for the performance
evaluation of generalised stochastic Petri nets. SIGMETRICS 36(4), 34–39 (2009)

4. de Carvalho Gomes, P.: SyncTAsk VErifier (2015). http://www.csc.kth.se/
∼pedrodcg/stave

5. de Carvalho Gomes, P., Gurov, D., Huisman, M.: Algorithmic verification of mul-
tithreaded programs with condition variables. Technical report, KTH Royal Insti-
tute of Technology, October 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-176006

6. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun.
ACM 17(10), 549–557 (1974)

http://dx.doi.org/10.1007/978-3-642-38143-0_2
http://dx.doi.org/10.1007/978-3-642-38143-0_2
http://dx.doi.org/10.1007/3-540-48737-9_5
http://www.csc.kth.se/~pedrodcg/stave
http://www.csc.kth.se/~pedrodcg/stave
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176006
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176006

Specification and Verification of Synchronization with CVs 19

7. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st edn. Springer, Heidelberg (2009)

8. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transfer
9(3–4), 213–254 (2007)

9. Kaiser, C., Pradat-Peyre, J.-F.: Weak fairness semantic drawbacks in java mul-
tithreading. In: Kordon, F., Kermarrec, Y. (eds.) Ada-Europe 2009. LNCS, vol.
5570, pp. 90–104. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01924-1 7

10. Kavi, K., Moshtaghi, A., Chen, D.J.: Modeling multithreaded applications using
petri nets. Int. J. Parallel Prog. 30(5), 353–371 (2002)

11. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

12. Leavens, G., Baker, A., Ruby, C.: JML: A notation for detailed design. In: Kilov, H.,
Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses and Sys-
tems. The Springer International Series in Engineering and Computer Science, vol.
523, pp. 175–188. Springer, US (1999)

13. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00590-9 27

14. Leino, K.R.M., Müller, P., Smans, J.: Deadlock-free channels and locks. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 407–426. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11957-6 22

15. Milner, R.: Communicating and Mobile Systems: the π-Calculus, pp. 52–53. Cam-
bridge University Press, New York (1999). Chap. 6

16. Popeea, C., Rybalchenko, A.: Compositional termination proofs for multi-threaded
programs. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
237–251. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5 17

17. Wang, C., Hoang, K.: Precisely deciding control state reachability in concurrent
traces with limited observability. In: McMillan, K.L., Rival, X. (eds.) VMCAI
2014. LNCS, vol. 8318, pp. 376–394. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54013-4 21

18. Westergaard, M.: Verifying parallel algorithms and programs using coloured petri
nets. In: Jensen, K., Aalst, W.M., Ajmone Marsan, M., Franceschinis, G., Kleijn, J.,
Kristensen, L.M. (eds.) Transactions on Petri Nets and Other Models of Concur-
rency VI. LNCS, vol. 7400, pp. 146–168. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35179-2 7

http://dx.doi.org/10.1007/978-3-642-01924-1_7
http://dx.doi.org/10.1007/978-3-642-00590-9_27
http://dx.doi.org/10.1007/978-3-642-11957-6_22
http://dx.doi.org/10.1007/978-3-642-28756-5_17
http://dx.doi.org/10.1007/978-3-642-54013-4_21
http://dx.doi.org/10.1007/978-3-642-54013-4_21
http://dx.doi.org/10.1007/978-3-642-35179-2_7
http://dx.doi.org/10.1007/978-3-642-35179-2_7

An Interval Logic
for Stream-Processing Functions:
A Convolution-Based Construction

Brijesh Dongol(B)

Department of Computer Science, Brunel University, London, UK
Brijesh.Dongol@brunel.ac.uk

Abstract. We develop an interval-based logic for reasoning about sys-
tems consisting of components specified using stream-processing func-
tions, which map streams of inputs to streams of outputs. The construc-
tion is algebraic and builds on a theory of convolution from formal power
series. Using these algebraic foundations, we uniformly (and systemat-
ically) define operators for time- and space-based (de)composition. We
also show that Banach’s fixed point theory can be incorporated into the
framework, building on an existing theory of partially ordered monoids,
which enables a feedback operator to be defined algebraically.

1 Introduction

Many systems (e.g., hybrid systems) require logics that are capable of reasoning
about both discrete and continuous behaviours; scalability in reasoning methods
for such systems has long been an open challenge. Especially difficult is a logic
that enables reasoning about time- and space-based properties, including feed-
back, to be (de-)composed in a uniform manner. From a uniformity perspective,
one way forward is the development of logics and reasoning frameworks from
algebraic foundations [12].

In this paper, we build on our previous work on convolution [8], which is
a concept taken from formal power series [2,9]. Essentially, convolution defines
multiplication for functions of type QM = M → Q , where M is a partial monoid
(see Sect. 3) and Q is a quantale (see Sect. 5). For any x ∈ M , the convolution
of f , g ∈ QM is given by

(f · g) x =
∑

x=y◦z
f y � g z .

That is, multiplication · at the level of the functions f and g is defined as the
sum of all possible decompositions of the argument x into components y and z ,
where x = y ◦ z and each term in the sum is obtained by applying f to y and g
to z , then multiplying the results of the function applications using �.

There are many possible instantiations of M and Q , which allows the algebra
to capture many different models of computation (see [8] for details). As we shall
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 20–35, 2017.
DOI: 10.1007/978-3-319-53946-1 2

An Interval Logic for Stream-Processing Functions 21

see, in this paper, the quantale Q that we consider is a boolean quantale, and M
itself has a richer algebraic structure. In particular, we use a monoidal structure
M consisting of three different multiplication operators: one for (de)composing
time, and two for different types of functional (de)composition. We show that
by lifting each of these multiplications using convolution results in a tri-quantale
over QM .

From these algebraic foundations, we construct a new logic for a compu-
tation model, suited for reasoning about stream-based systems (e.g., hybrid
systems). The logic combines interval-based reasoning [14,16,19] with stream-
processing functions [3,17], where components are modelled by functions from
streams of inputs to streams of outputs (see Fig. 1). A basic form of this logic has
already been described [8,14], but this existing treatment does not distinguish
between inputs and outputs. As such, the basic form is unable to cope with func-
tional composition and feedback. The extended logic in this paper copes with
both in a straightforward manner, while retaining the generality of the previous
approach [8]. We discuss possible variations of our logic throughout this paper.

This paper is structured as follows. Section 2 introduces our target compu-
tation model of stream-processing functions and Sect. 3 discusses the algebraic
structure, which is used to define pipelined and parallel composition. Section 4
presents a method for reasoning about feedback, adapting Cataldo et al.’s alge-
braic constructions [4]. Section 5 provides further algebraic background (quan-
tales and convolution), which we use in Sect. 6 to develop our full logic, consisting
of both intervals and stream-processing functions. Section 7 describes method for
reasoning about modalities and Sect. 8 concludes and discusses future work.

2 Stream-Processing Functions

We aim to reason about systems that evolve over time. These may be modelled
by streams, which are total functions of type T → X , where X denotes the
(potentially infinite) set of values and (T ,≤) is a linearly ordered set, denoting
times. It is well known that T can be instantiated to, for instance, Z to reason
about discrete systems and R to reason about hybrid systems [4,5,10].

Systems may take more than one input stream and produce multiple output
streams. If Xi ⊆ X is a set of values, we let XT ,m denote XT

1 ×XT
2 ×· · ·×XT

m .
Thus, each x ∈ XT ,m is an m-tuple and each xi is a stream over type Xi . An
(m,n)-ary stream-processing function with m input and n output streams is a
function f : XT ,m → Y T ,n . Note that streams (and hence stream-processing
functions) do not contain variables; stream-processing functions simply take an
m-tuple of input values and transform them into an n-tuple of output values.

Although a stream-processing function (of type XT) defines values over all
time in T , reasoning typically only takes place after initialisation. For conve-
nience, we assume 0 ∈ T and that stream-processing functions are initialised at
time 0.

One of the benefits of using stream-processing functions (which naturally
distinguish between input/output streams) is that they simplify reasoning about

22 B. Dongol

yn

. . . f
x2

x1

xm

. . .

y1
y2

Fig. 1. (m,n)-ary stream-processing function

feedback. In order to ensure feedback is well defined, we require that the streams
are κ-causal, with some delay κ. A stream-processing function is causal iff its
input until time t ≥ 0 completely determines its output until time t , and is κ-
causal iff its input until time t ≥ 0 completely determines its output until time
t + κ (where κ > 0). (Delayed) causality imposes the basic requirement that
a system cannot anticipate the future values of its inputs. These concepts are
formalised below. We use notation f =t g to denote ∀u ∈ T . u ≤ t ⇒ f u = g u,
where, following algebraic conventions, we write f x for function application f (x).

Definition 1. Let f be an (m,n)-ary stream-processing function. We say f is
causal iff

∀x , x ′ ∈ XT ,m , t ∈ T≥0 . (x =t x ′) ⇒ (f x =t f x ′)

and that f is κ-causal with delay κ > 0 iff

∀x , x ′ ∈ XT ,m , t ∈ T≥0 . (x =t x ′) ⇒ (f x =t+κ f x ′).

We will refer to a causal stream-processing function as a behaviour and a κ-causal
stream-processing function as a delayed behaviour.

Example 2. Suppose the temperature of a fridge is given by a stream temp
(whose behaviour is unspecified for now). A controller that turns the motor
on/off to keep the temperature between Kmax and Kmin can be modelled by a
delayed behaviour:

C (temp) = λt : T .

⎧
⎪⎨

⎪⎩

on if temp (t − κ) > Kmax ∧ t ≥ κ

off if temp (t − κ) < Kmin ∨ 0 ≤ t < κ

C temp (t − κ) otherwise

The disjunct 0 ≤ t < κ in the second case defines the initial value of the motor
(upto time κ). �

A possible behaviour of the system from Example 2 is given below.

off
on

Kmin

0

Kmax

t1 t2 t3

C (temp)

temp

An Interval Logic for Stream-Processing Functions 23

The temperature temp fluctuates between Kmax an Kmin . The stream
processing function C takes temp as input and transforms it into some out-
put C (temp) resulting in the values on or off . Note the delay κ between the
value of temp rising above Kmax (e.g., at t1) and the output on, as well as the
value of temp dipping below Kmin (e.g., at t2) and the output off .

3 Composition Algebraically

It is straightforward to see that various composition operators can be defined
for stream-processing functions [3,17], e.g., pipelined composition (see Fig. 2)
as well as parallel composition (see Fig. 3). This section describes an algebraic
construction, where compositions are defined at the level of partial monoids, and
later instantiated to obtain compositions for our computation model of stream-
processing functions. In Sect. 6, we show how our algebraic theory (based on
convolution), can be used to lift these structure to the level of specifications.
First, we recap our algebraic theory.

Partial Monoids and Bi-Monoids. A partial monoid is a structure (M , ◦,D ,E)
such that M is a set (known as the carrier set of the algebra), D ⊆ M × M
the domain of composition, and ◦ : D → M a partial operation of composition.
Composition is associative, x ◦ (y ◦ z) = (x ◦ y) ◦ z , in the sense that if either
side of the equation is defined then so is the other and both sides are equal.
Furthermore, E ⊆ M is a set of (generalised) units, where for each x ∈ M there
exist e, e ′ ∈ E such that e ◦ x = x = x ◦ e ′. We follow the convention of leaving
out the D from the signature of the partial monoids under consideration, where
possible.

Example 3 (Ordered Pairs). Consider the Cartesian product A×A over a set A.
Define

DOP = {(p, q) ∈ (A × A) × (A × A) | π2 p = π1 q}
where πi is the projection onto the ith component of the given tuple. Let EOP =
{(a, a) | a ∈ A}. Define the cartesian fusion product p >> q = (π1 p, π2 q). In
the presence of DOP , the operator >> composes two ordered pairs whenever the
second coordinate of the first one is equal to the first coordinate of the second
one. This turns (A × A, >>,DOP ,EOP) into a partial monoid. �

The definitions of monoids generalise to n operations. For example, for n = 2,
a partial bi-monoid is a structure (M , ◦1, ◦2,E1,E2) such that (M , ◦1,E1) and
(M , ◦2,E2) are partial monoids.

Pipeline and parallel composition. To use this algebraic theory, it is simpler
to view each stream-processing function as sets of input/output pairs, where a
function f : X → Y is represented by a set of pairs {(x , y) : X × Y | x ∈
dom f ∧ y = f x}. The carrier set F for our algebra is defined as follows. Let
Fm,n = XT ,m × Y T ,n be the set of all (m,n)-ary input/output tuples and let

24 B. Dongol

yn

. . . f
x2

x1

xm

g

y1
y2

Fig. 2. Pipelined composition f >> g

F =
⋃

m,n:N Fm,n be the set of all input/output tuples. Also let id be the identity
function.

Pipeline composition takes all output messages from the first component and
uses them as inputs to the second (see Fig. 2).

Lemma 4 (Pipeline composition). (F , >>, id) is a partial monoid with
definedness relation DOP .

a1

. . . f
x2

x1

xm

. . .

g

y1
y2

yn

bl

b2

b1

ak

a2

Fig. 3. Parallel composition f ⊗ g

y

f

g

c1 c2

x1 y1

x2 y2

x

Fig. 4. Duplicating/combining inputs/
outputs

Parallel composition (see Fig. 3) of stream-processing functions simply con-
structs a new tuple, combining the first and second arguments to the multipli-
cation. The proof of this lemma is straightforward. We use notation x � y to
denote concatenation for tuples x and y and 〈 〉 to denote the empty tuple.

Lemma 5 (Parallel composition). (F ,⊗, {(〈 〉, 〈 〉)}) is a (total) monoid,
where multiplication is defined by ((x , y) ⊗ (a, b)) = (x � a, y � b).

The following corollary combines these two results.

Corollary 6. (F , >>,⊗, id, {(〈 〉, 〈 〉)}) is a partial bi-monoid.

Note that because we view stream-processing functions as tuples of inputs to
tuples of outputs, f (x1, x2) may not have the same meaning as f (x2, x1), i.e., the
parallel composition operator is not necessarily commutative. Commutativity
can be regained by using streams of type T → V → X , mapping variable names

An Interval Logic for Stream-Processing Functions 25

V to values X . We leave the study of the (more complicated) stream processing
functions that result from these as a topic of future study.

Clearly, it should be possible for two components operating in parallel to
share inputs, or produce an output that combines the outputs of the two com-
ponents. Such situations can be easily modelled by defining for instance, a dupli-
cator that splits some shared input stream into two disjoint outputs. Similarly,
outputs can be combined by a stream-processing function that collates, com-
bines and processes outputs from several parallel sources. An example is given
in Fig. 4, which defines the component c1 >> (f ⊗ g) >> c2.

4 Feedback

The streams under consideration are over a linear order T . For such models,
the use of Banach’s theory to ensure the existence of a unique fixed point is
well known [4,17]. This includes constructive fixed-point theorems that enable
calculation of this unique fixed point [4]. We recap Cataldo et al.’s main result
(and the background needed to understand this result); then apply it to our
setting of (m,n)-ary stream-processing functions.

Feedback algebraically. Following Cataldo et al., the generalisation of Banach’s
fixed-point theory is given in terms of a pomonoid (as in partially ordered
monoid), which is a structure (Γ,�,⊕,⊥) such that (Γ,⊕,⊥) is a monoid and
(Γ,�) is a partial order with minimum element ⊥. Given a set X and a pomonoid
(Γ,�,⊕,⊥), we define a petric (as in pomonoid metric) to be any d : X ×X → Γ
such that for all x , y , z ∈ X :

1. d x y = ⊥ iff x = y ,
2. d x y = d y x , and
3. d x z � d x y ⊕ d y z

For example, any metric is a petric over the pomonoid (R≥0,≤,+, 0).
An infinite sequence G = (γ0, γ1, . . .) ∈ Γω is decaying iff for all γ ∈ Γ\{⊥}

there exists an n ∈ N such that for all k ≥ n, γk � γ, i.e., for any non-zero value
γ, there is a point in G where the elements from that point onwards are below
γ. An infinite sequence Xs = (x0, x1, . . .) ∈ X ω is Cauchy iff for all γ ∈ Γ\{⊥},
there exists an n ∈ N such that for all k ,m ≥ n, (d xk xm) � γ. We say that
Xs converges to x ∈ X iff the sequence ((d x0 x), (d x1 x), . . .) ∈ Γω is decaying.
The set X is Cauchy complete iff for all Cauchy sequences (x0, x1, . . .) ∈ X ω,
there exists a unique x ∈ X such that the sequence (x0, x1, . . .) converges to x .

These definitions are used to define a scheme for constructing the fixed point
of a function f : X → X , given by the following recursion, where i ≥ 0:

f 0 x = x f i+1 x = f (f i x)

26 B. Dongol

We say f is a strict contraction iff ∀x , y ∈ X . x �= y ⇒ d (f x) (f y) � d x y
for some petric d . For a discrete time domain, a strict contraction is enough to
ensure a fixed-point is reached. Given x , y ∈ X and n ∈ N, let

Bn x y =
{⊕k

i=n d (f i x) (f i y) | k ∈ N ∧ k ≥ n
}

A strict contraction f is a decaying contraction iff for all x , y ∈ X , there exists
a decaying sequence (γ0, γ1, ...) ∈ Γω where γn is an upper bound for Bn x y .

Theorem 7 ([4]). If X is Cauchy complete with respect to petric d, and if
f : X → X is a decaying contraction, then f has a unique fixed point fix (f) ∈ X .
Moreover, for any x ∈ X , the sequence ((f 0 x), (f 1 x), ...) converges to fix (f).

Feedback for stream-processing functions. We now define feedback for stream-
processing functions, which feeds k outputs of an (m + k ,n + k)-ary delayed
behaviour back to k inputs (see Fig. 5). Notation π[i,j](x1, x2, . . . , xn) denotes
the projection π[i,j](xi , xi+1, . . . , xj) for 1 ≤ i ≤ j ≤ n.

Definition 8. Let f : XT ,m × ZT ,k → Y T ,n × ZT ,k be an (m + k ,n + k)-ary
stream-processing function. Then μk f is a (m,n)-ary stream-processing function
such that the value (y1, . . . , yn) of (μk f)(x1, . . . , xm) is given by

(y1, . . . , yn , z1, . . . , zk) = f (x1, . . . , xm , z1, . . . , zk)

where (z1, . . . , zk) is the solution of the equation

(z1, . . . , zk) = π[n+1,n+k] f (x1, . . . , xm , z1, . . . , zk). (1)

. . .

. . .
x2

x1

xm

. . .

y1
y2

yn

f

. . .

z1
z2

zk

Fig. 5. Feedback composition µk f

The theorem below follows immediately via an application of Cataldo et al’s
result for eventually decaying contractions. We elide the definition of eventually
decaying, simply noting that every decaying contraction is eventually decaying.

An Interval Logic for Stream-Processing Functions 27

Theorem 9. If f : X → X is κ-causal, then f is a decaying contraction and
has a unique fixed point.

Corollary 10. If f : XT ,m×ZT ,k → Y T ,n×ZT ,k is κ-causal, then π[n+1,n+k] f
is a decaying contraction and has a unique fixed point.

Example 11. Consider the controller in Example 2 operating in parallel with an
environment (which modifies temp) depending on the value of the motor. We
define

CE (motor) = λt : T . if motor t = on then lower t else raise t

where we assume lower (respectively, raise) is a continuous monotonically
decreasing (increasing) function describing the rate of change of temp. The over-
all system is described by the composition: μ1(C >> CE). This function is well-
defined since its fixed point is uniquely determined. C >> CE is contractive with
delay κ, and hence, Corollary 10 can be applied.

5 Quantales and Power Series

The framework we have defined thus far enables reasoning about and composing
stream-processing functions. We wish to extend this into a reasoning framework,
and to this end, incorporate an interval temporal logic [5,10,16,19], which may be
used to reason about the safety, liveness, and real-time properties that a system
possesses. It turns out that this extension can be constructed using an algebraic
approach, by lifting the notion of a stream-processing function to a behaviour,
which is a predicate over a stream-processing function and an interval.

This section presents the algebraic underpinnings to make the above aims
possible. A quantale is a structure (Q ,≤, ·, 1) such that (Q ,≤) is a complete
lattice, (Q , ·, 1) is a monoid and the distributivity axioms

(
∑

i∈I

xi) · y =
∑

i∈I

(xi · y), x · (
∑

i∈I

yi) =
∑

i∈I

(x · yi)

hold, where
∑

X denotes the supremum of a set X ⊆ Q . We write 0 and U for
the least and the greatest elements of the quantale with respect to ≤. The two
annihilation laws x · 0 = 0 = 0 · x hold in any quantale.

Example 12. The quantale of booleans B = {0, 1} with 0 ≤ 1, binary supremum
or join � and composition as binary infimum or meet x · y = x � y plays an
important role for interval logics. It also satisfies distributivity laws with respect
to join and meet and every element is complemented.

Convolution. The algebraic foundations for this paper is based on power series
from formal languages, which provides mechanisms for lifting properties of the
underlying algebraic structures to the level of functions over these structures.
More formally, a power series is a function f : M → Q from a partial monoid M

28 B. Dongol

into a quantale Q . Operators on f are defined by lifting operators on M and Q
as follows. For f , g : M → Q , an index set I , a family of functions fi : M → Q
and i ∈ I , we define

(
∑

i∈I

fi) x =
∑

i∈I

fi x (f · g) x =
∑

x=y◦z
(f y) � (g z)

Note that the first operation is just pointwise lifting with (f +g) x = f x +g x as
a special case. The composition f · g is called convolution. The variables y and
z underneath the sum are implicitly existentially quantified. A more precise but
less convenient notation is (f ·g) x =

∑{q ∈ Q | ∃y , z . x = y ◦z ∧q = f y �g z}.
The sum is lifted pointwise; (f + g) x = f x + g x arises as a special case. In
addition, we define the O : M → Q and 1 : M → Q by

O x = 0, 1 x = if x ∈ E then 1 else 0.

Hence O is the constant function that returns value 0 and 1 is the subobject
classifier for E . The quantale structure lifts from Q to the function space QM

of power series.

Theorem 13 ([8]). Let (M , ◦,D ,E) be a partial monoid. If (Q ,≤,�, 1) is a
unital quantale, then so is (QS ,≤, ·,1).

The order ≤ on QM is obtained from that on Q by pointwise lifting: f ≤ g iff
f x ≤ g x holds for all x ∈ M .

There are a variety of instantiations for quantale QM . Here, we are mainly
interested in the quantale BM ∼= P M of power series of type M → B into the
quantale of booleans, which is the power set quantale of the partial monoid M .
In this instance, convolution becomes

(p · q) x =
∑

x=y◦z
p y � q z .

Moreover, 1 = E is a boolean-valued function, hence 1 x holds iff x ∈ E . The
boolean algebra structure of B is preserved by the lifting to BM . Hence distrib-
utive laws between join and meet hold and boolean complements of predicates
can be defined.

As with monoids, it is possible to extend quantales with more than one
multiplication operator. For example, a bi-quantale is a structure (Q ,≤, ·1, ·2)
such that (Q ,≤, ·1) and (Q ,≤, ·2) are quantales. A bi-quantale is unital iff both
its multiplications have units.

6 Interval-Stream Specifications

With the necessary algebraic background in place, we develop our interval-based
reasoning framework. The basis for this work is a specification construct that
defines behaviours of system components using interval-stream predicates, which
are predicates over an interval and an (m,n)-ary stream-processing function.

An Interval Logic for Stream-Processing Functions 29

Formally, we assume I (T) = {[a, b] | a, b ∈ T ∧ a ≤ b} denotes the set of all
(closed) intervals over the linear poset (T ,≤). An interval-stream predicate has
type I (T)×F → B, mapping a given interval and stream-processing function to
a boolean. Interval stream predicates can be understood as expressing properties
of a stream-processing function f applied to an interval ϕ. They are similar to
higher-order functions such as maps or folds in functional programming.

Example 14. Consider the specification of a system that controls a motor
depending on the input value of the temp. Suppose we wish to specify that
the motor is on at the end of any interval ϕ in which temp stays above Kmax .
This may be formalised by the interval-stream predicate React , where:

React ϕ (temp,motor) = (∀t : ϕ . temp t > Kmax) ⇒ motor (max ϕ) = on

Now recall the controller C from Example 2. Clearly, React ϕ (temp,C temp)
does not necessarily hold because φ may refer to a time prior to system initiali-
sation, or C may not have enough time to react within φ. However, it is possible
to show that, for any ϕ such that min ϕ ≥ 0 and max ϕ − min ϕ > κ, we have
React ϕ (temp,C temp). �

Combining intervals and stream-processing functions algebraically. We develop
an algebraic construction of interval-stream predicates using our convolution-
based liftings. First, we must understand the algebraic structure of intervals. It
is straightforward to show that intervals form a partial monoid. Let

DCI = {(a, b) ∈ I (T) × I (T) | max a = min b} ECI = {[t , t] | t ∈ T}

be the domain of composition and set of all point intervals, respectively.
Define the interval fusion product a ; b = a ∪ b that composes two intervals
[t1, t2] and [u1, u2] by taking their union [t1, t2] whenever t2 = u1. This turns
(I (T), ;,DCI ,ECI) into a partial monoid.

Note 15. An algebraic treatment of semi-open intervals can also be given [8],
which leads to an alternative interval logic [5] that simplifies reasoning about
discontinuities when discrete values change. However, because such a logic is
more complex, we leave out this variation in this paper, and consider full devel-
opment of such a framework to be future work.

Recall that we have already established that partial stream-processing functions
form a bi-monoid (Corollary 6). Combining this result with the interval monoid
results in a carrier set of type M = I (T) × F and three partial multiplication
operators:

– ; that operates as chop on the intervals;
– >> that operates as pipeline on the stream-processing functions; and
– ⊗ that operates as parallel composition on the stream-processing functions.

30 B. Dongol

This results in a partial tri-monoid (M, ;, >>,⊗,E;,E>>,E⊗), where:

(z1, f) ; (z2, f) = (z1 ; z2, f)
(z , f1) >> (z , f2) = (z , f1 >> f2)
(z , f1) ⊗ (z , f2) = (z , f1 ⊗ f2)

define the three monoidal operations. The chop operates on the interval compo-
nent, leaving the stream-processing function unchanged, while the pipeline and
parallel composition operators are applied to the functional component, leaving
the interval component unchanged.

The definedness relation for the partial relations are given by lifting the
definedness relations to the level of the cross product:

D; = {(x1, f1) × (x2, f2) | (x1, x2) ∈ DCI ∧ f2 = f2}
D>> = {(x1, f1) × (x2, f2) | x1 = x2 ∧ (f1, f2) ∈ DOP}
D⊗ = {(x1, f1) × (x2, f2) | x1 = x2}

The unit sets for the three operators are E; = {(i , f) | i ∈ ECI ∧ f ∈ F},
E>> = {(i , f) | i ∈ I (T) ∧ f ∈ id} and E⊗ = {(i , (〈 〉, 〈 〉)) | i ∈ I (T)}.

Tri-quantales. Our aim is to lift these monoidal operations to the level of the
interval-stream predicates using convolution. First we define the generic theory
over the structure QM1×M2 , where M1 is a monoid, M2 is a bimonoid and Q is
quantale.

Theorem 16 below shows that this lifting gives us a tri-quantale structure in
the generic case when the target algebra is a quantale. Later, we will instantiate
this theorem and obtain our theory of interval predicates. Suppose (M1, ◦1,E1) is
a partial monoid, and (M2, ◦2, ◦3,E2,E3) a partial bi-monoid. Define a structure

Q = (QM1×M2 ,≤, ·1, ·2, ·3,11,12,13)

where the three multiplication operators over QM1×M2 are defined using convo-
lution as follows for p, q ∈ QM1×M2 :

(p ·1 q) (ϕ, f) =
∑

ϕ=ϕ1◦1ϕ2

p (ϕ1, f) ◦ q (ϕ2, f)

(p ·2 q) (ϕ, f) =
∑

f=f1◦2f2

p (ϕ, f1) ◦ q (ϕ, f2)

(p ·3 q) (ϕ, f) =
∑

f=f1◦3f2

p (ϕ, f1) ◦ q (ϕ, f2)

Theorem 16. If (M1, ◦1,E1) is a partial monoid, (M2, ◦2, ◦3,E2,E3) is a partial
bi-monoid and (Q ,≤, ◦) is a unital quantale, then Q is a tri-quantale. Further-
more, if (Q ,≤, ◦) is distributive, then so is Q.

An Interval Logic for Stream-Processing Functions 31

As an example, we verify the unit law for the first multiplication operator.

(11 ·1 q) (ϕ, f)

=
∑

ϕ=ϕ1◦1ϕ2

11 (ϕ1, f) ◦ q (ϕ2, f)

= (
∑

(ϕ=e◦1ϕ)
e∈E1

11 (e, f) ◦ q (ϕ, f)) + (
∑

ϕ=ϕ1◦1ϕ2
ϕ1 �∈E1

11 (ϕ1, f) ◦ q (ϕ2, f))

= (
∑

(ϕ=e◦1ϕ)
e∈E1

� ◦ q (ϕ, f)) + (
∑

ϕ=ϕ1◦1ϕ2
ϕ1 �∈E1

0 ◦ q (ϕ2, f))

= (� ◦ q (ϕ, f)) + 0
= q (ϕ, f).

Power series over M. To apply Theorem 16 to our setting of interval-stream
predicates, we instantiate the monoidal structure to M and the quantale to the
boolean quantale B. Thus we obtain the following corollary.

Corollary 17. (BM,≤, ;, >>,⊗,1;,1>>,1⊗) is a unital distributive tri-quantale.

Although these operators have a similar algebraic structure, they manipulate
their arguments in different ways, which highlights the uniformity and power of
our approach. The predicate p ; q holds for a function f and interval [a, b], if
that interval can be split into two subintervals [a, c] and [c, b] such that p holds
for f and [a, c] and q holds for f and [c, b]. Predicate p >> q holds for a function
f and interval ϕ if f consists of the composition f1 of f2 such that p holds for f1
and ϕ and q holds for f2 and ϕ. Predicate p ⊗ q is similar to p >> q , except f
must be split using ⊗.

. . .

x2

x1 y1
y2

yn
xm

p1

q1

p2

q2. . .

.

Fig. 6. (p1 ; p2) ⊗ (q1 ; q2)

q2

x2

x1 y1
y2

yn
xm

. . .

.

. . .

p1 q1

p2

Fig. 7. (p1 ⊗ p2) ; (q1 ⊗ q2)

The differences are most apparent when we consider interval-stream pred-
icates containing combinations of these operations. For instance, consider the
differences between (p1 ; p2) ⊗ (q1 ; q2) and (p1 ⊗ p2) ; (q1 ⊗ q2), which are
depicted in Figs. 6 and 7, respectively. In Fig. 6, the initial component is first

32 B. Dongol

split into two parallel subcomponents, then, using ;, the intervals in which these
subcomponents operate are split. Note that the two splittings of the intervals
are independent, because the parallel composition guarantees this. On the other
hand, in Fig. 7, the interval split occurs first, and for each of the subintervals,
the parallel composition operator splits the stream functions into two disjoint
subsets.

It is possible to perform a similar exercise using >> in place of ⊗, i.e., consider
the difference between (p1 ; p2) >> (q1 ; q2) and (p1 >> p2) ; (q1 >> q2), as depicted
in Figs. 8 and 9, respectively. In Fig. 8, the initial component is first split using
pipelined composition, which requires that we find a set of outputs of (p1 ; p2)
that can be used as inputs to (q1 ; q2). The intervals arguments to p1 ; p2 and
q1 ; q2 can be split independently. On the other hand, in Fig. 9, the interval split
occurs first, and for each of these subintervals, it must be possible to find a
intermediate set of outputs of pi that can be used as inputs to qi .

. .

x2

x1

yn

p1

q1

p2

q2

. . .

. . .
y2

y1

xm
. . .

Fig. 8. (p1 ; p2) >> (q1 ; q2)

y2

x2

x1

. . .
xm

p1 q1

yn

y1
... ...

q2p2 . . .

Fig. 9. (p1 >> p2) ; (q1 >> q2)

7 Modalities over Interval-Stream Predicates

We have extended a functional specification framework with intervals. Modal
(and temporal) logics for intervals are well studied. In this section, we show
how these existing works can be extended to cope with modal (temporal) rea-
soning over functional specifications. In addition, by exploiting the uniformity
of our (convolution-based) algebraic construction, we develop a novel method
for reasoning over compositions of functional specifications by adapting interval
modalities.

A negation operator ¬ is available for every boolean quantale, which can be
lifted point-wise to the level of our interval-stream tri-quantale BM. The chop
operator can be used to define eventually p (�p) and combined with ¬ to define
(�p) as follows:

�p = � ; p ; � �p = ¬�¬p

Thus (�p) (ϕ, f) holds iff the interval component there is some subinterval of ϕ′

of ϕ such that p (ϕ′, f) holds. In other words, if ϕ = [a, b], then (�p) (ϕ, f) holds

An Interval Logic for Stream-Processing Functions 33

iff p ([a ′, b′], f) where a ≤ a ′ ≤ b′ ≤ b. On the other hand, (�p) (ϕ, f) holds iff
p (ϕ′, f) holds for every subinterval ϕ′ of ϕ.

Note 18. The definition for �p must be modified if infinite intervals are consid-
ered. Namely, the first � within �p must be replaced by an element fin, which
is a predicate that returns � iff the given interval is finite. For an algebraic
treatment, see for example [8,14].

The example below shows how one can use these modalities to develop spec-
ifications as predicates over interval stream-processing functions.

Example 19. Suppose we wish to specify a component f that satisfies the prop-
erty for an input interval ϕ:

“if the input temperature temp is ever above Kmax for k time units, then
the output motor is set to on sometime within ϕ”.

We construct the interval-stream predicate bottom up to demonstrate how the
logic works. First we define a predicate for the first part of the antecedent:

higherϕ (temp,motor) = (max ϕ − min ϕ ≥ k) ∧ (∀t ∈ ϕ . (temp t) > Kmax)

The first conjunct states that the length of ϕ is at least k and the second states
that the value temp within for each time t in ϕ is above Kmax . Note that the
output component motor is ignored on the right hand side of the equation above,
but is present to enable the functions below to be defined using lifting constructs.
We are now able to express the property that the temperature eventually rises
above Kmax using the � operator:

ev higherϕ (temp,motor) = (�higher)ϕ (temp,motor)

Thus ev higherϕ (temp,motor) holds iff there is some subinterval ϕ′ of ϕ such
that higherϕ′ (temp,motor) holds. In particular, � is defined in terms of ;, which
only splits the interval argument. Next, we define an interval-stream predicate
for the consequent:

motor onϕ (temp,motor) = ∃t : ϕ . (motor t) = on

With this, we arrive at an interval-stream predicate that formalises the
requirement above:

Spec = ev higher ⇒ motor on

Returning to our component C from Example 2, it is straightforward to show
Specϕ (temp,C temp) holds for any interval ϕ such that min ϕ ≥ 0.

34 B. Dongol

Modalities over stream-processing functions. The modalities over intervals as
defined above are standard; the difference here is that they are applied to stream-
processing functions. Our algebraic construction highlights the structural sim-
ilarities between chop ; defined for intervals, and pipeline >> and parallel ⊗
composition defined for stream-processing functions, which provides us with an
opportunity to define new modalities over the input/output pairs. In particular,
we define modalities analogous to � as follows:

�>>p = � >> p >> � �>>p = ¬�>>¬p
�⊗p = � ⊗ p ⊗ � �⊗p = ¬�⊗¬p

Thus (�>>p)ϕ f holds iff f is of the form f1 >> f2 >> f3 such that p ϕ f2 holds.
Similarly, (�⊗p)ϕ f holds iff f is of the form f1 ⊗ f2 ⊗ f3 and p ϕ f2 holds. Both
operators �>> and �⊗ are useful for stating the existence of a subcomponent that
satisfies property p over the given interval ϕ. Dually, �>>p iff for any pipelined
decomposition p holds for that decomposition (�⊗ is similar). We leave full
development of such a theory as future work.

8 Conclusion and Future Work

We have algebraically constructed a logic for reasoning about stream-based sys-
tems. Applying these constructions to hybrid systems, we obtain a flexible com-
putation model, in contrast to existing model-theoretic approaches [11,15,18]
that are defined using automata (or similar transition-system-like model), which
are somewhat rigid in their structure. Our constructions unify reasoning when-
ever possible; the theoretical underpinnings are provided by convolution [8],
which enables operators to be lifted to the level of functions. Our work is distin-
guished from other algebras for hybrid systems [7,8,14], which do not distinguish
between inputs and outputs using stream-processing functions.

This work is still in its initial stages, but presents a method for bringing
algebraic reasoning into hybrid systems [8]. Areas such as network theory have
already benefitted from the generality, conciseness and uniformity that algebraic
reasoning enables [1]. Future work will include development of neighbourhood
logics [10,13], Hoare logics [8] and mechanisation [6]. Due to the quantale-like
structure of our algebra, the mathematical foundations are already available,
and hence, these planned future works can be rapidly developed.

Acknowledgements. This research is supported by EPSRC Grant EP/N016661/1.
The author thanks Ian Hayes and Georg Struth for helpful discussions, as well as the
anonymous reviewers for their comments.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: POPL, pp. 113–126.
ACM (2014)

An Interval Logic for Stream-Processing Functions 35

2. Berstel, J., Reutenauer, C.: Les Séries Rationnelles et Leurs Langagues. Masson
(1984)

3. Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)
4. Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., Zheng, H.: A constructive fixed-

point theorem and the feedback semantics of timed systems. In: Discrete Event
Systems, pp. 27–32, July 2006

5. Dongol, B., Derrick, J.: Interval-based data refinement: a uniform approach to
true concurrency in discrete and real-time systems. Sci. Comput. Program. 111,
214–247 (2015)

6. Dongol, B., Gomes, V.B.F., Struth, G.: A Program Construction and Verifi-
cation Tool for Separation Logic. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp. 137–158. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19797-5 7

7. Dongol, B., Hayes, I.J., Meinicke, L., Solin, K.: Towards an Algebra for Real-Time
Programs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp.
50–65. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9 4

8. Dongol, B., Hayes, I.J., Struth, G.: Convolution as a unifying concept: applications
in separation logic, interval calculi, and concurrency. ACM Trans. Comput. Log.
17(3), 15 (2016)

9. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer, Heidelberg (2009)

10. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. J. Appl. Non-Classical Logics 14(1–2), 9–54 (2004)

11. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society, Washington, DC (1996)

12. Hoare, T., van Staden, S.: In praise of algebra. Formal Asp. Comput. 24(4–6),
423–431 (2012)

13. Höfner, P., Möller, B.: Algebraic neighbourhood logic. J. Log. Algebr. Program.
76(1), 35–59 (2008)

14. Höfner, P., Möller, B.: An algebra of hybrid systems. J. Log. Algebr. Program.
78(2), 74–97 (2009)

15. Lynch, N., Segala, R., Vaandraager, F.: Hybrid I/O automata. Inf. Comput.
185(1), 105–157 (2003)

16. Moszkowski, B.C.: A complete axiomatization of interval temporal logic with infi-
nite time. In: LICS, pp. 241–252 (2000)

17. Müller, O., Scholz, P.: Functional specification of real-time and hybrid systems. In:
Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 273–285. Springer, Heidelberg
(1997). doi:10.1007/BFb0014732

18. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci.
290, 937–973 (2003)

19. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2004)

http://dx.doi.org/10.1007/978-3-319-19797-5_7
http://dx.doi.org/10.1007/978-3-319-19797-5_7
http://dx.doi.org/10.1007/978-3-642-33314-9_4
http://dx.doi.org/10.1007/BFb0014732

Automotive and Railway Systems

Automating Time Series Safety Analysis
for Automotive Control Systems in STPA

Using Weighted Partial Max-SMT

Shuichi Sato1,2(B), Shogo Hattori2, Hiroyuki Seki2, Yutaka Inamori1,
and Shoji Yuen2

1 Data Analytics Research-Domain, Toyota Central R&D Labs., Inc.,
Nagakute, Japan

{shuichi-sato,inamori}@mosk.tytlabs.co.jp
2 Graduate School of Information Science, Nagoya University, Nagoya, Japan

{hatsutori,seki,yuen}@sqlab.jp
http://www.tytlabs.com/

Abstract. Recently, Systems-Theoretic Process Analysis (STPA) has
been studied for automobile safety analysis. When STPA is used later in
the design phase, significant effort is required to detect causal scenarios
of unsafe control actions (UCAs), especially those related to intermit-
tent disturbances in multiple signals. We propose a method to automate
this disturbance detection by checking the satisfiability of trace formulas
extended with cushion variables. At a state transition, cushion variable
values are used instead of original variable values to determine the next
state. A signal disturbance is regarded as assigning different values to
variables and corresponding cushion variables. Specifying the equality
between variables and cushion variables as soft clauses, a Weighted Par-
tial Max-SMT solver mechanically searches an assignment for a trace to
satisfy the UCA property. We applied the proposed technique to a sim-
plified automotive control system to demonstrate some examples of auto-
matic detections of reasonable intermittent multi-signal disturbances.

Keywords: Safety analysis · Time series analysis · Automotive control
systems · STPA · State transition systems · Trace formula

1 Introduction

In a variety of fields, such as the aerospace, medicine, and automotive indus-
tries, system architectures and functionality are becoming increasingly com-
plicated. Systems-Theoretic Process Analysis (STPA) [1,2] has been proposed
as a new safety analysis technique based on a new accident causation model,
System-Theoretic Accident Model and Process (STAMP), for analyzing hazard
and safety issues in complex systems. Some works [3,4] have demonstrated the
advantages of STPA over existing safety analysis techniques such as Fault Tree
Analysis (FTA) [5], Failure Mode and Effects Analysis (FMEA) [6], and Hazards
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 39–54, 2017.
DOI: 10.1007/978-3-319-53946-1 3

40 S. Sato et al.

Preparation (Step 0)
Identify Accidents and Hazards
Construct Control Structure

Step 1: Identify Unsafe Control Actions
Step 2: Identify Causes of Unsafe Control Actions

Fig. 1. STPA procedure

and Operability Analysis (HAZOP) [7]. STPA has been applied in different areas,
such as aerospace [8], railroad transportation [9], and medical research [10]. In
the automotive field, Hommes [11] proposes to apply STPA to safety analysis
compliant with ISO26262, a functional safety standard for road vehicles.

STPA is a top-down systems engineering approach and incorporates control
system theory. It considers both component failures and system interactions
and treats accidents as a control, not a failure, problem. STPA can be applied
during concept development and throughout the design process. Figure 1 outlines
the steps of the STPA procedure. The Control Structure in Fig. 1 comprises the
components and paths of a control and feedback system. An unsafe control action
(UCA) is a control action, such as an operation command to an actuator, that
leads to a hazard.

Steps 1 and 2 are carried out with the consideration of a safety engineer,
based on guidewords from STPA. Some works point out that examining the
controller and assessing each feedback in the control path to see whether a path
can cause UCAs in Step 2 requires effort, time, and in-depth knowledge [12]. It
is especially difficult to deal with intermittent multi-signal disturbances arising
from some undesired factors such as temporal wire disconnections, when we
use STPA in later design phases, because there are an enormous number of time
series patterns in multiple signals to consider for the thorough STPA application.

In this paper, we focus on the intermittent multi-signal disturbances that
cause UCAs in automobiles. Generally, intermittent signal disturbances are sub-
tle; thus, we consider it very useful to automate the analysis on those distur-
bances. For this purpose, we present an automating method to check the property
for traces of an automotive control system with bounded length. We reduce the
reachability (to undesirable states) to the satisfiability problem (abbreviated as
SAT) by encoding a given state transition system into a logical formula. This
approach is promising because it allows for the utilization of efficient algorithms
and tools (e.g., SAT solver) for judging satisfiability. To this end, we first char-
acterize the system as a trace formula [13,14], whose model is a set of traces,
and define the UCA property as a constraint over state variables. In normal sit-
uations, the system is supposed to work correctly, where the trace formula with
the UCA property is not satisfied. In the case that an error occurs, some values
are altered such that they do not satisfy the trace formula but do satisfy the
UCA property. Thus, we must describe both the normal and abnormal behavior
of the system and use abnormal behavior caused by multi-signal disturbances as
a constraint.

Automating Time Series Safety Analysis for Automotive Control Systems 41

An automotive control system reaches hazardous states when control actions
with incorrect values are provided over a certain period of time. From those
experiences, we consider that a UCA expression is required to address time series.
To efficiently derive the UCAs caused by fewer incorrect values, we introduce
an encoding of the model into a formula for acquiring intermittent multi-signal
UCA-causing disturbances by limiting the number of failures in the constraints.

We adopt a method for describing the constraints underlying problems and
detecting the corresponding signal disturbances automatically. We introduce new
variables, called cushion variables, that correspond to the original variables and
allow a different value assignment from those of the original variables. We define a
signal disturbance as the assignment of a different value to a system variable. The
faulty values of cushion variables cause undesignated transitions, which we model
as UCAs. Considering that the values of an original variable and its cushion are
equal in a normal behavior, we explicitly add the equalities between original and
cushion variables. By defining a UCA over the cushion variables, assigning faulty
values to cushion variables may satisfy the UCA violating the equality between
variables and cushion variables. The violated equality is regarded as the signal
disturbance that causes the UCA. To obtain the concrete value assignment, we
make the cushion variable equations as soft clauses in the Weighted Partial Max-
SMT problem. By adding blocking clauses we obtain a new assignment with a
signal disturbance. By repeating this, we can enumerate all signal disturbances
to cause the UCA.

The main contribution of this paper is the proposal of a method for reduc-
ing the problem of finding UCA-causing multi-signal disturbances in STPA to
the problem of checking the satisfiability of the trace formula extended with
cushion variables. The proposed method can automate the process of obtaining
intermittent multi-signal disturbances using a Weighted Partial Max-SMT solver
and provide detailed design support to STPA safety analysis.

The remainder of this paper is organized as follows. Section 2 explains how
to model the problem of acquiring UCA-causing multi-signal patterns. Section 3
presents a method for acquiring intermittent multi-signal disturbances using
a Weighted Partial Max-SMT. Section 4 describes case studies that apply our
method to a simplified automotive control system with cruise control, and Sect. 5
discusses our conclusions and outlines future work.

2 Behavioral Constraints

In this section, we describe the construction of a system model for finding the
intermittent multi-signal disturbance set that causes UCAs with Weighted Par-
tial Max-SMT. The model consists of four parts: a trace formula expressing
system behavior, the UCA property, signal disturbance possibilities, and inter-
mittent signal disturbance constraints. These parts are modeled as constraints
in the Weighted Partial Max-SMT, which will be explained in the following
sections.

42 S. Sato et al.

2.1 Trace Formulas

We model an automotive control system as a finite state transition system where
a state is an assignment of values to variables and a state transition is a value
update of variables. Since an automotive control is usually designed by a deter-
ministic discrete event system, the behavior of the transition system is the set
of state traces. A trace formula [13,14] is a Boolean formula satisfied by value
assignments for the traces which are obtained by unrolling cycles in the transi-
tion system for a fixed number of times. A trace formula is satisfied only when
the assignment of an indexed variable in the trace formula shows a concrete
execution. In a trace formula, a state is regarded as a conjunction of equali-
ties between variables and expressions, where variables are indexed by execution
steps. States other than the initial state are determined by the preceding states.
We convert a finite state transition system to a loop-free program for given k
and construct the trace formula for the program.

Let M = (S,X, s0,W) be given where S = {s1, · · · , sm} is the set of control
states, X is the set of variables, s0 ∈ S is the initial control state and W is the
set of transitions. w ∈ W is given as a triple (s, ρ, s′) where s, s′ ∈ S and ρ is a
set of constraints over X in s and s′. A state of M is (s, νX) where s ∈ S and νX

is a value assignment for X. For a state (s, νX) and a transition w = (s, ρ, s′),
a state transition of M is given as (s, νX) → (s′, ν′

X) when νX , ν′
X |= ρ(X,X ′)

meaning that νX for X and ν′
X for X ′ satisfy the constraint ρ(X,X ′).

We give a loop-free program with bound k in the following way. st and xi for
xi ∈ X are declared where st ranging over 1 to m keeps the current state. The
program is constructed by a series of switch statements whose bodies describe the
transitions in general. Let {(si, ρi1, si1), · · · , (si, ρini

, sini
)} be the all transitions

from si in W and #(si) = i. Since ρi specifies the constraints for a transition
from si to sj , ρij can be expressed as the conjunction of a guard gij(X) in si and
an update relation X ′ = fij(X) in sj . The statement for a transition transW (si)
from si is defined as follows:

if gi1(X) then X := fi1(X) ; st :=#(si1);
else if gi2(X) then X := fi2(X) ; st :=#(si2);

· · ·
else if gini

(X) then X := fini
(X) ; st :=#(sini

);

One step of the program denoted as step(W) is:

switch(st) {
case #(s1): transW (s1)

· · ·
case #(sm): transW (sm)

}
The whole loop-free program is given as the declaration of st and xi for X
followed by the repetition of step(W) for k times.

int st, x1, · · · x1; step(W); · · · step(W);︸ ︷︷ ︸
k−times

Automating Time Series Safety Analysis for Automotive Control Systems 43

Fig. 2. State transition system

Fig. 3. Pseudocode of loop-free program

Clearly, executing the program above traces the original transition system with
deterministic transitions. For instance, consider the state transition system in
Fig. 2, with two states labeled ControlON and ControlOFF . In this system, the
transition from ControlOFF to ControlON occurs only when both SW1on and
SW2on are true. Figure 3 shows the loop-free program for Fig. 2 with k = 10.
Here st = 0, 1 means that a state of a system is ControlOFF/ControlON . As
shown in [14], the loop free program is converted to a logical formula. While all
variables are boolean in [14], we extend the variables to integer, allowing the

44 S. Sato et al.

equalities to integer constants. The trace formula can be converted to the form
for a SMT solver such as SMT-LIB.

The trace formula of a given transition system with the execution step bound
of K is denoted TF≤K . For simplicity, we only assign an integer to each variable.
(For a Boolean variable, 1 is true and 0 is false.) In the remainder of the paper, we
use the following variable notation conventions. Each variable should be uniquely
identified by its index as well as its name. We write ui for a variable identified by
index i in X; variables are also identified by name (e.g., y). When the variable
with index of i and also with the name of y appears in a trace formula at step
j, it is written as ui,j or yj , where ui,j or yj belongs to xj in a trace formula.

2.2 UCA Property

An automotive control system is designed to never reach a hazardous state when
a control action with an incorrect value is provided over a very short time period
(due to, e.g., electrical noise). In contrast, an automotive control system may
reach hazardous states when a control action with an incorrect value continues
to be provided for a certain period of time. For example, a vehicle in cruise
control mode can reach a hazardous state, in the case that it outputs 0 as the
acceleration command value for a few consecutive clock cycles (e.g., 5) although
the leading vehicle moves away from it. Thus, a UCA is reasonably expressed as
a time series of the assignment of improper values to n-consecutive variables in
traces. For this n, we introduce n-UCA≤K

F as the UCA property over a trace as
follows:

n-UCA≤K
F ≡ ∃i. i ≤ K − n + 1 ∧ (

n−1∧

�=0

F (
−→
U (i + �))

where K is the trace bound length, F is a predicate defined over variables, and−→
U (j) is a vector of variables at the jth execution step, (u1,j , · · · , un,j). In the
example of the vehicle in cruise control mode as mentioned above, F consists of
the variables indicating an acceleration command and a distance to the leading
vehicle, and n is the number of a certain consecutive clock cycles, e.g., 5. In
automotive control systems, some variables are the signals that direct upcoming
actions. We assume that UCAs can be detected by observing these values.

2.3 Signal Disturbance via Cushion Variables

Provided that the system is properly designed, we assume that no assignments
satisfy both a trace formula and n-UCA≤K

F . If some variables are unexpectedly
altered at some steps in the trace, the UCA property n-UCA≤K

F with the trace
formula becomes satisfiable. We describe this value alteration as a signal distur-
bance. Signal disturbances are regarded as mismatches among variables in the
execution fragments. In our setting, to present signal disturbances, we need to
explicitly assign a value different from the original value to cause some UCAs.
For this purpose, we introduce an extra variable called a cushion variable for

Automating Time Series Safety Analysis for Automotive Control Systems 45

each variable. The cushion variable corresponding to ui,j is written as u′
i,j . In

normal situations, the same value is assigned both to a variable and its cushion.
If a signal value is altered, we assign a different value to its cushion variable. By
preparing the extra variable, it is possible to trace failure points by checking for
equality between original and cushion variables. The equality between variables
and their cushions in TF≤K is expressed as ΩK

U :

ΩK
U ≡ ∀i, j.

∧

ui∈U

∧

j≤K

ui,j = u′
i,j .

A value assignment that does not satisfy ΩK
U contains a disturbed signal pattern.

Definition 1 (Disturbed signal pattern). Given a set of variables U =
{ui1 , · · · , uim}, a disturbed signal pattern for an assignment σ, DSPU (σ), is
the set of equations:

DSPU (σ) = {ui,j = u′
i,j |σ(ui,j) 	= σ(u′

i,j), i ∈ I, j ≤ K}

where I is the set of variable indexes of U .

The trace formula with signal disturbances of U is obtained by replacing all
ui,j on the right-hand side of the TF≤K equations with u′

i,j , for i ∈ I. This
modified trace formula is written as TF′≤K

U . For example, assume a transition
system has a variable, Speedi, which is an element of the transition condition and
the update of the variable Speedi is specified as Speedi := Speedi−1+Acceli−1−
Brakei−1 in the trace formula. In this case we replace Speedi−1, Acceli−1, and
Brakei−1 with their corresponding cushion variables. As a result, the example is
rewritten as: Speedi := Speed′

i−1 + Accel′i−1 − Brake′
i−1. The clause ui,j = u′

i,j

represents the passing of data from the part updating ui,j to the part referring
to it. If the clause ui,j = u′

i,j is false, ui,j is considered to be disturbed.
TF′≤K

U ∧ ΩK
U ∧ n-UCA≤K

F is not satisfiable, since TF′≤K
U ∧ ΩK

U ⇔ TF≤K ,
whereas there may be an assignment σ that satisfies TF′≤K

U ∧(ΩK
U −DSPU (σ))∧

n-UCA≤K
F . This shows that a UCA occurs if a signal disturbance happens at

DSPU (σ).

2.4 Intermittent Signal Disturbance

We are the most interested in intermittent signal disturbances. In general, a
disturbance with fewer signal alterations is difficult to find. In order to adjust the
scope of signal disturbances, it is useful to limit the number of value alterations
at a signal disturbance within a certain period of execution fragments. We add
the following constraints Ψ .

Ψ ≡ ∀i, j, 1 ≤ i ≤ N, 1 ≤ j ≤ K − p + 1.

p−1∑

r=0

R(ui,j+r, u
′
i,j+r) ≤ L. (1)

46 S. Sato et al.

R(ui,j , u
′
i,j) =

{
0 if ui,j = u′

i,j

1 if ui,j 	= u′
i,j .

Ψ restricts traces so that the signal disturbance occurs no more than L times in
p execution steps.

3 Detecting Signal Disturbances by Satisfiability Using
Weighted Partial Max-SMT Solvers

Once the system behavior and UCAs are formalized as in Sect. 2, intermittent sig-
nal disturbances are automatically detected using the encoded model described
there. Our method consists of two phases in Fig. 4; the repetition of the phases
enables the enumeration of UCA-causing signal disturbances. Phase 1 constructs
a formula from target system behavior with bound K, cushion variables for possi-
ble signal disturbances, and a UCA property. In Phase 2, UCA-causing disturbed
signal patterns are automatically extracted by a Weighted Partial Max-SMT
solver. Each phase is described in detail below.

In Phase 1, given a state transition system, the UCA property, and the set
of possibly disturbed variables U , formula Φ is constructed as follows:

Φ ≡ TF′≤K
U ∧ n-UCA≤K

F ∧ Ψ ∧ ΩK
U . (2)

When passing Φ to Phase 2, we define ΩK
U as soft clauses and the remainder of

Φ as hard clauses. We also specify weights for each equation in ΩK
U . The weights

control the order in which signal disturbances are obtained. Specifying weights
requires a heuristic that depends upon the particular disturbed signal patterns
expected. In the following experiment, we uniformly weigh all soft clauses. This
minimizes the number of signal alterations, since a Weighted Partial Max-SMT
solver tries to minimize the sum of the weights of soft clauses that are not
satisfied. According to our objectives, we can change the weighting policy.

In Phase 2, we apply a Weighted Partial Max-SMT solver to Φ. The solver
attempts to find a variable assignment that satisfies all hard constraints and soft
clauses with minimum weight sums. If the solver finds such an assignment, the
value of each variable and the soft clauses not satisfied are returned. These soft
clauses show a disturbed signal pattern.

Fig. 4. Method for obtaining a disturbed signal pattern

Automating Time Series Safety Analysis for Automotive Control Systems 47

Blocking clauses. To acquire additional patterns, we add the hard clauses, deny-
ing the disturbed signal patterns as blocking clauses, in Φ and repeat Phase 2.
For example, if we get DSPU (σ) = {(u1,1 = u′

1,1), (u4,3 = u′
4,3)}, the following

clauses are added to hard clauses:

u1,1 = u′
1,1 ∨ u4,3 = u′

4,3.

As these hard clauses force u1,1 = u′
1,1 ∨ u4,3 = u′

4,3, the solver tries to find
out a different variable assignment that satisfies u1,1 = u′

1,1 or u4,3 = u′
4,3. New

disturbed signal patterns are enumerated by adding blocking clauses to Φ and
applying the Weighted Partial Max-SMT solver to the modified Φ. We repeat the
loop until Φ can no longer be satisfied to enumerate all disturbed signal patterns
for the UCA. In practice, if Φ can still be satisfied after a certain number of
repetitions, it would be reasonable to start redesigning the system or to add
some new component or mechanism to avoid the UCA.

The strategy to add blocking clauses varies depending on the system char-
acteristics. For example, assuming that value alterations by signal disturbances
can be amended by protecting the variables, all equations of the variables are
blocking clauses regardless of their indices. The values passed over the network
can be checked by the lower level of the platform. This increases execution costs,
but is sometimes very effective when the suitable variable is protected.

4 Case Study

4.1 Target System

The target system in our case study is a simplified automotive control sys-
tem consisting of three electronic control units (ECUs): adaptive cruise control
(ACC), neutral transmission control (TC), and arbiter (ABT). The system is
designed to control vehicle speed according to the driver’s gas and brake pedal
operations and the cruise control function provided by the ACC ECU. When we
operate the car in “Drive” using the ACC, if no brake pedal operations occur and
the leading vehicle moves further away from our car, the ACC function outputs
an acceleration command. In response to that command, the car can accelerate
if the transmission gears are properly engaged.

Figure 5 shows an overview of signal flows in the target system. Table 1 enu-
merates the signals used in this system. The functionality of each ECU is shown
in Table 2. The ACC ECU controls acceleration and deceleration by generating
ACC AccelControlData and ACC BrakeControlData. The values of these sig-
nals are calculated based on Distance and the difference between VehicleSpeed
and LeadingVehicleSpeed , which are usually observed by sensors in a real-world
automotive control system. The TC ECU shifts into neutral gear by outputting
TC NeutralControlData when VehicleMoving is false and BrakeControlOn is
true, in order to improve gas mileage. The ABT ECU generates ABT Accel .

ControlData and ABT BrakeControlData based on output from the ACC
ECU and the driver’s pedal operation. This ECU assigns a value larger than

48 S. Sato et al.

Fig. 5. Overview of simplified automotive control system. Each number refers to an
explanatory entry in Table 1.

the values of ACC AccelControlData and AccelPedal to ABT AccelControlData.
It also assigns a value larger than the values of ACC BrakeControlData and
BrakePedal to ABT BrakeControlData. Each ECU is executed periodically by
processing signals shown in Table 1.

The CarModel in Fig. 5 shows the physical behavior of the vehicle. It gen-
erates VehicleSpeed based on ABT AccelControlData, ABT BrakeControlData,
TC NeutralControlData, previous VehicleSpeed , etc. It also outputs Distance
simultaneously calculated based on previous Distance, LeadingVehicleSpeed , and
Vehicle Speed . Linear arithmetic, comparison, and conditional branch operations
are included in this model. The control logic in the ACC ECU includes the com-
parison between VehicleSpeed and LeadingVehicleSpeed . The CarModel has lin-
ear arithmetic functions to calculate VehicleSpeed . ACC and TC ECUs contain
state transitions with Boolean guard conditions.

4.2 Experimental Result

All signals in Table 1 are regarded as possibly being disturbed in this experiment.
Here, we focus on a hazard; the vehicle does not accelerate in cruise control mode
although the leading vehicle moves away from it. Applying STPA to the system
with the hazard, Step 1 derives a UCA: an acceleration command is not provided

Automating Time Series Safety Analysis for Automotive Control Systems 49

Table 1. Target system signals

No. Name Type Meaning

1 IGSWOn bool True iff Ignition switch is on

2 RadarCruiseSWOn bool True iff ACC main switch is on

3 VehicleSpeedOK bool True iff vehicle speed is in [0, 150]

4 AccelPedalOn bool True iff gas pedal is stepped on

5 BrakePedalOn bool True iff brake pedal is stepped on

6 ShiftRange int Shift range(−2:P −1:R 0:N 1–5:D)

7 Fail ACC bool True iff ACC fails

8 LeadingVehicleSpeed int Speed of leading vehicle

9 Distance int Distance to leading vehicle

10 Fail TC bool True iff the TC fails

11 VehicleMoving bool True iff vehicle is moving

12 ABT AccelControlOn bool True iff ABT AccelControlData > 0

13 ABT BrakeControlOn bool True iff ABT BrakeControlData > 0

14 AccelPedal int Amount by which gas pedal is depressed

15 BrakePedal int Amount by which brake pedal is depressed

16 ACC AccelControlData int Acceleration control value from ACC ECU

17 ACC BrakeControlData int Braking control value from ACC ECU

18 TC NeutralControlData bool Neutral control value from TC ECU

19 ABT AccelControlData int Integrated acceleration control value

20 ABT BrakeControlData int Integrated braking control value

21 VehicleSpeed int Speed of vehicle

Table 2. ECUs in target system

Name Function

ACC Controls acceleration and deceleration in accordance with leading vehicle

TC Shifts into neutral gear during brief stops in order to improve gas mileage

ABT Arbitrates multiple control requests

for five consecutive clock cycles in cruise control mode, even though the leading
vehicle moves further away. Let F be defined as follows:

LeadingVehicleSpeed = 0 ∧ Distance > Cd ∧ BrakePedal = 0
∧ AccelPedal = 0 ∧ RadarCruiseSW ∧ ABT AccelControlData = 0.

50 S. Sato et al.

Then the UCA definition is as follows:

n-UCA≤K
F ≡∃j. 1 ≤ j ≤ K − n + 1 ∧

n−1∧

r=0

(LeadingVehicleSpeedj+r = 0 ∧ Distancej+r > Cd

∧ BrakePedalj+r = 0 ∧ AccelPedalj+r = 0
∧ RadarCruiseSWj+r

∧ ABT AccelControlDataj+r = 0).

Here K, n, and Cd are set to 10, 5, and 70 respectively. L in Eq. (1) is set to 1.
Values are assigned to the variables as follows:

– IGSWj = true
– RadarCruiseSWj = true
– ShiftRangej = 4
– BrakePedalj = 0
– FailACCj = false
– LeadingVehicleSpeedj changes as: 30, 60, 90, 90, 120, 120, ...
– VehicleSpeed0 = 0

We used the Yices SMT solver v.1.0.29 [15]. The weight for each equation in ΩK
U

is set to 10. The following section describes our experimental result. Section 4.2.1
presents the result of attempting to obtain UCA-causing disturbed signal pat-
terns consisting of two signals. Section 4.2.2 provides experimental results that
show the effect when some signals cannot be disturbed with a certain protection
mechanism.

4.2.1 Disturbed Signal Patterns Consisting of Two Signals
We have obtained UCA-causing disturbed signal patterns consisting of two sig-
nals. Each pattern makes intuitive sense for the automotive control system
model. Table 3 lists the names of the signals in each pattern. The disturbance
of signals such as ShiftRange, VehicleSpeed , VehicleSpeedOK and BrakePedalOn
indirectly affects the satisfiability of n-UCA≤K

F , with a delay that comes from
the state transition system characteristics representing the automotive control
system. Table 4 shows the pattern corresponding to the top row in Table 3.
VehicleSpeed becomes 151 with a disturbance (0 if not disturbed) at the execu-
tion step t = 2, and ShiftRange becomes 3 with a disturbance (4 if not disturbed)
at t = 4. These disturbances can cause a situation in which the system does not
provide an acceleration command at t = 1−5 in cruise mode, despite the distance
to the leading vehicle increasing. We can easily obtain other patterns consisting
of VehicleSpeed and ShiftRange by adding blocking clauses that refrain from
outputting the same pattern in Table 4.

Automating Time Series Safety Analysis for Automotive Control Systems 51

Table 3. Signals in each disturbed pattern

Signal names

ShiftRange VehicleSpeed

RadarCruiseSW VehicleSpeed

VehicleSpeedOK VehicleSpeed

BrakePedalOn VehicleSpeed

Table 4. Example of disturbed signal pattern

t VehicleSpeed ShiftRange

Normal value Disturbed result Normal value Disturbed result

1 0 0 4 4

2 0 151 4 4

3 0 0 4 4

4 0 0 4 3

5 0 0 4 4

4.2.2 Disturbed Signal Patterns Under Signal Protection
From Table 3, we know that VehicleSpeed is involved in all four patterns. From
this, we expect that no two-signal disturbances can cause UCAs if we refrain from
disturbing VehicleSpeed in some way.1 Under the condition that VehicleSpeed is
not disturbed, we obtained ten disturbed signal patterns consisting of three sig-
nals, as shown in Table 5. The variables in each row of Table 5 can generate
a UCA-causing disturbance pattern and Table 6 shows the actual signal dis-
turbance pattern for the top row of Table 5. Our method detects more com-
plicated time series patterns than those with two signals. The computation
time to obtain the pattern in Table 6 is 1.83 s on a machine with an Intel Core
i5-3470 3.20 GHz CPU, 6.00 GB RAM, and Microsoft Windows 7 Professional.
Per Table 5, LeadingVehicleSpeed is a key in patterns consisting of three signals.
Any three-signal disturbance cannot cause UCAs if we refrain from disturbing of
VehicleSpeed and LeadingVehicleSpeed . This fact was verified by adding a block-
ing clause preventing disturbances to VehicleSpeed and LeadingVehicleSpeed .

Note that for two-signal disturbances, the total possible number of value pairs
for two signals is 840, even if each signal is binary; for three-signal disturbances,
the total number is greater than 10,000. Hence, it is difficult to enumerate UCAs
by hand, even for short time series.

1 It is a design decision whether a certain mechanism is introduced in the system to
protect a critical signal (VehicleSpeed , in this example) from disturbance, though
protecting all signals against disturbance is unrealistic.

52 S. Sato et al.

Table 5. Signals in each disturbed signal pattern

Signal names

RadarCruiseSW LeadingVehicleSpeed ACC AccelControlData

RadarCruiseSW ShiftRange LeadingVehicleSpeed

ShiftRange LeadingVehicleSpeed ACC AccelControlData

RadarCruiseSW VehicleSpeedOK LeadingVehicleSpeed

VehicleSpeedOK LeadingVehicleSpeed ACC AccelControlData

RadarCruiseSW BrakePedalOn LeadingVehicleSpeed

VehicleSpeedOK ShiftRange LeadingVehicleSpeed

VehicleSpeedOK BrakePedalOn LeadingVehicleSpeed

BrakePedalOn LeadingVehicleSpeed ACC AccelControlData

BrakePedalOn ShiftRange LeadingVehicleSpeed

Table 6. Example of disturbed signal pattern

t RadarCruiseSW LeadingVehicleSpeed ACC AccelControlData

Normal value Disturbed result Normal value Disturbed result Normal value Disturbed result

1 On On 30 30 0 0

2 On On 60 −21 0 0

3 On Off 90 90 0 0

4 On On 90 90 0 0

5 On On 120 120 280 −1

5 Conclusion

We focused on STPA safety analysis and presented an automating method to
identify the faulty behavior by signal disturbances that causes UCAs in auto-
motive control systems using Weighted Partial Max-SMT solvers. Our method
is useful especially when dealing with an intermittent multi-signal disturbance
that is difficult to find by hand. By checking the satisfiability of a trace formula
extended with cushion variables, we modeled possible traces with multi-signal
disturbances. We have shown that such value assignments can be found using a
Weighted Partial Max-SMT solver. We applied our method to a simplified vir-
tual automotive control system with three ECUs, including cruise control. Our
method succeeded in detecting intermittent multi-signal disturbances that were
difficult to be enumerated by hand within a reasonable time period. By observ-
ing the signal patterns obtained by the proposed method, it is often possible to
point out which signals are essential to avoid an occurrence of UCAs, as demon-
strated in Sect. 4.2. By focusing on those important signals, time series safety
information is obtained for each disturbed signal pattern. Such information is
expected to be utilized for high-level countermeasures, i.e., a real-time moni-
toring that checks states of a system at all times and defends a system before
a signal disturbance matches a UCA-causing pattern. Furthermore, in actual

Automating Time Series Safety Analysis for Automotive Control Systems 53

automotive control systems, the probability that each signal is disturbed is not
the same. Our method can handle these probabilities by controlling the weights
of soft clauses in Eq. (2).

The following challenges to our method remain unresolved. The appropriate
boundary K of unrolling loops can be thought as a scalability parameter. For
periodic behavior, it is possible to find appropriate values of K. In addition,
although the computation time to obtain the disturbed patterns is rather small
in the experiment, we need a compositional extension of our analysis for a whole
automotive control system.

Similar to this study, a STPA with formal methods has been proposed and
its use evaluated with an automated automotive system in [16]. Their method
is applied to identify hazards and support reasoning about completeness in Step
1 of STPA. [14] provides a tool for the formal verification of ANSI-C programs
using Bounded Model Checking (BMC). Their tool checks safety properties such
as the correctness of pointer constructs. [17] proposed a method for automatically
identifying the root cause of a program that shows faulty behavior with the
combination of SAT-based formal verification and model-based diagnosis theory.
The techniques in [14,17] do not provide the way to describe signal disturbances
that might occur while the program runs. All both techniques can address are
bugs included in programs under the assumption that no signal disturbances
arise. We provided the method to obtain the patterns of signals with unexpected
data failures that lead to erroneous states in automotive control systems in [18].
This technique did not deal with UCAs which were expressed as a time series
and was not capable of acquiring intermittent patterns.

Finally, in the future, we wish to extend the proposed technique to the analy-
sis of actual countermeasures to safety issues. The countermeasures ensuring
ui,j = u′

i,j(∃i,∀j) are difficult to be actually implemented, due to uncontrollable
factors such as sensor noise. We will consider the design of countermeasures by
adding more relaxed hard constraints such as |ui,j − u′

i,j | < ε repeatedly into
Φ. In addition, we plan to investigate a way of using the time series informa-
tion of disturbed signal patterns for designing sophisticated UCA prevention
countermeasures.

References

1. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
MIT Press, Cambridge (2011)

2. Leveson, N.G.: A systems-theoretic approach to safety in software intensive sys-
tems. IEEE Trans. Dependable Secure Comput. 1, 66–86 (2004)

3. Sotomayor, R.: Comparing STPA and FMEA on an automotive electric power
steering system. In: STAMP Workshop, Boston (2015)

4. Balgos, Y.: A systems theoretic application to design for the safety of medical
diagnostic devices. Master Dissertation, Boston (2012)

5. Ericson, C.: Fault tree analysis - a history. In: Proceedings of the International
System Safety Conference (1999)

6. Procedure for Performing a Failure Mode Effect and Criticality Analysis. In: United
States Military Procedure, MIL-P-1629 (1949)

54 S. Sato et al.

7. Troyan, J.E., Vine, L.Y.L.: HAZOP. Loss Prev. 2, 125 (1968)
8. Owens, B., Herring, M., Dulac, N., Leveson, N., Ingham, M., Weiss, K.: Application

of a safety-driven design methodology to an outer planet exploration mission. In:
IEEE Aerospace Conference, pp. 1–24. Big Sky, USA (2008)

9. Dong, A.: Applicaton of CAST and STPA to railroad safety in China. Master’s
thesis, Massachusetts Institute of Technology (2012)

10. Thomas, J., Ang, Y.H., Chung, K., Gao, O.Q.: STPA analysis of intravenous
patient-controlled analgesia. In: STAMP Workshop (2016)

11. Hommes, Q.V.E.: Safety analysis approaches for automotive electronic control sys-
tems. In: Society of Automotive Engineers’ Meeting (2015)

12. Abdulkhaleq, A., Wagner, S.: Experiences with applying STPA to software-
intensive systems in the automotive domain. In: STAMP Workshop, Boston (2013).
http://www.iste.unistuttgart.de/fileadmin/user upload/iste/se/publ/Application
of STPA to Automative Domain.pdf

13. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Not. 46(6), 437–446 (2011)

14. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

15. Dutertre, B., Moura, L.D.: The YICES SMT solver. http://yices.csl.sri.com/
16. Thomas, J., Suo, D.: STPA-based method to identify and control feature inter-

actions in large complex systems. In: Proceedings of the 3rd European STAMP,
Amsterdam (2015)

17. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM
2014. LNCS, vol. 8829, pp. 251–266. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11737-9 17

18. Hattori, S., Yuen, S., Seki, H., Sato, S.: Automated hazard analysis with pMAX-
SMT for automobile systems. In: Pre-proceedings of the International Workshop
on Automated Verification of Critical Systems, Edinburgh (2015)

http://www.iste.unistuttgart.de/fileadmin/user_upload/iste/se/publ/Application_of_STPA_to_Automative_Domain.pdf
http://www.iste.unistuttgart.de/fileadmin/user_upload/iste/se/publ/Application_of_STPA_to_Automative_Domain.pdf
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://yices.csl.sri.com/
http://dx.doi.org/10.1007/978-3-319-11737-9_17
http://dx.doi.org/10.1007/978-3-319-11737-9_17

Uniform Modeling of Railway Operations

Eduard Kamburjan(B) and Reiner Hähnle

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{kamburjan,haehnle}@cs.tu-darmstadt.de

Abstract. We present a comprehensive model of railway operations
written in the abstract behavioral specification (ABS) language. The
model is based on specifications taken from the rulebooks of Deutsche
Bahn AG. It is statically analyzable and executable, hence allows to use
static and dynamic analysis within one and the same formalism. We are
able to combine aspects of micro- and macroscopic modeling and provide
a way to inspect changes in the rulebooks. We illustrate the static analy-
sis capability by a safety analysis based on invariant reasoning that only
relies on assumptions about the underlying railway infrastructure instead
of explicitly exploring the state space. A concrete infrastructure layout
and train schedule can be used as input to the model to examine dynamic
properties such as delays. We illustrate the capability for dynamic analy-
sis by demonstrating the effect that different ways of dealing with faulty
signals have on delays.

1 Introduction

Railway systems are a domain where formal modeling of systems and formal
analysis methods are generally accepted by industry and partially required by
certification authorities [3]. Therefore, the railway domain is an active and impor-
tant area of applied research in formal methods.

Models of railways can be classified according to their level of abstraction and
their intended degree of analyzability. Regarding the abstraction level, modeling
approaches tend to be either microscopic or macroscopic. The former focus on
modeling a local part of a railway network, e.g., a few train station to be as
precise enough to examine local and detailed properties. On the other hand,
macroscopic models aim to be sufficiently abstract to cover a large part of the
whole network to analyze global or coarse properties. Regarding analyzability,
current models concentrate on a single aspect only, e.g., the safety of interlocking
and signaling systems or the network throughput.

Railways are complex systems whose global properties such as safety or
capacity are determined by low-level structural components as well as by com-
munication protocols between stations at a high abstraction level. Failures of the
infrastructure happen at the component (i.e., low) level, but they have global
impact, e.g., a faulty signal introduces delays that are not analyzable in a model
that abstracts away from individual signals.

c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 55–71, 2017.
DOI: 10.1007/978-3-319-53946-1 4

56 E. Kamburjan and R. Hähnle

To reconcile different levels of abstraction, we propose a uniform modeling
approach that is flexible enough to capture and analyze a wide range of proper-
ties. This uniformity has important advantages:

1. The overall effort of modeling is reduced, because each aspect needs to be
modeled only once.

2. Aspects from macro- and microscopic modeling can be represented in a single
model.

3. Hence, it is possible to analyze the effects that perturbations at a low abstrac-
tion level have on the global, system-wide behavior.

Our modeling method is based on the ABS language [18], which was orig-
inally designed to model and analyze concurrent/distributed software systems.
We argue that its concurrency and object model are a good match for railway
systems, too. We substantiate our claim by performing two complementary kinds
of analysis carried out with one and the same model:

Dynamic analysis of runtime behavior. ABS models are executable. We
demonstrate how a change in the rules for handling faulty signals influences
the travel time of a train passing this signal. To do so, we simulate the scenario
and compare the generated event traces. The example is based on a fault in
a single signal, but the rules to handle this case involve up to three different
train stations and two trains. The fault is only observable at a microscopic
modeling level, but its effects have a global impact.

Static analysis of a global safety property. We prove that on a single line
between two stations it is never the case that there are two trains announced
in opposing direction. Our analysis is based on deductive invariant reasoning
and not on model checking. We analyze the communication structure between
trains, infrastructure and station, so we are able to state safety independently
of a concrete track plan, as long as that is well-formed.

We do not verify implementation details of the structural components such
as correctness of interlocking tables, but assume other, well-established methods
have checked these. We concentrate on procedures and communication, and how
a fault is handled on the operational level. E.g., we do not model the internal
behavior of the signal once it broke, but we model precisely, how the mitigat-
ing communication between stations and trains in the signal’s proximity ensure
safety. Such procedures are described in detail in the Fahrdienstvorschrift [6] for
all railways in Germany operated by Deutsche Bahn AG. Our model is a partial
formalization of the description of ETCS 1LS within that rulebook. Our main
contributions are:

1. A novel, uniform modeling approach of railways in the concurrent, executable
language ABS that allows static and dynamic analysis.

2. A deductive invariant-based analysis of safety of railway communication.

Uniform Modeling of Railway Operations 57

The paper is organized as follows: In Sect. 2 we present the ABS language
and in Sect. 3 our model of railway operations. In Sect. 4 we show how changes in
procedures can be analyzed by simulation. In Sect. 5 we show a safety property
and show how ABS admits its formal proof. Related work is in Sect. 6 and we
conclude in Sect. 7.

2 ABS

ABS is an object-oriented, executable modeling language designed to model
concurrent and distributed software systems [18]. Its syntax is loosely based on
Java and most concepts of ABS are (intentionally, to ease its usage) standard.
We refrain from introducing the whole language, instead we focus on three of its
distinguishing features that are relevant in the present context: The concurrency
model based on asynchronous method calls, explicit modeling of time, and formal
semantics. A full introduction can be found in [11,18].

ABS models can be compiled into executable Erlang, Java, Maude, ProActive
or Haskell code. In this case an initialization block must be provided (not neces-
sary for deductive static analysis). This is a special ABS statement that serves
as the entry point of a model. While ABS classes describe general behavior, the
initialization block sets up a scenario.

2.1 Concurrency Model

ABS extends the actor [14] paradigm: Objects on different processors do not
share memory. Each processor may host several objects from different classes.
Even though ABS permits objects on the same processor to access shared mem-
ory, we carefully avoid this possibility in our model to render verification easier.

ABS objects are strictly encapsulated and have neither public nor sta-
tic fields. Any inter-object communication is accomplished by asynchronous1

method calls: The caller invokes a method and continues its own execution with-
out waiting for the call to terminate. Instead, the caller has a future as a handle,
which is used to wait for the called method (if necessary) and to read its return
value.

Example 1. The following code calls method m on the object stored in o and
saves the future in local variable f (line 1); it waits for m to terminate (line 3)
and reads the return value into local variable i (line 4).

1 Fut<Int> f = o!m();

2 ... do something else ...
3 await f?;

4 Int i = f.get;

1 For abstraction of sequential computations there are synchronous calls as well.

58 E. Kamburjan and R. Hähnle

If there is no code between lines 1 and 3, then there is a shorthand notation
for this idiom that avoids creation of an explicit future: Int i = await a!m(). ��

Upon receiving the call, the callee object creates a new process and puts it
into its process pool. For a process to become active, the currently active process
on its processor must explicitly release control by termination or waiting. The
statement await g releases control by the active process and waits for the guard
g to become true. The guard g has one of the following forms:

– a future query f?, where the process can be reactivated after the process
corresponding to this future has terminated;

– a side-effect free boolean expression (including future queries), where the
process can be reactivated whenever the expression evaluates to true, e.g.,
await this.counter > 5;

– a time advancing expression as introduced in the next section.

The explicit release of control allows to reduce the number of interleavings
between processes, since between the await statements, a process has exclusive
control over the object memory and can be regarded as sequential.

The scheduler is non-deterministic, i.e., whenever more than one process can
be reactivated, one of them is chosen non-deterministically.

2.2 Modeling Time

ABS allows to advance time explicitly [2] in processes. There are two statements
to let time pass:

– duration(t1,t2); blocks the active process between t1 and t2 time units. ABS
leaves open how long a time unit is—in this work we use seconds.

– await duration(t1,t2); suspends the active process between t1 and t2 time
units. At runtime a number between t1 and t2 is randomly chosen. The process
can be activated earliest after this time, but if other processes are active and
consume time, it may take longer.

There is no global clock, each object has a local clock. The clock of an object
is advanced if (1) it is the earliest local clock and (2) no process in any other
object can advance its clock. The local time can be accessed with now().

2.3 Four Event Semantics

The formal semantics of ABS can be described with the help of communica-
tion events, each describing a communication action of a process [8]. We use
four different events, one for each possible action of a process that is visible to
the outside: activation of the process, starting its execution, termination, and
obtaining a value from a future. Whenever such an action occurs, the process
appends the corresponding event to the global history. Note that when executing
the model in a runtime environment, there is no such history, it is only used to
define the semantics and reason about possible behaviors.

Uniform Modeling of Railway Operations 59

Definition 1 (Events). Let O,O′ range over object IDs, f over futures, e over
expressions and m over method names. The symbol e∗ denotes a possibly empty
sequence of expressions and represents the parameters of a method call. Events
Ev are defined by the following grammar:

Ev:: = invEv(O,O′, f,m, e∗) (Invocation Event)
| invREv(O,O′, f,m, e∗) (Invocation Reaction Event)
| futEv(O′, f,m, e) (Resolution Event)
| futREv(O, f, e) (Resolution Reaction Event)

An invocation event is added when O calls O′.m(e∗) with future f as a handle.
The invocation reaction event is added once O′ starts the execution of this call.
ABS assumes that the call is received at the same timepoint as the invocation,
but not that it is immediately executed. The resolution event is added once the
process which has f as its handle terminates with the return value e in object
O′. The resolution reaction event is added once object O reads the value e from
future f . Note that O is not necessarily the caller object, because f can be passed
as an argument.

Every history h an ABS system produces is well-formed, satisfying cer-
tain conditions on the ordering of events. For example, if there is an i ∈ N

with h[i] = invREv(O,O′, f,m, e∗), then there must be a j < i with h[j] =
invEv(O,O′, f,m, e∗). This condition expresses that every process starts its exe-
cution only after it was called. The well-formedness conditions for all event types
are in [8].

Example 2. Assume that histories are axiomatized as a theory of finite
sequences. Then we can express invariant properties over histories as formu-
las in first-order logic. For example, the property that for each object, between
any two calls of method m there is a call of method m′ can be written as the
following formula:

∀Object O; ∀ Int i, j; i < j →((∃Object O′, O′′; ∃Fut f, f ′; ∃Expr∗ e, e′;

history [i]
.
= invocEv(O′, O, f,m, e) ∧ history [j]

.
= invocEv(O′′, O, f ′,m, e′)

)

→ (∃ Int k; i < k < j ∧ ∃Object O′; ∃Fut f ; ∃Expr∗ e;

history [k]
.
= invocEv(O′, O, f ′,m′, e)

)) ��

Global history invariants can capture system properties and may reference
the fields of any object in the system. An invariant must hold at each point
when a process terminates or is suspended, hence it is sufficient to create proof
obligations that are local to methods: Because of strong encapsulation, methods
on one object have no direct access to the fields of other objects—to verify
global invariants, these are split into local invariants that specify the object-
local history. The KeY-ABS tool [7] is then able to statically and formally verify
that each method in a class preserves its local history.

60 E. Kamburjan and R. Hähnle

With invariant-based reasoning we are able to state properties of all histories
realized by a system, while the execution of the ABS model generates only one
history. However, the four event semantics in [8] does not include the timed
semantics of ABS and is thus not able to express properties concerning time.
This is the subject of future work.

3 The Railway Operation Model

Our model is focused on operations and is derived from rulebooks. Not all com-
ponents are described in the rulebooks, but also in requirement specifications
or technical documents. For instance, the communication between stations is in
part described in Ril 408 [6] and in part by documents specifying the mech-
anisms for route blocks. We consider participating infrastructure elements as
black boxes and only describe their behavior to extent that it is specified in the
rules. If the rules do not fully specify component behavior, then we complete
the behavior from the descriptions found in technical documents, but without
implementation details. For example, we do not distinguish between mechanical
and electronic interlocking systems.

We model physical behavior, including vehicle dynamics, with sufficient pre-
cision to establish capacity and safety properties. On the other hand, we simplify
some scenarios which are either forbidden in the rulebooks or that have a neg-
ligible effect on the properties to be shown. For example, we compute braking
distances using the track gradient, but we do not model how trains roll back a
short distance after releasing their brakes.

Our model uses instantaneous communication—communication has no delay
and is processed immediately, state changes take no time. In the future we plan
to model such delays, but we expect this to be straightforward.

3.1 Infrastructure

We model the rail track plan as a graph, where nodes are fixed points of infor-
mation flow and edges are tracks between these points.

Definition 2 (Point of Information Flow). A point of information flow
(PIF) is a position on a track where one of the following criteria applies:

– There is a structural element allowing a train to receive information, for exam-
ple, a signal or a data transmission point of a train protection system.

– It has a critical distance in the direction of a signal: At this point the signal is
seen at the latest (for example, according to Ril 819.0203, Chap. 3 this occurs
at 300m if vmax > 120 km/h).

– There is a structural element allowing a train to send information, for exam-
ple, a track clearance detection device (axle counter), or the end points of
switches that transfer information when passed over.

Uniform Modeling of Railway Operations 61

Signal

5 4 0 3

7

Switch

1 2

6

Legend
PoV point of visibility
MS main signal
PS presignal

PoD point of danger
WA start of switch
WE end of switch

PoV PS MS PoD

PoDWA WE

WE

Fig. 1. Structure of a station entry

We also model the change of gradient on a track as a PIF, as this information
is needed to compute breaking distances correctly. PIFs are an abstraction that
assume that all these elements have no length, or can be represented by multiple
PIFs modeling their beginning and end (for example, switches). This simplifica-
tion reduces the accuracy of the simulation of physical properties, such as the
exact position of a train. Our model, however, is designed for the precise analy-
sis of communications and operational protocols. Information about the exact
physical behavior could be obtained from tools for cyber-physical simulations, if
so desired.

Each graph node in a rail track plan is modeled as an object of class NodeImpl

and has a list of objects of subclasses of TrackElement. The latter represent
different kinds of PIFs and we refer to them as track elements.

Track elements are grouped into logical elements. For example, a main signal,
a presignal, the points of earliest visibility of the presignal, and the points of
danger covered by the main signal are grouped as a Signal. Figure 1 shows the
entry to a train station with one entry signal and one switch. A signal can have
multiple points of danger or visibility and two signals can share one presignal.

We refer to edges between two nodes as tracks, to the set of tracks between
two signals as section and to the set of tracks between the exit signal of one
station and the entry signal of another as line. The track lengths are modelled
as an attribute of edges. There may be multiple lines between two stations.

Nodes, edges, logical and track elements forward information, but do not
initialize or delay communication. When a train passes a node, the method
trainLeaves or trainEnters is called (depending on which part of the train
passes the node). To model the communication protocol, then either method
triggeredFront or triggeredBack of all track elements on the node is called. Its
return value is propagated back to the train and, eventually, the information is
also propagated to the station. In this manner a train can read, for example, the
state of a signal. Also the station can call state changing methods on all logical
elements in its area.

62 E. Kamburjan and R. Hähnle

A train only receives information about the current state of the track elements
at a node it passes. There is no direct communication between the train and the
controller. Similarly, a train only initiates the communication that it passed a
node, the station does not receive the identity of the train, only the information
that it passed a point of danger. A station, however, knows which trains are in
its area and a train knows which station is responsible for it. This is necessary so
that a station can issue emergency break orders, etc., and for a train to contact its
station in case of a fault. The communication carried out during those situations
is carefully separated from regular communication in the model. Neither logical
nor track elements advance time.

3.2 Trains

Trains have two positions, front and end, each modeled as the distance on a track
relative to the most recent node. For example, if the front of a train is on track
e, 5m behind a node n, then this position is described as (e, n, 5). A train has
a speed, an acceleration state (stable/braking/accelerating) and a length (the
distance between its front and its end) as well as attributes such as maximal
acceleration and brake retardation that depend on the production series.

Edges maintain a pointer to the trains that pass them, so if a train occupies
more than two edges the information that it occupies the edges in between the
first and last is not lost.

Trains are modeled to drive on simulation events. At every PIF where the
train is active, it computes its next event and the time until this event must be
processed. There are three kinds of simulation events:

– The front of a train reaches the next node
– The end of a train reaches the next node
– A train stops accelerating/braking

When a train stops, it does not compute a new event. It can, however, receive
a command, directly from the station or by observing a signal, set its state to
accelerating and continue driving.

Consider the simulation event when a train reaches a node n with its front.
It receives information from all track elements at this node and changes its state
according to that information. Figure 2 displays the method to process such an
event. Line 7 changes the state to an emergency brake when passing a “Stop” at
the main signal, unless Order 2 (pass the next “Stop” at a signal) was issued.

Not all events are computed by trains. A station can issue an order at any
time by calling method Train.command. In this case the train computes (i) its
current state, based on the current time and the most recent state, (ii) changes
its state according to the issued order, (iii) computes, based on the state change,
the next event. The process that waits for the old (now invalid order) cannot be
canceled in ABS. Instead a counter of the number of orders the train received
is increased. When the process of the defunct event is reactivated it checks this
counter and immediately terminates if it has advanced.

Uniform Modeling of Railway Operations 63

1 await duration(t,t); //wait
2 List<Information> li = await n!triggerFront(this, now(), posFront);

3 while (j < length(li)) {

4 Information i = nth(li,j);

5 case i {

6 Info(STOP) => //passing main signal
7 if (!listContains(orders, Ord2)) {accelState = Emergency;}

8 StartPrepare(STOP) => //passing presignal
9 if (!listContains(orders, Ord2)) {accelState = Break(0);}

10 ... //other branches
11 _ => skip;
12 }

13 j = j+1;

14 }

15 ... //updating location
16 this.detNext(); //compute next event

Fig. 2. Train front arrives at a node n

Currently the trains in our model always accelerate and break with maximal
force and drive with the maximal permitted speed at each point. In future work
we want to model different driving profiles as well as phenomena such as roll
out. We expect this to be straightforward.

3.3 Stations

The German railway system has different modes of operation for driving trains
outside and inside of stations. Here we focus on operation outside of stations.
We differentiate between two kinds of stations: Blockstellen which operate block
signals and only divide a track line into two parts to increase the possible number
of trains on the line and Zugmeldestellen (Zmst, simply called “station” for short)
which are able to “store” trains and rearrange their sequence. The generalization
of both is Zugfolgestelle (Zfst).

Each signal is assigned to exactly one Zfst managing it and every switch is
assigned to exactly one Zmst. The Zmst is responsible to set the switches and
signals correctly when a train passes.

Each Zmst A has a schedule consisting of a list of tuples: time t, train number
z, outgoing signal S and target Zmst B (by convention, trains go from A to B).
For each schedule item, the Zmst launches a process that waits for t seconds and
then attempts to set signal S to “Go” to let z pass. Entry signals are set to “Go”
when a train was announced to arrive at this signal, exit signals are set to “Go”
when a train is issued to leave on this signal, is accepted and the signal is not
locked. To let a train drive from Zmst A to Zmst B on a line L, the following
conditions must be fulfilled:

64 E. Kamburjan and R. Hähnle

– It is possible to set the signal at A covering the first section S of L to “Go”,
i.e., S is not locked by A and A has the permit token for S.

– B accepts the train and is notified about its departure.

There are three communication protocols to ensure this:

Locking sections. Each Zfst is responsible for several logical elements such
as switches and signals. In addition to the internal state of the signals, the
interlocking system itself has a state that depends on the neighboring Zfst.
Each section has an additional Boolean state locked.
Consider a signal covering a section leading out of the Zfst. After a signal
is set to “Go” and a train passes it, the section it covers is automatically
locked and the electronic message “preblock” is sent to the subsequent signal.
A signal cannot be set to “Go” again, as long as the section it covers is locked.
It must be unlocked by receiving the “backlock” message from the subsequent
signal. That signal in turn can only send “backlock” after the train passed.
This is one of the measures preventing a track section being occupied by more
than one train.

Permit token. For each line there is one token that allows a station to admit
trains on this line. Without the token the signal that covers the track cannot
be set to “Go”. There are various safety protocols to acquire a token. Here we
consider the following: To acquire a token, station A must request it from its
counterpart B. The request is granted when all trains that left B in direction
of A have arrived.
Upon initialization the token is given to exactly one station on each line.

Accepting and reporting back trains. Before a train leaves a station A
with destination B, A offers the train and waits for B to accept. This ensures
that B has (or will have) a track to park the train. Before the train departs,
the departure is announced to B. Once the train arrives, B may report back
to A that the train arrives. This is not obligatory in modern systems, as
long as no fault occurs. For modeling purposes we assume that all trains are
reported back.

The code in the upper part of Fig. 3 shows part of the code modeling the
protocol from station A’s side: Lines 2–5 ensure that A has the permission to
use S. The method reqPermit terminates after B granted the request for the
token. Line 7 ensures that A does not lose the permit while waiting for B to
accept the train, by explicitly forbidding it (allowing it again in 12). Line 8
offers the train to B and line 9 notifies about the impending departure. Line 11
suspends the process until the next section is unlocked. The code in the lower
part of Fig. 3 is the method modeling the request for the permit token from B’s
side: The first conjunct in the guard waits until there are no more trains on S
from B to A and the second one waits until B has the token.

Only trains and Zmst advance time, trains by waiting for their next event,
Zmst by waiting for the next item in their schedule.

Uniform Modeling of Railway Operations 65

1 // ... extract correct signals and sections
2 if (!lookupUnsafe(permit, S)) { //Zmst does not have permission
3 await nextM!reqPermit(this, S); //acquire permit token
4 permit = put(permit, S, True);

5 }

6

7 permitLock = put(permitLock, S, True); //lock token
8 await nextM!offer(train, this); // offer
9 nextM!notify(n, lookupUnsafe(duration, nextM), this, A); // register

10

11 await !lookupUnsafe(outLocked, S); // wait until next section is free
12 permitLock = put(permitLock, S, False);

13 // ... set train as departed and set signal to ‘‘Go’’

1 Unit reqPermit(TrainNotify sw, Route rtNotify){

2 Route rt = getOther(inNotify, rtNotify);

3 await lookupUnsafe(expectOut, rt) == Nil &&

4 lookupUnsafe(permit, rt);

5 permit = put(permit, rt, False);

6 }

Fig. 3. Protocol of the offering station and for releasing the token

4 Dynamic Analysis

ABS models with initialization blocks are executable and can be compiled
into Java 8, Haskell, Maude, ProActive, and Erlang. The concurrency model
described in Sect. 2 is implemented as a runtime environment. In this section we
show it can be used to analyze dynamic behavior of a concrete track plan. The
object-oriented paradigm of ABS allows to vary the behavior and to perform
comparisons between different versions without the need to make global changes
to the model.

The Fahrdienstvorschrift regulates not merely the behavior of trains and
stations during normal operation, but also in case of errors and incidents. As an
example, we modeled the behavior for the case when a signal cannot be set back
to “Stop”. In the terminology of safety-critical systems, this would be called a
“single stuck-at-Go fault”. We describe the scenario with the following diagram:

A train passed signal S2 which cannot be set back to “Stop”. As a conse-
quence, S1 cannot be set to “Go”. Additional communication and explicit orders
are required to mitigate this situation, such that trains may continue using this

66 E. Kamburjan and R. Hähnle

part of the line. According to Ril 408.0611 and Ril 408.0411, the following
communication protocol applies:

1. The train dispatcher T2 responsible for signal S2 communicates to the train
dispatcher T1 responsible for signal S1 that signal S2 cannot be set to “Stop”.

2. When a train arrives at Signal S1, then T1 requests a Gleisfreiprüfung (clear-
ance check) for the track section between S1 and S2, as well as the section
between S2 and S3.

3. After clearance is confirmed the train receives two orders:
Order 2 : Pass signal S1, despite S1 signaling “Stop”
Order 14.4 : Stop at signal S2, despite S2 signaling “Go”

4. Once the train arrives at signal S2, T2 issues an Order 2 to pass signal S2.

The communication protocol has four endpoints (including the train dis-
patcher responsible for S3 who ensures that the track between S2 and S3 is
clear). It cannot be represented and, therefore, is not analyzable in a model that
is focussed on a single interlocking station. According to Ril 408.0411, the train
must always halt before it can receive orders directly from the train dispatcher:
one broken signal causes two stops for each train passing this network section.

The train is always ordered to stop at signal S2, even though it is has been
checked that the next section is clear. The reason is that signal S2 might cover a
switch. The Gleisfreiprüfung only ensures that the section is clear, but not that
the switches are set correctly. Hence the train must halt to give the dispatcher
an opportunity to set the Fahrstraße (train route) correctly.

To optimize capacity one could consider to refine the rulebook such that there
are two rules—one for signals covering switches, as described above, and one for
signals not covering switches. In the latter, Order 14.4 in item 3 and item 4 in the
communication protocol is not given. Changes in rulebooks incur considerable

Fig. 4. Comparison of train behaviors in case of a faulty signal

Uniform Modeling of Railway Operations 67

1 TrainI train = await s!getObserver();

2 await train!acqStop();

3 train!order(list[Order2, Order144]);

1 TrainI train = await s!getObserver();

2 await train!acqStop();

3 train!order(list[Order2]);

Fig. 5. ABS model of original and alternative rule at Zfst for faulty signal

expenses caused by safety analysis, training, certification, etc. To decide whether
this is justified, one has to estimate the expected capacity increase.

Capacity is hard to determine and always requires a concrete track plan and
schedule [15]. As a proof of concept for our approach, we modeled a simple track
plan with five Zfst arranged in a circle having a circumference of 22.5 km, where
one signal has the stuck-at-Go fault described above.2

We simulated how one train runs on this track for 3600 s. The resulting v-t
diagram is shown in Fig. 4. It can be seen that requiring one stop less decreases
delays—the train needs 787 s for a round with the original rule and 744 s for a
round with the changed rule, a decrease of 5%.

The original and the changed ABS model are illustrated in Fig. 5: in the
method that models a Zfst setting its signal to “Go”, we simply issue one order
less to the train than before.3 In this example, the fault itself is deterministic. It
is part of the input, which signal breaks at what point in time. The simulation
takes less than one second with the Erlang backend of ABS.

The modeled scenario is, of course, a mere approximation of actual railway
operations: the train is assumed to always drive with maximal speed and acceler-
ation, the track plan is not realistic. However, it demonstrates that our modeling
approach can be employed to analyse the effect of rule changes. In the future
we intend to enrich our model with realistic speed parameters, simulating the
average behavior of train drivers. As explained in Sect. 3.1, the track plan in
our ABS model is encapsulated in a graph. It is possible to generate this graph
automatically from actual track plans available in digital form.

5 Static Analysis

The EN 50128 [3] standard recommends the usage of formal methods in software
development for railway control systems. Our approach is a model on the archi-
tectural level, i.e., we abstract away from the concrete software and hardware.

2 Model available at formbar.raillab.de/index.php/en/publications-and-tools/demo.
3 This model transformation is not a behavioral refinement, therefore, it cannot be

captured in refinement-based formalisms. ABS offers software product lines as an
effective method to manage and track changes, see [12] for a detailed discussion.

http://formbar.raillab.de/index.php/en/publications-and-tools/demo

68 E. Kamburjan and R. Hähnle

For distributed software services and, in particular, cloud-based applications, for
which ABS was originally developed, the usage of formal methods at the archi-
tectural level is established [21]. In this section we argue that railway systems
benefit as well from using formal methods at a high level of abstraction.

As pointed out in the previous section, some safety properties can only be
established at the global level and cannot be analyzed by local verification of
a subsystem. This does not imply that local verification at the implementation
level is useless or unnecessary: its results can be imported into an abstract model
in the form of guarantees or assertions.

As described at the end of Sect. 2.3, the strength of ABS’s concurrency model
is that it allows to decompose global invariants into local ones which are then
checked separately for each method. That is possible, because of a rely-guarantee
argument where guarantees are justified by strong data encapsulation (all fields
are strictly private): this implies that any ABS code between two release points
behaves atomically and, hence, can be verified like sequential code. It greatly
simplifies reasoning about concurrent systems.

Formal verification rests on invariants that are assumed when code is started
or resumed and must be established when it suspends or terminates, in other
words, they must hold whenever communication takes place in the modeled
system. In concrete terms, each method is proven separately to preserve its local
class invariant. It is not necessary to explore the global state space of a system
and invariants are established without reference to an initial state. In the railway
context this means we are able to reason about behavior without a concrete track
plan. As an example we consider the following property:

“Let S be a section between two Zmst A,B. If A releases the permit
token for S, then there are no trains on S in the direction of B.” (1)

This means that, if B requests the token and A releases it, then all trains in
the direction from A to B have already arrived in B.

Depending on the interlocking systems in the station, different mechanisms
to ensure this property are in place. Here we consider a variant of an older inter-
locking system, where the permit token is not secured technically, but transferred
by a phone call between train dispatchers. To transfer the token, the dispatcher
of that station which currently does not have it calls his counterpart and requests
transfer. The other dispatcher may only release the token when all trains that
departed from his side have been reported back.

In this paper we present our modeling approach and provide a proof-of-
concept, hence a full-fledged case study that includes verification of the complete
interaction between nodes, track elements, logical elements, Zmst and trains, is
out of scope. In particular, we make some assumptions:

A.1 Lines are encoded correctly, i.e., a line L from A to B is encoded with its
first section on A and its last on B and there are tracks that connect A and
B using the correct in- and outsignal.

A.2 Tracks have length strictly greater than 0.

Uniform Modeling of Railway Operations 69

Property (1) can be expressed as a history invariant which is formalized in first-
order logic and can be verified with KeY-ABS [7]. In the following formula let
A, B be two Zmst and S, Ŝ two sections of a line L such hat S is the first
section of L from A and Ŝ the first section of L from B. It expresses that when
A releases the permit token to B, every train that was announced from A to B
was reported back by B to A.

∀ Int i;
(∃Fut f ; h[i]

.
= futEv(A, f, reqErlaubnis, (B,S))

)→
∀Train T, Int j; j < i →((∃Fut F ; h[j]

.
= invREv(A,B, f, anmelden, (T, t, A, S))

)→ (2)

∃ Int k, Fut f ; h[k]
.
= invREv(B,A, f, rueckmeldung, (B, T, Ŝ)) ∧ j < k < i

)

Theorem 1. Invariant (2) holds for method reqErlaubnis in Fig. 3 (and all
other methods in its class), i.e., if it holds at the start of the method, then it is
reestablished after termination.

This does not yet show that there are never two trains on one line in opposing
directions. To show that one must additionally establish that if a train enters
a line, then it was offered, accepted and announced and that when a train is
reported back, then the train left the line. A proof sketch of Theorem 1 is in the
Appendix. It has also been proven mechanically with the help of KeY-ABS.

6 Related Work

The work closest to ours is by James et al. [17], who presented a formalization
of ETCS level 2 in Real-Time Maude and analyze the communication between
trains and one station. Like ours, their approach is set at the design level and
encompasses all components needed for driving trains. However, it is restricted
to one specific rail yard, necessitated by the use of model checking instead of
deductive invariant reasoning. A further difference is that our work concentrates
on ETCS level 1LS, which is the most relevant within the network of Deutsche
Bahn AG. Maude is an object-oriented language based on term rewriting and
one of the backends supported by ABS. Therefore, potentially both modeling
approaches might be combined.

Individual rail yard components such as interlocking systems have been ana-
lyzed by multiple approaches, for example, recently in SystemC [13], OCRA [19]
and CSP||B [20]. An overview over approaches for interlocking systems, the most
frequently analyzed component, can be found in the survey of Fantechi et al. [9]
and a comparison of ABS with these approaches in [12].

There are two main approaches to combine micro- and macroscopic models:

– Relating several models of increasing abstraction level and using the appropri-
ate one for a given use case. This is either done by generating more abstract
models on demand from a microscopic model or annotating the relation
between a micro- and a macroscopic model [4,16].

70 E. Kamburjan and R. Hähnle

– Mesoscopic modeling, which aims to be a middle ground in terms of abstrac-
tion, tailored for a given use case. A recent application of this approach was
generating timetables by de Fabris et al. [5].

Our approach leans towards mesoscopic modeling, but achieves simplification
not by summarizing multiple elements, but by abstracting from certain aspects.
For example, we do model each magnet of the train protection system PZB, but
assume these as having no length. Similarly, established mesoscopic models do
not consider the communication layer, which is the main focus of our work.

7 Conclusion and Future Work

We presented an approach to modeling and analysis of railway systems based
on an object-oriented, concurrent, executable modeling language. The modeling
formalism is able to unify aspects from micro- and macroscopic modeling and
allows to analyze static (for example, safety) as well as dynamic (for example,
delays) properties of a rail yard based on a single model. For static analysis we
use deductive invariant reasoning which allows to prove properties for any valid
track plan and initial configuration.

As the next step, we plan to calibrate and validate our model with real data
on a part of the actual railway network of Deutsche Bahn AG. This includes
establishing realistic driving profiles regaring acceleration and speed as well as
to determine the precision of our approach in terms of train positions. On the
safety side, we plan to provide a formalization of all incident scenarios described
in the rulebooks [6] and to prove a suitable safety property for this model.
Furthermore, we plan to use analysis tools developed for ABS software models,
such as complexity and deadlock analysis [1,10], to examine the properties of
the rulebook and for carrying out a capacity analysis.

Acknowledgements. We thank Sebastian Schön for his insights into train operations
and the anonymous reviewers for helpful comments. This work is supported by FormbaR,
’Formalisierung von betrieblichen und anderen Regelwerken’, part of AG Signalling/DB
RailLab in the Innovation Alliance of Deutsche Bahn AG and TU Darmstadt.

References

1. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: static analyzer for con-
current objects. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 562–567. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 46

2. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: User-defined
schedulers for real-time concurrent objects. ISSE 9(1), 29–43 (2013)

3. CENELEC. DIN EN 50128:2011, Railway applications - Communication, Sig-
nalling and Processing Signals

4. Cui, Y., Martin, U.: Multi-scale simulation in railway planning and operation.
Promet Traffic Transp. 23(6), 511–517 (2011)

http://dx.doi.org/10.1007/978-3-642-54862-8_46

Uniform Modeling of Railway Operations 71

5. de Fabris, S., Longo, G., Medeossi, G., Pesenti, R.: Automatic generation of railway
timetables based on a mesoscopic infrastructure model. J. Rail Transp. Planning
Manage. 4(1–2), 2–13 (2014)

6. Deutsche Bahn Netz AG, Frankfurt, Germany. Fahrdienstvorschrift Richtlinie 408.
August 2016: http://fahrweg.dbnetze.com/fahrweg-de/nutzungsbedingungen/
regelwerke/betriebl technisch/eiu interne regeln ril 408.html

7. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517–526. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 35

8. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551–572 (2015)

9. Fantechi, A., Flammini, F., Gnesi, S.: Formal methods for railway control systems.
STTT 16(6), 643–646 (2014)

10. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in
core abs. Softw. Syst. Model. 15(4), 1013–1048 (2016)

11. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction.
In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) Proceeding
Formal Methods for Component-Based Systems FMCO, pp. 1–37 (2012)

12. Hähnle, R., Muschevici, R.: Towards incremental validation of railway systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 433–446.
Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 36

13. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Formal Aspects Comput. 23(2), 191–
219 (2011)

14. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Nilsson, N.J. (ed.) Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, Standford, CA, USA, 20–23 August
1973, pp. 235–245. William Kaufmann (1973)

15. International Union of Railways (UIC). Capacity (UIC code 406) (2004)
16. International Union of Railways (UIC). IRS 30100 - RailTopoModel - Railway

Infrastructuretopological Model (2016)
17. James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Towards safety analy-

sis of ERTMS/ETCS level 2 in real-time Maude. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2015. CCIS, vol. 596, pp. 103–120. Springer, Cham (2016). doi:10.
1007/978-3-319-29510-7 6

18. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

19. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). doi:10.1007/978-3-319-33951-1 10

20. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP||B. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 193–208.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39611-3 20

21. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. CACM 58(4), 66–73 (2015)

http://fahrweg.dbnetze.com/fahrweg-de/nutzungsbedingungen/regelwerke/betriebl_technisch/eiu_interne_regeln_ril_408.html
http://fahrweg.dbnetze.com/fahrweg-de/nutzungsbedingungen/regelwerke/betriebl_technisch/eiu_interne_regeln_ril_408.html
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-47169-3_36
http://dx.doi.org/10.1007/978-3-319-29510-7_6
http://dx.doi.org/10.1007/978-3-319-29510-7_6
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-319-33951-1_10
http://dx.doi.org/10.1007/978-3-642-39611-3_20

Circuits and Cyber-Physical Systems

Formal Verification of Gate-Level Multiple Side
Channel Parameters to Detect

Hardware Trojans

Imran Hafeez Abbasi(B), Faiq Khalid Lodhi, Awais Mehmood Kamboh,
and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{imran.abbasi,faiq.khalid,awais.kamboh,osman.hasan}@seecs.nust.edu.pk

Abstract. The enhancements in functionality, performance, and com-
plexity in modern electronics systems have ensued the involvement of
various entities, around the globe, in different phases of integrated cir-
cuit (IC) manufacturing. This environment has exposed the ICs to mali-
cious intrusions also referred as Hardware Trojans (HTs). The detection
of malicious intrusions in ICs with exhaustive simulations and testing is
computationally intensive, and it takes substantial effort and time for
all-encompassing verification. In order to overcome this limitation, in
this paper, we propose a framework to formally model and analyze the
gate-level side channel parameters, i.e., dynamic power and delay, for
Hardware Trojan detection. We used the nuXmv model checker for the
formal modeling and analysis of integrated circuits due to its inherent
capability of handling real numbers and support of scalable SMT-based
bounded model checking. The experimental results show that the pro-
posed methodology is able to detect the intrusions by analyzing the fail-
ure of the specified linear temporal logic (LTL) properties, which are
subsequently rendered into behavioural traces, indicating the potential
attack paths in integrated circuits.

Keywords: Model checking · Hardware Trojans · Formal verification ·
Side channel analysis · nuXmv · Gate level modeling

1 Introduction

The rapid scale growth of semiconductor design and fabrication technology has
raised serious concerns about integrated circuits trustworthiness and security,
particularly in the military and industrial applications [3,14,28]. The issue of
hardware trust has become prominent in the recent years due to large scale out-
sourcing of IC fabrication to untrusted foundries, making them vulnerable to
Hardware Trojans insertion [6]. Malicious intrusion in ICs may result in change
of specifications or functionality, unreliability and degraded performance, and
leakage of confidential information, such as encryption keys. The effects can be
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 75–92, 2017.
DOI: 10.1007/978-3-319-53946-1 5

76 I.H. Abbasi et al.

catastrophic, such as failure of critical avionics system, leakage of secret encryp-
tion keys, failing of defense satellite system [1,21] and compromise of heteroge-
neous network of Internet of Things (IoTs) [24]. Hardware Trojans are generally
of two types: (i) functional Trojans change the system functionality by addition
or deletion of functional units in a circuit with malicious purpose and (ii) para-
metric Trojans reduce reliability of the IC to increase the likelihood of system
failure by modifying physical parameters, such as modifying the power consump-
tion resulting in faster aging than expected.

Hardware Trojan detection schemes are broadly classified into logic based
testing, side channel analysis and reverse engineering [5]. Logic based testing
techniques uses generation of random test vectors and implementation of differ-
ent methods to trigger the Trojan circuits and observe their effects at the output
[9]. Side channel analysis is based on measuring the variations in observable phys-
ical parameters, such as delay, power, electromagnetic (EM) signal analysis and
current sensing in order to detect any alteration with the structural characteri-
zation of the integrated circuit design [12]. Side channel analysis techniques are
more commonly used because of their higher performance, relatively lower costs
and nondestructive testing capabilities. Agarwal et al. proposed a power analysis
based technique by applying random patterns at inputs of ICs under test and
comparing their measurements with the power signature of a golden model [2].
The golden IC model is obtained from reverse engineering of limited number
of ICs. Similarly, Wang et al. proposed an approach to generate average and
covariance based power traces [29] employing the singular value decomposition
(SVD) algorithm and eigenvector projection analysis, respectively, to detect the
malicious intrusions. The focus of delay based detection techniques [15,18,26] is
on the delay measurements of individual paths of the circuit due to activation of
Hardware Trojans and their comparison with of delay fingerprints from golden
ICs. These above-mentioned delay and power signature analysis techniques are
based on extensive simulations or by testing on real hardware systems, which
requires immense time, cost and resources. Moreover, the measurements acquired
through sensors cannot encompass all the possible input conditions for larger ICs
and result in an extensive amount of data, which is difficult to handle with con-
ventional automation techniques [17].

Formal verification [13] can overcome the above stated limitations of simu-
lation based techniques for Hardware Trojan detection by virtue of its inherent
soundness and completeness. The formal verification based methods, such as
SAT solving and Model Checking, have been used with the soft intellectual
property (IP) of the IC to detect Hardware Trojans, provided that user has
access to a hardware description language code or netlist of the IC. In the recent
past, researchers have presented different frameworks for the formalization and
verification of IP core security properties. Xuehui et al. proposed an approach
that applies multistage assertion based verification, equivalence and code cov-
erage analysis, redundant circuit removal for isolation of suspicious signals, and
sequential automatic test pattern generations (ATPG) [33]. Lodhi et al. have pro-
posed to utilize model checking for analyzing the delay based vulnerabilities in

Formal Verification of Gate-Level Multiple Side Channel Parameters 77

integrated circuits [19]. In this approach, the timing behaviour and functional-
ities of IC are translated into the corresponding state-space model and LTL
properties, respectively. Rathmair et al. have presented a property checking
based method which verifies functional properties deduced from system spec-
ification using a model checker. The counterexample is subsequently analyzed
to detect potential attack paths [27]. Ngo et al. have presented a methodol-
ogy to use assertions derived from temporal logic and converting them into
a synthesizable checker [23]. This method involves identification and verifica-
tion of critical behavioral invariants using assertion based property specifica-
tion language (PSL). The verified behavioral invariants are used to design the
hardware property checker (HPC) which is subsequently integrated in ICs to
verify the properties. However, to the best of our knowledge, so far no work is
being reported, which considers the formal verification of performance proper-
ties to detect intentional malicious enhancement of hardware design. Moreover,
the above-mentioned assertion based property checking methods are vulnerable
to Trojan insertions at netlist and layout levels, and will only be able to detect
functional Trojans.

In this paper, we present a generic framework based on the behavioral model
of the IC to detect malicious hardware intrusions. We assume the attack model
B [32], in which we have a netlist available in the form of trusted design, but
the foundry is considered untrusted to which the design is outsourced for manu-
facturing. The attacker in the foundry can insert Hardware Trojans in the form
of addition, deletion or modification of gates. The main idea is to translate the
circuit netlist to a state transition system based model and verify it against the
identified set of functional and behavioral properties that can be affected by any
malicious modification in the IC. The model is then intruded with the expected
malicious behaviour, and counterexamples are analyzed for deducing potential
attack paths. On the basis of the information extracted from the detailed analy-
sis of counterexamples, the designers can merge protection in the original design
by embedding runtime hardware monitors. The proposed LTL properties are
based on system functional and physical behavior. We propose to use the sym-
bolic model checker nuXmv [8] for analysis by virtue of its ability to handle real
numbers and implicit dealing of state counters.

The rest of this paper is organized as follows: Sect. 2 provides an overview of
the nuXmv model checker and performance parameters used in our gate mod-
els. In Sect. 3, we explained the proposed methodology for hardware intrusion
detection followed by our gate modeling in the nuXmv model checker in Sect. 4.
In Sect. 5, we have given a case study for our proposed methodology. Section 6
presents the results followed by a comparison with some of the existing schemes
in Sect. 7. Finally, the paper concludes in Sect. 8.

2 Preliminaries

In this section, we give a brief introduction to the nuXmv model checker and
the performance parameters, i.e., dynamic power and delay, that we have used

78 I.H. Abbasi et al.

for gate level modeling in our proposed Hardware Trojan detection scheme. The
intent is to facilitate the understanding of the rest of the paper for both hardware
security and formal methods communities.

2.1 nuXmv Model Checker

The nuXmv symbolic model checker [8] is a recently developed formal verification
tool that extends the capabilities of NuSMV model checker [10], by supporting
analysis of infinite state domains. It complements NuSMV’s verification tech-
niques by sharing basic functionalities, such as symbol table, boolean encoding of
scalar variables, flattening of design, and representation of finite state machines
at different levels of abstraction. Moreover, it inherits all the basic model check-
ing algorithms from NuSMV for finite domains using BDDs and SAT. For infi-
nite state transition models, it introduces new data types of unbounded Integers
and Reals and it provides the support of Satisfiability Modulo Theories (SMT),
using MathSAT [20], for the analysis of such kinds of designs. The system that
is required to be modeled is translated into SMV language, which supports the
modular programming approach. The entire system can be distributed into sev-
eral modules that interact with one another in the MAIN module. The properties
to be checked can be expressed in nuXmv using the Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL). The specifications are expressed in
nuXmv with the help of logical operations like, OR (|), AND (&), Exclusive OR
(xor), Exclusive NOR (xnor), equality (<->), implication (->), and temporal
operators, like next (X), Globally (G), Finally (F) and until (U). Similarly, the
CTL specifications can be written by combining logical operations with quan-
tified temporal operators, like forall finally (AF), exists globally (EG) and exists
next state (EX). It is also possible to analyze quantitative characteristics of the
state transition system by specifying real-time specifications. Whenever a spec-
ified property is determined to be false, a counterexample is constructed and
subsequently printed by nuXmv in the form of an error trace of the state space
that falsifies the property. We have chosen the nuXmv model checker because it
can effectively model continuous values of power consumption and path delays
of any given IC.

2.2 Performance Parameters

Gate level characterization has effectively formed the basis of side channel Hard-
ware Trojan detection schemes, which are based on characterizing each gate in
terms of its physical and performance parameters. We adopted dynamic power
consumption and path delay as the side channel performance parameters for
malicious intrusion detection in any given circuit. Equation 1 represents the gate
level switching power model [31] that is dependent upon the activity factor
α, output capacitance CL, supply voltage Vdd , which has quadratic effect on
dynamic power, and operating frequency f . The activity factor is the switching
probability that a node of a circuit transitions from 0 to 1, because that is the

Formal Verification of Gate-Level Multiple Side Channel Parameters 79

only time when dynamic power is consumed by the circuit in the CMOS tech-
nology. The total output capacitance is the sum of parasitic capacitance of the
individual gate and load capacitances at the output node.

Pswitching = αCtotalVdd
2 f (1)

We have estimated gate level delays based on individual transitions at the
gate inputs using the Elmore delay model [31], which computes the delay by
representing each circuit in the form of RC tree. The voltage source is the root of
tree, and capacitors are leaves at the ends of the branches. The delay is estimated
by the model from a source switching to one of the leaf nodes changing as the
sum over each node i of the capacitance Ci on the node, multiplied by the
effective resistance Ris on the shared path from the source to the node and the
leaf. Equations 2 and 3 are used in formulation of the gate level delay model.

τelmore =
∑

i

RisCi (2)

tdelay = ln 2 × τelmore (3)

3 Proposed Methodology

In this section, we describe our proposed generic framework for the detection of
malicious intrusion in any given IC. Our methodology comprises of the following
five steps as depicted in Fig. 1.

Fig. 1. Proposed framework for Hardware Trojan detection

80 I.H. Abbasi et al.

1. The first step is to develop models for universal gates, including NAND,
NOR and NOT. The advantage of these models is that we can build any
other complex gate or a complete IC using these three basic gates. These
generic models are technology independent and can be customized based on
the characteristic parameters of a particular VLSI technology.

2. The next step is to develop a state transition system for any given netlist
manually using the individual gate models. Based on the information in the
netlist, expressions are specified for computation of both power and individ-
ual path delays. The technology parameters, and individual gate models are
passed to the main module for required computations.

3. The state-space model is verified in a model checker against LTL properties
specified for the IC functionality and performance. The gate fanouts [25] are
set to be of variable size, such that model checker can analyze all possible
combination of gate sizes in a circuit. The minimum and maximum bounds
for circuit power consumption and path delays are determined, which are
used to examine the integrity of the circuit.

4. The behaviour of Hardware Trojan is integrated into the model of IC. The
intruded model is subsequently verified against the specified power and timing
LTL properties.

5. The verification of intruded model generates counterexamples, which are ana-
lyzed and translated into the potential attack paths in the IC.

4 nuXmv Modeling

In this section, we give the detailed description of the proposed modeling app-
roach in our Hardware Trojan detection scheme.

4.1 Technology Parameters

The starting point of our work as shown in Fig. 2 is to identify the required
parameters of target VLSI technology used in the manufacturing of an IC. An
estimation of the gate level power consumption and delay needs parameters, such
as minimum length and width of transistor’s gate, source, and drain, electron
and holes mobilities, threshold voltages, thickness oxide, and junction capaci-
tances. These basic parameters can be obtained from the process specification
document of the relevant technology or by plotting the DC and model parame-
ters in a CAD tool, such as Cadence. We have defined a separate module, which
uses basic parameters to calculate minimum values of MOSFET gate and drain
capacitances along with the value of individual resistances of MOSFETS in the
ON condition.

4.2 Universal Gate Models

Based on the technology parameters, we have developed models for the universal
gates, i.e., NAND, NOR and NOT as depicted in Fig. 2, in order to estimate

Formal Verification of Gate-Level Multiple Side Channel Parameters 81

Fig. 2. Gate level modeling

Fig. 3. Composition of two input NAND gate

switching power and delay. These gate models can be in turn used to build more
complex gates and circuit elements. The description of the NAND gate model
is provided here and all the others have been developed similarly with different
parameter values.

A two input NAND gate is composed of two pMOS transistors, connected in
parallel, and two nMOS transistors connected in series as shown in Fig. 3. The
individual gate capacitances for pMOS and nMOS transistors are given in Eqs. 4
and 5.

CgatepMOS = fanout ×WRpMOS × CgminP (4)
CgatenMOS = fanout ×WRnMOS × CgminN (5)

where WR is the width ratio and Cgmin is the minimum gate capacitance for
pMOS and nMOS transistor. Cgmin is calculated from the oxide capacitance

82 I.H. Abbasi et al.

Cox , minimum width Wmin and length L of respective MOSFETS. The load
capacitance Cload is the sum of gate capacitances of individual gates connected
at the output node.

Cload =
p∑

i=1

CgatepMOSi +
n∑

j=1

CgatenMOSj (6)

The diffusion capacitance for NAND gate is computed as:

Cdiffusion =
(
2 × fanout ×WRpMOS ×WminP × CdminP

)

+
(
1 × fanout ×WRnMOS ×WminN × CdminN

) (7)

where Cdmin is the minimum diffusion capacitance of a MOSFET, calculated
using area, sidewall perimeters and respective junction capacitances of the drain
diffusion region [31]. The total capacitance Ctotal at the output of an individual
gate is computed by addition of Cdiffusion and load capacitance Cload as shown
in Eq. 8.

Ctotal = Cload + Cdiffusion (8)

The total power consumption of the NAND gate is determined using Eq. 1. In
order to determine the individual path delays in a circuit, we have used the
Elmore delay model to calculate the individual gate delay on the respective
input transitions as depicted in Table 1. An accurate estimation of the delay
is performed by considering all possible transitions by taking into account the
capacitances, which will change or remain constant. Our proposed approach of
gate level modeling also considers the effects of charging and discharging of
capacitances at the internal nodes. For instance, capacitance is required to be
charged at the nMOS stack of the NAND gate when upper transistor is ON
and the lower transistor is OFF. The total power consumption and path delay
measurements are mainly dependent upon charging and discharging of individ-
ual capacitances in an IC. We illustrate this fact by considering a behaviour of
a single inverter, which drives the load of two inverters connected at its out-
put node as shown in Fig. 4. At input low, the gate capacitances of NOT2 and
NOT3, i.e., Cg2 and Cg3 along with the diffusion capacitance Cd1 of gate NOT1
are charged. The output node of NOT1 transitions to logic high depicted as
state 1. The compute power (CP) and estimate delay (ED) flags are set to
high, indicating the measurement of dynamic power and time required to charge
capacitance. At the input high, same capacitance is required to be discharged
and output node transitions to state 0. The state does not change if the input
remains same, indicating no change in dynamic power or path delay. Similarly,
behaviour of two input NAND and NOR gates can be represented with the state
diagram comprising of four states, and each state having transitions to and from,
all other states.

Formal Verification of Gate-Level Multiple Side Channel Parameters 83

Table 1. Elmore delay calculation NAND gate

Input Output Elmore delay

00 1 (2 × Rp × Ctotal)/(Fanout × WRpMOS × WminP)
01 1 (Rn × Ctotal)/(Fanout × WRnMOS × WminN)
10 1 (Rn × (Ctotal + CstackN))/(Fanout × WRnMOS × WminN)
11 0 (Rn × Ctotal)/(Fanout × WRnMOS × WminN)

Fig. 4. The state-space model of an inverter

4.3 Netlist Translation

The translation of netlist is accomplished by interconnecting the individual gate
modules. A particular gate module is defined by parameters, including variable
inputs, transition probabilities, gate capacitances at output, fanout and rele-
vant technology parameters. The transition probabilities along with outputs are
passed to all gates connected at the output node of an individual gate. Other
gates are constructed using the three basic gates, for instance, the AND gate is
constructed using a NAND module followed by a NOT gate. Similarly, netlist
of any integrated circuit can be manually translated using basic models of the
three gates. The individual fanouts are swept across all the values in order to
identify maximum and minimum bounds of switching power and individual path
delays.

4.4 Property Specification

The verification of the IC model is carried out by validating the following prop-
erties using the bounded model checking (BMC) support for real numbers. The
performance properties are validated using the nuXmv model checker to ascer-
tain that the given IC remains between the specified boundaries defined for

84 I.H. Abbasi et al.

dynamic power and delay parameters. The undesired behaviour of the circuit
due to any malicious alteration of circuit can be identified from the generated
counterexample. The maximum and minimum bounds for power consumption
are identified to validate the power property. The LTL specifications to validate
the switching power is defined by adding the power consumed by individual gates
in the circuit.

G(pwr max >= gate1.pwr + gate2.pwr +...+ gaten.pwr >= pwr min) (I)

The attacker can intrude the IC by altering and modifying any of the individual
path from input to output. Therefore, the characteristic delay of each individual
path in an IC from input to output is required to be validated using the delay
based properties. Suppose an IC has p number of paths from input to output,
then properties to verify minimum and maximum delay for each of the ith path
are required to be specified.

G(gate1(i).del + gate2(i).del +...+ gatek(i).del >= del (path i)min) (II)

G(gate1(i).del + gate2(i).del +...+ gatek(i).del<= del (path i)max) (III)

Any intrusion at the hardware level either affects power consumption of the
entire circuit, or delay of an individual path which has been altered, or both.
Whenever the defined bounds for maximum and minimum values of parameters
are violated, a counterexample can be generated by the model checker indicating
the existence of Hardware Trojans.

5 Case Studies

We illustrate usefulness of our proposed framework, by evaluating it on ISCAS85
benchmark circuit C17. We show two types of malicious intrusions on C17 given
in [30], and [22] as depicted in Fig. 5a and b respectively. The procedure of
modeling and identification of intrusions using nuXmv model checker is explained
below.

(a) Power based intrusion (b) Delay based intrusion

Fig. 5. Intruded ISCAS-85 C17 benchmark circuit

Formal Verification of Gate-Level Multiple Side Channel Parameters 85

5.1 Gate Level Models

The first step in our proposed framework is to acquire the basic gate level mod-
els. The ISCAS benchmark circuit C17 comprises of 6 two input NAND gates,
and total number of 5 inputs. Only the NAND gate model is required, which
constitutes of expressions for diffusion and load capacitances, required to esti-
mate values for both power and path delay. Moreover, the activity factors for
switching power computation are also determined for each gate in the circuit.
The basic gate models are defined in separate modules in the nuXmv model
checker.

5.2 State Space Modeling

The netlist gives the description of connectivity for C17 benchmark circuit, which
is translated into the state space. For example, consider the NAND3 gate in
Fig. 5a which has inputs N2, and NAND2.out (output of NAND2). The gate
along with relevant parameters is described as:

NAND3:nand(N2, NAND2.out, 0.5, 0.5, NAND2.P0, NAND2.P1, Fanout3, par.Freq,

par.Cgmin p, par.Cgmin n, par.Vdd, par.Wmin, par.Cdmin p, par.Cdmin n,

par.Csmin p, par.Csmin n,par.Rp, par.Rn, NAND5.Cgate, NAND6.Cgate,0, 0);

Using the given input signal probabilities of the circuit, we compute the proba-
bilities and activity factor for its each node. For example, input N2 has an input
probability of 0.5 for 0 and 1, P0 and P1 are the probabilities of the second input
being 0 or 1, which can be used to calculate the activity factor at the pertinent
node of circuit. This follows by the parameters like, operating frequency, input
voltage Vdd , values of gate and diffusion capacitances, along with the values of
ON resistances Rp and Rn for pMOS and nMOS transistors, respectively. The
last part of the expression indicates the total load at the output node N16, which
is the sum of gate capacitance of NAND5 and NAND6. Typically, gates have the
maximum fanout of 4 and minimum fanout of 1 [25]. Similarly, all six NAND
gates of C17 circuit are described in the main module of nuXmv to generate the
formal model of the given circuit.

5.3 Model Verification

After the state space of the C17 benchmark circuit is defined, the next step is to
check the functionality the circuit. There are a total number of 25 = 32 possible
input vector for C17 circuit. We verified the functionality of circuit by using
certain number of input vectors. The next step is to identify the maximum and
minimum bounds for switching power and delay. Our model accuracy requires
the values to remain in between these bounds. The power for C17 circuit is
maximum when all 6 NAND gates have a maximum fanout equal to 4. Similarly,
the minimum bound is determined by computing the power with the minimum
fanout of 1. For all sizes of the gates of the C17 benchmark, the power for

86 I.H. Abbasi et al.

C17 is required to remain in between the specified bound. The circuit has four
individual paths from inputs to two output, and the bounds for the delay are
identified for every single path by computing the combination of individual gate
fanouts, which gives the maximum and minimum path delay for every path. The
model is termed as verified if all the functional and performance properties are
satisfied.

5.4 Hardware Intrusion and Verification

To present the effectiveness of model checking based Hardware Trojan detection
technique, we used intruded versions of C17 benchmark given by Wei et al. [30]
and Mukhopadhyay et al. [22]. The intrusion of a single two input NAND gate is
depicted in Fig. 5a. The addition of the gate only affects the overall power con-
sumption and does not affect its delay since it is not in the path from input to
output. The state space for the intruded model is defined with the C17 bench-
mark circuit along with NANDHT gate. Therefore, when the intruded model
of the circuit is validated against the property defined for maximum power, it
generates a counterexample. However, intruded model satisfies delay based prop-
erties since the NANDHT does not lie in the any of active paths of the circuit.
The combinational Trojan in [22] is embedded in the C17 circuit with a NOR
and XOR gate. Due to the inserted Hardware Trojan, the power consumption
and delay of the circuit increases and LTL properties defined for the maximum
power and delay fails.

5.5 Counterexample Analysis

The counterexamples generated by the verification of intruded circuits can be
analyzed to identify potential locations of the malicious intrusion. Our pro-
posed approach has an inherent advantage of compositional analysis, as shown
in Fig. 6. If the power property defined for the entire IC fails, the analysis may be
extended by partitioning the IC into distinct regions or components, and spec-
ifying the power properties for the individual parts to isolate Trojan-free and
Trojan-inserted regions. For example, for analyzing the power property failure
in Fig. 6, we divided the IC into four distinct regions in such a way that each
region approximately has an equal number of gates. The power property for each
region is verified and the intruded region is subsequently identified, i.e., Region 3.
In order to identify the intruded component within the identified region we can
further analyze the power property for each component, e.g., component 2 of
Region 3.

For instance, whenever input N1 in Fig. 5a switches from 0 to 1 or 1 to 0,
the total dynamic power increases and corresponding property for the IC fails.
On partitioning the circuit into different regions, each having two NAND gates,
we can specify a power property for each individual partition. The first partition
comprising of NAND1 and NAND2 will fail the power property on verification,
indicating the presence of malicious intrusion along the input N1. Similarly, the
delay based properties are specified for each path from input to output, and

Formal Verification of Gate-Level Multiple Side Channel Parameters 87

Fig. 6. Counterexample analysis of IC

the failure of the corresponding property will indicate the path along which the
circuit has been intruded. The total delay of any path from input N6 to output
N23 in Fig. 5b is the sum of the individual delays of NAND gates and intruded
gates along the path, resulting in the failure of the specified delay property. The
analysis of generated counterexamples for both power and delay can thus be
used to identify the potential location of the intrusion in IC.

6 Results and Discussion

We used the version 1.0.1 of the nuXmv model checker along with the Windows
10 Professional OS running on a Core i7 processor, 2.67 GHz, with 6 GB mem-
ory for our experiments. We applied our verification methodology on different
benchmark circuits as depicted in Table 2. The intruded variant of C17 [30] has
7 NAND gates, and it has one additional gate due to which the dynamic power
check fails. The power consumption at a particular node depends upon the sum
of gate and diffusion capacitances. Whenever there is an activity at the input
of intruded gate, switching power is consumed by delivering energy to charge
capacitance at the output node, and then dumping this energy to ground. Our
method is effective since we can detect any intrusion even if no load is driven
by the intruded gate. The diffusion capacitance Cdiffusion depends on the size
of source and drain region, with wider transistors having proportionally greater
diffusion capacitances. We have successfully tested our technique by varying
intruded gate sizes, since any transition at input, even with the minimum pos-
sible gate size, fails the defined power specifications. The delay property is vali-
dated in this case, since we have defined delay bounds on propagation delays of
the individual logic paths, and malicious gate in this case does not contribute
towards the charging and discharging of capacitances at particular nodes of any
path. The technique presented in [30] performs the gate level characterization
(GLC) with some error, i.e., GLC error for C17 is 0.0057% [30], which increases

88 I.H. Abbasi et al.

with the number of gates. However, our proposed methodology accurately mod-
els the dynamic power and delay based gate level behaviour for C17.

The Hardware Trojan in [22] modifies the output at node N23 on rare
input vectors. The total load capacitance at the output nodes N23 int and
N16 increases due to the addition of gate capacitances of XOR and NOR gates.
Consequently, the power consumption of entire circuit increases and the LTL
property, defined for maximum power, fails when checked in nuXmv. Similarly,
added capacitances contribute towards incrementing the propagation delays of
the effected paths from input to output node N23. The defined LTL delay bounds
in nuXmv fail, which indicates that the specified paths has increased delays.

We also tested our methodology on a full adder circuit made by universal
gates. We inserted a two input XOR gate in the path of the carry out signal of
the full adder with one input as a trigger signal. When the trigger signal stays
low, the carry-out remains the same, however, when the trigger is activated,
the logic of carry-out changes. The intruded gate, due to its inherent Cgate,
affects the power usage and delay constraints, and subsequently identified when
verified for its integrity in the nuXmv model checker. Similarly we defined the
state-space for a 4 bit ripple carry adder (RCA). To overcome complexity, we
designed other gates like XOR, using universal gates in separate modules. The
instances of these modules are called in the main module while defining the
formal model as per the netlist information. After validating the parametric
properties of the trusted RCA circuit model, the intrusion is modeled at the
third stage of carry-out by inserting a three stage Ring Oscillator (RO), which
is enabled using an external trigger signal through a NAND gate. Once enabled,
the RO continuously oscillates between the two voltage levels, resulting in more
power consumption. It is pertinent to mention that the RO is not inserted along
the path of carry. The model verification against the properties indicated that it
fails both checks for power and delay bounds. The capacitances of added gates
contributes towards the switching power consumption. In case of delay, although
an intrusion is not along the path of delay computation, the added gate act as
load to the previous gate generating the carry. Thus, a counterexample is also
generated in this case by the model checker.

The result indicates that multi-parameter based intrusion detection is more
effective than just using a single parameter. If the malicious circuitry is not
being detected by the defined bounds for delay then the power property may
fail, indicating presence of an intrusion whenever switching activity occurs. The
results further elaborate the usefulness of the nuXmv model checker for handing
real numbers and bounded model checking (BMC) feature. The extensive simu-
lations for every possible input using traditional methods is a laborious task. In
contrast, once a model is defined in a model checker based on the proposed app-
roach, then it takes significantly lesser time and resources to test the integrity of
the entire system. The results in Table 2 show that modeling and verification of
all the case studies require a 115 MB of memory at maximum, which is around
2% of the available memory of the machine used to acquire these experimental
results. Therefore, the proposed approach seems quite scalable to handle larger

Formal Verification of Gate-Level Multiple Side Channel Parameters 89

Table 2. Timing and memory resources for some of the Intruded circuits detected by
our technique.

Circuit No of gates Hardware Trojans Dynamic power Delay

NAND NOR NOT Intrusion Effect Check Memory

(MB)

Time

(s)

Check Memory

(MB)

Time

(s)

C-17 6 — — — — ✓ 69 1054 ✓ 75 1530

C-17 [30] 7 — — 1 NAND Power

Consumption

✗ 47 215 ✓ 77 550

C-17 [22] 9 1 2 1 XOR

1 NOR

Rare Input

Modifications

✗ 55 316 ✗ 54 715

Full Adder 8 1 7 — — ✓ 79 1210 ✓ 81 1770

HT Full Adder 11 1 9 1 XOR Externally

Triggered

Carry Out

✗ 61 375 ✗ 63 886

4 Bit RCA 32 4 28 — — ✓ 103 2715 ✓ 115 3855

HT 4 Bit RCA 33 4 31 RO Power

Consumption

✗ 77 977 ✗ 79 1224

circuits with the availability of around 16 GB memory. However, the inherent
state-space explosion problem of model checking may limit the applicability of
the proposed approach for larger circuits and therefore, in these cases, we plan
to extend the models to a higher abstraction level.

7 Comparison with Existing Gate Modeling Techniques

The gate level time and power models have been presented previously by dif-
ferent researchers. The timing analysis at the gate level description of a circuit
is proposed in [4], where each gate is abstracted as a set of states and indi-
vidual transitions are characterized by the propagation delay of the falling or
rising edge. The propagation delays are determined by using set of differential
equations for capacitances or through SPICE simulations. Timing verification
for asynchronous circuits, proposed in [7], is based on translating the circuit
behavior in terms of transition graphs, which is checked under the assumption
that the delays are bounded between two numbers. The formal verification of
timed circuits is represented as symbols with unspecified delays in [11]. In this
scheme, a set of linear constraints on the symbols are discovered that guarantees
the correctness of the circuit. Similarly, a state transition graph based power
dissipation model is presented in [16] that considers charging and discharging of
the capacitance at the gate output node. The input signal probabilities are used
to estimate the expected activity number of each edge in the graph, followed
by computing the total consumption by summing each edge. The consumption
values of transitions are obtained from SPICE simulation.

The proposed gate modeling technique in this paper takes both power and
timing parameters under consideration. Our scheme has an inherent advantage
in the perspective of hardware intrusion detection that we take particular VLSI
technology and possible variations in fanout and gate sizes in to account as well.
Moreover, our model is generic as we estimate power and timing measurements

90 I.H. Abbasi et al.

with all possible input transitions without any requirements of simulations with
SPICE or other circuit simulators.

8 Conclusions

This paper presents a generic framework based on the formal verification of
the integrated circuit (IC) to detect malicious hardware intrusions. Unlike the
traditional methods to detect the intrusions in integrated circuits, our solution
uses formal models based on multi-parameter side channel information and their
validation using a model checker. The ability of nuXmv model checker to handle
real numbers and the powerful verification methods, based on SAT and SMT
solvers, has been successfully utilized to validate dynamic power and path delay
parameters, to ascertain integrity of integrated circuits. In the future, we plan to
enhance this work by proposing an automated method for netlist translation, and
extending the models to higher abstraction level to efficiently handle scalability
for larger ICs. Moreover, additional side channel parameters, such as leakage
power will also be incorporated in order to strengthen the proposed Hardware
Trojan detection scheme.

References

1. Adee, S.: The hunt for the kill switch. IEEE Spectr. 45(5), 34–39 (2008)
2. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection

using IC fingerprinting. In: Symposium on Security and Privacy, pp. 296–310. IEEE
(2007)

3. Anderson, M.S., North, C., Yiu, K.K.: Towards countering the rise of the silicon
Trojan. In: Annual Report. Defence Science and Technology Organisation, DSTO-
TR-2220, Australia (2008)

4. Bara, A., Bazargan-Sabet, P., Chevallier, R., Encrenaz, E.: Formal Verification
of Timed VHDL Programs. In: Specification & Design Languages, pp. 1–6. IET
(2010)

5. Bhasin, S., Regazzoni, F.: A survey on hardware Trojan detection techniques. In:
Circuits and Systems, pp. 2021–2024. IEEE (2015)

6. Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware Trojan attacks:
threat analysis and countermeasures. Proceedings of IEEE 102(8), 1229–1247
(2014)

7. Bozga, M., Jianmin, H.: Maler: verification of asynchronous circuits using timed
automata. Electron. Notes Theoret. Comput. Sci. 65(6), 47–59 (2002)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-08867-9 22

9. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO : a
statistical approach for hardware Trojan detection. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 396–410. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04138-9 28

http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-642-04138-9_28
http://dx.doi.org/10.1007/978-3-642-04138-9_28

Formal Verification of Gate-Level Multiple Side Channel Parameters 91

10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 29

11. Clarisó, R., Cortadella, J.: Verification of timed circuits with symbolic delays. In:
Asia and South Pacific Design Automation Conference, pp. 628–633. IEEE (2004)

12. Di Natale, G., Dupuis, S.: Is side-channel analysis really reliable for detecting
hardware Trojans?. In: Design of Circuits and Integrated Systems, pp. 238–242
(2012)

13. Drechsler, R., et al.: Advanced Formal Verification. Springer (2004)
14. Force, T.: High performance microchip supply. In: Annual Report. Defense Tech-

nical Information Center (DTIC), USA (2005). http://www.acq.osd.mil/dsb/
reports/ADA435563.pdf

15. Jin, Y., Makris, Y.: Hardware Trojan Detection using Path Delay Fingerprint. In:
Hardware-Oriented Security and Trust, 2008. pp. 51–57. IEEE (2008)

16. Lin, J.Y., Liu, T.C., Shen, W.Z.: A cell-based power estimation in CMOS combi-
national circuits. In: Computer-Aided Design, pp. 304–309. IEEE (1994)

17. Lodhi, F.K., Abbasi, I., Khalid, F., Hasan, O., Awwad, F., Hasan, S.R.: A self-
learning framework to detect the intruded integrated circuits. In: International
Symposium on Circuits and Systems, pp. 1702–1705 (2016)

18. Lodhi, F.K., Hasan, S.R., Hasan, O., Awwad, F.: Hardware Trojan detection in
soft error tolerant macro synchronous micro asynchronous (MSMA) pipeline. In:
Midwest Symposium on Circuits and Systems. pp. 659–662 (2014)

19. Lodhi, F., Hasan, S., Hasan, O., Awwad, F.: Formal analysis of macro synchro-
nous micro asychronous pipeline for hardware Trojan detection. In: Nordic Circuits
and Systems Conference & International Symposium on System-on-Chip, pp. 1–4.
IEEE (2015)

20. MathSAT 5: (2016). http://mathsat.fbk.eu/
21. Mitra, S., Wong, H.S.P., Wong, S.: The Trojan-proof chip. IEEE Spectr. 52(2),

46–51 (2015)
22. Mukhopadhyay, D., Chakraborty, R.S.: Hardware Security: Design, Threats, and

Safeguards. CRC (2014)
23. Ngo, X.T., Danger, J.L., Guilley, S., Najm, Z., Emery, O.: Hardware property

checker for run-time hardware Trojan detection. In: 2015 European Conference on
Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2015)

24. Qu, G., Yuan, L.: Design THINGS for the internet of things-an EDA perspective.
In: International Conference on Computer-Aided Design (ICCAD), pp. 411–416.
IEEE (2014)

25. Rabaey, J.M., Chandrakasan, A.P., Nikolic, B.: Digital Integrated Circuits, vol. 2.
Prentice Hall (2002)

26. Rai, D., Lach, J.: Performance of delay-based trojan detection under parameter
variations. In: Hardware-Oriented Security and Trust, pp. 58–65. IEEE (2009)

27. Rathmair, M., Schupfer, F.: Hardware Trojan detection by specifying malicious
circuit properties. In: Electronics Information and Emergency Communication, pp.
317–320. IEEE (2013)

28. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detec-
tion. IEEE Des. Test Comput. 27(1), 10–25 (2010)

29. Wang, L., Xie, H., Luo, H.: Malicious circuitry detection using transient power
analysis for IC security. In: Quality, Reliability, Risk, Maintenance, and Safety
Engineering, pp. 1164–1167. IEEE (2013)

http://dx.doi.org/10.1007/3-540-45657-0_29
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://mathsat.fbk.eu/

92 I.H. Abbasi et al.

30. Wei, S., Meguerdichian, S., Potkonjak, M.: Malicious circuitry detection using ther-
mal conditioning. IEEE Trans. Inf. Forensics Secur. 6(3), 1136–1145 (2011)

31. Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective.
Pearson (2011)

32. Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.: Hardware
Trojans: lessons learned after one decade of research. ACM Transactions on Design
Automation of Electronic Systems 22(1), 1–23 (2016)

33. Zhang, X., Tehranipoor, M.: Detecting hardware Trojans in third-party digital IP
cores. In: Hardware-Oriented Security and Trust (HOST), pp. 67–70. IEEE (2011)

Formal Probabilistic Analysis of a WSN-Based
Monitoring Framework for IoT Applications

Maissa Elleuch1,3(B), Osman Hasan2, Sofiène Tahar2, and Mohamed Abid1

1 CES Laboratory, National School of Engineers of Sfax, Sfax University,
Soukra Street, 3052 Sfax, Tunisia

maissa.elleuch@ceslab.org, mohamed.abid@enis.rnu.tn
2 Department of Electrical and Computer Engineering, Concordia University,

1455 de Maisonneuve W., Montreal, QC H3G 1M8, Canada
{melleuch,o hasan,tahar}@ece.concordia.ca

3 Digital Research Center of Sfax, Technopark of Sfax, Sfax, Tunisia

Abstract. Internet of Things (IoT) has been considered as an intuitive
evolution of sensing systems using Wireless Sensor Networks (WSN).
In this context, energefficiency is considered as one of the most critical
requirement. For that purpose, the randomized node scheduling app-
roach is largely applied. The randomness feature in the node schedul-
ing together with the unpredictable deployment make probabilistic tech-
niques much more appropriate to evaluate the coverage properties of
WSNs. Classical probabilistic analysis techniques, such as simulation
and model checking, do not guarantee accurate results, and thus are
not suitable for analyzing mission-critical WSN applications. Based on
the most recently developed probability theory, available in the HOL
theorem prover, we develop the formalizations of the key coverage per-
formance attributes: the coverage intensity of a specific point and the
expected value of the network coverage intensity. The practical inter-
est of our higher-order-logic developments is finally illustrated through
formally analyzing the asymptotic coverage behavior of an hybrid mon-
itoring framework for environmental IoT.

Keywords: Theorem proving · Wireless sensor networks · Node
scheduling · Performance analysis · Network coverage · Environmental
monitoring

1 Introduction

Wireless Sensor Networks (WSN) have emerged as a key enabler technology for
the development of the Internet of Things (IoT) paradigm [20,24]. Deployed over
a field of interest, smart sensor nodes collaborate together without any human
interaction, in order to mainly achieve a monitoring or a tracking task. Such
networks are covering limitless applications [28], including home automation,
external environmental monitoring and object tracking, and hence integrating
WSN technologies into the IoT context [12,20].
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 93–108, 2017.
DOI: 10.1007/978-3-319-53946-1 6

94 M. Elleuch et al.

Due to their restricted size, sensors are basically battery-powered and thus
have very critical energy resources. Consider the example of a WSN deployed for
forest fire detection, in which the sensor nodes are randomly distributed with a
high density. The network should be able to ensure the monitoring of the whole
forest area while being functional for a sufficiently long period. Since a wild fire
occurs only occasionally, some sensor nodes can be intuitively deactivated to
save the network energy. In this context, the k-set randomized scheduling [18] is
a kind of scheduling approach, suitable for a wide range of WSN applications,
which mainly consists in organizing a given set of nodes by randomly partitioning
them into “k” subsets, which work alternatively.

Scheduling sensor nodes for lifetime management purposes is surely a simple
and intuitive approach, however it is also crucial to not compromise on the moni-
toring of the area. For the same forest fire application, the deployed WSN should
be also able to cover, i.e., monitor, the outbreak of fires occurring at any point
of the area with a high probability. Nevertheless, the coverage performance is
completely probabilistic. For instance, some fire outbreaks may not be effectively
covered if no nodes are deployed around the fire because of the random node
deployment, or the surrounding nodes are inactive, due to random scheduling.
Missing fire intrusion, can have devastating consequences.

The performance of the randomized scheduling has been generally analyzed
using paper-and-pencil based probabilistic technique [18,25]. The reliability of
the obtained analytical models is consolidated through simulation using the
Monte Carlo method [19]. However, both paper-and-pencil proof and simula-
tion methods cannot be regarded as completely accurate mainly due to the error
proneness of the former and the in-exhaustive nature of the later.

Formal methods overcome the drawbacks of simulation by rigorously using
mathematical techniques to validate the analytical model of the given system.
Recently, formal methods have gained a growing interest in the context of ana-
lyzing wireless sensor networks to analyze their functional or quantitative cor-
rectness [3,22,29], but most of the existing work is focused on the validation of
their functional aspects only. Nevertheless, rigorous performance evaluation of
WSNs constitutes also an extremely challenging aspect.

In this paper, we are interested in providing an accurate performance analysis
of WSN randomized scheduling based on the paper-and-pencil models proposed
in [18,26]. In earlier work [6,7], we have presented a formalization of the k-set
randomized scheduling algorithm and its coverage properties based on a proba-
bilistic framework developed by Hasan [13] in the HOL theorem prover. While
sufficient for analyzing the coverage aspects of the original WSN models [18,26],
this formalization falls short to reason about other performance aspects of the
same algorithm [8], like the detection metrics. In fact, the foremost requirement
for reasoning about these WSN aspects in a theorem prover is the availabil-
ity of the higher-order-logic formalization of probability theory and continuous
random variables. In this regard, Hurd’s [16] formalization of measure and prob-
ability theories is a pioneering work. Building upon this formalization, most of
the commonly-used continuous random variables [14] have been formalized using

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 95

the HOL theorem prover. However, this foundational formalization of probability
theory only supports the whole universe as the probability space, which limits
its scope in many aspects. In particular the inability to reason about multiple
continuous random variables [14] is a major obstacle for modeling and analyzing
detection and lifetime properties of WSNs [9]. More recent probability theory
formalizations [15,21], however, allow the use of any arbitrary probability space
that is a subset of the universe and thus are more flexible than Hurd’s and
Hasan’s formalizations of probability theory. Particularly, Mhamdi’s [21] proba-
bility theory formalization which is based on extended-real numbers (real num-
bers including ±∞), has been included in the HOL theorem prover and thus has
been chosen for our work. Therefore, in this paper we propose to use the most
recent probability theory developed by Mhamdi [21] in HOL to formally reason
about the coverage properties of randomly-scheduled WSN, while emphasizing
on the main lessons learned through this experience. The practical interest of the
new developments is illustrated through the formal analysis of the asymptotic
coverage behavior of a WSN based environmental surveillance framework.

The rest of this paper is organized as follows. We review some related work
on the validation of WSNs in Sect. 2. In Sect. 3, we summarize the main require-
ments of this work. Section 4 provides the foundational probabilistic analysis
of the coverage properties. We utilize these developments to formally verify a
WSN-based monitoring framework for IoT applications in Sect. 5. Section 6 is
devoted to discuss the main results of our work. We finally conclude the paper
in Sect. 7.

2 Related Work

Theoretical analysis, also known as paper-and-pencil based probabilistic tech-
nique, has been widely used to validate randomized scheduling algorithms for
WSN [18,25,26]. Such analysis consists in constructing a theoretical model where
the required random variables are determined together with the associated per-
formance metrics. Afterwards, a probabilistic based study is achieved. For vali-
dation purposes, simulation, using the Monte Carlo method [19], is finally done.

Traditional model checking technique [2] has been successfully used to vali-
date various aspects in the WSN context. In [22], the formal analysis of the Opti-
mal Geographical Density Control (OGDC) algorithm, which is a kind of ran-
domized scheduling algorithm, is done. Several other prominent works reported
on the use of model checking for the analysis of WSN protocols include [10,30].
The main strength of all these methods is their formal models and automatic
verification. However, they suffer from the common model checking related prob-
lem of state space explosion [2]. Hence, the analysis of the OGDC algorithm [22]
has been restricted for WSN with up to 6 nodes in a region of 15 m× 15 m. Fur-
thermore, the work of [30] has pointed out over 1 million generated states for the
analysis of a simple property. Furthermore, none of the previous works has pro-
vided reliable probabilistic modelling. For example, in [22], a random function,
assumed to be ‘good’, has been used to model the probabilistic behavior.

96 M. Elleuch et al.

To cope with these major problems, probabilistic model checking [23] has
also been used for the probabilistic functional analysis of wireless systems. Prob-
abilistic model checking allows to capture the probability modelling for both the
system and the property of interest. The probabilistic model checker PRISM
has been applied quite frequently for the validation of Medium Access Control
(MAC) protocols for WSNs [11,29]. Nevertheless, the reasoning support for sta-
tistical quantities in most of model checkers suffers from many shortcomings.
Indeed, expected performance values are usually obtained through several runs
on the built model [29]. The obtained results can hardly be termed as exhaustive
and thus formally verified.

On the other hand, very few works based on theorem proving exist in the
open literature. The work [4] reports on the use of the PVS system to build
a theorem proving based framework for WSN algorithms, with some theories
expressing dynamic scenarios like nodes mobility and link quality changes [4].
While the PVS framework is supposed to be extended with some “dynamic”
scenarios in [4], the randomness aspect has been characterized by a pseudo-
random generator. The nodes mobility, specified by the random walk pattern,
has been also specified through a recursive function.

Unlike the PVS framework which is limited by the probability support of the
PVS system, the work, described in this paper, provides very accurate formal-
izations of the randomized scheduling algorithm based on the sound probability
support of the HOL theorem prover. In addition, the presented formalizations
are generic and completely valid for all the parameter values.

3 Preliminaries

3.1 Probabilistic Analysis in HOL

A probability measure P is basically a measure function on the sample space Ω
and an event is a measurable set within the set F of events which are subsets
of Ω. By definition, a random variable is a measurable function, satisfying the
condition that the inverse image of a measurable set is also measurable [21].

Definition 1. � ∀X p. real random variable X p =
prob space p ∧
(∀x ∈ p space p ⇒ X x �= NegInf ∧ X x �= PosInf) ∧
X ∈ measurable (p space p,events p) Borel.

where X designates the random variable, p is a given probability space, NegInf
and PosInf are the higher-order-logic formalizations of negative infinity or pos-
itive infinity, and Borel is the HOL definition of the Borel sigma algebra.

The probability distribution of a random variable is specified as the function
that accepts a random variable X and a set s and returns the probability of the
event {X ∈ s}.

Definition 2. � ∀X p.
distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p)).

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 97

In the discrete case, the expectation of the random variable X has been
formalized in HOL as follows.

Theorem 1. � ∀X p. (real random variable X p) ∧ FINITE (IMAGE X
(p space p))

⇒ (expectation p X =∑
IMAGE X (p space p) (λr. r × Normal (distribution p X {r}))).

where (IMAGE X (p space p)) designates the list of values taken by the random
variable X over the sample space (p space p).

3.2 The k-set Randomized Scheduling Algorithm

During the initialization stage, the k-set randomized scheduling is run in parallel
on every node as follows [18]. Each node starts by randomly picking a number,
denoted by i, ranging from 0 to (k − 1), where k is the number of subsets or
partitions. A node sj is thus assigned to the ith sub-network, designated by Si,
and will activate itself only during the scheduling round of that subset. At the
end of the algorithm, k disjoint sub-networks are created. These subsets will be
working independently and alternatively. Figure 1 shows a small WSN of eight
sensor nodes, which is randomly portioned into two sub-networks; S0 and S1.
Each node randomly chooses a number 0 or 1 in order to be assigned to one of
these two sub-networks. Suppose that nodes 0; 2; 5, randomly choose the number
0 and thus join the subset S0, whereas nodes 1; 3; 4; 6; 7, select the number 1
and will be in the subset S1. These two sub-networks will work by rounds, i.e.,
once the nodes 1; 3; 4; 6; 7, illustrated by the dashed circles, will be active, the
remaining nodes 0; 2; 5, will be at the sleep state, and vice-versa.

Fig. 1. The k-set randomized scheduling for (n = 8) nodes and (k = 2) subsets.

98 M. Elleuch et al.

4 Formalization of the Network Coverage Intensity

Within a wireless sensor network, a given point is said to be covered, if any
occurring event at this point, is detected by at least one active node with a
given probability. According to [18], the coverage intensity of a specific point;
Cp, inside the monitored area is defined as the average time during which the
point is covered in a whole scheduling cycle of length k × T . A given point is
covered if the current active subset contains at least one node, i.e., is not empty.

Let X be the random variable describing the total number of non-empty
subsets, the coverage intensity of a given point in the monitored area, Cp, as
originally specified in [18], is

Cp =
E[X] × T

k × T
. (1)

where E[X] denotes the expectation of X, which is described as:

X =
k−1∑

j=0

Xj . (2)

where Xj is the Bernoulli random variable whose value is 1 in case of non-
empty subset. A non-empty sub-network is described by a Bernoulli random
variable with the complement probability of

(
1 − 1

k

)c [6], where c is the number
of covering sensors for a given point.

Definition 3. � ∀X p k c.
sbst non empty rv X p k c = bernoulli distr rv X p

(
1 − (

1 − 1
&k

)c)
.

In higher-order logic, we model the coverage behavior of a specific point
(Eq. (1)) by the following predicate cvrge intsty pt.

Definition 4. � ∀p X k s c. cvrge intsty pt p X k s c =
expectation p (λx. SIGMA (λi. (X i) x) s) / (&k).

where X: a random variable that returns an extended real number, p: the prob-
ability space, k: the number of sub-networks, s: the summation set whose cardi-
nality is k, and c: the number of covering sensors for a given point. The operator
& allows the conversion of the natural number m into its extended number coun-
terpart.

The following mathematical expression for the coverage intensity of a point
has been formally verified in Theorem 2.

Theorem 2. � ∀X p k s c. (prob space p) ∧ (FINITE s) ∧ (1 < k)
∧ (CARD s = k) ∧ (∀i. i ∈ s ⇒ sbst non empty rv (X i) p k c)
⇒ (cvrge intsty pt p X k s c = Normal

(
1 − (

1 − 1
k

)c)
).

– The assumption (∀i. i ∈ s ⇒ sbst non empty rv (X i) p k c) indicates
that every element of the set s is a random variable sbst non empty rv
(Definition 3).

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 99

– The HOL function Normal is used to convert a real value to its corresponding
value in an extended real.

The proof of the above theorem is mainly based on lemmas about the linearity
of the expectation property, which in turn required some reasoning on the inte-
grability of some functions as well as operations from the Lebesgue theory. For
most of these lemmas, it was a prerequisite to verify the measurability of the
used events, along with some analysis on extended reals.

The whole network can be now statistically described by a single performance
metric; Cn, which is the average or the expectation value of the coverage intensity
over all points of the monitored area.

Cn = E[Cp]. (3)

According to the expression of Cp, shown in Theorem 2, we can write

Cn = E[1 −
(

1 − 1
k

)c

]. (4)

Based on the above equation, we notice how the value of Cn depends mainly
on c which is the number of nodes covering a given point of the field. Intuitively,
we can assimilate the fact of covering a point or not to a Bernoulli trial with
the probability q = r

a [18]. Considering the variable c among the n nodes of
the network, it becomes a Binomial random variable (C) with the probability
given in Eq. (5). Thereby, the network coverage intensity Cn, shown in Eq. (4),
is not a simple expectation, but rather an expectation of a function of a random
variable.

Pr(C = j) = Cj
n ×

(r

a

)j

×
(
1 −

(r

a

))n−j

. (5)

where Cj
n is the binomial coefficient, r is the size of the sensing area of each

sensor, a is the size of the monitored area, and
(
r
a

)
is the probability that each

sensor covers a given point. The Binomial random variable with n trials and
success probability q =

(
r
a

)
has been formalized in HOL as follows.

Definition 5. � ∀X p q n. binomial distr rv X p q n =
(real random variable X p) ∧
(IMAGE X (p space p) = IMAGE (λx.&x) (count (SUC n))) ∧
(∀m. &m ∈ (IMAGE X (p space p)) ⇒
(distribution p X {&m} = &(binomial n m) × qm × (1 − q)(n−m)).

where X is a real random variable on the probability space p, and IMAGE
(λx.& x) (count (SUC n)) gives the support of the Binomial. The function
binomial, used in the above definition, is the higher-order-logic formalization of
the binomial coefficient for reals.

The coverage intensity of the whole WSN with n nodes has been formally
specified by the function cvrge intsty network, shown in Definition 6. The
latter takes as parameters: X: a random variable that returns an extended real

100 M. Elleuch et al.

number, p: the probability space, s: the summation set used in Definition 4,
k: the number of sub-networks, C: the random variable describing the number
of covering nodes, n: the total number of nodes, and q: the probability that each
sensor covers a given point.

Definition 6. � ∀X p k s C n q.
cvrge intsty network p X k s C n q =
expectation p (λx. cvrge intsty pt p X k s (num (C x))).

where the function expectation designates the higher-order-logic formalization
of the expectation of a random variable that returns an extended real, and the
values (num(C x)), in the above definition, are the output values of the random
variable C. The function num, used here, converts an extended real; (&m), to its
corresponding natural value m, using the real function floor.

Based on the higher-order-logic formalizations developed so far, we have been
able to formally verify the final network coverage intensity as in Theorem 3.

Theorem 3. � ∀p X k s C n q. (prob space p) ∧ (0 < q < 1) ∧
(events p = POW (p space p)) ∧ (1 ≤ n) ∧ (1 < k) ∧ FINITE s ∧
(CARD s = k) ∧ (sn covers p C p q n) ∧
(expectation p C �= PosInf) ∧ (expectation p C �= NegInf) ∧
(∀i x. (i ∈ s) ∧ (x ∈ p space p) ⇒

sbst non empty rv (X i) p k (num(C x)))
⇒ (cvrge intsty network p X k s C n q = Normal (1 − (1 − q

(&k))
n)).

– The assumption (events p = POW (p space p)) describes the set of events
to be the power set of the sample space Ω.

– The assumptions (1 ≤ n) ensures that the WSN include at least one node,
while (0 < q < 1) checks that the probability q lies in [0..1].

– sn covers p is the Binomial random variable (Definition 5) with a finite
expectation, i.e., (expectation p C �= PosInf) ∧ (expectation p C �=
NegInf). The variables (PosInf) and (NegInf) are the higher-order-logic
formalizations of positive infinity and negative infinity, respectively.

– The function (sbst non empty rv (X i) p k (num(C x))) is the function
specified in Definition 3.

The proof of Theorem3 is primarily based on Theorem 4 which verifies the expec-
tation of a function of a random variable. Additionally, the current proof also
required the application of the linearity of the expectation property. Finally,
a considerable amount of real analysis associated to the Binomial theorem for
reals, and to the summation function has been needed.

Theorem 4. � ∀C p q n k.
(prob space p) ∧ (1 < k) ∧ (0 < q < 1) ∧
(events p = POW (p space p)) ∧ (1 ≤ n) ∧ (sn covers p C p q n)
⇒ (expectation p (λx. f fct (num (C x)) k) = Normal (1 − q

(&k))
n).

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 101

where the function f fct is defined as follows

f fct x k = Normal

(
1 − 1

k

)x

. (6)

The proof of Theorem 4 has been possible using intermediate results on the
injectivity of some functions, as well as, some properties related to the random
variables functions. A lot of reasoning associated with the use of extended real
and the floor function, has also been required.

In this section, we presented our new higher-order-logic formalizations of
the k-set randomized scheduling for wireless sensor networks, using the recently
developed probability theory available in the HOL theorem prover [21]. These
formalizations have been then utilized to formally reason about the coverage
performance properties. The corresponding HOL code of the current formaliza-
tions is available at [5]. Due to fundamental differences in the foundations of the
two probability theories in [13,21], the current resulting formalizations is com-
pletely different from the previous one [6]. Indeed, the new probability theory
allows to cater for arbitrary probability spaces and is thus more generic and
complete compared to the previous formalization in which the probability space
has to be the universe of a set. Moreover, the specification of the randomized
algorithm has been found to be much more intuitive with [21]. Unlike the work
in [6], the developed proofs required much less reasoning about sets and lists pro-
ducing thus less lengthy proofs. However, these proofs have been more laboured
involving usually results from the three HOL theories: Lebesgue, measure and
extended reals. A deep learning of all theoretical foundations of [21] was thus
required to successfully achieve the target formalizations in the HOL theorem
prover. In the next section, we will illustrate how the developed generic theorems
extremely facilitate the formal analysis of real-world WSN applications.

5 Application: Formal Analysis of a WSN-based
Monitoring Framework for IoT Applications

Numerous frameworks for environmental monitoring based on WSN have been
hence proposed in the literature [1,27]. These systems can be seamlessly inte-
grated to build an extended IoT framework for low-cost, persistent and efficient
services [12,17]. Due to the new constraints of the IoT environment, deployed
WSN should have a smart behavior regarding the power availability while per-
forming a good coverage of any intrusion. The randomized node scheduling has
been proposed for use to save energy in the context of an heterogeneous surveil-
lance framework for environmental monitoring [27]. Such framework considers
collaboration between sensor nodes, mobile robots and RFID tags, to ensure effi-
cient surveillance. Using specific sensors designed for IoT [17], this framework
can realize a whole IoT structure.

In this section, we focus on formally analyzing the coverage performances of
the hybrid surveillance framework proposed in [27] adopted for IoT applications.
The nodes can hence have any sensing area r, and are deployed into a circular

102 M. Elleuch et al.

region of a radius R with a total size of a, whereas the success probability q of
a sensor covering a point is q = r

a . Such framework has been primarily analyzed
using a paper-and-pencil model, which has been then validated through some
simulation scenarios evaluating the expected coverage and the maximum number
of subsets [27]. It would be interesting to provide a more rigorous technique to
validate the proposed paper-and-pencil model. Based on the formal development
achieved so far, we show in this section how we are able to carry out an accurate
asymptotic analysis of the probabilistic coverage according to the key design
parameters: n; the total number of sensor and k; the number of subsets.

We designate the generic network coverage intensity (cvrge intsty network
p X s k C n q), shown in Definition 6, by (Cn wsn p X s k C n q), that has
been checked in HOL as

Normal
(
1 −

(
1 − q

k

)n)
. (7)

5.1 Formal Analysis Based on the Number of Nodes

Setting the number of subsets to k and targeting a network coverage intensity
Cn wsn of at least t, we verify, in Lemma 1, the minimum number of sensors;
nmin, that are necessary to deploy in the context of our monitoring framework.

Lemma 1. � ∀p X s k C n q t. (1 ≤ n) ∧ (1 < k) ∧ (0 < q < 1) ∧
(0 < t < 1) ∧ (Normal t ≤ Cn wsn p X s k C n q)

⇒
[

ln(1−t)

ln(1− q
k)

]
≤ &n.

The higher-order-logic proof of the above lemma is based on some properties of
transcendental functions and arithmetic reasoning.

We have been able to formally verify, in Lemma 2, that the network coverage
intensity Cn wsn is a growing function of n, i.e., a larger node number n is
responding to a better coverage. For the monitoring framework, much more
points of the area are expected to be covered, since it is likely that many more
covering nodes are deployed in its surrounding area.

Lemma 2. � ∀p X s k C q. (1 < k) ∧ (0 < q < 1)
⇒ (mono incr (λn. real(Cn wsn p X k s C n q))).

where the function real is used to convert the network coverage intensity of
type extended real to its corresponding real value, and mono incr is the HOL
definition of an increasing sequence.

While Cn wsn increases with the increase of the number of nodes n, as ver-
ified in Lemma 2, the next lemma shows how the network coverage intensity
Cn wsn approaches 100% when n becomes infinite, independently of the moni-
toring application.

Lemma 3. � ∀p X s k C q. (1 < k) ∧ (0 < q < 1)
⇒ (lim

n→+∞ (λn. real(Cn wsn p X s k C n q)) = 1).

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 103

5.2 Formal Analysis Based on the Number of Subsets

Targeting a network coverage intensity of at least t, we successfully verify, in
Lemma 4, the upper bound on the number of disjoint subsets k for a given n.

Lemma 4. � ∀p X s k C n q. (1 ≤ n) ∧ (0 < t < 1) ∧
(0 < q < 1) ∧ (1 < k) ∧ (Normal t ≤ (Cn wsn p X s k C n q))
⇒ k ≤ q

1−e

ln(1−t)
(&n)

.

The above result is interesting for practical WSN applications which necessitate
adjustable performance measurement quality for energy preserving purposes.

We have been able to formally check, in Lemma 5, that the network coverage
intensity Cn wsn definitely decreases when the WSN is partitioned into a quite
large number of sub-networks k.

Lemma 5. � ∀p X s C n q. (1 ≤ n) ∧ (0 < q < 1)
⇒ (mono decr (λk. real (Cn wsn p X s k C n q))).

where the HOL function mono decr defines a decreasing sequence.
We also formally confirm, in Lemma 6, that increasing the number of

deployed nodes n gives smaller network coverage and hence a poor performance
of the deployed application.

Lemma 6. � ∀p X s C n q. (1 ≤ n) ∧ (0 < q < 1)
⇒ (lim

k→+∞ (λk. real (Cn wsn p X p s k C n q)) = 0).

The above lemma has been successfully verified in HOL using intermediate
results associated to real and sequential limits.

5.3 Formal Analysis Based on Uniform Partitions

We closely investigate the asymptotic coverage behavior of our monitoring frame-
work in the case of a uniform split of the nodes. Here, n can be written as k×m,
where m is the number of nodes per subset.

In particular, as the number of sub-networks k goes infinite, the upper limit
of the network coverage Cn wsn has been formally verified in Lemma 7.

Lemma 7. � ∀p X s C m q. (0 < q < 1)
⇒ lim

k→+∞ (λk. real(Cn wsn p X s k C (m × k) q)) = 1 - e−q×(&m).

The proof of the above lemma has been quite tricky requiring the important
result lim

k→+∞(1 + x
k
)k = ex, which had to be proved in HOL beforehand.

Based on Lemma 7, we can hence verify that when m becomes very large, the
uniform network coverage will surely approach 100%. Such result is considered
as a second verification of Lemma 3 in the case where n and k are proportional.

104 M. Elleuch et al.

Lemma 8. � ∀X p s C q. (0 < q < 1)
⇒ lim

m→+∞(λm. lim
k→+∞ (λk. real(Cn wsn p X s k C (m × k) q)) = 1.

The current analysis, presented in this section, distinctly shows how our
theoretical developments, described in Sect. 4, match pretty well the original
paper-and-pencil models of the randomized scheduling, available in the open
literature [18,26].

6 Discussion

The main motivation of the current work is to provide a rigorous approach for
the probabilistic performance evaluation of the k-set randomized scheduling algo-
rithm for wireless sensor networks. The randomness in the scheduling approach
and the node deployment makes the accuracy of the performance evaluation
of such algorithm very critical, especially given the major limitations of classi-
cal techniques and the safety-critical of most WSN applications. In this regard,
this paper describes the main formalizations of the k-set randomized scheduling
and its coverage properties using the new probability theory available within
the HOL4 theorem prover [21]. These higher-order-logic formalizations resulted
from the porting process of our previous formalizations [6,7], developed within
a precedent probabilistic framework of the HOL theorem prover [13]. The prac-
tical usefulness of our approach is shown in Sect. 5, where we formally analyzed
the coverage performance of a general purpose surveillance framework based on
WSN for IoT applications.

The higher-order-logic formalizations, presented in this paper, consumed
approximatively 730 lines of code in the HOL4 theorem prover. On the other
hand, the formal analysis of our application took only 200 lines of HOL code
for the verification of most of the lemmas. Nevertheless, the proofs of Lemmas 7
and 8 have been quite tedious consuming in total 500 lines of HOL code, since
the mathematical theorem lim

k→+∞(1 + x
k
)k = ex, was missing in HOL. The latter

result required a lot of real analysis related to the exponential function as a
power series and many other properties for the sequence convergence.

The generic nature of the theorem proving technique and the high expressibil-
ity of higher-order logic allows us a considerable amount of flexibility in several
aspects. Indeed, the formalizations, presented in this paper, primarily constitutes
a successful automation of the paper-and-pencil models [18,26] of the k-set ran-
domized scheduling and its coverage performance within a higher-order-logic
proof assistant. Through this work, we therefore clearly assert the complete
accordance of the resulting formal developments with the mathematical mod-
els, increasing thus the confidence on the developed theory. Given the discus-
sion, presented in Sect. 2, it is certain that other analysis techniques can never
have this efficiency. Actually, the existing probabilistic models of the randomized
scheduling are not so reliable either regarding the complete set of assumptions or
the correctness of the manual mathematical analysis, which may include human

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 105

errors. In addition, while previous simulation methods usually rely on pseudo-
random modelling, we have been able to provide an appropriate modelling of the
inherent randomness of the algorithm of interest. Besides, unlike probabilistic
model checkers where statistical properties are not so accurately specified, we
have been able to achieve formal and precise analysis of the network coverage as
a statistical measure of the coverage intensity for a specific point. On the other
hand, the formal performance analysis of the coverage behavior of the environ-
mental framework clearly shows the usefulness of our theoretical developments.
Such verification enables reliable asymptotic reasoning of the deployed WSN.
Compared to the asymptotic analysis already done in [7], we have been able to
enrich our analysis with new valuable results. At the end, it is important to note
that the presented application is a simple case study illustrating the practical
interest of our work, but the claimed generic results can be obviously applied to
any other WSN application as well.

To successfully achieve the current work, we have experienced many difficul-
ties. Firstly, although the initial paper-and-pencil models [18,26] are depend-
ing on simple discrete random variables, the major challenge was to correctly
translate these models of a real WSN algorithm into higher-order logic. These
analytical modelling of real-world systems is effectively very intuitive, and the
original mathematical models [18,26] are usually missing detailed explanations
either when describing the probabilistic analysis or when applying the probabil-
ity rules. In addition, the assumptions of the original model are never presented
exhaustively. A deep investigation step was thus required in order to correctly
understand all missing steps and achieve then efficiently the target higher-order-
logic formalizations. For that purposes, a good background on probability cou-
pled with a sound knowledge of the WSN context, are usually required for an
effective understanding of the probabilistic reasoning.

Secondly, the choice of porting our previous higher-order-logic formalizations
[6,7] into a new probability theory [21], was, at once, tough and time consuming.
As previously mentioned, such choice has been primarily motivated by the fact
that we were targeting more evolutive probabilistic analysis of the k-set ran-
domized scheduling with the formalization of further performance aspects in the
near future [8]. These aspects should require some probabilistic features which
are not available in [13]. Moreover, while the new HOL specification seems to
be more straightforward in the new probability theory, we had to get exten-
sive understanding of all the corresponding mathematical foundations including
extended reals, measure and Lebesgue theories in order to correctly conduct
the probabilistic analysis. Nevertheless, the existing results from the formalized
probability theory helped us to keep the amount of proof efforts reasonable.

7 Conclusions

In this paper, we presented a reliable approach for the formal analysis of the
coverage performances of wireless sensor networks using the k-set random-
ized scheduling to save energy. This formalization enables us to formally verify

106 M. Elleuch et al.

the coverage related characteristics of most WSNs using the k-set randomized
scheduling. To show the practical interest of our foundational results, we apply
them to perform the formal probabilistic analysis of an hybrid monitoring frame-
work for environmental Internet of Things (IoT) applications. Such framework
can be adapted for any kind of monitoring application using WSN as well.

On the other hand, the produced results are thoroughly generic, i.e., valid for
all parameter values. It is clear that such results cannot be achieved in simulation
or probabilistic model checking based approach. Moreover, it has been possible
to provide precise formal reasoning on the statistical coverage using expectation.
Finally, unlike most of the existing work that focuses on the validation of the
functional aspects of WSN algorithms, our work is distinguishable by addressing
the performance aspects. Finally, the proposed solution allowed us to build upon
our coverage formalizations to develop our whole methodology [8] in a single
coherent formalism. In particular, the current results have been very helpful for
our work on the higher-order-logic formalizations of the detection properties of
WSNs [9], based on the paper-and-pencil analysis of [26]. It has been useful to
formally check the relationship between coverage and detection showing that
coverage reflects detection [18].

References

1. Aslan, Y., Korpeoglu, I., Ulusoy, O.: A framework for use of wireless sensor net-
works in forest fire detection and monitoring. Comput. Environ. Urban Syst. 36(6),
614–625 (2012)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Ballarini, P., Miller, A.: Model checking medium access control for sensor networks.
In: Proceedings of the 2nd Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation, pp. 255–262. IEEE Computer Society (2006)

4. Bernardeschi, C., Masci, P., Pfeifer, H.: Analysis of wireless sensor network proto-
cols in dynamic scenarios. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol.
5873, pp. 105–119. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0 8

5. Elleuch, M.: Formalization of the coverage properties of WSNs in HOL (2015).
http://hvg.ece.concordia.ca/projects/prob-it/wsn.php

6. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal analysis of a schedul-
ing algorithm for wireless sensor networks. In: Qin, S., Qiu, Z. (eds.) ICFEM
2011. LNCS, vol. 6991, pp. 388–403. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24559-6 27

7. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal probabilistic analysis of a
wireless sensor network for forest fire detection. In: Symbolic Computation in Soft-
ware Science, Electronic Proceedings in Theoretical Computer Science, vol. 122,
pp. 1–9. Open Publishing Association (2013)

8. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Towards the formal performance
analysis of wireless sensor networks. In: Proceedings of the 22nd Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 365–370.
IEEE Computer Society (2013)

http://dx.doi.org/10.1007/978-3-642-05118-0_8
http://hvg.ece.concordia.ca/projects/prob-it/wsn.php
http://dx.doi.org/10.1007/978-3-642-24559-6_27
http://dx.doi.org/10.1007/978-3-642-24559-6_27

Formal Probabilistic Analysis of a WSN-Based Monitoring Framework 107

9. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal probabilistic analysis of detec-
tion properties in wireless sensor networks. Formal Aspects Comput. 27(1), 79–102
(2015)

10. Fehnker, A., Fruth, M., McIver, A.K.: Graphical modelling for simulation and for-
mal analysis of wireless network protocols. In: Butler, M., Jones, C., Romanovsky,
A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Tolerance. LNCS,
vol. 5454, pp. 1–24. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00867-2 1

11. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE
802.15.4 low-rate wireless personal area network protocol. In: Proceedings of the
2nd Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, pp. 290–297. IEEE Computer Society (2006)

12. Hart, J., Martinez, K.: Towards an environmental Internet of Things [IoT]. Earth
Space Sci. 2, 1–7 (2015)

13. Hasan, O.: Formal probabilistic analysis using theorem proving. Ph.D. thesis, Con-
cordia University, Montreal, QC, Canada (2008)

14. Hasan, O., Tahar, S.: Formalization of continuous probability distributions. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 3–18. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73595-3 2

15. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: Eekelen,
M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp.
135–151. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22863-6 12

16. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge, Cambridge, UK (2002)

17. Lazarescu, M.: Design of a WSN platform for long-term environmental monitoring
for IoT applications. IEEE J. Emerg. Sel. Topics Circ. Syst. 3(1), 1–6 (2013)

18. Liu, C., Wu, K., Xiao, Y., Sun, B.: Random coverage with guaranteed connectivity:
joint scheduling for wireless sensor networks. IEEE Trans. Parallel Distrib. Syst.
17(6), 562–575 (2006)

19. MacKay, D.: Introduction to Monte Carlo methods. In: Proceedings of NATO
Advanced Study Institute on Learning in Graphical Models, pp. 175–204. Kluwer
Academic Publishers (1998)

20. Mainetti, L., Patrono, L., Vilei, A.: Evolution of wireless sensor networks towards
the internet of things: a survey. In: Proceedings of the 19th International Con-
ference on Software, Telecommunications and Computer Networks, pp. 1–6. IEEE
(2011)

21. Mhamdi, T.: Information-theoretic analysis using theorem proving. Ph.D. thesis,
Concordia University, Montreal, QC, Canada, December 2012

22. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of the OGDC wire-
less sensor network algorithm in real-time Maude. In: Bonsangue, M.M., Johnsen,
E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 122–140. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72952-5 8

23. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series.
American Mathematical Society, Providence (2004)

24. Whitmore, A., Agarwal, A., Xu, L.: The internet of things-a survey of topics and
trends. Inf. Syst. Front. 17(2), 261–274 (2015)

25. Wu, K., Gao, Y., Li, F., Xiao, Y.: Lightweight deployment-aware scheduling for
wireless sensor networks. Mob. Netw. Appl. 10(6), 837–852 (2005)

26. Xiao, Y., Chen, H., Wu, K., Sun, B., Zhang, Y., Sun, X., Liu, C.: Coverage and
detection of a randomized scheduling algorithm in wireless sensor networks. IEEE
Trans. Comput. 59(4), 507–521 (2010)

http://dx.doi.org/10.1007/978-3-642-00867-2_1
http://dx.doi.org/10.1007/978-3-540-73595-3_2
http://dx.doi.org/10.1007/978-3-642-22863-6_12
http://dx.doi.org/10.1007/978-3-540-72952-5_8

108 M. Elleuch et al.

27. Xiao, Y., Zhang, Y.: Divide-and conquer-based surveillance framework using
robots, sensor nodes, and RFID tags. Wirel. Commun. Mob. Comput. 11(7), 964–
979 (2011)

28. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw.
52(12), 2292–2330 (2008)

29. Zayani, H., Barkaoui, K., Ayed, R.B.: Probabilistic verification and evaluation of
backoff procedure of the WSN ECo-MAC protocol. Int. J. Wirel. Mob. Netw. 12(1),
156–170 (2010)

30. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a model checker for NesC
and wireless sensor networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol.
6991, pp. 372–387. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24559-6 26

http://dx.doi.org/10.1007/978-3-642-24559-6_26

Shared-Variable Concurrency, Continuous
Behaviour and Healthiness

for Critical Cyberphysical Systems

Richard Banach1(B) and Huibiao Zhu2

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

banach@cs.man.ac.uk
2 Shanghai Key Laboratory of Trustworthy Computing,

MOE International Joint Laboratory of Trustworthy Software,
International Research Center of Trustworthy Software,
East China Normal University, Shanghai 200062, China

hbzhu@sei.ecnu.edu.cn

Abstract. In the effort to develop critical cyberphysical systems, exist-
ing computing formalisms are extended to include continuous behav-
iour. This may happen in a way that neglects elements necessary for
correct continuous properties and correct physical properties. A simple
language is taken to illustrate this. Issues and risks latent in this kind of
approach are identified and discussed under the umbrella of ‘healthiness
conditions’. Modifications to the language in the light of the conditions
discussed are described. An example air conditioning system is used to
illustrate the concepts presented, and is developed both in the original
language and in the modified version.

1 Introduction

With the massive proliferation in computing systems that interact with the real
world, spurred by the tumbling costs of processors, memory and sensor/actuator
equipment, the need for reliable methods to construct such systems has never
been greater, especially since so many of these systems have high consequence
aspects if they fail to behave as intended. In the light of this drive, systematic
methodologies from the discrete formalisms world are being adapted to incorpo-
rate the needs of the physical behaviours that are now intrinsic to these systems.
While this is entirely appropriate as a broad objective, in reality, many such ini-
tiatives may turn out skewed in the execution, in that a great emphasis is placed
on the discrete aspects of such an extended formalism, to the neglect of needs

The work reported here was done while Richard Banach was a visiting researcher at
E.C.N.U. The support of E.C.N.U. is gratefully acknowledged.
Huibiao Zhu is supported by National Natural Science Foundation of China (Grant
No. 61361136002) and Shanghai Collaborative Innovation Center of Trustworthy
Software for Internet of Things (ZF1213).

c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 109–125, 2017.
DOI: 10.1007/978-3-319-53946-1 7

110 R. Banach and H. Zhu

coming from the continuous aspects, especially regarding the more subtle of
these pertaining to continuous behaviour, and to credible physical properties.
The interplay between these worlds can also fail to get the attention it requires.
The balance of emphasis perceptible in typical texts in this area such as [1,2]
gives a good indication of this situation.

In this paper we intend to address this perceived imbalance by examining an
example language for concurrent discrete update and critically analysing the con-
sequences that follow when continuous update facilities are added in a relatively
näıve way. We describe this critical analysis as bringing some ‘healthiness con-
siderations’ into play, by analogy with the terminology used in UTP [3]. Having
brought these out, we show how to modify our original language to better take
them into account within the syntax (where possible). We discuss how remaining
points need to be addressed semantically. It is worth saying that our language is
one that we would not necessarily use seriously for such applications, but actu-
ally, its very lack of obvious suitability serves to better highlight the points we
make.

We illustrate the above by developing a simple case study concerning the
steady state operation of an air conditioning system, this being a system where
there is enough a priori physical behaviour to exemplify some of what we discuss
abstractly. We give a development in the original language, and a revised version
in the revised language.

The rest of the paper is as follows. In Sect. 2 we present our initial language,
and our initial attempt at adding continuous behaviour, specified using differen-
tial equations (DEs). Discussing the semantics of this, even relatively informally,
leads to a substantial detour regarding the possibilities available when DEs are
involved. In Sect. 3 we give our initial AC system development. In Sect. 4 we
turn to the healthiness considerations, enlarging the earlier semantic discussion
to include further issues. Section 5 then modifies the initial language syntacti-
cally, where possible. Section 6 redevelops the AC system. Section 7 considers
some related approaches. Section 8 concludes.

2 An Initial Concurrent Language

Here is the syntax of our initial language. It is a fairly conventional concurrent
shared variable language, allowing delays of a specified number of time units.

Declarations:
Decl ::= [x : T [= x0] ;]∗

Discrete behaviours:
Db ::= x := e | {xs := es} | @b | #r

Constructs:
P0 ::= Db

Programs:
Pr0 ::= P0 | Name | [Name =] Decl ; Pr0 | Pr0 ; Pr0

|if b thenPr0 elsePr0fi | while b do Pr0 od | Pr0 ‖ Pr0

As well as this syntax, we use parentheses in the usual way. In connection
with this definition we note the following:

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 111

(1) All variables used have to be declared with their types in a declaration block
Decl in whose scope (defined as usual) their uses occur.

(2) The discrete variable assignment, x := e, is atomic, so that no action can
interleave the reading the variables of e and writing the result to x. The
vacuous assignment is written skip. Each variable has to be assigned an
initial value (in terms of constants and already assigned variables) before it
can be used. Initialisation is optionally taken care of during declaration.

(3) The simultaneous assignment {xs := es} merely defines a package of several
atomic updates, which are effected at the same instant.

(4) The discrete event-guard, @b, is enabled when the guard b holds; otherwise
it is disabled and waits; b is a Boolean condition. #r represents a delay of
r time units.

(5) Program constructs are familiar. if b then P else Q fi is the conditional,
and while b do P is iteration. P ; Q is sequential composition. Shared-
variable concurrency is expressed via P ‖ Q, where P and Q can contain
the behaviours outlined.

Semantically, if we momentarily disregard the delay #r, everything is quite
conventional and we do not need to repeat the details. A language like Pr0
expresses updates to variables, which are related to each other via the usual
syntactically derived causality relation, but there is no indication about how
these updates might relate to the real world. In practice, (real world coun-
terparts of) the atomic updates are usually understood to occur at isolated
moments of real time, but there is no absolute necessity for this, e.g. if we
interpret according to the conventions of the duration calculus [4].1

When we now reconsider the delay #r, things change. We are obliged
to take note of real world time. Consequently we take the view that all
(packages of) update execution instances have their own specific isolated
points in time at which they execute.

The preceding sets the scene for introducing continuous variable update.

Continuous behaviours:
Cb ::= @g | [iv]Dx = F (x ,y , τ) until g

Constructs:
P1 ::= Db | Cb

Programs:
Pr1 ::= P1 | Name | [Name =] Decl ; Pr1 | Pr1 ; Pr1 | . . . etc.

Regarding the above we make the following further comments:

(6) Declarations may now include continuous variables as well as discrete vari-
ables.

(7) The command @g waits for its guard g to be satisfied. It is like @b except
that g may now contain continuous variables.

1 In this paper we wish to sidestep the race conditions that arise when two (packages of)
updates which read each others’ left hand side variables execute at exactly the same
moment.

112 R. Banach and H. Zhu

(8) The differential equation (DE) command [iv]Dx = F (x ,y , τ) until g first
guards the entry point of executing the DE until the initial conditions on
the variables of the DE system (expressed in [iv]) are satisfied (execution
is delayed if they are not). Once [iv] is satisfied, the current values of the
variables being updated define the DE’s initial values, and the behaviour
specified by the DE continues (D denotes the time derivative), until the
preempting guard g is satisfied or the DE itself becomes infeasible. The
preempting guard g is a Boolean condition, like @g.

Semantically, the leeway we had in interpreting pure discrete events, evapo-
rates when we add differential equations. At least it does so if we want a credible
correspondence with the real world. While pure discrete event formalisms may,
quite sensibly, be studied axiomatically, this is never the case for DEs.

In conventional pure and applied mathematics, the ingredients of differential
equations are always first interpreted with respect to a semantic domain that is
stipulated in advance (albeit often implicitly in the case of applied mathemat-
ics). Different choices of such semantic domains are justified on grounds of the
differing generality that they permit in the properties of the functions that are
deemed to solve those differential equations, see e.g. [5]. Accordingly, to embed
behaviours defined by differential equations into our language in a sound way,
we must first pay some attention to matters of operational semantics for the
whole language. We base our treatment here on fairly standard interpretations
of state based discrete constructs and of DE systems.

Working bottom-up, the fundamental concept is the state σ, a mapping from
each variable v to a value in its type: v �→ σ(v). We also need clocks, written
generically as τ . A clock is a continuous real variable whose time derivative is
fixed at 1. The phrase ‘a clock is started’ means that a fresh clock, initialised
to 0, starts to run from the beginning of the semantic interpretation of some
non-atomic construct of interest.

The Db part of the language is unsurprising. The discrete atomic variable
assignment, x := e, sends the state σ to σ[σ(e)/x], which is identical to σ, except
at x, which becomes σ(e). Similarly for packaged atomic updates.

For @b, if b is true in the current state, then the program completes success-
fully. Otherwise a clock is started, and runs as long as it takes for the environment
to make b true, at which point the program completes.

For #r, if r ≤ 0, then the program completes successfully. Otherwise a clock
is started, and runs for r > 0 time units, at which point the program completes.

For the continuous behaviours, for @g, since g may contain continuous vari-
ables, the true-set of g must be closed. With this proviso, if g is true in the
current state, then the program completes successfully. Otherwise a clock is
started, and runs as long as it takes for the environment to make g true, at
which point the program completes.

For the DE forms, we first mention some generalities.
If we write a general first order differential equation as Φ(v ,Dv , t) = 0,

where v is some tuple of real variables, Dv is a corresponding tuple of real
variables intended to denote the derivatives of v , and Φ is an arbitrary real-valued

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 113

function, then nothing can be said about whether any sensible interpretation of
such an equation exists. See e.g. [5], or any other rigorous text on DEs, for
a wealth of counterexamples that bear this out. Accordingly, rigorous results
on differential equations that cover a reasonably wide spectrum of cases, are
confined to DE forms that fit a restricted syntactic shape and satisfy specific
semantic properties. The best known such class covers first order families that
can be written in the form:

Dx = F (x , τ) or Dx = F (x ,y , τ)

Here, the left hand form refers to a closed system of variables x , whereas the
right hand form also permits the presence of additional external controls y .
As well this syntactic shape, conditions have to be demanded on the vector of
functions F and on the entry conditions of the behaviour to be defined by these
definitions.

For simplicity, we assume that the vector of functions F is defined on a closed
rectangular region, where for each x component index i we have a Cartesian
component xi ∈ [xiL . . . xiU], and for each y component index j we have a
Cartesian component yj ∈ [yjL . . . yjU], and where the time dependence of F
has been normalised to a clock τ ∈ [0 . . . τf], with τf maximal, which starts
when the DE system starts.

For each xi component, xiL is either −∞ or a finite real number, and xiU

is either +∞ or a finite real number, and if both are finite, then xiL < xiU .
Similarly for the yj components. We denote this region by XY × T , where XY
refers to all the x ,y components, and T refers to clock time. We write X for
just the x components and Y for just the y components, so that XY = X × Y .

To guarantee existence of a solution the vector F must satisfy a Lipschitz
condition:

∃K • K ∈ R ∧ ∀x 1,y1,x 2,y2, τ • (x 1,y1) ∈ XY ∧ (x 2,y2) ∈ XY ∧ τ ∈ T ⇒
||F (x 1,y1, τ) − F (x 2,y2, τ)||∞ ≤ K||(x 1,y1) − (x 2,y2)||∞

Here, we have used the supremum norm || · ||∞ since it composes best under
logical operations. For finite dimensional systems, any norm is just as good; see
[6,7]. Additionally, we require that F is continuous in time for all y(τ) ∈ Y .

With the above in place, if x 0 is an initial value for x such that x 0 ∈ X, then
the standard theory for existence and uniqueness of solutions to DE systems
guarantees us a solution x (τ) for τ ∈ [0 . . . τx0], where τx0 ≤ τf , with x (τ)
differentiable in the interval [0 . . . τx0] and satisfying the DE system, and such
that we have ∀τ • τ ∈ [0 . . . τx0] ⇒ x (τ) ∈ X. See [5] for details.

Let us abbreviate [iv]Dx = F (x ,y , τ) until g, to [iv]DE until g below.
For soundness, we assume all the properties above regarding F hold, but it is
impractical to include in the syntax all the data needed to establish them. Even
including such data would still leave the problem of proving the properties needed
— not trivial in general. So our view is that the presence of F in the language
construct is accompanied, behind the scenes, by the needed data, together with
proofs that the requisite properties hold.

114 R. Banach and H. Zhu

Along with the properties of F , we need to know that on entry to DE , the
iv properties hold. This means that [x 0 ∈ X ∧P (x 0)], where P (x 0) denotes any
properties needed beyond the domain requirement x 0 ∈ X. The semantics of
iv is as for any other guard. If iv holds, then the guard succeeds immediately,
and execution of DE commences. If iv fails, then the process pauses, a clock is
started, and it runs until the environment makes iv true, at which point the
guard succeeds.

Assuming the guard has succeeded, a fresh clock is started to monitor the
progress of the solution to DE — this clock is the one that is referred to as τ in
the expression F (x ,y , τ). We are guaranteed that the solution exists for some
period of time.2

There remains the preemption guard g. As for @g, for the preemption
moment to be well defined, we demand that the true-set of g is closed. If during
the period [0 . . . τx0] for which we have a solution, g becomes true, execution of
the solution is stopped and the execution of the whole construct [iv]DE until g
succeeds. If during the period [0 . . . τx0], g never becomes true, then as in other
cases, the execution of [iv]DE until g stops once τx0 is reached. This completes
the operational semantics of the DE construct.

Thus far we have covered the semantics of individual constructs in terms
of their individual durations. DEs, positive delays, and unsatisfied guards have
all acquired non-zero durations. Non-positive delays and immediately satisfied
guards are instantaneous, but since they do not change the state, we can allow
them to complete immediately.

Atomic updates do change the state though. And to ensure that (packages
of) atomic changes of state take place at isolated points in time, to execute an
update, we start a clock which runs for a finite, unspecified, (but typically short)
time, during which a non-clashing time point is chosen and the update is done.
Non-clashing means that the update is separated from time points specifying
other semantic events.

The remaining outer level constructors offer few surprises. Sequential com-
position, P1 ; P2, starts by executing P1, and if it terminates after a finite time,
then P2 is started. The conditional if b then P1 else P2 fi is familiar. Depend-
ing on the (instantaneous) truth value of b, the execution of either P1 or P2 is
started, and the other is forgotten. For iteration, while b do P , if b is false, the
construct terminates. If b is true, the execution of P is started. If it completes in
finite time, the whole process is repeated. The parallel construct P1 ‖ P2 denotes
programs P1 and P2 running concurrently.

With the above, we can describe the runs of a program, having characteristics
that are consistent with the physical picture we would want in a formalism that
includes DEs, by giving, for each variable, a function of time that gives its value
at each moment. For discrete variables, such a function is piecewise constant,

2 The period of time during which the solution exists may be very short indeed. If x 0

is right at the boundary of X and F is directed towards the exterior of XY , then
τx0 may equal 0, and the initial value may be all that there is. This makes the DE
execution equivalent to skip.

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 115

being constant on left-closed right-open intervals, with an atomic update at tα
say, taking the left-limit value at tα to the actual value at tα. For continuous
updates running till τg, we remove the final value of an interval [0 . . . τg], getting
a left-closed right-open interval again, and interpreting the guard g as the left-
limit value at τg.

3 Example: An Air Conditioning System

We illustrate how the language Pr1 works via a simplified air conditioning exam-
ple. Although failures in AC systems are typically not critical, the kind of mod-
elling needed, and the issues to be taken into account regarding the modelling,
are common to systems of much higher consequence, making the simple example
useful.

The AC system is controlled by a User . The user can switch it on or off,
using the boolean runAC . The user can also increase or decrease the target
temperature by setting booleans tempUp and tempDown. Since Pr1 does not
have pure events as primitives, the AC system reacts on the rising edges of
tempUp and tempDown, resetting these values itself (whereas it reacts to both
the rising and falling edges of runAC).

Here then is the User program. In the following, we assume available a func-
tion rnd, that returns a random non-negative integer value. Note that runAC ,
tempUp and tempDown are not declared here since they need to be declared in
an outer scope.

User =
while true
do #(rnd) ; runAC := true ; cnt : N = rnd ;

while cnt > 0
do #(rnd) ; if rnd % 2 then tempUp := true else tempDown := true fi
od ;
runAC := false

od
The above models the nondeterministic behaviour of the user by using random
waits between user events, and random counts of temperature modification com-
mands. This is evidently a bit clumsy, but is adequate for purposes of illustration.

The AC apparatus consists of a room unit and an external unit. It operates
on a Carnot cycle, in which a compressible fluid (passed between the two units
via insulated piping) is alternately compressed and expanded. The fluid is com-
pressed in the external unit to raise its temperature higher than the surround-
ings, where it is cooled by forced ventilation to (close to) the temperature of the
surroundings. The fluid is then expanded, cooling it, so that, in the room unit,
it is cooler than the room, and forced ventilation with the room’s air warms
it again, thus cooling the room. The cycle runs continuously. The inefficient
thermodynamics of the Carnot cycle means this process cannot work without a
constant input of energy, making AC systems expensive to run.

116 R. Banach and H. Zhu

Our simplified model of AC operation depends on a number of temperature
variables, reflecting the structure of the Carnot cycle: θS is the room temperature
set by the user; θR is the current room temperature; θX is the temperature
of the external unit’s surroundings; θFH is the temperature of the fluid when
compressed; θFL is the temperature of the fluid when expanded. All of these are
real valued.

When an AC system is started, each part will be at the temperature of its
own surroundings, and there will be a transient phase during which the AC
system reaches its operating conditions. For simplicity we ignore this, and our
model starts in a state in which all components are initialised to their operating
conditions. Consequently θFH , θFL and θX are assumed constant, so do not
require their own dynamical equations.

For simplicity we further assume that θFH is independent of other quantities,
and that θFL is lower than θFH by an amount proportional to θFH0 − θX0. We
also assume that when operating, the AC system cools the room air according
to a linear law.

ACapparatus =
θS : N ∩ [SL . . . SH] = θS0 ; θR : R ∩ [RL . . . RH] = θR0 ;
[θX : R ∩ [XL . . . XH] = θX0 ;

θFH : R = θFH0 ; θFL : R = θFL0 = θFH0 − KX(θFH0 − θX0) ;]
while true
do @(runAC = true) ;

while runAC = true ∧ θR > θS

do [θR ∈ [RL . . . RH]]
D θR = −KR(θR − θFL) until
(θR = θS ∨tempUp = true∨tempDown = true∨runAC = false) ;
if tempUp = true
then {tempUp, θS := false,min(θS + 1, SH)}
elsif tempDown = true
then {tempDown, θS := false,max(θS − 1, SL)}
elsif θR = θS

then @(θR = θS + 1)
else skip
fi ;

od ;
@(θR ≥ θS + 1)

od
Putting User and ACapparatus together gives us the complete system.

ACsystem =
runAC : B = false ; tempUp : B = false ; tempDown : B = false ;
(User || ACapparatus)

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 117

Note that in the above, while runAC works as a toggle, tempUp and tempDown
are reset by the apparatus. Finally, we recognise that for a sensibly behaved
system, we would need a considerable number of relations to hold between all
the constants that implicitly define the static structure of the system.

4 Healthiness Considerations

At this point we step back from the detailed discussion of the example to cover a
number of general considerations that arise when physical systems interact with
computing formalisms.

[1] Allowing all variables of interest to be considered as functions of time yields
a convenient uniformity between isolated discrete updates and continuous
updates. Treating the two kinds in different ways can lead to a certain amount
of technical awkwardness, at the very least.

[2] When variables are functions of time, values at individual points in time
have no physical significance. Only values aggregated over an interval of
time make sense physically, and for these to be well defined, the functions of
time in question have to be well behaved enough (e.g. ‘continuous’, although
‘integrable’ would actually suffice).

[3] In dealing with CPS systems we must take into account the consequences of
using differential equations. In a sense we have already fallen into covering
this quite extensively in discussing the semantics of our prototypical language
in Sect. 2. The existence of solutions to arbitrary DEs cannot be taken for
granted without the imposition of appropriate sufficient conditions. An easy
way to ensure this is to impose strict syntactic restrictions on the permitted
DEs, e.g. by insisting that they are linear.

[4] Physics is relentlessly eager. In conventional discrete system formalisms,
assuming that the discrete events in question are intended to correspond with
real world events, the precise details of the correspondence with moments of
time is seldom critical (other than for explicitly timed systems), and more
than one interpretation is permissible, provided the causal order of events
remains the same. As soon as physical behaviour enters the scene though, this
choice disappears. If one physical behaviour stops, another must take over
immediately, as the universe does not ‘go on hold’ until some new favourable
state of affairs arises.

[5] Point [4] places quite strong restrictions on the semantics of languages
intended for the integrated descriptions of computing and physical behav-
iour, since many of the options available for discrete systems simply disap-
pear. Although it is perfectly possible to design languages that ignore this
consideration and integrate continuous behaviour and discrete behaviour in
an arbitrary fashion, even though they may be perfectly consistent math-
ematically, unless they take due consideration of the requirements of the
physical world, they are irrelevant for the description of real world systems.

[6] Points [4] and [5] boil down to a requirement that descriptions of physical
behaviour must be guaranteed to be total over time. Languages intended for

118 R. Banach and H. Zhu

CPS and critical systems should not permit gaps in time during which the
behaviour of some physical component is undefined.

[7] The requirements of the last few points can be addressed by having separate
formalisms for the discrete and continuous behaviours of the whole system
and having a well thought out framework for their interworking. However,
in cases of multiple cooperating formalisms, it is always the cracks between
the formalisms that make the most hospitable hiding places for bugs, so
particular vigilance is needed to prevent that.

[8] The impact of the preceding points may be partly addressed by careful syn-
tactic design — we demonstrate this to a degree in Sect. 5. However, most
aspects are firmly rooted in the semantics. In this regard, a language frame-
work that puts such semantic criteria to the fore is highly beneficial. The
semantic character of most of the issues discussed implies that an approach
restricted to syntactic aspects can only achieve a very limited amount.

[9] The implications of the heavily semantic nature of most of the issues dis-
cussed above further implies the necessity of having runtime abortion as
an ingredient of the operational semantics of any language suitable for the
purposes we contemplate. Although this is seldom an issue per se for prac-
tical languages, which must include facilities for division, hence for division
by zero at runtime, it is nevertheless perfectly possible to contemplate lan-
guages in which all primitive expression building operations are total, and
hence to dispense with runtime abortion, even if such languages are of largely
theoretical interest.

The overwhelmingly semantic nature of the preceding discussion motivates
our referring to the matters raised as ‘healthiness conditions’. (The nomenclature
is borrowed from UTP [3], where appropriate structural conditions that play a
similar role are baptised thus.) Checking that the necessary conditions hold for
a given system, compels checking that the relevant criteria, formulated as suits
the language in question, hold for the system at runtime (for the entire duration
of the execution). Depending on the language and how it is structured, this may
turn out to be more convenient or less convenient.

5 An Improved Concurrent Language

Taking on board the discussion in Sect. 4, we redesign our language as follows.

Decl :: = [x : T [= x0] ;]∗

Db :: = x := e | {xs := es} | @b | #r
Pr0 :: = Db | Decl ; Pr0 | Pr0 ; Pr0

| if b then Pr0 else Pr0 fi| while b do Pr0 od | Pr0 ‖ Pr0
CbE :: = [iv]Dx = F (x ,y , τ) until g | obey Rstr until g
Pr2 :: = CbE | Pr2 ; Pr2

| if b then Pr2 else Pr2 fi| while b do Pr2 od | Pr2 ‖ Pr2
PrSys :: = Name | [Name =] Decl ; PrSys | Pr0 | Pr2 | PrSys ‖ PrSys

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 119

In the above grammar, the healthiness considerations that can be addressed via
the syntax have been incorporated. Thus, there is a visible separation between the
previous discrete program design Pr0 (which remains unchanged), and the provi-
sions made for describing physical behaviour Pr2, which have been restructured.

Specifically, there are now no facilities for Pr2 processes to wait. Furthermore,
they can only be combined with discrete processes at top level, precluding their
sudden appearance part way through a system run. This also means that they
must be declared at top level, reflected in the design of the PrSys syntax.

Note the additional obey clause for physical behaviour. This permits rela-
tively loosely defined behaviour to be specified in cases where more prescriptive
behaviour via a DE is not desired or is impossible due to lack of knowledge, etc.
This replaces use of waiting clauses in the earlier grammar. Note that DE behav-
iour and obey behaviour are the only permitted ways of describing continuous
behaviour at the bottom level.

Although we have ensured that Pr2 processes cannot wait for syntactic rea-
sons, we have to ensure that they can’t wait for semantic reasons either. Thus
we must stipulate what happens in the DE and obey cases when one or other of
their syntactic components fails. Taking the DE case first, if iv does not evaluate
to true,3 then the whole top level PrSys process must abort, that is to say, exe-
cution terminates abruptly in a failing state. If F fails to satisfy the conditions
for existence of a DE solution, then the top level PrSys process aborts. If g
does not evaluate to true at some moment in the DE solution, in case that the
duration of the DE solution τf is finite, then when τf is reached, the top level
PrSys process aborts. Turning to the obey case, if Rstr does not evaluate to
true in a left closed right open time interval starting from the moment the obey
construct is encountered (or amounts to skip at that moment), then top level
PrSys process aborts. If g does not evaluate to true at some moment during
the true interval of Rstr, in case that the duration of the true interval of Rstr,
say τf , is finite, then when τf is reached, the top level PrSys process aborts.

Having defined the improved language, we can check over how it addresses the
healthiness conditions described earlier. Re. [1], we have already stipulated that
all variables depend on time in our description of the semantics, so [1] is covered.
Re. [2], this is again implicit in our semantics. Likewise, [3] is also covered by
our relatively detailed discussion of DEs. Re. [4], we have designed the syntax to
prohibit explicit lazy behaviour in the continuous domain, and this is backed up
by the semantics which disallows lazy behaviour arising from runtime conditions
— this justification extends to point [5], and this, combined with the fact that
DE behaviour and obey behaviour are the only permitted ways of describing
continuous behaviour at the bottom level guarantee totality over time provided
the behaviour described by the syntax is well defined semantically, covering
point [6]. Points [7] and [8] are things that can be achieved syntactically, and
our design does so. Point [9] indicates the necessity of having runtime aborts
in the semantics, this being forced by the eagerness of physical behaviour. The
need for this also arose in our remarks regarding point [6].

3 That is to say, it evaluates to false, or fails to evaluate at all.

120 R. Banach and H. Zhu

The heavy dependence on semantics of this discussion raises the question
of how we can be sure that any system that is written down defines a sensible
behaviour. In purely discrete languages, there is a well trodden route from the
syntactic structure of a system description to verification conditions that confirm
the absence of runtime errors.

The same approach extends to languages containing continuous update, such
as ours. The syntactic structure of such a language can be analysed to elicit all
the dependencies between different syntactic elements that can arise at runtime,
and these dependencies can be used to create template verification conditions.
Given a specific model, the generic template verification conditions can be instan-
tiated to the elements of the model to provide sufficient (although not necessarily
necessary) conditions for runtime well definedness. Still, it has to be conceded
that such conditions can be more challenging than in the discrete case because
of the more subtle nature of aspects of continuous mathematics.

Although we do not give a comprehensive account of the verification tem-
plates for our (improved) language (it has, after all, been constructed just for
illustrative purposes), we can give an indication of a couple of them.

Thus, if the flow of control reaches an DE construct [iv]Dx =
F (x ,y , τ) until g we need to know the initial value guard will succeed. We
can ensure statically that this will be the case if the DE construct occurs in a
case analysis whose collection of guards covers all values that could be generated.

Similarly, once a DE construct has been preempted by its preemption guard
becoming true, we need to ensure that there is a viable continuous successor
behaviour for the physical process to engage in. This is helped in our case by
the syntax, and can be supported by a proof that the truth of the preemption
guard enables some syntactically available successor option.

In the discrete part of the language, the success of an if statement can be
assured provided there is a default else clause to capture any exceptional cases.
And so on.

Still, achieving full static assurance of freedom from runtime errors may
require fully simulating the system, which will usually be impractical. Much
depends on the language design. To help the process, languages may be designed
in which all expression forming constructs are guaranteed to denote (e.g. in
extremis by not having division in the language). Such languages may help in
the verified design of critical systems.

6 The Running Example, Improved

In the light of the preceding discussions, we return to our running example
and restructure it for the improved language. For simplicity we will omit the
bracketed constant declarations that appeared in the earlier ACapparatus. We
also keep the definition of the User the same, as that conforms to the syntax of
the improved language. Regarding the ACapparatus, it requires some significant
restructuring.

Firstly, the previous design mixed discrete and continuous update in a fairly
uncritical manner. Thus the DE D θR = −KR(θR − θFL), describing the fluid

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 121

behaviour, is mixed with discrete updates to θS , done at the behest of the User.
Worse, when the DE is preempted, no physical behaviour is defined for the
fluid — the ACapparatus just hangs around waiting for the next opportunity
to do some cooling. This is not really acceptable: the fluid does not stop being
a physical system, subject to the laws of nature, just because, with our focus
on the ACapparatus design, we have no great interest in its behaviour during a
particular period.

Our restructured design separates the physical from the discrete aspects.
The earlier ACapparatus is split into an ACcontroller process, looking after the
discrete updates, and a ACfluid process, which describes the physical behaviour
of the fluid.

Normally, the User would communicate with the ACcontroller, which would
then control the ACfluid, but we are a bit sloppy, and allow the User’s runAC
variable to also directly control the ACfluid, thus sharing the fluid control
between the User and the ACcontroller. The latter therefore just controls the θS

value while runAC is true.
The ACfluid process, now constrained by the restricted syntax for physical

processes, describes the fluid’s properties at all times.At timeswhen theDEbehav-
iour is not relevant, an obey clause defines default behaviour, amounting to θR

remaining within the expected range. The separation of control and fluid allows
us to make the fluid responsible for detecting temperature and to only initiate the
DE behaviour when the temperature is at least a degree above the set point θS . Of
course this is rather unrealistic, and a more credible (and detailed) design would
involve sensors under the control of the ACcontroller to manage this aspect.

ACcontroller =
while true
do @(runAC = true) ;

while runAC = true ∧ θR > θS

do @(tempUp = true ∨ tempDown = true ∨ runAC = false) ;
if tempUp = true
then {tempUp, θS := false,min(θS + 1, SH)}
elsif tempDown = true
then {tempDown, θS := false,max(θS − 1, SL)}
fi

od
od

ACfluid =
while true
do obey θR ∈ [RL . . . RH] until runAC = true ;

if θR ≥ θS + 1
then [θR ∈ [RL . . . RH]] D θR = −KR(θR − θFL)

until (θR = θS ∨ runAC = false)
else obey θR ∈ [RL . . . RH] until θR ≥ θS + 1 ∨ runAC = false
fi

od

122 R. Banach and H. Zhu

Putting all three components together gives us the complete system.

ACsystem =
runAC : B = false ; tempUp : B = false ; tempDown : B = false ;
(User || (θS : N ∩ [SL . . . SH] = θS0 ; θR : R ∩ [RL . . . RH] = θR0 ;

ACcontroller || ACfluid))

7 Related Approaches

It is fair to say that the critical systems industry is rather conservative — advo-
cating radical new ways of doing things that do not enjoy the highest levels of
trust risks major disasters in the field. Even the newer standards in key fields,
such as DO-178C (for avionics [8]), ISO 26262 (for automotive systems [9]), IEC
62304 (for medical devices [10]), or CENELEC EN 50128 (for railway systems
[11]), are still heavily weighted in favour of mandating specific testing strategies,
and other practices heavily rooted in traditional development techniques. Thus
the entry of formal techniques into the standardised critical systems develop-
ment portfolio is rather cautious, despite the strong evidence in niche quarters
about the dependability that can be gained by appropriate use of formal devel-
opment, suitably integrated into the wider system engineering process. This is
as much because entrenched industrial practice cannot move as nimbly as one
might hope, even when the evidence for attempting to do so is relatively strong.

Here, we briefly comment on some approaches that compare with our exer-
cise to realign a candidate language for utility in the cyberphysical and critical
systems arena.

In the cyberphysical systems area [12–14], we can point to the extensive
survey [15], which covers a wide spectrum of research into cyberphysical systems,
and the tools and techniques used in that sphere. As we might expect, despite
the relative newness of the cyberphysical systems area, formal approaches are
somewhat overshadowed by more traditional and simulation based techniques.
Again, this is due to the fact that cyberphysical systems still have to be built,
and this falls back on traditional approaches.

The older survey [16] is more linguistically based and covers a large spectrum
of languages and tools for hybrid systems. One is struck by the typically low
expressivity in the continuous sphere of many of the systems discussed there,
motivated, of course, by the desire for decidability of the resulting languages
and systems. For decidability reasons, most of these are based on variations
of the hybrid automaton concept [17–19]. In fact, for simple linear behaviours,
e.g. Dx = K, with K constant, there is very little difference between using a
DE as just quoted, and using an expression x′ = x + KΔT where ΔT is the
duration of the behaviour.

Neverthless, many of the formalisms in these sources are focused on the
single goal of hybrid or continuous behaviour, to the exclusion of more general
computing concerns. This leads to the ‘bugs in between formalisms’ risk noted
earlier, when multiple formalisms need to be combined.

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 123

Closer to our perspective is the work of Platzer [20], supported by the Key-
Maera tool [21]. This supports the kind of modelling exemplified in this paper,
with a strong focus on verification. Alternatively there is the Hybrid Event-B for-
malism [22,23]. This is an extension of the pure discrete event formalism Event-B
[24], building on the earlier classical B-Method [25], (which is still actively used
in critical applications in the urban rail sector [26]). The extension is expressly
designed to avoid the kind of traps regarding continuous behaviour and verifica-
tion that we illustrated earlier in this paper.

Thus far our discussion has avoided mentioning noise or randomness. This
is legitimate when the physical considerations imply that it is negligible. But
if sources of uncertainty are significant, then probabilistic techniques need to
be taken on board. These add nontrivial complication to the semantics of any
language. An indication of the issues that can arise can be found in [27,28].

8 Conclusion

Motivated by the current dramatic proliferation in critical and cyberphysical
systems, especially in urbanised areas all over the world, in the preceding sec-
tions, we examined the problem of extending typical existing, more conventional
formalisms for programming, to allow them to incorporate the needed physical
behaviour that is a vital ingredient of these systems. Such integrated formalisms
can come into their own if we contemplate the integrated verification of critical
cyberphysical systems, in which we seek to avoid the possibilities of there being
bugs that hide in the semantic cracks between separate formalisms that are used
to check separate parts of the behaviour.

Rather than being comprehensive, our approach in this paper has been to
illustrate the range of issues to be considered, by taking a somewhat prototypical
shared variable language for concurrent sequential programming, and extending
it in a relatively näıve way to incorporate continuous behaviour. We then criti-
cally examined the consequences of this, and identified a number of issues that
are not always taken sufficient account of when embarking on such an extension
exercise. For want of a pithy name, we termed these ‘healthiness considerations’,
by analogy with the nomenclature used in UTP. This done, we showed how the
earlier näıve syntax could be improved to partially address some of these issues,
the remainder being the responsibility of the semantics.

We illustrated our particular solution with a simplified air conditioning sys-
tem, giving the core steady state behaviour in both the original and improved
formulations.

It is important to emphasise that we do not claim that the details of our
solution (even in the case of our specific language) are unique. One could resolve
the same issues in a number of ways that differed in the low level detail. Nev-
ertheless, the broad sweep of the things needing to be considered would remain
similar.

We also do not claim that our language (and its improved version) are to
be particularly recommended for critical cyberphysical system development. In

124 R. Banach and H. Zhu

many ways, the issues we have striven to highlight are brought our more clearly
in a language which one would rather not choose to use.

We can liken the urge to match the surface syntactic features of the language
as closely as possible to what is needed by the semantics of the physical consid-
erations, with the longstanding process whereby machine code was superseded
by assembly language, which was superseded by higher level languages, etc., in
each case the desire being to raise the level of abstraction in such a way as
to preclude as many user level errors as possible by making them syntactically
illegal (or simply impossible to express), and backing this up semantically.

It is to be hoped that the insights from an exercise like the one we have
undertaken can help to improve the broader awareness of the issues lurking
under the bonnet when formalisms for critical and cyberphysical systems are
designed in future.

References

1. Alur, R.: Principles of Cyberphysical Systems. MIT Press, Cambridge (2015)
2. Lee, E., Shesha, S.: Introduction to Embedded Systems: A Cyberphysical Systems

Approach, 2nd edn. (2015). LeeShesha.org
3. Hoare, T., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood

Cliffs (1998)
4. Zhou, C., Hoare, T., Ravn, A.: A calculus of durations. Inf. Process. Lett. 40,

269–276 (1991)
5. Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics, vol.

182. Springer, New York (1998)
6. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge

(1985)
7. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press,

Cambridge (1991)
8. DO-178C. http://www.rtca.org
9. ISO 26262. http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.

htm?csnumber=54591
10. IEC 62304. https://webstore.iec.ch/preview/info iec62304ed1.0en d.pdf
11. CENELEC EN 50128. https://www.cenelec.eu/dyn/www/f?p=104:105
12. Sztipanovits, J.: Model integration and cyber physical systems: a seman-

tics perspective. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol.
6664, p. 1. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 1.
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf

13. Willems, J.: Open dynamical systems: their aims and their origins. Ruberti
Lecture, Rome (2007). http://homes.esat.kuleuven.be/∼jwillems/Lectures/2007/
Rubertilecture.pdf

14. National Science and Technology Council. Trustworthy cyberspace: strate-
gic plan for the federal cybersecurity research and development pro-
gram (2011). http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed
cybersecurity rd strategic plan 2011.pdf

15. Geisberger, E., Broy M. (eds.): Living in a networked world. Integrated
research agenda cyber-physical systems (agendaCPS) (2015). http://www.
acatech.de/fileadmin/user upload/Baumstruktur nach Website/Acatech/root/
de/Publikationen/Projektberichte/acaetch STUDIE agendaCPS eng WEB.pdf

http://www.LeeShesha.org
http://www.rtca.org
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.ht m? csnumber=54591
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.ht m? csnumber=54591
https://webstore.iec.ch/preview/info_iec62304ed1.0en_d.pdf
https://www.cenelec.eu/dyn/www/f?p=104:105
http://dx.doi.org/10.1007/978-3-642-21437-0_1
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf
http://homes.esat.kuleuven.be/~jwillems/Lectures/2007/Rubertilecture.pdf
http://homes.esat.kuleuven.be/~jwillems/Lectures/2007/Rubertilecture.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Projektberichte/acaetch_STUDIE_agendaCPS_eng_WEB.pdf

Shared-Variable Concurrency, Continuous Behaviour and Healthiness 125

16. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1, 1–193
(2006)

17. Henzinger, T.: The theory of hybrid automata. In: Proceedings of IEEE LICS-
96, pp. 278–292. IEEE (1996). http://mtc.epfl.ch/∼tah/Publications/the theory
of hybrid automata.pdf

18. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol.
736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

19. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235
(1994)

20. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

21. Symbolaris. http://www.symbolaris.org
22. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid event-B I: single

hybrid event-B machines. Sci. Comput. Prog. 105, 92–123 (2015)
23. Banach, R., Butler, M., Qin, S., Zhu, H.: Core hybrid event-B II: multiple cooper-

ating hybrid event-B machines. Sci. Comp. Prog. (2017, to appear)
24. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
25. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press, Cambridge (1996)
26. Clearsy. http://www.clearsy.com/en/
27. Zhu, H., Qin, S., He, J., Bowen, J.: PTSC: probability, time and shared-variable

concurrency. Innov. Syst. Softw. Eng. 5, 271–284 (2009)
28. Zhu, H., Yang, F., He, J., Bowen, J., Sanders, J., Qin, S.: Linking operational

semantics and algebraic semantics for a probabilistic timed shared-variable lan-
guage. J. Log. Alg. Prog. 81, 2–25 (2012)

http://mtc.epfl.ch/~tah/Publications/the_theory_of_hybrid_automata.pdf
http://mtc.epfl.ch/~tah/Publications/the_theory_of_hybrid_automata.pdf
http://dx.doi.org/10.1007/3-540-57318-6_30
http://www.symbolaris.org
http://www.clearsy.com/en/

Parametrized Verification

Applying Parametric Model-Checking
Techniques for Reusing Real-Time

Critical Systems

Baptiste Parquier1,2(B), Laurent Rioux1, Rafik Henia1, Romain Soulat1,
Olivier H. Roux2, Didier Lime2, and Étienne André2,3

1 THALES Research and Technology, 1 Avenue Augustin Fresnel,
91120 Palaiseau, France

2 IRCCyN, 1 Rue de la Noë, 44300 Nantes, France
baptiste.parquier@eleves.ec-nantes.fr

3 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030,
93430 Villetaneuse, France

Abstract. Due to the increase of complexity in real-time safety-critical
systems, verification and validation costs have significantly increased. A
straightforward way to reduce costs is to reuse existing systems, adapting
them to new requirements, so as to avoid new costly developments. Our
aim is to verify during the development strategy definition phase whether
the existing products can be reused and adapted for a new customer, by
identifying key parameters to be tuned in order to reuse existing prod-
ucts. Performing efficient verification is therefore crucial.

In this paper, we focus on the performance requirement aspects. Nowa-
days, model-checking techniques have improved significantly to verify
the performances of real-time systems. However, model-checking cannot
address real-time systems where some timing constants are unknown or
uncertain. Parametric model-checking leverage this shortcoming by iden-
tifying parameter ranges for which the system is correct. We report here
on an experiment of the evaluation of the use of these formal techniques
applied to automatize the synthesis of good parameter ranges for system
reuse in the setting of the environment requirements for an aerial video
tracking system.

Keywords: Real-time systems · Safety-critical systems · Formal
methods · Parametric verification · Performance verification · Case
study · Avionics

1 Introduction

Performance verification is a common discipline in system and software engi-
neering. In practice, it is very common to spend a lot of effort in performance

This work is partially supported by the ANR national research program ANR-14-
CE28-0002 PACS (“Parametric Analyses of Concurrent Systems”).

c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 129–144, 2017.
DOI: 10.1007/978-3-319-53946-1 8

130 B. Parquier et al.

engineering especially for certified products. Standards specify a complete and
precise safety process to follow in order to be certified (e. g., DO-178C in the
avionics domain). There is a need to reduce the time and efforts related to
design such real-time systems considering performance requirements. We would
like to experiment and verify if the current state of the art on performance ver-
ification tools are able to cope with industrial needs. We will not address the
whole performance engineering process. We will focus on the performance verifi-
cation in a particular context: an industrial company plans to reuse an existing
real-time safety-critical system for the needs of a new client to cut costs and
delays. However, this client is coming with its own performance requirements
that differs from what the system was originally designed for. Our use case is an
aerial video tracking device. Its mission is safety-critical for the whole system
and, therefore, has to be certified according to the DO-178C standard.

To this end, we have to demonstrate the software architecture meets the
performance requirements, which implies that the system has to satisfy all the
deadline requirements in all (and in particular the worst) situations.

A conventional way at THALES—but also in other industrial companies—
to tackle this problem is to evaluate the performance of the current system.
The system is taken as is and if it satisfies the client performance requirements,
the system can be reused as it stands. If not, experts check how to modify
environment parameters—typically sources of activation of the system—and try
to identify a new configuration where the system can meet its new requirements.
This is time consuming and costly. Therefore, generally only few configurations
are tested and evaluated, and quite often, none of them meets the requirements.
As a consequence when the activity is seen as too costly, the “reuse” strategy is
dropped.

We report here on an experimentation to apply formal techniques on an
aerial video tracking system by THALES, in a way to tool-up the identification
of the good environment parameters to reuse the system. Our methodology is as
follows:

1. We first identified the most appropriate formalisms and formal techniques
to validate the performance and identify the good environment parameters:
we chose to use parametric stopwatch automata (PSwAs) and parametric
stopwatch Petri nets (PSwPNs), two formalisms for modeling and verifying
preemptive real-time systems with parameters. These two formalisms benefit
from state-of-the-art model-checkers (IMITATOR for PSwAs and Roméo for
PSwPNs).

2. We then devised a way to model the system needed for performance valida-
tion, using the identified formalisms.

3. We then studied how to measure the trust in the results produced by IMI-

TATOR and Roméo: In this regard, we exploit diversity: the use of several
techniques giving the very same results is a great source of confidence. Never-
theless, diversity can only be reached if the alternatives used are truly different
and cannot both fail due to some common weaknesses.

Applying Parametric Model-Checking Techniques 131

Organization of the Paper. Sect. 2 presents the aerial video tracking system
developed by THALES, and its new requirements. Section 3 presents the state
of the art of available verification techniques, in particular formal methods using
parameterization. Section 4 introduces the tools Roméo and IMITATOR respec-
tively for parametric stopwatch Petri nets and parametric stopwatch automata.
Section 5 provides the modeling of the case-study into both formalisms. Finally
we present experimental results in Sect. 6 and we conclude with Sect. 7.

2 Industrial Case-Study

2.1 Specifications

This case-study is an aerial video tracking system designed by THALES, used
in intelligence, surveillance, reconnaissance, tactical and security applications.
Figure 1 presents the two major functions of this system:

1. The video frame processing function, which receives frames from the camera
and sends them to the cockpit to be displayed for the pilot.

2. The tracking and camera control function, which gives the control commands
to the camera from the aircraft sensor data. The study focuses on this part
of the system.

The objective of the tracking and camera control function is to control the
camera position according to the plane trajectory. The camera has to always
focus on the same target, whatever the plane trajectory is.

The system is characterized by strict constraints on timing. One major tim-
ing problem consists in calculating the timing latencies for the functions in the
“Tracking and Camera control” part.

Fig. 1. Organization of the aerial video tracking system

“Tracking and Camera control” is decomposed in 4 subfunctions: Processing
(T2), Target position prediction (T5), Tracking control (T6) and Camera control
(T7). All sub-functions share the same computing resource, i. e., work on the
same CPU. Figure 2 illustrates how all those sub-functions communicate with
each other and how much time they require on the computing resource. (The
red arrow in Fig. 2 is not considered for now, and will be used later on.)

132 B. Parquier et al.

Fig. 2. Tracking and camera control: time description (Color figure online)

The system has the following characteristics:

– All tasks are triggered by the arrival of data at their inputs;
– There is a preemptive scheduling for the computing resource;
– Tasks are prioritized in this order: T2 > T6 > T5 > T7.

Let us now introduce various definitions.

Definition 1. A period τ is the duration after which a periodic phenomenon
repeats itself.

Definition 2. A jitter is the maximal delay of activation compared to the peri-
odic arrival of the event causing this activation.

Definition 3. A time offset ω is the time lag between an event and a time
reference—taken arbitrarily.

Definition 4. In a system, a stimulus is an external activation that periodically
sends a signal to one or multiple tasks. It is fully characterized by: 1. A period,
2. A jitter, 3. A time offset.

Example 1. In our case-study, there are two stimuli as shown in Fig. 2:

– The first one activating T6—tracking control: period 100 ms, jitter j, no
offset—this stimulus is chosen as reference,

– The second one activating T2—processing: period 40 ms, no jitter, offset ω.

Applying Parametric Model-Checking Techniques 133

Fig. 3. A 30ms jitter on a 100 ms period stimulus (Color figure online)

Example 2. Figure 3 illustrates a periodic stimulus with a period of 100 ms and
a jitter j, that activates a task. The periodic stimulus sends data to the task in
order to activate it (blue arrows in Fig. 3). Because of the jitter, the activation
of the task happens between 0 and j time units after the stimulus (red arrows).

The jitter j represents a potential delay due to the communication network in
the aircraft. It is not something that can be determined at design time: the best
a designer can do is to take into account that there will be a possible delay in the
final system and ensure the system will behave according to the requirements
whatever the jitter is. Until now, system environment ensured that:

j = 30ms

The offset ω might be used to change the reference between T6’s and T2’s
activations. An offset is something the designer can tune to ensure the system
good behavior.

2.2 Main Objective

Our main objective is to reuse an existing system for new customers, which means
the system has to meet all new performance requirements. More precisely, in this
experiment, we consider the situation where a new customer wants to modify
the following requirement to the aerial video tracking system: “The end-to-end
latency between the activation of task T6 and the termination of task T7 shall
be lower than 80 ms.” The new end-to-end latency requirement is depicted in
red in Fig. 2.

Our aim is to compute new timing specifications of the system so that this
additional requirement can be met. However, the heart of the system must not
change. As the system is expected to be reused as is, we can only modify the
timing specifications of external activations: tune the offset between stimuli, or
change the jitter requirements.

2.3 Our Constraints: A Parametric Approach

In our case study, jitter and offset can be seen as parameters. Moreover, even
timing properties can be expressed parametrically, as timing constraints make
sense only in the context of a given concrete environment. For example, a maxi-
mal delay of the system response has to be at most two times the minimal delay,
or the transmission time in the communication protocol could be left as a para-
meter. Performing non-parametric model-checking of the systems for different

134 B. Parquier et al.

concrete values is difficult and leads to state-space explosion. The possibility to
specify parametric timing constraints is then a great opportunity that allows to
evaluate timing performances of real-time systems independently of their par-
ticular implementation.

We summarize the main needs for a parametric approach:

– Parameters allow to cope with the early uncertainties in developing an indus-
trial system;

– Parameters allow to investigate robustness of some of the design choices;
– If the system is proven wrong, the whole verification process has to be carried

out again;
– Considering a wide range of values for constants allows for a more flexible and

robust design.

3 Related Works

3.1 Response Time and Latency Analysis

As mentioned in [21], many research papers have already addressed the problem
of parametric schedulability analysis, especially on single processor systems. Bini
and Buttazzo [10] proposed an analysis of fixed priority single processor systems,
which is used as a basis for this paper.

Parameter sensitivity can be also be carried out by repeatedly applying clas-
sical schedulability tests, like the holistic analysis [19]. One example of this app-
roach is used in the Mast tool [13], in which it is possible to compute the
slack (i. e., the percentage of variation) with respect to one parameter for single
processor and for distributed systems by applying binary search in that parame-
ter space [19].

A similar approach is followed by the SymTA/S tool [14], which is based
on the event-stream model [20]. Another interesting approach is the Modular
Performance Analysis (MPA) [23], which is based on Real-Time Calculus. In
both cases, the analysis is compositional, therefore less complex than the holistic
analysis. In [16], a real time system is modeled using a high level variant of timed
automata including design timed parameters and is analyzed using the UPPAAL
tool. Nevertheless, these approaches are not fully parametric, in the sense that
it is necessary to repeat the analysis for every combination of parameter values
in order to obtain the schedulability region.

3.2 Parametric Formalisms for Real-Time Systems

The literature proposes mainly two formalisms to model and verify systems
with timing parameters: parametric timed automata [3] and parametric time
Petri nets [22]. Both formalisms are subject to strong undecidability results,
even with low numbers of parameters [18], syntactic restrictions such as strict
constraints [12], or with restricted parameter domains, such as bounded ratio-
nals [18], or (unbounded) integers [3] (see [5] for a survey). Undecidability is

Applying Parametric Model-Checking Techniques 135

not necessarily a problem: semi-algorithms were defined (e. g., [3,6,15]) and safe
under-approximations were also proposed (e. g., [8,15]).

For many real-time systems, in particular when subject to preemptive
scheduling, these formalisms are not expressive enough. As a consequence, we
therefore use extensions of parametric timed automata and parametric time Petri
nets augmented with stopwatches, yielding parametric stopwatch automata [21],
and parametric stopwatch Petri nets [22].

To the best of our knowledge, the only tools using as basis formalism
these two formalisms are IMITATOR [7] for parametric stopwatch automata, and
Roméo [17] for parametric stopwatch Petri nets. In this work, we evaluate the
capabilities of both tools using the industrial case study.

4 Tools

We briefly present both tools in the following. Using tools is an opportunity to
increase the confidence in our results. We believe this offers us the diversity we
seek for in our approach, because the tools are developed by different teams,
and based on different theories: parametric stopwatch Petri nets vs. parametric
stopwatch automata, that implies different models.

By doing that, the confidence one can have in both tools increases consider-
ably: if both tools give the same results, the odds that they are both wrong is
clearly very low, and therefore the confidence is high.

4.1 ROMÉO

Roméo1 [17] is a software studio for parametric analysis of time Petri nets and
some of their hybrid extensions (such as parametric stopwatch Petri nets). It is
available for Linux, MacOSX and Windows platforms and consists of a graphical
user interface (GUI) to edit and design PSwPNs, and a computation engine.

Roméo supports the use of parametric linear expressions in the time intervals
of the transitions, and allows to add linear constraints on the parameters to
restrict their domain. Finally, Roméo provides a simulator and an integrated
TCTL model-checker [11].

4.2 IMITATOR

IMITATOR2 [7] is a software for parametric verification and robustness analysis
of real-time systems. It relies on the formalism of networks of parametric timed
automata, augmented with integer variables and stopwatches. Parameters can
be used both in the model and in the properties.

IMITATOR is fully written in OCaml, and makes use of the Parma Polyhedra
Library [9]. It is available under the GNU General Public License.

1 http://romeo.rts-software.org.
2 http://www.imitator.fr.

http://romeo.rts-software.org
http://www.imitator.fr

136 B. Parquier et al.

5 Modeling the Case-Study

Modeling the system in both tools was one of the challenges of this work.
Each theory has its particularities, and translating the case-study specifica-
tions according to the associated theory was sometimes problematic. This part
presents the modeling choice we made to obtain an equivalent model of the aerial
video tracking system, both with Roméo and IMITATOR.

Modeling reentrancy. In our models, we decompose the task T6—tracking
control—in three different tasks:

– T6 1, duration [4, 4] ms
– T6 2, duration [9, 10] ms
– T6 3, duration [4, 5] ms

This decomposition simplifies the analysis of the transmission of data between
T6, T5 and T7—shown Fig. 2. Indeed, with this modification there is no more
transmission inside a task. However, the system’s behavior needs to stay unmod-
ified: there can not be two cycles T6 1 to T6 3 overlapping. After an activation of
T6—i. e., T6 1—it is impossible to have a new one before its termination—i. e.,
T6 3 termination.

Definition 5. We define a cycle between two tasks T and T ′—T causing the
activation of T ′—as the time elapsed between the activation of task T and the
termination of T ′ caused by this activation.

The phenomenon of overlapped cycles is called reentrancy, e. g., when there
are at least two T6’s activation before any T7’s termination.

5.1 ROMÉO

We give in Fig. 4 the rules that we use to translate the aerial video tracking
system into PSwPNs. Each element needed in the system—task, stimulus, syn-
chronization (blue arc) and priority (red arc)3—is translated (in that order).
The whole formal model is constructed by linking by an arc the elements (pat-
tern) constituting the system. As an example, for the periodic task T2, the
Periodic Stimulus pattern is linked to the Task pattern by an arc between
Jitter transition to Task place. According to these few rules, we obtained a
PSwPN net modelling the case-study.

Remark 1. In Roméo, there is no explicit time unit: it is inherent to the model.
Every duration in the case-study is in ms, so the time value given by Roméo
will be in ms.

3 The use of timed (resp. discrete) inhibitor arc (red arc) leads to the modeling of
preemptive (resp. non-preemptive) scheduling.

Applying Parametric Model-Checking Techniques 137

Fig. 4. Translating the system (top) into Roméo (bottom) (Color figure online)

In this model, there are two parameters: jitter—corresponding to the maxi-
mal delay j of the first stimulus defined in Sect. 2.1—and offset—corresponding
to the offset ω of the second stimulus.

To be consistent with the case-study, the following constraints are defined:

jitter ≤ 30 & offset ∈ [0, 40) (1)

Remark 2. There is no need for a larger range for the offset: T2 is activated every
40 ms (periodic stimulus), so we review all possible cases with these bounds.

To be able to compute a latency, an observer is needed.4 An observer is
another time Petri net linked to the initial net that needs to be observed. It does
not change the behavior of the observed part, and—by asking the right property
to the model-checker and thanks to a parameter—it allows to compute the worst
latency between two tasks.

5.2 IMITATOR

We give in Fig. 5 the translation rules to build the IMITATOR model. Constraints
on the model are defined in the same way as with Roméo in Eq. (1). The whole
formal model is constructed by synchronizing the elements (pattern) constitut-
ing the system. The IMITATOR synchronization model is such that all PSwAs
declaring an action must synchronize together on this action. As an example,
for the periodic task T2, the Periodic Stimulus pattern is synchronized with the
Task pattern by the activate task action.

Remark 3. As in Roméo, there is no explicit time unit in IMITATOR.

4 Observers (also called testing automata) were studied in [1,2], and a library of com-
mon observers was proposed in [4].

138 B. Parquier et al.

Fig. 5. Translating the system (top) into IMITATOR (bottom)

6 Experiment Results

6.1 Hardware

The computation was conducted on a regular personal computer running Linux
64 bits 3.10 GHz and 4 GiB memory. Models and experiment results are available
at www.imitator.fr/FTSCS16.

For our analysis, as explained in Sect. 2.2, we are interested in checking
that the worst-case end-to-end latency—from activation of the Tracking con-
trol task to termination of the Camera control task as defined in Sect. 2.1—does
not exceed 80 ms.

6.2 Worst-Case Scenario

We have computed the worst latency for the basic configuration: i. e., with a
30 ms jitter – the activation of T6 in Fig. 2 may happen between 0 and 30 ms
after the arrival of the stimulus. If this worst latency between the T6’s activation
and T7’s termination is less than 80 ms, this configuration of the system meets
the requirements.

Table 1 presents the results obtained with both Roméo and IMITATOR. In this
table and the following, the Performance ratio denotes a comparison between
the computing times of the two tools. The fastest is taken as reference.

Both tools give the same result: the worst time is 117 ms. It is really reassur-
ing. As explained in Sect. 4, this allows the designer to have a strong confidence
in this result.

www.imitator.fr/FTSCS16

Applying Parametric Model-Checking Techniques 139

Table 1. Case-study: 30 ms jitter, no offset

Worst-case end-to-end latency

Software Roméo IMITATOR

Response 117ms= 117ms

Memory 16.2 MB 342.3 MB

Computing time 0.6 s 34.3 s

Performance ratio (time) 1 57

The used tools are able to produce traces for the worst cases. This is of
prime interest for someone designing a system as it allows him to understand
the existing bottlenecks and to be able to easily address them.

Figure 6 shows this worst-case scenario. The worst time is reached because of
reentrancy when all tasks have their longest duration. Indeed, the task T7—the
one with the lowest priority—does not have the time to end before the launching
of a new cycle. It is then preempted by all the other tasks. The reentrancy is
possible because of the jitter. There are only 70 ms between both activations of
task T6 (tracking control).

Fig. 6. Gantt chart of the worst-case scenario

Moreover, the end-to-end delay requirement given by the client is not met.

117 ms > 80 ms

In the next part, we investigate if the modification of environment parameters
could fix it.

140 B. Parquier et al.

6.3 Exploitation of Parameters

In this part, we are interested in addressing the capabilities of the tools to explore
different parameter valuations in order to meet requirements. As presented in
Sect. 2, to modify the external sources of activations—i. e., stimuli—we have two
parameters we can operate on: the offset ω between the stimuli, and the jitter
j before the activation of T6—tracking control. As a consequence, the designer
is allowed to change the value of the offset in order to meet the end-to-end
requirements. Otherwise, (s)he has to fix the maximal jitter the system can
tolerate according to the same requirements.

The results (condition on both parameters ω and j) of Table 4 are more
general and covers the results of the previous two. However, Tables 2 and 3 allow
to compare the tools and to understand the compromise between the relevance
of the result and the memory and the computing time required to obtain this
result.

Table 2. Case-study: 30 ms jitter, parametric offset

Worst-case end-to-end latency

Software Roméo IMITATOR

wt ≤ 80 ms ⊥ = ⊥
Memory 64.0 MB 1,816 MB

Computing time 3.3 s 3min 35 s

Performance ratio (time) 1 65

Table 3. Case-study: parametric jitter j, no offset, wt ≤ 80ms

Worst-case end-to-end latency

Software Roméo IMITATOR

wt ≤ 80ms true = true

j (ms) [0, 26) ⇔ [0, 26)

Memory 9.6 MB 267.8 MB

Computing time 0.5 s 38.1 s

Performance ratio (time) 1 76

Offset Only. We are now interested in finding a constraint on the offset such
that the 80 ms requirement is met. The observer is set to check that the end-to-
end delay is below 80 ms. The offset between the two tasks is set as a parameter.
The model checkers will produce a constraint on the offset such that the require-
ment is always met.

Both model-checkers output ⊥, which denotes that no parameter valuations
are such that the system meets the performance requirement. This means that
no offset valuation can satisfy this requirement.

Applying Parametric Model-Checking Techniques 141

Remark 4. We have run a full analysis, performed by parameterizing both the
offset and the end-to-end delay in the observer: this analysis, in fact, showed
that no matter the offset, the worst case will always be 117 ms.

This ability to produce a negative result is also of prime interest for a sys-
tem architect. It allows to reduce the design exploration time. In this case, the
architect knows that tweaking the offset will never be successful.

Since acting on the offset was not enough, reducing the jitter’s specification
becomes essential.

Reducing the Jitter. In this part, we explore another part of the design space:
reducing the jitter. We are interested in finding jitter valuations that allows the
system to meet its end-to-end maximal delay requirement. If we find a working
configuration, we will take the highest authorised jitter’s value to put in the new
requirements: it gives more flexibility to the system, allowing more flexibility for
the external sources of events.

Jitter Only. In this part, we only use one parameter for the jitter’s value:

j ∈ [0, 30]ms, the offset is set at ω = 0

Once again, the results are still the same for both tools. According to Table 3:
to meet its requirement, the system shall have a jitter j ∈ [0, 26) ms if the offset
is left at ω = 0.

However, reducing the jitter can be expensive. We will investigate the possi-
bility to have a higher jitter value by allowing a different offset ω.

Offset and Jitter. In this part, we parametrize both the offset ω, and the jitter
j—there are now two parameters in our models. To reduce the state-space, we
add the following constraints:

ω ∈ [0, 40)ms & j ∈ [0, 30]ms (2)

In Table 4 are the results we obtained using this configuration: once again,
both tools agreed.

Table 4. Case-study: 2 parameters (jitter j & offset ω), wt ≤ 80 ms

Worst-case end-to-end latency

wt ≤ 80ms true true true

ω (ms) [0, 6) [0, 26) [0, 40)

j (ms) [0, 29) [0, 29) [0, 26)

Condition −j + ω > −23 −j + ω > −3 none

Roméo Memory: 117.3 MB—Computing time: 7.5 s

IMITATOR Memory: 2,017 MB—Computing time: 6 min 36 s

142 B. Parquier et al.

For a system architect point of view, having the full constraints allows to
make smart industrial choices. With these results, one of the smartest thing to
do in order to have worst time ≤ 80 ms is, for example, to use 6 ms offset with
28 ms jitter. These two values are allowed by the results model-checkers gave us,
and it is one of the highest jitter we can have.

6.4 Tool Comparison

In our experimentations, Roméo has always performed better than IMITATOR

in terms of time and memory consumption. Therefore, Roméo seems to be a
promising tool for future industrial use. It would be interesting to know why
there is such a gap between these model-checkers, although they use a very
similar notion of symbolic state, and a common internal representation using
the Parma Polyhedra Library [9]. Here are some hypotheses:

– Both PSwAs and PSwPNs use clocks, i. e., real-valued variables. The number of
clocks significantly impacts the model checking performance. A main difference
is that clocks are created statically in PSwAs (hence in IMITATOR), whereas
they are dynamic in PSwPNs (hence in Roméo) and are therefore fewer in
this latter case.

– The reentrancy phenomenon is well managed in Roméo, thanks to the Petri
net theory—it is just multiple tokens in one place—whereas in IMITATOR,
the reentrancy is made possible by adding variables and automata, which
necessarily impacts the efficiency.

In addition, note that the distributed capabilities of IMITATOR were not used in
our comparison.

Nevertheless, IMITATOR and Roméo gave us the same results: this is cru-
cial for confidence in our results. Tool redundancy is used in some certification
processes to lower the certification level needed for each tool. Having several
tools with distinct underlying techniques, formalisms, and libraries that output
the same results, can help in cheaper certifications.

7 Conclusion

In this paper, we faced a concrete industrial need concerning an aerial video
tracking system made by THALES: can this system meet an additional end-to-
end delay?

With our study, we used parametric model checking to investigate possi-
ble designs and answer this question. We used two different tools using formal
methods—IMITATOR and Roméo. By doing that, and checking certain proper-
ties on our models, we have now a precise idea of what we have to do to respect
this requirement. Moreover, both tools drew the same conclusions: that is reas-
suring, both for these two tools and for our models. More important, it also
validates the estimated performances presented in this paper.

Applying Parametric Model-Checking Techniques 143

This kind of approach was able to give us solutions to our questions. Even if
there is no certification yet, this study allows to glimpse the potential of model-
checking techniques using parameters for industrial use.

In the future, THALES R&D engineers want to promote the use of model-
checking software for industrial practices, and implement it in design and analysis
tools already available. Therefore, the next step is to test the limitation of the
selected tool: by creating models with a large pallet of specifications, and see
if the model-checker can manage every feature. If the tool passes the exam,
there is an upscaling process: from any system modeled with THALES’ tool,
automatically generate a model fit for our model-checker.

Acknowledgment. The authors would like to thank Violette Lecointre for her par-
ticipation at modeling the case-study with Roméo.

References

1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachabil-
ity testing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS
1998. LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). doi:10.1007/
978-3-540-49382-2 22

2. Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability testing for
timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280.
Springer, Heidelberg (1998). doi:10.1007/BFb0054177

3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

4. André, É.: Observer patterns for real-time systems. In: ICECCS, pp. 125–134.
IEEE Computer Society (2013)

5. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-29510-7 3

6. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009)

7. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

8. André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded para-
metric timed automata. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP
2015. LNCS, vol. 9328, pp. 7–19. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24537-9 2

9. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

10. Bini, E.: The design domain of real-time systems. PhD thesis, Scuola Superiore
Sant’Anna (2004)

11. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets.
J. Logic Comput. 19(6), 1509–1540 (2009)

12. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007)

http://dx.doi.org/10.1007/978-3-540-49382-2_22
http://dx.doi.org/10.1007/978-3-540-49382-2_22
http://dx.doi.org/10.1007/BFb0054177
http://dx.doi.org/10.1007/978-3-319-29510-7_3
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-319-24537-9_2
http://dx.doi.org/10.1007/978-3-319-24537-9_2

144 B. Parquier et al.

13. González Harbour, M., Gutiérrez Garćıa, J.J., Palencia Gutiérrez, J.C., Drake
Moyano, J.M.: MAST: modeling and analysis suite for real time applications. In:
ECRTS, pp. 125–134. IEEE Computer Society (2001)

14. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis - the SymTA/S approach. IEE Proc. Comput. Digital Tech.
152(2), 148–166 (2005)

15. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

16. Le, T.T.H., Palopoli, L., Passerone, R., Ramadian, Y.: Timed-automata based
schedulability analysis for distributed firm real-time systems: a case study. Int. J.
Softw. Tools Technol. Transf. 15(3), 211–228 (2013)

17. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00768-2 6

18. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol.
1790, pp. 296–310. Springer, Heidelberg (2000). doi:10.1007/3-540-46430-1 26

19. Palencia Gutiérrez, J.C., González Harbour, M.: Schedulability analysis for tasks
with static and dynamic offsets. In: IEEE Real-Time Systems Symposium, pp.
26–37. IEEE Computer Society (1998)

20. Richter, K., Ernst, R.: Event model interfaces for heterogeneous system analysis.
In: DATE, pp. 506–513. IEEE Computer Society (2002)

21. Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability
analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky,
P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-05416-2 14

22. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. J. Univ. Comput. Sci. 15(17), 3273–3304 (2009)

23. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis: a case study. Int. J. Softw. Tools Technol.
Transf. 8(6), 649–667 (2006)

http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1007/3-540-46430-1_26
http://dx.doi.org/10.1007/978-3-319-05416-2_14

Parameterised Verification of Stabilisation
Properties via Conditional Spotlight Abstraction

Nils Timm(B) and Stefan Gruner

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. Parameterised verification means to check properties of an
arbitrary number of uniform processes composed in parallel. We intro-
duce an approach to parameterised verification of stabilisation proper-
ties. Our approach exploits the fact that stabilisation happens incre-
mentally, and thus, also can be verified incrementally. We systematically
search for a provable partial stabilisation property and then verify full
stabilisation under the assumption of partial stabilisation. In order to
prove partial stabilisation we use a novel stabilisation cutoff technique.
A proven partial stabilisation property allows us to apply our new tech-
nique conditional spotlight abstraction (CSA). CSA summarises an arbi-
trary number of processes into a finite model such that verification can
be performed via model checking. Based on a prototype tool we were
able to verify several protocols implemented as parameterised systems.

1 Introduction

Parameterised systems consist of an unbounded number of uniform processes
running in parallel in an asynchronous interleaving fashion. Practical examples
can be found in all sorts of distributed algorithms, like mutual exclusion or leader
election. Such systems are often charged with safety-critical computations. Thus,
techniques for establishing the correctness of parameterised systems are of great
importance. Correctness is typically defined in terms of temporal logic prop-
erties. Parameterised verification involves to check whether certain properties
hold regardless of the number of processes in the system, which is undecidable
in general. Existing approaches are typically incomplete or restricted to certain
properties and classes of systems. Even if a method principally allows to solve
a verification task, efficiency is still a matter, since the practical applicability of
verification techniques is limited by the state explosion problem.

Here we introduce an automatic technique for parameterised verification of
stabilisation properties under fairness. Stabilisation is a liveness property and
thus particularly hard to verify. It claims that all computations of a system
will eventually reach a desired configuration and remain there forever. Hence,
stabilisation can capture properties like the absence of deadlocks and livelocks,
or the achievement of self-stabilisation in fault-tolerant systems. Our technique
exploits the fact that stabilisation happens incrementally, and thus, also can
be verified incrementally. We first determine a provable partial stabilisation
c© Springer International Publishing AG 2017
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2016, CCIS 694, pp. 145–160, 2017.
DOI: 10.1007/978-3-319-53946-1 9

146 N. Timm and S. Gruner

property and then verify full stabilisation under the assumption of partial sta-
bilisation. Our approach allows us to reduce parameterised verification to a
fixed number of model checking runs on small models. As an illustrating exam-
ple we consider a leader election system composed of a parameterised num-
ber of processes P1 ‖ . . . ‖ Pn where the property of interest is of the form:
stabilisation ≡ F

(
(G leader)[1] ∧ (G terminated)[n − 1]

)

︸ ︷︷ ︸
stability

which expresses that eventually one process will be the leader forever and n − 1
processes will be terminated forever. Stabilisation happens incrementally in the
sense that some form of partial stability will always arise before (full) stability
will arise. A partial stabilisation property corresponding to our example may
look as follows: partial stabilisation ≡ F

(
(G terminated)[n − d]

)

︸ ︷︷ ︸
partial stability

Thus, we expect that eventually n − d processes will be terminated forever
before full stability arises. Verifying partial stabilisation is also undecidable, but
we will see that it is typically more likely and less computationally expensive
to achieve a definite outcome in checking partial stabilisation than in directly
checking full stabilisation. In our approach we systematically search for a prov-
able property F(partial stability) corresponding to the full stabilisation prop-
erty of interest. In order to prove F(partial stability) we use a novel stabilisa-
tion cutoff detection technique. Cutoffs [8] refer to the size of an instance of a
parameterised system that is sufficiently large to check a certain property and
to transfer the result to all larger instances. Once some F(partial stability) is
proven, we check for full stabilisation under the assumption that partial sta-
bility holds. For verification under assumptions we have developed conditional
spotlight abstraction (CSA). CSA is a technique based on 3-valued abstraction
[12] that allows to construct a finite abstraction of a parameterised system by
summarising certain processes into an approximative component. Summarising
processes involves a loss of information. However, a key feature of CSA is that
an already proven property can be used as a condition over the summarised
processes, which allows to preserve significantly more information compared to
an unconditional abstraction. Since CSA yields a sound 3-valued approximation,
definite verification results obtained for the abstraction can be transferred to the
original parameterised system.

With our approach we provide an automatic and efficient solution to para-
meterised verification of stabilisation properties. The efficiency of our approach
results from the fact that we split the overall verification task into the verifi-
cation of partial stabilisation and the verification of full stabilisation assuming
partial stabilisation. For solving the sub tasks we developed the specially tai-
lored techniques stabilisation cutoff detection and conditional spotlight abstrac-
tion. This allows us to reduce parameterised verification to a fixed number of
model checking runs on small system instances resp. abstractions. Since we deal
with an undecidable problem, our method is not complete and thus might not
always terminate with a result. However, based on a prototype tool we were able

Parameterised Verification of Stabilisation Properties 147

to successfully verify several network protocols implemented as parameterised
systems. Preliminary experiments show promising performance results.

2 Basic Definitions

We start with the systems we consider. A parameterised system Sys(n) consists
of n > 1 uniform processes composed in parallel: Sys(n) = ‖n

i=1 Pi. It is defined
over a set of variables V = Vg ∪ Vl × {1, . . . , n} where Vg is a set of global
variables and Vl is a set of local variables with an indexed copy (Vl, i) for each
processes Pi. The state space over V corresponds to the set SV of all type-correct
valuations of the variables. Given a state sV ∈ SV and an expression e over V ,
then sV (e) denotes the valuation of e in sV . An example system implementing
a simple leader election protocol is shown in Fig. 1.

y : semaphore where y = true;
turn : bool where turn = true;
done : bool where done = true;

‖n
i=1 Pi ::

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

loop forever do⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0: acquire y ;
1: if(turn)⎡
⎢⎢⎢⎢⎣

2: turn := false;
3: done := false;
4: release y ;
5: await done;
6: release y ;

⎤
⎥⎥⎥⎥⎦

else⎡
⎢⎢⎣

7: turn := true;
8: done := true;
9: loop forever do[

Terminated
]

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Example system.

0

Gi

1

72

8

9

3

4

5

6

¬y

y → y := false

¬done

skip

¬turn

turn := true

done := true

turn

turn := false

done := false

y := true

done

y := true

Fig. 2. Control flow representation.

We have n replicated processes operating on the global variables y, turn and
done. There are no explicit local variables in this example, but we regard the
processes’ location counters as special local variables. Each Pi can be formally
represented as a control flow graph (CFG) Gi = (Loci, δi, τi) where Loci is a set of
control locations, δi ⊆ Loci ×Loci is a transition relation, and τi : Loci ×Loci →
Opi is a function labelling transitions with operations from a set Opi:

148 N. Timm and S. Gruner

Definition 1 (Operations). Let Vg ∪ (Vl, i) = {v1, . . . , vm} be the variables
associated with a process Pi. The set of operations Opi of Pi on these variables
consists of statements of the form assume(e) : v1 := e1, . . . , vm := em where
e, e1, . . . , em are expressions over Vg ∪ (Vl, i).

Hence, an operation consists of a guard and an assignment part. We sometimes
just write e instead of assume(e). We omit the guard if it is true. Moreover, we
just write skip if there is neither a guard nor an assignment part. A CFG Gi

corresponding to the processes of the example system is depicted in Fig. 2. Gi

also illustrates the semantics of the operations acquire, release and await.
We assume that a deterministic initialisation is given by an assertion ϕ = ϕg∧∧n

i=1 ϕi over V such that ϕg initialises the global variables and each ϕi uniformly
initialises the counters and local variables of the processes. For our example we
assume ϕ = (y ∧ turn∧done∧∧n

i=1(loci = 0)) where loci is the location counter
of Pi. A computation of a system corresponds to a sequence where in each step
one process is non-deterministically selected and the operation at its current
location is attempted to be executed. If the execution is not blocked by a guard,
the variables are updated according to the assignment part and the process
advances to the consequent location. The overall state space S corresponds to the
state set over V combined with the possible locations, i.e., S = ×n

i=1 Loci ×SV .
Hence, each s ∈ S is a tuple s = 〈l1, . . . , ln, sV 〉 where each li ∈ Loci and
sV ∈ SV . As state space models we use Kripke structures (KS).

Definition 2 (Kripke Structure). A Kripke structure over a set of atomic
predicates AP is a tuple M = (S, S0, R, L) where

– S is a set of states with a subset S0 ⊆ S of initial states,
– R ⊆ S × S is a total transition relation,
– L : S × AP → {true, false} is a function labelling states with predicates.

A path π of a Kripke structure is an infinite sequence of states s0s1s2 . . . with
s0 ∈ S0 and R(si, si+1). πi denotes the i-th state of π whereas πi denotes the i-th
suffix πiπi+1πi+2 . . . of π. Moreover, ΠS0

M denotes the set of all paths starting in
S0 of M . A system can be represented as a Kripke structure as follows:

Definition 3 (Systems as Kripke Structures). Let Sys(n) = ‖n
i=1 Pi be a

system over V where each Pi is given by a CFG Gi = (Loci, δi, τi). Let Pred be
a predicate set over V and let ϕ be an initialisation predicate. The corresponding
KS is M = (S, S0, R, L) over AP = Pred ∪ {(loci = j)|i ∈ [1..n], j ∈ Loci} with

– S := ×n
i=1 Loci × SV ,

– S0 := {s ∈ S|s(ϕ) = true},
– R(〈l1 . . . , ln, sV 〉 , 〈l′1 . . . , l′n, s′

V 〉) :=
∨n

i=1(Ri(〈li, sV 〉 , 〈l′i, s′
V 〉)∧∧

j �=i(lj = l′j∧∧
v∈(Vl,j)

sV (v) = s′
V (v)))

where
Ri(〈li, sV 〉 , 〈l′i, s′

V 〉) = δi (li, l′i) ∧ sV (e) ∧ ∧m
k=1 s′

V (vk) = sV (ek)
assuming that τi(li, l′i) = assume(e) : v1 :=e1, . . . , vm :=em,

Parameterised Verification of Stabilisation Properties 149

– L(〈l1 . . . , ln, sV 〉 , p) := sV (p) for any p ∈ Pred,

– L (〈l1 . . . , ln, sV 〉 , (loci = j)) :=
{

true if li = j
false else .

Representing a system as a KS typically involves the application of predicate
abstraction [3]. Since our example system is solely defined over variables with a
Boolean domain, we can directly take the variables as predicates, i.e., Pred := V .
Paths of KS are considered for the evaluation of temporal logic properties. Here
we consider the temporal logic LTL.

Definition 4 (LTL Model Checking). Let M = (S, S0, R, L) over AP be a
KS. Then the evaluation of an LTL formula Ψ over AP on a path π ∈ ΠM ,
written [π |= Ψ], is defined as follows

[π |= p] := L(π0, p)
[π |= ¬Ψ] := ¬ [π |= Ψ]
[π |= Ψ ∧ Ψ ′] := [π |= Ψ] ∧ [π |= Ψ ′]
[π |= GΨ] :=

∧
i∈N

[
πi |= Ψ

]

[π |= FΨ] :=
∨

i∈N

[
πi |= Ψ

]

[π |= Ψ UΨ ′] :=
∨

i∈N

(
[πi |= Ψ ′] ∧ ∧

0≤j<i[π
j |= Ψ]

)

Evaluating Ψ on entire KS is model checking: [M,S0 |= Ψ] :=
∧

π∈Π
S0
M

[π |= Ψ].

Thus, given a system Sys(n), an initialisation predicate ϕ, a set AP , and Ψ ∈
LTL, we can construct the corresponding KS M and check whether [M,S0 |= Ψ]
holds. This tells us whether the system satisfies the property specified by Ψ or
not. For convenience, we typically just write [Sys(n), ϕ |= Ψ] when we refer to
the associated model checking problem. In parameterised verification one wants
to show that a property holds for all possible instances of a system:

∀n > 1 : [Sys(n), ϕg ∧
∧n

i=1
ϕi |= Ψ]

We implicitly assume strong fairness for all verification tasks, i.e., each operation
that is infinitely often enabled will be infinitely often executed:

fair ≡
∧n

i=1

∧
(li,l′i)∈δi

(GF (enabled(li, l′i)) → GF (executed(li, l′i)))

Strong fairness guarantees that all processes always eventually proceed in a com-
putation of a concurrent system. Fairness assumptions are essential in order to
verify stabilisation properties under realistic conditions. In our approach we focus
on the stabilisation properties of the following form:

Ψ ≡ F
(
(Gφ1)[m1] ∧ . . . ∧ (Gφk)[mk]

)

where φ1, . . . , φk are predicate expressions over Vl and m1, . . . ,mk ∈ N. Here we
make use of the following abbreviations:

150 N. Timm and S. Gruner

Definition 5 (Abbreviations). Let Sys(n) be a system over V = Vg ∪ Vl ×
{1, . . . , n}. Let φ be a predicate expression over Vl and m ≤ n. Then

φ[m] ≡ ∨n
i1=1 . . .

∨n
im=1(

∧m
j=1 φij

)
(Gφ)[m] ≡ ∨n

i1=1 . . .
∨n

im=1(
∧m

j=1 Gφij
)

assuming that i1, . . . , im pairwise disjoint.

Stabilisation is a crucial property for several kinds of parameterised systems.
It claims that eventually a number of mi processes will be forever in a state
characterised by φi. For instance, the verification task

∀n > 1 : [Sys(n), ϕg ∧ ϕ[n] |= F
(
(G leader)[1] ∧ (G terminated)[n − 1]

)
]

(where ϕ[n] abbreviates
∧n

i=1 ϕi) expresses that for all instances of the sys-
tem, eventually there one process will be forever the leader and n − 1 processes
will be forever terminated. For our leader election system and its processes Pi

we define terminated = (loci = 9) ∧ ∧
j �=9 ¬(loci = j) and leaderi = (loci =

5) ∧ ∧
j �=5 ¬(loci = j), i.e., the leader will be the process that is eventually at

location 5 forever. In the remainder we introduce an incremental approach to
parameterised verification of stabilisation via conditional spotlight abstraction.

3 Conditional Spotlight Abstraction

Spotlight abstraction [12] allows to automatically abstract away entire processes
of a parameterised system by summarising them in a single approximative
process P⊥. It is based on predicate abstraction [3] and 3-valued logic K3 [5].
Thus, predicates in resulting state space models can take the values true, false
and unknown, and the exploration of such models is known as 3-valued model
checking [2]. Unknown is used to represent the loss of information due to abstrac-
tion. The general idea of spotlight abstraction is to neglect the control flow of a
selection of processes and to combine their behaviour in a single abstract oper-
ation op⊥ that is continuously executed by P⊥. The operation op⊥ on 3-valued
predicates approximates each concrete operation op on global variables that is
potentially executed by a process summarised in P⊥. The approximation relation
‘’ on operations is defined based on K3. A detailed description of the spotlight
principle and of 3-valued approximation can be found in [12,14]. Here we briefly
illustrate classical spotlight abstraction and its limitations. Thereafter, we intro-
duce our enhancement conditional spotlight abstraction (CSA) and show how it
overcomes the drawbacks of the classical approach.

Parameterised verification requires to check some property of interest for
each possible instance of a parameterised system Sys(n) = P1 ‖ . . . ‖ Pn. Spot-
light abstraction allows to construct one abstract system that approximates all
instances of the concrete system. In a first step a spotlight size is chosen which

Parameterised Verification of Stabilisation Properties 151

is a fixed c ∈ N. Now c processes are explicitly considered in the abstract system
whereas the parameterised number of n − c processes is summarised in P⊥:

Sys(n) = P1 ‖ . . . ‖ Pc︸ ︷︷ ︸
= Sys(c)

‖ Pc+1 ‖ . . . ‖ Pn︸ ︷︷ ︸
� P ⊥

In the finite abstraction Sys(c) ‖ P⊥ the approximative process is defined as

P⊥ :: op⊥

such that ∀op ∈ Op : op⊥ op, where Op is the set of concrete operations
occurring in the program code of the processes to be summarised in P⊥. Thus,
op⊥ approximates each operation that is potentially executed by Pc+1, . . . , Pn.
Since we have uniform processes in parameterised systems, the number of poten-
tially executed operations is finite. In our example system, the global predicates
(resp. variables) y, turn and done are modified by the summarised processes.
Since there exist both, operations that set these predicates to true and opera-
tions that set them to false, the application of spotlight abstraction yields an
approximative process P⊥ that continuously executes

op⊥ ≡ y := unknown, turn := unknown, done := unknown.

Hence, in computations of Sys(c) ‖ P⊥ we may lose all definite information with
regard to the values of y, turn and done.

The approximation relation on operations can be generalised to processes
and entire systems. From [14] we get that ∀n > c : Sys(c) ‖ P⊥ Sys(n),
i.e., a spotlight abstraction Sys(c) ‖ P⊥ approximates all instances of Sys(n)
with n greater than c. Moreover, we get the following lemma with regard to the
preservation of temporal logic properties under spotlight abstraction:

Lemma 1. Let Sys(c) ‖ P⊥ be a spotlight abstraction of a parameterised system
Sys(n) with initialisation predicate ϕg ∧ϕ[n] and let Ψ be an LTL formula. Then

(∀n > c : [Sys(n), ϕg∧ϕ[n] |= Ψ]
)

=

{
true if [Sys(c) ‖ P ⊥, ϕg ∧ ϕ[c] |= Ψ] = true

false if [Sys(c) ‖ P ⊥, ϕg ∧ ϕ[c] |= Ψ] = false

Hence, each definite result obtained under spotlight abstraction can be trans-
ferred to the original parameterised verification task. Note that verification under
spotlight abstraction may also yield an unknown result, which does not allow
to draw any conclusion about the original task. This also concerns our example
task ∀n > c : Sys(n), ϕg ∧ ϕ[n] |= F

(
(G leader)[1] ∧ (G terminated)[n − 1]

)
.

Solving Sys(c) ‖ P⊥, ϕg ∧ ϕ[c] |= F
(
(G leader)[1] ∧ (G terminated)[c − 1]

)

yields unknown. Thus, verification via spotlight abstraction fails in this case.
Although it has been demonstrated that the spotlight principle allows to solve
certain simple verification tasks [14], the major drawback of this approach is its
rigorous concept of abstraction: The behaviour of entire processes is abstracted
away, which frequently causes a loss of crucial information and thus makes the

152 N. Timm and S. Gruner

verification of systems operating on many global variables virtually impossible.
Another drawback is that verification via classical spotlight abstraction is limited
to properties that solely refer to the c concrete processes.

We now introduce conditional spotlight abstraction (CSA). Our enhanced
approach allows to overcome the drawbacks of classical spotlight abstraction by
exploiting already proven properties of the system under consideration. For a
parameterised system typically many temporal logic properties are of interest
where some properties are easier to verify than others. Certain properties might
have been already successfully verified while others are still unproven. In partic-
ular, we will see in a later section that checking stabilisation properties can be
done incrementally by first proving some form of partial stabilisation and second
checking (full) stabilisation under the assumption of partial stabilisation. Thus,
it is a realistic scenario that an LTL formula Ψ has to be verified assuming that
another formula Ψ ′ holds. In fact, the initialisation predicate of a parameterised
system is a trivial form of such an assumption. While the initialisation predicate
is inherently temporal operator-free, we now show that assumptions containing
temporal operators can be utilised to significantly increase the precision of the
spotlight principle. Our CSA incorporates assumptions in the form of temporal
logic formulas in the construction of the approximative process P⊥.

We start with an illustrating example for conditional spotlight abstraction.
For our leader election system Sys(n) the LTL formula

Ψ ′ ≡ F
(

(G terminated)[n − c] ∧ ϕg ∧ ϕ[c]
︸ ︷︷ ︸

=: ψ′

)

may have been already proven for some fixed c ∈ N. Thus, we can assume that
for all possible instances eventually n − c processes will be forever terminated
and c processes will be (still or again) in their initial configuration. The actual
property of interest

Ψ ≡ F
(

(G leader)[1] ∧ (G terminated)[n − 1]︸ ︷︷ ︸
=: ψ

)
,

i.e., eventually exactly one leader forever, may be still unproven. For proving Ψ
via CSA we make use of the following temporal logic inference rule:

(1) : ψ1 → Fψ2

(2) : ψ2 → Fψ3

(3) : ψ1 → Fψ3

Thus, if, assuming ψ1, eventually ψ2 holds and, assuming ψ2, eventually ψ3

holds, then we can obviously conclude that, assuming ψ1, eventually ψ3 holds.
In our example we have that (1): ∀n > c : [Sys(n), ϕg ∧ ϕ[n] |= Fψ′] is already
proven, i.e., assuming ϕg ∧ϕ[n], eventually ψ′ holds. Now we take ψ′ as the new
initialisation assumption and check whether Fψ holds (2):

∀n > c : P1 ‖ ... ‖ Pc︸ ︷︷ ︸
Sys(c),ϕg,ϕ[c]

‖ Pc+1 ‖ ... ‖ Pn︸ ︷︷ ︸
P ⊥

G terminated

, (G terminated)[n − c] ∧ ϕg ∧ ϕ[c]
︸ ︷︷ ︸

ψ′

|= Fψ

Parameterised Verification of Stabilisation Properties 153

We see that the new initial condition ψ′ points at a spotlight abstraction with
c concrete processes in their initial configuration and n − c processes to be
summarised in P⊥. We additionally get from ψ′ that the summarised processes
are terminated forever, which allows us to augment the summary process with the
condition G terminated where terminated = (loc = 9)∧∧

j �=9 ¬(loc = j). Hence,
G terminated is a constraint on the control flow of each Pc+1 to Pn and thus also
on the potentially executed operations. The abstract operation op⊥ executed by
P⊥
G terminated only has to approximate operations that are consistent with the

constraint, i.e., operations from OpG terminated = {τ(l, l′) ∈ Op | l = 9 ∧ l′ =
9} = {skip}. For our example the approximative process looks as follows:

P⊥
G terminated :: skip

i.e., by exploiting the proven fact that eventually (G terminated)[n−c] holds we
get that the summarised processes will never again affect any global predicates.
The general definition of the approximative process under CSA is as follows:

Definition 6 (Approximative Process under CSA). Let P, . . . , P ′ be
processes to be summarised under CSA and let Gφ be a constraint over the
processes where φ temporal operator-free. Let Op be the set of operations occur-
ring in P, . . . , P ′. Then the approximative process P⊥

Gφ summarising P, . . . , P ′

continuously executes an operation op⊥ with ∀op ∈ OpGφ : op⊥ op where

OpGφ =
{
τ(l, l′) ∈ Op |Con{φ, (loc = l) ∧ (loc = l′) ∧ e ∧

∧m

j=1
(vj = ej)}

}

assuming that τ(l, l′) is of the form assume(e) : v1 :=e1, . . . , vm :=em.

Here Con denotes logical consistency, i.e., Con{φ1, φ2} holds if φ1 ∧ φ2 is not
contradictory. We now get the following theorem with regard to the preservation
of temporal logic properties under conditional spotlight abstraction:

Theorem 1 (Conditional Spotlight Abstraction). Let Sys(n) be a para-
meterised system with initialisation predicate ϕg ∧ ϕ[n]. Moreover, let Ψ ′ =
Fψ′ = F

(
(Gφ)[n − c] ∧ φ′) be an LTL formula with temporal operator-free

sub formulae φ and φ′, and Ψ ′ holds for all instances of the system. Then for all
LTL formulae of the form Fψ the following holds:

(∀n > c : [Sys(n), ϕg ∧ ϕ[n] |= Fψ]
)

=

⎧
⎨

⎩

true if [Sys(c) ‖ P ⊥
G φ, φ′ |= Fψ] = true

false if

(
[Sys(c) ‖ P ⊥

G φ, φ′ |= Fψ] = false

and ψ → G¬ψ′

)

Proof. See http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

Thus, having that F
(
(Gφ)[n − c] ∧ φ′) holds for all instances of Sys(n) we can

take (Gφ)[n − c] ∧ φ′ as a new initialisation assumption and construct the cor-
responding CSA Sys(c) ‖ P⊥

Gφ. Next we check whether the property of interest

http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

154 N. Timm and S. Gruner

holds for the CSA. Since CSA approximates all instances of the system, a true
result can be immediately transferred to the original verification task. In order to
transfer a false result, we additionally have to ensure that the assumption ψ′ can
only hold before ψ holds, which is done by the constraint ψ → G¬ψ′. Checking
the validity of the constraint typically does not require an extra verification run
but already follows from the semantics of LTL.

Coming back to our example for conditional spotlight abstraction, checking
Sys(c) ‖ P⊥

G terminated, ϕg ∧ ϕ[c] |= F
(
(G leader)[1] ∧ (G terminated)[c − 1]

)

yields true and Theorem 1 allows us to transfer this result to all system instances.
Since we applied CSA under the condition (G terminated)[n − c] for the sum-
marised processes and we showed that (G terminated)[c − 1] holds for the con-
crete processes P1 to Pc, we can even conclude that eventually n − 1 processes
will be forever terminated, i.e., we get that

∀n > c : [Sys(n), ϕg ∧ ϕ[n] |= F
(
(G leader)[1] ∧ (G terminated)[n − 1]

)
]

holds, which completes our conditional verification task1. By exploiting an
already proven property that restricts the behaviour of the processes to be sum-
marised we were able to construct a finite and small abstraction of a para-
meterised system that comprised all relevant details for a definite verifica-
tion result. Thus, CSA can help to overcome the lack of precision of classical
(spotlight) abstraction. Moreover, we are able to combine properties that fol-
low from the assumption ((G terminated)[n − c]) and properties that result
from verification under CSA ((G terminated)[c − 1]) to an overall property
((G terminated)[n − 1]). Note that we defined and illustrated CSA based on
the case where the already proven Ψ ′ and the actual property of interest Ψ are
of the form F (Gφ) resp. Fψ, i.e., properties that eventually hold. This is par-
ticularly useful for our incremental approach to stabilisation checking that we
introduce in the next section. CSA also works if the condition is of the form Gφ,
i.e., it holds instantly. Then we can even check for arbitrary properties Ψ and
are not restricted to Fψ properties.

4 Incremental Parameterised Verification via CSA

We now introduce a technique for parameterised verification of stabilisation
properties via CSA. Our technique is based on a search for a provable assump-
tion for CSA in the form of a partial stabilisation property. As discussed in the
basics section, formulae characterising (full) stabilisation are of the form

Ψ ≡ F
(
(Gφ1)[m1] ∧ . . . ∧ (Gφk)[mk]

)

︸ ︷︷ ︸
=: ψ

where φ1, . . . , φk are predicate expressions over Vl. Stabilisation means that even-
tually a number k of stability properties holds, whereas stability means that
1 The cases 1 < n ≤ c are decidable and can be easily proven via model checking.

Parameterised Verification of Stabilisation Properties 155

forever some property φ holds. A formula Ψ ′ characterises partial stabilisation
with regard to a (full) stabilisation formula Ψ if it is of the form

Ψ ′ ≡ F
(
(Gφ1)[m′

1] ∧ . . . ∧ (Gφk)[m′
k]︸ ︷︷ ︸

=: (Gφ)[d]

∧ φ′
1[m1 − m′

1] ∧ . . . ∧ φ′
k[mk − m′

k]︸ ︷︷ ︸
=: φ′[n−d]

)

︸ ︷︷ ︸
=: ψ′

where m′
1 ≤ m1, . . . ,m

′
k ≤ mk. Thus, partial stabilisation Ψ ′ with regard to some

full stabilisation Ψ denotes that eventually m′
i ≤ mi processes will stabilise in

φi whereas mi − m′
i processes will reach φ′

i (and may or may not stabilise in
φi later). For convenience, we from now on assume a simple partial stabilisation
property of the form Ψ ′ = F ((Gφ)[d]∧φ′[n−d]). If Ψ = Fψ is a full stabilisation
property and Ψ ′ = Fψ′ is a corresponding partial stabilisation property then ψ
characterises full stability whereas ψ′ characterises partial stability.

In case a parameterised system stabilises then this naturally happens incre-
mentally. Hence, some form of partial stability will always be reached before full
stability will be reached. In our method we exploit this fact as follows: Given a
stabilisation property of interest Fψ, we systematically look for a corresponding
provable partial stabilisation property Fψ′. Then we assume partial stability
and check for full stabilisation via conditional spotlight abstraction. Verifying
partial stabilisation of a parameterised system is of course also undecidable in
general. However, we will see that it is typically more likely and less computa-
tionally expensive to achieve a definite outcome in checking partial stabilisation
than in directly checking full stabilisation. Our approach is based on cutoff argu-
ments that allow us to reduce parameterised verification to a finite number of
model checking runs. For illustrating our approach we again consider our leader
election example where the stabilisation property of interest is

Ψ ≡ F
(

(G leader)[1] ∧ (G terminated)[n − 1]︸ ︷︷ ︸
=: ψ

)

and a corresponding partial stabilisation property is of the form

Ψ ′ ≡ F
(

(G terminated)[d] ∧ ϕg ∧ ϕ[n − d]
︸ ︷︷ ︸

=: ψ′

)
,

i.e., we expect that for some fixed d ∈ N eventually d processes will be stabilised
in terminated and n − d processes Pi will be (still or again) in their initial con-
figuration ϕi before full stabilisation will be reached. Note that it is a general
assumption in verification that some basic form of abstraction, e.g., predicate
abstraction, has been applied to the system. Under predicate abstraction local
process computations that are not relevant to the interprocess communication
are typically summarised into abstract regions. Thus, the configuration ϕi com-
monly characterises such a region and not only a single state, which makes our
partial stabilisation property less restrictive. In order to prove that Ψ ′ holds for
all instances of Sys(n), we make use of the following cutoff theorem.

156 N. Timm and S. Gruner

Theorem 2 (Cutoff-Based Stabilisation Checking). Let Sys(n) be a sys-
tem with initialisation predicate ϕg ∧ ϕ[n]. Let c, d ∈ N be fixed with d ≤ c and
φ be temporal operator-free LTL formula. Then the following implication holds:

[
Sys(c + 1), ϕg ∧ ϕ[c + 1] |= (

ϕ[1]
)
U

(
(Gφ)[d] ∧ ϕg ∧ ϕ[c + 1 − d]

)]

⇒ ∀n > c :
[
Sys(n), ϕg ∧ ϕ[n] |= F

(
(Gφ)[d] ∧ ϕg ∧ ϕ[n − d]

)]

Proof. See http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

A cutoff refers to the size of an instance that is sufficiently large to check a certain
property of interest and to transfer the result to all larger instances as well. We
adapt this concept as follows: If a parameterised system satisfies some partial
stabilisation property Fψ′, then under all possible executions a state satisfying
ψ′ will be reached within a finite number of computational steps. Hence, only a
limited number of processes can be actively involved in a computation reaching
ψ′. Let c be this number, then an instance of size c + 1 is obviously a cutoff.
In order to determine the maximum number of processes that can be involved
in reaching ψ′, we strengthen the partial stabilisation formula as follows: We
replace Fψ′ (which is equivalent to trueUψ′) by ϕ[1]Uψ′. If we can prove the
stronger formula ϕ[1]Uψ′ for a fixed instance of size c+1 this tells us that Fψ′

holds and there will be always at least one process in its initial region until ψ′

holds. We can conclude that c is the maximum number of processes that can be
involved in a computation reaching ψ′, and since Fψ′ holds for a system with
c + 1 processes we can transfer this result to any larger instance as well.

In comparison to existing techniques, e.g., [4,7,9] that detect cutoffs based on
an analysis of the local state space of processes, we follow a different approach:
We integrate cutoff detection into the verification task, i.e., we strengthen the
property of interest such that we will only obtain a true result if we are using
an admissible cutoff and the property of interest holds for the cutoff instance.

The following procedure illustrates how we iteratively search for a provable
partial stabilisation property:

for c = 1 to ∞ do
for d = 1 to c do

if Sys(c + 1), ϕg ∧ ϕ[c + 1] |= (
ϕ[1]

)
U

(
(Gφ)[d] ∧ ϕg ∧ ϕ[c + 1 − d]

)

then
return
∀n > c : Sys(n), ϕg ∧ ϕ[n] |= F

(
(Gφ)[d] ∧ ϕg ∧ ϕ[n − d]

)

For our example the procedure terminates for c = 2 and d = 1. Hence, we
get

∀n > 2 : Sys(n), ϕg ∧ ϕ[n] |= F
(
(G terminated)[1] ∧ ϕg ∧ ϕ[n − 1]

)

This result points at a CSA with one terminated process to be summarised
and n − 1 concrete processes. Since the number of concrete processes would be
still parameterised, the application of CSA would so far not give us a finite
abstraction. However, we will now see that partial stabilisation results can be

http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

Parameterised Verification of Stabilisation Properties 157

easily expanded such that they point at expedient CSAs. In expanding the result
we already make use of the conditional spotlight principle: We need to show
that the partial stabilisation property Ψ ′ also holds when we extend Sys(n) by
an approximative component. In the same manner we have proven Ψ ′ for all
instances of Sys(n) via the cutoff theorem, we can also show the following:

∀n > 2 : Sys(n) ‖ P ⊥
G terminated, ϕg ∧ ϕ[n] |= F

(
(G terminated)[1] ∧ ϕg ∧ ϕ[n − 1]

)

If partial stabilisation Ψ ′ has been proven for both, systems with and without an
approximative component then we can apply the following theorem that gives
us the expanded partial stabilisation result:

Theorem 3 (Expanding Partial Stabilisation Results). Let Sys(n) be a
system with initialisation predicate ϕg ∧ ϕ[n]. Let c, d ∈ N be fixed with d ≤ c
and φ be temporal operator-free LTL formula. Then the following holds:

∀n > c :
[
Sys(n), ϕg ∧ ϕ[n] |= F

(
(Gφ)[d] ∧ ϕg ∧ ϕ[n − d]

)]

∧ ∀n > c :
[
Sys(n) ‖ P⊥

Gφ, ϕg ∧ ϕ[n] |= F
(
(Gφ)[d] ∧ ϕg ∧ ϕ[n − d]

)]

⇒ ∀n > c :
[
Sys(n), ϕg ∧ ϕ[n] |= F

(
(Gφ)[n − f] ∧ ϕg ∧ ϕ[f]

)]

where f = (n mod d) + c + 1 − d (which also means 1 ≤ f ≤ c).

Proof. See http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

In the proof we make use of the fact that Sys(n) will eventually reach a configura-
tion corresponding to Sys(n−d) ‖ P⊥

Gφ, which will in turn reach a configuration
corresponding to Sys(n−d−d) ‖ P⊥

Gφ and so on, until we reach a configuration
where the number of non-stabilised processes is f with 1 ≤ f ≤ c and the number
of stabilised processes is n−f which is a multiple of d. Thus, from Theorem3 we
get that partial stabilisation of d processes implies partial stabilisation of n − f
processes. For our running example we get f = 2, i.e.,

∀n > 2 :
[
Sys(n), ϕg ∧ ϕ[n] |= F

(
(G terminated)[n − 2]︸ ︷︷ ︸

P ⊥
G φ

∧ ϕg ∧ ϕ[2]
︸ ︷︷ ︸

Sys(2),ϕg∧ϕ[2]

)]

The expanded result points at a CSA where we summarise the parameterised
number of stabilised processes in the approximative component. Via CSA we now
can check for full stabilisation F

(
(G leader)[1] ∧ (G terminated)[n − 1]

)
. Since

the stabilisation of n − 2 processes in terminated is part of the already proven
assumption, it only remains to show that

Sys(2) ‖ P⊥
Gφ, ϕg ∧ ϕ[2] |= F

(
(G leader)[1] ∧ (G terminated)[1]

)

holds. Checking this decidable task yields true and the CSA theorem from
Sect. 3 allows us to conclude that also

∀n > 2 :
[
Sys(n), ϕg ∧ ϕ[n] |= F

(
(G leader)[1] ∧ (G terminated)[n − 1]

)]

http://www.cs.up.ac.za/cs/ntimm/proofs.pdf

158 N. Timm and S. Gruner

holds, which successfully completes our parameterised verification task. For other
verification tasks f (which is defined as (n mod d)+c+1−d) may be not distinct
but restricted to values from the typically very small set {1, . . . , c}. This reflects
the fact that the extent of partial stabilisation may depend on the instance size n.
In this case we have to check for full stabilisation via CSA for all f ∈ {1, . . . , c}.

In summary, our technique for parameterised verification of stabilisation
works as follows: Given a system Sys(n) and a stabilisation property Fψ, we sys-
tematically search for a corresponding partial stabilisation property Fψ′ that
can be proven for both Sys(n) and Sys(n) ‖ P⊥

G φ via our cutoff technique
with property strengthening (Theorem2). Next, we apply stabilisation expan-
sion (Theorem 3) which yields an expanded property Fψ′′ that also holds for
Sys(n). Finally, we use ψ′′ as the assumption for CSA, which gives us a finite
abstraction on which we can check Fψ. Theorem 1 allows us to transfer the result
to all instances of Sys(n) that are greater than the cutoff. Since we deal with
an undecidable problem, our approach is incomplete in the sense that the search
for a partial stabilisation property might not terminate or CSA-based model
checking might return unknown. However, in preliminary experiments we were
able to successfully verify several example systems implementing leader election.

5 Related Work

Our technique is related to a number of existing approaches to parameterised
verification. The cutoff concept was introduced in [4] where it was shown that for
the verification of certain properties there exist cutoffs that are polynomial in the
number of local states of processes. Other cutoff approaches impose restrictions
on the communication scheme, e.g., only lock-based communication [7], and thus
do not support the verification of systems with shared-variable, concurrency. [8]
introduces dynamic cutoff detection during verification. The approach has no
restrictions on communication but is limited to safety properties. To the best
of our knowledge, we are the first to integrate cutoff detection into the verifi-
cation task by strengthening the property to be checked with a cutoff condi-
tion. Verification of stabilisation has been considered in [6,10,11]. [6] presents a
semi-automatic strategy for stabilisation checking that requires a user-provided
function on states measuring the progress of computation towards stabilisation.
In [10] an approach to the verification of convergence in self-stabilising protocols
is proposed. It is based on the derivation of convergence proofs. Convergence is
a necessary but not sufficient condition for stabilisation. In [11] a verification
technique for stabilisation in population protocols is presented. The technique is
based on modelling the possible actions of the protocol whereas actual processes
are not part of the model. All these approaches for stabilisation checking perform
verification on the basis of an algorithmic description of a protocol. In contrast,
we focus on the verification of systems that implement protocols in a C-like lan-
guage. Since the implementation of a protocol may introduce errors that are not
present in the algorithmic description, a distinct verification of implementations
is indispensable. (Unconditional) spotlight abstraction was introduced in [12,14].

Parameterised Verification of Stabilisation Properties 159

While the original technique is not capable of verifying stabilisation, our exten-
sion to CSA has closed this gap. Another related approach is conditional model
checking [1]. Here properties are checked under conditions that restrict which
part of the model is explored. In contrast, we use conditions in order to abstract
away processes while preserving relevant information about their behaviour.

6 Conclusion and Outlook

We introduced an automatic technique for parameterised verification of stabili-
sation, which is a vital property in many safety-critical systems. Our technique
reduces parameterised verification to a finite number of abstraction-based model
checking runs. One of our key concepts is incremental verification by first proving
partial stabilisation, and then checking for full stabilisation under the assump-
tion of partial stabilisation. The approach profits from the fact that proving
partial stabilisation naturally requires smaller cutoffs and thus less computa-
tional effort than directly proving full stabilisation. Our conditional spotlight
abstraction allows us to exploit already proven properties in order to construct
a small abstract model that still preserves relevant information about the system.
Stabilisation cutoff detection and CSA are not limited to stabilisation checking.
The cutoff approach also works for arbitrary properties of the form Fψ. CSA
can also be used for other forms of conditional verification. Moreover, our app-
roach can be generalised to the verification of systems with different classes of
uniform processes (class-wise symmetric systems) and to systems extended by
individual processes like daemons modelling potential faults. We implemented
our technique on top of our 3-valued model checker [13] with strong fairness.
Preliminary experiments show promising performance results. With our tool
we could verify stabilisation of several leader election protocols implemented
as parameterised systems. An experimental evaluation based on wireless sensor
networks is in preparation.

Acknowledgements. We thank Mike Poppleton for fruitful discussions in the context
of this paper.

References

1. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: Tracz, W., Robil-
lard, M.P., Bultan, T. (eds.) 20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-20), SIGSOFT/FSE 2012, Cary. 11–16 November
2012, pp. 57:1–57:11. ACM (2012). http://doi.acm.org/10.1145/2393596.2393664

2. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). doi:10.1007/3-540-48683-6 25

3. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31980-1 40

http://doi.acm.org/10.1145/2393596.2393664
http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40

160 N. Timm and S. Gruner

4. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000). doi:10.1007/10721959 19

5. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1/2/3), 113–131 (1994). http://dx.doi.org/10.3233/FI-1994-201234

6. Ghosh, R., Mitra, S.: A strategy for automatic verification of stabilization of dis-
tributed algorithms. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol.
9039, pp. 35–49. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19195-9 3

7. Kahlon, V., Ivančić, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505–518. Springer, Heidelberg (2005). doi:10.1007/11513988 49

8. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized con-
current programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol.
6174, pp. 645–659. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 55

9. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification of parameterised
interpreted systems with parameterised environments. In: Rossi, F. (ed.) Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI
2013, Beijing, 3–9 August 2013, pp. 2013–2019. IJCAI/AAAI (2013). http://www.
aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6919

10. Oehlerking, J., Dhama, A., Theel, O.: Towards automatic convergence verification
of self-stabilizing algorithms. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS,
vol. 3764, pp. 198–213. Springer, Heidelberg (2005). doi:10.1007/11577327 14

11. Pang, J., Luo, Z., Deng, Y.: On automatic verification of self-stabilizing
population protocols. Front. Comput. Sci. China 2(4), 357–367 (2008).
http://dx.doi.org/10.1007/s11704-008-0040-9

12. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 8

13. Timm, N., Gruner, S., Harvey, M.: A bounded model checker for three-valued
abstractions of concurrent software systems. In: Ribeiro, L., Lecomte, T. (eds.)
SBMF 2016. LNCS, vol. 10090, pp. 199–216. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-49815-7 12

14. Timm, N., Wehrheim, H.: On symmetries and spotlights – verifying parameterised
systems. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 534–548.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16901-4 35

http://dx.doi.org/10.1007/10721959_19
http://dx.doi.org/10.3233/FI-1994-201234
http://dx.doi.org/10.1007/978-3-319-19195-9_3
http://dx.doi.org/10.1007/11513988_49
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6919
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6919
http://dx.doi.org/10.1007/11577327_14
http://dx.doi.org/10.1007/s11704-008-0040-9
http://dx.doi.org/10.1007/978-3-642-05089-3_8
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-319-49815-7_12
http://dx.doi.org/10.1007/978-3-642-16901-4_35

Author Index

Abbasi, Imran Hafeez 75
Abid, Mohamed 93
André, Étienne 129

Banach, Richard 109

de Carvalho Gomes, Pedro 3
Dongol, Brijesh 20

Elleuch, Maissa 93

Gruner, Stefan 145
Gurov, Dilian 3

Hähnle, Reiner 55
Hasan, Osman 75, 93
Hattori, Shogo 39
Henia, Rafik 129
Huisman, Marieke 3

Inamori, Yutaka 39

Kamboh, Awais Mehmood 75
Kamburjan, Eduard 55

Lime, Didier 129
Lodhi, Faiq Khalid 75

Parquier, Baptiste 129

Rioux, Laurent 129
Roux, Olivier H. 129

Sato, Shuichi 39
Seki, Hiroyuki 39
Soulat, Romain 129

Tahar, Sofiène 93
Timm, Nils 145

Yuen, Shoji 39

Zhu, Huibiao 109

	Preface
	Organization
	On Two Higher-Order Extensions of Model Checking (Invited Talk)
	Contents
	Specification and Verification
	Specification and Verification of Synchronization with Condition Variables
	1 Introduction
	2 SyncTask
	2.1 Syntax and Types
	2.2 Structural Operational Semantics

	3 From Annotated Java to SyncTask
	3.1 An Annotation Language for Java
	3.2 Synchronization Correctness

	4 Verification of Synchronization Correctness
	4.1 SyncTask Programs as Colored Petri Nets
	4.2 SyncTask Termination as CPN Reachability
	4.3 The STaVe Tool

	5 Related Work
	6 Conclusion
	References

	An Interval Logic for Stream-Processing Functions: A Convolution-Based Construction
	1 Introduction
	2 Stream-Processing Functions
	3 Composition Algebraically
	4 Feedback
	5 Quantales and Power Series
	6 Interval-Stream Specifications
	7 Modalities over Interval-Stream Predicates
	8 Conclusion and Future Work
	References

	Automotive and Railway Systems
	Automating Time Series Safety Analysis for Automotive Control Systems in STPA Using Weighted Partial Max-SMT
	1 Introduction
	2 Behavioral Constraints
	2.1 Trace Formulas
	2.2 UCA Property
	2.3 Signal Disturbance via Cushion Variables
	2.4 Intermittent Signal Disturbance

	3 Detecting Signal Disturbances by Satisfiability Using Weighted Partial Max-SMT Solvers
	4 Case Study
	4.1 Target System
	4.2 Experimental Result

	5 Conclusion
	References

	Uniform Modeling of Railway Operations
	1 Introduction
	2 ABS
	2.1 Concurrency Model
	2.2 Modeling Time
	2.3 Four Event Semantics

	3 The Railway Operation Model
	3.1 Infrastructure
	3.2 Trains
	3.3 Stations

	4 Dynamic Analysis
	5 Static Analysis
	6 Related Work
	7 Conclusion and Future Work
	References

	Circuits and Cyber-Physical Systems
	 Formal Verification of Gate-Level Multiple Side Channel Parameters to Detect Hardware Trojans
	1 Introduction
	2 Preliminaries
	2.1 nuXmv Model Checker
	2.2 Performance Parameters

	3 Proposed Methodology
	4 nuXmv Modeling
	4.1 Technology Parameters
	4.2 Universal Gate Models
	4.3 Netlist Translation
	4.4 Property Specification

	5 Case Studies
	5.1 Gate Level Models
	5.2 State Space Modeling
	5.3 Model Verification
	5.4 Hardware Intrusion and Verification
	5.5 Counterexample Analysis

	6 Results and Discussion
	7 Comparison with Existing Gate Modeling Techniques
	8 Conclusions
	References

	Formal Probabilistic Analysis of a WSN-Based Monitoring Framework for IoT Applications
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Probabilistic Analysis in HOL
	3.2 The k-set Randomized Scheduling Algorithm

	4 Formalization of the Network Coverage Intensity
	5 Application: Formal Analysis of a WSN-based Monitoring Framework for IoT Applications
	5.1 Formal Analysis Based on the Number of Nodes
	5.2 Formal Analysis Based on the Number of Subsets
	5.3 Formal Analysis Based on Uniform Partitions

	6 Discussion
	7 Conclusions
	References

	Shared-Variable Concurrency, Continuous Behaviour and Healthiness for Critical Cyberphysical Systems
	1 Introduction
	2 An Initial Concurrent Language
	3 Example: An Air Conditioning System
	4 Healthiness Considerations
	5 An Improved Concurrent Language
	6 The Running Example, Improved
	7 Related Approaches
	8 Conclusion
	References

	Parametrized Verification
	Applying Parametric Model-Checking Techniques for Reusing Real-Time Critical Systems
	1 Introduction
	2 Industrial Case-Study
	2.1 Specifications
	2.2 Main Objective
	2.3 Our Constraints: A Parametric Approach

	3 Related Works
	3.1 Response Time and Latency Analysis
	3.2 Parametric Formalisms for Real-Time Systems

	4 Tools
	4.1 ROMÉO
	4.2 IMITATOR

	5 Modeling the Case-Study
	5.1 ROMÉO
	5.2 IMITATOR

	6 Experiment Results
	6.1 Hardware
	6.2 Worst-Case Scenario
	6.3 Exploitation of Parameters
	6.4 Tool Comparison

	7 Conclusion
	References

	Parameterised Verification of Stabilisation Properties via Conditional Spotlight Abstraction
	1 Introduction
	2 Basic Definitions
	3 Conditional Spotlight Abstraction
	4 Incremental Parameterised Verification via CSA
	5 Related Work
	6 Conclusion and Outlook
	References

	Author Index

