
Byzantine Gathering in Networks
with Authenticated Whiteboards

Masashi Tsuchida(B), Fukuhito Ooshita, and Michiko Inoue

Nara Institute of Science and Technology, Ikoma, Japan
tsuchida.masashi.td8@is.naist.jp

Abstract. We propose an algorithm for the gathering problem of mobile
agents in Byzantine environments. Our algorithm can make all correct
agents meet at a single node in O(fm) time (f is the upper bound of the
number of Byzantine agents and m is the number of edges) under the
assumption that agents have unique ID and behave synchronously, each
node is equipped with an authenticated whiteboard, and f is known to
agents. Since the existing algorithm achieves gathering without a white-
board in Õ(n9λ) time, where n is the number of nodes and λ is the
length of the longest ID, our algorithm shows an authenticated white-
board can significantly reduce the time for the gathering problem in
Byzantine environments.

1 Introduction

Background. Distributed systems, which are composed of multiple computers
(nodes) that can communicate with each other, have become larger in scale
recently. This makes it complicated to design distributed systems because devel-
opers must maintain a huge number of nodes and treat massive data com-
munication among them. As a way to mitigate the difficulty, (mobile) agents
have attracted a lot of attention [2]. Agents are software programs that can
autonomously move from a node to a node and execute various tasks in distrib-
uted systems. In systems with agents, nodes do not need to communicate with
other nodes because agents themselves can collect and analyze data by moving
around the network, which simplifies design of distributed systems. In addition,
agents can efficiently execute tasks by cooperating with other agents. Hence
many works study algorithms to realize cooperation among multiple agents.

The gathering problem is a fundamental task to realize cooperation among
multiple agents. The goal of the gathering problem is to make all agents meet
at a single node within a finite time. By achieving gathering, all agents can
communicate with each other at the single node.

Related Works. The gathering problem has been widely studied in literature
[10,12]. Most studies aim to clarify solvability of the gathering problem in various
environments, and, if it is solvable, they aim to clarify costs (e.g., time, number

This work was supported by JSPS KAKENHI Grant Numbers 26330084 and
15H00816. The full version of this paper is provided in [15].

c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 106–118, 2017.
DOI: 10.1007/978-3-319-53925-6 9

Byzantine Gathering in Networks with Authenticated Whiteboards 107

of moves, and memory space) required to achieve gathering. To do this, many
studies have been conducted under various environments such that assumptions
on synchronization, anonymity, randomized behavior, topology, and presence of
node memory (whiteboard) are different. Table 1 summarizes some of the results.

Table 1. Gathering of synchronous agents with unique IDs in arbitrary graphs (n is
the number of nodes, l is the length of the smallest ID of agents, τ is the maximum
difference among activation times of agents, m is the number of edges, λ is the length
of the longest ID of agents, f is the upper bound of the number of Byzantine agents).

Byzantine Whiteboard Time complexity

[5] None None Õ(n5
√

τ l + n10l)

[9] None None Õ(n15 + l3)

[14] None None Õ(n5l)

Trivial algorithm None Non-authenticated O(m)

[6] Weak None Õ(n9λ)

[1,6] Strong None Exponential

Trivial extension of [6] Weak Authenticated O(n5λ)

Proposed algorithm Weak Authenticated O(fm)

For environments such that no whiteboard exists (i.e., agents cannot leave
any information on nodes), many deterministic algorithms to achieve gathering
of two agents have been proposed. Note that these algorithms can be easily
extended to a case of more than two agents [9]. If agents do not have unique
IDs, they cannot achieve gathering for some symmetric graphs. Therefore some
works [5,9,14] assume unique IDs and achieve gathering for any graph. Dessmark
et al. [5] proposed an algorithm that realizes gathering in Õ(n5

√
τ l + n10l) time

for any graph, where n is the number of nodes, l is the length of the smaller
ID of agents, and τ is the difference between activation times of two agents.
Kowalski and Malinowski [9] and Ta-Shma and Zwick [14] improved the time
complexity to Õ(n15 + l3) and Õ(n5l) respectively, which are independent of τ .
On the other hand, some works [3,4,8] studied the case that agents have no
unique IDs. In this case, gathering is not solvable for some graphs and initial
positions of agents. So the works proposed algorithms only for solvable graphs
and initial positions. They proposed memory-efficient gathering algorithms for
trees [3,8] and arbitrary graphs [4].

If whiteboard exists on each node, the time required for gathering can be
significantly reduced. For example, when agents have unique IDs, they can write
their IDs into whiteboards on their initial nodes. Agents can collect all the IDs
by traversing the network [13], and thus they can achieve gathering by moving
to the initial node of the agent with the smallest ID. This trivial algorithm
achieves gathering in O(m) time, where m is the number of edges. On the other
hand, when agents have no unique IDs, gathering is not trivial even if they

108 M. Tsuchida et al.

use whiteboard and randomization. Ooshita et al. [11] clarified the relationship
between solvability of randomized gathering and termination detection in ring
networks with whiteboard.

Recently some works [1,6] have considered gathering in the presence of
Byzantine agents, which can behave arbitrarily. They modeled agents controlled
by crackers or corrupted by software errors as Byzantine agents. These works
assume agents have unique IDs, behave synchronously, and cannot use white-
board. They consider two types of Byzantine agents. While a weakly Byzantine
agent can make arbitrary behavior except falsifying its ID, a strongly Byzan-
tine agent can make arbitrary behavior including falsifying its ID. Dieudonné
et al. [6] proposed algorithms to achieve gathering in arbitrary graphs against
weakly Byzantine agents and strongly Byzantine agents, both when the number
of nodes n is known and when it is unknown. For weakly Byzantine agents, when
n is known, they proposed an algorithm that achieves gathering in 4n4 · P (n, λ)
time, where P (n, l) is the time required for gathering of two correct agents (l
is the length of the smaller ID) and λ is the length of the longest ID among
all agents. Since two agents can meet in P (n, l) = Õ(n5l) time [14], the algo-
rithm achieves gathering in Õ(n9λ) time. For weakly Byzantine agents, when n is
unknown, they also proposed a polynomial-time algorithm. However, for strongly
Byzantine agents, they proposed only exponential-time algorithms. Bouchard et
al. [1] minimized the number of correct agents required to achieve gathering for
strongly Byzantine agents, however the time complexity is still exponential.

Our Contributions. The purpose of this work is to reduce the time required for
gathering by using whiteboard on each node. However, if Byzantine agents can
erase all information on whiteboard, correct agents cannot see the information
and thus whiteboard is useless. For this reason, we assume that an authentication
function is available on the system and this provides authenticated whiteboard.
In authenticated whiteboard, each agent is given a dedicated area to write infor-
mation. In other words, each agent can write information to the dedicated area
and cannot write to other areas. Regarding read operations, each agent can read
information from all areas on the whiteboard. In addition, we assume, by using
the authentication function, each agent can write information with signature
that guarantees the writer and the writing node.

No gathering algorithms have been proposed for environments with white-
board in the presence of Byzantine agents. However, since two agents can meet
quickly by using authenticated whiteboard, the time complexity of an algorithm
in [6] can be reduced. More specifically, each agent can explore the network in
O(m) time by the depth-first search (DFS), and after the first exploration it
continues to explore the network in O(n) time for each exploration. By applying
this to Dessmark’s algorithm [5], two agents can meet in P (n, l) = O(nl) time.
Thus, for weakly Byzantine agents, agents can achieve gathering in O(n5λ) time.

In this work, we propose a new algorithm to achieve gathering in shorter time.
Similarly to [6], we assume agents have unique IDs and behave synchronously.
When at most f weakly Byzantine agents exist and f is known to agents, our
algorithm achieves gathering in O(fm) time by using authenticated whiteboard.

Byzantine Gathering in Networks with Authenticated Whiteboards 109

That is, our algorithm significantly reduces the time required for gathering by
using authenticated whiteboard. To realize this algorithm, we newly propose
a technique to simulate message-passing algorithms by agents. Our algorithm
overcomes difficulty of Byzantine agents by simulating a Byzantine-tolerant con-
sensus algorithm [7]. This technique is general and not limited to the gathering
problem, and hence it can be applied to other problems of agents.

2 Preliminaries

A Distributed System and Mobile Agents. A distributed system is modeled by
a connected undirected graph G = (V,E), where V is a set of nodes and E is
a set of edges. The number of nodes is denoted by n = |V |. When (u, v) ∈ E
holds, u and v are adjacent. A set of adjacent nodes of node v is denoted by
Nv = {u|(u, v) ∈ E}. The degree of node v is defined as d(v) = |Nv|. Each edge
is labeled locally by function λv : {(v, u)|u ∈ Nv} → {1, 2, · · · , d(v)} such that
λv(v, u) �= λv(v, w) holds for u �= w. We say λv(v, u) is a port number (or port)
of edge (v, u) on node v.

Each node does not have a unique ID. Each node has whiteboard where
agents can leave information. Each agent is assigned a dedicated writable area
in the whiteboard, and the agent can write information only to that area. On
the other hand, each agent can read information from all areas (including areas
of other agents) in whiteboard.

Multiple agents exist in a distributed system. The number of agents is
denoted by k, and a set of agents is denoted by A = {a1, a2, · · · , ak}. Each
agent has a unique ID, and the length of the ID is O(log k) bits. The ID of agent
ai is denoted by IDi. Each agent knows neither n nor k.

Each agent is modeled as a state machine (S, δ). The first element S is the
set of agent states, where each agent state is determined by values of variables
in its memory. The second element δ is the state transition function that decides
the behavior of an agent. The input of δ is the current agent state, the content of
the whiteboard in the current node, and the incoming port number. The output
of δ is the next agent state, the next content of the whiteboard, whether the
agent stays or leaves, and the outgoing port number if the agent leaves.

Agents move in synchronous rounds. That is, the time required for each cor-
rect agent to move to the adjacent node is identical. In the initial configuration,
each agent is inactive and stays at an arbitrary node. Some agents spontaneously
become active and start the algorithm. When active agent ai encounters inactive
agent aj at some node v, agent ai can make aj active. In this case, aj starts the
algorithm before ai executes the algorithm at v.

Each agent ai can sign a value x that guarantees its ID IDi and its current
node v. That is, any agent identifies an ID of the signed agent and whether it
is signed at the current node or not from the signature. We assume ai can use
signature function Signi,v(x) at v and we denote the output of Signi,v(x) by
〈x〉 : (IDi, v). Each agent ai can compute Signi,v(x) for value x at v, however
cannot compute Signj,w(x) for either j �= i or w �= v. Therefore, it is guar-
anteed that signed value 〈x〉 : (IDi, v) is created by ai at v. For signed value

110 M. Tsuchida et al.

x = 〈value〉 : (id1, v1) : (id2, v2) : · · · : (idj , vj), the output of Signi,v(x) is
denoted by 〈value〉 : (id1, v1) : (id2, v2) : · · · : (idj , vj) : (IDi, v). In this paper,
when an algorithm treats a signed value, it first checks the validity of signa-
tures and ignores the signed value if it includes wrong signatures. We omit this
behavior from descriptions, and assume all signatures of every signed value are
valid.

Byzantine agents may exist in a distributed system. Each Byzantine agent
behaves arbitrarily without being synchronized with other agents. However, each
Byzantine agent cannot change its ID. In addition, even if agent ai is Byzantine,
ai cannot compute Signj,v(x)(j �= i) for value x, and therefore ai cannot create
〈x〉 : (IDj , v) for j �= i. We assume the number of Byzantine agents is at most
f(< k) and f is known to each agent.

The Gathering Problem. The gathering problem is a problem to make all correct
agents meet at a single node and declare termination. In the initial configuration,
each agent stays at an arbitrary node and multiple agents can stay at a single
node. If an agent declares termination, it never works after that.

To evaluate the performance of the algorithm, we consider the time required
for all agents to declare termination after some agent starts the algorithm. We
assume the time required for a correct agent to move to the adjacent node is one
unit time, and we ignore the time required for local computation.

3 A Byzantine-Tolerant Consensus Algorithm for
Message-Passing Systems [7]

In this section, we explain a Byzantine-tolerant consensus algorithm in [7] that
will be used as building blocks in our algorithm.

3.1 A Message-Passing System

The consensus algorithm is proposed in a fully-connected synchronous message-
passing system. That is, we assume that processes form a complete network.
We assume the number of processes is k and denote a set of processes by
P = {p1, p2, . . . , pk}. Each process has a unique ID, and the ID of pi is denoted
by IDi. All processes execute an algorithm in synchronous phases. In the 0-th
(or initial) phase, every process computes locally and sends messages (if any). In
the r-th phase (r > 0), every process receives messages, computes locally, and
sends messages (if any). If process pi sends a message to process pj in the r-th
phase, pj receives the message at the beginning of (r + 1)-th phase.

Similarly to Sect. 2, each process pi has signature function Signi(x). The
output of Signi(x) is denoted by 〈x〉 : IDi, and only pi can compute Signi(x).

Some Byzantine processes may exist in the message-passing system. Byzan-
tine processes can behave arbitrarily. But even if pi is Byzantine, pi cannot
compute Signj(x) (j �= i) for value x. We assume the number of Byzantine
processes is at most f < k and f is known to each process.

Byzantine Gathering in Networks with Authenticated Whiteboards 111

3.2 A Byzantine-Tolerant Consensus Algorithm

In this subsection, we explain a Byzantine-tolerant consensus algorithm in [7].
In the consensus algorithm, each process pi is given at most one value xi as its
input. If pi is not given an input value, we say xi =⊥. The goal of the consensus
algorithm is to agree on the set of all input values. Of course, some Byzantine
processes behave arbitrarily and forge inconsistent input values. However, by the
consensus algorithm in [7], all correct agents can agree on the same set X ⊇ Xc,
where Xc is a set of all values input by correct processes.

We show the details of the consensus algorithm. Each process pi has one
variable pi.W to keep a set of input values, and initially pi.W = ∅ holds. The
algorithm consists of f + 2 phases (from the 0-th phase to (f + 1)-th phase).
After processes terminate, they have the same values in W .

In the 0-th phase, if pi is given an input value xi(�=⊥), process pi broadcasts
Signi(xi) = 〈xi〉 : IDi to all processes and adds xi to variable pi.W . If pi is not
given an input value, it does not do anything.

In the r-th phase (1 ≤ r ≤ f + 1), pi receives all messages (or signed values)
broadcasted in (r − 1)-th phase. After that, for every received message, process
pi checks its validity. We say message t = 〈x〉 : id1 : id2 : · · · : idy is valid if and
only if t satisfies all the following conditions.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain pi’s signature.
4. Value x is not in pi.W .

If message t = 〈x〉 : id1 : id2 : · · · : idy is valid, pi broadcasts Signi(t) = 〈x〉 :
id1 : id2 : · · · : idy : IDi to all processes (if r ≤ f) and adds x to variable pi.W .

For this algorithm, the following theorem holds.

Theorem 1. [7] After all processes terminate, all the following holds.

1. For any correct process pi, xi ∈ pi.W holds if xi �=⊥.
2. For any two correct processes pi and pj, pi.W = pj .W holds.

4 Our Algorithm

4.1 Overview

First, we give an overview of our algorithm. When agent ai starts the algorithm,
ai leaves its starting information to whiteboard at its initial node v. The starting
information includes IDi, and consequently it can notify other agents that ai

starts at v. After that, ai explores the network and collects starting information
of all agents. If no Byzantine agent exists, all agents collect the same set of
starting information, and thus all agents can meet at a single node by visiting
the node where the agent with the smallest ID leaves the starting information.

However, when some Byzantine agent exists, it can write and delete its start-
ing information repeatedly so that only a subset of agents see the information.

112 M. Tsuchida et al.

This implies some agents may obtain a set of starting information different from
others and thus may fail to achieve gathering.

To overcome this difficulty, our algorithm makes all correct agents agree on
the same set of starting information at each node. That is, letting ai.Xv be
the set of starting information that ai obtains at node v, we guarantee that
ai.Xv = aj .Xv holds for any two correct agents ai and aj . In addition, we also
guarantee that, if correct agent ac starts at v, then ai.Xv contains ac’s starting
information and ai.Xw(w �= v) does not contain ac’s starting information. We
later explain the details of this procedure.

After that, each agent ai can obtain ai.Xall =
⋃

v∈V ai.Xv, and clearly
ai.Xall = aj .Xall holds for any two correct agents ai and aj . Consequently each
agent ai can compute the same gathering node based on ai.Xall as follows. First
ai removes all duplicated starting information from ai.Xall because a Byzantine
agent may leave its starting information at several nodes. After that, ai finds
the starting information of the agent with the smallest ID and selects the node
with the starting information as the gathering node. By this behavior, all correct
agents can meet at the same gathering node.

In the rest of this subsection, we explain the way to make all correct agents
agree on the same set of starting information at each node. To realize this,
our algorithm uses a Byzantine-tolerant consensus algorithm in Sect. 3. At each
node, agents simulate the consensus algorithm and then agree on the same set.
However, since the consensus algorithm is proposed for synchronous message-
passing systems, we need additional synchronization mechanism. We realize this
by using the depth-first search (DFS).

DFS and Round Synchronization. The DFS is a well-known technique to explore
a graph. In the DFS, an agent continues to explore a port as long as it visits a new
node. If the agent visits an already visited node, it backtracks to the previous
node and explores another unexplored port. If no unexplored port exists, the
agent backtracks to the previous node again. By repeating this behavior, each
agent can visit all nodes in 2m unit times, where m is the number of edges. Note
that, since each agent can realize the DFS by using only its dedicated area on
whiteboard, Byzantine agents cannot disturb the DFS of correct agents.

To simulate the consensus algorithm, we realize round synchronization of
agents by the DFS. More specifically, we guarantee that, before some agent ai

makes the r-th visit to v, all agents finish the (r − 1)-th visit to v. To realize
this, each agent ai executes the following procedure in addition to the DFS.

– If ai finds an inactive agent, ai makes the agent active.
– Every time ai completes a DFS, it waits for the same time as the exploration

time. That is, ai waits for 2m unit times after each DFS.

We define the r-th exploration period of ai as the period during which ai

executes the r-th DFS exploration, and define the r-th waiting period of ai as
the period during which ai waits after the r-th DFS exploration. In addition, we
define the r-th round of ai as the period from the beginning of the r-th explo-
ration period to the end of the r-th waiting period. As shown in the Fig. 1, before

Byzantine Gathering in Networks with Authenticated Whiteboards 113

some agent starts the r-th exploration period, every correct agent completes the
(r − 1)-th exploration period.

Fig. 1. Exploration and waiting periods.

Simulation of Consensus Algorithm. In the following, we explain the way to
apply the consensus algorithm in Sect. 3. The goal is to make all correct agents
agree on the same set of starting information at each node. To achieve this, we
assume k virtual processes v.p1, v.p2, . . . , v.pk exist at each node v and form a
message-passing system in Sect. 3 (See Fig. 2). When agent ai visits node v, it
simulates v.pi’s behavior of the consensus algorithm.

4

Fig. 2. Virtual processes.

In the consensus algorithm on node v, each virtual process decides its input
value as follows. If ai starts the algorithm at v, the input of virtual process v.pi is
the starting information of ai. Otherwise, the input of virtual process v.pi is not
given. Thus, after completion of the consensus algorithm, all virtual processes
at v agree on the same set Xv of starting information. From the property of the
consensus algorithm, Xv contains starting information of all correct agents that
start at v.

Next, we explain how to simulate the behaviors of virtual processes. Each
agent ai simulates the r-th phase of virtual process v.pi when ai visits v for
the first time in the exploration period of r-th round. Recall that, by the round
synchronization, when some correct agent ai starts the exploration period of the
r-th round, all correct agents have already completed the exploration period of
the (r − 1)-th round. This implies, ai can simulate the r-th phase of virtual
process v.pi after all virtual processes complete the (r − 1)-th phase.

To simulate v.pi, ai uses variables v.wb[IDi].T and v.wb[IDi].W in white-
board of node v. We denote variable var in the dedicated area of ai by
v.wb[IDi].var. Agent ai uses v.wb[IDi].T to simulate communications among

114 M. Tsuchida et al.

Algorithm 1. main()
1: —Variables in whiteboard of node v—
2: var v.wb[IDi].T and v.wb[IDi].W
3: var v.wb[IDi].round, v.wb[IDi].from_port, and v.wb[IDi].unexplored_port
4: —Variables of agent ai—
5: var ai.node_num = 0 // count the number of nodes
6: var ai.all_edge_num = 0 // count the number of edges
7: var ai.r = 0 // keep the current round
8: var ai.W = ∅ // collect a set of starting information
9: ——————————–

10: consensus()
11: for ai.r = 1 to f + 1 do
12: ai.node_num = 1
13: ai.all_edge_num = 0
14: DFS(null)
15: wait ai.all_edge_num × 2
16: end for
17: Delete duplicated candidate from ai.W
18: Move to a node where the minimum candidate in ai.W is written
19: Declare termination

virtual processes. That is, when v.pi sends some messages to other processes,
ai stores the messages in v.wb[IDi].T so that other virtual processes read the
messages. Here, to guarantee that the messages are available on only node v, ai

stores Signi,v(t) instead of message t. Agent ai uses v.wb[IDi].W to memorize
variables of v.pi. By using these variables, ai can simulate the r-th phase of v.pi
as follows:

1. By reading from all variables v.wb[id].T (for some id), ai receives messages
that virtual processes have sent to v.pi in the (r − 1)-th phase.

2. From v.pi’s variables stored in v.wb[IDi].W and messages received in 1, agent
ai simulates local computation of v.pi’s r-th phase.

3. Agent ai writes updated variables of v.pi to v.wb[IDi].W . If v.pi sends some
messages, ai writes the messages with signatures to v.wb[IDi].T .

Note that, since only agent ai can update variables v.wb[IDi].T and
v.wb[IDi].W , agent ai simulates the correct behavior of v.pi if ai is correct. This
implies that the simulated message-passing system contains at most f Byzantine
processes. Consequently (correct) virtual processes can agree on the same set by
the consensus algorithm that can tolerate at most f Byzantine processes. Thus
correct agents can agree on the same set of starting information at v.

4.2 Details

The pseudo-code of the algorithm is given in Algorithms 1, 2, and 3. Due to
limitation of space, the details of main() and DFS() are provided in the full

Byzantine Gathering in Networks with Authenticated Whiteboards 115

Algorithm 2. DFS(f port)
1: make an inactive agent active if such an agent exists at v
2: if v.wb[IDi].round �= ai.r then
3: v.wb[IDi].round = ai.r
4: v.wb[IDi].from_port = f_port
5: if f port = null then
6: v.wb[IDi].unexplored_port = {1, . . . , d(v)}
7: else
8: v.wb[IDi].unexplored_port = {1, . . . , d(v)} \ {f_port}
9: end if

10: ai.node_num + +
11: consensus()
12: if ai.r = f + 1 then
13: for all candidate in v.wb[IDi].W do
14: ai.W = ai.W ∪ {(candidate, ai.node_num)}
15: end for
16: end if
17: while v.wb[IDi].unexplored port �= ∅ do
18: x = min(v.wb[IDi].unexplored port)
19: ai.all_edge_num + +
20: v.wb[IDi].unexplored_port =v.wb[IDi].unexplored_port \ {x}
21: Go to the next node via port x
22: DFS(Port number via which ai enters the current node)
23: end while
24: Backtrack via port v.wb[IDi].from_port. If it is null, do not move.
25: else
26: v.wb[IDi].unexplored_port =v.wb[IDi].unexplored_port \ {f_port}
27: Backtrack via port f_port. If it is null, do not move.
28: end if

version [15]. Simply put, functions main() and DFS() realize the DFS traversal
of agent ai. When ai starts the algorithm, ai executes consensus() once to
simulate the 0-th phase of virtual process v.pi. After that, for each node v, ai

calls consensus() to simulate the r-th phase of v.pi when it visits v for the first
time during the r-th round.

Function consensus() simulates the consensus algorithm in Sect. 3 by fol-
lowing the strategy in Sect. 4.1. In the 0-th round, ai simulates the 0-th phase
of the consensus algorithm. That is, ai makes virtual process v.pi broadcast a
signed value Signi,v(xi) if v.pi is given an input value xi. Recall that v.pi is
given starting information of ai as an input if ai starts at v. This means the
simulation of the 0-th phase is required only for the initial node of ai. In other
words, ai completes the 0-th round without exploring the network. Specifically,
ai adds Signi,v(IDi) to v.wb[IDi].T as its stating information, and adds IDi to
v.wb[IDi].W (lines 1 to 3).

In the r-th round (lines 4 to 11), ai simulates the r-th phase of the consensus
algorithm. To realize this, for every node v, ai simulates the r-th phase of v.pi

116 M. Tsuchida et al.

Algorithm 3. consensus()
1: if ai.r = 0 then
2: v.wb[IDi].T = {Signi,v(IDi)}
3: v.wb[IDi].W = {IDi}
4: else
5: for all t such that t ∈ v.wb[id].T for some id do
6: if (t is valid) then
7: v.wb[IDi].T = v.wb[IDi].T ∪ {Signi,v(t)}
8: v.wb[IDi].W = v.wb[IDi].W ∪ {value(t)}
9: end if

10: end for
11: end if

when it visits v for the first time during the round. Specifically, for every message
received by v.pi, ai checks its validity. Note that messages received by v.pi are
stored in

⋃
aj∈A v.wb[IDj].T . We say message t = 〈x〉 : (id1, v1) : (id2, v2) : · · · :

(idy, vy) is valid if and only if t satisfies all the following conditions, where we
define value(t) = x and initial(t) = id1.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain ai’s signature.
4. value(t) is not in v.wb[IDi].W .
5. value(t) = initial(t) holds.
6. All the y signatures are given at the current node.

Conditions 1–4 are identical to conditions in Sect. 3. Condition 5 is introduced
to assure that value IDi in messages is originated from ai. Note that, since
correct agent ai can initially add 〈IDi〉 : (IDi, v) to v.wb[IDi].T , every message t
forwarded by correct agents satisfies value(t) = initial(t). This implies condition
5 does not discard messages originated from and forwarded by correct agents, and
consequently does not influence the simulation of correct processes. Condition 6
is introduced to assure that message t is generated at the current node. If t is
valid, ai adds Signi,v(t) to v.wb[IDi].T to simulate broadcast of Signi,v(t) by
virtual process v.pi. At the same time, ai adds value(t) to v.wb[IDi].W .

In the (f + 1)-th round, all agents complete simulating the consensus algo-
rithm. That is, v.wb[IDi].W = v.wb[IDj].W holds for any two correct agents ai

and aj . During the (f + 1)-th round, ai collects contents in v.wb[IDi].W for all
v by variable ai.W (lines 12 to 16 of DFS()). Recall that v.wb[IDi].W includes
IDs of agents that start at v. When ai memorizes candidate ∈ v.wb[IDi].W , ai

memorizes it as a pair (candidate, ai.node num) to recognize the node later.
After that, ai computes the gathering node from the collected information

in ai.W (lines 17 to 18 in main()). Since IDs of Byzantine agents may appear
more than once in ai.W , ai deletes all pairs from ai.W such that candidate is
duplicated. Then ai finds the pair such that candidate is the smallest, and it
selects the node of the pair as the gathering node. Note that the pair includes

Byzantine Gathering in Networks with Authenticated Whiteboards 117

candidate and ai.node num. Hence ai can move to the gathering node by exe-
cuting the DFS until ai.node num becomes the same number as the pair (this
procedure is omitted in main()).

Theorem 2. Our algorithm solves the gathering problem in O(fm) unit times.

5 Summary

In this paper, we proposed a Byzantine-tolerant gathering algorithm for mobile
agents in synchronous networks with authenticated whiteboards. In our algo-
rithm, each agent first writes its starting information to the initial node, and
then each agent executes a consensus algorithm so that every correct agent
agrees on the same set of starting information. Once correct agents obtain the
set, they can calculate the same gathering node. By this algorithm, all correct
agents can achieve gathering in O(fm) time. An important open problem is
to develop a Byzantine-tolerant gathering algorithm in asynchronous networks
with authenticated whiteboards. Since the consensus algorithm is proven to be
unsolvable in asynchronous networks, we must consider other approaches.

References

1. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks.
In: Scheideler, C. (ed.) Structural Information and Communication Complex-
ity. LNCS, vol. 9439, pp. 179–193. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25258-2 13

2. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley-Interscience, Hoboken (2012)

3. Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous
in trees. Distrib. Comput. 27(2), 95–109 (2014)

4. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)

5. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

6. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms 11(1), 1:1–1:28 (2014). Article 1

7. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

8. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Trans. Algorithms 9(2), 17 (2013)

9. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Com-
put. Sci. 399(1–2), 141–156 (2008)

10. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem
in the Ring, 1st edn. Morgan and Claypool Publishers (2010). ISBN: 1608451364,
9781608451364

11. Ooshita, F., Kawai, S., Kakugawa, H., Masuzawa, T.: Randomized gathering of
mobile agents in anonymous unidirectional ring networks. IEEE Trans. Parallel
Distrib. Syst. 25(5), 1289–1296 (2014)

http://dx.doi.org/10.1007/978-3-319-25258-2_13
http://dx.doi.org/10.1007/978-3-319-25258-2_13

118 M. Tsuchida et al.

12. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59, 331–347 (2012)

13. Sudo, Y., Baba, D., Nakamura, J., Ooshita, F., Kakugawa, H., Masuzawa, T.: A
single agent exploration in unknown undirected graphs with whiteboards. IEICE
Trans. 98–A(10), 2117–2128 (2015)

14. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)

15. Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine gathering in networks with authen-
ticated whiteboards. NAIST Information Science Technical report, NAIST-IS-
TR2016001 (2016)

	Byzantine Gathering in Networks with Authenticated Whiteboards
	1 Introduction
	2 Preliminaries
	3 A Byzantine-Tolerant Consensus Algorithm for Message-Passing Systems
	3.1 A Message-Passing System
	3.2 A Byzantine-Tolerant Consensus Algorithm

	4 Our Algorithm
	4.1 Overview
	4.2 Details

	5 Summary
	References

