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Preface

The 11th International Conference and Workshops on Algorithms and Computation
(WALCOM 2017) was held in Hsinchu, Taiwan, during March 29–31, 2017. The
conference covered diverse areas of algorithms and computation, namely, approxi-
mation algorithms, computational complexity, computational geometry, combinatorial
optimization, graph algorithms, graph drawing, and space-efficient algorithms. The
conference was organized by National Chiao Tung University, Taiwan.

This volume of Lecture Notes in Computer Science contains 35 contributed papers
that were presented at WALCOM 2017. There were 83 submissions from 30 countries.
Each submission was reviewed by at least three Program Committee members, with the
assistance of external referees. The volume also includes the abstracts and extended
abstracts of three keynote lectures presented by Francis Chin, Peter Eades, and Etsuji
Tomita.

We wish to thank all who made this meeting possible: the authors for submitting
papers, the Program Committee members and external referees (listed in the pro-
ceedings) for their excellent work, and our three invited speakers. We acknowledge the
Steering Committee members for their continuous encouragement. We also wish to
express our sincere appreciation to the sponsors, local organizers, Proceedings Com-
mittee, and the editors of the Lecture Notes in Computer Science series and Springer for
their help in publishing this volume. We especially thank Chun-Cheng Lin and his
team for their tireless efforts in organizing this conference. Finally, we thank the
EasyChair conference management system, which was very effective in handling the
entire reviewing process.

March 2017 Sheung-Hung Poon
Md. Saidur Rahman

Hsu-Chun Yen
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A Few Steps Beyond Planarity

Peter Eades

University of Sydney, Camperdown, Australia
peter.eades@sydney.edu.au

We discuss algorithms for graphs that are not planar, but not far from planar. We
present recent combinatorial characterisations of straight-line drawings of some such
classes of graphs. In some cases, these characterisations lead to efficient algorithms; in
other cases, they lead to NP-completeness results.

In particular, we investigate three classes of topological graphs: “1-skew” graphs,
“1-plane” graphs, and “RAC” graphs.
1-Skew: A topological graph G ¼ ðV ;EÞ is 1-skew if it has an edge ðs; tÞ such that
G0 ¼ ðV ;E � fðs; tÞgÞ is planar. Some 1-skew topological graphs are illustrated in
Fig. 1.

Suppose that G is a 1-skew topological graph with a straight-line drawing D;
suppose that the edge ðs; tÞ crosses edges e1; e2; . . .; ek. It is simple to observe that for
each i, one endpoint of ei is left of ðs; tÞ and the other is right of ðs; tÞ. Note that the
vertex x in Fig. 1(b) is both left and right of ðs; tÞ; thus this topological graph has no
straight-line drawing.

This simple observation leads to an elegant theorem: a 1-skew topological graph on
the sphere that a straight-line drawing in the plane if and only if no vertex is both left
and right [3]. The proof of this theorem is a linear time algorithm. It involves an
inelegant characterisation of maximal 1-skew topological graphs in the plane that have
a straight-line drawing in the plane.
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(a) (c)(b)

Fig. 1. Some 1-skew topological graphs. Graph (b) has no straight-line drawing. Graph (c) is a
straight-line drawing of graph (a).



1-Plane: A 1-plane graph is a topological graph in which each edge has at most one
crossing. Thomassen [6] characterised those 1-plane graphs that admit a straight-line
drawing, in terms of the two forbidden subgraphs illustrated in Fig. 2.

A linear-time algorithm which tests for these forbidden subgraphs, and constructs a
straight-line drawing if the forbidden subgraphs are absent, is described in [5].
RAC: A RAC (right-angle crossing) drawing of a topological graph is a straight-line
drawing in which each edge crossing forms a right angle. Figure 3(a) illustrates a RAC
drawing of the complete graph with 5 vertices; Fig. 3(b) shows a graph that has no
RAC drawing. Human experiments that have shown that right-angled edge crossings
do not inhibit human understanding of diagrams. These experiments have motivated
wide-ranging research on RAC drawings. In particular, it has been shown that a RAC
graph with n vertices has at most 4n� 10 edges [2]; further, if it has exactly 4n� 10
edges then it is 1-planar [4].

An interesting open question is to characterise those 1-planar topological graphs
that have a RAC drawing. It is easy to observe that none of the topological graphs in
Fig. 4 has a straight-line drawing. Dehkordi [1] conjectures that the six forbidden
subgraphs in Figs. 2 and 4 characterise those 1-plane graphs that have RAC drawings.

bulgari gucci 

Fig. 2. A 1-plane topological graph has a straight-line drawing if and only if it does not contain either
a bulgari or a gucci subgraph.

(a) (b) 

Fig. 3. (a) a RAC drawing of K5. (b) a graph that does not have a (straight-line) RAC drawing.

XIV P. Eades



References

1. Dehkordi, H.R.: On algorithmic right angle crossing drawing. Master’s thesis, University of
Sydney (2012)

2. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput.
Sci. 412(39), 5156–5166 (2011). doi:10.1016/j.tcs.2011.05.025

3. Eades, P., Hong, S., Liotta, G., Katoh, N., Poon, S.: Straight-line drawability of a planar graph
plus an edge. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214,
pp. 301–313. Springer, Switzerland (2015)

4. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161
(7–8), 961–969 (2013). doi:10.1016/j.dam.2012.11.019

5. Hong, S., Eades, P., Liotta, G., Poon, S.: Fáry’s theorem for 1-planar graphs. In:
Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–
346. Springer, Heidelberg (2012)

6. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988).
doi:10.1002/jgt.3190120306

fish
hat

3-leaf
clover

4-leaf
clover

Fig. 4. Four forbidden subgraphs for RAC drawings. It is conjectured that a 1-plane graph has a
(straight-line) RAC drawing if and only if it does not contain any subgraph isomorphic to either
bulgari, gucci (Fig. 2), fish, hat, 3-leaf-clover, or 4-leaf-clover graph.
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Why Genome Assembly Is Difficult?

Francis Chin1,2

1 Department of Computing, Hang Seng Management College,
Siu Lek Yuen, Shatin, N.T., Hong Kong

francischin@hsmc.edu.hk
2 The University of Hong Kong, Pok Fu Lam, Hong Kong

chin@cs.hku.hk

Abstract. It has been about 60 years since Watson and Crick first discovered the
double-helix structure of DNA. Each genome (about 3 billion long) define every
human uniquely (e.g. hair colour, eye colour, etc.) as well as ones genetic
diseases. Consequently, there is a need to find the genome of each individual for
assessing the genetic risk of potential diseases. At the same time, research
groups are sequencing the DNA of all kinds of organisms, e.g., the rice genome
in search of higher production yields, the bacteria genome in search of a more
effective cure, and the orchid genome in search of more varieties and higher
financial returns. To sequence a genome, Next-Generation Sequencing (NGS)
technology is commonly used to output billions of overlapping DNA fragments
(known as reads) from the genome, but without information on how these reads
link together to form the genome. Then, effective sequencing software tools are
used to combine these reads to form the genome. This process is called “genome
assembly”.

Theoretically, genome assembly is an easy task as the chance of mismatching two reads
is extremely low if they overlap 30–40 positions (because 4^30 ⋙ 3 � 10^9). In this
talk, we shall review past developments and difficulties of genome assembly and
explain why some of the straight-forward approaches fail. The most successful
approach borrows the idea of De Bruijn graph problem which transforms an NP-hard
problem to an efficient polynomial Eulerian graph problem. This approach is counter-
intuitive by breaking the reads into smaller parts (length-k substrings called k-mers)
before assembly.

This De Bruijn graph approach has other advantages: handling errors in reads
(error rate is about 1–2%) and repeated patterns in genome, which is not random.
however the choice of k, i.e., how short about the substrings, is very important. As the
rule of thumb, smaller k (shorter substrings) can tolerate more errors while larger k
(longer substrings) can resolve repeated patterns (branches) in the graph. Thus, there is
always a tradeoff in the selection of k in balancing these two conflicting needs. The
traditional approach is to try a range of k and to choose the k which demonstrates the
best performance. If k is too large, there will be many “gaps” or “discontinuities” in the
graph. If k is too small, there will be many branches in the graph. So, it is crucial for the
traditional assemblers to find a specific value of k. Our IDBA (iterative De Bruijn
Graph Assembler) does not use only one specific k but a range of k values to build the



De Bruijn Graph iteratively. It can keep all the information in the graphs with different
k values and can capture the advantages of all ranges of small and large k values.

In practice, the Next-Generation Sequencing (NGS) technology might not produce
the same number of reads (depth) at different positions of a genome evenly, some parts
of the genome might be sequenced more and some less. IDBA-UD is an extension of
IDBA algorithm with two additional techniques which can handle highly uneven
sequencing depths of NGS genomic data. The first technique is similar to IDBA to
filter out erroneous reads, IDBA-UD also iterates from small k to a large k. In each
iteration, short and low-depth contigs (partially assembled contiguous genomic seg-
ments) are removed iteratively with cutoff threshold from low to high to reduce the
errors in low-depth and high-depth regions. The second technique is to make use of
paired-end reads (two generated reads separated by a range of insert sizes) which are
aligned to contigs and assembled locally to generate some missing k-mers in low-depth
regions. With these two techniques, IDBA-UD can iterate k values of de Bruijn graph
to a very large value with less gaps and less branches so as to form long contigs in both
low-depth and high-depth regions. IDBA-UD has 500 citations and thousands down-
loads and has been used widely by many medical and biological researchers since its
launching about five years ago.

Recent work to develop more effective algorithms and software tools for genome
assembly will also be discussed.

Why Genome Assembly Is Difficult? XVII
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Abstract. The problem of finding a maximum clique or enumerating
all maximal cliques is very important and has been explored in sev-
eral excellent survey papers. Here, we focus our attention on the step-
by-step examination of a series of branch-and-bound depth-first search
algorithms: Basics, MCQ, MCR, MCS, and MCT. Subsequently, as with
the depth-first search as above, we present our algorithm, CLIQUES,
for enumerating all maximal cliques. Finally, we describe some of the
applications of the algorithms and their variants in bioinformatics, data
mining, and other fields.

1 Introduction

Given an undirected graph G, a clique is a subgraph in which all pairs of ver-
tices are mutually adjacent in G. The so-called maximum clique problem is one
of the original 21 problems shown to be NP-complete by Karp [18]. The prob-
lem of finding a maximum clique or enumerating all maximal cliques in G is
very important and significant work has been done on it, both theoretically and
experimentally [7,10,17,34,49,54].

An excellent review on recent various algorithms for the maximum clique
problems can be found in [54] by Wu and Hao. Herein, we focus our attention
on a series of branch-and-bound depth-first search algorithms — Basics [13,43],
MCQ [45], MCR [47], MCS [48], and MCT [52] — for finding a maximum clique,
such that their progress can be understood easily.

Subsequently, similarly to the depth-first searches above, we present our
O(3n/3)-time algorithm, CLIQUES [46], for enumerating all maximal cliques,
that is optimal with respect to the number of vertices n.

Finally, we outline some of the applications of the previous algorithms or their
variants to fields including bioinformatics, data mining, and image processing.

2 Preliminaries

(1) Throughout this paper, we are concerned with a simple undirected graph
G = (V,E) with a finite set V of vertices and a finite set E of unordered pairs

c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 3–15, 2017.
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(v, w) (= (w, v), v �= w) of distinct vertices called edges. V is considered to
be ordered, and the i-th element in V is denoted by V [i]. A pair of vertices
v and w are said to be adjacent if (v, w) ∈ E.

(2) For a vertex v ∈ V, let Γ (v) be the set of all vertices adjacent to v in
G = (V,E), i.e., Γ (v) = {w ∈ V |(v, w) ∈ E}. We call |Γ (v)| the degree of
v. In general, for a set S, the number of elements in S is denoted by |S|.

(3) For a subset R ⊆ V of vertices, G(R) = (R,E ∩ (R × R)) is an induced
subgraph. An induced subgraph G(Q) is said to be a clique if (v, w) ∈ E
for all v, w ∈ Q ⊆ V with v �= w. In this case, we may simply state that
Q is a clique. In particular, a clique that is not properly contained in any
other clique is called maximal. A maximal clique with the maximum size is
called a maximum clique. The number of vertices of a maximum clique in
an induced subgraph G(R) is denoted by ω(R).

3 Efficient Algorithms for Finding a Maximum Clique

3.1 Basic Algorithms

3.1.1 A Basic Branch-and-Bound Algorithm
One standard approach for finding a maximum clique is based on the branch-
and-bound depth-first search method. Our algorithm begins with a small clique
and continues finding larger and larger cliques until one is found that can be
verified to have the maximum size. More precisely, we maintain global variables
Q and Qmax, where Q = {p1, p2, ..., pd} consists of vertices of a current clique
and Qmax consists of vertices of the largest clique found so far. Let R = V ∩
Γ (p1)∩Γ (p2)∩· · ·∩Γ (pd) ⊆ V consist of candidate vertices that can be added to
Q. We begin the algorithm by letting Q := ∅, Qmax := ∅, and R := V (the set of
all vertices). We select a certain vertex p from R and add p to Q (Q := Q∪{p}).
Then, we compute Rp := R ∩ Γ (p) as the new set of candidate vertices. This
procedure, EXPAND(), is applied recursively while Rp �= ∅.

Here, if |Q| + |R| ≤ |Qmax| then Q ∪ R can contain only a clique that is
smaller than or equal to |Qmax|, hence searching for R can be pruned in this
case. This is a basic bounding condition.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal
and |Q| > |Qmax| holds, Qmax is replaced by Q. We then backtrack by removing
p from Q and R. We select a new vertex p from the resulting R and continue
the same procedure until R = ∅.

This is a well-known basic algorithm for finding a maximum clique and is
shown in Fig. 1. We call it Algorithm #0 [13] and it serves as a reference algo-
rithm. This process can be represented by a search tree with root V ; whenever
Rp := R ∩ Γ (p) is applied, then Rp is a child of R.

3.1.2 Ordering of Vertices
If the vertices are sorted in an ascending order with respect to their degrees prior
to the application of Algorithm #0 and the vertices are expanded in this order,
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procedure Algorithm #0 (G = (V, E))
begin

global Q := ∅; global Qmax := ∅;
EXPAND(V );
output Qmax

end {of Algorithm #0}

procedure EXPAND(R)
begin

while R = ∅ do
p := a vertex in R; { a vertex for expansion }
if |Q| + |R| > |Qmax| then

Q := Q ∪ {p};
Rp := R ∩ Γ (p);
if Rp = ∅ then EXPAND(Rp)
else {i.e., Rp = ∅} if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q − {p}
else return

fi
R := R − {p}

od
end {of EXPAND}

Fig. 1. Algorithm #0

then the above Algorithm #0 is more efficient. This fact was experimentally con-
firmed in [13]. Algorithm #0 combined with this vertex-ordering preprocessing
is named Algorithm #1 [13].

Carraghan and Pardalos [11] also employed a similar technique successfully.

3.1.3 Pruning by Approximate Coloring: Numbering

One of the most important points for improving the efficiency of the basic Algo-
rithm #0 is to strengthen the bounding condition to prune unnecessary searches.

For a set R of vertices, let χ(R) be the chromatic number of R, i.e., the
minimum number of colors such that all pairs of adjacent vertices are colored
by different colors, and χ′(R) be an approximate chromatic number of R, i.e., a
number of colors such that all pairs of adjacent vertices are colored by different
colors. Then we have ω(R) ≤ χ(R) ≤ χ′(R) ≤ |R|. An appropriate chromatic
number χ′(R) could be a better upper bound on ω(R) than |R|, and might be
obtained with low overhead. Here, we employ a very simple greedy or sequential
approximate coloring to the vertices of R, as introduced in [41]. Let positive
integral numbers 1, 2, 3, ... stand for different colors. Coloring is also called
Numbering. For each vertex q ∈ R, sequentially from the first to the last, we
assign a positive integral Number No[q] which is as small as possible. That is,
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for the vertices in R = {q1, q2, . . . , qm}, first let No[q1] = 1, and subsequently,
let No[q2] = 2 if q2 ∈ Γ (q1) else No[q1] = 1, . . ., and so on.

We select p (at the 4th line in procedure EXPAND(R) in Fig. 1) so that
No[p] = Max{No[q] | q ∈ R}, where No[p] is an approximate chromatic number
of R. Thus, we modify the basic bounding condition:

if |Q| + |R| > |Qmax| then
in Fig. 1 Algorithm #0, to the following new bounding condition:

if |Q| + No[p] > |Qmax| then.

In addition, to make the above bounding condition more effective, we sort
the vertices in R in descending order with respect to their degrees prior to
Numbering.

We have now an improved algorithm, named Algorithm #2 [13], as follows:
First, sort the vertices in R = V as above. Second, give Numbers to the sorted
vertices in R = V . Subsequently, apply the modified Algorithm #0 as described
above. Note that the sorting and Numbering are applied only once prior to
the first application of EXPAND() at depth 0 of the search tree and that the
Numbers are inherited in the following EXPAND(). In general, Algorithm #2
is more efficient than Algorithm #1 [13].

We can reduce the search space more effectively by applying the sorting
and Numbering of vertices prior to every application of EXPAND(), but with
the potential for more overhead and thus, more overall computing time. We
confirmed that adaptive control of the application of sorting and/or Numbering
is effective in reducing the overall computing time [21,29,37]. By restricting the
application of vertex sorting, as in Algorithm #2, but applying the Numbering
to vertices prior to every EXPAND(), we obtain another efficient algorithm,
MCLIQ [43].

3.2 Algorithms MCQ, MCR, MCS, and MCT

3.2.1 Algorithm MCQ
The algorithm MCQ [45] is directly improved from MCLIQ. At the beginning of
MCQ, vertices are sorted in descending order with respect to their degrees. Sub-
sequently, we apply Numbering and sorting prior to each EXPAND() operation,
where vertices are sorted in an ascending order with respect to their Numbers.
Then, the last vertex with the maximum Number is expanded step-by-step. This
sorting can be carried out with little overhead. Hence, MCQ is very simple and
efficient.

3.2.2 Algorithm MCR
Algorithm MCR [47] is an improved version of MCQ, where the improvements
mainly address the initial vertex sorting. First, we alter the order of the vertices
in V = {V [1], V [2], . . . , V [n]} so that in a subgraph of G = (V,E) induced
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by a set of vertices V ′ = {V [1], V [2], . . . , V [i]}, it holds that V [i] always has
the minimum degree in {V [1], V [2], . . . , V [i]} for 1 ≤ i ≤ |V | as in [11]. Here,
the degrees of adjacent vertices are also considered. In addition, vertices are
assigned initial Numbers. This improvement is described precisely in the steps
from {SORT} to just above EXPAND(V,No) in Fig. 4 (Algorithm MCR) in [47],
called EXTENDED INITIAL SORT-NUMBER to V .

3.2.3 Algorithm MCS
Algorithm MCS [39,48,50] is a further improved version of MCR that introduces
the following techniques:

Fig. 2. Re-NUMBER

(1) Re-NUMBER. Because of the
bounding condition mentioned above, if
No[r] = Max{No[q] | q ∈ R} ≤ |Qmax| −
|Q| then it is not necessary to search from
vertex r. Let Noth := |Qmax|−|Q|. When
we encounter a vertex p with No[p] >
Noth, we attempt to change its Number
as follows: Try to find a vertex q in Γ (p)
such that No[q] = k1 ≤ Noth − 1, with
|Ck1 | = 1. If such q is found, then try to
find Number k2 such that no vertex in Γ (q) has Number k2. If such Number
k2 is found, then exchange the Numbers of q and p so that No[q] = k2 and
No[p] = k1. When this is possible, it is no longer necessary to search from p.
See Fig. 2 for an illustration.

The above procedure is named Re-NUMBER to p and is very effective.
(2) Adjunct ordered set of vertices for approximate coloring. The
ordering of vertices plays an important role in the algorithms as described in
Sects. 3.1.2 and 3.1.3. In particular, the procedure Numbering strongly depends
on the order of vertices, since it is a sequential coloring. In our new algorithm,
we sort the vertices in the same way as in the first stage of MCR [47]. How-
ever, the vertices are disordered in succeeding stages, owing to the application
of Re-NUMBER. To avoid this difficulty, we employ another adjunct ordered
set Va of vertices for approximate coloring that preserves the order of vertices
appropriately sorted in the first stage.

We apply Numbering to vertices from the first (leftmost) to the last (right-
most) in the order maintained in Va, while we select a vertex p for expansion in
R in which vertices are sorted in ascending order with respect to their Numbers
as in MCQ and MCR, for searching from the last vertex with the maximum
Number. Finally, we reconstruct the adjacency matrix in MCR just after the
EXTENDED INITIAL SORT-NUMBER to establish a more effective use of the
cache memory.

The individual contributions of the above techniques in MCS can be found
in Tables 2–4 in [50].
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3.2.4 Algorithm MCT
An improved algorithm MCT [15,52] is obtained by modifying MCS in the fol-
lowing ways:
(1) An approximate solution as an initial lower bound. We turn back
to our original MCS [39] that initially employs an approximation algorithm,

Table 1. CPU time [sec] for benchmark graphs

Graph KLS MCR MCS MCT MCX MaxC I&M BG14

[19] [47] [48] [52] [36] [23] [25] [6]

Name n d. ω sol t.

brock400 1 400 0.75 27 25 0.1 729 288 116 150 205 188 302

brock800 1 800 0.65 23 21 0.2 7,582 4,122 1,950 2,690 4,560 4,000 4,220

brock800 4 800 0.65 26 20 0.2 3,248 1,768 819 1,100 1,850 1,680 1,870

C250.9 250 0.90 44 44 0.1 15,386 1,171 404 713 268

gen400 p0.9 65 400 0.90 65 65 0.3 > 6× 106 57,385 0.74 66,100 36,700 2,130 19

gen400 p0.9 75 400 0.90 75 75 0.3 > 3× 106 108,298 0.33 47,200 9,980 84 7.8

MANN a45 1035 0.99 345 344 22 653.3 53.4 75.5 32.0 22.7 17.3 55.1

p hat700-3 700 0.75 62 62 0.5 25,631 900 216 680 879 552 767

p hat1000-3 1000 0.74 68 68 1.0 > 2× 106 305,146 38,800

p hat1500-1 1500 0.25 12 11 0.0 2.22 1.82 1.40 1.95 10.00 478 422

p hat1500-2 1500 0.51 65 65 0.7 268,951 6,299 1,560 3,850 8,030 5,350 5,430

san1000 1000 0.50 15 10 0.1 2.16 1.02 0.21 0.68 0.72 449 158

sanr400 0.7 400 0.70 21 21 0.1 158.7 77.3 40.7 44.5 81.2 86.2 81.4

DSJC500.5 500 0.50 13 13 0.0 1.9 1.5 1.2 0.8 2.8

DSJC1000.5 1000 0.50 15 15 0.1 182 141 93 102 265

keller5 776 0.75 27 27 0.3 45,236 82,421 10,000 30,300 4,980 5,780 82,500

r200.8 200 0.80 24–27 24–27 0.0 4.56 1.66 0.78 0.95 1.08

r200.95 200 0.95 58–66 58–66 0.1 218.2 21.1 10.3 30.2 2.5

r300.8 300 0.80 28–29 28–29 0.1 528 161 61 89 87

r400.7 400 0.70 21–22 20–22 0.1 150.1 73.9 34.9

r500.6 500 0.60 17–18 16–17 0.1 27.1 18.0 11.4 10.1 22.1

r500.7 500 0.70 22–23 21–22 0.1 1,533 723 340 423 564

r1000.5 1000 0.50 15–16 14–15 0.1 177 134 92 103 231

r2000.4 2000 0.40 13-14 12 0.2 548 460 366

r3000.2 3000 0.20 9 7-8 0.1 3.94 3.67 3.42 4.34 34.40

r3000.3 3000 0.30 11 10–11 0.2 138 121 107

r3000.4 3000 0.40 14 12–13 0.5 7,834 6,392 5,152

r5000.2 5000 0.20 9-10 7–8 0.2 46.8 44.6 39.0 69 578

r5000.3 5000 0.30 12 10–11 0.5 2,636 2,284 1,875

r10000.1 10000 0.10 7 5–6 0.6 15 14 14 20 684

r10000.2 10000 0.20 10 8–9 0.9 1,475 1,303 1,139

r15000.1 15000 0.10 8 6 1.3 80 62 62 115 2,749

r20000.1 20000 0.10 8 6–7 2.3 307 234 234
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init-lb, for the maximum clique problem, to obtain an initial lower bound on
the size of the maximum clique. When a sufficiently large near-maximum clique
Q′

max is found, we let Qmax := Q′
max at the beginning of MCS [39]. Then

Noth := |Qmax| − |Q| becomes large and the bounding condition becomes more
effective. Our init-lb is a local search algorithm based on our previous work
[44]. Here, we choose another approximation algorithm, called k-opt local search
(KLS) [19], by Katayama et al. Recently, Batsyn et al. [6] and Maslov et al. [25]
also demonstrated the effectiveness of an approximate solution, independently.
(2) Adaptive application of the sorting and/or Numbering of vertices.
The effectiveness of this approach was already confirmed, as described at the end
of Sect. 3.1.3 [21,29,37]. We modify MCS so that we sort the set of vertices by the
EXTENDED INITIAL SORT-NUMBER at the first stage near and including the
root of the search tree. Konc and Janežič [22] were also successful in improving
MCQ in a similar way as in [21], independently.

In contrast, mainly near the leaves of the search tree, to lighten the overhead
of preprocessing before expansion of vertices, we only inherit the order of vertices
from that in their parent depth, and we merely inherit the Numbers from those
assigned in their parent depth if their Numbers are less than or equal to Noth.
For vertices whose inherited Numbers are greater than Noth, we give them new
Numbers by sequential Numbering combined with Re − Numbering.

Table 1 shows the progression of the running times required to solve some
benchmark graphs using the above algorithms within these ten years [52]. Here,
d. indicates the density of the graph, and sol and t. show the solution and the
computing time of KLS in MCT. In the last half of the table, rn.p stands for a
random graph, with the number of vertices = n and the edge probability = p.
The results of the state-of-the-art algorithm BBMCX (MCX for short) [36] by
Segundo et al. and of other algorithms [6,23,25] are also included for reference
[52]. Note that MaxCLQ (MaxC for short) [23] by Li and Quan is fast for dense
graphs. ILS&MCS (I&M for short) [25] and BG14 [6] require more time than
MCT for most of the instances tested. One reason for this difference comes from
the fact that our approximation algorithm, KLS, takes only small portion of the
whole algorithm’s computing time, whereas their approximation algorithm, ILS,
[2] in I&M and BG14 consumes a considerable part of the whole computing time.

4 Efficient Algorithm for Enumerating All Maximal
Cliques

In addition to finding one maximum clique, enumerating all maximal cliques
is also important and has diverse applications. We present a depth-first search
algorithm, CLIQUES [42,46], for enumerating all maximal cliques of an undi-
rected graph G = (V,E). All maximal cliques enumerated are output in a tree-
like form. The basic framework of CLIQUES is almost the same as that of
Algorithm #0 without the basic bounding condition. We maintain a global vari-
able Q = {p1, p2, ..., pd} that consists of the vertices of a current clique,and let
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SUBG = V ∩Γ (p1)∩Γ (p2)∩· · ·∩Γ (pd). We begin the algorithm by letting Q := ∅
and SUBG := V (the set of all vertices). We select a certain vertex p from SUBG
and add p to Q (Q := Q ∪ {p}). Then, we compute SUBGp := SUBG ∩ Γ (p)
as the new set of candidate vertices. In particular, the initially selected vertex
u ∈ SUBG is called a pivot. This EXPAND() procedure is applied recursively
while SUBGp �= ∅.

We describe two methods to prune unnecessary parts of the search tree, which
happen to be the same as in the Bron-Kerbosch algorithm [8]. We regard the set
SUBG (= V at the beginning) as an ordered set of vertices, and we continue to
enumerate maximal cliques from vertices in SUBG step-by-step in this order.

First, let FINI be a subset of vertices of SUBG that have already been
processed by the algorithm (FINI is short for finished). Then we denote by
CAND the set of remaining candidates for expansion: CAND = SUBG−FINI.
Initially, FINI := ∅ and CAND := SUBG. In the subgraph G(SUBGq) with
SUBGq := SUBG ∩ Γ (q), let

FINIq := SUBGq ∩ FINI,
CANDq := SUBGq − FINIq.

Then only the vertices in CANDq can be candidates for expanding the clique
Q ∪ {q} to find new larger cliques.

Second, for the initially selected pivot u in SUBG, any maximal clique Q′ in
G(SUBG∩Γ (u)) is not maximal in G(SUBG), since Q′ ∪{u} is a larger clique in
G(SUBG). Therefore, searching for maximal cliques from SUBG ∩ Γ (u) should
be excluded.

Taking the previously described pruning method into consideration, the only
search subtrees to be expanded are from vertices in (SUBG − SUBG ∩ Γ (u)) −
FINI = CAND − Γ (u). Here, to minimize |CAND − Γ (u)|, we choose the
pivot u ∈ SUBG that maximizes |CAND ∩ Γ (u)|, which is crucial to establish
the optimality of the worst-case time-complexity of the algorithm. This kind of
pivoting strategy was first proposed by Tomita et al. [42].

The algorithm CLIQUES [42,46] is shown in Fig. 3, which enumerates all
maximal cliques based upon the above approach, where all maximal cliques
enumerated are presented in a tree-like form. Here, if Q is a maximal clique
that is found at statement 2, then the algorithm only prints out the string of
characters “clique,” instead of Q itself at statement 3. Otherwise, it is impossible
to achieve the optimal worst-case running time. Instead, in addition to printing
“clique” at statement 3, we print out q followed by a comma at statement 7
every time q is picked out as a new element of a larger clique, and we print out
the string of characters “back,” at statement 12 after q is moved from CAND
to FINI at statement 11. We can easily obtain a tree representation of all the
maximal cliques from the sequence printed by statements 3, 7, and 12. The
tree-like output format is also important practically, since it saves space in the
output file.
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procedure CLIQUES(G)
begin
1 : EXPAND(V ,V )
end {of CLIQUES}

procedure EXPAND(SUBG, CAND)
begin

2 : if SUBG = ∅
3 : then print (“clique,”)
4 : else u := a vertex u in SUBG which maximizes | CAND ∩ Γ (u) |;{pivot}
5 : while CAND − Γ (u) = ∅
6 : do q := a vertex in (CAND − Γ (u));
7 : print (q, “,”);
8 : SUBGq := SUBG ∩ Γ (q);
9 : CANDq := CAND ∩ Γ (q);

10 : EXPAND(SUBGq, CANDq);
11 : CAND := CAND − {q};
12 : print (“back,”)

od
fi

end {of EXPAND}

Fig. 3. Algorithm CLIQUES

We have proved that the worst-case time-complexity of CLIQUES is O(3n/3)
for an n-vertex graph [42,46]. This is optimal as a function of n, since there exist
up to 3n/3 cliques in an n-vertex graph [27]. The algorithm was also demonstrated
to run fast in practice through computational experiments [46]. An example run
of CLIQUES can be found in [51] together with those of [53] by Tsukiyama
et al. and [24] by Makino-Uno applied to the same graph. By combining a
bounding rule with CLIQUES, we obtained a simple O(2n/2.863)-time algorithm,
MAXCLIQUE [38], for finding a maximum clique. It was experimentally
shown in [38] that MAXCLIQUE runs faster than Tarjan and Trojanowsky [40]’s
O(2n/3)-time algorithm.

In this approach, Eppstein et al. [12] proposed an algorithm for enumerating
all maximal cliques that runs in time O(dn3d/3) for an n-vertex graph G, where
d is the degeneracy of G which is defined to be the smallest number such that
every subgraph of G contains a vertex of degree at most d. If the graph G is
sparse, d can be much smaller than n; hence O(dn3d/3) can be much smaller
than O(3n/3).

Exact cliques are often too restrictive for practical applications as has been
pointed in [35]. A useful algorithm for enumerating pseudo-cliques in large scale
networks (graphs) has recently been proposed [57].
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5 Applications

Many applications of maximum and maximal cliques can be found in [7,10,34,49,
54], and others. Thefore, we refer only to some of the literature in the following
fields:

(a) Boinformatics
(a-1) Analysis of protein structures [1,3–5,9]
(a-2) Analysis of glycan structures [14,28]

(b) Data mining
(b-1) Basic algorithms

• Structural change pattern mining [31,32]
• Pseudo clique enumeration [33,56,57]

(b-2) Practical applications
• Data mining for related genes [26]
• Structural analysis of enterprise relationship [55]

(c) Image processing
• Face detection [16]

(d) Design of quantum circuits [30]
(e) Design of DNA and RNA sequences for bio-molecular computation [20]
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Abstract. We investigate enumeration of distinct flat-foldable crease
patterns with natural assumptions. Precisely, for a given positive integer
n, potential set of n crease lines are incident to the center of a sheet
of disk paper at regular angles. That is, every angle between adjacent
lines is equal to 2π/n. Then each line is assigned one of “mountain,”
“valley,” and “flat (or consequently unfolded).” That is, we enumerate
all flat-foldable crease patterns with up to n crease lines of unit angle
2π/n. We note that two crease patterns are equivalent if they are equal
up to rotation and reflection. In computational origami, there are two
well-known theorems for flat-foldability: the Kawasaki Theorem and the
Maekawa Theorem. The first one is a necessary and sufficient condition of
crease layout, however, it does not give us valid mountain/valley assign-
ments. The second one is a necessary condition between the number of
“mountain” and that of “valley.” However, sufficient condition(s) is(are)
not known. Therefore, we have to enumerate and check flat-foldability
one by one using other algorithm. In this research, we develop the first
algorithm for the above stated problem by combining these results in a
nontrivial way, and show its analysis of efficiency. We also give experi-
mental results, which give us a new series of integer sequence.

1 Introduction

Recent origami is a kind of art, and origamists around the world struggle with
their problems; what is the best way to fold an origami model. One of the prob-
lems is that a unit of angle that appears in the origami model. Some origamists
restrict themselves to use only multiples of 22.5◦, 15◦ or some other specific
angle which divides 360◦. A nontrivial example, which was designed by the first
author, is shown in Fig. 1. It is based on a unit angle of 15◦. Once origamists
fix the unit angle as (360/n)◦ for suitable positive integer n, their designs are
restricted to one between quite real shapes and abstract shapes, which is the
next matter in art.

When we are given a positive integer n, we face a computational origami
problem which is interesting from the viewpoints of mathematics and algorithms.
We consider the simplest origami model; all crease lines are incident to the single
vertex at the center of origami, and each angle between two creases is a multiple
of (360/n)◦. We are interested in only flat-foldable crease patterns.
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 19–29, 2017.
DOI: 10.1007/978-3-319-53925-6 2



20 K. Ouchi and R. Uehara

Fig. 1. “Maple leaf” designed and folded by the first author. Its crease pattern is based
on 15◦ unit angle.

When mountain or valley folding is assigned to every crease pattern, the flat-
foldability can be computed in linear time (see [2,5]). However, its rigorous proof
is not so simple, which is the main topic of Chap. 12 in [5]. Roughly speaking,
the algorithm repeatedly folds and glues the locally smallest angle in each step.
In other words, we have no mathematical characterization for this problem, and
we have to check one by one.

The problem of computing a folding for a crease pattern that does not con-
tain a specification of whether folds are mountains or valleys is very different.
Hull investigated this problem [8] from the viewpoint of counting. Precisely, he
considered the number of flat-foldable assignments of mountain and valley to a
given crease pattern of n lines which were incident to the single vertex. He gave
tight lower and upper bounds. These bounds are given in two extreme situations;
one is given in the case that all n angles are different, and the other is given in
the case that all n angles are equal to each other. From the viewpoint of origami
design, we are interested in the case between these two extreme situations. To
deal with reasonable situations between extreme ones, we slightly modify the
input of the problem. The input of our problem is a positive integer n, and we
restrict ourselves to the single vertex folding of unit angle (360/n)◦. In order
to investigate our problem, we assign one of three labels—“mountain,” “valley,”
and “flat”—to each of n creases. When a crease line is labeled “flat,” this crease
line is not folded in the final folded state. In this way, we can deal with the single
vertex crease patterns of unit angle equal to (360/n)◦, which is more realistic
situation from the viewpoint of origami design.

Our aim is to enumerate all distinct flat-foldable assignments of the three
labels to n creases. In other words, our algorithm eventually enumerates all
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flat-foldable crease patterns with labels of “mountain” and “valley” of unit angle
(360/n)◦. We consider the sheet of paper is a disk, the vertex is at the center of
the disk, and two crease patterns are considered to be equivalent if they can be
equal up to rotation and reflection (i.e., including turning over and exchanging
all mountains and valleys). Our algorithm enumerates all distinct crease patterns
under this assumption.

For flat-foldability of a given crease pattern, there are two well-known theo-
rems in the area of computational origami, which are called the Kawasaki The-
orem and the Maekawa Theorem (see [5, Chap. 12] for further details):

Theorem 1 (The Kawasaki Theorem). Let θi be an angle between the ith
and the (i + 1)th crease lines. A single-vertex crease pattern defined by angles
θ1 + θ2 + · · · + θn′ = 360◦ is flat-foldable if and only if n′ is even and the sum of
the odd angles θ2i+1 is equal to the sum of the even angles θ2i, or equivalently,
either sum is equal to 180◦: θ1 + θ3 + · · · + θn′−1 = θ2 + θ4 + · · · + θn′ = 180◦.

We note that the Kawasaki Theorem gives a necessary and sufficient condition
for flat-foldability, but mountain-valley assignments are not given. That is, we
have to compute foldable assignments for foldable crease pattern satisfying the
Kawasaki Theorem. In order to compute a flat-foldable assignment, we can use
the Maekawa Theorem:

Theorem 2 (The Maekawa Theorem). In a flat-foldable single-vertex
mountain-valley pattern defined by angles θ1 + θ2 + · · ·+ θn′ = 360◦, the number
of mountains and the number of valleys differ by ±2.

We again note that the Maekawa Theorem is a necessary but not sufficient
condition.

In the last decades, enumeration algorithms have been well investigated, and
many efficient enumeration algorithms have been given, e.g., [1,10,11], and so
on. Using techniques that follow above properties of origami, we construct an
enumeration algorithm for flat-foldable crease patterns for given n, where n is
the maximum number of crease lines of unit angle (360/n)◦. As far as the authors
know, this is the first algorithm for the realistic computational origami problem.
As a result, we succeeded to enumerate flat-foldable crease patterns up to two
n = 32 in a reasonable time.

2 Preliminaries and Outline of Algorithm

Based on the Kawasaki Theorem and the Maekawa Theorem, for given n, we
can design the outline of our enumeration algorithm as follows:

(1) Assign “crease” or “flat” to each of n crease lines incident to a single vertex
so that the Kawasaki Theorem is satisfied.

(2) For each “crease”, assign “mountain” or “valley” so that the Maekawa The-
orem is satisfied.

(3) Output the pattern if this crease pattern is flat-foldable.
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Fig. 2. Simple example for n = 8.

Essentially, the outline consists of two different kinds of enumeration problems
in phases 1 and 2, and flat-foldability checking in phase 3.

A simple example is given in Fig. 2. For n = 8, we first generate all possible
crease lines in phase 1 which is described in binary string (in the figure, we only
show one, but there are exponentially many). Here “0” and “1” denote “crease”
and “flat” respectively. Therefore, for a string 00011011, we have four crease
lines in the shape in Fig. 2. In phase 2, we assign mountain (M) or valley (V)
to each crease line. In phase 3, we check whether each crease pattern with M/V
assignments is flat-foldable or not, and output the pattern if it is flat-foldable.

We have different issue for each phase. Especially in phases 1 and 2, we
have to consider two different problems about symmetry (to reduce redundant
output), and enumeration.

3 Description of Algorithm

Now we describe more details in each phase.

3.1 Phase 1: Assignment of “crease”/“flat”

In phase 1, we are given n crease lines, and we have to assign “crease” or “flat”
to them so that the assignment satisfies the Kawasaki Theorem. Since the crease
pattern cannot be flat-folded for odd number n, without loss of generality, we
assume that n is even hereafter.
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We first describe “crease” by 0 and “flat” by 1, and consider binary string.
Then it is easy to see that, before checking the Kawasaki Theorem, we have
to generate all binary strings over Σ = {0, 1} efficiently reducing equivalent
rotations and reflections. To consider this problem, we introduce the bracelet
problem, which is a classic and basic problem in combinatorics. A bracelet is
an equivalence class of strings, taking all rotations and reversals as equivalent.
This is a special case of necklace whose equivalence is rotation only. In this
paper, let the word bracelet also denote the lexicographically smallest string of
the equivalence class and so does necklace. It is easy to observe that our problem
is now enumeration of binary bracelet of length n. For bracelets, we have an
optimal enumeration algorithm [9]:

Theorem 3 (Sawada 2001). Bracelets of length n can be enumerated in con-
stant amortized time.

That is, the algorithm in [9] runs in a time proportional to the number of
bracelets of length n.

We note that the values of the function B(n) are listed in the OEIS (The
On-line Encyclopedia of Integer Sequences; http://oeis.org/) as A000029, and it
is given as

B(n) =
∑

d divides n

2n/dφ(d)
2n

+ 2n/2−1 + 2n/2−2 (1)

for an even number n, where φ is Euler’s totient function.

3.2 Phase 1: Satisfying the Kawasaki Theorem

After assigning “crease” or “flat” to each crease, we have to check whether these
crease lines satisfy the Kawasaki Theorem or not. The Kawasaki Theorem states
that the alternating sum of angles should be equal to 0. This notion corresponds
to a kind of necklace in a nontrivial way as follows. We first observe that each
angle θi is k× 360

n

◦ for given even n. That is, θi consists of k unit angles. Now we
regard θi as the integer k, and we consider θ1, θ3, . . . as “white,” and θ2, θ4, . . . as
“black.” Then, each sequence of angles corresponds to a necklace with n beads
such that the number of white beads is equal to the number of black beads. That
is, each sequence of n′ creases satisfying the Kawasaki Theorem corresponds to a
necklace with n beads such that (1) the necklace consists of n/2 white beads and
n/2 black beads, and (2) the number of runs of white beads (and hence black
beads) is n′. This notion is investigated as “balanced twills on n harnesses”
in [7], and listed in OEIS as A006840. For k = n/2, the number is given as
follows:

http://oeis.org/
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Theorem 4 (Hoskins and Street 1982). The number of distinct balanced
twills on n = 2k harnesses is

B′(2k) =
1

8k

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

d divides n

d=2e

φ

(
k

e

)(2e

e

)
+

∑

d divides k

φ

(
2k

d

)

2d + 2k
(2 �k/2�

�k/2�
)
+ k2k

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(2)

We note that Eq. (2) just gives us the numbers for each n and no concrete sets of
creases. Therefore, we have to enumerate them by ourselves. A straightforward
approach is to insert a test of the Kawasaki Theorem into Sawada’s algorithm
[9]. The test computes

∑n′

i=1(−1)iθi and checks whether the value is 0 or not.
Note that n′ is the number of “crease” and θi is the angle between the ith and
(i + 1)th creases as defined in Theorem 1.

Now we have the following theorem:

Theorem 5. For a given even number n, phase 1 can be done in O(nB(n))
time, where B(n) is the number of bracelets of length n.

3.3 Phase 2: Assignment of “mountain”/“valley”

In this phase, we inherit a binary string of length n from the phase 1, which
describes “crease” (=0) or “flat” (=1). We note that the binary string is the
lexicographically smallest one among rotations and reversals. Then we translate
it to a set of other strings that represent the assignments of “mountain” and
“valley” and the angles between adjacent creases. The first step can be described
as follows:

(2a) For each adjacent pair of 0s, replace 1s between them by the number of 1s
plus 1. For example, the string 00011011 in Fig. 2 is replaced by 01010303,
where the positive (underlined) numbers describe the number of unit angles
there.

Then we assign mountain (=M) and valley (=V ) to each 0, but here we only
consider the assignments that satisfies the Maekawa Theorem. The Maekawa
Theorem says that the number of Ms and the number of V s should differ by 2.
To avoid symmetry case, we can assume that (the number of Ms)−(the number
of V s) = 2. Thus next step is described as follows:

(2b) For the resulting string over {0, 1, 2, . . . , n − 1}, assign all possible Ms and
V s to each 0 such that the number of Ms is 2 larger than the number
of V s. For example, for the string 01010303, we obtain the set of strings
{V 1M1M3M3,M1V 1M3M3,M1M1V 3M3,M1M1M3V 3}.
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For a string s generated by step 2a, we can have equivalent assigned crease
patterns. Precisely, if some rotation(s) or reversal(s) of s is (are) equal to s, the
result of step 2b may contain equivalent assigned crease patterns. For example, in
the set of strings {V 1M1M3M3, M1V 1M3M3, M1M1V 3M3, M1M1M3V 3},
we can observe that V 1M1M3M3 is a crease pattern which is the mirror image
of a crease pattern M1M1V 3M3, hence we consider they are equivalent. (In
Fig. 2, after phase 2, the crease pattern at the center has its mirror image, and it
should be omitted.) To avoid such equivalent patterns, we perform the following:

(2c) For the resulting string s′ over {M,V, 1, 2, . . . , n − 1} after step 2b, generate
the lexicographically smallest string among rotations and reversals of s′,
which we call s′

small, and store all s′
small. s′ is discarded if s′

small has been
already obtained. Note that M < V < 1 < 2 < . . .

In this process, we take a caching strategy to detect duplications; For every
s′, we generate and store a representative of the bracelet equivalence class to
which s′ belongs, and we refer to the representatives generated so far to check
whether we have obtained an equivalent of s′ or not. The string s′

small can be one
of such representatives because the lexicographically smallest string is easy to be
generated and unique among rotations and reversals. Because of the exponential
number of strings to be cached, we use a trie (see [4,6], a.k.a. prefix tree) that
is a space-efficient data structure for storing many strings.

To generate s′
small, we use Booth’s least circular string algorithm [3]. It is

a linear time algorithm to find the smallest string among rotations of given
string. Note that the algorithm doesn’t care about reversals. Precisely, Booth’s
algorithm finds the right index of the lexicographically smallest string for a given
circular string of length n in linear time. Right index is the start index of a circular
string that may be larger than (or on the “right” side of) the original start index
0, which is a conventional description in the field of string algorithms. To deal
with both rotation and reversal, the step 2c can be implemented as follows:

(2c-1) For the resulting string s′ over {M,V, 1, 2, . . . , n − 1} after step 2b, let
s′R is the reverse string of s′. Prepare an empty trie.

(2c-2) Using Booth’s algorithm, find the right index i of circular string s′ such
that the string starting from the index i is the lexicographically smallest
string among all rotations of s′.

(2c-3) Similarly, find the right index j of the lexicographically smallest string
among all rotations of s′R. The index j gives the smallest string among
the equivalents of reversals.

(2c-4) Select the smallest string as s′
small from the result of (2c-2) and (2c-3):

rotation of s′ starting from i and rotation of s′R starting from j. If s′
small

is already in the trie, discard s′. Otherwise append s′
small to the trie and

s′ goes to phase 3 to be processed.

This test takes O(n) time because the steps don’t contain loops and recur-
sions but it runs linear time sub routines just constant times, which are Booth’s
algorithm, string comparison, and operations on a trie. Summarizing, we have
the following theorem:
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Theorem 6. For a given crease pattern from phase 1 based on n unit angles,
we can generate all distinct assignments of mountain and valley that satisfies
the Maekawa Theorem in O(nC(n)) time with space linear in the product of n
and the number of such assignments, where C(n) is

(
n

n/2−1

)
.

Proof. The number of lines in the crease pattern is at most n, and the number
of Ms is 2 larger than the number of V s. Thus, the number of strings s′ over
{M,V, 1, 2, . . .} of length at most n with the constraint for the number of Ms
and V s is at most

(
n

n/2−1

)
. The other management can be done in linear time,

which implies the time complexity in the theorem. The space complexity is linear
in the maximum number of nodes in the trie used in the algorithm, which can
be suppressed by the product of n and the number of desired assignments. ��

3.4 Phase 3: Test of Flat-Foldability

In this phase, we check if the resulting string s′ over {M,V, 1, 2, . . .} is flat-
foldable or not. For this problem, Demaine and O’Rourke give a linear time algo-
rithm [5, Chap. 12]. Therefore we can finish this phase in linear time. Roughly,
the algorithm is simple; it finds a local minimal angle, folds two creases on the
boundary of the small fan-shape, glues it, and repeats until all creases are folded.
However, showing the correctness of this algorithm is not easy; as mentioned at
the footnote in [5, p. 204], the rigorous proof is first done by Demaine and
O’Rourke in [5, Chap. 12].

We obtain the following obvious upper bound of the number of the outputs
in this phase by integration of the observations in Sects. 3.2 and 3.3:

Theorem 7. For a given even number n, the number of distinct flat-foldable
mountain and valley assignments with unit angle (360/n)◦ is O

(
B′(n)

(
n

n/2−1

))

where B′(n) is the number of distinct balanced twills on n = 2k harnesses (see
Eq. 2).

3.5 Analysis of Algorithm

The correctness of our algorithm relies on the algorithms used in each phase as
described above. Here we consider its time complexity and space complexity for
computing all outputs. Our main theorem is the following:

Theorem 8. For a given even number n, all distinct flat-foldable mountain and
valley assignments with unit angle (360/n)◦ can be done in O

(
n2B(n)

(
n

n/2−1

))

time with O
(
n
(

n
n/2−1

))
space, where B(n) is the number of bracelets of length

n (see Eq. 1).

We note that the order of space complexity may be far from strict one because
the actual required space for the computation depends on the behavior of the
trie used in phase 2.
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Table 1. The number of enumerated
patterns. The number of lines in a pat-
tern is even number from 2 to n.

n Phase 1 Phase 2 Phase 3

4 2 2 2

6 3 7 6

8 7 27 20

10 13 143 87

12 35 837 420

14 85 5529 2254

16 257 38305 12676

18 765 276441 73819

20 2518 2042990 438795

22 8359 15396071 2649555

24 28968 117761000 16217883

26 101340 912100793 99888892

28 361270 7139581543 621428188

30 1297879 56400579759 3893646748

32 4707969 449129924559 24548337096

34 17179435 - -

36 63068876 - -

38 232615771 - -

40 861725794 - -

42 3204236779 - -

Table 2. Distribution of the patterns
obtained at phase 1.

n # line of each pattern Sum

2 4 6 8 10 12 14 16 18 20

4 1 1 2

6 1 1 1 3

8 1 3 2 1 7

10 1 3 6 2 1 13

12 1 6 13 11 3 1 35

14 1 6 26 30 18 3 1 85

16 1 10 46 93 74 28 4 1 257

18 1 10 79 210 275 145 40 4 1 765

20 1 15 124 479 841 716 280 56 5 1 2518

4 Experimental Results

As shown in Theorem 7, the upper bound of the number of distinct flat-foldable
mountain and valley assignments is exponential if (360/n)◦ unit angle is intro-
duced. Exact values for each n are difficult to estimate theoretically. Therefore,
we here show experimental results. The program is written in C++ using its
default STL library.

4.1 The Number of Crease Patterns

Table 1 and Fig. 3 show the exact number of distinct patterns obtained at each
phase. Table 2 explains more details of each data in Table 1. As mentioned in
Sect. 3.2, the result of phase 1, which enumerates “crease”/“flat” assignments
satisfying the Kawasaki theorem, coincide with the sequence listed in OEIS as
A006840. The counting results at the other phases are different from any existing
sequences in OEIS, that is, we find totally new sequences in this study (Table 1).

4.2 Solution Space

We measure the rate of the number of solutions against that of possible patterns
at each phase (see Table 3 and Fig. 4), which suggests how difficult the problems
are. We can see that the solution spaces are very sparse for all phases. There
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Fig. 3. The number of enumerated pat-
terns. The number of lines in a pattern
is even number from 2 to n.

Fig. 4. The rate of solutions against
possible patterns at each phase.

Table 3. #solution/#possible at each phase.

n #Phase1/2n #Phase2/3n #Phase3/3n

4 0.125 0.024691358 0.024691358

6 0.046875 0.009602195 0.008230453

8 0.02734375 0.004115226 0.003048316

10 0.012695313 0.002421718 0.001473353

12 0.008544922 0.001574963 0.000790304

14 0.005187988 0.001155977 0.000471255

16 0.003921509 0.000889847 0.000294471

18 0.002918243 0.000713543 0.000190540

20 0.002401352 0.000585924 0.000125845

22 0.001992941 0.000490617 8.44317E-05

24 0.001726627 0.000416957 5.74228E-05

26 0.001510084 0.000358831 3.92975E-05

28 0.001345836 0.000312088 2.71641E-05

30 0.001208744 0.000273934 1.89112E-05

32 0.001096159 0.000242377 1.32477E-05

34 0.000999975 - -

36 0.000917773 - -

38 0.000846251 - -

40 0.000783735 - -

42 0.000728559 - -

are 2n possible “crease”/“flat” assignments at phase 1. Only about 4.7% is the
solution for phase 1 if n = 6. It decreases significantly and gets less than 1%
for n ≥ 12. The rates at phase 2 and phase 3 are against 3n since we consider
“mountain”/“valley”/“flat” assignments at that phases. The two rates tend to
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decrease similarly to that of phase 1, and are much smaller, e.g., 2.5% for phase
2 when n = 6. Such rate at every phase seems to be exponential to n according
to Fig. 4.

5 Concluding Remarks

We develop the first algorithm for enumerating distinct flat-foldable single vertex
crease patterns. We also experimentally show how many such patterns there are,
which is done the first time as well. Improving the algorithm and investigating
further for the counting problems are the future works. For example, rather
than Sawada’s algorithm in Theorem3, enumeration of the sequences stated in
Theorem 4 directly could improve the running time of our algorithm drastically.

We also examine the rates in each phase; experimentally, they seem to
decrease exponentially. Nevertheless, we conjecture that there are exponentially
many flat-foldable crease patterns. Showing theoretical lower and upper bounds
also remains open.

Acknowledgement. We would like to thank Yota Otachi for his fruitful discussions
and comments. This work is partially supported by MEXT/JSPS Kakenhi Grant Num-
ber 26330009 and 24106004.
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Abstract. Real networks have in common that they evolve over time
and their dynamics have a huge impact on their structure. Clustering
is an efficient tool to reduce the complexity to allow representation of
the data. In 2014, Eisenstat et al. introduced a dynamic version of this
classic problem where the distances evolve with time and where coher-
ence over time is enforced by introducing a cost for clients to change
their assigned facility. They designed a Θ(ln n)-approximation. An O(1)-
approximation for the metric case was proposed later on by An et al.
(2015). Both articles aimed at minimizing the sum of all client-facility
distances; however, other metrics may be more relevant. In this article we
aim to minimize the sum of the radii of the clusters instead. We obtain
an asymptotically optimal Θ(ln n)-approximation algorithm where n is
the number of clients and show that existing algorithms from An et al.
(2015) do not achieve a constant approximation in the metric variant of
this setting.

Keywords: Facility location · Approximation algorithms · Clustering ·
Dynamic graphs

1 Introduction

Context. During the past decade, a massive amount of data has been collected
on diverse networks such as the web (pages and links), social networks (e.g.,
Facebook, Twitter, and LinkedIn), social encounters in hospitals, schools, com-
panies, conferences as well as in the wild [1–3]. These networks evolve over time,
and their dynamics have a considerable impact on their structure and effective-
ness [4]. Understanding the dynamics of evolving networks is a central question
in many applied areas such as epidemiology, vaccination planning, anti-virus
design, management of human resources, and viral marketing. A relevant clus-
tering of the data is often needed to design informative representations of massive
data sets. Algorithmic approaches have already yielded useful insights on real
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networks such as the social interaction networks of zebras [5]. In most experi-
ments, data is recorded first and analyzed next, see [2]. The complete evolution
of the network is thus known from the beginning, as opposed to the online setting
where one must continuously adapt a partial solution to new incoming data [6].

Previous Work. Given a set of facilities, a set of clients, and a measure of dis-
tances between them, the facility location problem consists in opening a subset
of facilities and assigning the clients to open facilities so as to minimize a trade-
off between the cost of opening the facilities and the cost corresponding to the
distance between the clients and their assigned facilities. This problem and its
many variants have been extensively studied since the 1960s, using tools such
as LP-rounding [7], primal-dual methods [8] or greedy improvements [9]. The
uncapacited version, where any number of clients can connect to a facility, is
considered here as it is known to be a successful approach to clustering when
the number of clusters is not known a priori.

In 2014, [10] introduced a dynamic version of this classic problem to handle
situations where the distances evolve with time and where one looks for an
assignment consistent with the evolution of the distances. To achieve a balance
between the stability of the solution and its adaptability, they introduced a cost
to be paid every time a client is assigned to a new facility. As shown in [10],
in many natural scenarios the output solutions follow the observed dynamic
better than independent optimizations of consecutive snapshots of the evolving
distances. This has been further refined in [11], yielding an O(1)-approximation
algorithm when the distances are metric (i.e., follow the triangular inequalities).

Our Approach: Dynamic Sum-Radii Clustering. In both articles [10,11], the dis-
tance cost in the objective consisted of the sum of all distances between every
client and its assigned facility over all time steps. Whereas this distance cost
makes perfect sense in the case where clients need to physically connect to a
facility, other metrics are preferred in the context of clustering. The present
article introduces a dynamic version of the problem studied in [8]. We aim
at minimizing the radii of the clusters, i.e. the sum over all open facilities of
their distances to their farthest assigned client at each time step. This objective
focuses on the closeness of the clients to their assigned facility regardless of the
number of clients assigned to each open facility. It is thus better suited to situa-
tions with clusters of very different sizes which are typically observed in nature
where groups tend to follow power laws in size [1]. Optimal solutions for this
objective cost have been explored in [12], where it was shown that even in the
1-dimensional euclidean space, optimal solutions can have surprisingly complex
structures.

In the general setting, we introduce a primal LP-rounding algorithm that
achieves a logarithmic approximation, which is shown to be asymptotically opti-
mal unless P = NP . We then turn to metric distances and show that existing
algorithms from [11] do not achieve a constant approximation in this setting,
as the lack of cooperation between the clients is not being absorbed by the
sum-of-radii objective anymore. The next section presents a formal definition of
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the problem and states our main results, proved in the following sections. The
ommited proofs can be found at https://hal.archives-ouvertes.fr/hal-01424769.

2 Definition and Main Results

2.1 Definitions

Dynamic Sum-Radii Clustering (DSRC). Given a set F of m facilities, a set
C of n clients, their respective distances (dijt)i∈F,j∈C,t∈[T ] for each time step
t ∈ [T ] = {1, . . . , T}, an opening cost fit � 0 for each facility i at time t, and
a changing cost g � 0, the goal is to open at each time step t a subset Ot ⊆ F
of facilities and to assign each client j ∈ C to an open facility ϕjt ∈ Ot so as to
minimize the sum of:

Opening cost:
∑

t∈[T ]

∑
i∈Ot

(fit +rit), where for each facility i ∈ Ot, rit deno-
tes its open radius: rit = max{dijt : j ∈ C s.t. j is assigned to i at time t}.

Changing cost:
∑

t∈[T−1]

∑
j∈C g · 1{ϕjt �=ϕj(t+1)}.

Precisely, this problem is strictly equivalent to the linear program (1), inspired
by [8,10], when its variables xijt, yirt, zijt are restricted to integral values in
{0, 1}. Their integral values are interpreted as follows: xijt = 1 iff Client j is
assigned to Facility i at time t (Constraint (1.a)); yirt = 1 iff Facility i is open
with radius r at time t (Constraint (1.b)); zijt = 1 iff Client j is assigned to
Facility i at time t + 1 and was not assigned to i at t (Constraint (1.c)). Note
that one can restrict the total number of yirt variables to mnT as one shall only
consider the radii r equal to some distance dijt for some j ∈ C, for each facility
i and time t.

Minimize
∑

i∈F,r�0,t∈[T ]

yirt · (fit + r) + g ·
∑

i∈F,j∈C,t∈[T−1]

zijt

such that (1.a)
∑

i∈F

xijt � 1 (∀j ∈ C, t ∈ [T ])

(1.b)
∑

r : r�dijt

yirt � xijt (∀i ∈ F, j ∈ C, t ∈ [T ])

(1.c) zijt � xij(t+1) − xijt (∀i ∈ F, j ∈ C, t ∈ [T − 1])

and xijt, yijrt, zijt � 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

We denote by LP the optimum (fractional) value of (1), and for each time
period U ⊆ [T ], by openCostU (x, y, z) =

∑
i∈F,r�0,t∈U yirt · (fit + r) the frac-

tional opening cost of solution (x, y, z) during the time period U , and by
changeCostU (x, y, z) = g ·∑i∈F,j∈C,t∈U�{maxU} zijt the fractional changing cost
of (x, y, z) during U . The index U is omitted when U = [T ].

https://hal.archives-ouvertes.fr/hal-01424769
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2.2 Preprocessing

As in [10], our algorithm first preprocesses an optimal solution to this LP in
order to obtain some useful properties. This preprocessing, ommited here, uses
a rounding scheme for the zijt to determine at which discrete time the clients
must change their assigned facility. This is achieved by the following Lemma.

Lemma 1 (Direct adaptation from [10]). Given an optimal solution to
LP (1), one can compute a feasible solution (x, y, z) together with a collection of
time intervals I1,1, . . . , I1,�1 , . . . , In,1 , . . . , In,�n such that:

– for all j ∈ C: Ij,1, . . . , Ij,�j form a partition of [T ]; and
– for all i ∈ F , j ∈ C and k ∈ [�j ]: xijt is constant during each time interval

Ijk; and
– for all j ∈ C: �j − 1 ≤ 2

∑
i∈F,t∈T zijt; and

– the new solution costs at most twice as much as the original.

Moreover, one can assume that for all i, j and t: xijt � 1 and
∑

r yirt � 1.

2.3 Our Main Results

Let us first recall that thanks to a standard reduction from the Set Cover problem
(folklore) to the (static) Facility Location problem, the Dynamic Sum-Radii
Clustering problem has no (1 − o(1)) ln n-approximation unless P = NP .

We then present three algorithms for the DSRC problem. Algorithms 1 and 2
(Sects. 3.1 and 3.2) allow us to obtain a randomized approximation with optimal
approximation ratio Θ(ln n) for the general (non-metric) case:

Theorem 1 (Algorithm). With probability at least 1/4, Algorithm2 (page 7)
outputs in polynomial expected time a valid solution to the DSRC problem, with
cost at most 8 ln(4n) · OPT.

Note that the success probability and the approximation ratio can be
improved by independent executions of the algorithm. The techniques in Sect. 3.2
also apply to the algorithm in [10] in the non-metric setting, improving its
approximation ratio from Θ(log nT ) to Θ(log n). We then turn to the metric
case and propose a candidate approximation algorithm based on the work [11],
but show, by exhibiting a hard metric instance family, that its approximation
ratio is no better than Ω(ln lnn) for the sum-of-radii objective.

Theorem 2 (Hard metric instance). There is a metric instance family for
which the Sum-of-radii ANS algorithm (Algorithm3, page 8) outputs solutions
with cost Ω(log log n)OPT w.h.p.
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3 Tight Approximation Algorithm for the General Case

3.1 O(log(nT ))-Approximation

As in [10], the first step consists in preprocessing an optimal solution to the LP
in order to determine when clients should change the facility they’re assigned to.
Lemma 1 allows us to focus only on the opening cost within each time interval
Ijk independently for each client j. Indeed, if one can assign a unique facility ϕjk

to client j during each interval Ijk, then the changing cost for j is at most the
number of intervals minus one times g. As Lemma 1 ensures that for all j ∈ C:
�j −1 ≤ 2

∑
i∈F,t∈T zijt, the resulting changing cost is at most twice the amount

paid by the optimal solution in the original LP. It is worth noting, though, that
the intervals are not the same for each client and are not synchronized. The
dynamic dimension of the problem is hence simplified but not eliminated.

From now on, we can assume that the clients don’t change facilities inside
each of their intervals (which is verified by our algorithms). Hence, we shall focus
on deciding which facilities to open, when, and with which radius, and how to
assign each client to one of them during each of their time intervals. Algorithm1
does that by combining log nT partial solutions, each of expected cost LP and
obtained by opening a set of random facilities according the yirt.

Algorithm 1. O(log nT )-approximation
Preprocess an optimal solution to LP (1) to obtain a feasible solution (x, y, z) as in
Lemma 1.

Let Z = �1 + · · · + �n be the total number of time intervals Ijk associated to
(x, y, z) by Lemma 1.

Set rit := −∞ for all i ∈ F and t ∈ [T ].
repeat ln(2Z) times

for each facility i do
Draw a random variable Yi uniformly and independently in [0, 1].
for every time t do

Let ρit := max{ρ :
∑

r�ρ yirt � Yi} (ρit = −∞ if the set is empty)
Set rit := max(rit, ρit) and open Facility i with radius rit at time t if
rit � 0.

for each client j and time interval Ijk during which j is not yet covered do
Connect j to any open facility i (if there is one) that covers j during the
whole time interval Ijk (i.e., s.t. dijt � rit for all t ∈ Ijk).

We first analyse the cost of the algorithm, then prove that the solution is
indeed correct.

Lemma 2. The expected increase in total opening cost at each iteration of the
repeat loop is at most

∑
irt yirt(fit + r).
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Proof. The probability that Facility i is open with radius r at each iteration
of the repeat loop is: Pr{ρit = r} = Pr

{
Yi �

∑
ρ�r yiρt and Yi >

∑
ρ>r yiρt

}
=

Pr{Yi ∈ (γ, γ + yirt]} = yirt where γ =
∑

ρ>r yiρt and recalling that γ + yirt � 1
by Lemma 1. It follows that the expected opening cost for Facility i at time t is
precisely

∑
r yirt(fit + r). As the radius of each facility i increases by at most

ρit at each iteration of the repeat loop, the expected total added opening cost
of each loop is thus at most:

∑
it

∑
r yirt(fit + r).

Lemma 3. For each client j and each time interval Ijk, at the end of each
iteration of the repeat loop, the probability that j is not covered during Ijk is at
most 1/e.

Proof. Fix a client j and a time t. Client j is covered if there is an open facility i
with radius at least dijt, i.e. s.t. Yi �

∑
r�dijt

yirt. As xijt �
∑

r�dijt
yirt by

constraint (1.b), j is thus covered by i as soon as Yi � xijt which happens with
probability xijt. As the Yis are independent, j is not covered by any facility
at time t with probability at most

∏
i(1 − xijt) �

(
1 − ∑

i xijt/m
)m � (1 −

1/m)m � 1/e by concavity of the logarithm and constraint (1.a). Since the xijts
are constant for t ∈ Ijk, this also bounds from above the probability that j is
not covered during the whole time interval Ijk.

Theorem 3. With probability 1/4, Algorithm1 outputs a valid assignment of
clients to open facilities with cost at most:

8 ln(2Z) · LP � 8 ln(2Z) · OPT � 8 ln(2nT ) · OPT .

Proof. As the iterations of the repeat loops are independent, each client j
has a probability at most 1/eln(2Z) = 1/2Z of not being covered during each
interval Ijk. The union bound taken over all intervals Ijk ensures that the
probability that some client is not covered at some time t by an open facil-
ity is at most Z/2Z = 1/2 at the end of the algorithm. Let A be the event
that all clients are covered at all time steps by the assignment ϕ computed
by Algorithm1, and Ā its complementary event. Then, the E[cost(ϕ)|A] =
(E[cost(ϕ)] − E[cost(ϕ)|Ā] Pr Ā)/Pr A � E[cost(ϕ)]/Pr A � 2 · ln(2Z) · 2LP
by the previous lemmas. By Markov’s inequality, we conclude that with proba-
bility at least 1/4, Algorithm 1 produces a valid assignment of the clients to open
facilities with total cost at most 2 · 4 ln(2Z) LP � 8 ln(2nT )OPT, since Z � nT
obviously.

3.2 O(logn)-Approximation

Concatenating two partial assignments around time t does not change the open-
ing cost of each partial assignment and increases the changing cost by at most
g · n. We can greedily split the instance into several time periods, making sure
that at least n and no more than 2n intervals Ijk end in each time period (except
for the last). Doing so, the cost of stitching together two consecutive partial
assignments is at most n × g, hence no higher than the changing cost already
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paid within each part. By running Algorithm1 on each partial solution corre-
sponding to a time period and stitching the different solutions, we at most double
the changing cost, increasing the bound to 4 changeCost(x, y, z). On each time
period with T ′ intervals, the opening cost is at most 8 ln(2T ′) openCost(x, y, z),
with T ′ ≤ 2n. This implies that the overall approximation ratio is 8 ln(4n) for
Algorithm 2 on the facing page, proving Theorem1.

Note that this technique also applies to the algorithm in [10], improving
the approximation ratio in the non-metric hourly sum-of-distances setting from
O(log nT ) to O(log n).

Algorithm 2. Batch O(log n)-approximation
Preprocess an optimal solution to LP (1) to obtain a feasible solution (x, y, z) as in
Algorithm 1.

if Z � 2n then

Run Algorithm 1

else
Partition time greedily into Q periods Uq = [tq , tq+1) where Q and (tq)q∈[Q+1]

are defined as follows: t1 = 1, and tq is defined inductively as the largest t � T
such that at most n intervals Ijk end between tq−1 and t− 1. Set tQ+1 = T + 1.

for q = 1..Q do
Run several times Algorithm 1 with (x, y, z) on the instance restricted to
time period Uq until it outputs a valid solution with opening cost at most
8 ln(4n) openCostUq

(x, y, z).

Output the concatenation of the computed assignments in each time period Uq.

Proof (Proof of Theorem 1). Assume Z > 2n. As the instance restricted to inter-
val Uq contains Zq � 2n overlapping intervals Ijk, Algorithm 1 outputs a solution
for this restriction with opening cost at most 8 ln(4n) openCostUq

(x, y, z) with
probability at least 1/4. It follows that Algorithm 1 is run at most four times on
expectation for each q, hence the polynomial expected time. The changing cost
paid for the concatenating of the solutions is then at most:

g · (Z1 + · · · + ZQ + n(Q − 1)) � g(Z+n·Z
n ) � 3g(Z−n) � 6 changeCost(x, y, z)

It follows that the solution output by Algorithm2 costs at most:

8 ln(4n) openCostUq
(x, y, z) + 6 changeCost(x, y, z)� max(6, 8 ln(4n)) LP

� 8 ln(4n)OPT .

4 Lower Bounds for the Metric Case

In this section, we focus on the metric case, i.e. where the distances dxyt (with
x, y ∈ F ∪ C) verify the triangle inequalities at all times. Exploiting this addi-
tional property, [11] proposed an O(1)-approximation (referred to here as the
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ANS algorithm) for the Metric Dynamic Facility Location problem with the
sum-of-distances objective. For the sum-of-radii objective studied here, it is
unclear whether an O(1)-approximation exists when the distances are metric.
Indeed, we were not able to obtain such an O(1)-approximation algorithm for
metric DSRC. However, we show in this section that the natural adaptation of
the ANS algorithm to the sum-of-radii setting cannot achieve any approxima-
tion ratio better than Ω(ln lnn) by exhibiting a hard metric instance family. This
example demonstrates that the main issue is that clients have to collaborate to
make the right choices in order to avoid rare errors that would be absorbed by
the sum-of-distances objective but not by the sum-of-radii objective.

Adapting the ANS Algorithm. The original ANS algorithm preprocesses the solu-
tion of the LP further so that every variable in the LP only takes one positive
value besides 0. This is obtained by duplicating each facility at most nT times,
so that only one client xijt-variable contributes to each of the copies of the
yirt-variables and for one radius r only.

Lemma 4 [11]. Given an optimal solution (x∗, y∗, z∗) to LP (1), one can com-
pute an equivalent instance together with a feasible solution (x′, y′, z′) to the
corresponding LP s.t.:

– each facility i is replaced in the new instance by a set of (at most nT ) virtual
facilities located at the same position as i at all times and with opening cost
fit; and

– (x′, y′, z′) verifies the properties in Lemma 1; and
– for each virtual facility i′, there is a constant ci′ and a client j such that for

all time steps t, x′
i′jt ∈ {0, ci′}, y′

i′,dijt,t
∈ {0, ci′} and y′

i′rt = 0 for all r �= dijt;
and

– the solution to the original LP is obtained for each facility by summing up the
fractional solutions over its virtual copies.

Algorithm 3 on page 8 presents the transcription of the ANS algorithm to
the sum-of-radii objective. The only difference lies in using LP (1) instead of the
linear program with the sum-of-distance objective in [11].

4.1 A Hard Instance Family

The key to the performance of the ANS algorithm for the sum-of-distances objec-
tive in [11] is that the Yis and Xjs drop exponentially when one follows the
directed path originating from a client, which ensures that just enough facilities
are open, and that all the clients are a constant factor away from their ideal
facility on expectation. Deviations from the expectation are absorbed by the
summation in the objective. In the following, we will exhibit a metric instance
showing that the adaptation to the sum-of-radii objective (Algorithm3) cannot
obtain an approximation ratio better than Ω(ln lnn).
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Algorithm 3. Sum-of-radii ANS algorithm (from [11])
Preprocess an optimal solution to LP (1) according to Lemma 4.
For each virtual facility i′ ∈ F ′: draw a random variable Yi′ according to the
exponential distribution of parameter ci′ independently.

For each client j: draw a uniform random variable Xj from [0, 1] independently.
for each time step t ∈ [T ] do

Starting from an empty bipartite Clients-Facilities graph Gt:
• add an arc from each client j to the facility i′ with minimal Yi′ among those
with xi′jt > 0;

• add an arc from each facility i′ to the client j with smallest Xj among those
with xi′jt > 0.

Open at time t every facility whose virtual copy belongs to a circuit in Gt with
the corresponding radius, and assign each client j to the open facility at the
end of the directed path originating from j enlarging its radius accordlingly.

The Static Arborescent Instance Th. Consider for now the static (one time-step)
instance Th where the metric distance is defined by the L∞ norm over Rh, where
the facilities are positioned at (±20,±2−1, . . . ,±2−k+1, 0, . . . , 0) for 0 � k < h
and where the clients are positioned at (±20,±2−1, . . . ,±2−h+1). Facilities with
coordinates in (±20,±2−1, . . . ,±2−k+1, 0, . . . , 0) are said to be of level k; there
are 2k of them. We denote by λi the level of Facility i. We organize the instance
as a tree by declaring that the client or facility located at u = (u1, . . . , uh) is
a descendant of all the facilities located at (u1, . . . , uk, 0, . . . , 0) for 0 � k < h.
The instance Th consists thus of n = 2h clients and m = 2h − 1 facilities. The
distance between any two locations u and v in the tree is equal to 2−k+1 where
k is the level of their lowest common ancestor. All facilities have zero opening
cost. Figure 1 shows a flat representation of T5.

Fig. 1. A flat representation of the instance T5 where each level of the tree lies in
a different dimension. The clients and facilities are represented by circles and stars
respectively. The levels of the facilities are represented by stars of decreasing size and
edges of decreasing thickness.

Lemma 5 (Proof omitted). The optimal solutions to LP (1) for the static
instance Th have value 1 and the uniform solution, which opens a fraction 1/h of
every facility i with radius 2−λi and assigns each client to each of the h facilities
covering it with fraction 1/h, is optimal.
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We will first show that the adaptation of the ANS algorithm outputs a solu-
tion with cost Ω(log log n) � 1 w.h.p. when presented with the uniform solution
to LP (1) for Th, and then show how to design a dynamic instance that forces
LP (1) to output this uniform solution.

Running the Adapted ANS Algorithm on Th with the Uniform Solution. The
preprocessing leaves the uniform solution unchanged and the random variables
Yi are i.i.d. according to an exponential law of parameter 1/h. In order to improve
readability, let us introduce Ui = 1 − exp(−Yi/h) so that the Uis are uniformly
distributed and ordered as the Yis. The arcs in the graph G built by the algorithm
at time 1 then consist of an arc for each client j, pointing to its ancestor facility i
with the smallest Ui, and of an arc for each facility i, pointing to its descendant
client j with the smallest Xj .

Lemma 6 (Proof omitted). The directed paths starting from a client in G
have length at most 4 as illustrated by Fig. 2.

i'

j'

i

j

Level k

Level l

Level h

Fig. 2. Paths in the graph G built by ANS algorithm from the uniform solution for Th.

To prove the Ω(ln lnn) lower bound (conditioned to the production of the
uniform solution when solving LP (1)), we first need a combinatorial lemma.
Let’s consider a complete rooted binary tree Aq of height q where each node is
labelled by a uniform random real chosen from [0, 1] independently.

Lemma 7 (Proof omitted). The probability pq(x) that there is a branch in
Aq where all the nodes have label > x verifies:

– if x < 1
2 , then 2 − 1

1−x < pq(x) < 2 − 1
1−x + (2x)q+2

4(1−x) and pq(x) ↘ 2 − 1
1−x .

– if x > 1
2 , then 0 < pq(x) < (1 − x)(2(1 − x))q and pq(x) ↘ 0.

W can prove the following:

Lemma 8 (Proof omitted). The expected opening cost of a facility i of level
k is at least 2−k(ln k − β)/8h for a universal constant β.

Which allows us to conclude that:

Lemma 9. The expected opening cost of the solution output by the sum-of-radii
ANS Algorithm3 from the uniform solution to LP (1) for Th is Ω(ln lnn).
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Proof. By linearity of expectation and the lemmas above, E[openCost] �∑h
k=10 2k · 2−k(ln k − β)/8h = Θ(

∑h
k=1(ln k)/h) = Θ(lnh) = Θ(ln lnn) since

n = 2h.

4.2 Forcing the Uniform Fractional LP Solution

Our lower bound for the Th instance relies on running the algorithm on the
uniform solution. Unfortunately, this solution is not a vertex of LP (1) and will
not be output by any linear solver. We thus extend the instance Th to a dynamic
instance Dh whose optimal solution is unique and uniform, concluding the proof
of Theorem 2. This Dh instance consists in several initial time steps with very
low cost where the clients and facilities are mixed together (enforcing then the
need for uniformity in the optimal solution), and a final time step equivalent
to Th.

Lemma 10 (Proof omitted). All optimal solutions to the instance Dh are
uniform on the last time step.

We can now conclude the proof of Theorem2 through two corollaries.

Corollary 1 (Proof omitted). Algorithm3 produces the same output for the
last time step of Dh as for Th.

Let Dn2

h be the instance obtained by making n2 independent copies of Dh

located at distant locations in R
h. The Hoeffding bound allows us to strengthen

the result above by showing that the approximation ratio sum-of-radii ANS
Algorithm 3 on this new instance is at least Ω(ln lnn) with high probability,
when run from the uniform solution to LP (1):

Corollary 2. The opening cost of the solution output by the sum-of-radii ANS
Algorithm3 from the uniform solution to LP (1) for Dn2

h is Ω(ln lnn) with prob-
ability 1 − 2−n.

Proof. We directly apply the Hoeffding bound, observing that the cost of the
solution output by sum-of-radii ANS Algorithm3 on Dh is at most twice the
cost on Th, hence at most O(log n).

5 Conclusion and Open Problems

We have obtained an asymptotically optimal O(log n)-approximation algorithm
for DSRC in the general case, with a technique that translates to the sum-of-
distances case. We have also shown that the approximation ratio for the algo-
rithm in [11] is no better than Ω(ln lnn) for metric instances. This leaves open
the question of whether an O(1)-approximation algorithm exists in the metric
case. Further experimental work has to be conducted to evaluate how these algo-
rithms can help improve the representation of real dynamic graphs such as the
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ones in [2]. One final remark is that our algorithms all rely on the primal formu-
lation of LP (1) while the algorithms in [8] for the static setting rely on the dual.
Unfortunately, the dual variables seem to act evasively with respect to time in
the dynamic setting. Understanding these dual variables is a promising direction
towards an O(1)-approximation, if it exists.
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How to Extend Visibility Polygons by Mirrors
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Abstract. Given a simple polygon P with n vertices, the visibility poly-
gon (V P ) of a point q (V P (q)), or a segment pq (V P (pq)) inside P can be
computed in linear time. We propose a linear time algorithm to extend
V P of a viewer (point or segment), by converting some edges of P into
mirrors, such that a given non-visible segment uw can also be seen from
the viewer. Various definitions for the visibility of a segment, such as
weak, strong, or complete visibility are considered. Our algorithm finds
every edge such that, when converted to a mirror, makes uw visible to
our viewer. We find out exactly which interval of uw becomes visible, by
every edge middling as mirror, all in linear time.

1 Introduction

Many variations of visibility polygons have been studied so far. In general, we
have a simple polygon P with n vertices, and a viewer which is a point (q), or a
segment (pq) inside P. The goal is to find the maximal sub-polygon of P visible
to the viewer (V P (q) or V P (pq)). There are linear time algorithms to compute
V P (q) [7] or when the viewer is a segment [5].

It was shown in 2010 that V P of a given point or segment can be computed
in presence of one mirror-edge in O(n) [6]. Also, it was shown in the same paper
that the union of two visibility polygons can be computed in O(n).

We consider different problems of finding every edge e such that when con-
verted to a mirror (and thus called mirror-edge) can make at least a part of a
specific invisible segment visible (also called e-mirror-visible) to a given point or
segment. We propose linear time algorithms for these problems. Considering a
segment as a viewer, we deal with all different definitions of visibility, namely,
weak, complete and strong visibility, which was introduced by [3]. Also, we can
easily find mirror-visibile intervals of the invisible segment (uw) considering all
edges as mirrors in linear time corresponding to the complexity of P.

This paper is organized as follows: In Sect. 2, notations are described. Next
in Sect. 3, we present a linear time algorithm to recognize every mirror-edge e
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of P that makes a given segment uw e-mirror-visible to q. In Sect. 4 we will
show that e-mirror-visible interval of uw to q can be computed in constant time.
In Sect. 5, we deal with a given segment instead of a point. And finally, Sect. 6
contains some discussions and future works.

2 Notations and Assumptions

Suppose P is a simple polygon and int(P) denotes its interior. Two points x and
y are visible to each other, if and only if the open line segment xy lies completely
in int(P). The visibility polygon of a point q in P, denoted as V P (q), consists
of all points of P visible to q. Edges of V P (q) that are not edges of P are called
windows. The weak visibility polygon of a segment pq, denoted as WV P (pq), is
the maximal sub-polygon of P visible to at least one point (not the endpoints)
of pq. The visibility of an edge e = (vi, vi+1) of P can be viewed in different
ways [3]: P is said to be completely visible from e if for every point z ∈ P and
for any point w ∈ e, w and z are visible (denoted as CVP short from completely
visible polygon). Also, P is said to be strongly visible from e if there exists a
point w ∈ e such that for every point z ∈ P, w and z are visible (SVP). These
different visibilities can be computed in linear time (see [5] for WVP and [3] for
CVP and SVP).

Suppose an edge e of P is a mirror. Two points x and y are e-mirror-visible,
if and only if they are directly visible with one specular reflection through a
mirror-edge e. Specular reflection is the mirror-like reflection of light from a
surface, in which light from a single incoming direction is reflected into a single
outgoing direction. The direction in which light is reflected is defined by the
law-of-reflection, which states that the incident, surface-normal and reflected
directions are coplanar [2].

Since only an interval of a mirror-edge is useful, we can consider the whole
edge as a mirror, and there is no need to split an edge.

We assume that n vertices of P are ordered in clockwise order (CWO).

3 Expanding Point Visibility Polygon

We intend to find every mirror-edge e of P that causes a given point q see any
interval of a given segment uw inside P. We will find the exact interval of uw
which is e-mirror-visible to q for every mirror-edge e of P in the next section.

3.1 Overview of the Algorithm

Obviously, any potential mirror-edge e that makes uw visible to q should lie on
V P (q)∩WV P (uw) which can be computed in linear time. If the goal is to check
e-mirror-visibility of the whole uw, we should instead compute the complete
visibility polygon of uw (i.e. V P (q) ∩ CVP(uw)).

Suppose that e is intersected by V P (q) ∩ WV P (uw) from v1(e) to v2(e) in
CWO . We use this part of e as mirror. We will find out whether any part of uw
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is e-mirror-visible. Let L1(e) and L2(e) be two half-lines from the ray-reflection
of q at v1(e) and v2(e) respectively. Also let q′(ei) be the image of q considering
ei from v1(ei) to v2(ei) (ei is the ith potential mirror-edge in CWO).

q

v2(e)

P

v1(e)

u

q (e)

L2(e)

Visible region through the mirror

e

w

LBV (e)

L1(e)

RBV (e)

Fig. 1. The region between L1(e) and L2(e) is the visible area by q through e being a
mirror from v1(e) to v2(e).

If uw intersects the region between L1(e) and L2(e) and no part of P
obstructs uw, then uw is e-mirror-visible (see Fig. 1). Since P is simple, e-mirror-
visibility can only be obstructed by reflex vertices.

For each mirror-edge e, we define LBV (e) (for Left Blocking Vertex of e) and
RBV (e) (for Right Blocking Vertex of e) as below. In Subsect. 3.2, we will prove
that no other reflex vertex can block e-mirror-visibility area except for these two
reflex vertices.

3.2 LBV s and RBV s

Definition 1. Assume that p1, p2, . . . , pk are the reflex vertices we meet when
tracing WVP(uw) starting from u in CWO before we reach a mirror-edge e. We
define LBV (e) to be that vertex pj such that if pjq′(e) (i.e. from pj to q′(e))
holds all other pi (i �= j 1 ≤ i ≤ k) reflex vertices on its left side. In another
word, if we move from pj to q′(e) all other pi reflex vertices are on our left side
(see Fig. 2(a)). If more than one vertex has this property, we choose the one with
the lowest index. If no such vertex exits, we set v1(e) as LBV (e). RBV (e) is
defined similarly when we trace WVP(uw) from w in counter-clockwise order
(CCWO).

Different mirror-edges may have the same LBV s or RBV s. And, obviously
through Definition 1, for each mirror-edge e, LBV (e) and RBV (e) is unique.
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w
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v1(e2)
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Fig. 2. (a) From Definition 1, vertex p5 is LBV (e1). (b) Constructing TP(uw), which
is useful to distinguish LBV vertices for all mirror-edges. p1, p2, ... , p6 are the reflex
vertices of P.

Algorithm 1 (to check whether q can see any interval of uw through
mirror-edge e). Assuming that e, from v1(e) to v2(e) is in V P (q)∩WVP(uw)
and L1(e) and L2(e) are as defined above, the following cases are considered:

1. If L1(e) and L2(e) both lie in one side of uw, then uw is not in the e-mirror-
visible area. That is, q cannot see uw through e.

2. Otherwise, if uw is between L1(e) and L2(e). I.e., it is in the middle of the
mirror-visible area, q can see uw through the mirror-edge e. Because e is
visible to uw, and the visibility area from L1(e) to L2(e) is a continuous
region.

3. Otherwise, L1(e) or L2(e) crosses uw. In this case, we check whether any part
of P, obstructs the whole visible area through e (In case of CVP(uw), it is
sufficient to check L1(e) and L2(e) not to cross uw, except in its endpoints.)
For this, it is checked whether P blocks the rays from the right or left side of
e. If LBV (e) lies on the left side of L2(e), and RBV (e) lies on the right side
of L1(e), then q can see uw through e.
Otherwise, q and uw are not e-mirror-visible.

Obviously, collision checking of a constant number of points and lines can be
done in O(1) for any mirror-edge.
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Computing LBV and RBV Vertices

Algorithm 2. First consider the computation of LBV vertices. We already
know that the potential mirror-edges lie in V P (q)∩WVP(uw). To make an easy
understanding, these edges are numbered in CWO as e1, e2, . . .

Considering WVP(uw) we construct a new polygon by adding q′(ei)v1(ei)
and q′(ei)v2(ei) to each mirror-edge ei, and eliminating v1(ei)v2(ei) interval
from ei.

We call this polygon TP(uw) (Tracing Polygon). Obviously, TP(uw) may
not be a simple polygon, and has O(n) vertices corresponding to the complexity
of P (see Fig. 2(b)).

Starting from u (the left endpoint of uw) we trace TP(uw) in clockwise order.
While doing so, we construct a convex shape on the reflex vertices of P we visit,
using an algorithm similar to Graham’s scan [4] in P’s order of vertices. We
consider u as one reflex vertex.

(a)

w

p4

p2

p5

p1

v2(e2)
v1(e3)

v1(e4)

v2(e3)

v2(e4)v1(e2)
v1(e1)

p3

p6On the Line

q (e3)

u

q

w

v2(e2)
v1(e3)

p3

v2(e3)

p6

p4

p2

v1(e1)
v2(e1)

p5

3 = p3p5

2 = p2p3

1 = p1p2

p1

v1(e2)

WV P (uw)

q

q (e1)

q (e2)

q (e3)

u

(b)

v2(e1) v1(e4)

v2(e4)

Fig. 3. (a) Updating the convex shape while tracing TP(uw) and facing with new reflex
vertices. p5 is chosen as LBV (e1), p3 and p2 as LBV (e2) and LBV (e3), respectively.
If we consider u for the fourth mirror-edge, first we select p1. But, later we should
change LBV (e4) to be v1(e4), because p1 cannot block the e4-mirror-visibility. (b)
Constructing the convex hull to distinguish LBV vertices for all mirror-edges. p1, p2,
p3 and p5 are the reflex vertices that are used in the convex hull construction. Four
mirror-edges e1 to e4 are shown. In this figure, p5 is LBV (e1).
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As we meet a new reflex vertex, we push the line containing the new con-
structed edge of the convex shape into a stack named S and update the stack
as we move forward. When q′(ei) of a mirror-edge ei is reached in our trace,
q′(ei) is compared with the line on the top of the stack called �. If q′(ei) lies
on the right side of �, � is popped from S. Otherwise, if q′(ei) lies on, or on
the left side of �, then we assign � as the chosen line for ei, denoted as cl(i).
� (Top(S)) is then check with q′(ei+1), q′(ei+2), . . . , to become their possible
chosen lines, or popped up. If the stack is empty when we visit q′(ei), we assign
LBV (ei) = v1(ei).

Obviously, when a new reflex vertex is met, the convex shape and the stack
is updated accordingly (see Fig. 3(a)) and the algorithm continues.

See Fig. 3(b), for an example. Here, the stack contains 3 lines (�1, �2, �3, the
last on top) when we reach v1(e1). We check q′(e1) with �3, which is on Top(S),
to see if it has q′(e1) on its left. If q′(e1) lies on the right, then q′(e1) is checked
with �2. Here, cl(1) = �3.

At the end, for each mirror-edge ei, we consider the two reflex vertices of cl(i),
say re1 and re2 (in CCWO). If q′(ei) lies on the left of cl(i), then LBV (ei) = re2.
Otherwise, it lies on cl(i), then LBV (ei) = re1. If there are more than two reflex
vertices consider the last on cl(i) (re1).

The RBV vertices are computed similarly by tracing TP(uw) in counter-
clockwise direction starting from w.

At the end, since there may be some false vertices chosen as LBV or RBV
vertices, we will trace WVP(uw) in both directions to correct these cases. First
each LBV (ei) chosen by previous algorithm is compared with the segment d =
v2(ei)u. If LBV (ei) lies on the left side of d, or if LBV (ei) = u, then LBV (ei) was
falsely chosen since it is not obstructing the mirror-visibility area. The correction
is made in this case by setting LBV (ei) = v1(ei). We proceed similarly for RBV
vertices in the other direction.

Obviously, all these operations can be performed in O(n) time. For more
justification, do not consider the stack and see what happens to the lines (see
[1] for more details).

Proof of Correctness and Analysis of the Algorithm. In this subsection
we present the proof and the analysis of the algorithm.

Theorem 1. Suppose P is a simple polygon with n vertices, q is a given point
inside P, and uw is a given segment which is not directly visible by q. Every
edge e that makes uw e-mirror-visible to q can be found in O(n) time.

Remark 1. We will prove this theorem assuming that uw is a diagonal of P.
Since the assertion that uw is actually a diagonal is not used in the proof, the
stated proof holds for any segment inside P. To start tracing TP(uw), instead
of the endpoints of the diagonal, we can use one endpoint of the closest edge of
P to the given segment. Let at least one endpoint of this edge be upon the given
segment inside the polygon.
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Remark 2. Note that the algorithm covers some situations where uw does not
have their endpoints on the boundary of P. In these cases there might be some
mirror-edge e which can see uw from its behind. In another word, e may see a
part of the invisible target segment from w to u, and w is on the left side of
the e-mirror-visible interval when we are standing on uw and facing to e (see
Fig. 4(a)). And, we need to swap the position of u and w and run the above-
mentioned algorithms one more time to see if these kind of mirror-edges exist
that may make an interval of the target mirror-visible to q. So, we need to use
wu instead of uw. And, we need to run all above-mentioned algorithms one more
time using wu, which takes an additional O(n) time complexity. Note that these
two runs do not have any conflict with each other, and they find absolutely
independent mirror-edges. This is because, a mirror-edge e which sees uw from
behind will be eliminated in the first run. And this is because, in the first run,
using uw, w is placed on the left side of L1(e), and e will be eliminated through
case 1 of Algorithm 1. Without lost of generality, for simplicity we assume that
no mirror-edge can see uw from behind.

Proof

1. The algorithm correctly computes all LBV ’s and RBV ’s in O(n). This is clear
from Definition 1 and Algorithm 2. This algorithm constructs two convex hulls.

2. Algorithm 1 correctly checks whether each mirror-edge e can make at least a
part of the given segment uw e-mirror-visible to q. For this, we only need to
prove that the algorithm is correct if case 3 occurs. Other cases are obvious.
That is, if L1(e) or L2(e) or both cross uw, and if LBV (e) = pj does not cross
L2(e) where we decide that uw is e-mirror-visible from q, then no other reflex
vertices can completely obstruct the e-mirror-visible area. Suppose on the con-
trary, that another vertex pl completely obstructs the visible area while pj does
not. In this case, q′(e)pl is on the right side of L2(e) and thus is on the right
side of q′(e)pj which contradicts pj being LBV (e). Similar arguments hold for
RBV . We can also prove that no other reflex vertices (other than the left and
right chains that appear when we trace the WVP(uw)) can obstruct the visi-
bility.

4 Specifying the Visible Part of uw

In this section we present an algorithm to determine the visible interval of the
given segment (uw) which is e-mirror-visible by middling of a given mirror-
edge (e).

Lemma 1. We have a simple polygon P, a point q as a viewer, and a segment
uw, inside P. In linear time corresponding to the complexity of P, for every
mirror-edge e, we can compute the exact interval of uw that is e-mirror-visible.

Proof. We will show for a specified mirror-edge e, while we have LBV (e), we
can find e-mirror-visible part of uw in constant time. Therefore, it takes O(n)
time to distinguish the visible intervals of uw, for every mirror-edge.
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Consider a mirror-edge e, without loss of generality suppose we know uw is
e-mirror-visible. We can find the visible part of uw using the following algorithm:

Algorithm 3 (to find the visible part of uw through mirror-edge e). Let
u′(e) and w′(e) corresponding to u and w, be the endpoints of the visible interval
of uw, respectively.

Note that Algorithm 2 provides all LBV and RBV vertices of all mirror-edges.

1. If LBV (e) = v1(e): Then the intersection of L1(e) and uw determines u′(e).
Clearly, if L1(e) places in the left side of uw then u itself is u′(e).

2. If LBV (e) �= v1(e): If LBV (e) does not lie on the right side of L1(e), then again
the intersection of L1(e) and uw determines u′(e). Otherwise,
we compute the intersection of the protraction of q′(e)LBV (e) and uw. The
intersection point is u′(e).

Acting the same way we can find w′.

Correctness and Analysis of Algorithm 3
First step is obvious because there is nothing to obstruct the mirror-visibility
area, and it takes constant time. About the second step, if LBV (e) lies–on or–on
the left side of L1(e), the intersection point of L1(e) and uw is u′(e). Note that
we know L1(e) is not in the right side of w because we knew uw is e-mirror-
visible to q. If LBV (e) lies on the right side of L1, then from Definition 1 we
know LBV (e) is e-mirror-visible. We only need to prove that the protraction
of q′(e)LBV (e) determines u′(e). There may be several reflex vertices on the
right side of L1(e). Suppose on the contrary, u′′(e), the intersection of uw and
q′pj (pj �= LBV (e) is a reflex vertex on the right side of L1), is closer to u.
Then, the line q′pju′′(e) must be on the right side of LBV (e), which contradicts
Definition 1 (see Fig. 4(b)).

Since no direction for L1(e), or property of q being in the left side of e was
used, the same proof holds for RBV (e).

5 Extending a Segment Visibility Polygon

In this section, we deal with different cases of the problem of making two invisible
segments mirror-visible to each other.

Lemma 2. We are given a simple polygon P and two segments, say xy and uw,
inside P. Assume that uw is not visible to xy. For every mirror-edge e, we can
find out if uw is weakly, completely, or strongly mirror-visible to xy, in linear
time corresponding to the complexity of P.

Proof. To prove Lemma 2 we simply use Algorithm 1 in Sect. 3. Here, as we deal
with a segment as a viewer, we encounter more difficulties than the previous
sections. For instance, we need to consider different vertices in place of v1(e), or
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v2(e2)

q

p5
p4

(a)
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q

e

(new − u)
w

u(new − w)

Fig. 4. (a) Mirror-edge e sees uw from its behind. And, we need to replace w with u
and run all algorithms one more time in order to find these kinds of mirror-edges. (b)
p3 = LBV (e2), and the intersection of the protraction of q′(e2)p3 and uw is u′(e2).

v2(e) in Algorithm 1. And, to find these verices the intersection of different visi-
bility polygons maybe required. Also, different half-lines may be as replacement
for L1(e) and L2(e).

We have the following cases:

1. The whole xy can see the whole uw.
2. The whole xy can see at least one point of uw.
3. xy can see the whole uw in a weak visible way.
4. At least one point of xy can see at least one point of uw.

We deal with these cases in the following subsections. Without loss of generality,
consider a mirror-edge e on P. In each subsection, we find appropriate substitutes
for v1(e), v2(e), L1(e), and L2(e).

5.1 The Whole xy Can See the Whole uw

First, we compute the intersection visibility polygon of the endpoints of xy (x
and y). Then, while tracing the completely visibility polygon of uw (CVP(uw)),
we select the common part of each edge with the intersection visibility polygon
of the endpoints. As a result, we have v1(e) and v2(e) for every mirror-edge e.
Obviously, this step only takes O(n) time complexity.

Consider x as a viewer, let the reflective ray from v1(e) be L1,x(e), and the
reflective ray from v2(e) be L2,x(e). Similarly, we define L1,y(e) and L2,y(e).

We should use L1,x(e) as L1(e), and L2,y(e) as L2(e) in Algorithm 1. Since we
know any potential mirror-edge from v1(e) to v2(e) is completely visible for xy,
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it is sufficient to check L1,x(e) to lie in the left side of u, and L2,y(e) to lie in the
right side of w.

5.2 The Whole xy Can See at Least One Point of uw

In this subsection, we want to find out if there is any point on uw which is
e-mirror-visible to the whole xy.

We can use a method similar to the previous subsection, only now the strongly
visibility polygon of uw (SVP(uw)) is required. We use L1,x(e) as L1(e), and
L2,y(e) as L2(e).

Considering SVP(uw), there is an interval or at least a point on uw which
holds the property of being strongly visible.

For the last step, we need to find out if this point or segment has intersection
with the interval from u′(e) to w′(e).

5.3 xy Can See the Whole uw in a Weak Visible Way

There may be no point on xy to see the whole uw by itself. Here, we want to
find out if uw is completely e-mirror-visible considering all the points on xy.

We use the intersection of WVP(xy) and CVP(uw), to find all the potential
mirror-edges (v1 and v2 vertices).

Since we deal with the weak visibility polygon, we may face some mirror-
edges which are visible to none of the endpoints of xy, but to an interval of xy in
the middle. We need to find this interval for each mirror-edge. In fact different
mirror-edges may have different points on xy, to make their L1 and L2 half-lines.
It is sufficient to check these half-lines with the endpoints of uw to make sure
that the mirror-visibility region covers uw completely.

For a specific mirror-edge ei, let x(ei) and y(ei) be the points on xy corre-
sponding to x and y respectively. We can use the ray reflection of x(ei) on ei as
L1(ei), and the ray reflection of y(ei) as L2(ei) in Algorithm 1. In O(n) time we
can find these points on xy for all mirror-edges through the following way:

Definition 2. Consider a potential mirror-edge e (from v1(e) to v2(e)) such
that there are two reflex vertices that block the visibility of a portion of xy before
v1(e) and after v2(e) in P’vertex order. Define r1(e) and r2(e) to be these reflex
vertices, respectively.

Obviously, if there is no r1(e) or r2(e) then there is no obstruction, and we
can use corresponding v1(e) and v2(e), to find L1(e) and L2(e).

See Fig. 5(a), in this figure we have r1(e) and r2(e) vertices. The blue sub-
segment of xy can see e completely, but all the points–from x(e) to the blue
sub-segment, and from the blue sub-segment to y(e)–cannot see at least some
part of e. For the points on the other side of these yellow points, e is not visible.
The reflected rays from e, which is between the green half-lines, is the area which
segment xy can see, in a weak visible way, through e. We call these half-lines
L1,y(e) and L2,x(e).
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Fig. 5. (a) r1(e), r2(e), x(e) and y(e) are shown for mirror-edge e. (b) Constructing
convex shape similar to Algorithm2 (Color figure online).

In order to find x(e) and y(e), we only need r1(e) and r2(e), because we
can protract v2(e)r1(e) and v1(e)r2(e) to find their intersection with xy. The
intersection points are x(e) and y(e).

Suppose there are m potential mirror-edges, we should find r1(ej) and r2(ej)
1 ≤ j ≤ m. The idea is similar to Algorithm2.

Computing r1(e) and r2(e) Reflex Vertices for All Mirror-Edges:
To compute these reflex vertices we use two convex shapes over the reflex

vertices in two directions. For a particular mirror-edge e, r1(e)v2 should hold
all left-side reflex vertices on its left, and of course r2(e)v1 should hold all the
right-side reflex vertices on its right. Note that it is not important if there were
more than one reflex vertex on either r1(e)v2 or r2(e)v1 (see Fig. 5(b)).

In this subsection, we use L1,y(e) and L2,x(e) instead of L1(e) and L2(e)
respectively. Also, while using Algorithm2, we need CVP(uw) in place of
WVP(uw) to construct TP(uw).

5.4 At Least One Point of xy Can See at Least One Point of uw

Here we can behave similar to the previous subsection except that we need
WVP(xy)∩WVP(uw) to find potential mirror-edges. And, considering a mirror-
edge e, we use L1,x(e) and L2,y(e) half-lines to be used in Algorithm 1.
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Also, we need WVP(uw) in the construction of TP(uw) because it is sufficient
to make e-mirror-visible any point on xy to any point on uw.

6 Discussion

We dealt with the problem of extending the visibility polygon of a given point
or a segment in a simple polygon, so that another segment becomes visible to
the viewer.

We tried to achieve this purpose by converting some edges of the polygon to
mirrors. The goal is to find all such kind of edges, and the mirror-visible part
of the target segment by each of these edges individually. Using the algorithm
we proposed, this can be done in linear time corresponding to the complexity of
the simple polygon.

We covered all the possible types of visibility when we dealt with a given
segment as a viewer, and we wanted to extend its visibility to see another given
segment. We proved all the possible cases need just O(n) time.

We only discussed finding the edges to be mirrors, but it is shown that having
two mirrors, the resulting visibility polygon, may not be a simple polygon [7].
Also, having h mirrors, the number of vertices of the resulting visibility polygon,
can be O(n + h2), and for h mirrors, each projection, and its relative visibility
polygon can be computed in O(n) time, which leads to overall time complexity
of O(hn).

The problem can be extended as; put mirrors inside the polygon, a point
with a limited visibility area, find some edges which can give the point a specific
vision or different visions and so on.
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Abstract. A sliding camera inside an orthogonal polygon P is a point
guard that travels back and forth along an orthogonal line segment γ
in P . The sliding camera g can see a point p in P if the perpendicular
from p onto γ is inside P . In this paper, we give the first constant-
factor approximation algorithm for the problem of guarding P with the
minimum number of sliding cameras. Next, we show that the sliding
guards problem is linear-time solvable if the (suitably defined) dual graph
of the polygon has bounded treewidth. On the other hand, we show that
the problem is NP-hard on orthogonal polygons with holes even if only
horizontal cameras are allowed. Finally, we study art gallery theorems
for sliding cameras, thus, give upper and lower bounds in terms of the
number of sliding cameras needed relative to the number of vertices n.

1 Introduction

Let P be a (not necessarily orthogonal) polygon with n vertices. The art gallery
problem, posed by Victor Klee in 1973 [25], asks for the minimum number of
point guards required to guard P , where a point guard g sees a point p ∈ P
if the line segment connecting g to p lies inside P . Chvátal [7] was the first to
answer the question by giving the tight bound �n/3� on the number of point
guards that are needed to guard a simple polygon with n vertices. For polygons
with holes, Hoffmann et al. [15] proved that �(n+h)/3� point guards are always
sufficient and occasionally necessary, where h is the number of holes. For orthog-
onal polygons, it was proved multiple times [16,23,25] that �n/4� point guards
are always sufficient and sometimes necessary to guard the interior of a simple
orthogonal polygon with n vertices.

Finding the minimum number of guards is NP-hard on simple polygons [22],
even on simple orthogonal polygons [28] or monotone polygons [21]. A number
of results concerning approximation algorithms are also known [13,20,21].
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Fig. 1. (a) An orthogonal polygon P that can be guarded with two orthogonal mobile
guards, but requires Θ(n) sliding cameras to be guarded since no two crosses can be seen
by one sliding camera. (b) Sliding camera s sees the rising-shaded subpolygon of P . We
also show parts of the pixelation induced by rays from reflex vertices {u, v, w, x, y, z},
and the cross c whose supporting horizontal slices is downward shaded. Segments s1
and s2 are guard-segments.

Mobile Guards and Sliding Cameras. A mobile guard is a point guard that
travels along a line segment γ inside P . Guard γ can see a point p in P if and
only if there exists a point g ∈ γ such that the line segment pg lies entirely
inside P . If the line segment γ must be orthogonal, then we call it an orthogonal
mobile guard. Moreover, if the line segment pg is required to be perpendicular
to γ, then we call γ a sliding camera. Note that an orthogonal mobile guard
travelling along γ may see a larger area of P than a sliding camera travelling
along γ, see also Fig. 1(a). The notion of mobile guards was introduced by Avis
and Toussaint [2]. O’Rourke [26] proved that �n/4� (not necessarily orthogonal)
mobile guards are sufficient for guarding arbitrary polygons with n vertices. For
orthogonal polygons with n vertices, �(3n + 4)/16� mobile guards are always
sufficient and sometimes necessary [1].

In this paper we study the Minimum Sliding Cameras (MSC) problem, i.e.,
we want to guard an orthogonal polygon P with the minimum number of slid-
ing cameras. We also consider the variant Minimum Horizontal Sliding Cameras
(MHSC) where only horizontal cameras are allowed. These problems were intro-
duced by Katz and Morgenstern [18], who proved that MHSC can be solved
in polynomial time in the special case where the polygon is simple (has no
holes). It was shown later that MSC is NP-hard in polygons with holes [12,24];
NP-hardness in simple polygons is open. Durocher et al. [11] claimed a (3.5)-
approximation algorithm for MSC problem on simple orthogonal polygons, but
this was later discovered by the authors to be incorrect (private communication).
For the special case of monotone orthogonal polygons, Katz and Morgenstern [18]
gave a 2-approximation algorithm, which was later improved by de Berg et al. [4]
to a linear-time exact algorithm.

Our Results. In this paper, we give hardness results and algorithms for both MSC
and MHSC. Specifically, we give two (conceptually very different) algorithms.
The first works by constructing a small ε-net for the hitting set problem that
naturally arises from MSC. This gives then an O(1)-approximation algorithm
for the MSC problem on orthogonal polygons. Note that no constant-factor
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approximation algorithm was known previously, and, as opposed to previous
attempts at such approximation-algorithms [11], our algorithm works even on
orthogonal polygons with holes. The second algorithm uses a tree-decomposition
approach. We show that if the dual graph of the so-called pixelation of the
polygon has bounded treewidth, then MSC can be solved in polynomial time. In
particular this holds in so-called thin polygons that have no holes.

Both the above approaches also work (and become even simpler) for MHSC
where only horizontal cameras are allowed. We also establish NP-hardness of
MHSC for polygons with holes. The same proof also works for MSC and is dif-
ferent, and perhaps simpler, than the previous NP-hardness proof for MSC [12].

Finally, we consider art gallery theorems for sliding cameras, i.e., theorems
that bound the number of guards relative to the number of vertices. We present
the following results for an orthogonal polygon P with n vertices: (i) �(3n +
4)/16� sliding cameras are always sufficient and sometimes necessary to guard
P entirely, (ii) �n/4� only-horizontal sliding cameras are always sufficient and
sometimes necessary to guard P , and (iii) if sliding cameras are not allowed to
intersect each other, then �(n + 1)/5� cameras are always sufficient to guard P .

Due to space constraints, some proofs will be given in the full version of this
paper.

2 Preliminaries

Throughout the paper, P denotes an orthogonal polygon with n vertices. The
horizontal (respectively vertical) segmentation of P consists of extending a hor-
izontal (vertical) ray inward from any reflex vertex of P until it hits another
vertex or edge. The rectangles in the resulting partition of P are called the hor-
izontal (vertical) slices of P . Each slice can be represented by the horizontal
(vertical) line segment that halves the slice; we call these the slice-segments and
denote them by Σ.

The pixelation of P is obtained by doing both the horizontal and the vertical
segmentation of P . The resulting rectangles are called pixels. The pixelation
may well have Θ(n2) pixels. Notice that the pixels are in 1-1-correspondence
with pairs of slices that cross. We can hence identify each pixel with a cross c,
which is the point where the two slice-segments σH and σV of these two slices
cross. We say that σH and σV support c. Denote the set of crosses by X.

A sliding camera γ is a horizontal or vertical line segment that is inside P .
(We will frequently omit “sliding”, as we study no other type of camera.) The
region visible from γ is the set of all points p such that the perpendicular from
p to γ is inside P . Note that doing a parallel shift (i.e., translating a horizontal
camera vertically or a vertical camera horizontally) does not change its visibility
region for as long as we stay inside P . We may hence assume that any camera
runs along pixel-edges. We may also restrict our attention to cameras that are
maximal line segments within P (all others would see a subset). Let Γ be the
set of guard-segments which are maximal horizontal and vertical line segments
within P that run along pixel edges. See Fig. 1(b) for an illustration.
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The following lemma (whose proof is given in the full version of the paper) is
a straightforward re-formulation of what guarding means, but casts the problem
into a discrete framework that will be crucial later.

Lemma 1. A set S of k sliding cameras guards polygon P if and only if there
exists a set of k guard-segments S′ ⊆ Γ such that for every cross c ∈ X, at least
one of the slice-segments that support c is intersected by some γ ∈ S′.

We say that a guard-segment γ hits a cross c if and only if γ intersects one of
the slice-segments supporting c. Lemma 1 can then be re-stated as that S′ hits all
crosses. In fact, the algorithms we design later will allow further restrictions: we
can specify exactly which crosses should be hit and which cameras may be used
as guards. So assume we are given some X ′ ⊆ X and some Γ ′ ⊆ Γ . The (X ′, Γ ′)-
sliding cameras problem consists of finding a minimum subset of cameras in Γ ′

that hit all crosses in X ′. Note that with a suitable choice of Γ ′ this encompasses
both MSC and MHSC.

3 Approximation Algorithms via ε-Nets

In this section, we give approximation algorithms for MSC and MHSC that are
based on phrasing the problem as a hitting set problem and then using ε-nets.
We do this first for MHSC, and then later re-use those ε-nets for MSC.

Hitting Sets. A set system is a pair R = (U ,S), where U is a universe set of
objects and S is a collection of subsets of U . A hitting set for the set system
(U ,S) is a subset of U that intersects every set in S.

For the (X ′, Γ ′)-sliding camera problem, we construct a set system as follows.
Let U = Γ ′ be all potential sliding cameras. For each cross c ∈ X ′ that needs to
be hit, define Sc to be all the cameras in U that hit c, and let S be the collection
of these sets. From the definitions, finding a hitting set for this set system is the
same as solving the (X ′, Γ ′)-sliding-camera problem.

An ε-net for a set system R = (U ,S) is a subset N of U such that every set S
in S with size at least ε · |U| has a non-empty intersection with N . Brönnimann
and Goodrich [6] showed that ε-nets can be used to derive approximation algo-
rithms as follows. Define a net finder to be a (poly-time) algorithm that, for a
given set system R = (U ,S) and any given r > 0, computes an (1/r)-net of R
whose size is at most s(r) for some function s. Also, a verifier is a poly-time
algorithm that, given a subset H ⊂ U , states (correctly) that H is a hitting set,
or returns a non-empty set R ∈ S such H does not hit S.

Lemma 2 [6]. Let R be a set system that admits both a poly-time net finder and
a poly-time verifier. Then there is a poly-time algorithm that computes a hitting
set of size at most s(4 · OPT), where OPT stands for the size of an optimal
hitting set, and s(r) is the size of the (1/r)-net.
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Thus, the lemma gives an O(1)-approximation algorithm for as long as we
can find an ε-net whose size is O(1/ε). (Clearly the hitting set problems defined
by MHSC and MSC both have a polynomial-time verifier.)

An ε-net for the MHSC Problem. We now show the existence of such a small
ε-net for MHSC. For this, we need (yet another) reformulation that simplifies
the problem.

Lemma 3. A set S of horizontal guard-segments hits all crosses in a set U ′ if
and only if S intersects all the vertical slice-segments that support crosses in U ′.

Proof. If camera γ hits cross c, then it intersects either its horizontal supporting
slice-segment σH or its vertical supporting slice-segment σV . But if γ intersects
σH , then since both are horizontal and γ is maximal we have σH ⊆ γ, in case
of which γ also contains point c and therefore intersects σV . So either way γ
intersects σV . ��

For MHSC, it hence suffices to represent every cross by its vertical slice-
segment and so reduce the problem to the following: Given a set of horizontal
line segments H and a set of vertical line segments V, find a minimum set S ⊆ H
such that every line segment in V is intersected by S. This problem is also known
as the Orthogonal Segment Covering problem and was shown to be NP-complete
[17]. We hence have:

Corollary 1. MHSC reduces to the Orthogonal Segment Covering problem.

The following lemma shows that the Orthogonal Segment Covering problem
has a small ε-net; by the above this immediately implies a small ε-net for the
hitting set problem for MHSC.

Lemma 4. The Orthogonal Segment Covering problem has a (1/r)-finder with
size-function s(r) ∈ O(r).

Proof. Here, we sketch the proof; the full proof appears in the full version of the
paper. Observe that a horizontal line segment [x, x′]× y intersects a vertical line
segment a × [b, b′] if and only if the point (x, y, x′) lies in the range (−∞, a] ×
[b, b′] × [a,∞). The union of these ranges forms a geometric object that (as one
can argue) has complexity O(n). Clarkson and Varadarajan [8] showed that ε-
nets of small size can be found for hitting set problems in such a geometric
object, using random sampling. ��

Combining the above results gives:

Theorem 1. There exists a poly-time O(1)-approximation algorithm for the
Orthogonal Segment Covering problem and the MHSC problem.

An ε-net for the MSC Problem. Using the ε-net for MHSC, we can easily find
one for MSC and hence have an approximation algorithm for this as well.
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Theorem 2. There exists a poly-time O(1)-approximation algorithm for the
MSC problem.

Proof. Fix a polygon P and consider the (X ′, Γ ′)-sliding camera problem for P .
It suffices to show that for any r > 0 there exists a 1/r-net T of size O(r) for the
corresponding hitting set problem R. Let TH be a 1/2r-net for the hitting set of
MHSC for P,X ′ and the horizontal cameras in Γ ′. Let TV be a 1/2r-net for the
hitting set of MVSC (i.e., when we want to guard the polygon using only vertical
sliding guards) for P,X ′ and the vertical cameras in Γ ′. Set T := TH ∪ TV . We
claim that T is a 1/r-net for R.

So assume some set Sc in the hitting-set problem satisfies |Sc| ≥ |U|/r. Trans-
lating back, this means that some cross c ∈ X ′ is hit by at least |Γ ′|/r guard-
segments. Assume w.l.o.g. that at least half of these hitting guard-segments are
horizontal. Then the vertical slice-segment σV that supports c intersects at least
|Γ ′|/2r horizontal guard-segments in Γ ′. By definition of a (1/2r)-net, therefore
there is a line segment γ ∈ TH that intersects σV . Therefore γ ∈ T hits c as
required. ��

4 Polygons with Bounded-Treewidth Pixelation

Recall that the pixelation of a polygon is obtained by cutting the polygon hori-
zontally and vertically at all reflex vertices. The dual graph D of the pixelation
is obtained by interpreting the pixelation as a planar graph and taking its weak
dual (i.e., dual graph but omit the outer face). Thus, D has a vertex for every
pixel of P , and two pixels are adjacent in D if and only if they share a side.
We now show how to solve MSC and MHSC under the assumption that D has
small treewidth. (Our approach was inspired by a similar result for a different
guarding problem [5], but the construction here is simpler.)

2-Dominating Set in an Auxiliary Graph. By Lemma 1, the (X ′, Γ ′)-sliding cam-
era problem is equivalent to finding a set of guard-segments that hits at least one
supporting slice-segment of each cross. This naturally gives rise to an auxiliary
graph H as follows: The vertices of H are X ′ ∪ Σ ∪ Γ ′. For any c ∈ X ′, add an
edge from c to each of its two supporting slice-segments. For any guard-segment
γ, add an edge to any slice-segment that it intersects. From Lemma 1, and since
there are no edges from X ′ to Γ ′, one immediately sees the following:

Lemma 5. The minimum guard set for the (X ′, Γ ′)-sliding-cameras problem
corresponds to a subset S ⊆ Γ ′ of vertices in H such that all vertices in X ′ are
within distance 2 from S.

The above lemma means that the sliding-camera problem reduces to a graph-
theoretic problem that is quite similar to the 2-dominating set (the problem of
finding a set S such that all other vertices have distance at most 2 from S);
the only change is that we restrict which vertices may be used for S and which
vertices must be within distance 2 from S. 2-dominating set is an NP-hard
problem in general, but is easily shown to be polynomial in graphs that have
bounded treewidth, which we define next.
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Treewidth. A tree decomposition T = (I,X ) of a graph G = (V,E) consists of
a tree I and an assignment X : V (I) → 2V of bags of vertices of G to nodes
of I such that the following holds: (a) for every vertex v ∈ V , the set of bags
containing v forms a non-empty connected subtree of I, (b) for every edge e ∈ E,
at least one bag contains both ends of e. The width of a tree decomposition is
the maximum bag-size minus 1, and the treewidth tw(G) of a graph G is the
smallest possible width over all tree decompositions of G. In particular, a tree
has treewidth 1. We prove the following lemma in the full version of the paper.

Lemma 6. Let P be a polygon whose dual graph D of the pixelation has
treewidth at most k. Then for any choice of X ′ ⊆ X and Γ ′ ⊆ Γ , the auxil-
iary graph H has treewidth at most 7k + 6.

To apply this treewidth-result, we must show that the problem can be
expressed as a suitable logic-formula. (See e.g. [10, Chap. 7.4] for more details.) In
particular, the following formula will do: A set S of guard-segments that guards
X ′ satisfies S ⊆ Γ ′ ∧ ∀u ∈ X ′ (∃σ ∈ Σ adj(u, σ) ∧ ∃γ ∈ S adj(σ, γ))
(where adj is a logic-formula to encode that the two parameters are adjacent
in H). Since H has bounded treewidth, we can find the smallest set S that sat-
isfies this (or report that no such S exists if Γ ′ was too small) in linear time
using Courcelle’s theorem [9]. Putting everything together, we hence have:

Theorem 3. If P is a polygon whose dual graph has bounded treewidth, then
the (X ′, Γ ′)-sliding-cameras problem can be solved in linear time.

We give one application of this result. A thin polygon is a polygon for which
no pixel-corner is in the interior. MSC and MHSC are NP-hard even for thin
polygons with holes (as we will see in the next subsection). However, for thin
polygons without holes, the dual graph of the pixelation is clearly a tree, hence
has bounded treewidth, and both MSC and MHSC can be solved in linear time.

Corollary 2. If P is a thin polygon without holes, then MSC and MHSC can
be solved in linear time.

This result is not directly comparable to existing results [4,19]: it is stronger
than these since it works for MSC and does not require monotonicity, but it
is weaker than these since it requires a thin polygon. A natural question is
whether this result for bounded treewidth could be used to generate a PTAS,
by splitting the polygon (hence the planar graph) suitably and applying the
“shifting technique” (see [3] or [10, Chap. 7.7.3]). We have not been able to
develop such a PTAS, principally because the cameras are not “local” in the sense
that they can guard pixels that have arbitrarily large distance in D. Creating a
PTAS (or proving APX-hardness) hence remains an open problem.

5 NP-Hardness of MHSC

Recall that the MHSC problem is polynomial-time solvable on simple orthogonal
polygons [18]. We show in this section that the problem becomes NP-hard on
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Fig. 2. The NP-hardness construction. Vertex-bars are red (dotted). Edge-strips are
green (falling pattern). At each vertex-bar we attach an “elephant-gadget” (gray) that
requires a sliding camera of its own (dashed) to guard the point inside the “trunk”.
(Color figure online)

orthogonal polygons with holes. We note that the hardness proof of Durocher
and Mehrabi [12] does not apply to the MHSC problem because they require
both horizontal and vertical sliding cameras.

The reader may recall that we showed that MHSC reduces to the Orthogonal
Segment Covering problem, which is known to be NP-hard [17]. However, this
does not prove NP-hardness of MHSC, because not every instance of Orthogonal
Segment Covering can be expressed as MHSC. Instead we give a different reduc-
tion from Minimum Vertex Cover on max-deg-3 planar graphs. This problem
(which is NP-hard [14]) consists of, given a planar graph G = (V,E) with at
most 3 incident edges at each vertex, find a minimum set C ⊆ V such that for
every edge at least one endpoint is in C.

Given a max-deg-3 planar graph G, we first compute a bar visibility repre-
sentation of G, that is, we assign to each vertex a horizontal line segment (called
bar) and to each edge (v, w) a vertical strip of positive width that joins the cor-
responding bars and that is disjoint from all other strips. It is well-known that
every planar graph has such a representation (see e.g. Tamassia and Tollis [29]),
and it can be found in linear time. By making strips sufficiently thin, we can
ensure that no two strips of edges occupy the same x-range. From this visibility
representation, we can construct in polynomial time an orthogonal polygon P
such that the following holds (see Fig. 2; the proof of the following lemma will
appear in the full version of the paper):

Lemma 7. The following are equivalent: (i) G has a vertex cover of size k; (ii)
P can be guarded with k +3N horizontal sliding cameras; (iii) P can be guarded
with k + 3N sliding cameras.

The constructed polygon is thin. NP-hardness of guarding problems in thin
polygons (albeit with other models of guards and visibility) have been studied
before [5,30]. The NP-hardness holds for both MSC and MSHC; NP-hardness
of MSC was known before [12], but the constructed polygon was not thin. We
summarize:

Theorem 4. MSC and MHSC is NP-hard on thin orthogonal polygons with
holes.
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6 Art Gallery Theorems

We now consider the art gallery theorems for the MSC and MHSC problems;
that is, we give tight bounds, depending on n, on the number of sliding cameras
needed to guard an orthogonal polygon P with n vertices.

Recall that Aggarwal showed a tight bound �(3n + 4)/16� for the number of
mobile guards necessary and sufficient to guard P [1]. Closer inspection reveals
that the lower bound construction (see Fig. 3) actually works for sliding cameras,
since no two of the (3n+4)/16 pixels marked with a cross can be guarded by one
camera. The upper bound, indeed, also works for sliding guards. We very briefly
review the approach taken in [1]. The idea is to guard first a small portion of
P using one or two mobile guards, cutting a guarded region out of P , and then
guarding the rest of P by an induction hypothesis. There are numerous cases,
but in all of them one can establish that indeed a sliding camera would have
achieved the same as the mobile guard used. So we have the following result.

Theorem 5 (Based on [1]). Given a simple orthogonal polygon P with n ver-
tices, �(3n+4)/16� sliding cameras are always sufficient and sometimes necessary
to guard P entirely.

Fig. 3. (Left) A polygon that requires (3n + 4)/16 cameras. (Right) A polygon that
requires n/4 horizontal cameras.

For the MHSC problem, Fig. 3 shows a polygon that requires �n/4� horizontal
sliding cameras. We show in the full version of the paper that this is tight.

Theorem 6. Given an orthogonal polygon P with n vertices, �n/4� horizon-
tal sliding cameras are always sufficient and sometimes necessary to guard P
entirely.

Non-crossing Sliding Cameras. There are cases in the upper bound approach
of Aggarwal (Theorem 5 and [1]) in which the trajectories of mobile guards
intersect. We show using a different approach that �(n + 1)/5� non-crossing
sliding cameras are always sufficient to guard a simple orthogonal polygon P
with n vertices that is in general position in the sense that no two vertical edges
of P have the same x-coordinate.
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Recall that earlier we considered the dual graph of the pixelation of a polygon
P . In this section, we again consider a dual graph, but this time of one of the
segmentations of P . Thus, consider (say) the vertical segmentation obtained after
extending vertical rays from all reflex vertices. Interpret the segmentation as a
planar graph, and let G be its weak dual graph obtained by defining a vertex for
every vertical rectangle and connecting two rectangles if and only if they share
(part of) a side. If P is simple, then this dual graph is a tree T ; we know that
|T | = n/2 − 1 since P is in general position [27]. In the following, we show that
�2/5 · |T | + 3/5� non-crossing sliding cameras are sufficient to guard P entirely,
which therefore gives the desired bound.

We partition T into a set of disjoint subtrees as follows. Root T at a leaf. Let
u be the lowest node in T that has degree two (i.e., u has only one child) and
u is not the parent of a leaf. Let T (u) be the subtree rooted at u, and partition
T − T (u) recursively. Let T0 be the tree remaining in the base case (when no
u exists). T0 may have just a single node; this will be treated separately. Any
other subtree has the form T (u) for some node u and at least 3 nodes, and we
will argue now that we can guard it with at most 2/5 · |T (u)| cameras.

u

Y

X

u

Fig. 4. An example of tree T (u).

To guard one such T (u), we con-
sider it to consist of the following com-
ponents (see also Fig. 4): (i) Vertex
u is the root of T (u), (ii) Let Y be
all those leaves of T (u) whose parent
have only one child, and set y = |Y |,
(iii) Let X = T (u) − {u} − Y and set
x = |X|. Since u had only one child
and Y consists of leaves, X forms a
tree. By choice of u and Y , no inte-
rior node of X has degree 2. One can show that X can have at most one vertex
of degree 4 since it corresponds to an orthogonal polygon (we formally prove this
in the full version). Hence, X forms a tree that is a rooted binary tree except
that one node may have three children. Thus X has at most x/2 + 1 leaves, and
y ≤ x/2 + 1. The following is shown in the full version:

Lemma 8. Let c be the node of X ∪ {u} whose corresponding rectangle R(c)
has the maximum height. Let s be a maximal vertical line segment inside R(c).
Then s guards all rectangles corresponding to X ∪ {u}.

Since every leaf in Y can be covered using a single sliding camera, the sub-
polygon corresponding to T (u) can hence be guarded with y+1 sliding cameras.
In fact, one can show that y sliding cameras suffice if y is close to the maximum,
i.e., y = x/2+1 or y = (x+1)/2 (we formally prove this in the full version of the
paper). Elementary calculations show that with this we use at most 2/5 · |T (u)|
cameras for T (u) if x ≥ 6. For x < 6, the only cases where the number of cameras
is too large is (x, y) = (1, 1) or (4, 2) which can be dealt with by analyzing their
structure directly. Finally tree T0 may have an empty X, it then can always be
guarded with 1 ≤ 2/5 · |T0| + 3/5 cameras. We hence have:
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Theorem 7. Given a simple orthogonal polygon P in general position with n
vertices, �(n + 1)/5� sliding cameras are always sufficient to guard P such that
no two sliding cameras intersect each other.

7 Conclusion

In this paper, we studied the problem of guarding an orthogonal polygon with the
minimum number of sliding cameras. We gave the first constant-factor approx-
imation algorithm for this problem, which works even if the polygon has holes.
We also showed how to solve the problem optimally if the polygon is thin and
has no holes, and we gave art-gallery-type results bounding the number of sliding
cameras that are always sufficient and sometimes required. The most interest-
ing remaining question is whether guarding an orthogonal polygon with sliding
guards is polynomial if the polygon has no holes. Also, the factor in our O(1)-
approximation algorithm (which we did not compute since it is hidden in the
machinery of [6,8]) is likely large. Can it be improved? Even better, could we
find a PTAS or is the problem APX-hard?
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Abstract. Given two simple polygons P and Q in the plane, we study
the problem of finding a placement ϕP of P such that ϕP and Q are
disjoint in their interiors and the convex hull of their union is minimized.
We present exact algorithms for this problem that use much less space
than the complexity of the Minkowski sum of P and Q. When the orien-
tation of P is fixed, we find an optimal translation of P in O(n2m2 log n)
time using O(nm) space, where n and m (n ≥ m) denote the number of
edges of P and Q, respectively. When we allow reorienting P , we find an
optimal rigid motion of P in O(n3m3 logn) time using O(nm) space. In
both cases, we find an optimal placement of P using linear space at the
expense of slightly increased running time. For two polyhedra in three
dimensional space, we find an optimal translation in O(n3m3 logn) time
using O(nm) space or in O(n3m3(m + log n)) time using linear space.

1 Introduction

Given two simple polygons P and Q in the plane, we study the bundling problem
of finding a placement ϕP of P such that ϕP ∪ Q is contained in a smallest
possible convex region while ϕP and Q are disjoint in their interiors. We consider
minimizing the area of the convex hull of ϕP ∪ Q under either translations or
rigid motions.

The bundling problem is related to the packing problem in which the shape
of a container is predefined (such as a disk, a square, or a rectangle) and we
aim to find a smallest container for input objects while the input objects remain
disjoint in their interiors. Packing problems have been studied for a long time.
It dates back to 1611 when Kepler studied sphere packing in three-dimensional
Euclidean space [10]. Sugihara et al. [14] lately studied a disk packing problem
that finds a smallest enclosing circle containing a set of disks in the plane and
proposed an O(n4)-time heuristic algorithm, where n is the number of disks.

For a set of polygons in the plane, Milenkovic [12] studied the problem of
packing them into a given axis-parallel rectangle under translations. He pro-
posed an O(nk−1 log n)-time algorithm using linear programming techniques,
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where k is the number of given polygons and n is the maximum complexity of
each polygon. Later, Alt and Hurtado [5] studied an optimization version of the
problem for two convex polygons with n vertices in total to minimize the area
or the perimeter of the container rectangle. They presented a near linear time
algorithm for translations and an O(n3)-time algorithm for rigid motions. This
problem is known to be NP-hard for arbitrary numbers of input polygons even
if the polygons are rectangles [7].

In the bundling problem, there is no predefined shape of the container as
long as it is convex and the goal is to find placements of input objects such that
they are disjoint in their interiors and the convex hull of their union is minimized
with respect to the area or the perimeter. For two convex polygons, an optimal
translation and an optimal rigid motion of P can be found in O(n) time using
O(n) space [11] and in O(n3) time using O(n) space [15], respectively, where n is
the total number of vertices of P and Q. In both cases, they use the property that
in every optimal placement the polygons are in contact along their boundaries.
Later, Ahn and Cheong presented a near linear time algorithm that returns a
rigid motion achieving a factor (1 + ε) to the optimum for two convex polygons
under rigid motion [1]. For two convex polytopes in 3 or higher dimensional
space, Ahn et al. [2,3] showed an example of two convex polytopes for which no
optimal translation aligns them to be in contact. They presented an algorithm
that returns an optimal translation for two convex d-polytopes with n vertices
in total in O(n� d

2 �(d−3)+d) time using O(n� d
2 �(d−3)+d) space with respect to the

volume or the surface area of their convex hull.
For two simple polygons P and Q with n and m vertices, respectively, in the

plane, there always exists an optimal translation (and an optimal rigid motion)
of P that aligns the polygons to be in contact. In other words, there is an
optimal translation lying on the boundary of the Minkowski sum of −P and Q.
(We provide a formal proof for this claim in the paper.) The Minkowski sum
of P and Q has complexity Θ(n2m2) and it can be computed in O(n2m2 log n)
time [6,9].

Our Results. We present algorithms for this problem using much less space than
the complexity of the Minkowski sum. When the orientation of P is fixed, we find
an optimal translation of P in O(n2m2 log n) time using O(nm) space, where
n and m (n ≥ m) denote the number of edges of P and Q, respectively. When
we allow reorienting P , we find an optimal rigid motion of P in O(n3m3 log n)
time using O(nm) space. In both cases, we find an optimal placement of P
using only O(n) space at the expense of slightly increased running time. For
three dimensional space and two polyhedra, we find an optimal translation in
O(n3m3 log n) time using O(nm) space. We summarize our results in Table 1.

Throughout the paper, we use V (R) and E(R) to denote the set of vertices
and the set of edges of a polygon R, respectively. In three dimensional space, we
use F (R) to denote the set of faces of a polyhedron R. For a compact set S in the
plane (or three dimensional space), we use conv(S) to denote the convex hull of
S, and ‖conv(S)‖ to denote the area (volume) of conv(S). Note that we mainly
focus on minimizing the area (volume) of the convex hull in the following.
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Table 1. Time and space complexities of our algorithms.

Algorithm Time Space

Under translations in 2D O(n2m2 logn) O(nm)

O(n2m2(m + log n)) O(n)

Under rigid motions in 2D O(n3m3 logn) O(nm)

O(n3m3(m + log n)) O(n)

Under translations in 3D O(n3m3 logn) O(nm)

O(n3m3(m + log n)) O(n)

The similar algorithm works for minimizing the perimeter (surface area) since
the perimeter (surface area) function is also piecewise linear under translations,
and piecewise trigonometric under rigid motions.

2 Minimizing the Convex Hull Under Translations

Let P and Q denote two simple polygons in the plane with n and m (n ≥ m)
vertices, respectively. Let P + τ denote the translated copy of P by τ ∈ R

2, that
is, P + τ = {p + τ | p ∈ P}. We explain how to find an optimal translation
τ∗ such that the area ‖conv((P + τ∗) ∪ Q)‖ is minimized while P + τ∗ and Q
are disjoint in their interiors. It is known that the area function is convex if
the polygons are allowed to intersect [1]. We will show how to find an optimal
translation using this convexity.

For two simple polygons P and Q, we call an edge of conv(P ∪ Q) a bridge if
it has an endpoint at a vertex of P and an endpoint at a vertex of Q.

Lemma 1. Any two disjoint simple polygons in the plane have zero or two
bridges in their convex hull.

Proof. The vertices of conv(P ∪Q) are from V (P ) and V (Q) and each bridge has
one endpoint at a vertex of V (P ) and the other at a vertex of V (Q). Therefore,
there are even number (including 0) of bridges on conv(P ∪ Q).

Assume to the contrary that there are more than two bridges on the convex
hull. Let pi, qi for 1 ≤ i ≤ 4 be four bridges in conv(P ∪ Q) for pi ∈ V (P )
and qi ∈ V (Q). Since P is connected, conv(P ∪ Q) \ P consists of at most
four connected components. One connected component has at most two qi’s for
which piqi is a bridge. Since Q is connected, at least one boundary chain of Q
connecting two qi’s crosses P . This implies that the polygons overlap in their
interiors. See the Fig. 1.

For a pair of a vertex v ∈ V (P ) and an edge e ∈ E(Q) (or a vertex v ∈ V (Q)
and an edge e ∈ E(P )), let Tve(v, e) denote the set of all translations τ of P
that align v on e. We call such a pair a vertex-edge pair. For a pair of a vertex
v ∈ V (P ) and an edge h ∈ E(conv(Q))\E(Q) (or a vertex v ∈ V (Q) and an edge
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q1

p2

q2 q3

p3

p1

P

conv(P ∪ Q)

p4

q4

Fig. 1. Four bridges p1q1, p2q2 and p3q3 and p4p4 on the boundary of conv(P ∪Q). It is
impossible to connect the four qi’s in a closed curve in conv(P ∪Q) without crossing P .

h ∈ E(conv(P )) \ E(P )), let Tvh(v, h) denote the set of all translations τ of P
that align v on h. We call such a pair a vertex-hull-edge pair. Note that Tve(v, e)
(and Tvh(v, h)) is connected and contained in a line in the translation space R2. If
Tve(v, e) (and Tvh(v, h)) is not degenerate, the line is uniquely defined. Let �(v, e)
denote the supporting line of Tve(v, e). Then �(v, e) intersects other supporting
lines determined by vertex-edge pairs and vertex-hull-edge pairs. We call the
intersection of two supporting lines a double-contact.

Lemma 2. There is an optimal translation τ∗ and a vertex-edge pair (v, e) such
that τ∗ lies in Tve(v, e).

Proof. Assume that there is an optimal translation τ such that P + τ and Q are
apart. If there is no bridge in conv((P +τ)∪Q), then either P +τ is contained in a
connected component of conv(Q)\Q or Q is contained in a connected component
of conv(P ) \ P . In both cases, we translate P + τ along a direction parallel to
the convex-hull edge of the component without increasing the area until the two
polygons become in contact with a vertex-edge pair.

If there are two bridges in conv((P + τ) ∪ Q), then we can always translate
P in a direction parallel to one of the bridges such that the area of the convex
hull decreased, which contradicts to the optimality of τ .

By using the two lemmas above, we give a characterization of an optimal
placement.

Lemma 3. There is an optimal placement τ∗ that lies at an intersection of two
supporting lines in the translation space R

2. Moreover, τ∗ lies in Tve(v, e) of a
vertex-edge pair (v, e).

Proof. Consider two disjoint simple polygons P and Q that are in contact at a
vertex v of P and an edge e of Q. By Lemma 1, there are zero or two bridges, say
plql and prqr (pl, pr ∈ V (P ) and ql, qr ∈ V (Q)), in the convex hull of P and Q.
Imagine that P is translated by τ while P and Q are in contact with the vertex-
edge pair (v, e). If there is no bridge, the area function f(τ) = ‖conv((P +τ)∪Q)‖
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is constant. Otherwise, the function is determined by the quadrilateral plprqrql

because the area of each component of conv((P + τ) ∪ Q) \ plprqrql remains the
same during the translation as long as the combinatorial structure of conv((P +
τ) ∪ Q) remains the same. Moreover, the combinatorial structure changes when
passing Tvh(v′, h). Note that the area of quadrilateral plprqrql changes linearly
as τ changes. So the area function is non-increasing in one of the two directions
parallel to �(v, e). Therefore the area is minimized at the intersection of two
supporting lines one of which is determined by a vertex-edge pair.

Based on the lemma above, our algorithm searches, for each supporting line
determined by a vertex-edge pair, the intersections with other supporting lines,
and finds an intersection realizing the minimum area as follows. For each vertex-
edge pair (v, e), we compute the intersections on �(v, e) with other supporting
lines and sort them along �(v, e) in O(nm log n) time. Then we process the trans-
lations τ , each of which is at the intersection of �(v, e) and other supporting line,
one by one in order and compute ‖(P + τ) ∪ Q‖ if P + τ and Q are disjoint in
their interiors.

Disjointness Test. We check whether the two polygons are disjoint or not by
counting the number c of the connected components in the overlap of the poly-
gons for translations of P along �(v, e) for a vertex-edge pair (v, e). We consider
the following four types of events that occur during the translation of P along
�(v, e). For ease of description, we enumerate the event types with respect to
vertices of P in the following. There are another four event types with respect
to vertices of Q, and they can be defined analogously.

– Type (a): A convex vertex v of P enters into Q and a new connected component
appears in the overlap locally around v. See Fig. 2(a).

– Type (b): A convex vertex v of P leaves Q and a connected component of the
overlap disappears locally around v. See Fig. 2(b).

– Type (c): A reflex vertex v of P leaves Q and a connected component is sub-
divided into two connected components in the overlap around v. See Fig. 2(c).

– Type (d): A reflex vertex v of P enters into Q and two distinct connected
components in the overlap are merged into one around v. See Fig. 2(d).

The counter c is initialized to 0 in the beginning. During the translation along
the supporting line determined by a vertex-edge pair, it increases by 1 for each
event of type (a) or (c), and decreases by 1 for each event of type (b) or (d). Since
the number of connected components in the overlap of P +τ and Q changes only
for events of the four types above, P + τ and Q are disjoint if and only if c = 0.

For a vertex-edge pair Tve(v, e) for any v and e, it may contain a double-
contact that aligns the two polygons to be disjoint in their interiors, which we
call a feasible double-contact. We apply the concept of the convolution of the
two polygons [8,13] to find all feasible double-contacts as follows. A state x is a
pair of a position ẋ and a direction x. A move is a set of states with constant
direction and position varying along a line segment parallel to the direction.
A turn is a set of states with constant position and direction varying along an
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arc of the circle of directions. A polygonal trip is a continuous sequence of moves
and turns. A polygonal trip is closed if it starts and ends at the same state.
A polygonal tracing is a collection of closed polygonal trips.

Given a simple polygon P , we denote by P̂ the counter-clockwise tracing of
the boundary of P . Then the convolution of P̂ and Q̂ is defined as follows. If p
and q are states in P̂ and Q̂, respectively, having the same direction p = q, the
state c = (ṗ + q̇,p) is a state of the convolution. Denote it as ∗.

Every vertex-edge pair containing a feasible double-contact is covered by the
convolution. Therefore, it is sufficient to test the disjointness of the two polygons
on the convolution by following lemma.

Lemma 4. The convolution of two polygons contains all vertex-edge pairs con-
taining a feasible double-contact.

Proof. The winding number of a point x with respect to −P̂ ∗ Q̂ is the number
of connected components in (−P +x)∩Q [8]. Thus, the Minkowski sum −P ⊕Q
is the region of −P̂ ∗ Q̂ such that the winding number of a point x ∈ −P̂ ∗ Q̂ is
non-zero. By the definition of a vertex-edge pair, a vertex-edge pair containing
no feasible double-contact is a region with non-zero winding number. From this,
we know that the convolution −P̂ ∗ Q̂ covers every vertex-edge pair containing
a feasible double-contact.

v
Q

(a) (b) (c) (d)

e e ee

P P P P QvQ vQ v

Fig. 2. Four types of events with respect to vertices of P that occur during the trans-
lation of P to the right.

Evaluation of the Area. To evaluate ‖conv((P + τ) ∪ Q)‖, we obtain a canonical
triangulation Tτ of ‖conv((P +τ)∪Q)‖ as follows. Choose a point c in the interior
of Q and connecting c to all the vertices of conv((P + τ) ∪ Q) by line segments.
Then the area of convex hull ‖conv((P + τ) ∪ Q)‖ is the sum of the area of

 ∈ Tτ . To evaluate the area, we maintain an area formula for each triangle of
Tτ and their sum.

Let τ1 and τ2 be two translations corresponding to two adjacent double-
contacts on a supporting line of a vertex-edge pair. Assume that we have just
processed τ1 and we are about to process τ2 and we have the set of area formula
for the triangles in Tτ1 and the sum of the formula. The translation of P from
P +τ1 to P +τ2 may cause a change to the convex hull: either an edge is split into
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two edges or two adjacent edges merge into one. This makes a constant number
of changes in Tτ1 : a triangle disappears and a new triangle appears. (See Fig. 3).
We compute Tτ2 of triangles with their formula and the sum of the formula from
Tτ1 in O(1) time using O(n) space.

c c QQ

u

w w w wu

v

e
v

e

P + τ1

P + τ2

Fig. 3. When polygon P + τ1 moves to P + τ2, two triangles, cuw and cww′, disappear
and new triangle cuw′ appears.

As mentioned above, the edges of the convolution of P̂ and Q̂ cover all vertex-
edge pairs containing a feasible double-contact. We can compute an optimal
solution by using the convolution in O(k2 log n) time using O(k) space, where k
is the size of convolution. k is shown to be O(nm) [13].

Theorem 1. Let P and Q be simple polygons with n and m vertices with n ≥ m,
respectively. We can compute a translation τ ∈ R

2 that minimizes ‖conv((P +
τ) ∪ Q)‖ satisfying int(P + τ) ∩ int(Q) = ∅ in O(n2m2 log n) time using O(nm)
space.

2.1 Using Linear Space

Now we show how to find an optimal translation using only linear space, at the
expense of slightly increased time complexity. The key idea is to compute the
double-contacts on a supporting line determined by a vertex-edge pair one by
one along the line and evaluate the area of the convex hull, instead of computing
all the intersections at once.

Finding the Next Intersection. Again, let �(v, e) denote the supporting line deter-
mined by a vertex-edge pair (v, e). We compute the double-contacts on �(v, e)
one by one as follows. We maintain a min-heap H consisting of O(n) double-
contacts. Initially, it contains, for each vertex u of P , the first intersection of
�(v, e) among the supporting lines of (u, e′) pairs for all e′ ∈ E(Q). It also con-
tains, for each edge f of P , the first intersection of �(v, e) among the supporting
lines of (v′, f) pairs for all v′ ∈ V (Q).

Our algorithm gets the first intersection τ (determined by, say (u, f)) from H,
determines whether P +τ and Q are disjoint in their interiors, and computes the
area of conv((P + τ) ∪ Q) if they are disjoint in their interiors. Then it frees the
space used for processing the intersection and inserts the next intersection (with
respect to u or to f) to H. The intersection can be computed in O(m) time by
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selection algorithm. Then we check whether a double-contact is in convolution or
not by disjointness test when we insert it to the heap, which takes O(log n) time.
Thus, we can search an optimal double-contact in convolution in O(k2(m+log n))
time.

Theorem 2. Let P and Q be simple polygons with n and m vertices with n ≥ m,
respectively. We can compute a translation τ ∈ R

2 that minimizes ‖conv((P +
τ) ∪ Q)‖ satisfying int(P + τ)) ∩ int(Q) = ∅ in O(n2m2(m + log n)) time using
O(n) space.

3 Minimizing the Convex Hull Under Rigid Motions

In this section, we allow reorienting P and show how to find an optimal rigid
motion ρ ∈ R

2 × [0, 2π) which minimizes ‖conv(ρP ∪ Q)‖.
For two vertex-edge pairs (v, e) and (v′, e′) of v, v′ ∈ V (P ) ∪ V (Q) and

e, e′ ∈ E(P )∪E(Q), let t(ve, v′e′) denote the set of all rigid motions ρ of P that
align v on e and v′ on e′ simultaneously. Similarly, for a vertex-edge pairs (v, e)
and a vertex-hull-edge pair (v′, h) of v, v′ ∈ V (P )∪V (Q), e ∈ E(P )∪E(Q), and
h ∈ E(conv(P )) ∪ E(conv(Q)), let t(ve, v′h) denote the set of all rigid motions
ρ of P that align v on e and v′ on h simultaneously. Note that t(ve, v′e′) and
t(ve, v′h) might be empty. Let �(ve, v′e′) denote the supporting curve defined by
a nonempty set t(ve, v′e′) in the motion space. See Fig. 4. The supporting curve
can be represented by a trigonometric function as follows.

The supporting curve �(ve, v′e′) determined by Tve(v, e) and Tve(v′, e′) can be
represented by one of two types of trigonometric functions depending on whether
v and v′ are from the same polygon or not. Let vl and vr be the endpoints of
edge e. Similarly, let v′

l and v′
r be the endpoints of edge e′. Let t = |vlv|

|vlvr| , where
|uu′| is the distance between two points u and u′. Assume that e is parallel to
x-axis for the sake of convenience.

Consider the case that v and v′ are from the same polygon. We use x(u) and
y(u) to denote the x- and y-coordinate of a point u. Then v′ has x-coordinate
t + |vv′| cos(θ) and y-coordinate |vv′| sin(θ), where θ is the angle between vvr

and vv′. We can derive kx(v′
l) + (1 − k)x(v′

r) = t + |vv′| cos(θ) and ky(v′
l) + (1 −

k)y(v′
r) = |vv′| sin(θ), where k is a real, 0 ≤ k ≤ 1. Then, we derive the following

formula by dispelling the parameter k,

t = x(vr) +
x(vl) − x(vr)
y(vl) − y(vr)

(|vv′| sin(θ + θv)) − |vv′| cos(θ + θv).

Next, consider the case that v and v′ are from different polygons. Let θl and θr

be the angle between vvr and vv′
l and the angle between vvr and vv′

r, respectively.
Then v′

l has x-coordinate t + |vv′
l| cos(θ + θl) and y-coordinate |vv′

l| sin(θ + θl),
and v′

r has x-coordinate t + |vv′
r| cos(θ + θr) and y-coordinate |vv′

r| sin(θ + θr).
Then, we derive the following formula similarly to the above case,

t = x(v) − |vv′
l| cos(θ + θl) − |vv′

r| cos(θ + θr)
|vv′

l| sin(θ + θl) − |vv′
r| sin(θ + θr)

(y(v) − |vv′
r| sin(θ + θr)).
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The supporting curve �(ve, v′h) corresponding to t(ve, v′h′) is also defined
analogously.

Our algorithm works similarly to the one in Sect. 2. We compute, for each
vertex-edge pair (v, e), the supporting curves with other vertex-edge pairs or
vertex-hull-edge pairs. Let Cve denote the set of the supporting curves deter-
mined by (v, e). Next, we search, for each supporting curve in Cve, the inter-
sections with other supporting curves in Cve. We do this for each vertex-pair
(v, e). Then we evaluate a local optimal on each supporting curve. Note that
the area function is also trigonometric. Hence, this function is derived by addi-
tions and multiplications of the coordinates of the vertices, and an optimal rigid
motion may lie on any place of the supporting curve. (Under translations, we
evaluate only the intersections of two supporting lines.) The intersections of two
supporting curves may cause a change to the combinatorial structure of convex
hull or to the disjointness of two polygons. Thus we update the formula of the
area of convex hull and the disjointness at intersections of two supporting lines
if necessary.

(b)

π/2 π 3π/2 2π0

1/4

1/2

3/4

1

v

(a)

ρP

Q

ve

e

(ve, v e )

Fig. 4. (a) A vertex v lies on an edge e and a vertex v′ lies on an edge e′ simultaneously.
(b) Two vertex-edge pairs (v, e) and (v′e′) determine the supporting curve �(ve, v′e′).

The number of vertex-edge pairs is O(nm). For a vertex-edge pair (v, e),
the number of supporting curves in Cve is bounded by the number of other
vertex-edge pairs or vertex-hull-edge pairs, which is O(nm). Any two supporting
curves cross each other at most O(1) times since each curve is represented by
a trigonometric function, whose domain is a set {x | 0 ≤ x < 2π}. Thus, we
conclude the following theorem.

Theorem 3. Let P and Q be simple polygons with n and m vertices with n ≥ m,
respectively. We can compute a rigid motion ρ that minimizes ‖conv(ρP ∪ Q)‖
satisfying int(ρP ) ∩ int(Q) = ∅ in O(n3m3 log n) time using O(nm) space.

By using an approach similar to the one in Sect. 2.1, we can find a rigid motion
that minimizes the area of the convex hull using only linear space, at the expense
of slightly increased time complexity.
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Theorem 4. Let P and Q be simple polygons with n and m vertices with n ≥ m,
respectively. We can compute a rigid motion ρ that minimizes ‖conv(ρP ∪ Q)‖
satisfying int(ρP ) ∩ int(Q) = ∅ in O(n3m3(m + log n)) time using O(n) space.

4 Extension to Three Dimensional Space

One may think that Lemma 3 extends to three dimensional space naturally.
However, this does not work even for two convex polyhedra in 3-dimension.
Ahn et al. [3] showed two convex polytopes whose unique optimal translation
separates them apart. Thus, for an optimal translation τ∗, P + τ∗ and Q are
either apart or in contact. In the case that P + τ∗ and Q are apart, we find the
optimal translation by any algorithm for minimizing the volume of their convex
hull [4].

Therefore, we focus on the problem where the two polyhedra are supposed
to be in contact with each other. There are three types of contact pairs – vertex-
facet pairs (v, f), vertex-hull-facet pairs (v, h), and edge-edge pairs (e, e) – each
of which defines a set of translations in the 3-dimensional translation space,
denoted by Tvf(v, f), Tvh(v, h), Tee(e, e′), respectively. Here, a hull facet is either
a facet of F (conv(P )) \ F (P ) or a facet of F (conv(Q)) \ F (Q), where F (R)
denotes the set of facets of a polyhedron R. Clearly, a nonempty set Tvf(v, f)
(or Tvh(v, h)) forms a polygon in the space R

3, which is a translate of f − v (or
h − v) if v ∈ V (P ), or a translate of −f + v (or −h + v) otherwise. A nonempty
set Tee(e, e′) forms a parallelogram e ⊕ (−e′) in the 3-dimensional translation
space.

Lemma 5. If there is an optimal translation that aligns two polytopes to be in
contact, it always lies at the intersection of three supporting planes of transla-
tion polygons determined by contact pairs. Moreover, one of the three supporting
planes must be determined by a vertex-facet or edge-edge pair.

Proof. It suffices to prove that the volume function f(τ) = ‖conv((P + τ) ∪ Q)‖
is piecewise linear along an arbitrary line. Assume that P moves along a line
parallel to the x-axis, that is, for t ∈ R, τ = P + (t, 0, 0). We will show that
the function ω(t) = ‖conv((P + (t, 0, 0)) ∪ Q)‖ is piecewise linear. Let Pk be the
intersection of a polyhedron P and a plane z = k. Then ω can be expressed as
the sum of conv((P + τ) ∪ Q)k over all k ∈ R. Each of the intersections can be
interpreted by the area function of the convex hull of two convex polygons which
is piecewise linear [1]. The sum of piecewise linear functions is also piecewise
linear, and therefore, ω is piecewise linear.

Every two supporting planes meet along a line unless they are parallel. Thus,
we consider each intersection line of two supporting planes and compute the
intersections of the line with other supporting planes. Let H(v, f) denote the
supporting plane of Tvf(v, f).

We check whether the two polytopes are disjoint or not in a way similar to
the disjointness test in Sect. 2.
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Evaluation of the Volume. The volume of conv((P + τ) ∪ Q) can be evaluated
by subdividing it into a set of tetrahedra as follows. First, triangulate each facet
of conv((P + τ) ∪ Q). Let Tτ be the set of those triangles on the boundary
∂conv((P + τ) ∪ Q). Next, choose a point c in the interior of Q and connect c to
every vertices of conv((P+τ)∪Q) with edges. For each triangle 
 ∈ Tτ , let 
+ be
the tetrahedron with base 
 and apex c. Thus, the volume of conv((P + τ)∪Q)
is the sum of ||
+|| for 
 ∈ ∂conv((P + τ) ∪ Q). Hence, the volume can be
computed in O(card(Tτ )) = O(n) time, where card(Tτ ) is the cardinality of Tτ .
We show that evaluating the volume for each intersection is computed in O(1)
time by amortized analysis exploiting coherence as follows.

Exploiting Coherence. Let τ and τ ′ be translations corresponding to two adjacent
intersections on an intersection line � of two supporting planes. Assume that we
have just processed τ and we are about to process τ ′. We maintain Tτ , a set of
formulas each of which represents the area function ‖
+‖ for a 
 ∈ Tτ , and
sum of these functions which is the volume formula of ‖conv((P + τ) ∪ Q)‖.

Assume that τ ′ is the intersection of � with a supporting plane determined
by a vertex-facet contact (v, f). The translation τ ′ from τ causes a change to the
convex hull of the two polyhedra. We update Tτ ′ from Tτ and their formulas of

+ ∈ Tτ ′ accordingly as follows. A vertex v of P +τ ′ lies on the supporting plane
of f so that the triangles defined on f disappear (and their tetrahedra) and the
triangles defined by the edges connecting the boundary vertices of f and v appear
at τ ′. This implies that the number of triangles that disappear or appear at the
supporting plane does not exceed the number of boundary vertices of facet f .
We update Tτ ′ by removing all triangles that disappear and adding all triangles
that appear and then update the formulas for the volumes. This can be done in
O(Nf ) time, where Nf denotes the number of boundary vertices of f . The sum
of Nf for f ∈ F (P )∪F (Q) is bounded by 2× (|V (P )| · |F (Q)|+ |V (Q)| · |F (P )|).
Thus, we can evaluate the volume in O(1) time per each intersection.

The number of supporting plane is O(nm). Thus, the number of the inter-
section lines determined by two supporting planes is O(n2m2). Each intersection
line intersects O(nm) supporting planes. Thus, we conclude following theorems.

Theorem 5. Let P and Q be polyhedra with n and m vertices with n ≥ m,
respectively. We can compute a placement τ ∈ R

3 that minimizes ‖conv((P +
τ) ∪ Q)‖ satisfying int(P + τ) ∩ int(Q) = ∅ in O(n3m3 log n) time using O(nm)
space.

Theorem 6. Let P and Q be polyhedra with n and m vertices with n ≥ m,
respectively. We can compute a placement τ ∈ R

3 that minimizes ‖conv((P +
τ)∪Q)‖ satisfying int(ϕP )∩ int(Q) = ∅ in O(n3m3(m+log n)) time using O(n)
space.
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Abstract. Tangle is a dual notion of the graph parameter branch-width.
The notion of tangle can be extended to connectivity systems. Ideal is
an important notion that plays a foundational role in ring, set, and order
theories. Tangle and (maximal) ideal are defined by axiomatic systems,
and they have some axioms in common. In this paper, we define ideals on
connectivity systems. Then, we address the relations between tangles and
maximal ideals on connectivity systems. We demonstrate that a tangle
can be considered as a non-principle maximal ideal on a connectivity
system.

Keywords: Tangle · Ideal · Submodularity

1 Introduction

In this paper, we study the relations between two axiomatic systems: tangles
and maximal ideals. The notion of tangle was first introduced by Robertson
and Seymour in [18] for (hyper)graphs as a dual notion of a graph parameter
branch-width. This was later extended to matroids (connectivity systems) [6,
7,11]. In addition, Oum and Seymour introduced a relaxed notion of tangle in
[15], called a loose tangle, and showed that there exists a tangle of order k if
and only if there exists a loose tangle of order k. The notion of an ideal is
wide-ranging; it can be found in various contexts, such as ring theory (ring),
set theory (boolean algebra), and order theory (lattice, poset), and is defined in
their different contexts. Ideals discussed in this paper are those that appear in
the context of set theory (see cf. [21]).

1.1 Motivation and Contribution: From the Perspective of Ideals

For an underling set X, a family I ⊂ 2X is an ideal on X if it satisfies the
following axioms:

(IH) A,B ⊆ X, A ⊂ B, and B ∈ I =⇒ A ∈ I .
(IU) ∀A,B ∈ I , A ∪ B ∈ I .
(IW) X �∈ I .

c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 81–92, 2017.
DOI: 10.1007/978-3-319-53925-6 7
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Intuitively speaking, ideals can be regarded as a family of “small sets” such as
“virtually empty sets”, “negligibly small sets”, or sets that do not contain a
“specified something that is important”. For example, (IH) indicates that if B
does not contain something important, say x, then any subset A of B also does
not contain x. (IU) tells us that if A and B do not contain x, then A ∪ B also
does not contain x. (IW) guarantees that the underling set X does contain x. In
previous studies, ideals have usually been considered on the power set 2X for an
underlying (usually infinite) set X. The study of ideals for a finite underlying
sets has not yet received significant attention. In this paper, roughly speaking
instead of 2X we consider ideals on Sk = {A ⊂ X | f(A) ≤ k} for a submodular
function f on a finite set X and a positive integer k. We call a set A ⊆ X small
if f(A) ≤ k, and we will refer to such ideals as ideals on the connectivity system
(X, f). That is, we extend the notion of an ideal on 2X to a notion of one on Sk

as follows:

(TB) ∀A ∈ I , f(A) ≤ k.
(TH) A,B ⊆ X, A ⊂ B, B ∈ I , and f(A) ≤ k =⇒ A ∈ I .
(TU) A,B ∈ I , f(A ∪ B) ≤ k =⇒ A ∪ B ∈ I .
(IW) X �∈ I .

The only differences between the definitions of ideals on 2X and on Sk are the
underlined parts. To the authors’ knowledge, no previous study has addressed
such ideals on Sk. Ideals on 2X should take all sets in 2X into consideration,
while for ideals on Sk only the small sets in 2X should be considered. It should be
noted that this extension is indeed a natural generalization of the usual notion of
an ideal, because it holds that 2X = Sk for sufficiently large k if f is submodular.
In this paper, we essentially address the following questions regarding maximal
ideals:

– A maximal ideal Ia (on 2X) can be obtained from an element a ∈ X by setting
Ia = {A ⊂ X | a �∈ A}. Such a maximal ideal is called principle (generated
by a), and it is well known that if the underlying set X is finite then all
maximal ideals on 2X are principle. (This does not hold in general for infinite
underlying sets, cf., Fréchet filter.) Namely, there is no non-principle maximal
ideal on 2X for a finite underlying set X. The first question is whether this
also holds for ideals on Sk.

– It is also widely known that an ideal I (on 2X) is maximal if and only if
for any A ∈ 2X , exactly one of A and A(= X\A) is in I , where X is not
necessarily finite in this case (see, e.g., Sect. 7 in [21], Subsect. 2.2). This fact
is frequently found in proofs of the ultrafilter lemma. For the case that X is
finite, this is obvious by the fact mentioned in describing the first question.
The second question is the following: Does it hold for any ideal I on Sk that
I is maximal if and only if for any A ∈ Sk exactly one of A and A is in I ?

In this paper, we show that the answer to first question is no and the answer to
second question is yes.
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1.2 Motivation and Contribution: From the Perspective of Tangles

As mentioned above, Robertson and Seymour introduced tangles as follows [18]:

(TB) ∀A ∈ T , f(A) ≤ k.
(TE) A ⊆ X, f(A) ≤ k =⇒ either (A ∈ T ) or (A ∈ T ).
(TC) A,B,C ∈ T =⇒ A ∪ B ∪ C �= X.
(TL) ∀a ∈ X, X\{a} �∈ T .

We often call the axiom (TE) the excluded middle axiom. A set A ⊆ X is called
k-small (or simply small when k is clear) if f(A) is at most k. Oum and Seymour
introduced loose tangles as follows [15]:

(LL) A ⊆ X, |A| ≤ 1, and f(A) ≤ k =⇒ A ∈ L .
(LSU) A,B ∈ L , C ⊆ A ∪ B, and f(C) ≤ k =⇒ C ∈ L .
(IW) X �∈ L .

For the following reasons, we suspect that there may be some connections
between tangles and maximal ideals:

– The excluded middle axiom (TE) and the characterization of a maximal ideal
(on 2X) in the second question above have essentially the same form.

– There are some similarities between loose tangles and ideals (To see this,
consult the proof of Theorem 5 in [15], especially k-branched sets.)

– The notion of a loose tangle is a relaxation of the notion of a tangle.

In this paper, we clarify these connections. More precisely, we show the following
(see Fig. 1):

– The notion of a loose tangle coincides with that of an ideal on a connectivity
system (Theorem 1).

– The notion of a tangle coincides with that of an ideal on a connectivity system
satisfying the excluded middle axiom (TE) (Theorem2).

– Any maximal ideal on a connectivity system satisfies the axiom (TE) (The-
orem 3). This means that an ideal I on a connectivity system satisfies the
axiom (TE) if and only if I is a maximal ideal on the connectivity system.

From the second and third properties above, we can conclude that the notion
of a tangle coincides with that of a maximal ideal on connectivity systems.
Considering this connection between tangles and ideals, the definition of a tangle
can be interpreted as follows:

(TB) “∀A ∈ T , f(A) ≤ k” means that we only have to consider small sets.
(TE) “A ⊆ X, f(A) ≤ k =⇒ either (A ∈ T ) or (A ∈ T )” represents the

maximality.
(TC) “A,B,C ∈ T =⇒ A ∪ B ∪ C �= X” indicates that the tangle is an ideal.
(TL) “∀a ∈ X, X\{a} �∈ T ” means that the tangle is non-principle.

From this interpretation, we can see that the axioms indicates a non-principle
maximal ideal on a connectivity system and that this definition is very natural
and reasonable.



84 K. Yamazaki

Ideal
Definition 1

Maximal Ideal

On 2X

Subsection 2.2

=

Ideal +
excluded
middle
axiom

Theorem 1

Ideal
Definition 2

Maximal Ideal

On Sk

Subsections 2.3 and 3.4

=

Theorem 3

Ideal +
excluded
middle
axiom Theorem 2

Loose Tangle

Definition 3

Tangle

Definition 4

Tangle

Subsections 2.4 and 2.5

Fig. 1. Relations between theorems and definitions in this paper.

1.3 Relation Between Our Results and Duality Theorems

Many duality theorems have been proved decompositions (such as path, tree,
and branch decompositions) and dual combinatorial objects (such as blockages,
brambles, and tangles), [1–4,7,9,10,14,17–20]. Based on the results in this paper,
some duality theorem can be obtained by considering the duality between ideals
and filters. In fact, the complement of a tangle can be thought of as an ultrafilter
as indicated in [8,9,12]. In this paper, we will not address any such duality theo-
rems, but rather we consider the relation between maximality and the excluded
middle axiom in ideals on connectivity systems. However the proofs in this paper
rely heavily upon the techniques used and developed in the proving the duality
theorems, especially those used in [11,15,18].

The organization of the remainder of this paper is as follows. We present
definitions and some known results regarding ideals and tangles in Sect. 2. Then,
we present our results in Sect. 3. (We defer the proofs of some of these to the
appendix.) Section 4 describes the conclusions and directions for further research.

2 Definitions and Known Results

In this section, we present some definitions and known results relating to tangles
and ideals that we will be required in this paper.

2.1 Submodular Functions and Connectivity Systems

A function f is called symmetric submodular if it satisfies the symmetry property
that ∀A ⊆ X, f(A) = f(A), and the submodularity property that ∀A,B ⊆ X,
f(A)+ f(B) ≥ f(A∩B)+ f(A∪B). For an integer k > 0, a set A ⊂ X is called
k small (or simply small) if it holds that f(A) ≤ k. Next, we provide some useful
inequalities that will be used in our proofs.

Lemma 1. A symmetric submodular function f satisfies the following inequal-
ities (see cf. [11]):
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1. ∀A ⊆ X, f(A) ≥ f(∅).
2. f(A) + f(B) ≥ f(A\B) + f(B\A).

Proof. (1): f(A)+ f(A) = f(A)+ f(A) ≥ f(A∪A)+ f(A∩A) = f(X)+ f(∅) =
f(∅)+f(∅). (2): f(A)+f(B) = f(A)+f(B) ≥ f(A∪B)+f(A∩B) = f(B\A)+
f(A\B) = f(B\A) + f(A\B).

We call the pair (X, f) a connectivity system.

2.2 Ideals and Maximal Ideals on a Boolean Algebra

Definition 1. Let X be an underlying set. A collection I ⊆ 2X is called an
ideal (on a boolean algebra) if I satisfies the following axioms:

(IH) A,B ⊆ X, A ⊂ B, and B ∈ I =⇒ A ∈ I .
(IU) ∀A,B ∈ I , A ∪ B ∈ I .
(IW) X �∈ I .

An ideal I (on a boolean algebra) is maximal if there is no I ′ properly
containing I ′. Maximal ideals have several characterizations. For example, an
ideal I with an underlying set X is maximal if and only if

– there is an element a ∈ X such that A ∈ I if and only if a �∈ A. This
characterization holds when X is finite. Such an I is called the principle
ideal generated by a.

– for any A ⊆ 2X either A ∈ I or A ∈ I holds (i.e., the excluded middle
axiom).

– for any partition (X1,X2,X3) of X, exactly one of {X1,X2,X3} does not
belong to I (see Corollary 1.6 in [13]).

– there exists a two valued measure m such that m(A) = 0 if and only if A ∈ I
(see cf. 6.1 in Sect. 6 in [21], Lemma 3.1 in [13]).

2.3 Ideals and Maximal Ideals on Connectivity Systems

In Subsect. 2.2, we recall the definition of an ideal on a boolean algebra. In this
subsection, we introduce the definition of an ideal on a connectivity system.

Definition 2. Let (X, f) be a connectivity system and k > 0 an integer. A
collection I ⊆ 2X is called an ideal on (X, f) of order k + 1 if I satisfies the
following axioms:

(TB) ∀A ∈ I , f(A) ≤ k.
(TH) A,B ⊆ X, A ⊂ B, B ∈ I , and f(A) ≤ k =⇒ A ∈ I .
(TU) A,B ∈ I , f(A ∪ B) ≤ k =⇒ A ∪ B ∈ I .
(IW) X �∈ I .

We will refer to the ideal I as an ideal on (the connectivity system) (X, f) of
order k + 1.
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An ideal I is called maximal (on a connectivity system) if there exists no
I ′ that properly contains I . A natural question arises here: can a maximal
ideal on a connectivity system be characterized by the excluded middle axiom
(TE)? In Subsect. 3.4, we show that the answer to this is yes (see Theorem 3).
Another natural question is that of whether it holds that for an ideal I on a
connectivity system, I is maximal if and only if I is prime. Here, an ideal P
on a connectivity system is prime if P satisfies the following additional axiom
(IP): For all A, B with f(A) ≤ k and f(B) ≤ k, if A∩B ∈ P, then it holds that
either A ∈ P or B ∈ P. We demonstrate the equivalence in the next lemma.

Lemma 2. Let I �= ∅ be an ideal on a connectivity system (X, f). Then, I
satisfies the excluded middle axiom (TE) if and only if I is prime.

Proof. First, we show that I satisfies (TE) =⇒ I is prime. Let A and B be
sets such that f(A) ≤ k and f(B) ≤ k. We will demonstrate that A,B �∈ I
implies that A ∩ B �∈ I . Because A,B �∈ I and f(A), f(B) ≤ k, we have that
A,B ∈ I by (TE). If k < f(A ∪ B) = f(A ∩ B) = f(A ∩ B), then by (TB) we
have that A ∩ B �∈ I , as desired. Hence, we may assume that f(A ∪ B) ≤ k.
Then, it follows that A ∩ B = A ∪ B ∈ I by (TU). Hence, by (TE) we have
that A ∩ B �∈ I .

Next, we show that I is prime =⇒ I satisfies (TE). As I �= ∅, there
exists a set A ∈ I . Hence, from Lemma 1, f(∅) ≤ k, which implies that ∅ ∈ I
by (TH). Let Y be a subset of X such that f(Y ) ≤ k. As Y ∩ Y = ∅ ∈ I , it
follows from definition of prime that either Y ∈ I or Y ∈ I . If both are in I ,
then it holds that X ∈ I by (TU) and the fact that f(X) = f(∅) ≤ k, but this
contradicts (IW). Thus, exactly one of these must hold.

In Subsect. 3.4, we will prove Theorem 3, which essentially states that I is max-
imal if and only if I satisfies the excluded middle axiom (TE). By combining
Lemma 2 with Theorem 3, we will obtain the equivalence.

2.4 Loose Tangles

Definition 3. For a connectivity system (X, f), a collection L ⊆ 2X is called
a loose tangle of order k + 1 if L satisfies the following axioms [15]:

(LL) A ⊆ X, |A| ≤ 1, and f(A) ≤ k =⇒ A ∈ L .
(LSU) A,B ∈ L , C ⊆ A ∪ B, and f(C) ≤ k =⇒ C ∈ L .
(IW) X �∈ L .

The definition appears to be similar to that of an ideal on a connectivity system.
In fact, we will show that a loose tangle corresponds to an ideal on a connectivity
system and that a tangle corresponds to a maximal ideal on a connectivity
system. It is known that there exists no loose tangle of order k + 1 if and only if
branch-width of (X, f) is at most k (see Theorem 5 in [15]). That is, there exists
a tangle of order k if and only if there exists a loose tangle of order k. As we
will see, this corresponds to the fact that for a connectivity system, there exists
a maximal ideal of order k if and only if there exists an ideal of order k.
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2.5 Tangles

Definition 4. Let X be an underlying set, and let f be a symmetric submodular
function. A collection T ⊆ 2X on the connectivity system (X, f) is called a tangle
of order k + 1 if T satisfies the following axioms [11,18]:

(TB) ∀A ∈ T , f(A) ≤ k.
(TE) A ⊆ X, f(A) ≤ k =⇒ either (A ∈ T ) or (A ∈ T ).
(TC) A,B,C ∈ T =⇒ A ∪ B ∪ C �= X.
(TL) ∀a ∈ X, X\{a} �∈ T .

It is known that the tangle admits the following alternative definition [11]:

(TB) ∀A ∈ T , f(A) ≤ k.
(TE) A ⊆ X, f(A) ≤ k =⇒ either (A ∈ T ) or (A ∈ T ).
(TH) A,B ⊆ X, A ⊂ B, B ∈ T , and f(A) ≤ k =⇒ A ∈ T .

(T3P) ∀ partitions (X1,X2,X3), ∃1 ≤ i ≤ 3 s.t. Xi �∈ T .
(TL) ∀a ∈ X, X\{a} �∈ T .

Because {A | f(A) ≤ k − 1} ⊆ {A | f(A) ≤ k}, if there exists a tangle of order k
then there also exists a tangle of order k − 1. For a connectivity system (X, f),
the maximum integer k for which there exists a tangle of order k on (X, f) is
denoted by tnf (X) (or simply tn(X)), and is called the tangle number of (X, f).
It is known that tnf (X) is equal to the branch-width of (X, f) (see Theorem 3.2
in [11]). Suppose that there exists an element b ∈ X such that f({b}) > k. In
this case, there trivially exists a tangle. In fact, the family {A | b �∈ A, f(A) ≤ k}
is a tangle. Usually we are not interested in such trivial case. We revisit this in
Subsect. 3.3.

3 Results

In this section, we first provide a new definition of a loose tangle that is similar to
the definition of an ideal on a connectivity system. Next, we give a new definition
of a tangle that constitutes the definition of an ideal on a connectivity system
with an additional axiom (TE). Finally, we show that in connectivity systems,
an ideal satisfying (TE) coincides with a maximal ideal.

3.1 A New Definition of a Loose Tangle

Theorem 1. A collection L ⊆ 2X is a loose tangle of order k + 1 if and only
if L satisfies the following axioms:

(TB) ∀A ∈ L , f(A) ≤ k.
(TH) A,B ⊆ X, A ⊂ B, B ∈ L , and f(A) ≤ k =⇒ A ∈ L .
(TU) A,B ∈ L , f(A ∪ B) ≤ k =⇒ A ∪ B ∈ L .
(LL) ∀A ⊆ X, |A| ≤ 1, f(A) ≤ k =⇒ A ∈ L .
(IW) X �∈ L .
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Proof. Let us recall the following:

(LSU) A,B ∈ L , C ⊆ A ∪ B, and f(C) ≤ k =⇒ C ∈ L .

Because the original definition of a loose tangle also satisfies the axiom (TB), the
only difference between the original definition of a loose tangle and the axiomatic
system stated in the theorem is that (LSU) is replaced with (TH) and (TU) (see
Definition 3).

We first show that (LSU) =⇒ (TU) and (TH). It is clear that (LSU) implies
(TU). To show that (LSU) =⇒ (TH), take ∅(∈ L ) as A in (LSU). Then, for
any C ⊆ B(∈ L ) with f(C) ≤ k, we have that C ∈ L , as required.

Next, we show that (TU) and (TH) =⇒ (LSU) by adopting the technique
used in [16]. Let A,B ∈ L , C ⊆ A∪B, and f(C) ≤ k. (Note that f(A), f(B) ≤ k
by (TB).) Furthermore, let W be a set such that C ⊆ W ⊆ A∪B that minimizes
f(W ). Note that by the choice of W , we have that f(W ) ≤ f(C) ≤ k and
f(W ) ≤ f(Y ∪W ) for any Y ⊆ A∪B. From this, it follows that f(Y )+f(W ) ≥
f(Y ∩W )+f(Y ∪W ) ≥ f(Y ∩W )+f(W ). Thus, it holds that f(Y ) ≥ f(Y ∩W )
for any Y ⊆ A ∪ B (we will refer to this as (‡)).

We now demonstrate that W ∈ L , from which it follows from (TH) that
C ∈ L , as desired. By taking Y in (‡) as A, we have that f(A∩W ) ≤ f(A) ≤ k.
Thus, because A ∈ L , we have that A ∩ W ∈ L by (TH). Similarly, by taking
Y in (‡) as B, we have that B ∩ W ∈ L . Then, because f(W ) ≤ k and W =
W ∩ (A ∪ B) = (A ∩ W ) ∪ (B ∩ W ), we have that W ∈ L by (TU).

3.2 A New Definition of a Tangle

In this subsection, we give a characterization of tangles from the viewpoint of
ideal.

Theorem 2. A collection T ⊆ 2X is a tangle of order k + 1 if and only if T
satisfies the following axioms:

(TB) ∀A ∈ T , f(A) ≤ k.
(TE) A ⊆ X, f(A) ≤ k =⇒ either (A ∈ T ) or (A ∈ T ).
(TH) A,B ⊆ X, A ⊂ B, B ∈ T , and f(A) ≤ k =⇒ A ∈ T .
(TU) A,B ∈ T , f(A ∪ B) ≤ k =⇒ A ∪ B ∈ T .
(LL) ∀A ⊆ X, |A| ≤ 1, f(A) ≤ k =⇒ A ∈ T .

Proof. Because (LL) together with (TE) can be replaced with (TL), the differ-
ence between the original definition of a tangle and the axiomatic system stated
in the theorem is that (TC) is replaced with (TH) and (TU) (see Definition 4).
Hence, it is sufficient to show that (TC) holds if and only if both (TH) and (TU)
hold, under assumption that (TB) ∧ (TE) ∧ (TL) holds.

First, we show that (TC) =⇒ (TH). Note that, since f(∅) ≤ f(U),∀U ⊆ X
by Lemma 1, and f(A) ≤ k, we have that f(∅) ≤ f(A) ≤ k. Hence, by (TE),
it holds that either ∅ ∈ T or X ∈ T . Assume to the contrary that there are
sets A and B such that B ∈ T , A ⊆ B, f(A) ≤ k, and A �∈ T . Then, by
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the assumption and (TE), we have that A ∈ T , and thus, ∅ ∪ B ∪ A = X (we
will refer to this as (�)) from A ⊆ B. On the other hand, it clearly holds that
X ∪B ∪A = X (we will refer to this as (�)). Therefore, if ∅ ∈ T then (TC) does
not hold from (�). On the other hand, if X ∈ T then (TC) also does not hold
from (�).

Next, we show that (TC) =⇒ (TU). Suppose to the contrary that there
exist sets A and B such that A,B ∈ T , f(A ∪ B) ≤ k, and A ∪ B �∈ T . From
the fact that f(A ∪ B) ≤ k, (TE) implies that A ∪ B ∈ T . As A,B ∈ T , it
holds that A ∪ B ∪ (A ∪ B) = X, which contradicts (TC).

Finally, we show that (TH), (TU) =⇒ (TC). Assume to the contrary that
there exist A,B,C ∈ T such that A ∪ B ∪ C = X. Then, choose A, B, and
C to minimize |A ∩ B| + |B ∩ C| + |C ∩ A|. For such A,B,C, we now claim
that (A,B,C) is a partition; that is, |A ∩ B| + |B ∩ C| + |C ∩ A| = 0. We show
this through the same technique as is used in Lemma 3.1 in [11]. Suppose this
does not hold. Then, with loss of generality, we may assume that |A ∩ B| ≥ 1.
Furthermore, from f(A) + f(B) ≥ f(A\B) + f(B\A) and (TB), it follows that
f(A\B) ≤ k or f(B\A) ≤ k. With loss of generality, we may assume that
f(A\B) ≤ k. From f(A\B) ≤ k and A\B ⊆ A, (TH) implies that A\B ∈ T .
Clearly (A\B) ∪ B ∪ C = X, so we have:

|A ∩ B| + |B ∩ C| + |C ∩ A| >
|(A\B) ∩ B| + |B ∩ C| + |C ∩ (A\B)|.

This is because |A ∩ B| ≥ 1, while |(A\B) ∩ B| = 0 and |C ∩ (A\B)| ≤ |C ∩ A|.
However, this contradicts the minimality of |A∩B|+|B∩C|+|C∩A|. Now, from
the demonstrated fact that (A,B,C) is a partition, we have that C = A ∪ B.
Notice that f(A ∪ B) = f(A ∪ B) = f(C) ≤ k. Then, because A,B ∈ T , and
f(A∪B) ≤ k, it follows that A∪B ∈ T by (TU). Hence, by (TE) we have that
C = A ∪ B �∈ T , which is a contradiction.

3.3 Non-principle: The Role of the Axioms (TL) and (LL)

First, note that the combination of (TL) and (TE) plays the same role as (LL).
Consider a sufficiently large k� such that f(A) ≤ k� for any A ⊆ X. Note that in
this case, the family of small sets Sk = {A ⊂ X | f(A) ≤ k} coincides with 2X . It
is obvious that in this case there exists a branch decomposition of width k�. Thus,
by the duality theorem there exists no tangle for k�. (For details regarding branch
decomposition and the duality theorem, see [15].) This nonexistence result for
tangles can be explained in terms of maximal ideals as follows. By setting k := k�,
the new definition of a maximal ideal on a connectivity system (i.e., Theorem2)
becomes essentially the same as the definition of a maximal ideal on a boolean
algebra together with the condition that {a} ∈ T for any a ∈ X. Note that this
condition comes from the axiom (LL) and also that we have (IW), because of the
fact that ∅ ∈ T and (TE). The condition imposes that the maximal ideal cannot
be principle. However, mentioned in the introduction, any maximal ideal on 2X

for a finite underlying set X must be principle. Therefore, we may conclude that
there is no tangle for k�.
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Now, consider a sufficiently small ks such that there is an element b ∈ X
with f({b}) > ks. Then, the family {A | b �∈ A, f(A) ≤ ks} satisfies the axioms
in Theorem 2; that is, there exists a tangle for ks. It should be noted that this
family can be considered as a principle ideal generated by b. As mentioned briefly
in Subsect. 2.5, this case is not interesting for discussing the tangle number (i.e.,
branch width). Indeed, the tangle number coincides with the largest integer k
for which there exists a non-principle maximal ideal on the connectivity system
(X, f).

Recall that there exists no non-principle maximal ideal on 2X for a finite
underlying set X. In contrast, there can exist non-principle maximal ideals on
the small sets Ik, even for a finite underlying set X. This disparity is attributed
to the fact that A1 ∪ A2 ∪ · · · ∪ A� ∈ I may not hold in general, even when
Ai ∈ I for each 1 ≤ i ≤ � and f(A1 ∪ A2 ∪ · · · ∪ A�) ≤ k.

3.4 A Characterization of Maximal Ideals on Connectivity Systems

It is known that for every proper ideal I0 on a boolean algebra there exists a
maximal ideal containing I0 (see cf. [21]). In this subsection, we show that the
same holds true for ideals on connectivity systems by proving Theorem 3. Owing
to considerations of space, we omit the full proof in the proceedings version. The
proof relies heavily on results in [11,18].

Theorem 3. Let M be a maximal ideal of order k +1 on a connectivity system
(X, f). Then, there exists no Y ⊆ X with f(Y ) ≤ k such that Y �∈ M and
Y �∈ M .

The outline of the proof is as follows: Suppose to the contrary that there is a
set Y such that f(Y ) ≤ k and neither Y nor Y is in M . We choose such a Y
that minimizes f(Y ). Let us consider the closure MY (MY , resp.) of M ∪ {Y }
(M ∪ {Y }, resp.) under the following operations.

(TU) operation. If A,B ∈ MY (A,B ∈ MY , resp.) and f(A ∪ B) ≤ k, then
A ∪ B ∈ MY (A ∪ B ∈ MY , resp.),

(TH) operation. If B ∈ MY (B ∈ MY , resp.), A ⊆ B, and f(A) ≤ k, then
A ∈ MY (A ∈ MY , resp.).

Note that MY and MY satisfy (TB), (TU), and (TH). From the maximality of
M , MY and MY both violate the axiom (IW); that is, both contain X.

We first construct two ternary trees TY and TY . To have that X ∈ MY , there
must exist sets S0, S1 ∈ MY from which X can be derived by (TU), because
X �∈ M ∪ {Y }. Then, for S0 there must exist sets S00, S01 ∈ MY from which S0

can be derived by (TU) or (TH). That is, if S0 is obtained by (TU), then there
exist sets S00, S01 ∈ MY such that S0 = S00 ∪ S01. If S0 is obtained by (TH),
then there must exist sets S00, S01,W ∈ MY such that S0 ⊆ W = S00 ∪ S01.
Note that in either case, it holds that S0 ⊆ S00 ∪ S01.

By recursively repeating this decompose operation, eventually we obtain a
binary tree such that each leaf corresponds to a member of M∪ ↓ Y , where
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↓ Y := M ∪{Y ′ | Y ′ ⊆ Y, f(Y ′) ≤ k}. Hence, each leaf is contained in a member
of M ∪{Y }. From this binary tree, the ternary tree TY can be naturally obtained
by deleting the root X and adding an edge e between S0 and S1.

The rest of proof is quite similar to that of Theorem 3.3 in [11]: Next, we
associate sets to the incidences in the trees. That is, we define functions αY

and αY from which we obtain two exact tree-labelings (TY , αY ) and (TY , αY ).
Then, we modify the function αY (αY , resp.) so that (TY , βY ) and (TY , βY ) can
be merged, where βY (βY , resp.) is the modified function of αY (αY , resp.). In
this modification step, the submodularity of the function f plays an important
role. Finally, we merge these into an exact tree-labeling over M , from which we
derive a contradiction.

4 Conclusions and Further Research

In the paper, we have demonstrated that a tangle can be considered as a non-
principle maximal ideal on a connectivity system, while a loose tangle can be
regarded as a non-principle ideal. Although we have not discussed tangles from
the point of view of filters (i.e., that is dual to ideals), this viewpoint is impor-
tant. Intuitively speaking, filters can be thought of as a family of “big sets”
which could include “essentially the whole set” or sets that contain a “speci-
fied something that is important.” For example, the duality theorems mentioned
in Subsect. 1.3 yield a game-theoretical interpretation (see e.g. [1,5,19]). The
“something important” for filters may be regarded as being a “robber” in the
game-theoretical interpretation.

Ultrafilters and partitions would play an important role in the research of
tangles. An ultrafilter is a notion that is dual to that of a maximal ideal. A
connection between ultrafilters and tangles has been suggested in [8,9,12]. The
study of brambles (i.e., a dual notion to that of tree-width) and tangles has
already been approached from the view point of partitions (e.g., [2,14]). Ultra-
filters have a high affinity with partitions. In fact, in [13], Leinster brings a
little-known characterization of ultrafilters to light: an ultrafilter is character-
ized by partitions into three subsets. In terms of ideals, this characterization is
restated as follows: I is a maximal ideal on 2X if and only if for any partition
of X with at most three parts (X1,X2,X3) (where Xi can be ∅), exactly one of
X1, X2, and X3 does not belong I . We conjecture the following.

Conjecture 1. I is a maximal ideal on Sk = {A ⊂ X | f(A) ≤ k} if and only if
for any partition of X with at most three parts (X1,X2,X3) such that f(Xi) ≤ k
for all i ∈ {1, 2, 3}, exactly one of X1, X2, and X3 does not belong I .

It is easy to prove the direction from maximal ideal to partition. The other
direction, in particular showing that (TH) holds, has not yet been proved.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
15K00007.
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Abstract. In 2013 Belmonte and Vatshelle used mim-width, a graph
parameter bounded on interval graphs and permutation graphs that
strictly generalizes clique-width, to explain existing algorithms for many
domination-type problems, known as LC-VSVP problems. We focus on
chordal graphs and co-comparability graphs, that strictly contain interval
graphs and permutation graphs respectively. First, we show that mim-
width is unbounded on these classes, thereby settling an open problem
from 2012. Then, we introduce two graphs Kt�Kt and Kt�St to restrict
these graph classes, obtained from the disjoint union of two cliques of size
t, and one clique of size t and one independent set of size t respectively, by
adding a perfect matching. We prove that (Kt � St)-free chordal graphs
have mim-width at most t−1, and (Kt�Kt)-free co-comparability graphs
have mim-width at most t− 1. From this, we obtain several algorithmic
consequences, for instance, while Dominating Set is NP-complete on
chordal graphs, it can be solved in time O(nt) on chordal graphs where
t is the maximum among induced subgraphs Kt � St in the given graph.
We also show that classes restricted in this way have unbounded rank-
width which validates our approach.

In the second part, we generalize these results to bigger classes. We
introduce a new width parameter sim-width, special induced matching-
width, by making only a small change in the definition of mim-width. We
prove that chordal and co-comparability graphs have sim-width at most
1. Since Dominating Set is NP-complete on chordal graphs, an XP algo-
rithm parameterized only by sim-width would imply P= NP. Therefore,
to apply the algorithms for domination-type problems mentioned above,
we parameterize by both sim-width w and a further parameter t, which is
the smallest value such that the input has no induced minor isomorphic
to Kt � St or Kt � St. We show that such graphs have mim-width at
most 8(w + 1)t3 and that the resulting algorithms for domination-type

problems have runtime nO(wt3), when the decomposition tree is given.
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1 Introduction

Graph width parameters like tree-width and clique-width have been studied for
many years, and their algorithmic use has been steadily increasing. In 2012 Vat-
shelle introduced mim-width1 which is a parameter with even stronger modelling
power than clique-width. This parameter is defined using branch decomposi-
tions over the vertex set with the cut function computing the maximum induced
matching of the bipartite graph obtained by removing the edges in both parts.
Well-known graph classes have bounded mim-width, e.g. interval graphs and
permutation graphs have mim-width 1 while their clique-width can be quadratic
in the number of vertices [21]. Thus for mim-width k an XP algorithm - run-
time nf(k) - is already very interesting. XP algorithms based on mim-width were
used by Belmonte and Vatshelle [3] and Bui-Xuan et al. [5] to give a common
explanation for the existence of polynomial-time algorithms on many well-known
graph classes like interval graphs and permutation graphs, for LC-VSVP prob-
lems - Locally Checkable Vertex Subset and Vertex Partitioning problems. We
define the class of LC-VSVP problems formally in Sect. 4. In this paper, we
extend these algorithms for LC-VSVP problems to subclasses of chordal graphs
and co-comparability graphs, that strictly contain interval graphs and permuta-
tion graphs respectively. We also show that mim-width is unbounded on general
chordal and co-comparability graphs.

The LC-VSVP problems include the class of domination-type problems
known as (σ, ρ)-problems, whose intractability on chordal graphs is well known
[10]. For two subsets of non-negative numbers σ and ρ, a set S of vertices is called
a (σ, ρ)-dominating set if for every vertex v ∈ S, |S ∩ N(v)| ∈ σ, and for every
v �∈ S, |S ∩ N(v)| ∈ ρ, where N(v) denotes the set of neighbors of v. Golovach
and Kratochv́ıl [10] showed that for chordal graphs, the problem of deciding if a
graph has a (σ, ρ)-dominating set is NP-complete if σ and ρ are such that there
exists at least one chordal graph containing more than one such set. Golovach
et al. [11] extended these results to the parameterized setting, showing that the
existence of a (σ, ρ)-dominating set of size k, and at most k, are W[1]-complete
problems when parameterized by k for any pair of finite sets σ and ρ.

Fig. 1. K5 � S5 and K5 � K5.

In this paper we apply a different parametrization to solve these problems
efficiently on chordal graphs, and on co-comparability graphs. We introduce

1 Introduced formally by Vatshelle in [21], but implicitly used by Belmonte and
Vatshelle in [3].
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two graphs Kt � Kt and Kt � St, which are obtained from the disjoint union
of two cliques of size t, and one clique of size t and one independent set of
size t respectively, by adding a perfect matching. See Fig. 1. We prove that
(Kt�St)-free chordal graphs have mim-width at most t−1, and (Kt�St)-free co-
comparability graphs have linear mim-width at most t−1. These results comprise
newly discovered graph classes of bounded mim-width, as already (K3 �S3)-free
chordal graphs contain all interval graphs, and (K3 � K3)-free co-comparability
graphs contain all permutation graphs. In particular, previous known classes
including interval and permutation graphs have bounded linear mim-width, while
(Kt � St)-free chordal graphs in general have unbounded linear mim-width. By
applying algorithms of Bui-Xuan et al. [5] we obtain the following.

Theorem 1. Given an n-vertex (Kt � St)-free chordal graph or an n-vertex
(Kt � Kt)-free co-comparability graph, we can solve any LC-VSVP problem in
time nO(t), including all (σ, ρ)-domination problems for finite or co-finite σ, ρ.

For example, Minimum Dominating Set is solved in time O(n3t+4) and
q-Coloring in time O(qn3qt+4). In the second part of this paper we generalize
these results to larger classes. We also ask the question - what algorithmic use can
we make of a width parameter with even stronger modelling power than mim-
width? We define the parameter sim-width (special induced matching-width) by
making only a small change in the definition of mim-width, simply requiring
that a special induced matching across a cut of the graph cannot contain edges
between two vertices on the same side of the cut. See Sect. 2 for the precise defi-
nitions. The linear variant of sim-width will be called linear sim-width. We show
that graphs of bounded sim-width are closed under taking induced minors, and
the modelling power of sim-width is strictly stronger than mim-width.

Theorem 2. Chordal graphs have sim-width at most 1 while split graphs have
unbounded mim-width, and a branch-decomposition of sim-width at most 1 can be
found in polynomial time. Co-comparability graphs have linear sim-width at most
1 but unbounded mim-width, and a linear branch-decomposition of sim-width at
most 1 can be found in polynomial time.

This confirms a conjecture of Vatshelle and Belmonte from 2012 [3,21] that
chordal graphs and co-comparability graphs have unbounded mim-width2. See
Fig. 2 for an inclusion diagram of some well-known graph classes. We conjecture
that circle graphs and weakly chordal graphs, also have constant sim-width.

The sim-width parameter thus meets our goal of having stronger modelling
power than mim-width, but stronger modelling power automatically implies
weaker analytic power, i.e. fewer problems will have FPT or XP algorithms when
parameterized by sim-width. As an example, for problems like Minimum Domi-
nating Set which are NP-complete on chordal graphs [4], we cannot expect an
XP algorithm parameterized by sim-width, i.e. with runtime |V (G)|f(simw(G)),

2 Our result appeared on arxiv June 2016. In August 2016 a similar result by Mengel,
developed independently, also appeared on arxiv [15].
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Fig. 2. Inclusion diagram of some well-known graph classes. (I) Classes where clique-
width and rank-width are constant. (II) Classes where mim-width is constant.
(III) Classes where sim-width is constant. (IV) Classes where it is unknown if sim-
width is constant. (V) Classes where sim-width is unbounded.

even if we are given a branch-decomposition, unless P = NP. Thus, for the algo-
rithmic use of sim-width we must either strongly restrict the problems we con-
sider, or we must put a further restriction on the input graphs. In this paper
we take the latter approach, and apply the same graphs Kt � Kt and Kt � St

as we did earlier for chordal and co-comparability graphs, but now we disallow
them as induced minors, which is natural as the resulting classes are then closed
under induced minors.

Theorem 3. Every graph with sim-width w and no induced minor isomorphic
to Kt � Kt and Kt � St has mim-width at most 8(w + 1)t3 − 1.

In a further result we show that we can also exclude these graphs as an
induced subgraph to bound the mim-width, but in that case, we need to use
Ramsey’s theorem, and the bound will in general become worse.

Combining again with the algorithms of [5] we get the following.

Theorem 4. Given an n-vertex graph G having no induced minor isomorphic
to Kt � Kt and Kt � St, with a branch-decomposition of sim-width w, we can
solve any LC-VSVP problem in time O(nO(wt3)).

2 Preliminaries

We use standard graph terminology. Here we define only a few terms, see the
Appendix for a full list. A tree is called subcubic if every internal node has exactly
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3 neighbors. A tree T is called a caterpillar if contains a path P where for every
vertex in T either it is in P or has a neighbor on P . A graph is called chordal
if it contains no induced subgraph isomorphic to a cycle of length 4 or more.
An ordering v1, . . . , vn of the vertex set of a graph G is called a co-comparability
ordering if for every triple i, j, k with i < j < k, vj has a neighbor in each path
from vi to vk avoiding vj . A graph is a co-comparability graph if it admits a
co-comparability ordering. A graph is H-free if it contains no induced subgraph
isomorphic to H. A set of edges {v1w1, v2w2, . . . , vmwm} of G is called an induced
matching in G if there are no other edges in G[{v1, . . . , vm, w1, . . . , wm}]. For a
vertex partition (A,B) of a graph G, we denote by G[A,B] the bipartite graph
on the bipartition (A,B) where for a ∈ A, b ∈ B, a and b are adjacent in G[A,B]
if and only if they are adjacent in G.

Let G be a graph. We define functions cutrkG,mimvalG, simvalG from 2V (G)

to Z such that

– cutrkG(A) is the rank of the bipartite-adjacency matrix of G[A, V (G) \ A]
where the rank is computed over the binary field,

– mimvalG(A) is the maximum size of an induced matching of G[A, V (G) \ A],
– simvalG(A) is the maximum size of an induced matching {a1b1, . . . , ambm} in

G where a1, . . . , am ∈ A and b1, . . . , bm ∈ V (G) \ A.

A pair (T,L) of a subcubic tree T and a function L from V (G) to the set of
leaves of T is called a branch-decomposition. For each edge e of T , let (Ae

1, A
e
2)

be the vertex partition of G where T e
1 , T e

2 are the two connected components of
T − e, and for each i ∈ {1, 2}, Ae

i is the set of all vertices in G mapped to leaves
contained in T e

i . We call it the vertex partition of G associated with e. For a
branch-decomposition (T,L) of a graph G and an edge e in T and a function
f : 2V (G) → Z, the width of e with respect to f , denote by f(T,L)(e), is define
as f(Ae

1) where (Ae
1, A

e
2) is the vertex partition associated with e. The width of

(T,L) with respect to f is the maximum width over all edges in T .
The rank-width, mim-width, and sim-width of a graph G are the minimum

widths over all their branch-decompositions with respect to cutrkG, mimvalG,
and simvalG and denote by rw(G), mimw(G), and simw(G), respectively. If T is
a subcubic caterpillar tree, then (T,L) is called a linear branch-decomposition.
The linear mim-width and linear sim-width of a graph G are the minimum
widths over all their linear branch-decompositions with respect to mimvalG and
simvalG, and denote by lmimw(G) and lsimw(G), respectively. By definitions,
we have simw(G) ≤ mimw(G) ≤ rw(G) for every graph G.

3 Mim-Width of Chordal and Co-comparability Graphs

We show that chordal graphs and co-comparability graphs have sim-width at
most 1, but have unbounded mim-width. Belmonte and Vatshelle [3] showed
that chordal graphs either do not have constant mim-width or it is NP-complete
to find such a decomposition. We strengthen their result. We further show that
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(Kt � St)-free chordal graphs have mim-width at most t − 1, and similarly,
(Kt � St)-free co-comparabililty graphshave mim-width at most t − 1.

We use the fact that chordal graphs admit a tree-decomposition whose bags
are maximal cliques.

Proposition 1. Given a chordal graph, one can output a branch-decomposition
of sim-width at most 1 in polynomial time. Moreover for every positive integer
t, given a (Kt � St)-free chordal graph, one can output a mim-decomposition of
width at most t − 1 in polynomial time.

Proof. To prove both statements, we construct a certain branch-decomposition
explicitly. Let G be a chordal graph. We may assume that G is connected. We
compute a tree-decomposition (F,B = {Bt}t∈V (F )) of G where every bag induces
a maximal clique of G. It is known that such a decomposition can be computed
in polynomial time; for instance, see [16]. Let us choose a root node r of F .

Fig. 3. Constructing a branch-decomposition (T, L) of a chordal graph G of sim-width
at most 1 from its tree-decomposition.

We construct a tree (T,L) from F as follows. We attach a leaf r′ to the root
node r and regard it as the parent of r and let Br := ∅. For every t ∈ V (F )
with its parent t′, we subdivide the edge tt′ into a path tvt

1 · · · vt
|Bt\Bt′ |t

′ with
|Bt \ Bt′ | internal nodes, and for each internal node q, we attach a leaf q′ and
assign those leaves to the vertices of Bt \ Bt′ in any order as the images of L.
Then remove r′. For every t ∈ V (F ) with its children t1, . . . , tm we remove t and
introduce a path wt

1w
t
2 · · · wt

m. If t is a leaf, then we just remove it. We add an
edge wt

1v
t
1, and for each i ∈ {1, . . . , m}, add an edge wt

iv
ti
|Bti

\Bt|. See Fig. 3 for
an illustration of the construction.

Let T ′ be the resulting tree, and we obtain a tree T from T ′ by smoothing
all nodes of degree 2. Let (T,L) be the resulting branch-decomposition. Remark
that F has O(|V (G)|) many nodes, and thus we can construct (T,L) in linear
time. We claim that (T,L) has sim-width at most 1. We prove a stronger result
that for every edge e of T with a partition (A,B) associated with e, either
NG(A) ∩ B or NG(B) ∩ A is a clique.

Claim. Let e be an edge of T and let (A,B) be a partition of V (G) associated
with e. Then either NG(A) ∩ B or NG(B) ∩ A is a clique.
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Proof. We prove for T ′, which is the tree before smoothing. We may assume
that both end nodes of e are internal nodes of T ′. There are 4 types of e;
(1) e = vt

iv
t
i+1 for some t and i, (2) e = wt

1v
t
1 for some t, (3) e = vt

|Bti
\Bt|w

t
i

where ti is a child of t, (4) e = wt
iw

t
i+1 for some t and i. Suppose e = vt

iv
t
i+1 for

some t and i, and let t′ be the parent of t. We may assume that A corresponds
to the part consisting of descendants of vt

i . It is not difficult to check that for
every v ∈ A \ Bt, NG(v) ∩ B ⊆ Bt. Furthermore, for v ∈ A ∩ Bt, we have
NG(v) ∩ B ⊆ Bt, because v is contained in Bt \ Bt′ by construction. Thus,
NG(A) ∩ B is a subset of Bt which is a clique. We can similarly prove for Cases
2 and 3.

We assume e = wt
iw

t
i+1 for some t and i. Without loss of generality, we

assume that Bt ⊆ B. We can observe that for every v ∈ A, NG(v) ∩ B ⊆ Bt.
Thus NG(A) ∩ B is a clique, as required. 	


We prove that If G is (Kt�St)-free, then (T,L) has mim-width at most t−1.
We may assume t ≥ 2. We show that for every edge e or T , mimval(T,L)(e) ≤ t−1.
Suppose for contradiction that there is an edge e of T and a partition (A,B)
associated with e, where mimvalG(A) ≥ t. We may assume that both end nodes
of e are internal nodes of T . By Claim, one of NG(A) ∩ B and NG(B) ∩ A
is a clique. Without loss of generality we assume NG(B) ∩ A is a clique C.
If there is an induced matching {a1b1, . . . , atbt} in G[A,B] where a1, . . . , at ∈
A, then we have a1, . . . , at ∈ V (C). Furthermore there are no edges between
vertices in {b1, . . . , bt}, otherwise, it creates an induced C4. Thus, we have an
induced subgraph isomorphic to Kt � St, which contradicts to our assumption.
We conclude that (T,L) has mim-width at most t − 1. 	


We now prove the lower bound on the mim-width of general chordal graphs.
We in fact show this for the class of split graphs that is a subclass of chordal
graphs. A split graph is a graph that can be partitioned into two vertex sets C
and I where C is a clique and I is an independent set.

Proposition 2. For every large enough n, there is a split graph on n vertices
having mim-width at least

√
log2

n
2 .

Proof. The full proof is given in the Appendix. Let m ≥ 10000 be an integer
and let n := m + (2m − 1). Let G be a split graph on the vertex partition (C, I)
where C is a clique of size m, I is an independent set of size 2m − 1, and all
vertices in I have pairwise distinct non-empty neighborhoods on C. Let (T,L)
be a branch-decomposition of G. It is well known that there is an edge of T
inducing a balanced vertex partition whose each part has at most 2n

3 vertices.
Let (A1, A2) be such a partition, and without loss of generality, we may assume
that |A1 ∩ C| ≥ |A2 ∩ C|, and thus we have m

2 ≤ |A1 ∩ C| ≤ m. Note that
|A2 ∩ I| > n

3 − m ≥ 2m−2m−1
3 ≥ 2m−3. Since |A2 ∩ C| < m

2 and m ≥ 8, there are
at least 2m−3

2
m
2

≥ 2
m
2 −3 vertices in A2 ∩ I that have pairwise distinct neighbors

on A1 ∩ C. Let I ′ ⊆ A2 ∩ I be the set of such vertices.
By the Sauer-Shelah lemma [18,19], if |I ′| ≥ |A1 ∩C|k for some k, then there

will be an induced matching of size k between A1 ∩ C and I ′ in G[A1, A2]. We



100 D.Y. Kang et al.

choose k :=
√

m. As m ≥ 10000, we can deduce that m
2 − 3 ≥ √

m log2 m.
Therefore, we have |I ′| ≥ 2

m
2 −3 ≥ m

√
m ≥ |A1 ∩ C|

√
m, and there is an induced

matching of size
√

m between A1 ∩ C and I ′ in G[A1, A2]. This shows that the
mim-width of G is at least

√
m ≥ √

log2
n
2 . 	


We observe similar properties for co-comparability graphs.

Proposition 3. Given a co-comparability graph, one can output a linear branch-
decomposition of linear sim-width at most 1 in polynomial time. Moreover for
every positive integer t, given a (Kt � Kt)-free co-comparability graph, one can
output a linear mim-decomposition of width at most t − 1 in polynomial time.

Proof. We use a result by McConnell and Spinrad [14] that one can output a
co-comparability ordering of a co-comparability graph in polynomial time. This
ordering provides a linear branch-decomposition of sim-width at most 1, and
mim-width at most t − 1 when the given graph is Kt � Kt-free. 	

Proposition 4. For every large enough n, there is a co-comparability graph on
n vertices having mim-width at least

√
n
12 .

4 Algorithms for LC-VSVP Problems

We describe algorithmic applications for restricted subclasses of chordal and co-
comparability graphs described in Sect. 3. Telle and Proskurowski [20] classified a
class of problems called Locally Checkable Vertex Subset and Vertex Partitioning
problems, which is a subclass of MSO1 problems. These problems generalize
problems like Minimum Dominating Set and q-Coloring.

Let σ, ρ be finite or co-finite subsets of natural numbers. For a graph G
and S ⊆ V (G), we call S a (σ, ρ)-dominating set of G if (1) for every v ∈ S,
|NG(v) ∩ S| ∈ σ, and (2) for every v ∈ V (G) \ S, |NG(v) ∩ S| ∈ ρ. For instance,
a (0,N)-set is an independent set as there are no edges inside of the set, and
we do not care about the adjacency between S and V (G) \ S. Another example
is that a (N,N+)-set is a dominating set as we require that for each vertex in
V (G) \ S, it has at least one neighbor in S. The class of locally checkable vertex
subset problems consist of finding a minimum or maximum (σ, ρ)-dominating set
in an input graph G, and possibly on vertex-weighted graphs.

For a positive integer q, a (q × q)-matrix Dq is called a degree constraint
matrix if each element is either a finite or co-finite subset of natural numbers.
A partition {V1, V2, . . . , Vq} of the vertex set of a graph G is called a Dq-partition
if for every i, j ∈ {1, . . . , q} and v ∈ Vi, |NG(v) ∩ Vj | ∈ Dq[i, j]. For instance, if
we take a matrix Dq where all diagonal entries are 0, and all other entries are
N, then a Dq-partition is a partition into q independent sets, which corresponds
to a q-coloring of the graph. The class of locally checkable vertex partitioning
problems consist of deciding if G admits a Dq-partition.

All these problems will be called Locally Checkable Vertex Subset and Vertex
Partitioning problems, shortly LC-VSVP problems. As shown in [5] the runtime
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solving an LC-VSVP problem by dynamic programming relates to the finite or
co-finite subsets of natural numbers used in its definition. The following func-
tion d is central. Let d(N) = 0 and for every finite or co-finite set μ ⊆ N, let
d(μ) = 1 + min(max{x ∈ N : x ∈ μ},max{x ∈ N : x /∈ μ}). For example,
for Minimum Dominating Set and q-Coloring problems we plug in d = 1
because max(d(N), d(N+)) = 1 and max(d(0), d(N)) = 1.

Theorem 5 (Belmonte and Vatshelle [3] and Bui-Xuan et al. [5]). Given
an n-vertex graph and its branch-decomposition (T,L) of mim-width w we solve
any (σ, ρ)-vertex subset problem with d = max(d(σ), d(ρ)) in time O(n3dw+4),
and solve any Dq-vertex partitioning problem with d = maxi,j d(Dq[i, j]) in time
O(qn3dwq+4).

Combining Theorem 5 with Propositions 1 and 3 we get the following.

Corollary 1. Given an n-vertex chordal graph having no induced subgraph
isomorphic to Kt � St, or co-comparability graph with no induced subgraph
isomorphic to Kt � Kt, we solve any (σ, ρ)-vertex subset problem with d =
max(d(σ), d(ρ)) in time O(n3dt+4), any Dq-vertex partitioning problem with
d = maxi,j d(Dq[i, j]) in time O(qn3dtq+4).

Dominating Set is NP-complete on chordal graphs [4], but for fixed t, it
can be solved in polynomial on (Kt � St)-free chordal graphs. Also, Weighted
Dominating Set is NP-complete on co-comparability graphs [13], but for every
fixed t, it can be solved in polynomial time on (Kt � Kt)-free co-comparability
graphs.

5 Extending to Graphs of Bounded Sim-Width

In Sect. 3, we proved that graphs of sim-width at most 1 contain all chordal and
co-comparability graphs. A classical result on chordal graphs is that the problem
of finding a minimum dominating set in a chordal graph is NP-complete [4].
So, even for this kind of locally-checkable problem, we cannot expect efficient
algorithms on graphs of sim-width at most w. Therefore, to obtain a meta-
algorithm for graphs of bounded sim-width encompassing many locally-checkable
problems, we must impose some restrictions. We approach this problem in a way
analogous to what has previously been done in the realm of rank-width [8].

Complete graphs have rank-width at most 1, but they have unbounded tree-
width. Fomin et al. [8] showed that the tree-width of a Kr-minor free graph is
bounded by c · rw(G) where c is a constant depending on r. This can be utilized
algorithmically, to get a result for graphs of bounded rank-width when excluding
a fixed minor, as the class of problems solvable in FPT time is strictly larger
when parameterized by tree-width than rank-width [12].

We will do something similar by focusing on the distinction between mim-
width and sim-width. However, Kr-minor free graphs are too strong, as one can
show that on Kr-minor free graphs, the tree-width of a graph is also bounded
by some constant factor of its sim-width [7].
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Instead of using minors, we exclude certain graphs as induced subgraphs or
induced minors. The induced minor operation is rather natural because sim-
width does not increase when taking induced minors; the proof is given in the
Appendix. We observe that indeed Kt � Kt and Kt � St are essential graphs to
bound mim-width from graphs of bounded sim-width.

Proposition 5. Every graph with sim-width w and no induced minor isomor-
phic to Kt � Kt and Kt � St has mim-width at most 8(w + 1)t3 − 1.

Note that we can also exclude these graphs as an induced subgraph to bound
mim-width, but in that case, we need to use the Ramsey’s theorem, and the
bound on the exponent becomes again an exponential in w and t. We denote
by R(k, �) the Ramsey number, which is the minimum integer satisfying that
every graph with at least R(k, �) vertices contains either a clique of size k or
an independent set of size �. By Ramsey’s Theorem [17], R(k, �) exists for every
pair of positive integers k and �.

Proposition 6. Every graph with sim-width w and no induced subgraph iso-
morphic to Kt � Kt and Kt � St has mim-width at most R(R(w + 1, t), R(t, t)).

Propositions 1 and 3 can be seen as special cases of Proposition 6 because chordal
graphs do not have any Kt � Kt for t ≥ 2, and co-comparability graphs do not
have any Kt�St for t ≥ 3. Remark that Belmonte et al. [2, Corollary 1] discussed
that the Ramsey number can be a polynomial function of k and � if the under-
lying graphs are some special classes such as chordal graphs, interval graphs,
proper interval graphs, comparability graphs, co-comparability graphs, and per-
mutation graphs. While comparability graphs have unbounded sim-width, all
other graphs have either bounded mim-width, or sim-width 1. To have more
applications of Proposition 6, it is interesting to see whether some graphs with
constant sim-width admit a polynomial function for the Ramsey number.

We prove Proposition 5. Notice that the optimal bound of Theorem6 has
been slightly improved by Fox [9], and then by Balogh and Kostochka [1].

Theorem 6 (Duchet and Meyniel [6]). For positive integers k and n, every
n-vertex graph contains either an independent set of size k or a Kt-minor where
t ≥ n

2k−1 .

Proof (of Proposition 5). Let G be a graph with sim-width w and no induced
minor isomorphic to Kt �Kt and Kt �St. Let (T,L) be a branch-decomposition
of G of width w with respect to the simvalG function. We claim that for each
e ∈ E(T ), mimval(T,L)(e) ≤ 8(w + 1)t3 − 1.

Let e ∈ E(T ), and (A,B) be the vertex partition of G associated with e.
Suppose for contradiction that there is an induced matching {v1w1, . . . , vmwm}
in G[A,B] where v1, . . . , vm ∈ A, w1, . . . , wm ∈ B, and m ≥ 8(w+1)t3. Let f be
the function from {v1, . . . , vm} to {w1, . . . , wm} such that f(vi) = wi for each
i ∈ {1, . . . , m}. As m ≥ 8(w + 1)t3, by Theorem 6, the subgraph G[{v1, . . . , vm}]
contains either an independent set of size 2(w + 1)t, or a K2t2 -minor.
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If G[{v1, . . . , vm}] contains a K2t2 -minor, then there exist pairwise disjoint
subsets S1, . . . , S2t2 of {v1, . . . , vm} such that for each i ∈ {1, . . . , 2t2}, G[Si]
is connected, and for two distinct integers i, j ∈ {1, . . . , 2t2}, there is an edge
between Si and Sj . In this case, for each i ∈ {1, . . . , 2t2}, we choose a represen-
tative di in each f(Si) and contract Si to a vertex ci. Let G′ be the resulting
graph. Then G′[{c1, . . . , c2t2}, {d1, . . . , d2t2}] is an induced matching of size t,
and {c1, . . . , c2t2} is a clique in G′. We can do the same procedure for the set
{d1, . . . , d2t2}, and by Theorem6, the subgraph G′[{d1, . . . , d2t2}] contains either
an independent set of size t, or a Kt-minor. In both cases, one can observe that
G′ contains an induced minor isomorphic to Kt � Kt or Kt � St, contradiction.

Assume that G[{v1, . . . , vm}] contains an independent set {c1, . . . , c2(w+1)t},
and for each i ∈ {1, . . . , 2(w + 1)t}, let di := f(ci). Then by Theorem6,
G[{d1, . . . , d2(w+1)t}] contains either an independent set of size w + 1 or a
Kt-minor. In the former case, we obtain an induced matching of size w + 1,
contradicting to the assumption that simval(T,L)(e) ≤ w. In the latter case, we
obtain an induced minor isomorphic to Kt � St, contradiction. We conclude
mimval(T,L)(e) ≤ 8(w + 1)t3. 	


We can prove Proposition 6 in a similar manner by replacing the applica-
tion of Theorem 6 with the Ramsey’s Theorem to find an exact clique or an
independent set. We extend Corollary 1 for general classes of graphs.

Corollary 2. Let G be a given n-vertex graph with a branch-decomposition of
sim-width w.

– If G has no induced minor isomorphic to Kt � Kt or Kt � St and t′ := 8(w +
1)t3, then we can solve any (σ, ρ)-vertex subset problem in time O(n3dt′+4)
where d = max(d(σ), d(ρ)), and solve any Dq-vertex partitioning problem in
time O(qn3dt′q+4) where d = maxi,j d(Dq[i, j]).

– If G has no induced subgraph isomorphic to Kt � Kt or Kt � St and t′ :=
R(R(w + 1, t), R(t, t)), then we can solve any (σ, ρ)-vertex subset problem in
time O(n3dt′+4) where d = max(d(σ), d(ρ)), and solve any Dq-vertex parti-
tioning problem in time O(qn3dt′q+4) where d = maxi,j d(Dq[i, j]).

6 Concluding Remarks

We showed that every LC-VSVP problem can be solved in XP time parameter-
ized by t on (Kt � St)-free chordal graphs and (Kt � Kt)-free co-comparability
graphs. We further generalized this to every graph with sim-width at most w
and having no induced minor isomorphic to Kt � St or Kt � Kt has mim-width
at most 8(w + 1)t3, by showing that every LC-VSVP problem can be solved in
time nO(wt3) on such n-vertex graphs, when its branch-decomposition is given.

It would be interesting to find more classes having constant sim-width, but
unbounded mim-width. We propose some possible classes.

Question 1. Do weakly chordal graphs, AT-free graphs, or circle graphs have
constant sim-width?
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We showed that Dominating Set can be solved in time nO(t) on (Kt �St)-
free chordal graphs, but we could not obtain an FPT algorithm. We ask whether
it is W[1]-hard or not. This may be a right direction to show that Dominating
Set is W[1]-hard parameterized by mim-width, which is open.

Question 2. Is Dominating Set on chordal graphs W[1]-hard parameterized
by the maximum t such that it has an Kt � St induced subgraph?
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Abstract. We propose an algorithm for the gathering problem of mobile
agents in Byzantine environments. Our algorithm can make all correct
agents meet at a single node in O(fm) time (f is the upper bound of the
number of Byzantine agents and m is the number of edges) under the
assumption that agents have unique ID and behave synchronously, each
node is equipped with an authenticated whiteboard, and f is known to
agents. Since the existing algorithm achieves gathering without a white-
board in Õ(n9λ) time, where n is the number of nodes and λ is the
length of the longest ID, our algorithm shows an authenticated white-
board can significantly reduce the time for the gathering problem in
Byzantine environments.

1 Introduction

Background. Distributed systems, which are composed of multiple computers
(nodes) that can communicate with each other, have become larger in scale
recently. This makes it complicated to design distributed systems because devel-
opers must maintain a huge number of nodes and treat massive data com-
munication among them. As a way to mitigate the difficulty, (mobile) agents
have attracted a lot of attention [2]. Agents are software programs that can
autonomously move from a node to a node and execute various tasks in distrib-
uted systems. In systems with agents, nodes do not need to communicate with
other nodes because agents themselves can collect and analyze data by moving
around the network, which simplifies design of distributed systems. In addition,
agents can efficiently execute tasks by cooperating with other agents. Hence
many works study algorithms to realize cooperation among multiple agents.

The gathering problem is a fundamental task to realize cooperation among
multiple agents. The goal of the gathering problem is to make all agents meet
at a single node within a finite time. By achieving gathering, all agents can
communicate with each other at the single node.

Related Works. The gathering problem has been widely studied in literature
[10,12]. Most studies aim to clarify solvability of the gathering problem in various
environments, and, if it is solvable, they aim to clarify costs (e.g., time, number
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of moves, and memory space) required to achieve gathering. To do this, many
studies have been conducted under various environments such that assumptions
on synchronization, anonymity, randomized behavior, topology, and presence of
node memory (whiteboard) are different. Table 1 summarizes some of the results.

Table 1. Gathering of synchronous agents with unique IDs in arbitrary graphs (n is
the number of nodes, l is the length of the smallest ID of agents, τ is the maximum
difference among activation times of agents, m is the number of edges, λ is the length
of the longest ID of agents, f is the upper bound of the number of Byzantine agents).

Byzantine Whiteboard Time complexity

[5] None None Õ(n5
√

τ l + n10l)

[9] None None Õ(n15 + l3)

[14] None None Õ(n5l)

Trivial algorithm None Non-authenticated O(m)

[6] Weak None Õ(n9λ)

[1,6] Strong None Exponential

Trivial extension of [6] Weak Authenticated O(n5λ)

Proposed algorithm Weak Authenticated O(fm)

For environments such that no whiteboard exists (i.e., agents cannot leave
any information on nodes), many deterministic algorithms to achieve gathering
of two agents have been proposed. Note that these algorithms can be easily
extended to a case of more than two agents [9]. If agents do not have unique
IDs, they cannot achieve gathering for some symmetric graphs. Therefore some
works [5,9,14] assume unique IDs and achieve gathering for any graph. Dessmark
et al. [5] proposed an algorithm that realizes gathering in Õ(n5

√
τ l + n10l) time

for any graph, where n is the number of nodes, l is the length of the smaller
ID of agents, and τ is the difference between activation times of two agents.
Kowalski and Malinowski [9] and Ta-Shma and Zwick [14] improved the time
complexity to Õ(n15 + l3) and Õ(n5l) respectively, which are independent of τ .
On the other hand, some works [3,4,8] studied the case that agents have no
unique IDs. In this case, gathering is not solvable for some graphs and initial
positions of agents. So the works proposed algorithms only for solvable graphs
and initial positions. They proposed memory-efficient gathering algorithms for
trees [3,8] and arbitrary graphs [4].

If whiteboard exists on each node, the time required for gathering can be
significantly reduced. For example, when agents have unique IDs, they can write
their IDs into whiteboards on their initial nodes. Agents can collect all the IDs
by traversing the network [13], and thus they can achieve gathering by moving
to the initial node of the agent with the smallest ID. This trivial algorithm
achieves gathering in O(m) time, where m is the number of edges. On the other
hand, when agents have no unique IDs, gathering is not trivial even if they
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use whiteboard and randomization. Ooshita et al. [11] clarified the relationship
between solvability of randomized gathering and termination detection in ring
networks with whiteboard.

Recently some works [1,6] have considered gathering in the presence of
Byzantine agents, which can behave arbitrarily. They modeled agents controlled
by crackers or corrupted by software errors as Byzantine agents. These works
assume agents have unique IDs, behave synchronously, and cannot use white-
board. They consider two types of Byzantine agents. While a weakly Byzantine
agent can make arbitrary behavior except falsifying its ID, a strongly Byzan-
tine agent can make arbitrary behavior including falsifying its ID. Dieudonné
et al. [6] proposed algorithms to achieve gathering in arbitrary graphs against
weakly Byzantine agents and strongly Byzantine agents, both when the number
of nodes n is known and when it is unknown. For weakly Byzantine agents, when
n is known, they proposed an algorithm that achieves gathering in 4n4 · P (n, λ)
time, where P (n, l) is the time required for gathering of two correct agents (l
is the length of the smaller ID) and λ is the length of the longest ID among
all agents. Since two agents can meet in P (n, l) = Õ(n5l) time [14], the algo-
rithm achieves gathering in Õ(n9λ) time. For weakly Byzantine agents, when n is
unknown, they also proposed a polynomial-time algorithm. However, for strongly
Byzantine agents, they proposed only exponential-time algorithms. Bouchard et
al. [1] minimized the number of correct agents required to achieve gathering for
strongly Byzantine agents, however the time complexity is still exponential.

Our Contributions. The purpose of this work is to reduce the time required for
gathering by using whiteboard on each node. However, if Byzantine agents can
erase all information on whiteboard, correct agents cannot see the information
and thus whiteboard is useless. For this reason, we assume that an authentication
function is available on the system and this provides authenticated whiteboard.
In authenticated whiteboard, each agent is given a dedicated area to write infor-
mation. In other words, each agent can write information to the dedicated area
and cannot write to other areas. Regarding read operations, each agent can read
information from all areas on the whiteboard. In addition, we assume, by using
the authentication function, each agent can write information with signature
that guarantees the writer and the writing node.

No gathering algorithms have been proposed for environments with white-
board in the presence of Byzantine agents. However, since two agents can meet
quickly by using authenticated whiteboard, the time complexity of an algorithm
in [6] can be reduced. More specifically, each agent can explore the network in
O(m) time by the depth-first search (DFS), and after the first exploration it
continues to explore the network in O(n) time for each exploration. By applying
this to Dessmark’s algorithm [5], two agents can meet in P (n, l) = O(nl) time.
Thus, for weakly Byzantine agents, agents can achieve gathering in O(n5λ) time.

In this work, we propose a new algorithm to achieve gathering in shorter time.
Similarly to [6], we assume agents have unique IDs and behave synchronously.
When at most f weakly Byzantine agents exist and f is known to agents, our
algorithm achieves gathering in O(fm) time by using authenticated whiteboard.
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That is, our algorithm significantly reduces the time required for gathering by
using authenticated whiteboard. To realize this algorithm, we newly propose
a technique to simulate message-passing algorithms by agents. Our algorithm
overcomes difficulty of Byzantine agents by simulating a Byzantine-tolerant con-
sensus algorithm [7]. This technique is general and not limited to the gathering
problem, and hence it can be applied to other problems of agents.

2 Preliminaries

A Distributed System and Mobile Agents. A distributed system is modeled by
a connected undirected graph G = (V,E), where V is a set of nodes and E is
a set of edges. The number of nodes is denoted by n = |V |. When (u, v) ∈ E
holds, u and v are adjacent. A set of adjacent nodes of node v is denoted by
Nv = {u|(u, v) ∈ E}. The degree of node v is defined as d(v) = |Nv|. Each edge
is labeled locally by function λv : {(v, u)|u ∈ Nv} → {1, 2, · · · , d(v)} such that
λv(v, u) �= λv(v, w) holds for u �= w. We say λv(v, u) is a port number (or port)
of edge (v, u) on node v.

Each node does not have a unique ID. Each node has whiteboard where
agents can leave information. Each agent is assigned a dedicated writable area
in the whiteboard, and the agent can write information only to that area. On
the other hand, each agent can read information from all areas (including areas
of other agents) in whiteboard.

Multiple agents exist in a distributed system. The number of agents is
denoted by k, and a set of agents is denoted by A = {a1, a2, · · · , ak}. Each
agent has a unique ID, and the length of the ID is O(log k) bits. The ID of agent
ai is denoted by IDi. Each agent knows neither n nor k.

Each agent is modeled as a state machine (S, δ). The first element S is the
set of agent states, where each agent state is determined by values of variables
in its memory. The second element δ is the state transition function that decides
the behavior of an agent. The input of δ is the current agent state, the content of
the whiteboard in the current node, and the incoming port number. The output
of δ is the next agent state, the next content of the whiteboard, whether the
agent stays or leaves, and the outgoing port number if the agent leaves.

Agents move in synchronous rounds. That is, the time required for each cor-
rect agent to move to the adjacent node is identical. In the initial configuration,
each agent is inactive and stays at an arbitrary node. Some agents spontaneously
become active and start the algorithm. When active agent ai encounters inactive
agent aj at some node v, agent ai can make aj active. In this case, aj starts the
algorithm before ai executes the algorithm at v.

Each agent ai can sign a value x that guarantees its ID IDi and its current
node v. That is, any agent identifies an ID of the signed agent and whether it
is signed at the current node or not from the signature. We assume ai can use
signature function Signi,v(x) at v and we denote the output of Signi,v(x) by
〈x〉 : (IDi, v). Each agent ai can compute Signi,v(x) for value x at v, however
cannot compute Signj,w(x) for either j �= i or w �= v. Therefore, it is guar-
anteed that signed value 〈x〉 : (IDi, v) is created by ai at v. For signed value
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x = 〈value〉 : (id1, v1) : (id2, v2) : · · · : (idj , vj), the output of Signi,v(x) is
denoted by 〈value〉 : (id1, v1) : (id2, v2) : · · · : (idj , vj) : (IDi, v). In this paper,
when an algorithm treats a signed value, it first checks the validity of signa-
tures and ignores the signed value if it includes wrong signatures. We omit this
behavior from descriptions, and assume all signatures of every signed value are
valid.

Byzantine agents may exist in a distributed system. Each Byzantine agent
behaves arbitrarily without being synchronized with other agents. However, each
Byzantine agent cannot change its ID. In addition, even if agent ai is Byzantine,
ai cannot compute Signj,v(x)(j �= i) for value x, and therefore ai cannot create
〈x〉 : (IDj , v) for j �= i. We assume the number of Byzantine agents is at most
f(< k) and f is known to each agent.

The Gathering Problem. The gathering problem is a problem to make all correct
agents meet at a single node and declare termination. In the initial configuration,
each agent stays at an arbitrary node and multiple agents can stay at a single
node. If an agent declares termination, it never works after that.

To evaluate the performance of the algorithm, we consider the time required
for all agents to declare termination after some agent starts the algorithm. We
assume the time required for a correct agent to move to the adjacent node is one
unit time, and we ignore the time required for local computation.

3 A Byzantine-Tolerant Consensus Algorithm for
Message-Passing Systems [7]

In this section, we explain a Byzantine-tolerant consensus algorithm in [7] that
will be used as building blocks in our algorithm.

3.1 A Message-Passing System

The consensus algorithm is proposed in a fully-connected synchronous message-
passing system. That is, we assume that processes form a complete network.
We assume the number of processes is k and denote a set of processes by
P = {p1, p2, . . . , pk}. Each process has a unique ID, and the ID of pi is denoted
by IDi. All processes execute an algorithm in synchronous phases. In the 0-th
(or initial) phase, every process computes locally and sends messages (if any). In
the r-th phase (r > 0), every process receives messages, computes locally, and
sends messages (if any). If process pi sends a message to process pj in the r-th
phase, pj receives the message at the beginning of (r + 1)-th phase.

Similarly to Sect. 2, each process pi has signature function Signi(x). The
output of Signi(x) is denoted by 〈x〉 : IDi, and only pi can compute Signi(x).

Some Byzantine processes may exist in the message-passing system. Byzan-
tine processes can behave arbitrarily. But even if pi is Byzantine, pi cannot
compute Signj(x) (j �= i) for value x. We assume the number of Byzantine
processes is at most f < k and f is known to each process.
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3.2 A Byzantine-Tolerant Consensus Algorithm

In this subsection, we explain a Byzantine-tolerant consensus algorithm in [7].
In the consensus algorithm, each process pi is given at most one value xi as its
input. If pi is not given an input value, we say xi =⊥. The goal of the consensus
algorithm is to agree on the set of all input values. Of course, some Byzantine
processes behave arbitrarily and forge inconsistent input values. However, by the
consensus algorithm in [7], all correct agents can agree on the same set X ⊇ Xc,
where Xc is a set of all values input by correct processes.

We show the details of the consensus algorithm. Each process pi has one
variable pi.W to keep a set of input values, and initially pi.W = ∅ holds. The
algorithm consists of f + 2 phases (from the 0-th phase to (f + 1)-th phase).
After processes terminate, they have the same values in W .

In the 0-th phase, if pi is given an input value xi(�=⊥), process pi broadcasts
Signi(xi) = 〈xi〉 : IDi to all processes and adds xi to variable pi.W . If pi is not
given an input value, it does not do anything.

In the r-th phase (1 ≤ r ≤ f + 1), pi receives all messages (or signed values)
broadcasted in (r − 1)-th phase. After that, for every received message, process
pi checks its validity. We say message t = 〈x〉 : id1 : id2 : · · · : idy is valid if and
only if t satisfies all the following conditions.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain pi’s signature.
4. Value x is not in pi.W .

If message t = 〈x〉 : id1 : id2 : · · · : idy is valid, pi broadcasts Signi(t) = 〈x〉 :
id1 : id2 : · · · : idy : IDi to all processes (if r ≤ f) and adds x to variable pi.W .

For this algorithm, the following theorem holds.

Theorem 1. [7] After all processes terminate, all the following holds.

1. For any correct process pi, xi ∈ pi.W holds if xi �=⊥.
2. For any two correct processes pi and pj, pi.W = pj .W holds.

4 Our Algorithm

4.1 Overview

First, we give an overview of our algorithm. When agent ai starts the algorithm,
ai leaves its starting information to whiteboard at its initial node v. The starting
information includes IDi, and consequently it can notify other agents that ai

starts at v. After that, ai explores the network and collects starting information
of all agents. If no Byzantine agent exists, all agents collect the same set of
starting information, and thus all agents can meet at a single node by visiting
the node where the agent with the smallest ID leaves the starting information.

However, when some Byzantine agent exists, it can write and delete its start-
ing information repeatedly so that only a subset of agents see the information.
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This implies some agents may obtain a set of starting information different from
others and thus may fail to achieve gathering.

To overcome this difficulty, our algorithm makes all correct agents agree on
the same set of starting information at each node. That is, letting ai.Xv be
the set of starting information that ai obtains at node v, we guarantee that
ai.Xv = aj .Xv holds for any two correct agents ai and aj . In addition, we also
guarantee that, if correct agent ac starts at v, then ai.Xv contains ac’s starting
information and ai.Xw(w �= v) does not contain ac’s starting information. We
later explain the details of this procedure.

After that, each agent ai can obtain ai.Xall =
⋃

v∈V ai.Xv, and clearly
ai.Xall = aj .Xall holds for any two correct agents ai and aj . Consequently each
agent ai can compute the same gathering node based on ai.Xall as follows. First
ai removes all duplicated starting information from ai.Xall because a Byzantine
agent may leave its starting information at several nodes. After that, ai finds
the starting information of the agent with the smallest ID and selects the node
with the starting information as the gathering node. By this behavior, all correct
agents can meet at the same gathering node.

In the rest of this subsection, we explain the way to make all correct agents
agree on the same set of starting information at each node. To realize this,
our algorithm uses a Byzantine-tolerant consensus algorithm in Sect. 3. At each
node, agents simulate the consensus algorithm and then agree on the same set.
However, since the consensus algorithm is proposed for synchronous message-
passing systems, we need additional synchronization mechanism. We realize this
by using the depth-first search (DFS).

DFS and Round Synchronization. The DFS is a well-known technique to explore
a graph. In the DFS, an agent continues to explore a port as long as it visits a new
node. If the agent visits an already visited node, it backtracks to the previous
node and explores another unexplored port. If no unexplored port exists, the
agent backtracks to the previous node again. By repeating this behavior, each
agent can visit all nodes in 2m unit times, where m is the number of edges. Note
that, since each agent can realize the DFS by using only its dedicated area on
whiteboard, Byzantine agents cannot disturb the DFS of correct agents.

To simulate the consensus algorithm, we realize round synchronization of
agents by the DFS. More specifically, we guarantee that, before some agent ai

makes the r-th visit to v, all agents finish the (r − 1)-th visit to v. To realize
this, each agent ai executes the following procedure in addition to the DFS.

– If ai finds an inactive agent, ai makes the agent active.
– Every time ai completes a DFS, it waits for the same time as the exploration

time. That is, ai waits for 2m unit times after each DFS.

We define the r-th exploration period of ai as the period during which ai

executes the r-th DFS exploration, and define the r-th waiting period of ai as
the period during which ai waits after the r-th DFS exploration. In addition, we
define the r-th round of ai as the period from the beginning of the r-th explo-
ration period to the end of the r-th waiting period. As shown in the Fig. 1, before
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some agent starts the r-th exploration period, every correct agent completes the
(r − 1)-th exploration period.

Fig. 1. Exploration and waiting periods.

Simulation of Consensus Algorithm. In the following, we explain the way to
apply the consensus algorithm in Sect. 3. The goal is to make all correct agents
agree on the same set of starting information at each node. To achieve this, we
assume k virtual processes v.p1, v.p2, . . . , v.pk exist at each node v and form a
message-passing system in Sect. 3 (See Fig. 2). When agent ai visits node v, it
simulates v.pi’s behavior of the consensus algorithm.

4

Fig. 2. Virtual processes.

In the consensus algorithm on node v, each virtual process decides its input
value as follows. If ai starts the algorithm at v, the input of virtual process v.pi is
the starting information of ai. Otherwise, the input of virtual process v.pi is not
given. Thus, after completion of the consensus algorithm, all virtual processes
at v agree on the same set Xv of starting information. From the property of the
consensus algorithm, Xv contains starting information of all correct agents that
start at v.

Next, we explain how to simulate the behaviors of virtual processes. Each
agent ai simulates the r-th phase of virtual process v.pi when ai visits v for
the first time in the exploration period of r-th round. Recall that, by the round
synchronization, when some correct agent ai starts the exploration period of the
r-th round, all correct agents have already completed the exploration period of
the (r − 1)-th round. This implies, ai can simulate the r-th phase of virtual
process v.pi after all virtual processes complete the (r − 1)-th phase.

To simulate v.pi, ai uses variables v.wb[IDi].T and v.wb[IDi].W in white-
board of node v. We denote variable var in the dedicated area of ai by
v.wb[IDi].var. Agent ai uses v.wb[IDi].T to simulate communications among
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Algorithm 1. main( )
1: —Variables in whiteboard of node v—
2: var v.wb[IDi].T and v.wb[IDi].W
3: var v.wb[IDi].round, v.wb[IDi].from_port, and v.wb[IDi].unexplored_port
4: —Variables of agent ai—
5: var ai.node_num = 0 // count the number of nodes
6: var ai.all_edge_num = 0 // count the number of edges
7: var ai.r = 0 // keep the current round
8: var ai.W = ∅ // collect a set of starting information
9: ——————————–

10: consensus()
11: for ai.r = 1 to f + 1 do
12: ai.node_num = 1
13: ai.all_edge_num = 0
14: DFS(null)
15: wait ai.all_edge_num × 2
16: end for
17: Delete duplicated candidate from ai.W
18: Move to a node where the minimum candidate in ai.W is written
19: Declare termination

virtual processes. That is, when v.pi sends some messages to other processes,
ai stores the messages in v.wb[IDi].T so that other virtual processes read the
messages. Here, to guarantee that the messages are available on only node v, ai

stores Signi,v(t) instead of message t. Agent ai uses v.wb[IDi].W to memorize
variables of v.pi. By using these variables, ai can simulate the r-th phase of v.pi
as follows:

1. By reading from all variables v.wb[id].T (for some id), ai receives messages
that virtual processes have sent to v.pi in the (r − 1)-th phase.

2. From v.pi’s variables stored in v.wb[IDi].W and messages received in 1, agent
ai simulates local computation of v.pi’s r-th phase.

3. Agent ai writes updated variables of v.pi to v.wb[IDi].W . If v.pi sends some
messages, ai writes the messages with signatures to v.wb[IDi].T .

Note that, since only agent ai can update variables v.wb[IDi].T and
v.wb[IDi].W , agent ai simulates the correct behavior of v.pi if ai is correct. This
implies that the simulated message-passing system contains at most f Byzantine
processes. Consequently (correct) virtual processes can agree on the same set by
the consensus algorithm that can tolerate at most f Byzantine processes. Thus
correct agents can agree on the same set of starting information at v.

4.2 Details

The pseudo-code of the algorithm is given in Algorithms 1, 2, and 3. Due to
limitation of space, the details of main() and DFS() are provided in the full
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Algorithm 2. DFS(f port)
1: make an inactive agent active if such an agent exists at v
2: if v.wb[IDi].round �= ai.r then
3: v.wb[IDi].round = ai.r
4: v.wb[IDi].from_port = f_port
5: if f port = null then
6: v.wb[IDi].unexplored_port = {1, . . . , d(v)}
7: else
8: v.wb[IDi].unexplored_port = {1, . . . , d(v)} \ {f_port}
9: end if

10: ai.node_num + +
11: consensus()
12: if ai.r = f + 1 then
13: for all candidate in v.wb[IDi].W do
14: ai.W = ai.W ∪ {(candidate, ai.node_num)}
15: end for
16: end if
17: while v.wb[IDi].unexplored port �= ∅ do
18: x = min(v.wb[IDi].unexplored port)
19: ai.all_edge_num + +
20: v.wb[IDi].unexplored_port =v.wb[IDi].unexplored_port \ {x}
21: Go to the next node via port x
22: DFS(Port number via which ai enters the current node)
23: end while
24: Backtrack via port v.wb[IDi].from_port. If it is null, do not move.
25: else
26: v.wb[IDi].unexplored_port =v.wb[IDi].unexplored_port \ {f_port}
27: Backtrack via port f_port. If it is null, do not move.
28: end if

version [15]. Simply put, functions main() and DFS() realize the DFS traversal
of agent ai. When ai starts the algorithm, ai executes consensus() once to
simulate the 0-th phase of virtual process v.pi. After that, for each node v, ai

calls consensus() to simulate the r-th phase of v.pi when it visits v for the first
time during the r-th round.

Function consensus() simulates the consensus algorithm in Sect. 3 by fol-
lowing the strategy in Sect. 4.1. In the 0-th round, ai simulates the 0-th phase
of the consensus algorithm. That is, ai makes virtual process v.pi broadcast a
signed value Signi,v(xi) if v.pi is given an input value xi. Recall that v.pi is
given starting information of ai as an input if ai starts at v. This means the
simulation of the 0-th phase is required only for the initial node of ai. In other
words, ai completes the 0-th round without exploring the network. Specifically,
ai adds Signi,v(IDi) to v.wb[IDi].T as its stating information, and adds IDi to
v.wb[IDi].W (lines 1 to 3).

In the r-th round (lines 4 to 11), ai simulates the r-th phase of the consensus
algorithm. To realize this, for every node v, ai simulates the r-th phase of v.pi
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Algorithm 3. consensus( )
1: if ai.r = 0 then
2: v.wb[IDi].T = {Signi,v(IDi)}
3: v.wb[IDi].W = {IDi}
4: else
5: for all t such that t ∈ v.wb[id].T for some id do
6: if (t is valid) then
7: v.wb[IDi].T = v.wb[IDi].T ∪ {Signi,v(t)}
8: v.wb[IDi].W = v.wb[IDi].W ∪ {value(t)}
9: end if

10: end for
11: end if

when it visits v for the first time during the round. Specifically, for every message
received by v.pi, ai checks its validity. Note that messages received by v.pi are
stored in

⋃
aj∈A v.wb[IDj ].T . We say message t = 〈x〉 : (id1, v1) : (id2, v2) : · · · :

(idy, vy) is valid if and only if t satisfies all the following conditions, where we
define value(t) = x and initial(t) = id1.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain ai’s signature.
4. value(t) is not in v.wb[IDi].W .
5. value(t) = initial(t) holds.
6. All the y signatures are given at the current node.

Conditions 1–4 are identical to conditions in Sect. 3. Condition 5 is introduced
to assure that value IDi in messages is originated from ai. Note that, since
correct agent ai can initially add 〈IDi〉 : (IDi, v) to v.wb[IDi].T , every message t
forwarded by correct agents satisfies value(t) = initial(t). This implies condition
5 does not discard messages originated from and forwarded by correct agents, and
consequently does not influence the simulation of correct processes. Condition 6
is introduced to assure that message t is generated at the current node. If t is
valid, ai adds Signi,v(t) to v.wb[IDi].T to simulate broadcast of Signi,v(t) by
virtual process v.pi. At the same time, ai adds value(t) to v.wb[IDi].W .

In the (f + 1)-th round, all agents complete simulating the consensus algo-
rithm. That is, v.wb[IDi].W = v.wb[IDj ].W holds for any two correct agents ai

and aj . During the (f + 1)-th round, ai collects contents in v.wb[IDi].W for all
v by variable ai.W (lines 12 to 16 of DFS()). Recall that v.wb[IDi].W includes
IDs of agents that start at v. When ai memorizes candidate ∈ v.wb[IDi].W , ai

memorizes it as a pair (candidate, ai.node num) to recognize the node later.
After that, ai computes the gathering node from the collected information

in ai.W (lines 17 to 18 in main()). Since IDs of Byzantine agents may appear
more than once in ai.W , ai deletes all pairs from ai.W such that candidate is
duplicated. Then ai finds the pair such that candidate is the smallest, and it
selects the node of the pair as the gathering node. Note that the pair includes



Byzantine Gathering in Networks with Authenticated Whiteboards 117

candidate and ai.node num. Hence ai can move to the gathering node by exe-
cuting the DFS until ai.node num becomes the same number as the pair (this
procedure is omitted in main()).

Theorem 2. Our algorithm solves the gathering problem in O(fm) unit times.

5 Summary

In this paper, we proposed a Byzantine-tolerant gathering algorithm for mobile
agents in synchronous networks with authenticated whiteboards. In our algo-
rithm, each agent first writes its starting information to the initial node, and
then each agent executes a consensus algorithm so that every correct agent
agrees on the same set of starting information. Once correct agents obtain the
set, they can calculate the same gathering node. By this algorithm, all correct
agents can achieve gathering in O(fm) time. An important open problem is
to develop a Byzantine-tolerant gathering algorithm in asynchronous networks
with authenticated whiteboards. Since the consensus algorithm is proven to be
unsolvable in asynchronous networks, we must consider other approaches.
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1. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks.
In: Scheideler, C. (ed.) Structural Information and Communication Complex-
ity. LNCS, vol. 9439, pp. 179–193. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25258-2 13

2. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley-Interscience, Hoboken (2012)

3. Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous
in trees. Distrib. Comput. 27(2), 95–109 (2014)

4. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)

5. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)
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Abstract. A balanced graph partition on a vertex-weighted graph is a
partition of the vertex set such that the partition has k parts and the
disparity, which is defined as the ratio of the maximum total weight of
parts to the minimum one, is at most r. In this paper, a novel algorithm
is proposed that enumerates all the graph partitions with small dispar-
ity. Experimental results show that five millions of partitions with small
disparity for some graph with more than 100 edges can be enumerated
within ten minutes.

1 Introduction

A k-balanced graph partitioning problem requires splitting a given graph into
k connected components of almost equal size. This problem appears in several
applications such as parallel computing, image analysis, floorplan design, and
so on. Among them, designing social systems such as elections is an important
application. Suppose that we would like to elect k representatives from a prefec-
ture, which is composed of some cities. We divide the prefecture into k connected
components to elect one representative for each component under the condition
that any city must not be split and all the components are desired to be bal-
anced. For this purpose, we represent the prefecture as a vertex-weighted graph,
where its vertex corresponds to a city, two vertices are adjacent if and only if the
corresponding cities have the common border, and the weight of a vertex means
the population in the city. Our concern is a balanced partition on such a graph.

Nemoto and Hotta [12] proposed an integer programming-based algorithm
that obtains the graph partition with the smallest disparity, that is defined as
the maximum ratio of the weights of two connected components in the partition.
Their aim of minimizing the disparity seems to make current electoral partitions
more balanced in accordance with the requisition of a law in Japan [12]. How-
ever, from a practical point of view, we desire not the partition with simply the
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smallest disparity but one satisfying many other conditions derived from geo-
graphical, sociological, legal, and political requirements with moderately small
disparity. It is quite hard that we impose such complex constraints on a solution
in the integer programming-based algorithm and solve it.

In this paper, we adopt an enumeration algorithm-based approach to obtain
desired partitions. Specifically, we propose an algorithm that generates all par-
titions within a given disparity for the input vertex-weighted graph. Needless to
say, the number of ways for partitioning a graph exponentially increases as the
graph size grows. For example, there are more than 1028 ways of partitioning an
8×8 grid graph with 64 vertices into at least two connected components. To treat
a tremendous number of partitions, we use a compact data structure called the
zero-suppressed decision diagram (ZDD) [11], which is a variant of binary trees
for representing a family of sets. Our algorithm directly constructs a ZDD rep-
resenting all the partitions without enumerating them explicitly, which implies
that our algorithm runs significantly faster than algorithms that generate and
output partitions one by one. We develop a novel technique that imposes the
disparity constraint on resulting partitions. We also show some results on the
complexity of our algorithms.

We mention why we enumerate a number of partitions: (i) We can count the
number of partitions with every 0.1 disparity, and obtain a histogram showing
them (examples are shown in Figs. 1 and 2). The histogram tells us whether
there is room for improvement of the current partition in terms of the disparity. If
there are a number of partitions whose disparity is much smaller than the current
one, we can suggest adopting one of them. Such a histogram would be useful
for practitioners. (ii) As mentioned above, it is difficult to obtain the partition
simultaneously satisfying multiple conditions (including the disparity condition).
Therefore, we first generate a million of partitions with small disparity by our
proposed algorithm (not taking other conditions into consideration), and then
one by one check whether each partition satisfies desired conditions, e.g., the
slenderness of components, the amount of change from the current partition.
Note that each of million partitions can be checked in a brute-force manner
in a distributed environment. Since it will be a human who determines which
partition is adopted, it is essential to narrow enumerated partitions with small
disparity down from millions to dozens. Practitioners often would like to compare
dozens of good partitions by hand.

The paper is organized as follows. In Sect. 2, we provide an explanation of
our framework. Sect. 3 describes an algorithm that enumerates all the graph
partitions on a given graph. We show how to enumerate partitions with only
small disparity in Sect. 4. In Sect. 5, the results of numerical experiments are
shown to confirm the effectiveness of our algorithms. We conclude the paper in
Sect. 6.

Related work: There are several research adopting the approach of using
ZDDs and enumeration algorithms. Inoue et al. [6] optimized the power loss for
smart grid by enumerating all the rooted spanning forests of a given distribution
network. The technique is also used for evacuation planning [14] and evaluating
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the network reliability [3,4]. Yoshinaka et al. [15] proposed algorithms for solving
and enumerating some puzzle problems.

The special case where k = 2, the disparity is exactly one, and all the weights
are one is known as the minimum bisection problem, which has been widely
studied for decades [7]. In this problem, the objective function is not the dispar-
ity but the number of edges whose two endpoints belong to distinct connected
components. Andreev and Räcke [1] introduced a (k, ν)-balanced graph parti-
tion, which is a graph partition such that each component must not have more
than νn/k vertices. Note that their definition of “balanced” is different from our
definition of disparity. They proved that there is no polynomial time approx-
imation algorithm unless P = NP when k ≥ 3 and ν = 1, and designed an
approximation algorithm which attains O(log1.5 n) approximation ratio for fixed
ν > 1. Local search-based methods for graph partitioning have been proposed by
King et al. [9].

2 Preliminaries

We explain some notation and definitions. An undirected vertex-weighted graph
is defined as a triple (V,E, h), where V is a set of vertices, E is a set of edges,
each of which is a vertex set having exactly two elements of V , and h : V → N

is a weighted function mapping a vertex into a natural number. Throughout
this paper, we use the notation G, V , E and h for the input graph and assume
that the input graph is simple. We let m = |E| and E = {e1, . . . , em}. In this
paper, when we use the phrase “subgraph of G,” it always indicates a subgraph
(V,E′, h) of G for an edge set E′ ⊆ E, that is, a subgraph whose vertex set
coincides with V , and consequently we can identify a subgraph with the set of
its edges.

In this section, we explain an algorithm, called the frontier-based search [8,
13], which constructs a directed acyclic graph compactly expressing all the sub-
graphs of a given graph such that the subgraphs satisfy specified conditions. For
ease of explanation, we explain the frontier-based search for spanning trees as
an example, that is, we describe how to construct the directed acyclic graph rep-
resenting all the spanning trees on a given graph. Note that the frontier-based
search can treat various subgraphs such as paths, matchings, covers besides
spanning trees [8,10,15].

We describe the property of the directed acyclic graph D = (N,A) that
the frontier-based search constructs, which we call the ZDD. D has two special
terminal nodes, called the 0-terminal and 1-terminal and denoted by 0 and 1,
respectively, and has one node which has no incoming arc, called the root node
and denoted by nroot (see figures in [8]). Each node has exactly two arcs, called
the 0-arc and the 1-arc, and has a label ei for some i = 1, . . . ,m. The root node
has a label e1. A node with label ei points at one with ei+1 or a terminal. Each
path from the root node to a node ni with label ei corresponds to a subgraph
in the following manner: Let P = 〈n1, a1, n2, a2, . . . , ni−1, ai−1, ni〉 be a directed
path on the ZDD such that n1 = nroot, nj is a node with label ej and aj is an
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arc of nj for j = 1, . . . , i. We define E(P ) = {ei | ai is a 1-arc}, and say that
P corresponds to the subgraph (V,E(P )). We also define G(ni) = {(V,E(P ′)) |
P ′is a directed path fromnroot to ni} and say that the node ni corresponds to
G(ni). We interpret that the ZDD represents the set G(1) of subgraphs.

Now we describe how to construct the ZDD. First, we start from creating
the root node nroot and its 0-arc and 1-arc. Then, we create nodes with label e2
as the destinations of the arcs. Nodes of the ZDD are created in a breadth-first
manner, that is, for each i = 2, . . . ,m − 1, we create nodes labeled ei after all
nodes labeled ei−1 are created. Note that a node n with label ei corresponds to
the set G(n) of subgraphs whose edge set consists of some of e1, . . . , ei−1. For
each node n, to efficiently decide whether subgraphs in G(n) have a cycle, we
store a partition over vertices, denoted by n.comp, representing the connectivity
of them into n. The partition n.comp means that for vertices v and w, v and
w belong to the same cell of the partition if and only if v and w belong to the
same connected component for all the subgraphs in G(n). (Given a partition
V = {V1, V2, . . .} over V such that Vj ⊆ V and Vj ∩ Vj′ = ∅ with j 	= j′, we call
each Vj a cell of the partition V.)

Consider the situation where we are creating a node n′ with label ei+1 as
the destination of the x-arc of a node n with label ei = {v, w} for x = 0, 1.
If x = 1, n′ corresponds to the set of subgraphs each of which is obtained by
adding an edge ei to a subgraph in G(n). Then, if v and w belong to the same
cell of n.comp, a cycle is generated in the subgraphs, which means that there is
no chance that spanning trees are completed from the subgraphs. In this case,
we stop creating n′ and let the x-arc of n point at the 0-terminal instead of n′.

The partition n.comp of a node n is also used for ensuring that resulting
subgraphs are connected. Consider the situation described above again (for x =
0, 1). Suppose that ei has the last index among the edges incident to v. Then, if
all the vertices in the connected component including v will never be connected
with the other vertices, the connected component is isolated and the resulting
subgraphs are not spanning trees. Such a situation occurs when all the vertices
in the connected component including v are incident to edges only in e1, . . . , ei.
In this case, we let the x-arc of n point at the 0-terminal. More formally, for
each i = 1, . . . ,m − 1, we define

Fi =

⎛

⎝
⋃

j=1,...,i

ej

⎞

⎠ ∩
⎛

⎝
⋃

j=i+1,...,m

ej

⎞

⎠ ,

called the i-th frontier Fi. We also define F0 = Fm = ∅. If v ∈ Fi−1, v 	∈ Fi and
there is no vertex w on the frontier Fi such that v and w belong to the same cell
of n.comp, it means that the connected component including v is never connected
with other connected components even if some of ei+1, . . . , em are added.

The decision described above needs the information of the connectivity of
only vertices in Fi−1 when ei is processed. Therefore, we restrict the domain of
n.comp to Fi−1. For nodes n′ and n′′, we say that n′ and n′′ are identical if n′

and n′′ have the same label and n′.comp = n′′.comp (on Fi−1). When we create a
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Algorithm 1. ConstructZDD

1 N1 ← {nroot}. Ni ← ∅ for i = 2, . . . , m + 1.
2 for i ← 1 to m do
3 foreach n ∈ Ni do
4 foreach x ∈ {0, 1} do // process for the 0/1-arc

5 n′ ← MakeNewNode(n, i, x) // returns a new node or the

0/1-terminal

6 if n′ �= 0,1 then // n′ is neither 0 nor 1.
7 if there exists a node n′′ ∈ Ni+1 s.t. n′′ is identical to n′ then
8 n′ ← n′′

9 else
10 Ni+1 ← Ni+1 ∪ {n′}
11 Create the x-arc of n and make it point at n′.

node n′ as the destination of an arc of n, if there is a node n′′ which is identical
to n′, we stop creating n′ and make the arc of n point at n′′ instead of n′.

When n has a label em = {v, w}, if v and w are in the same cell of n.comp, the
destination of the 0-arc of n is the 1-terminal because it means that a spanning
tree is completed, and that of the 1-arc of n is the 0-terminal because a cycle
occurs. Otherwise (v and w are in distinct cells of n.comp), the destination of the
0-arc of n is the 0-terminal because the connected component including v and
that including w are not connected, and that of the 1-arc of n is the 1-terminal
because two remaining connected components are connected by adding em.

3 Constructing a ZDD Representing All Graph
Partitioning

In this section, we propose a novel algorithm for constructing the ZDD represent-
ing all the partitions of a given graph. We describe the algorithm by modifying
the frontier-based search for spanning trees explained in Sect. 2. We define a
partition of a graph as a partition over the vertex set of the graph such that the
subgraph induced by each cell of the partition is connected. Note that in the
frontier-based search framework, a subgraph needs to be represented as a set of
edges. Although a partition of a graph can be represented as a spanning forest
by regarding its connected components as cells of a partition, its representation
is not unique. Therefore, we consider a subgraph such that for vertices u,w ∈ V
which belong to the same connected component in the subgraph, the subgraph
must have the edge {v, w} if the original graph has {v, w}, and call a partition
subgraph. It is clear that there is one-to-one correspondence between partition
subgraphs of a graph and partitions of the graph.

We sometimes would like to specify the number of cells of each partition
we generate. We use notation K ⊆ {1, . . . , |V |} to specify a set of the possible
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numbers of cells of partitions. Let |V| denote the number of cells of a partition
V of V . We define

P(K) = {(V,E′) | V is a partition of V, |V| ∈ K, {v, w} ∈ E′ if and only if
v and w are in the same cell of V}.

Our goal in this section is to design the frontier-based search for constructing
the ZDD representing P(K) for any integer set K ⊆ {1, . . . , |V |}.

First, we describe how to count the number of connected components. Recall
that in the frontier-based search for spanning trees, when creating a new node,
we decide whether an isolated connected component occurs in the subgraphs
corresponding to the node. Therefore, we can count the number of isolated con-
nected components by storing the number into each node. For a node n, we use
variable n.cc to count it. More formally, consider the situation where we are
creating a node n′ with label ei+1 as the destination of an arc of a node n with
label ei = {v, w}. For each u ∈ {v, w}, if ei has the last index among the edges
incident to u, and there is no vertex x ∈ Fi such that x 	= u and x and u belong
to the same cell of n.comp, we increment cc. In other words, n′.cc ← n.cc + a,
where a is the number of vertices u ∈ {v, w} such that the above condition
holds. These processes are carried out in Line 18–19 in Algorithm 2, which is
called from Algorithm 1. If n′.cc > max(K), the node can be pruned, that is,
we let the destination of the arc point at the 0-terminal instead of n (see Line
20–21) because the number of isolated connected components exceeds max(K)
even if some of edges ei+1, . . . , em are added. After the last edge is processed,
that is, in case of i = m, we check whether cc ∈ K. If so, we let the terminal be
1, otherwise 0 (Line 25–28).

Next, we describe how to ensure that each connected component of resulting
subgraphs composes an induced subgraph. For a node n with a label ei = {v, w},
if v and w are in the same cell of n.comp, the edge {v, w} must be adopted because
v and w have already been in the same connected component. In this case, we
let the destination of the 0-arc of n point at the 0-terminal (Line 13–14). If v
and w are in distinct cells of n.comp, we cannot immediately decide whether v
and w are in the same connected component at the end of processing edges. If
we decide not to adopt ei = {v, w}, two components including v and w are not
allowed to be connected in the future. Therefore, we need to remember which
components are not allowed to be connected. For this purpose, we introduce a
variable n.fps, called a forbidden pair set, to remember such pairs of connected
components. For connected components C and C ′ in n.comp, {C,C ′} ∈ n.fps
means that C and C ′ must not be connected in the future. (Note that we identify
a connected component with a cell of a partition over vertices.) For a vertex u,
let Cu be a connected component in n.comp. When we adopt ei = {v, w}, if
Cv 	= Cw and {Cv, Cw} ∈ n.fps, we let the destination of the 1-arc of n point
at the 0-terminal (Line 8–9). Otherwise, we update the connected components
in n.fps, that is, we replace all Cv’s and Cw’s with Cv ∪ Cw (Line 10–11). If we
decide not to adopt ei = {v, w}, add the pair {Cv, Cw} to fps (Line 15–16).
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Algorithm 2. MakeNewNode(n, i, x) for partition subgraphs
1 Let ei = {v, w}.
2 Copy n to n′.
3 foreach u ∈ {v, w} such that u �∈ Fi−1 do // u is entering the frontier.

4 n′.comp ← n′.comp ∪ {{u}} // add the singleton set {u} to n′.comp

5 Let Cv and Cw be the vertex set containing v and w in n′.comp, respectively.
6 if x = 1 then
7 n′.comp ← (n′.comp \ {Cv} \ {Cw}) ∪ {Cv ∪ Cw} // The two components

become connected.

8 if Cv �= Cw and {Cv, Cw} ∈ n′.fps then // Cv and Cw must not be

merged

9 return 0

10 else
11 Replace all Cv’s and Cw’s in n′.fps with Cv ∪ Cw.

12 else
13 if Cv = Cw then // {v, w} must be adopted because v and w are

included in the connected component

14 return 0

15 else
16 n′.fps ← n′.fps ∪ {{Cv, Cw}}
17 foreach u ∈ {v, w} such that u �∈ Fi do // u is leaving the frontier.

18 if {u} ∈ n′.comp then // u is in an isolated connected component

19 n′.cc ← n′.cc + 1
20 if n′.cc > max(K) then // pruning

21 return 0

22 Remove u from n′.comp.
23 Remove {{u}, X} for any X ∈ n′.comp from n′.fps.

24 if i = m then // The processing of the last edge has been done.

25 if n′.cc ∈ K then
26 return 1 // All the constraints are satisfied.

27 else
28 return 0

29 return n′

In the frontier-based search for partition subgraphs, we say that n and n′

are identical if n and n′ have the same label, n.comp = n′.comp, n.cc = n′.cc
and n.fps = n′.fps. The ConstructZDD function of the frontier-based search
for partition subgraphs is almost the same as that for spanning trees. The only
different thing is the MakeNewNode functions called from ConstructZDD.
The MakeNewNode function for partition subgraphs is shown in Algorithm2.
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3.1 Complexity of Our Algorithm

In this subsection we discuss the complexity of our algorithm. First, we estimate
it for general graphs. In this subsection, n denotes the number of vertices in G.
The cardinality of the forbidden pair set in a ZDD node affects the number of
nodes in a ZDD and the computation time.

Lemma 1. In the process of the ZDD construction, the cardinality of the for-
bidden pair set in any ZDD node is at most O(n2).

This estimation is tight because there is a case in which the cardinality of a
forbidden pair set is Ω(n2) (for example, in case of complete graphs).

Next, we consider the case of planar graphs. We define f = maxi |Fi|, where
|Fi| is the cardinality of Fi. Let Cj be the j-th Catalan number, defined by
1

j+1

(
2j
j

)
, and Gj be the number of graphs having j nodes on a circle without

crossing edges [5], which is 2j
∑

0≤v≤(j−1)/2(−1)v 1·3···(2j−2v−5)
v!(j−1−2v)! 3j−1−2v2−v−2 [2].

Theorem 1. When the input graph is planar, the algorithm constructs the ZDD
within O(mnCfGf ) time.

The proof of Theorem 1 is omitted due to the space limitation. Note that
for planar graphs, there exists an edge ordering such that f is bounded by
O(

√
n) [13].

4 Enumerating All the Graph Partitions with a Small
Disparity

In this section, we construct the ZDD representing all the partition subgraphs
which have exactly k cells within disparity r for fixed k and r. For a partition
subgraph, if we fix k and r, all the weights of connected components of the
subgraph must range between some values. Let ai denote the weight of the i-th
smallest connected component for i = 1, . . . , k and S =

∑
v∈V h(v)(=

∑k
i=1 ai).

Note that ak/a1 ≤ r must hold. Since S =
∑k

i=1 ai ≥ (k − 1)a1 + ak ≥ (k −
1)ak/r+ak holds, we have ak ≤ rS/(r+(k−1)). Similarly, since S =

∑k
i=1 ai ≤

a1 + (k − 1)ak ≤ a1 + r(k − 1)a1 holds, we have a1 ≥ S/(r(k − 1) + 1). Letting
U(k, r) = rS/(r + (k − 1)) and L(k, r) = S/(r(k − 1) + 1), we have L(k, r) ≤
ai ≤ U(k, r) for all i = 1, . . . , k. We sometimes drop k and r from U(k, r) and
L(k, r) and simply denote them by U and L if it is clear from the context.

We now design the frontier-based search for partition subgraphs within dis-
parity r by modifying that for P({k}) described in Sect. 3. Our idea is to store
the current weight of each connected component on the frontier into a node.
For a node n with label ei, we introduce a variable n.weight. For a connected
component C on Fi−1, n.weight[C] represents the total weight of the connected
component including C on V . For a node n with label ei = {v, w}, if ei is the
first edge incident to v, we set weight[{v}] ← h(v). Then, if we decide to adopt
ei and Cv 	= Cw, weight[Cv ∪ Cw] ← weight[Cv] + weight[Cw]. At this time,
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if weight[Cv ∪ Cw] exceeds U , we prune the resulting node. When a connected
component C becomes isolated, if weight[C] < L, then we also prune the result-
ing node.

Since the condition that L ≤ ai ≤ U for all i is not a sufficient condition, to
ensure that the disparity does not exceed r, we also store the maximum and the
minimum weights of isolated connected components into a node. For a node n
with label ei = {v, w}, we store such values into n.maxw and n.minw, respectively.
We set nroot.maxw ← 0 and nroot.minw ← ∞ as the initial values. When creating
a node n′ as the destination of an arc of n, we update maxw and minw as follows.
If v ∈ Fi−1, v 	∈ Fi, {v} ∈ n.comp, and n.maxw < n.weight[{v}], then we let
n′.maxw ← n.weight[{v}]. Similarly, if v ∈ Fi−1, v 	∈ Fi, {v} ∈ n.comp, and
n.minw > n.weight[{v}], then we let n′.minw ← n.weight[{v}]. After we update
n.maxw and/or n.minw, if n.maxw/n.minw > r holds, we prune the resulting node.

The identicalness of nodes is decided by weight, maxw and minw in addition
to other variables described in the previous sections. At the end of processing
all the edges, we obtain the ZDD representing all the partition subgraphs within
disparity r. Two nodes cannot be merged if weight, maxw or minw of the two
nodes is different, which causes an increase of nodes in the constructed ZDD,
whereas pruning a node occurs if it is decided that the weight of an isolated
connected component is not between L and U , which causes a decrease of nodes.

5 Experimental Results

In this section, we show the results of experiments about the computation time
of our algorithms. All experiments in this paper have been carried out on a
machine with Intel Xeon E5-2630 (2.30 GHz) CPU and 128 GB memory (Linux
Centos 6.6). We have implemented the algorithms in C++ and compiled them
by gcc with the -O3 optimization option.

The input graphs we use in the experiments have been created from the
maps of Japan’s prefectures. As we have already described in the introduction,
a vertex of the input graph corresponds to a city, two vertices are adjacent if the
corresponding cities have the common border, and the weight of the graph cor-
responds to the number of residents living in the city. The number of residents
for each graph is given in the 2015 census in Japan, and that of connected com-
ponents for each graph is specified by an election low of Japan. The properties
of the input graphs are shown in Table 1. The order of edges in each graph is
determined by a heuristic algorithm so that the frontier size is small.

First, we have carried out the algorithm in Sect. 3, which enumerates all
the partition subgraphs without the condition of disparity. Table 2 shows the
computation time of the algorithm, the number of nodes in the constructed ZDD
and the number of solutions for each graph. We have succeeded in enumerating
about 4.8 × 1030 partition subgraphs on GOsa in 0.34 s. Note that once a ZDD
is obtained, the number of subgraphs represented by the ZDD can be easily
computed by a dynamic programming algorithm. We also show the results for
� × � grid graphs dividing them into two and three connected components in
Table 3.
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Table 1. Property of the input graphs

Pref. name Graph name # of vertices # of edges # of components

Fukui GFuk 17 26 2

Kyoto GKyo 36 78 6

Niigata GNii 38 81 6

Ibaragi GIba 44 95 7

Hyogo GHyo 49 107 13

Kanagawa GKan 58 135 20

Osaka GOsa 69 161 21

Table 2. Enumeration of all the partitions

Graph Time (sec.) # of ZDD nodes # of solutions

GFuk 0.07 719 86

GKyo 0.21 44,209 44,063,998,545

GNii 0.20 44,540 386,618,915,837

GIba 0.20 53,018 63,497,174,378,978

GHyo 2.27 1,211,157 5,882,276,420,292,896,537

GKan 0.48 167,530 15,178,369,667,784,648,635,562,083

GOsa 0.34 626,192 4,893,281,393,039,250,022,519,012,101,206

Next, using the algorithm in Sect. 4 we have conducted enumerating all
the partition subgraphs whose disparity is at most r for GKyo, GIba, GKan and
GOsa. Due to the space limitation, we show the results only for GIba and GOsa

in Tables 4 and 5, respectively. Columns “L” and “U” mean the lower and upper
bounds shown in the previous section, respectively. “Time” is the time of con-
structing the ZDD. “# of Solutions” is the number of partition subgraphs with
disparity at most r, and “# of ZDD Nodes” is that of nodes of the constructed
ZDD. “N/A” indicates that the computation has failed due to out of memory.
We also show the histograms describing the numbers of partitions with every 0.1

Table 3. Enumeration of all the partitions on � × � grid graphs

� Time (sec.) for k = 2 # of solutions for k = 2 Time (sec.) for k = 3 # of solutions for k = 3

4 0.11 627 0.13 10,830

5 0.19 16,213 0.20 709,351

6 0.41 1,123,743 0.49 99,699,033

7 2.25 221,984,391 3.17 34,719,687,359

8 22.95 127,561,384,993 34.31 32,128,580,602,967

9 256.90 215,767,063,451,331 388.81 82,102,610,820,820,733

10 2844.84 1,082,828,220,389,781,579 4457.78 593,301,237,469,990,370,097
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Table 4. Enumerating all the partition subgraphs with disparity r for GIba.

r L U Time # of ZDD nodes # of solutions

1.1 383,928 452,063 56.98 8,907,949 135,158

1.2 355,836 486,310 593.31 236,736,206 5,106,426

1.3 331,574 519,619 1,733.53 1,376,840,028 21,434,502

1.4 310,410 552,027 N/A – –

Table 5. Enumerating all the partition subgraphs with disparity r for GOsa.

r L U Time # of ZDD nodes # of solutions

1.1 384,300 460,797 0.04 70 0

1.2 353,556 500,316 1.20 746,969 0

1.3 327,366 539,464 N/A – –

and 0.05 disparity for GKyo and GIba in Figs. 1 and 2, respectively. The value x̂
of the x-axis represents the number of partitions between x̂ − 0.1 (or x̂ − 0.05)
and x̂.

For GKyo, GIba and GKan, we succeeded in generating all the partition sub-
graphs with disparity r = 2.0, r = 1.3 and r = 1.4, respectively. For GOsa,
we failed to construct the ZDD even for r = 1.3. It is known that the smallest
disparity of the partition of GOsa is 1.330 [12].

Fig. 1. Disparity histogram for GKyo.
The y-axis is log scale.

Fig. 2. Disparity histogram for GIba.
The y-axis is log scale.

6 Conclusion

We have proposed a novel algorithm that enumerates all the partitions of a graph.
As shown in the experiments, our algorithm enables us to generate millions of
partitions with only small disparity. Generated partitions are represented as
ZDDs, which save much memory space than explicitly storing them. Moreover,
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the ZDD representation brings about great benefits for applications because
there are dozens of useful ZDD features, e.g., taking set operations, filtering
by conditions, counting, and random sampling. We believe that by the frontier-
based search, we can enumerate graph partitions having various conditions other
than the disparity condition directly.
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Abstract. The ply number of a drawing is a new criterion of interest for
graph drawing. Informally, the ply number of a straight-line drawing of
a graph is defined as the maximum number of overlapping disks, where
each disk is associated with a vertex and has a radius that is half the
length of the longest edge incident to that vertex. This paper reports
the results of an extensive experimental study that attempts to estimate
correlations between the ply numbers and other aesthetic quality met-
rics for a graph layout, such as stress, edge-length uniformity, and edge
crossings. We also investigate the performances of several graph drawing
algorithms in terms of ply number, and provides new insights on the
theoretical gap between lower and upper bounds on the ply number of
k-ary trees.

1 Introduction

Graphs occur naturally in many domains: from sociology and biology, to software
engineering and transportation. When the vertices and edges of the given graph
have no inherent geographical locations, graph layout algorithms are used to
try to capture the underlying relationships in the data (see, e.g., [8,10,22,33]).
In order to make the graph layout readable for the user, such algorithms are
designed to optimize several quality metrics, like minimizing the number of edge
crossings, striving for uniform edge lengths, or maximizing the vertex angular
resolution [8].

Force-directed methods are among the most flexible and popular graph layout
algorithms [24]. They tend to compute drawings that are aesthetically pleasing,
exhibit symmetries, and contain no, or a few, edge crossings when the graph
is planar. Classic examples include the spring layout method of Eades [12] and
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the algorithm of Fruchterman and Reingold [16], both of which rely on spring
forces, similar to those in Hooke’s law. In these methods, there are repulsive
forces between all nodes and attractive forces between nodes that are adjacent.
Alternatively, forces between the nodes can be computed based on their graph
theoretic distances, determined by the lengths of shortest paths between them.
For instance, the algorithm of Kamada and Kawai [23] uses spring forces pro-
portional to the graph theoretic distances. In general, force-directed methods
define an objective function which maps each graph layout into a number in R

+

representing the energy of the layout. This function is defined in such a way
that low energies correspond to layouts in which adjacent nodes are near some
pre-specified distance from each other, and in which non-adjacent nodes are well-
spaced. The notion of the energy of the system is related to the notion of stress in
multidimensional scaling [26]. A careful look into stress-based layout algorithms
and force-directed algorithms shows that despite some similarities, they optimize
a spectrum of different functions. For example, methods such as Kamada-Kawai
optimize long graph distances, while Noack’s LinLog layout [27] optimizes short
graph distances. A later study by Chen and Buja explores further the differences
between the energy models [5].

Recently, a new parameter, called ply number, has been proposed as a quality
metric for graph layouts [9], partly inspired by the fact that real road networks
have small values of such a parameter [13]. Roughly speaking, a drawing has
a small ply number if some, suitably defined, regions of influence of the ver-
tices in the drawing are well spread out. More precisely, let Γ be a straight-line
drawing of a graph. For each vertex v ∈ Γ , let Cv be the open disk centered at
v whose radius rv is half the length of the longest edge incident to v. Denote
by Sq the set of disks Cv sharing a point q ∈ R

2. The ply number of Γ is
defined as pn(Γ ) = maxq∈R2 |Sq|. In other words, the ply number of Γ is the
maximum number of disks Cv mutually intersecting in Γ (see, e.g., Fig. 1).

Fig. 1. (a) A drawing with ply number 1.
(b) A drawing with ply number 2.

The ply number pn(G) of a graph G
is the minimum ply number over all
straight-line drawings of G. Comput-
ing the ply number of a given graph is
NP-hard [9]. Figure 2 shows two draw-
ings of the same graph. Intuitively, the
drawing to the left is more readable
than the drawing to the right and in
fact the ply number of the left draw-
ing is significantly smaller than the ply
number of the right drawing.

Our Contribution. While preliminary theoretical results about computing draw-
ings with low ply number have already appeared [1,9], our work is an exper-
imental study whose main goals are: (i) to shed more light on the quality of
drawings computed by some of the most popular algorithms, and in particular
by different types of force-directed methods; (ii) to investigate whether the ply
number of a drawing can be actually regarded as a quality metric, which possibly
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Fig. 2. Two drawings of the same graph with ply number 3 (left) and 12 (right).

encompasses other popular metrics; (iii) to guide further theoretical studies of
the combinatorial properties of drawings with low ply number. Specifically, our
experiments involve several graph layout algorithms and several graph families,
and we establish a correlation between the ply number and some classical qual-
ity metrics like stress and edge length uniformity. Additionally, we give some
insights about the known theoretical gap between lower and upper bounds for
the ply number of k-ary trees.

The paper is structured as follows. Sections 2–4 provide details about our
experimental questions, setting, and procedures. The results of our study are
presented and discussed in Sect. 5. Conclusions and future research directions
are given in Sect. 6.

2 Experimental Questions

As mentioned in the introduction, our experiment has the following main objec-
tives: (i) to shed more light on the quality of drawings computed by some of
the most popular algorithms, with particular on force-directed methods; (ii) to
investigate whether the ply number of a drawing can be regarded as a quality
metric; (iii) to guide further theoretical studies of the combinatorial properties
of drawings with low ply number. We pose the following experimental questions:

Q1. How good are the layouts computed by different drawing algorithms in terms
of ply number?

Q2. How close is the ply number of drawings produced by existing algorithms to
the ply number of the input graph (i.e., to the optimum value)?

Q3. Does the ply number correlate with some other commonly used quality
metrics?

Q4. Can we establish empirical upper bounds on the ply number of k-ary trees?

Questions Q1–Q3 are concerned with objective (i) and (ii), while Q4 is rele-
vant for objective (iii). Below, we discuss the motivation behind each question
in more detail.
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The possibility that force-directed algorithms indirectly optimize the ply
number has been suggested in [9]: With Q1 we compare force-directed algorithms
based on different force models to experimentally investigate this hypothesis.
In [9] it is observed that non-planar drawings may have significantly smaller
ply number than planar ones. Hence, for planar graphs, we also consider algo-
rithms that compute straight-line planar drawings in comparison with drawings
computed by force-directed algorithms.

In addition to Q1, Question Q2 focuses on the quality of layout algorithms
in terms of ply number. More precisely, it aims to estimate the gap between
the ply number of drawings computed by existing algorithms and the optimum.
However, computing the optimum value for the ply number over all drawings of a
graph is NP-hard [9], and the (worst-case) optimum value of ply number is known
only for simple graph families, like paths, cycles, binary trees, and caterpillars
(whose optimum is either 1 or 2). We then restrict Q2 to these families.

Question Q3 is more focused on understanding whether the ply number can
be used as a quality metric for graph layouts, which possibly encompasses sev-
eral other popular quality measures. We are mainly interested in three measures
that are among the most used in graph visualization and that we expect to affect
(positively or negatively) the ply number more than others: number of crossings,
stress, and edge-length uniformity. It is worth remarking that the number of
crossings is widely adopted to evaluate the quality of graph layouts, especially
for graphs of small and medium size (see, e.g., [21,29,30,35]). Studying the cor-
relation between ply number and crossings, is further motivated by the fact that,
as observed above, the ply number is sometimes reduced at the expense of edge
crossings. The stress of a graph layout captures how well the realized geomet-
ric distances between pairs of vertices reflect their graph-theoretic distances in
the graph; in the standard formulation, all edges are assumed to have about
the same length; thus stress is related to edge-length uniformity (see Sect. 3).
Recent studies give some evidence that reducing the stress of a graph layout
is correlated with improved aesthetics [11,25]. Studying the correlation between
ply number, stress, and edge-length uniformity is also motivated by the fact that
in a drawing with ply number one, all edges have the same length [9].

Question Q4 is motivated by objective (iii) and arises from theoretical results
on the ply number of k-ary trees. Namely, it is known that every 2-ary (i.e.,
binary) tree has ply number at most two [9], while the ply number of 10-ary
trees is not bounded by a constant [1]. What happens for values of k in the
range [3, 9] is an interesting theoretical question. With Q4 we experimentally
investigate this question.

3 Experimental Setting

In order to answer Questions Q1–Q4, we selected different graph datasets, algo-
rithms, and measures. In what follows we describe each of these experimental
components.
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Graph Datasets. To understand whether the experimental results are influenced
by the structure of the graph we considered several graph families. All graphs
are of small or medium size, expressed as the number of their vertices. In some
cases, the size and the number of instances used for each graph family depends
on the type of question we want to answer (see Sect. 5 for details). We used the
following datasets:

Trees. Generated with uniform probability distribution using Prüfer
sequences [28].

Planar. Connected simple planar graphs, generated with the OGDF library [6].
General. Connected simple graphs, generated with uniform probability

distribution.
Scale-free. Scale-free graphs, generated according to the Barabási-Albert

model [2].
Caterpillars. Each caterpillar of n vertices is generated by first creating a path

(spine of the caterpillar) of length k ∈ [n4 , n
2 ] (randomly chosen), and attaching

each remaining vertex to a randomly selected vertex of the spine.
Paths, Cycles. For each desired number of vertices n, there is only one (unla-

beled) path and one (unlabeled) cycle of n vertices.
k-ary Trees. Rooted trees where each node has either 0 or k children. Each tree

is generated by starting with a single vertex and then creating k children of
a randomly selected leaf, until the desired number n of vertices is achieved.
When n cannot be obtained, we use a value close to it.

Table 1 shows which datasets are used to answer each question. Note that the
datasets Caterpillars, Paths, Cycles, and 2-ary Trees are explicitly used to answer
Q2. All these families (except Cycles) are special cases of trees and we do not
use them to answer Q1 and Q3. The dataset of k-ary Trees is explicitly designed
to answer Q4. See Sect. 4 for more details.

Table 1. Table summarizing which datasets are used to answer each question.

Q1 Q2 Q3 Q4

Trees ✓ ✓

Planar ✓ ✓

General ✓ ✓

Scale-free ✓ ✓

Caterpillars ✓

Paths ✓

Cycles ✓

k-ary Trees (k = 2) ✓

k-ary Trees (k = 3, 6, 9) ✓
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Algorithms. Among the many force-directed algorithms, we considered some
of the most popular ones [24]. We used the following algorithms, available in
OGDF:

FR. This algorithm is based on the Fruchterman-Reingold model [16], an
improvement of the seminal algorithm by Eades [12]. Vertices are viewed
as equally-charged electrical particles and edges act similar to springs; elec-
trical charges cause repulsion between vertices and springs cause attraction.
It also introduces a temperature function, which reduces the displacement of
the vertices as the layout becomes better.

GEM. This algorithm is proposed by Frick et al. [15]. It is a variant of the FR
algorithm, which adds several new heuristics to improve the convergence,
including local temperatures, gravitational forces, and the detection of rota-
tions and oscillations.

KK. This algorithm is described by Kamada-Kawai [23]. Unlike FR and GEM,
it aims to compute a layout where the geometric distance between two ver-
tices equals their graph-theoretic distance in the graph. The energy function
minimized by this algorithm is therefore a type of stress function.

SM. This technique is proposed by Gansner et al. [17]. It minimizes a stress
function similar to that proposed by KK, which can be minimized more
efficiently via majorization.

FM3. The fast multipole multilevel method of Hachul and Jünger [18] is among
the most effective force-directed algorithms in the literature [19].

We also used the following algorithm, available in Gephi [3]:

LL. This is a force-directed algorithm based on the LinLog energy model pro-
posed by Noack [27]. It is specifically conceived to emphasize clusters in the
graph.

For instances of Planar, Trees, and 2-ary Trees, we also considered planar straight-
line drawing algorithms, still using the implementations in OGDF. The algo-
rithms are:

PL. This is an improved version of the planar straight-line drawing algorithm
proposed by Chrobak and Kant [7], based on the shift algorithm of de
Fraysseix et al. [14].

TR. The tree layout algorithm of Buchheim et al. [4] is an efficient version of
Walker’s algorithm [34], which in turn is an extension of the Reingold-Tilford
algorithm for rooted binary trees [31].

Measures. We considered four measures: ply number (PN), number of crossings
(CR), stress (ST), and edge-length uniformity (EU). Let Γ be a straight-line draw-
ing of a graph G = (V,E). EU corresponds to the normalized standard deviation
of the edge length, i.e.:

EU(Γ ) =

√∑

e∈E

(le − lavg)2

|E|l2avg
,
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where le is the length of edge e and lavg is the average length of the edges. The
stress of Γ is defined as:

ST(Γ ) =
∑

i,j∈V

wij(‖ pi − pj ‖ −dij)2,

where wij = d−2
ij , pi and pj are the positions of i and j in Γ , and dij is the graph

theoretic distance of i and j in G.

4 Experimental Procedures

In the following we describe the different experimental procedures executed to
answer each question. In Sect. 5 we present the results and summarize the main
findings.

Procedure for Q1. We drew each instance of each dataset with all the algorithms
(clearly, PL has been used only for Planar and TR only for Trees), and measured
the ply number of each drawing. Both for Trees and for Planar, we generated 10
instances for each fixed number of vertices n ∈ {50, 100, 150, 200, . . . , 450}: the
average density of the planar graphs is 1.75. In the General dataset we generated
10 instances for each pair 〈n, d〉, where n ∈ {50, 100, 150, 200, . . . , 450} is still the
number of vertices of the graph and d ∈ {1.5, 2.5} is its edge density. Indeed, we
want also understand to which degree the ply number is influenced by the density
of the graph. In the Scale-free dataset we generated 10 instances for each pair
〈n, d〉, where n ∈ {50, 100, 150, 200, . . . , 450} and d ∈ {2, 3} (the graph generator
that we used required to specify an integer number as edge density [20]).

Procedure for Q2. To answer Q2 we need to compare the ply number of the
drawings computed by the various algorithms with the ply number of the input
graph (i.e., the optimum value). Hence, we considered families of graphs whose
the (worst-case optimal) ply number is known. In particular, we considered the
Paths and Cycles instances, which have ply number one, and the Caterpillars
and 2-ary Trees instances, whose ply number is at most two (see [9]). For each
n ∈ {50, 100, 150, 200, . . . , 450}, we generated a single instance in Paths and
Cycles, and 5 instances in the Caterpillars and 2-ary Trees datasets. For each
instance, we computed 10 different drawings with the algorithms KK, FM3, SM
(those with better performances based on the results of Q1). We then took the
minimum value of ply number over all the drawings of each instance.

Procedure for Q3. We took a representative instance for each sample (i.e., size
or size and density) of each dataset. As reported in Table 1, we used the same
datasets as for Q1. For each representative instance we computed a series of
60 different drawings and on this series we measured Spearman’s rank correla-
tion coefficient ρ [32] between the ply number and all the other quality metrics
described in Sect. 3, i.e., ST, CR, and EU. The series of drawings are produced
by running 10 times each of the 6 force-directed algorithms, varying the initial
layout every time.



142 F. De Luca et al.

Procedure for Q4. We generated a k-ary tree for each pair 〈n, k〉, where n =
{100, 150, 200, . . . , 950, 1000, 2000, 3000, 4000} is the desired number of vertices
and k ∈ {3, 6, 9}. The choice for the values of k is motivated by the fact that
we want to experimentally understand if we can empirically establish a constant
upper bound to the ply number of k-trees for 2 < k < 10. For each instance, we
measured the ply number of a drawing computed with SM, which turned out to
be the best performing algorithm for this measure, according to the experiment
for Question Q1.

5 Experimental Results and Findings

We first report the experimental data, by presenting tables and charts. Then,
we list and discuss the main findings.

Results for Q1. Figure 3 reports the average ply number for each sample (number
of vertices) of drawings computed by the same algorithm. For Trees and Planar
we observed a similar trend. The algorithms that give the lowest values of the
ply number are SM, KK, and FM3 (with KK and SM that always have almost
identical values and FM3 that is slightly better for larger planar graphs). FR
produces drawings with ply number higher than the previous three algorithms,
although it has a similar trend. GEM and LL produces drawings with ply number
much higher than the other force-directed algorithms, with GEM that becomes
worse than LL as n grows. For Trees the TR algorithm has quite good perfor-
mances (between FM3 and FR), while the algorithm PL (for the Planar dataset)
produces the drawings with the worse values of ply, thus confirming that planar
drawings often have higher ply number than non-planar ones. For the General
and Scale-free datasets, we have a similar situation. The main difference is that
GEM performances do not worsen as fast as in the cases of Trees and Planar (in
particular, it is always better than LL). For the Scale-free dataset, the values
computed by KK and SM increase, as n grows, more than those of FR and FM3.
Thus, for larger values of n they are outperformed by FR and FM3, and approach
the performances of GEM.

Results for Q2. For paths and cycles, all three algorithms compute drawings
with ply number 2, i.e., just one unit larger than the optimal value, for instances
up to 250. For larger sizes, FM3 still computes drawing with ply number 2, while
KK and SM produce drawings with ply number 3. It is worth saying that all
the drawings computed by FM3 have ply number 2 with the only exception of
one drawing of the cycle of size 450. This is consistent with the fact that FM3
(a multilevel algorithm) is less affected by the initial position of the vertices.
The maximum value of ply for drawings produced by KK and SM is 6 and 4,
respectively. Concerning the binary trees, FM3 has the worst performance with
an average ply number ranging from 3 to 5.2; the other two algorithms have
almost the same values of the average ply number, ranging from 2 to 4.2. Also,
FM3 and KK tend to have larger differences between the (average) maximum
and the (average) minimum ply number than SM.
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Fig. 3. Average ply number for (a) Trees; (b) Planar; (c) General with density d = 1.5;
(d) General with density d = 2.5; (e) Scale-free with density d = 2; (f) Scale-free with
density d = 3. The x-axis reports the number of vertices.

For caterpillars, instead, the three algorithms have similar performances. The
average ply number is around 3.5. Also in this case SM is the algorithm with the
smallest difference between maximum and minimum error.

Results for Q3. Table 2 shows, for each instance, the values of the Spearman’s
rank correlation coefficient ρ. We have high values of correlation (i.e., ρ ≥ 0.7)
between ply number and stress for almost every instance. The exceptions are
larger scale-free graphs, for which in most cases we have a moderate correlation
(i.e., 0.3 ≤ ρ < 0.7). The correlation between PN and EU is high/moderate
in all cases. High values of correlation are obtained for the smaller instances
of each dataset, with the only exception of scale-free graphs, where there is a
high correlation for all sizes. Concerning PN and CR, we have (high/moderate)
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Table 2. Correlation coefficient ρ between PN and ST, CR, EU. The values in bold
indicate a strong correlation (ρ ≥ 0.7).

n PN, ST PN, CR PN, EU n PN, ST PN, CR PN, EU

Trees 50 0.92 0.88 0.86 General (d = 2.5) 50 0.80 0.19 0.89

100 0.90 0.84 0.89 100 0.80 0.21 0.72

150 0.94 0.92 0.78 150 0.78 0.20 0.62

200 0.97 0.89 0.87 200 0.79 0.04 0.54

250 0.96 0.91 0.69 250 0.78 0.47 0.58

300 0.97 0.92 0.65 300 0.71 −0.34 0.63

350 0.93 0.90 0.62 350 0.70 −0.19 0.59

400 0.96 0.90 0.61 400 0.73 −0.13 0.55

450 0.95 0.96 0.51 450 0.72 −0.19 0.54

Planar 50 0.92 0.80 0.76 Scale-free (d = 2) 50 0.86 0.29 0.74

100 0.91 0.83 0.86 100 0.83 0.08 0.80

150 0.90 0.66 0.89 150 0.32 −0.08 0.82

200 0.77 0.87 0.71 200 0.57 0.33 0.72

250 0.87 0.83 0.81 250 0.38 0.27 0.90

300 0.93 0.80 0.80 300 0.21 0.09 0.90

350 0.80 0.91 0.74 350 0.48 0.53 0.82

400 0.77 0.93 0.67 400 0.45 0.60 0.84

450 0.76 0.84 0.58 450 0.50 0.54 0.80

General (d = 1.5) 50 0.88 0.39 0.87 Scale-free (d = 3) 50 0.72 0.15 0.91

100 0.92 0.80 0.82 100 0.67 −0.04 0.88

150 0.89 0.81 0.86 150 0.54 −0.32 0.87

200 0.87 0.83 0.89 200 0.47 −0.16 0.87

250 0.85 0.60 0.84 250 0.30 0.13 0.90

300 0.85 0.73 0.73 300 0.18 0.27 0.95

350 0.84 0.85 0.85 350 0.14 0.36 0.96

400 0.85 0.79 0.49 400 0.29 0.22 0.92

450 0.88 0.86 0.59 450 0.30 0.41 0.90

correlation only for trees, planar graphs, and for general graphs with density
1.5. For denser general graphs and for scale-free graphs there is little correlation
between PN and CR.

Results for Q4. For the sizes of the trees that we considered, we always observed
progressively increasing ply numbers, even for k = 3, and the ply number func-
tion does not exhibit any asymptotic trend towards a constant upper bound.

We now summarize the main findings. We denote by Fi the finding concerned
with Question Qi (i = 1, . . . , 4).

F1. Algorithms designed to minimize stress and edge-length uniformity (like
SM and KK) compute drawings with smaller values of ply number. This
behavior confirms the intuition that low ply number is related to stress and
edge uniformity optimization (see also F3). Also multilevel algorithms (like
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FM3) have good performances and are more stable on denser graphs. We
think this is a consequence of their coarsening phase, which indirectly tends
to evenly distribute the vertices in the plane, thus producing drawings with
good edge length uniformity, independently of the original placement of the
nodes. We also observed a good behavior of FR on denser graphs. Force-
directed algorithms whose energy model is conceived to highlight clusters,
such as LL, tend to produce drawings with high ply numbers, as they give
rise to very different edge lengths in the same drawing.

F2. The best performing algorithms in terms of ply number very often generate
drawings whose ply number is close to the optimum for graphs like paths,
cycles, caterpillars, and binary trees. Hence, they can be considered good
heuristics to compute graph layouts with minimum ply number, at least for
these simple graph families.

F3. There is a strong correlation between ply and stress, and a strong/moderate
correlation between ply and edge-length uniformity. For planar graphs and
low density graphs, the correlation between ply and crossings is also observed,
while ply is definitely non-correlated with edge crossings on denser graphs
and, in particular, on scale-free graphs. Overall, these data indicate that ply
number can be often regarded as a unifying quality metric, which encom-
passes at least stress and edge length uniformity. For very sparse graphs,
it also encompasses edge crossings. Note that, the correlation between ply
number and stress does not always imply that low ply number equals low
stress.

F4. We could not observe any asymptotic trend of the ply number towards a
constant upper bound for k-ary trees (k ∈ {3, 6, 9}). This indicates that the
ply number for such graphs is likely unbounded, which should be confirmed
by a theoretical proof.

6 Conclusions and Future Work

Our graph datasets and the data collected in the different experiments are pub-
licly available at http://www.felicedeluca.com/ply/. These data answer, or par-
tially answer, several of our initial questions and raise new interesting questions
for further study.

We remark that, as in many experimental studies, ours has some limitations
and should be interpreted in the context of the specific datasets, layout algo-
rithms, and measurements used. For example, a more complete picture can be
obtained with a more diverse set of graphs. In particular, computing the ply
number of a drawing in a reliable way requires high arithmetic precision, which
is computationally expensive. This limited the sizes of graphs that we could con-
sider. Further, we mostly used algorithms available in OGDF, considering only
one other algorithm. Comparing a wider spectrum of algorithms might help to
identify what type of stress-minimization and energy minimization functions are
best suited to minimize the ply number.

Our study provides answers several of the questions that we asked and also
suggests several natural research directions that remain to be explored:

http://www.felicedeluca.com/ply/
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– Can new layout algorithms be developed that directly optimize ply number?
Modifying stress-based methods such as Kamada-Kawai would be difficult,
but perhaps force-directed methods such as Fruchterman-Reingold can be aug-
mented with additional forces to separate overlapping disks.

– Considering more carefully the variations in the exact functions used in dif-
ferent stress-based methods and force-directed methods and their impact on
optimizing ply might lead to better insights about how to compute low-ply
layouts.

– There is growing evidence that different types of graph layout algorithms
are suited to different types of graphs. A cognitive study could consider the
impact of minimizing ply number, compared to the impact of minimizing
edge crossings and other aesthetic criteria that are not correlated with the ply
number.

– More experiments can be performed to look for possible correlations between
ply and other quality metrics, such as angular resolution and drawing
symmetries.

– Further experiments may help to identify graph families with constant or
unbounded ply number. Experimental data can then be formally verified. In
particular, our experiments indicate that k-ary trees, with k ∈ [3, 9] have
unbounded ply number; proving this would close a gap in our theoretical
knowledge.
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Abstract. Graph Drawing uses a well established set of complexity
measures to determine the quality of a drawing, most notably the area
of the drawing and the complexity of the edges. For contact represen-
tations the complexity of the shapes representing vertices also clearly
contributes to the complexity of the drawing. Furthermore, if a contact
representation does not fill its bounding shape completely, then also the
complexity of its complement is visually salient.

We study the complexity of contact representations with variable
shapes, specificallymosaic drawings.Mosaic drawings are drawnon a tiling
of theplane and represent vertices by configurations: simply-connected sets
of tiles. The complement of a mosaic drawing with respect to its bounding
rectangle is also a set of simply-connected tiles, the channels.

We prove that simple mosaic drawings without channels may require
Ω(n2) area. This bound is tight. If we use only straight channels, then
outerplanar graphs with k ears may require Ω(min(nk, n2/k)) area. This
bound is partially tight: we show how to draw outerplanar graphs with
k ears in O(nk) area with L-shaped vertex configurations and straight
channels. Finally, we argue that L-shaped channels are strictly more
powerful than straight channels, but may still require Ω(n7/6) area.

1 Introduction

Graph Drawing uses a well established set of complexity measures to determine
the quality of a drawing (see, for example, the overview by Purchase [9]). For
node-link drawings of planar graphs the arguably most prominent measures are
the area of the drawing and the complexity (number of bends) of the edges. In
addition to the classic node-link drawings, there are also other well-established
drawings styles, most notably contact representations. Here the vertices of a
graph are represented by a variety of possible shapes and the edges are implied
by point or side contacts between these shapes. In certain settings the shapes
are fixed: for example circles in Koebes theorem [7] or rectangles in rectangular
duals and rectangular cartograms [8,10,11]. In other scenarios there is a cer-
tain variability in the shapes: for example, when using rectilinear polygons for
rectilinear cartograms [1,3] or mosaic tiles and pixels [2,4] to compose shapes.

Contact representations do not draw edges explicitly and hence the com-
plexity of the edges is not a valid quality measure. However, in scenarios where
the shapes representing vertices are not fixed, the complexity of these shapes
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 149–160, 2017.
DOI: 10.1007/978-3-319-53925-6 12
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Fig. 1. A mosaic drawing with complex channels (left) of an outerplanar graph (mid-
dle). The same graph drawn with straight channels (right).

clearly contributes to the visual quality of the drawing. For example, there are
several sequences of papers which strive to represent (weighted) planar triangu-
lated graphs with rectilinear polygons of the lowest possible complexity, which
is 8 in both the weighted [1] and in the unweighted case [5].

Contact representations are said to be proper if the shapes corresponding to
vertices form a partition of the bounding shape. For example, a rectangular dual
is a proper contact representation, since it consists of a partition of a rectangle
into rectangles. Similarly, certain outerplanar graphs have a proper touching tri-
angle representation [6], which consists of a partition of a triangle into triangles.
If a contact representation is not proper, then the complexity of its complement
with respect to an appropriate bounding shape is also visually salient.

We propose to study the complexity of contact representations with variable
shapes. Specifically, we focus on mosaic drawings, which were recently intro-
duced by Cano et al. [4]. The same drawing style was independently described
by Alam et al. [2] as pixel and voxel (in 3D) drawings. Mosaic drawings are
drawn on a tiling of the plane and represent vertices by so-called configurations:
simply-connected sets of tiles (see Fig. 1). The complement of a simple mosaic
drawing with respect to its bounding rectangle is also a set of simply-connected
tiles, which we call channels. Figure 1 shows two different representations of an
outerplanar graph. In both cases the vertices have complexity 6 (rectangles and
L-shapes), but the complexity of the channels differs substantially. We would like
to argue that a higher complexity of the channels increases the visual complexity
of the drawing and hence is likely to be an impediment to the user. However,
more complex channels allow us to significantly reduce the area of a drawing. We
hence investigate the trade-offs between these two competing quality measures.

Mosaic Drawings. Following Cano et al. [4] we define mosaic drawings for
planar triangulated graphs. Mosaic drawings are drawn on a tiling T of the plane.
For a given set S ⊆ T of tiles we define the tile dual of S to be the graph which
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has a vertex for each tile in S and an edge connecting two vertices if and only
if the two corresponding tiles share a side. A configuration is a set of tiles with
a connected tile dual. A configuration C is simple if the tiles in C are simply
connected. The boundary of a simple configuration C is a simple rectilinear
polygon and the complexity of a configuration is the number of vertices of its
boundary (see, for example, Fig. 2 which consists of complexity 4 rectangular
and complexity 6 L-shaped configurations).

Two configurations C1 and C2 are adjacent if and only if they contain tiles
t1 ∈ C1 and t2 ∈ C2 such that t1 and t2 share a side. A mosaic drawing DT (G)
of a planar triangulated graph G = (V,E) on T represents every vertex v ∈ V by
a simple configuration C(v) of tiles from T . Two configuration C(u) and C(v)
representing vertices u and v are adjacent if and only if (u, v) ∈ E.

Simple Mosaic Drawings. Cano et al. [4] define a mosaic drawing to be simple
if (i) the union of its configurations is simply connected (there are no holes in the
interior of the mosaic drawing). Here we extend this definition by requiring in
addition that in a simple mosaic drawing (ii) two adjacent configurations share
exactly one contiguous piece of boundary (two configurations do not touch two
or more times) and (iii) whenever four tiles meet in a point at least two adjacent
tiles belong to the same configuration (this might be the outer configuration).

Fig. 2. Simple mosaic draw-
ing D(G) with one straight
channel (shaded).

We focus on regular tilings, and specifically,
the square tiling and hence denote mosaic draw-
ings simply by D(G). We construct mosaic draw-
ings within a bounding rectangle R. The area of a
drawing D(G) is the number of tiles inside R. The
complement of a drawing D(G) with respect to R is
a set of simple configurations, which we call chan-
nels (see Fig. 2). The boundary of a simple mosaic
drawing D(G) is a simple rectilinear polygon as
well. The boundary of D(G) naturally divides into maximal straight segments,
which we refer to as the boundary segments of D(G). Finally, note that a simple
mosaic drawing D(G) induces an embedding of G.

Results and Organization. In Sect. 2 we first introduce some additional defin-
itions and notation. Then we argue that any simple mosaic drawing of a maximal
outerplanar graph is natural, that is, it follows the unique outerplanar embed-
ding of an outerplanar graph. Hence, in the remainder of this paper, we assume
that the embedding of each outerplanar graph is fixed to be outerplanar.

If we allow general channels of arbitrary complexity, then Alam et al. [2]
show that each triangulated outerplanar graph has a simple mosaic drawing in
O(n) area, which is trivially tight. Note that they do not make any assumptions
on the existence or absence of channels.

In Sect. 3 we consider mosaic drawing without channels, that is, mosaic draw-
ings which are proper contact representations of a given triangulated graph G
with n vertices. Alam et al. [2] prove that there are k-outerplanar graphs such
that any mosaic drawing of these graphs requires Ω(kn) area. We strengthen this
result by constructing outerplanar (that is, 1-outerplanar) graphs, such that any
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mosaic drawing of these graphs without channels requires Ω(n2) area. More
specifically, there exist outerplanar graphs with k ears, such that any mosaic
drawing of these graphs has either Ω(n2/k2) area or total channel complexity
Ω(k). This bound is tight, since the algorithm by Chiang et al. [5] can be used
to construct mosaic drawings without channels in O(n2) area.

In Sect. 4 we consider straight channels. In this setting we prove that outer-
planar graphs with k ears may require Ω(min(nk, n2/k)) area. This bound is par-
tially tight: we show how to draw outerplanar graphs with k ears in O(nk) area
with L-shaped vertex configurations and straight channels. Finally, in Sect. 5 we
show that L-shaped channels are strictly more powerful than straight channels,
but may still require Ω(n7/6) area.

2 Preliminaries

Outer-Path. Let G be a maximal outerplanar graph and let G∗ be its weak
dual. If G∗ is a path then we call G an outerpath. The length of an outerpath
is the number of vertices of G∗. A so-called ear of G is a triangle which is dual
to a vertex of degree 1 in G∗. Each ear has exactly one vertex of degree 2, its
so-called tip. Every outerpath has exactly two vertices of degree 2, the tips of its
two ears. These two tips naturally divide the vertices of G into two consecutive
sequences of vertices, the upper and the lower sequence of the outerpath G. In
our lower bound constructions we use a particular type of outerpath, namely a
so-called outerzigzag, which is also known as a triangle strip. Its vertices have
degree at most 4. The number of vertices in the upper and the lower sequence
of an outerzigzag differ by at most one.

Natural Mosaic Drawings. A mosaic drawing is natural if it follows the unique
outerplanar embedding of a maximal outerplanar graph, where each configura-
tion is adjacent to the outer face in the same order as in the outerplane embed-
ding (or its reverse). We prove below that we can restrict ourselves to natural
mosaic drawings of maximal outerplanar graphs.

Lemma 1. In any simple mosaic drawing D(G) of a maximal outerplanar graph
G, every configuration must be adjacent to the outer face.

Proof. For the sake of contradiction,
assume that a configuration C(v) is not
adjacent to the outer face. We perform a
case analysis on the degree of v in G. Since
G is maximally outerplanar, the degree of
v is at least two. If v has at least 3 neigh-
bors u1, u2, and u3, then the boundary of C(v) contains three parts: the shared
boundaries Bi = C(v) ∩ C(ui) for i = 1, 2, 3. Now consider the part of the
boundary of C(v) between B1 and B2 (see figure left). Since D(G) has no point
contacts and C(v) is not adjacent to the outer face, there must be a sequence
of vertices u1 = w1, w2, . . . , wk = u2 such that C(wi) is adjacent to C(wi+1) for
1 ≤ i < k. The same holds for the parts of the boundary of C(v) between B2
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and B3, and B3 and B1. Hence G contains a K4 {v, u1, u2, u3} as a minor, which
contradicts the outerplanarity of G.

If v has two neighbors u1 and u2, then the boundary of C(v) can be parti-
tioned into two parts B1 = C(v) ∩ C(u1) and B2 = C(v) ∩ C(u2). This directly
implies that D(G) has a point contact or that C(u1) ∩ C(u2) is not contiguous
(see figure right). This is not allowed in a simple mosaic drawing. ��
Lemma 2. Every simple mosaic drawing D(G) of a maximal outerplanar graph
G is natural.

Proof. Lemma 1 shows that every configuration C(v) must be adjacent to the
outer face. Furthermore, the shared boundary between a configuration C(v) and
the outer face must be contiguous, since otherwise C(v) forms a cut of D(G),
implying that v is a cut vertex of G. Now let v1, . . . , vn be the order of vertices
implied by the unique outerplane embedding of G. Furthermore, let Bi be the
shared boundary between C(vi) and the outer face. Note that, by definition, a
set of consecutive vertices {vi, vi+1} cannot be a cut of G. If Bi and Bi+1 are
not consecutive along the boundary of D(G), then C(vi) ∪ C(vi+1) forms a cut
of D(G). Thus, D(G) must be natural. ��

3 Mosaic Drawings Without Channels

In this section we construct a family of maximal outerplanar graphs that require
Ω(n2) area to be drawn if we do not allow channels. More precisely we prove: to
obtain sub-quadratic area, the number of boundary segments on the boundary
of D(G) must be proportional to the number of ears of G.

Lemma 3. Any mosaic drawing D(G) of an outerzigzag G of size n, where
all vertex configurations are adjacent to the same or two consecutive boundary
segments, requires Ω(n) width and Ω(n) height.

Proof. Let v1, . . . , vn be the vertices of G in order along the outer face, and let
vn/2 be the tip of an ear of G. Now consider a horizontal and a vertical ray
starting anywhere in C(vn/2) and pointing away from the respective boundary

Fig. 3. D(G) requires Ω(n) width and Ω(n) height since the horizontal and vertical
lines must be crossed Ω(n) times. The dashed lines indicate the adjacencies which need
to be satisfied to complete the drawing.
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segment(s). These lines must both cross all Ω(n) (disjoint) regions of the form
C(vi) ∪ C(vn−i) (1 ≤ i < n/2) before leaving D(G) (see Fig. 3). Thus, D(G)
must have Ω(n) width and Ω(n) height. ��

Fig. 4. A k-comb with k legs.
(orange) (Color figure online)

A k-comb (k ≥ 3) is an outerplanar graph with
n vertices and k ears, where each outerpath
incident to an ear (a leg) is an outerzigzag with
Θ(n/k) vertices, and all legs are on the same
side with respect to the remaining part of the
graph (see Fig. 4).

Lemma 4. Any mosaic drawing of a k-comb
G with n vertices requires 2k boundary seg-
ments or Ω(n/k) width and Ω(n/k) height.

Proof. If all the vertex configurations of one of the legs are adjacent to the same
or two consecutive boundary segments of D(G), then D(G) requires Ω(n/k)
height and Ω(n/k) width by Lemma 3. Otherwise, the vertex configurations of
a single leg must be adjacent to at least 3 consecutive (the embedding is fixed)
boundary segments of D(G). Since two consecutive legs can share at most one
of the boundary segments, we need at least 2 boundary segments for each leg,
resulting in a total of 2k boundary segments. ��
Corollary 1. Any mosaic drawing without channels of a 3-comb with n vertices
requires Ω(n2) area.

4 Straight Channels

We now consider mosaic drawings with straight channels. We first argue that
outerplanar graphs with k ears may require Ω(min(nk, n2/k)) area. To prove this
lower bound, we consider one-sided mosaic drawings: every channel must have
a tile adjacent to the bottom of R, and every vertex configuration must have a
tile adjacent to a channel or the bottom of R. These restrictions apply only to
the bottom of R. One-sided mosaic drawings can otherwise have an arbitrary
boundary.

Lemma 5. Let G be an outerplanar graph with n vertices and k ears such that
a one-sided mosaic drawing D(G) of G with certain channel restrictions requires
Ω(f(n, k)) area. Then there exists an outerplanar graph G′ with O(n) vertices
and O(k) ears such that a mosaic drawing D(G′) of G′ with the same channel
restrictions also requires Ω(f(n, k)) area.

Proof. We construct G′ by combining 5 copies of G,
attaching them to a triangulated pentagon as illustrated
in the figure. Since R has only 4 sides, there must be
a copy of G such that all corresponding vertex config-
uration have a tile adjacent to the same side of R in
D(G′). These vertex configurations thus form a one-
sided mosaic drawing of G, possibly by rotating the
drawing. ��
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Fig. 5. The red line segment has to be crossed Ω(n) times. (Color figure online)

Lemma 6. There exists an outerplanar graph G with n vertices and k ears such
that any one-sided mosaic drawing D(G) with only straight channels requires
Ω(min(nk, n2/k)) area.

Proof. Let G be the graph obtained by attaching another leg (outerzigzag) of
size n/2 to a (k − 1)-comb with n/2 vertices. Note that the other legs have
size Θ(n/k). We will argue that any one-sided drawing D(G) of G has width
Ω(min(k, n/k)) and height Ω(n).

Consider the leg of size n/2. Let v1, . . . , vn/2 be the vertices of the leg in order
along the outer face and assume w.l.o.g. that the corresponding configurations
occur counter-clockwise along the boundary of D(G). Since the drawing has
only straight channels, the tiles of C(v1), . . . , C(vn/2) adjacent to the boundary
of D(G) must have non-decreasing x-coordinates. Let vn/4 be the tip of the ear
of the long leg, and let t be the last tile of C(vn/4) adjacent to the boundary
(see Fig. 5). If we draw a vertical line segment up from t, then this line segment
must be crossed by all Ω(n) (disjoint) regions of the form C(vi) ∪ C(vn/2−i).
This directly implies that D(G) must have height Ω(n).

Next we consider the other legs. Lemma 3 implies that we need Ω(k) bound-
ary segments, or D(G) has width at least Ω(n/k). Since every channel can add
at most 4 boundary segments, we need at least Ω(k) channels in the first case,
which require a tile at the bottom of D(G) each. Thus the width of D(G) is at
least Ω(min(k, n/k)), implying a total area of at least Ω(min(nk, n2/k)). ��
Drawing Algorithm. We now show how to draw outerplanar graphs with k
ears in O(nk) area with L-shaped vertex configurations and straight channels.
Our algorithm is incremental. It starts with a single edge on the boundary of G
and repeatedly draws a vertex attached to the endpoints of an existing edge.

An edge in this construction is called open if we still need to add a vertex to
it. That is, an edge is open if and only if it is the initial edge or an internal edge
of G. In every step we arbitrarily choose an open edge to extend with a vertex.

An open edge (a, b) is represented in D(G) in two possible ways, as shown at
the top of Fig. 6: one of the two vertex configurations is an L-shape and either
touches the other configuration from the side (Case (I)) or lies on top of the
other configuration (Case (II)). The horizontally mirrored case, where C(b) is
an L-shape instead of C(a), is also possible, but completely symmetric. Therefore
we will consider only the cases shown in the figure. Furthermore note that the
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Fig. 6. The cases of the incremental drawing algorithm.

vertex configurations can still extend further as indicated by the open borders
in the figure. In particular, both C(a) and C(b) can be L-shapes. However, such
extensions are not relevant for the different cases.

We now show how to extend the drawing when a vertex c is added to an
open edge (a, b). There are four cases (see Fig. 6):

(i) (a, c) and (c,b) are not open. In both Case (I) and (II) we simply fill up
the remaining hole with C(c).
(ii) (a, c) is open and (c,b) is not open. In Case (I) we place C(c) below
C(b) and shift C(a) down such that it forms a new Case (I) with C(c). In Case
(II) we extend C(b) into the hole and place C(c) below it as an L-shape pointing
to the left. The open edge (a, c) then forms the symmetric version of Case (I).
(iii) (a, c) is not open and (c,b) is open. In both Case (I) and (II) we extend
C(a) into the hole and place C(c) below it as an L-shape pointing to the right.
The open edge (c, b) then forms a new Case (I).
(iv) (a, c) and (c,b) are open. In both Case (I) and (II) we put C(c) in the
hole as an L-shape pointing to the right. Then the open edge (a, c) forms a new
Case (II) and the open edge (c, b) forms a new Case (I).

In the above construction Case (iv) is a special case. We call a vertex c in Case
(iv) a splitter. The configuration of a splitter can and sometimes must extend a
channel downwards. It must do so before it is no longer part of an open edge.
Therefore, some cases must be handled slightly differently when a or b is a
splitter. This is shown on the right side of each case in Fig. 6 whenever this is
relevant. Furthermore, splitters are part of two open edges simultaneously. Thus,
in the independent construction of the two open edges, its configuration may get
a different height. This can be fixed by extending the construction of one of the
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open edges vertically until the height of the configuration of the splitter matches.
This way the configuration of the splitter will not have any additional complexity
or incorrect adjacencies.

Lemma 7. The above algorithm computes a simple mosaic drawing D(G) that
correctly represents G.

Proof. By construction the drawing D(G) contains all adjacencies in G. Thus,
we need to argue that D(G) does not have any adjacencies not in G. We use the
following invariant: for every open edge (a, b) the left side of the configuration
of a is on the boundary of D(G) or a is a splitter. The same holds for b and
the right side. This invariant is maintained throughout all cases and hence no
unwanted adjacencies are introduced when adding a vertex c. Therefore, D(G)
correctly represents G. ��
Theorem 1. For every maximal outerplanar graph G with n vertices and k ears
there is a mosaic drawing D(G) with the following properties:

1. D(G) has O(k) straight channels.
2. D(G) has O(nk) area.
3. All vertex configurations of D(G) are L-shaped or rectangular.

Proof. First note that only splitters introduce (straight) channels (one each).
Since every open edge must correspond to a unique ear, and the number of open
edges increases for every splitter (Case (iv)), there can be at most k channels.
For the complexity of the vertex configurations, note that the complexity of the
configurations never increases when adding a vertex. Therefore the complexity of
a configuration can be at most its initial complexity: rectangular or L-shaped. To
argue the area of D(G), we show that D(G) has O(k) width and O(n) height. The
width only increases in Case (iv) (by 2 columns) or when a channel is introduced
(by 1 column), which both involves a splitter. Every splitter is involved in exactly
one Case (iv) and can introduce a channel only once. Therefore, the width of
D(G) is linear in the number of splitters, which is O(k). To argue the height
we use a compaction argument. Consider two rows of D(G) such that no vertex
configuration has a horizontal boundary on the horizontal line separating the
two rows. Then we can replace these two rows by a single row without changing
adjacencies and without increasing the complexities of the vertex configurations.
Now, since every line separating two rows must contain a horizontal boundary
of a vertex configuration, and there are at most 3n such horizontal boundaries
(vertex configurations are at most L-shapes), the height of D(G) is O(n). ��

5 L-Shaped Channels

In this section we prove a lower bound on the area of mosaic drawings with
L-shaped channels. We first show that the lower bound construction for straight
channels cannot directly be extended to L-shaped channels. For this we define
generalized k-combs: k-combs where legs can have different sizes. Note that the
example used for the lower bound in Lemma6 is a generalized k-comb.
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Fig. 7. One-sided drawing of a generalized k-comb in linear space.

Lemma 8. Every generalized k-comb G with n vertices allows a one-sided
mosaic drawing D(G) with L-shaped channels of O(n) area.

Proof. By using one L-shaped channel per leg which almost immediately bends
to the left, a complete leg can be drawn with O(1) height (see Fig. 7). We can
then draw all legs next to each other to obtain a mosaic drawing of O(n) width.
Care has to be taken when drawing the first and last leg of the comb to ensure
all vertex configurations are adjacent to a channel originating from the bottom.
Finally, one big L-shaped channel spanning the entire drawing is used to border
the “spine” of the generalized k-comb, resulting in a drawing of O(n) area. ��
We now give a more general result on mosaic drawings with channels of constant
complexity, using the following trivial observation.

Observation 2. A channel of complexity c adds c boundary segments to a draw-
ing D(G).

Fig. 8. The graph dual of
a (k, r)-signpost.

To prove the following lower bounds, we need a
special type of outerplanar graph: a (k, r)-signpost.
A (k, r)-signpost is like a k-comb, but with two impor-
tant differences: (1) the legs are connected on alter-
nating sides of the “spine”, and (2) every leg is an
r-comb. The graph dual of a (k, r)-signpost is shown
in Fig. 8.

Lemma 9. There exists some constant r such that
any one-sided mosaic drawing D(G) with constant
complexity channels of a (k, r)-signpost G with n ver-
tices must have width and height Ω(min(k, n/k)).

Proof. If the channels of D(G) can have complexity c, then we require that
r > c/2. Since r is constant, the legs of the r-combs in a (k, r)-signpost have
size Ω(n/k). By Lemma 4 we know that each r-comb either requires width and
height Ω(n/k), or is adjacent to 2r boundary segments of D(G). In the latter
case, since 2r > c, every representation of an r-comb must contain a tile adjacent
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to the bottom of R. Therefore, the union of the configurations of two consecutive
r-combs on opposite sides of the “spine” of the (k, r)-signpost separates D(G)
into two parts (see Fig. 8). Since a (k, r)-signpost contains Ω(k) of such pairs of
consecutive r-combs, D(G) must have width and height Ω(k). Combining both
cases results in the claimed lower bound of Ω(min(k, n/k)) for the width and
height of D(G). ��
We can now prove lower bounds for mosaic drawings with L-shaped channels. In
the following, let the x-coordinate of an L-shaped channel be the x-coordinate
of its vertical leg.

Lemma 10. Let D(G) be a one-sided mosaic drawing of an outerzigzag G on n
vertices with m L-shaped channels, width w, and height h. Then dm + w + h =
Ω(n), where d is the difference between the x-coordinates of the rightmost and
leftmost channels.

Proof. Let v1, . . . , vn be the vertices of G in
order along the outer face, and let vn/2 be
the tip of an ear of G. Starting from a tile
of C(vn/2) we draw a y-monotone rectilinear
path P in D(G) until it escapes D(G) using
as few horizontal segments as possible (see
figure). Note that such a path exists and can
have at most m horizontal segments. Further,
P must be crossed by all Ω(n) (disjoint) regions of the form C(vi) ∪ C(vn−i),
which implies that the length of P is Ω(n). The sum of the lengths of the vertical
segments of P is at most h. The horizontal segments of P have length at most
d, except the highest segment, which can have length w. We directly obtain that
dm + w + h = Ω(n). ��
Lemma 11. Any one-sided mosaic drawing D(G) with only L-shaped channels
of a k-comb G with k = n1/3 requires Ω(n2/3) width or height.

Proof. Let w and h be the width and height of D(G), respectively. For the ith leg
of G, let Li be the set of channels adjacent to the configurations of leg i. Note that
the set Li must be consecutive along the boundary of D(G). Furthermore, let
mi = |Li| and let di be the difference between the x-coordinates of the rightmost
and leftmost channels in Li. By Lemma 10 we have that dimi +w+h = Ω(n2/3)
for each leg. Furthermore, di ≥ mi and

∑
i di ≤ w, since D(G) is one-sided. If

dimi = Ω(n2/3) for all i, then di = Ω(n1/3) for all i. As a result, w ≥ ∑
i di =

n1/3Ω(n1/3) = Ω(n2/3). Otherwise we obtain that w + h = Ω(n2/3), which
directly implies the claimed result. ��
Theorem 3. There exists an outerplanar graph G with n vertices such that any
mosaic drawing D(G) with only L-shaped channels requires Ω(n7/6) area.

Proof. Let G1 be a (
√

n, 3)-signpost with n/2 vertices, and let G2 be a (n1/3)-
comb with n/2 vertices. We construct G by attaching G1 to G2 similarly to the
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construction in Lemma 5. Lemma 9 implies that the width and height of D(G)
are both Ω(

√
n). Furthermore, Lemma 11 implies that the width or height of

D(G) is Ω(n2/3). As a result, D(G) has area Ω(n7/6). Although we have only
argued this for a one-sided mosaic drawing now, this result also holds for a
general mosaic drawing with L-shaped channels due to Lemma 5. ��

6 Conclusions and Open Problems

We investigated the trade-offs between two complexity measures for mosaic draw-
ings of outerplanar graphs: channel complexity and area. Both measures clearly
contribute to the quality of mosaic drawings. Several intriguing open questions
remain, such as: is there a non-trivial upper bound for the area of simple mosaic
drawings using only L-shaped channels? And do more complex channels allow
for drawings with linear area?
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Fast Optimal Labelings for Rotating Maps
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Abstract. We study a dynamic labeling problem on rotating maps, i.e.,
maps that allow for continuous rotations. As the map is rotated, labels
must remain horizontally aligned. Rotations may cause labels that were
previously disjoint to overlap. For each label, we must determine a set of
active ranges (i.e., angular ranges during which the label is visible) such
that at any rotation angle all active labels are disjoint. The objective is to
maximize the sum of the angular length of all active ranges. We prove a
number of properties of optimal solutions which allow us to significantly
reduce the size of an integer programming model from the literature. We
report the results of several experiments using two existing benchmarks
with 180 real-world instances. We obtained reductions of over 100 times
in the number of variables and constraints of the model. The compact
formulation solved all but 5 instances to optimality in under a minute.

1 Introduction

Labeling problems are well-studied in the optimization literature. The input
consists of a map and several points of interest. Each point is associated with a
textual label that identifies or describes it. Labels must be placed on the map
close to their associated point and without overlap. Classic problems usually
aim at producing static maps to be used in print. However, with the recent
dissemination of navigation systems and digital maps, a new branch of labeling
problems has arisen. These are referred to as dynamic labeling problems since
they are inserted in a context that allows the user to interact with the map.

Here, we focus on rotating maps, i.e., maps that permit continuous rotations.
Each label is anchored at a point that is specified in the input. We assume that
each anchor point lies on the boundary of its associated label. As the map is
rotated, all labels remain horizontally aligned and anchored at their associated
points (see Fig. 1). This may cause labels that were previously disjoint to overlap.
We handle such cases by omitting one or more labels at specific angular intervals.
Therefore, we must determine, for each label, a set of active ranges (i.e., maximal
angular intervals during which the label is visible) such that, at any rotation
angle, all active labels are disjoint. The goal is to maximize the total angular
length of the active ranges of all labels for a full rotation of the map.
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Fig. 1. Rotations may create overlaps that previously did not exist.

Been et al. [1] observed that naive (dynamic) labeling algorithms may cause
unpleasant visual effects. Good maps must not allow labels to pop or jump
during monotonous navigation. In rotating maps, this happens if a label has too
many active ranges. In such cases, labels appear to flicker on the screen as the
map is rotated. Gemsa et al. [2,3] solve this issue by letting each label have only
a limited number of active ranges. They refer to this setting as the kR-model,
where k denotes the maximum number of active ranges allowed per label.

In some applications, the occlusion of anchor points might be undesirable,
since they may convey useful information even if their associated labels are
inactive. This motivates the following distinction. If two labels � and �′ intersect
at some rotation angle α, we say that they have a soft conflict at α. If, in
addition, � contains �′’s anchor point, then � also has a hard conflict with �′

at α. Note that soft conflicts define a symmetric relation, whereas hard conflicts
(generally) do not. One may optionally require that hard conflicts be avoided.

Gemsa et al. [2] were the first to study this problem. They prove that it
is NP-hard to find an optimal solution in the 1R-model with hard conflicts.
They also provide efficient approximation algorithms. The first Integer Linear
Programming (ILP) formulation for this problem was given by the same authors
in [3]. They experimented with an extensive benchmark of real-world instances,
several of which could only be addressed heuristically.

Our Contribution: we prove a number of properties of optimal solutions that
allow us to significantly reduce the ILP formulation proposed in [3]. We obtained
reductions of up to 100 times in the number of variables and constraints of
the model. The compact formulation was able to optimally solve 178 out of
180 instances. Moreover, we found 12 optimal solutions that were previously
unknown. The text is organized as follows. Section 2 presents the said ILP for-
mulation. Section 3 proves several properties of optimal solutions. Section 4 dis-
cusses some implementation details and reports our computational results.

2 Model

Let L = {�1, . . . , �n} be a set of n rectangular, axis-aligned, non-overlapping,
closed labels in the plane. Let P = {p1, . . . , pn} be a set of points in the plane
such that each pi corresponds to the anchor of label �i and lies on its boundary.
Given two labels � and �′, the conflict set C(�, �′) is defined as the set of all
rotation angles at which � and �′ overlap, i.e., C(�, �′) = {α ∈ [0, 2π) | � and �′

have a conflict at α}. A conflict range is a maximal contiguous range in C(�, �′).
We refer to the endpoints of maximal conflict ranges as conflict events.
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Let E be an ordered set that contains all conflict events and, additionally,
the values 0 and 2π. For 0 ≤ j ≤ |E|− 1, we denote by ej the j-th element of E.
An interval between two consecutive elements of E is an atomic interval. For
0 ≤ j ≤ |E| − 2, we denote by E[j] the j-th atomic interval, i.e., the interval
between ej and ej+1. Given the circular nature of the problem, in all further
references, indices of conflict events and atomic intervals should be taken modulo
E and |E| − 1, respectively. Gemsa et al. [2,3] showed that there always exists
an optimal solution in which all active ranges correspond to unions of atomic
intervals. This allowed the authors to present the following ILP formulation.

For 1 ≤ i ≤ n and 0 ≤ j ≤ |E| − 2 we define two sets of binary variables xj
i

and bj
i . Variable xj

i has value 1 if label �i is active during E[j] and 0 otherwise.
Variable bj

i takes value 1 when �i is inactive during E[j − 1] and active during
E[j]. The objective function to be maximized is

∑n
i=1

∑|E|−2
j=0 xj

i · |E[j]|, where
|E[j]| represents the angular length of E[j]. The following constraints must hold:

xj
i − bj

i ≤ xj−1
i 1 ≤ i ≤ n, 0 ≤ j ≤ |E| − 2; (1)

|E|−2∑

j=0

bj
i ≤ k 1 ≤ i ≤ n; (2)

xj
i + xj

k ≤ 1 0 ≤ j ≤ |E| − 2 and ∀ �i, �k in conflict onE[j]. (3)

Inequalities (1) guarantee that if a new active range starts at E[j] (i.e., if
xj−1

i = 0 and xj
i = 1), then bj

i must be set to 1. Inequalities (2) limit the number
of active ranges of each label to at most k. Inequalities (3) prevent pairs of
overlapping labels from being simultaneously active. In the text that follows, we
will refer to inequalities (3) as conflict inequalities. Finally, hard conflicts can be
incorporated by simply fixing the appropriate activity variables at zero.

3 Properties of Optimal Solutions

Our goal is to show how to reduce the ILP from [3] without affecting its correct-
ness. We first need a few auxiliary results. In order to simplify the discussion
that follows, we assume that all conflict events occur at distinct rotation angles
and, thus, all atomic intervals have positive length. We also assume that L is
defined as a set of non-overlapping labels, so no conflicts exist at rotation angle
0. It should be noted that the techniques described here would work even if these
assumptions are not satisfied.

Let G[j] be the conflict graph for the j-th atomic interval, i.e., an undirected
graph with a vertex for each label and edges indicating pairs of labels that are in
conflict on E[j]. Conflict event ej+1 either starts or ends a conflict range, so the
transition from G[j] to G[j + 1] consists of either the insertion or the deletion of
a single edge, respectively. These transitions cause labels to change their state in
the solution. Our results derive from the observation that conflict events usually
have a somewhat local effect, often leaving the state of distant labels unchanged.
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We formalize this notion by analyzing the connected components of conflict
graphs. Given a connected component C of G[j], we say that C is unaffected
on atomic interval E[j] if the edge inserted or deleted in the transition from
G[j −1] to G[j] was not incident to any vertices of C. Note that this implies that
C is also a connected component of G[j − 1]. If C does not satisfy the previous
condition, we say that it is affected on E[j].

We now define two basic operations that we will use extensively to manipulate
solutions in our proofs. Given a set of labels S ⊆ L, a solution (x, b) to the ILP
from Sect. 2, and an atomic interval E[γ], a backward copy operation (denoted
backward-copy(S, (x, b), E[γ])) creates a new solution (x̂, b̂) in which the state
of each label in S is copied from atomic interval E[γ] to E[γ −1]. More formally,
backward-copy(S, (x, b), E[γ]) constructs (x̂, b̂) by assigning:

x̂j
i =

⎧
⎨

⎩

xγ
i if �i ∈ S and

j = γ − 1
xj

i otherwise;
b̂j
i =

⎧
⎨

⎩

max(0, x̂j
i − x̂j−1

i ) if �i ∈ S and j = γ − 1
0 if �i ∈ S and j = γ

bj
i otherwise.

Analogously, a forward copy operation (denoted forward-copy(S, (x, b), E[γ]))
copies the state of each label in S from atomic interval E[γ] to E[γ + 1]:

x̂j
i =

⎧
⎨

⎩

xγ
i if �i ∈ S and

j = γ + 1
xj

i otherwise;
b̂j
i =

⎧
⎨

⎩

max(0, x̂j
i − x̂j−1

i ) if �i ∈ S and j = γ + 2
0 if �i ∈ S and j = γ + 1
bj
i otherwise.

The reader may want to keep in mind that in the following proofs each
operation that employs variable values of the ILP solution has a corresponding
effect on the geometry of the label conflicts. Proposition 1 shows that solutions
produced by either of the two operations always satisfy inequalities (1) and (2).

Proposition 1. Let S ⊆ L be a set of labels and (x, b) be a feasible solu-
tion to the ILP from Sect. 2. Then, for any atomic interval E[γ], (x̂, b̂) =
backward-copy(S, (x, b), E[γ]) and (x′, b′) = forward-copy(S, (x, b), E[γ])
satisfy inequalities (1) and (2).

Proof. It is easy to verify that, by construction, inequalities (1) are always sat-
isfied. As for inequalities (2), note that a copy operation can only extend an
existing active range or merge two active ranges. In both cases, the number of
active ranges does not increase, and the result follows. ��

Next, we deal with conflict inequalities. Given a connected component C of a
conflict graph, denote by L(C) the set of labels associated with the vertices of C.

Proposition 2. Let C be an unaffected component of a conflict graph G[γ]. Let
(x, b) be a feasible solution to the ILP from Sect. 2. Then (x̂, b̂) = backward-
copy(L(C), (x, b), E[γ]) and (x′, b′) = forward-copy(L(C), (x, b), E[γ − 1])
satisfy all conflict inequalities.
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Proof. Since C is an unaffected component of G[γ], a conflict involving the labels
in L(C) exists on E[γ − 1] if and only if it also exists on E[γ]. Thus, copying
the state of these labels from E[γ] to E[γ − 1] (or vice versa) cannot violate any
conflict inequalities. ��
Proposition 3. Let C be an affected component of a conflict graph G[γ]. Let
(x, b) be a feasible solution to the ILP from Sect. 2. Let (x̂, b̂) = backward-
copy(L(C), (x, b), E[γ]) and (x′, b′) = forward-copy(L(C), (x, b), E[γ − 1]).
Let �t and �u be the two labels that caused conflict event eγ . Then:

1. If eγ starts a conflict range, x̂ satisfies all conflict inequalities and x′ may
violate at most one, namely x′ γ

t + x′ γ
u ≤ 1;

2. If eγ ends a conflict range, x′ satisfies all conflict inequalities and x̂ may
violate at most one, namely x̂γ−1

t + x̂γ−1
u ≤ 1.

Proof. We prove the result for x̂. The proof for x′ is analogous. The only values
that may differ between x and x̂ are the ones for E[γ−1], so it suffices to analyze
conflicts for that interval. Note that the only pair of labels that may have a
conflict either on E[γ − 1] or E[γ] (but not both) is �t and �u. All other conflicts
are present on E[γ −1] if and only if they are also present on E[γ]. Let �i and �k

be two labels that have a conflict on E[γ−1]. If neither �i nor �k belongs to L(C),
x̂γ−1

i = xγ−1
i and x̂γ−1

k = xγ−1
k . Thus, the corresponding conflict inequality must

be satisfied by x̂ (otherwise x would not be feasible). If both �i and �k belong
to L(C), x̂γ−1

i = xγ
i and x̂γ−1

k = xγ
k . Thus, x̂γ−1

i + x̂γ−1
k > 1 implies that this

conflict is not present on E[γ] (otherwise x would not be feasible). This can only
happen if {�i, �k} = {�t, �u} and, specifically, if eγ ends a conflict range.

Now, suppose �i ∈ L(C) and �k /∈ L(C). Note that if a conflict exists between
�i and �k on E[γ − 1], then either (i) this conflict is also present on E[γ] or (ii)
{�i, �k} = {�t, �u} and eγ ends a conflict range. Case (i) implies �k ∈ L(C)
because the vertices for �i and �k would be connected by an edge in G[γ]. Case
(ii) is precisely the conflict that may be violated, so the proof is complete. ��

The results in Propositions 1–3 are summarized in Lemmas 1 and 2. We actu-
ally prove slightly stronger results that will be useful in our remaining proofs.

Lemma 1 (Backward Copy Lemma). Let C be a component of a conflict
graph G[γ]. Let (x, b) be a feasible solution to the ILP from Sect. 2. Let Z ⊆ L(C)
be a (possibly empty) set of labels that are inactive on E[γ − 1], i.e., ∀ �i ∈ Z,
xγ−1

i = 0. Let (x̂, b̂) = backward-copy(L(C) \Z, (x, b), E[γ]). Let �t and �u be
the two labels that caused conflict event eγ . Then:

1. If C is unaffected on E[γ], (x̂, b̂) is feasible;
2. If C is affected on E[γ] and eγ starts a conflict range, (x̂, b̂) is feasible;
3. If C is affected on E[γ] and eγ ends a conflict range, (x̂, b̂) may violate at

most one inequality, namely x̂γ−1
t + x̂γ−1

u ≤ 1.
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Proof. If Z = ∅, the result follows directly from Propositions 1–3. Otherwise,
by Proposition 1, (x̂, b̂) satisfies all inequalitie (1) and (2). Now, consider the
solution (x′, b′) = backward-copy(L(C), (x, b), E[γ]). Note that if two values
differ between x̂ and x′, the one in x̂ must be 0. This implies x̂ ≤ x′ (where
the comparison is taken between corresponding entries). Thus, every conflict
inequality satisfied by x′ must also be satisfied by x̂, and the result follows. ��
Lemma 2 (Forward Copy Lemma). Let C be a component of a conflict
graph G[γ]. Let (x, b) be a feasible solution to the ILP from Sect. 2. Let Z ⊆ L(C)
be a (possibly empty) set of labels that are inactive on E[γ], i.e., ∀ �i ∈ Z, xγ

i = 0.
Let (x̂, b̂) = forward-copy(L(C) \ Z, (x, b), E[γ − 1]). Let �t and �u be the two
labels that caused conflict event eγ . Then:

1. If C is unaffected on E[γ], (x̂, b̂) is feasible;
2. If C is affected on E[γ] and eγ ends a conflict range, (x̂, b̂) is feasible;
3. If C is affected on E[γ] and eγ starts a conflict range, (x̂, b̂) may violate at

most one inequality, namely x̂γ
t + x̂γ

u ≤ 1.

Proof. Analogous to the proof of the Backward Copy Lemma. ��
The next results show that, for optimal solutions, the number of active labels

on consecutive intervals cannot vary much. Given a solution (x, b) and a com-
ponent C of an atomic interval E[γ], we define

δγ
C(x) =

∑

�i∈L(C)

xγ
i −

∑

�i∈L(C)

xγ−1
i ,

i.e., δγ
C(x) represents the variation in the number of active labels in L(C) from

atomic interval E[γ − 1] to E[γ].

Lemma 3. Let C be a component of a conflict graph G[γ]. Let (x∗, b∗) be an
optimal solution to the ILP from Sect. 2. Then:

1. If C is unaffected on E[γ], δγ
C(x∗) = 0;

2. If C is affected on E[γ] and eγ starts a conflict range, δγ
C(x∗) ∈ {−1, 0};

3. If C is affected on E[γ] and eγ ends a conflict range, δγ
C(x∗) ∈ {0, 1}.

Proof. Case 1. Suppose δγ
C(x∗) 	= 0, i.e.,

∑
�i∈L(C) x∗γ−1

i 	= ∑
�i∈L(C) x∗γ

i . Con-
sider the solutions provided by backward-copy(L(C), (x∗, b∗), E[γ]) and for-
ward-copy(L(C), (x∗, b∗), E[γ − 1]). By the two Copy Lemmas, both solutions
are feasible. One of these alternatives gives a solution with a higher number of
active labels during either E[γ − 1] or E[γ]. Thus (x∗, b∗) cannot be optimal.

Case 2. Let �t and �u be the two labels that caused conflict event eγ . Initially,
suppose δγ

C(x∗) ≤ −2. We must have x∗γ
t = 0 or x∗γ

u = 0 (otherwise x∗ would
not be feasible). Suppose w.l.g. x∗γ

u = 0. Let (x̂, b̂) = forward-copy(L(C) \
{�u}, (x∗, b∗), E[γ − 1]). Since x̂γ

u = 0, the Forward Copy Lemma guarantees
that (x̂, b̂) is feasible. Moreover, δγ

C(x̂) ≥ −1, so (x̂, b̂) has more visible labels
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than (x∗, b∗) on E[γ], and hence attains a better objective value. Consequently,
(x∗, b∗) cannot be optimal. Now, suppose δγ

C(x∗) ≥ 1. By the Backward Copy
Lemma, (x̂, b̂) = backward-copy(L(C), (x∗, b∗), E[γ]) is feasible. Also, it has
more visible labels on E[γ − 1] than (x∗, b∗). Thus, (x∗, b∗) cannot be optimal.

Case 3. Analogous to the proof of Case 2. ��
In our next proofs, it will be necessary to execute copy operations sequentially

on consecutive atomic intervals. We indicate this by passing a list of intervals as
parameters to backward- and forward-copy. Formally, given a set of labels
S ⊆ L, a solution (x, b) and a list of consecutive atomic intervals Q = 〈E[j1],
E[j1 + 1], . . ., E[j2]〉, backward-copy(S, (x, b), E[j2], . . . , E[j1 + 1], E[j1]) pro-
duces a list of solutions by setting (x[0], b[0]) = (x, b) and, for 0 ≤ λ ≤ |Q| − 1,
(x[λ+1], b[λ+1]) = backward-copy(S, (x[λ], b[λ]), E[j2−λ]). The last solution
is returned as the result. forward-copy(S, (x, b), E[j1], E[j1 + 1], . . . , E[j2]) is
defined analogously (note, however, that the order of the intervals is reversed).

The following definition will also be useful. Let C be a component of a conflict
graph G[γ]. The lifespan of C (denoted LS(C)) is a maximal set of consecutive
intervals {E[j1], E[j1 + 1], . . . , E[γ], . . . , E[j2 − 1], E[j2]} that contains E[γ] and
such that C is a component of G[j1], . . . , G[γ], . . . , G[j2]. Here, we consider that
two components are distinct even if only their edge sets differ. This implies that,
if C is affected in some conflict graph G[j], then it cannot be a component of
G[j − 1]. Therefore, C is unaffected on E[j1 + 1], . . . , E[γ], . . . , E[j2].

Moreover, suppose C is also unaffected on E[j1]. Then, C must be a com-
ponent of E[j1 − 1], and since LS(C) is maximal, E[j1 − 1] ∈ LS(C). This can
only be true if E[j1 − 1] = E[j2] (recall that interval indices are taken modulo
|E| − 1), which implies LS(C) contains all atomic intervals and C is unaffected
in all of them. Due to the fact that all labels are disjoint at rotation angle 0, C
must consist of a single isolated label that can be made visible over the full map
rotation. We assume that such a trivial case is treated in a preprocessing step.
Thus, in the remainder of this text, we consider that C is affected on E[j1] and
unaffected on every other interval of its lifespan.

We can now present our main results. We say that a solution is harmonious
if for every label �i of each unaffected component C of G[j] (0 ≤ j ≤ |E| − 2)
we have xj−1

i = xj
i and bj

i = 0. In other words, in a harmonious solution, a label
�i may change its state during the j-th atomic interval only if the component to
which it belongs in G[j] is affected.

Theorem 1. The ILP from Sect. 2 always has a harmonious optimal solution.

Proof. Let (x∗, b∗) be an optimal solution. For each �i ∈ L and for 0 ≤ j ≤ |E|−2,
we assume b∗j

i = max(0, x∗j
i −x∗j−1

i ), i.e., b∗j
i is set to 1 only if strictly necessary

to satisfy inequalities (1). Note that, if (x∗, b∗) does not satisfy this condition,
there exists a label �i and an interval E[j] such that b∗j

i = 1 and max(0, x∗j
i −

x∗j−1
i ) = 0. But, then, setting b∗j

i to 0 does not violate inequalities (1) and, since
this reduces its value, inequalities (2) must also remain satisfied.

Now, suppose that for some atomic interval E[γ] there exists a label �i

that belongs to an unaffected component C of G[γ]. In addition, suppose that
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the state of �i changed in (x∗, b∗) on E[γ], i.e., x∗γ−1
i 	= x∗γ

i . Let LS(C) =
{E[j1], . . . , E[γ], . . . , E[j2]}. Let (x̂, b̂) = backward-copy(L(C), (x∗, b∗),
E[j2], . . ., E[γ], . . ., E[j1 +1]). By the Backward Copy Lemma, (x̂, b̂) is feasible.
Also, by Lemma 3, the copy operations do not change the number of visible labels
on any atomic interval, so (x̂, b̂) is optimal. Finally, for all labels �i ∈ L(C) and
all intervals E[j] ∈ LS(C) on which C is unaffected, x̂j−1

i = x̂j
i and b̂j

i = 0.
To complete the proof, note that, if (x̂, b̂) is still not harmonious, the process

described here for component C can be repeated independently for any other
unaffected component. Once this is done for all unaffected components of all
atomic intervals, the resulting solution will be harmonious. ��

Theorem 1 shows that there always exists an optimal solution in which the
state of labels in all unaffected components remains unchanged. Next, we provide
a similar result for affected components. Let A be a set containing all affected
components of all atomic intervals, i.e., A = {C | C is an affected component
of some G[j], 0 ≤ j ≤ |E| − 2}. We remark that it is possible that two affected
components of two distinct conflict graphs have exactly the same set of vertices
and edges. However, since they do not belong to the same conflict graph, they
are represented by distinct elements in A.

Let C ∈ A be an affected component of a conflict graph G[j1]. Let LS(C) =
{E[j1], E[j1 + 1], . . . , E[j2]} be C’s lifespan. Since LS(C) is maximal, conflict
event ej2+1 affects at least one vertex of C, i.e., the transition from G[j2] to
G[j2 + 1] either inserts or deletes an edge incident to a vertex of C. Graph
G[j2 + 1] may have one or two affected components, both distinct from C. Let
D ∈ A be an affected component of G[j2 + 1]. We say that C is a parent of D
and, conversely, D is a child of C. Alternatively, the parents of D are precisely
the components of G[j2] that contain the vertices of D. Here, two observations
are in order. First, note that a component can have up to two parents and two
children. Second, we do not intend to establish a partial order on the elements
of A (this is not possible due to the circular nature of the problem). We only
wish to determine how components interact with each other to form new ones.

We want to show that there always exists an optimal solution in which the
state of most labels in a well-chosen set of affected components does not change.
Let C ∈ A be an affected component of G[j]. Let �t and �u be the two labels
that caused conflict event ej . Generally, we cannot guarantee that the state of
�t and �u will remain the same (actually, it often changes). However, the other
labels in L(C) may keep their previous state. Theorem 2 formalizes this result.
We define a component graph GA as a simple undirected graph with a vertex vC

for each component C ∈ A and an edge {vC , vD} for each pair of components
C, D ∈ A such that C is either a parent or a child of D.

Theorem 2. Let I ⊆ A be a set of components such that their associated ver-
tices form an independent set in GA. There always exists a harmonious optimal
solution (x∗, b∗) to the ILP from Sect. 2 such that the following is satisfied for
all elements of I: if C ∈ I is an affected component of G[γ], and �t and �u are
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the two labels that caused conflict event eγ , then for each �i ∈ L(C) \ {�t, �u} we
have x∗γ−1

i = x∗γ
i and b∗γ

i = 0.

Proof. Let (x∗, b∗) be a harmonious optimal solution and suppose it does not
satisfy the desired condition. Let C ∈ I be an affected component of G[γ],
and �t and �u be the two labels that caused conflict event eγ . We will show
that there exists a harmonious optimal solution (x̂, b̂) in which the state of the
labels in L(C) \ {�t, �u} is the same on E[γ − 1] and E[γ]. We will do that
by executing copy operations on (x∗, b∗), either from E[γ − 1] to E[γ] or from
E[γ] to E[γ − 1]. By Lemma 3, if eγ starts a conflict range, δγ

C(x∗) ∈ {−1, 0},
otherwise, δγ

C(x∗) ∈ {0, 1}. We treat these four cases separately. The feasibility
of all solutions considered here follows from the two Copy Lemmas. We omit
further references for brevity.

Case 1: eγ starts a conflict range and δγ
C(x∗) = −1. We must have x∗γ

t = 0
or x∗γ

u = 0. Suppose w.l.g. x∗γ
u = 0. Let (x′, b′) = forward-copy(L(C) \

{�u}, (x∗, b∗), E[γ − 1]). Since x′γ
u = 0, (x′, b′) is feasible. Also, δγ

C(x′) ≥ −1, so
it has the same objective value as (x∗, b∗) and is optimal. However, we modified
some variables for E[γ], so (x′, b′) may not be harmonious (especially if C is
unaffected on E[γ + 1]). Let {E[γ], E[γ + 1], . . . , E[j2]} be the lifespan of C.
Solution (x̂, b̂) = forward-copy(L(C), (x′, b′), E[γ], E[γ + 1], . . . , E[j2 − 1]) is
feasible and harmonious (recall that C is unaffected on E[γ + 1], . . . , E[j2]).
Finally, by Lemma 3, it is also optimal.

Case 2: eγ starts a conflict range and δγ
C(x∗) = 0. Let (x′, b′) = backward-

copy(L(C), (x∗, b∗), E[γ]). Since δγ
C(x′) = 0, (x′, b′) is optimal, but (possibly)

not harmonious. Let D ∈ A be a parent of C. Let {E[j1], E[j1 +1], . . . , E[γ −1]}
be the lifespan of D. Solution (x̂, b̂) = backward-copy(L(D), (x′, b′), E[γ −
1], E[γ − 2], . . . , E[j1 + 1]) is feasible (because D is unaffected on E[j1 + 1], . . . ,
E[γ − 1]) and, by Lemma3, optimal. If C has only one parent, it is also har-
monious. Otherwise, let D′ be the other parent. Labels �t and �u belong to
distinct components in G[γ − 1] (otherwise, there would be a single parent),
and L(C) = L(D) ∪ L(D′). This means that the first backward copy operation
changed the state of all labels in L(C), but the others only addressed the labels
in L(D). Thus, we must also apply backward copy operations to the labels in
L(D′) on the intervals that belong to the lifespan of D′. Once this is done, the
solution obtained will be both harmonious and optimal.

Case 3: eγ ends a conflict range and δγ
C(x∗) = 0. Analogous to Case 1.

Case 4: eγ ends a conflict range and δγ
C(x∗) = 1. Analogous to Case 2.

In all four cases, we obtain a harmonious optimal solution in which the state
of the labels in L(C) remains unchanged (except for �t and �u), so it satisfies the
desired condition for component C. It remains to be shown that this procedure
can be executed independently for all components in I. Observe that we needed
to execute copy operations on the intervals that belong to C’s lifespan (Cases 1
and 3) and also to its parents’ lifespan (Cases 2 and 4). Therefore, if we apply
the same procedure to C’s parents, we might overwrite some variables that had
already been set. However, we can execute it independently for other components
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as long as we do not pick a parent and its child. This is equivalent to choosing
components that form an independent set in GA, so the proof is complete. ��

4 Implementation and Experiments

Implementation. The results from Sect. 3 can be used to significantly reduce
the size of the ILP model. Let I ⊆ A be a set of components that form an
independent set in GA. Let C be a component of conflict graph G[γ] and let �i

be a label in L(C). If C is unaffected on E[γ], Theorem 1 allows us to add the
following equality constraints to the model: xγ−1

i = xγ
i and bγ

i = 0. Otherwise,
if C is affected on E[γ] and C ∈ I, Theorem 2 allows us to add the same
constraints, except if �i is one of the labels that caused conflict event eγ .

When it is the case that this pair of equalities is included in the model, two
variables may be removed: bγ

i and either xγ−1
i or xγ

i (but not both). Additionally,
some constraints might become redundant. Clearly, xγ

i − bγ
i ≤ xγ−1

i is always
satisfied and can be removed. Also, some conflict constraints become unneces-
sary. If �i has a conflict with �k on both E[γ − 1] and E[γ], and if xγ−1

k = xγ
k ,

then we only need the conflict constraint for either E[γ − 1] or E[γ].
In our implementation, we used CPLEX to solve the ILPs. We tested two

approaches to reduce the size of the formulations. Initially, we loaded all variables
and constraints to the solver, including the equality constraints we just described.
Next, we let CPLEX’s presolve procedure remove all unnecessary variables and
constraints. This option led to satisfactory results for models with less than a
million variables and constraints, which are usually associated with instances
that have up to 250 labels. However, for larger instances, CPLEX needed a
prohibitive amount of memory and most of the computation time was spent
presolving, and not actually solving the model. Therefore, we implemented our
own lightweight presolve procedure, taking advantage of the fact that we know a
priori the main simplifications to be performed. We then loaded only the reduced
model to CPLEX. Our procedure is able to presolve even the largest instances
in less than a second, so we used it in all experiments.

Finally, regarding the choice of set I, observe that, although any independent
set in GA leads to a correct model, some sets might allow more variables to be
removed than others. In particular, given a component C ∈ A, it is easy to
calculate how many variables will be removed if C is included in I. We would
like to select the set that leads to the deletion of the maximum possible number
of variables. Therefore, we select I by solving a weighted maximum independent
set problem on GA. We formulated this problem as an ILP and used CPLEX to
solve it. Because GA is sparse, the time necessary to solve this auxiliary model
is approximately four orders of magnitude smaller than the time needed for the
actual labeling problem. Thus, it is acceptable to solve this problem optimally.

Experiments. We now evaluate the performance of the reduced ILP formulation,
obtained after performing the simplifications just described. Experiments were
run on an Intel Xeon CPU X3470, 2.93 GHz, with 8 GB RAM. Integer programs
were solved with CPLEX 12.5.1 using traditional search with a single thread.
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The code was written in C++ and compiled with gcc 5.4.0. We considered two
problem variants: one that only handles soft conflicts, and another that takes
both soft and hard conflicts into account. We experimented with models 1R, 2R
and 3R (recall that model kR allows at most k active ranges per label).

We used two sets of maps constructed from real-world data and made avail-
able by Gemsa et al. [3]. The first set was built from data on cities from six
countries (France, Germany, United Kingdom, Italy, Japan and USA) using
map scales of 65pixel =̂ 20 km, 50 km and 100 km. The second set is based on
data from restaurants in four cities (Berlin, London, New York and Paris) and
uses map scales of 65pixel =̂ 20 m, 50 m, and 100 m. The two benchmarks have a
total of 30 input maps, yielding 2 · 3 · 30 = 180 distinct instances.

As in [3], we attempt to decompose each input map before building the ILP
models. We construct a conflict graph for a full rotation of the map, i.e., each
label is represented by a vertex and two labels are connected by an edge if they
have a conflict at any rotation angle. Clearly, connected components in this graph
can be solved separately. In all experiments, we allowed a time limit of one hour
per component before interrupting the resolution of the hardest problems.

In Fig. 2 we plot, for each input map, the number of variables (left) and con-
straints (right) in the original (abscissa) and in the reduced formulation (ordi-
nate). The reductions with and without hard conflicts differ for the same map, so
we also distinguish data points by conflict type. In all cases, a notable reduction
can be observed. The most impressive case occurred for Paris at scale 100 m,
with a reduction of over 99% of variables and constraints for both soft and hard
conflicts. On average, we eliminated 86.6% of the variables and 80.2% of the
constraints from the original model when using only soft conflicts. With hard
conflicts, these values are 86.2% and 88.1% respectively. In general, these per-
centages increase with the size of the largest connected component.

Fig. 2. Variables and constraints in the original and reduced formulations.

Table 1 shows running times for the original model (To) and for the reduced
formulations obtained by applying Theorem1 alone (T1) and Theorems 1 and 2
together (T1,2). We also give the ratios To/T1 and To/T1,2. Additionally, for each
instance we report the total number of labels (n), the number of labels in the
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Table 1. Experimental results. Times are given in seconds.

Map n (nlcc) kR s|h %var %con To T1 T1,2 To/T1 To/T1,2

USA-100 288 (213) 2R s 97.2 95.3 3228 44 29 73.9 111.9

France-100 69 (69) 1R s 93.0 90.1 1614 26 10 61.0 162.4

Berlin-100 2628 (416) 3R s 98.5 97.7 4231 4 2 1073.7 1940.6

London-50 1620 (175) 1R s 94.7 92.0 – 90 34 – –

Paris-100 2141 (952) 3R s 99.3 99.0 – 40 13 – –

London-50 1620 (175) 2R h 94.4 95.4 97 2 1 49.7 122.2

London-100 1457 (371) 2R h 97.5 98.2 773 3 1 292.9 581.5

USA-100 288 (213) 1R h 97.2 97.9 540 1 1 568.7 1039.0

Berlin-100 2628 (416) 1R h 98.5 98.7 1869 3 2 716.0 1099.2

Paris-100 2141 (952) 3R h 99.3 99.5 – 6 3 – –

largest connected component (nlcc), and the fraction of variables (%var) and con-
straints (%con) eliminated from the original formulation. Column s|h indicates
whether the soft or the hard conflict model is considered. Some instances could
not be solved by the original formulation within the given time limit. With soft
conflicts, for instances London-50 1R and Paris-100 3R the solver was halted
while still leaving duality gaps of 3.55% and 50.59%, respectively. With hard
conflicts, for instance Paris-100 3R there remained a gap of 43.75%.

As expected, the size reductions in the ILPs had a direct effect on execution
times and the more compact formulation was faster for all instances. At scales
20 km and 20 m, components are very small and both versions of the ILP per-
formed relatively well. However, at other scales, the reduced model performed
significantly better. The best speedup occurred for the Berlin map at scale 100 m
with the 3R soft-conflict model, for which the reduced formulation was 1940
times faster. Only two instances could not be solved by the reduced formulation,
namely London and Paris, at scale 100 m, with the 1R soft-conflict model. In
both cases, there was a gap of 0.03% when the time limit was reached. For the
same instances, the original model left gaps of 30.78% and 51.27% (respectively).

The times presented in columns T1 and T1,2 of Table 1 allow us to assess
the individual contribution of Theorems 1 and 2 to the final results. Reduc-
tions that come from unaffected components clearly produce the most impressive
speed-ups. There are two main reasons for this. Firstly, Theorem1 allows us to
remove all variables associated with unaffected components, whereas Theorem 2
is restricted to subsets of affected components that form independent sets in GA.
Moreover, no more than two components of any conflict graph may be affected.
Nevertheless, by using Theorem 2, running times can be reduced by up to an
additional factor of three.

Concluding Remarks. The reduced model had improvements of up to three orders
of magnitude in running times. All but two instances were solved within the time
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limit, and all but five in less than a minute. We solved components with up to
952 labels and found 12 optimal solutions that were previously unknown.
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Abstract. A simple-triangle graph (also known as a PI graph) is the
intersection graph of a family of triangles defined by a point on a hor-
izontal line and an interval on another horizontal line. The recognition
problem for simple-triangle graphs was a longstanding open problem, and
recently a polynomial-time algorithm has been given (SIAM J. Discrete
Math. 29(3):1150–1185, 2015). Along with the approach of this paper,
we show a simpler recognition algorithm for simple-triangle graphs. To
do this, we provide a polynomial-time algorithm to solve the following
problem: Given a bipartite graph G and a set F of edges of G, find a
2-chain subgraph cover of G such that one of two chain subgraphs has
no edges in F .

Keywords: Chain cover · Graph sandwich problem · PI graphs ·
Simple-triangle graphs · Threshold dimension 2 graphs

1 Introduction

Let L1 and L2 be two horizontal lines in the plane with L1 above L2. A simple-
triangle graph is the intersection graph of a family of triangles spanned by a point
on L1 and an interval on L2. That is, a simple undirected graph is called a simple-
triangle graph if there is such a triangle for each vertex and two vertices are
adjacent if and only if the corresponding triangles have a nonempty intersection.
See Fig. 1(a) and (b) for example. Simple-triangle graphs are also known as PI
graphs [3,5], where PI stands for Point-Interval. Simple-triangle graphs were
introduced in [5] as a generalization of both interval graphs and permutation
graphs. Simple-triangle graphs are also known as a proper subclass of trapezoid
graphs [5,6], another generalization of interval graphs and permutation graphs.

Recently, the graph isomorphism problem for trapezoid graphs has shown to
be isomorphism-complete [23] (that is, polynomial-time equivalent to the prob-
lem for general graphs). Since the problem can be solved in linear time for
interval graphs [13] and for permutation graphs [4], it has become an interesting
question to give the structural characterization of graph classes lying strictly
between permutation graphs and trapezoid graphs or between interval graphs
and trapezoid graphs [25]. Although a lot of research has been done for interval
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 177–189, 2017.
DOI: 10.1007/978-3-319-53925-6 14
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a1 a2

b1 b2

c1

c2

c3

(a) A graph G.

L1

L2

a1a2 b1b2 c1c2c3

(b) A representation of G.

a1 a2

b1 b2

c1 c2 c3

(c) The order P.

Fig. 1. A simple-triangle graph G, an intersection representation of G, and the Hasse
diagram of the linear-interval order P obtained from G.

graphs, for permutation graphs, and for trapezoid graphs (see [22] for example),
there are few results for simple-triangle graphs [2,3,5]. It is only recently that a
polynomial-time recognition algorithm have been given [17,18].

The recognition algorithm first reduces the recognition problem to the linear-
interval cover problem. The algorithm then reduces the linear-interval cover
problem to gradually mixed formulas, a tractable subclass of 3-satisfiability
(3SAT). Finally, the algorithm solves the gradually mixed formulas by reduc-
ing it to 2-satisfiability (2SAT), which can be solved in linear time (see [1] for
example). The total running time of the algorithm is O(n2m̄), where n and m̄
are the number of vertices and non-edges of the given graph, respectively.

In this paper, we introduce the restricted 2-chain subgraph cover problem as
a generalization of the linear-interval cover problem. Then, we show that our
problem is directly reducible to 2SAT. This result does not improve the running
time, but it can simplify the previous algorithm for the recognition of simple-
triangle graphs.

1.1 Linear-Interval Cover

In this section, we briefly describe the linear-interval cover problem and the reduc-
tion to it from the recognition problem for simple-triangle graphs. See [18] for the
details. We first show that the recognition of simple-triangle graphs is reducible to
that of linear-interval orders in O(n2) time, where n is the number of vertices of the
given graph. A partial order is a pair P = (V,≺), where V is a finite set and ≺ is a
binary relation onV that is irreflexive and transitive. Partial orders are represented
by transitively oriented graphs, which are directed graphs such that if u → v and
v → w, then u → w for any three vertices u, v, w of the graphs.

There is a correspondence between partial orders and the intersection graphs
of geometric objects spanned between two horizontal lines L1 and L2 [9]. A partial
order P = (V,≺) is called a linear-interval order [2,3] if for each element v ∈ V ,
there is a triangle Tv spanned by a point onL1 and an interval onL2 such that u ≺ v
if and only if Tu lies completely to the left of Tv for any two elements u, v ∈ V . See
Fig. 1(b) and (c) for example.

For a graph G = (V,E), the graph G = (V,E) is called the complement of
G, where uv ∈ E if and only if uv /∈ E for any pair of vertices u, v ∈ V . We can
obtain a linear-interval order from a simple-triangle graph G by giving a transitive
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orientation to the complement G of G. The complement G might have some differ-
ent transitive orientations, but the following theorem states that any transitive ori-
entation ofG gives a linear-interval order ifG is a simple-triangle graph.Aproperty
of partial orders is said to be a comparability invariant if either all orders obtained
from the same graph have that property or none have that property.

Theorem 1 [3]. Being a linear-interval order is a comparability invariant.

Many algorithms have been proposed for transitive orientation, including a linear-
time one [16]. Since the complement of a graph can be obtained in O(n2) time, the
recognition of simple-triangle graphs is reducible to that of linear-interval orders
in O(n2) time.

We then show that the recognition of linear-interval orders is reducible to
the linear-interval cover problem in O(n2) time, where n is the number of ele-
ments of the given partial orders. Let P = (V,≺) be a partial order with V =
{v1, v2, . . . , vn}, and let V ′ = {v′

1, v
′
2, . . . , v

′
n}. The domination bipartite graph

C(P ) = (V, V ′, E) of P is defined such that viv
′
j ∈ E if and only if vi ≺ vj in

P [14]. We also define that E0 = {viv
′
i | vi ∈ V }. The bipartite complement of

C(P ) is the bipartite graph ̂C(P ) = (V, V ′, Ê), where Ê is the set of non-edges
between the vertices of V and V ′, that is, viv

′
j ∈ Ê if and only if viv

′
j /∈ E for any

vertices vi ∈ V and v′
j ∈ V ′. By definition, we have E0 ⊆ Ê.

Let 2K2 denote a graph consisting of four vertices u1, u2, v1, v2 with two edges
u1v1, u2v2. A bipartite graph G = (U, V,E) is called a chain graph [26] if it has no
2K2 as an induced subgraph. Equivalently, a bipartite graph G is a chain graph if
and only if there is a linear ordering u1, u2, . . . , un on U (or V ) such that NG(u1) ⊆
NG(u2) ⊆ . . . ⊆ NG(un), where NG(u) is the set of vertices adjacent to u in G.
A chain subgraph of G is a subgraph of G that has no induced 2K2. A bipartite
graph G = (U, V,E) is said to be covered by two chain subgraphs G1 = (U, V,E1)
and G2 = (U, V,E2) if E = E1 ∪ E2 (we note that in general, E1 and E2 are not
disjoint), and the pair of chain subgraphs (G1, G2) is called a 2-chain subgraph cover
of G. For a partial order P , a 2-chain subgraph cover (G1, G2) of ̂C(P ) is called a
linear-interval cover if G1 has no edges in E0.

Theorem 2 [18]. A partial order P is linear-interval order if and only if ̂C(P ) has
a linear-interval cover.

The linear-interval cover problem asks whether ̂C(P ) has a linear-interval cover.
Since C(P ) and ̂C(P ) can be obtained in O(n2) time from a partial order P , the
recognition of linear-interval orders is reducible to the linear-interval cover problem
in O(n2) time.

1.2 Restricted 2-Chain Subgraph Cover

As a generalization of the linear-interval cover problem, we consider the following
restricted problem for 2-chain subgraph cover.
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Restricted 2-Chain Subgraph Cover

Instance: A bipartite graph G = (U, V,E) and a set F of edges of G.
Question: Find a 2-chain subgraph cover (G1, G2) of G

such that G1 has no edges in F .

u1

u2

u1

u2

u1

u2

u1

u2

u1

u2

(A1) (A2) (B1) (B2) (C)

Fig. 2. Forbidden configurations. Solid lines and gray solid lines denote edges in Er and
Eb, respectively. Dashed lines denote non-edges in Ê, and double lines denote edges in F .

Notice that G2 has all the edges in F . Let Ê be the set of edges of the bipartite
complement Ĝ of G. Let m = |E|, m̂ = |Ê|, and f = |F |. The following is our main
result.

Theorem 3. The restricted 2-chain subgraph cover problem can be solved in
O(mm̂ + min{m2, m̂(m̂ + f)}) time.

In the rest of this section, we describe the outline of our algorithm. The details
are shown in Sect. 2. Two edges e and e′ of a bipartite graph G = (U, V,E) is said
to be in conflict in G if the vertices of e and e′ induce a 2K2 in G. An edge e ∈ E is
said to be committed if there is another edge e′ ∈ E such that e and e′ are in conflict
in G, and said to be uncommitted otherwise. Let Ec be the set of committed edges
of G, and let Eu be the set of uncommitted edges of G.

Suppose G has a 2-chain subgraph cover (G1, G2) such that G1 has no edges in
F . If two edges e, e′ ∈ E are in conflict in G, then e and e′ may not belong to the
same chain subgraph. Therefore, each committed edge in Ec belongs to either G1 or
G2. We refer to the committed edges of G1 as red edges and the committed edges of
G2 as blue edges. Let Er and Eb be the set of red edges and blue edges, respectively,
and we call (Er, Eb) the bipartition of Ec. Notice that F ⊆ Eb ∪Eu since Er has no
edges in F . Hence, we assume without explicitly stating it in the rest of this paper
that all the committed edges in F are in Eb. We can also see that the bipartition
(Er, Eb) does not have the following forbidden configurations (see Fig. 2).

– Configuration (A1) [resp., (A2)] consists of four vertices u1, u2 ∈ U and
v1, v2 ∈ V with edges u1v1, u2v2 ∈ Er [resp., u1v1, u2v2 ∈ Eb] and non-edges
u1v2, u2v1 ∈ Ê, that is, u1v1 and u2v2 are in conflict in G;

– Configuration (B1) [resp., (B2)] consists of four vertices u1, u2 ∈ U and v1, v2 ∈
V with edges u1v1, u2v2 ∈ Er [resp., u1v1, u2v2 ∈ Eb], a non-edge u1v2 ∈ Ê, and
an edge u2v1 ∈ Eb [resp., u2v1 ∈ Er];

– Configuration (C) consists of four vertices u1, u2 ∈ U and v1, v2 ∈ V with edges
u1v1, u2v2 ∈ Er, a non-edge u1v2 ∈ Ê, and an edge u2v1 ∈ F .

Our algorithm construct a bipartition (Er, Eb) of Ec that does not have some
forbidden configurations. A bipartition of Ec is called (A,C)-free if it has neither
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configuration (A1), (A2), nor (C). A bipartition of Ec is called (A,B,C)-free if it
has neither configuration (A1), (A2), (B1), (B2), nor (C).

Theorem 4. A bipartite graph G has a 2-chain subgraph cover (G1, G2) such that
G1 has no edges in F if and only if Ec has an (A,C)-free bipartition.

The outline of our algorithm is as follows.

Step 1: Partition the set Ec of committed edges into an (A,C)-free bipartition
(Er, Eb) by solving 2SAT.

Step 2: Fromthe (A,C)-freebipartition (Er, Eb) ofEc, compute an (A,B,C)-free
bipartition (E′

r, E
′
b) of Ec by swapping some edges between Er and Eb.

Step 3: From the (A,B,C)-free bipartition (E′
r, E

′
b) of Ec, compute a desired

2-chain subgraph cover of G by adding some uncommitted edges into E′
r and E′

b.

We will show in Sects. 2.1, 2.2, and 2.3 thatStep1,Step2, andStep3 can be done
in O(min{m2, m̂(m̂ + f)}) time, O(mm̂) time, and linear time, respectively.

1.3 RelatedWork

A bipartite graph G = (U, V,E) is said to be covered by k subgraphs Gi =
(U, V,Ei), 1 ≤ i ≤ k, if E = E1 ∪ E2 ∪ · · · ∪ Ek. A k-chain subgraph cover prob-
lem asks whether a given bipartite graph can be covered by k chain subgraphs. The
k-chain subgraph cover problem is NP-complete if k ≥ 3, while it is polynomial-
time solvable if k ≤ 2 [26].

The 2-chain subgraph cover problem is closely related to some recognition prob-
lems; more precisely, they can be efficiently reduced to the 2-chain subgraph cover
problem. They are the recognition problems for threshold dimension 2 graphs
on split graphs [11,19], circular-arc graphs with clique cover number 2 [10,21],
2-directional orthogonal ray graphs [20,24], and trapezoid graphs [14]. Other
related problems and surveys can be found in Chap. 8 of [15] and Sect. 13.5 of [22].

As far as we know, there are two approaches for the 2-chain subgraph cover
problem and the other related problems. One approach is shown in [14,21], which
reduces the 2-chain subgraph cover problem to the recognition of 2-dimensional
partial orders. This approach is used in the fastest known algorithm [14] with
a running time of O(n2), where n is the number of vertices of the given graph.
Another approach can be found in [10,11,19]. They show that a bipartite graph
G = (U, V,E) has a 2-chain subgraph cover if and only if the conflict graph G∗ =
(V ∗, E∗) of G is bipartite, where V ∗ = E and two edges e and e′ in E are adjacent
in G∗ if e and e′ are in conflict in G. We note that the algorithm in this paper is
based on the latter approach.

In Sect. 8.6 of [15], the following problem is considered for recognizing threshold
dimension 2 graphs: Given a bipartite graph G and a pair (F1, F2) of edge sets, find
a 2-chain subgraph cover (G1, G2) of G such that G1 and G2 have every edge in
F1 and F2, respectively. We call such a problem the extension problem for 2-chain
subgraph cover.We emphasize that the extension problem is not a generalization of
our restricted 2-chain subgraph cover problem since in the extension problem, G1
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and G2 are allowed to have all the uncommitted edges of G. As shown in [15], this
problem can be solved in polynomial time by reducing it to some variation of the
recognition problem for 2-dimensional partial orders. We note that this variation
can be stated as the problem of extending a partial orientation of a permutation
graph to a 2-dimensional partial order [12].

2 Algorithm

2.1 Partitioning Edges

A 2CNF formula is a Boolean formula in conjunctive normal form with at most two
literals per clause. In this section, we construct a 2CNF formula φ such that φ is
satisfiable if and only if G has an (A,C)-free bipartition of Ec. The construction of
φ is as follows:

– Assign the Boolean variable xe to each committed edge e ∈ Ec;
– Add the clause (xe) for each edge e ∈ F ∩ Ec;
– For each pair of two edges e and e′ in Ec, add the clauses (xe ∨xe′) and (xe ∨xe′)

to φ if e and e′ are in conflict in G;
– For each pair of two edges e and e′ in Ec, add the clause (xe ∨ xe′) to φ if the

vertices of e and e′ induce a path of length 3 whose middle edge is in F (see the
forbidden configuration (C) in Fig. 2).

Then, we obtain the bipartition (Er, Eb) of Ec from a truth assignment τ of the
variables as follows:

– xe = 0 in τ ⇐⇒ e ∈ Er (or xe = 1 in τ ⇐⇒ e ∈ Eb).

It is obvious that a truth assignment τ satisfies φ if and only if the corresponding
bipartition of Ec is (A,C)-free and all the committed edges in F are in Eb.

The 2CNF formula φ has at most m Boolean variables. We can also see that φ
has at most f + 2 · min{m2, m̂(m̂ + f)} clauses since φ has at most two clauses
for each pair of two edges in Ec or for each pair of a non-edge in Ê and an edge in
F . Then, φ can be obtained in O(min{m2, m̂(m̂ + f)}) time from G and F . Since
a satisfying truth assignment of a 2CNF formula can be computed in linear time
(see [1] for example), we have the following.

Lemma 1. An (A,C)-free bipartition of Ec can be computed in O(min{m2, m̂
(m̂ + f)}) time.

2.2 Swapping Edges

In this section, we show an O(mm̂)-time algorithm to transform a given (A,C)-free
bipartition (Er, Eb) of Ec into an (A,B,C)-free bipartition (E′

r, E
′
b) of Ec. For a

non-edge uv ∈ Ê, we define that

Hr = {u′v′ ∈ Er | uv′, u′v ∈ Eb};

Hb = {u′v′ ∈ Eb | uv′, u′v ∈ Er};

H = Hr ∪ Hb.
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Fig. 3. Illustrating the proof of cases in Lemmas 2 and 4. Lines denote the same type of
edges as in Fig. 2.

In other words, Hr is the set of red edges of all configurations (B2) having non-edge
uv, and Hb is the set of blue edges of all configurations (B1) having non-edge uv.
Between Er and Eb, we swap all edges in H to obtain another bipartition (E′

r, E
′
b)

of Ec, that is, we define that

E′
r = (Er \ Hr) ∪ Hb;

E′
b = (Eb \ Hb) ∪ Hr.

Since (Er, Eb) is (A,C)-free, we have F ∩H = ∅. Hence, all the committed edges in
F remain blue in the new bipartition (E′

r, E
′
b). Notice that by swapping the edges,

we remove all the configurations (B1) and (B2) having non-edge uv ∈ Ê. We claim
that the swapping generates no forbidden configurations.

Lemma 2. No edges in H is an edge of any forbidden configurations of the new
bipartition (E′

r, E
′
b) of Ec.

Proof. We assume that the new bipartition (E′
r, E

′
b) has some configuration with

at least one edge in H, and obtain a contradiction.

Case 1: Suppose (E′
r, E

′
b) has a configuration (A1), that is, there are four vertices

u1, v1, u2, v2 with u1v1, u2v2 ∈ E′
r and u1v2, u2v1 ∈ Ê.

Case 1-1: Suppose u1v1 ∈ H and u2v2 /∈ H. This implies that u1v1 ∈ Eb and
u2v2, uv1, u1v ∈ Er. See Fig. 3(a). We have uv2 ∈ E, for otherwise uv1 ∈ Er and
u2v2 ∈ Er would be in conflict in G. Since uv2 and u1v ∈ Er are in conflict in G, we
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have uv2 ∈ Eb. Similarly, we have u2v ∈ E, for otherwise u1v ∈ Er and u2v2 ∈ Er

would be in conflict in G. Since u2v and uv1 ∈ Er are in conflict in G, we have
u2v ∈ Eb. However, we have from uv2, u2v ∈ Eb that u2v2 ∈ Hr, a contradiction.

Case 1-2: Suppose u2v2 ∈ H and u1v1 /∈ H. This case is symmetric to Case 1-1.

Case 1-3: Suppose u1v1, u2v2 ∈ H. This implies that u1v1, u2v2 ∈ Eb and
uv1, u1v, uv2, u2v ∈ Er, but u1v ∈ Er and uv2 ∈ Er are in conflict in G, a contra-
diction.

Case 2: Suppose (E′
r, E

′
b) has a configuration (A2). This case is symmetric to

Case 1.

Case 3: Suppose (E′
r, E

′
b) has a configuration (B1), that is, there are four vertices

u1, v1, u2, v2 with u1v1, u2v2 ∈ E′
r, u2v1 ∈ E′

b, and u1v2 ∈ Ê.

Case 3-1: Suppose u1v1 ∈ H and u2v2, u2v1 /∈ H. This implies that u1v1, u2v1 ∈
Eb andu2v2, uv1, u1v ∈ Er. SeeFig. 3(b).Wehaveu2v ∈ E, for otherwiseu1v ∈ Er

and u2v2 ∈ Er would be in conflict in G. If u2v ∈ Er, then we have from uv1 ∈ Er

that u2v1 ∈ Hb, a contradiction. Therefore, u2v ∈ Eb ∪ Eu. Since u2v1 ∈ Eb,
there is an edge u′

2v
′
1 ∈ Er such that u2v1 and u′

2v
′
1 are in conflict in G, that is,

u2v
′
1, u

′
2v1 ∈ Ê. We have uv′

1 ∈ E, for otherwise uv1 ∈ Er and u′
2v

′
1 ∈ Er would be

in conflict in G. Since uv′
1 and u2v ∈ Eb ∪Eu are in conflict in G, we have uv′

1 ∈ Er

and u2v ∈ Eb. Then, we have uv2 ∈ E, for otherwise uv′
1 ∈ Er and u2v2 ∈ Er

would be in conflict in G. Since uv2 and u1v ∈ Er are in conflict in G, we have
uv2 ∈ Eb. However, we have from uv2, u2v ∈ Eb that u2v2 ∈ Hr, a contradiction.

Case 3-2: Suppose u2v2 ∈ H and u1v1, u2v1 /∈ H. This case is symmetric to
Case 3-1.

Case 3-3: Suppose u2v1 ∈ H and u1v1, u2v2 /∈ H. This implies that
u1v1, u2v2, u2v1 ∈ Er and uv1, u2v ∈ Eb. See Fig. 3(c). Since u2v1 ∈ Er, there is an
edge u′

2v
′
1 ∈ Eb such that u2v1 and u′

2v
′
1 are in conflict in G, that is, u2v

′
1, u

′
2v1 ∈ Ê.

We have uv′
1 ∈ E, for otherwise uv1 ∈ Eb and u′

2v
′
1 ∈ Eb would be in conflict in

G. Since uv′
1 and u2v ∈ Eb are in conflict in G, we have uv′

1 ∈ Er. Then, we have
uv2 ∈ E, for otherwise uv′

1 ∈ Er and u2v2 ∈ Er would be in conflict in G. If
uv2 ∈ Eb, then we have from u2v ∈ Eb that u2v2 ∈ Hr, a contradiction. Therefore,
uv2 ∈ Er ∪ Eu. Similarly, we have u′

2v ∈ E, for otherwise u2v ∈ Eb and u′
2v

′
1 ∈ Eb

would be in conflict in G. Since u′
2v and uv1 ∈ Eb are in conflict in G, we have

u′
2v ∈ Er. Then, we have u1v ∈ E, for otherwise u1v1 ∈ Er and u′

2v ∈ Er would be
in conflict in G. Since u1v and uv2 ∈ Er ∪Eu are in conflict in G, we have u1v ∈ Eb

and uv2 ∈ Er. However, we have from uv1 ∈ Eb that u1v1 ∈ Hr, a contradiction.

Case 3-4: Suppose u1v1, u2v2 ∈ H and u2v1 /∈ H. We have a contradiction as
Case 1-3.

Case 3-5: Suppose u1v1, u2v1 ∈ H and u2v2 /∈ H. This implies that u1v1 ∈ Hb

and u2v1 ∈ Hr, but it follows that uv1 ∈ Er from u1v1 ∈ Hb and uv1 ∈ Eb from
u2v1 ∈ Hr, a contradiction.
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Case 3-6: Suppose u2v2, u2v1 ∈ H and u1v1 /∈ H. This case is symmetric to
Case 3-5.

Case 3-7: Suppose u1v1, u2v2, u2v1 ∈ H. We have a contradiction as Case 3-5.

Case 4: Suppose (E′
r, E

′
b) has a configuration (B2). This case is symmetric to

Case 3.

Case 5: Suppose (E′
r, E

′
b) has a configuration (C), that is, there are four vertices

u1, v1, u2, v2 with u1v1, u2v2 ∈ E′
r, u1v2 ∈ Ê, and u2v1 ∈ F . Since the bipartition

(Er, Eb) is (A,C)-free, we have u2v1 /∈ H.

Case 5-1: Suppose u1v1 ∈ H and u2v2 /∈ H. This implies that u1v1 ∈ Eb and
u2v2, uv1, u1v ∈ Er. See Fig. 3(d). We have uv2 ∈ E, for otherwise the vertices
u, v1, u2, v2 would induce a configuration (C). Sinceuv2 andu1v ∈ Er are in conflict
in G, we have uv2 ∈ Eb. Similarly, we have u2v ∈ E, for otherwise u1v ∈ Er and
u2v2 ∈ Er would be in conflict in G. If u2v ∈ Er, then the vertices u, v1, u2, v would
induce a configuration (C). Therefore, u2v ∈ Eb ∪Eu. Since u2v2 ∈ Er, there is an
edge u′

2v
′
2 ∈ Eb such that u2v2 and u′

2v
′
2 are in conflict in G, that is, u2v

′
2, u

′
2v2 ∈ Ê.

We have uv′
2 ∈ E, for otherwise u′

2v
′
2 ∈ Eb and uv2 ∈ Eb would be in conflict in G.

Since uv′
2 and u2v ∈ Eb ∪ Eu are in conflict in G, we have uv′

2 ∈ Er and u2v ∈ Eb.
However, we have from uv2, u2v ∈ Eb that u2v2 ∈ Hr, a contradiction.

Case 5-2: Suppose u2v2 ∈ H and u1v1 /∈ H. This case is symmetric to Case 5-1.

Case 5-3: Suppose u1v1, u2v2 ∈ H. We have a contradiction as Case 1-3.
Since all the cases above lead to contradictions, we conclude that the new bipar-

tition (E′
r, E

′
b) has no forbidden configurations with an edge in H. ��

It follows from Lemma 2 that continuing in this way for each non-edge in Ê, we
can obtain an (A,B,C)-free bipartition of Ec. Since the set H can be computed in
O(m) time for each non-edge in Ê, the overall running time is O(mm̂).

Lemma 3. Fromagiven (A,C)-free bipartition ofEc, an (A,B,C)-free bipartition
of Ec can be computed in O(mm̂) time.

2.3 Adding Edges

In this section, we claim that a given (A,B,C)-free bipartition (Er, Eb) of Ec can
be extended in linear time into a 2-chain subgraph cover (G1, G2) of G such that
G1 has no edges in F . We first show the following.

Lemma 4. The subgraph of G induced by Eb ∪ Eu is a chain graph.

Proof. We show that no 2K2 is in the subgraphs of G induced by Eb ∪ Eu.

Case 1: Suppose u1v1, u2v2 ∈ Eb ∪ Eu and u1v2, u2v1 ∈ Ê. It is obvious that
u1v1, u2v2 /∈ Eu, but u1v1, u2v2 ∈ Eb implies that the vertices u1, v1, u2, v2 induce
a configuration (A2), a contradiction.

Case 2: Suppose u1v1, u2v2 ∈ Eb ∪Eu, u1v2 ∈ Ê, and u2v1 ∈ E \ (Eb ∪Eu). Since
u2v1 ∈ E \ (Eb ∪ Eu) = Er, there is an edge u′

2v
′
1 ∈ Eb such that u2v1 and u′

2v
′
1
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are in conflict in G, that is, u′
2v1, u2v

′
1 ∈ Ê. See Fig. 3(e). We have u1v

′
1 ∈ E, for

otherwise the vertices u1, v1, u
′
2, v

′
1 would induce a configuration in Case 1. Since

u1v
′
1 and u2v2 ∈ Eb∪Eu are in conflict in G, we have u2v2 ∈ Eb. Similarly, we have

u′
2v2 ∈ E, for otherwise the vertices u2, v2, u

′
2, v

′
1 would induce a configuration in

Case 1. Since u′
2v2 and u1v1 ∈ Eb ∪ Eu are in conflict in G, we have u1v1 ∈ Eb, but

then the vertices u1, v1, u2, v2 induce a configuration (B2), a contradiction.

Case 3: Suppose u1v1, u2v2 ∈ Eb ∪ Eu and u1v2, u2v1 ∈ E \ (Eb ∪ Eu). Since
u2v1 ∈ E \ (Eb ∪ Eu) = Er, there is an edge u′

2v
′
1 ∈ Eb such that u2v1 and u′

2v
′
1

are in conflict in G, that is, u′
2v1, u2v

′
1 ∈ Ê. See Fig. 3(f). We have u1v

′
1 /∈ Ê ∪ Er,

for otherwise the vertices u1, v1, u
′
2, v

′
1 would induce a configuration in Case 1 or

Case 2. However, u1v
′
1 ∈ Eb ∪ Eu implies that the vertices u2, v2, u1, v

′
1 induce a

configuration in Case 2, a contradiction.
Since all the cases above lead to contradictions, we conclude that the subgraph

of G induced by Eb ∪ Eu has no 2K2, and it is a chain subgraph of G. ��
Wenext show thatEr canbe extended into a chain graph inG−F , the subgraph

of G obtained by removing all the edges in F . To do this, we consider the following
problem: Given a graph H and a set M of edges of H, find a chain subgraph C
of H containing all edges in M . This problem is called the chain graph sandwich
problem, and the chain graph C is called a chain completion of M in H. Although
the chain graph sandwich problem is NP-complete, it can be solved in linear time if
H is a bipartite graph [7]. The chain graph sandwich problem on bipartite graphs
is closely related to the threshold graph sandwich problem [8,19] (see also Sect. 1.5
of [15]), and in the proof of Lemma5, we will use an argument similar to that used
in the literature.

Let H = (U, V,E) be a bipartite graph, let Ê be the set of edges of the bipartite
complement Ĥ of H, and let k ≥ 2. A set of k distinct vertices u0, u1, . . . , uk−1 in
U and k distinct vertices v0, v1, . . . , vk−1 in V is called an alternating cycle of M
relative toH ifuivi ∈ Ê andui+1vi ∈ M for any i, 0 ≤ i < k (indices aremodulo k).
Note that an alternating cycle of M with lengh 4 relative to H is exactly a 2K2 of
M in H.

Lemma 5. Let M be a set of edges in a bipartite graph H.

– The set M of edges has a chain completion in H if and only if there are no alter-
nating cycles of M relative to H.

– The chain completion of M in H can be computed in O(n + m) time.

Proof. The proof is in Appendix. The details of the algorithm are also shown
in [7]. ��

Then, we show that Er has a chain completion in G − F .

Lemma 6. There are no alternating cycles of Er relative to G − F .

Proof. We first prove that there are no alternating cycles of Er with length 4 rela-
tive to G − F , that is, no two edges in Er are in conflict in G − F . Since the bipar-
tition (Er, Eb) does not have a configuration (A1) or (C), it is enough to show that
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(Er, Eb) has no configuration consisting of four vertices u1, v1, u2, v2 with edges
u1v1, u2v2 ∈ Er and u1v2, u2v1 ∈ F . Suppose (Er, Eb) has such a configuration.
Since u1v1 ∈ Er, there is an edge u′

1v
′
1 ∈ Eb such that u1v1 and u′

1v
′
1 are in con-

flict in G, that is, u1v
′
1, u

′
1v1 ∈ Ê. We have u2v

′
1 ∈ E, for otherwise u2v1 ∈ F and

u′
1v

′
1 ∈ Eb would be in conflict in G (recall that F ⊆ Eb ∪ Eu). If u2v

′
1 ∈ Er, then

the vertices u1, v1, u2, v
′
1 would induce a configuration (C), a contradiction. There-

fore, u2v
′
1 ∈ Eb ∪ Eu. Similarly, since u2v2 ∈ Er, there is an edge u′

2v
′
2 ∈ Eb such

that u2v2 and u′
2v

′
2 are in conflict in G, that is, u2v

′
2, u

′
2v2 ∈ Ê. We have u1v

′
2 ∈ E,

for otherwise u1v2 ∈ F and u′
2v

′
2 ∈ Eb would be in conflict in G. Since u1v

′
2 and

u2v
′
1 ∈ Eb ∪ Eu are in conflict in G, we have u1v

′
2 ∈ Er and u2v

′
1 ∈ Eb. However,

the vertices u2, v2, u1, v
′
2 induce a configuration (C), a contradiction. Thus, there

are no alternating cycles of Er with length 4 relative to G − F .
Wenowsuppose that there are analternating cycle ofEr with lengthgrater than

4 relative to G − F . Let AC be such an alternating cycle with minimal length, and
let u0, v0, u1, v1, . . . uk−1, vk−1 be the consecutive vertices of AC with uivi ∈ Ê ∪F
and ui+1vi ∈ Er for any i, 0 ≤ i < k (indices are modulo k).

We claim that AC has no edges in F . Suppose u1v1 ∈ F . We have u2v0 ∈ E, for
otherwise the vertices u2, v1, u1, v0 would induce a configuration (C). If u2v0 ∈ Er,
then the vertices u0, v0, u2, v2, . . . uk−1, vk−1 form a shorter alternating cycle of Er

relative to G−F , contradicting the minimality of AC. Therefore, u2v0 ∈ Eb ∪Eu.
Since u1v0 ∈ Er, there is an edge u′

1v
′
0 ∈ Eb such that u1v0 and u′

1v
′
0 are in conflict

in G, that is, u′
1v0, u1v

′
0 ∈ Ê. Similarly, since u2v1 ∈ Er, there is an edge u′

2v
′
1 ∈ Eb

such that u2v1 and u′
2v

′
1 are in conflict in G, that is, u′

2v1, u2v
′
1 ∈ Ê. The edges u′

1v
′
0

and u′
2v

′
1 are not the same edge, for otherwise u′

1v
′
0 ∈ Eb and u2v0 ∈ Eb∪Eu would

be in conflict inG. Then, the verticesu1, v1, u
′
2, v

′
1, u2, v0, u

′
1, v

′
0 forman alternating

cycle of Eb ∪ Eu relative to G (recall that F ⊆ Eb ∪ Eu). It follows from Lemma 5
that Eb ∪Eu does not induce a chain graph, contradicting Lemma4. Thus, AC has
no edges in F .

Recall that the length of AC is at least 6, and let u0, v0, u1, v1, u2, v2 denote the
consecutive vertices of AC. Since AC has no edges in F , we have u0v0, u1v1, u2v2 ∈
Ê and u1v0, u2v1 ∈ Er. We have u2v0 ∈ E, for otherwise u1v0 ∈ Er and u2v1 ∈ Er

wouldbe in conflict inG. Ifu2v0 ∈ Er, then the verticesu0, v0, u2, v2, . . . uk−1, vk−1

form a shorter alternating cycle of Er relative to G−F , contradicting the minimal-
ity of AC. Therefore, u2v0 ∈ Eb ∪ Eu. On the other hand, if u0v1 ∈ Ê, then the
vertices u0, v1, u2, v2, . . . uk−1, vk−1 form a shorter alternating cycle of Er relative
to G − F , contradicting the minimality of AC. Therefore, u0v1 ∈ E. Since u0v1
and u1v0 ∈ Er are in conflict in G, we have u0v1 ∈ Eb. By similar arguments, we
have u1v2 ∈ Eb. Then, we have u0v2 ∈ E, for otherwise u0v1 ∈ Eb and u1v2 ∈ Eb

would be in conflict in G. Since u0v2 and u2v0 ∈ Eb ∪ Eu are in conflict in G, we
have u0v2 ∈ Er and u2v0 ∈ Eb. This implies that the vertices u1, v0, u2, v1 induce
a configurations (B1), a contradiction.

Thus, we conclude that there are no alternating cycles of Er relative
to G − F . ��

Now, we have the following from Lemmas 5 and 6.
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Lemma 7. There is a chain completion of Er in G − F , and it can be computed in
linear time from Er.

Since every edge of G belongs to either Er or Eb ∪ Eu, G can be covered by the
chain completion of Er in G − F and the chain subgraph of G induced by Eb ∪ Eu.
Thus, we have the following from Lemmas 4 and 7.

Lemma 8. From a given (A,B,C)-free bipartition ofEc, a 2-chain subgraph cover
(G1, G2) of G such that G1 has no edges in F can be computed in linear time.

3 ConcludingRemarks

This paper provides an O(mm̂+min{m2, m̂(m̂+ f)})-time algorithm to solve the
restricted 2-chain subgraph cover problem by reducing it to 2SAT. To do this, we
show that the problem has a feasible solution if and only if there is an (A,C)-free
bipartition of the set of committed edges of the given bipartite graph. This result
implies a simpler recognition algorithm for simple-triangle graphs.

We finally note that for simple-triangle graphs, structure characterizations
as well as the complexity of the graph isomorphism problem still remain open
questions.

Acknowledgments. We are grateful to anonymous referees for careful reading and
helpful comments. A part of this work was done while the author was in Tokyo Institute
of Technology and supported by JSPS Grant-in-Aid for JSPS Fellows (26·8924).
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Abstract. In this paper, we consider algorithms for multi-objective
shortest-path (MOSP) optimization in spatial decision making. We re-
evaluate the basic strategies for label-correcting algorithms for the MOSP
problem, i.e., node and label selection. In contrast to common believe,
we show that—when carefully implemented—the node-selection strat-
egy usually beats the label-selection strategy. Moreover, we present a
new pruning method which is easy to implement and performs very well
on real-world road networks. In this study, we test our hypotheses on
artificial MOSP instances from the literature with up to 15 objectives
and real-world road networks with up to almost 160,000 nodes. We also
evaluate these algorithms on the problem of finding good power grid lines.

1 Introduction

In this paper we are concerned with one of the most famous problems from
multiobjective optimization, the multiobjective shortest path (MOSP) problem.
We are given a directed graph G, consisting of a finite set of nodes V and a set of
directed arcs A ⊆ V ×V . We are interested in paths between a given source node
s and a given target node t. Instead of a single-objective cost function, we are
given an objective function c which maps each arc to a vector, i.e., c : A → Q

d

for d ∈ N. The set of all directed paths from s to t in a given graph is called
Ps,t and we assume that the objective function c is extended on these paths in
the canonical way, i.e., for p ∈ Ps,t : c(p) :=

∑
a∈p c(a), where a ∈ p denotes the

arcs in the path p.
In contrast to the single-objective case, where there exists only one unique

optimal value, in the multiobjective case there usually does not exist a path min-
imizing all objectives at once. Thus, we are concerned with finding the Pareto-
front of all s-t-paths, i.e., the minimal vectors of the set c(Ps,t) with respect to
the canonical componentwise partial order on vectors ≤. Moreover, we also want
to find for each point y of the Pareto-front one representative path p ∈ Ps,t,
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such that c(p) = y. Each such path is called Pareto-optimal. For more informa-
tion on multiobjective path and tree problems we refer the reader to the latest
survey [6].

It is long known that the Pareto-front of a MOSP instance can be of expo-
nential size in the input [11]. Moreover, it has been recently shown in [3], that
there does not exist an output-sensitive algorithm for this problem even in the
case of d = 2 unless P = NP.

This study is motivated by the problem of finding good power grid lines. In
Germany, in the process of the “Energiewende”, or turnaround in energy policy,
there are many energy producers in the north and many consumers in the south
and west, while old producers in the south will be shut down in the next approx-
imately 5 to 10 years. Thus, it is crucial to improve the power grid connectivity
between these parts. Albeit, many power grid line projects get delayed by objec-
tions by the population and environmental organizations. In the research project
“Bewertung und Planung von Stromnetzen” (assessment and planning of power
grids) of the TU Dortmund (the spatial planning, mathematics and computer
science departments), the power grid provider Amprion1, and sponsored by the
German Ministry for Economics and Energy (BMWi), we evaluate means to
find good power grid line alternatives. This lead us to model the problem as a
multiobjective optimization problem. The problem of finding among the Pareto-
optimal solutions one solution to implement is not covered in this paper, but
traditional methods like ELECTRE (cf. e.g. [9]) can be used on the solution set
computed by our algorithms. See also [1] for more details on this application.

1.1 Previous Work

The techniques used for solving the MOSP problem are based on labeling algo-
rithms. The majority of the literature is concerned with the biobjective case
and we will not be concerned with algorithms for this special case. The latest
computational study for more than 2 objectives is from 2009 [13] and com-
pares 27 variants of labeling algorithms on 9,050 artificial instances. These are
the instances we also use for our study. In summary, a label-correcting version
with a label-selection strategy in a FIFO manner is concluded to be the fastest
strategy on the instance classes provided. The authors do not investigate a node-
selection strategy with the argument that it is harder to implement and is less
efficient (cf. also [14]).

In an older study from 2001 [10], also label-selection and node-selection
strategies are compared. The authors conclude that, in general, label-selection
methods are faster than node-selection methods. However, the test set is rather
small, consisting of only 8 artificial grid-graph instances ranging from 100 to 500
nodes and 2 to 4 objectives and 18 artificial random-graph instances ranging
from 500 to 40,000 nodes and densities of 1.5 to 30 with 2 to 4 objectives.

In the work by Delling and Wagner [7], the authors solve a variant of the
multiobjective shortest path problem where a preprocessing is allowed and we

1 http://www.amprion.de/.

http://www.amprion.de/
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want to query the Pareto-front of paths between a pair of nodes as fast as
possible. The authors use a variant of SHARC to solve this problem. Though
being a different problem, this study is the first computational study where
an implementation is tested on real-world road networks instead of artificial
instances. The instances have sizes of 30,661, 71,619 and 892,392 nodes and 2
to 4 objectives. Though, the largest instance could only be solved using highly
correlated objective functions resulting in Pareto-front sizes of only at most 2.5
points on average.

1.2 Our Contribution

We investigate the efficiency of label-correcting methods for the multiobjective
shortest path problem. We focus on label-correcting methods, because the liter-
ature (cf. [13,15]) and our experience show that label-setting algorithms do not
perform well on instances with more than two objectives. Hence, we investigate
the question if label-selection or node-selection methods are more promising and
test codes based on the recent literature.

We also perform the first computational study of these algorithms not only
on artificial instances but also on real-world road networks based on the road net-
work of Western Europe provided by the PTV AG for scientific use and instances
emerging from the power grid optimization context. The road network sizes vary
from 23,094 to 159,945 nodes and include three objective functions. The artificial
instances are taken from the latest study on the MOSP problem [13].

Moreover, we propose a new pruning technique which performs very well on
the road networks, achieving large speed-ups. We also show the limits of this
technique and reason under which circumstances it works well.

1.3 Organization

In Sect. 2, we describe the basic techniques of labeling algorithms in multiobjec-
tive optimization. The tree-deletion pruning is the concern of Sect. 3. Because
the implementation of the algorithms is crucial for this computational study,
we give details in Sect. 4. The computational study and results then follow in
Sect. 5.

2 Multiobjective Labeling Algorithms

In general, a labeling algorithm for enumerating the Pareto-front of paths in a
graph maintains a set of labels Lu at each node u ∈ V . A label is a tuple which
represents a path from s to a node u ∈ V and it consists of the cost vector of
the path, the associated node u and, for retrieving the actual path, a reference
to the predecessor label. The algorithms are initialized by setting each label-set
to ∅ and adding the label (0, s,nil) to Ls.

These algorithms can be divided into two groups, depending if they select
either a label or a node in each iteration. These strategies are called label or
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node selection strategies, respectively. When we select a label � = (v, u, �̂) at a
node u, this label is pushed along all out-arcs a = (u,w) of u, meaning that a
new label is created at the head of the arc with cost v + c(a), predecessor label
� and associated node w. This strategy is due to [16] for d > 2. If we follow a
node-selection strategy, all labels in Lu will be pushed along the out-arcs of a
selected node u. This strategy was first proposed in [4] for the biobjective case
and has been generalized by many authors in subsequent works. Nodes or labels
that are ready to be selected are called open.

After pushing a set of labels, the label sets at the head of each considered
arc are cleaned, i.e. all dominated labels are removed from the modified label
sets. We say a label � = (v, u, �̂) dominates a label �′ = (v′, u′, �̂′, ) if v ≤ v′ and
v �= v′.

There are many ways in which an open label or node can be selected.
A comparative study was conducted by Paixao and Santos [14]. For example, a
pure FIFO strategy seems to work best in the aforementioned study. But also
other strategies are possible: For example, we can sort the labels by their average
cost, i.e.,

∑
i∈{1,...,d} vi/d and always select the smallest one. A less expensive

variant is due to [2,13], where we decide depending on the top label � = (v, u, �̂)
in a FIFO queue Q where to place a new label �′ = (v′, u′, �̂′): If v′ is lexico-
graphically smaller than v, then it is placed at the front of Q, otherwise it is
placed at the back of Q.

Both available computational studies on labeling algorithms for the mul-
tiobjective shortest path problem with more than 2 criteria suggest that label-
selection strategies are far superior compared to node-selection strategies [10,13].

2.1 Label-Setting vs. Label-Correcting Algorithms

In the paper by Martins [12], the author describes an algorithm using a label-
selection strategy. The algorithm selects the next label by choosing the lexico-
graphically smallest label among all labels in L :=

⋃
u∈V Lu. In general, when-

ever we select a lexicographically smallest label � = (v, u, �̂) in L, this label
represents a nondominated path from s to u. Labeling algorithms having the
property that whenever we select a label we know that the represented path is
a Pareto-optimal path, are called label-setting algorithms. Labeling algorithms
which do not have this property, and thus sometimes delete or correct a label, are
called label-correcting algorithms. On the plus side, in label-setting algorithms,
we never select a label which will be deleted in the process of the algorithm.
But selecting these labels is not trivial. For example, selecting a lexicographi-
cally smallest label requires a priority queue data structure, whereas the simplest
label-selection strategy requires only a simple FIFO queue.

There is a recent paper by Erb et al. [8], which suggests that in the biobjective
case, a label-setting approach can outperform the label-correcting method they
considered. But in many studies for 3 and more objectives, the label-correcting
algorithms are superior to the label-setting variants. See for example [10,13,15].
It is not clear why this is the case. One possible reason for this is that the
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cost of the data structure can not make up for the advantage of not pushing
too many unneeded labels. Concluding these considerations, we do not evaluate
label-setting algorithms in our study.

3 Tree-Deletion Pruning

The main difficulty which is faced by label-correcting algorithms is that we can
push labels which will later be dominated by a new label. To address this issue,
let us take a label-selection algorithm into consideration which selects the next
label in a FIFO manner. In Fig. 1, we see the situation where a label � at node
v, which encodes a path a from s to v, is dominated by a label �′, which encodes
a different path b from s to v. Based on the label �, we might already have
built a tree of descendant labels c. If we proceed with the usual label-correcting
algorithm, first the descendant labels of � will be pushed and later be dominated
by the descendants of �′. To avoid the unnecessary pushes of descendants of �, we
can delete the whole tree c after the label � is deleted. Instead of traversing the
queue of open labels to delete the tree labels, we mark labels as being deleted
and actually delete them when they are popped from the queue. This pruning
method will be called tree-deletion pruning (TD). We can employ this method
in label-correcting algorithms using both, the label-selection and node-selection
strategies.

a

b

c

v

s

Fig. 1. Illustration of the tree-deletion pruning

Table 1. Overview on the artificial test instances

Name n d Name n d

CompleteN-medium 10–200 3 CompleteN-large 10–140 6

CompleteK-medium 50 2–15 CompleteK-large 100 2–9

GridN-medium 441–1225 3 GridN-large 25–289 6

GridK-medium 81 2–15 GridK-large 100 2–9

RandomN-medium 500–10000 3 RandomN-large 1000–20000 6

RandomK-medium 2500 2–15 RandomK-large 5000 2–9

This strategy is similar to the parent-checking heuristic for the single-
objective shortest path problem in the work by Cherkassky et al. [5]. But it
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is not so clear how the more lightweight methods can be implemented in the
multiobjective setting.

4 Implementation Details

We implemented both label-correcting algorithms, a version of the FIFO label-
selection (LS) and FIFO node-selection (NS) algorithms in C++11. The reason
for choosing these variants is that the LS-algorithm is the fastest method in the
latest comparative study [13]. Both alternatives are also implemented using tree-
deletion pruning (LS-TD and NS-TD, respectively). Pseudocode can be found
in Algorithms 1 and 2.

Algorithm 1. Abstract version of the LS algorithm
Require: Graph G = (V, A), nodes s, t ∈ V and objective function c : A → Q

d

Ensure: List R of pairs (p, y) for all y ∈ c(Ps,t) and some p ∈ Ps,t such that c(p) = y
1: Lu ← ∅ for all u ∈ V \{s}
2: � ← (0, s,nil)
3: Ls ← {�}
4: Q.push(�)
5: while not Q.empty do
6: � = (v, u, �̂) ← Q.pop
7: for (u, w) ∈ A do
8: Push � along (u, w) and add the new label �′ to Lw

9: Clean Lw � Tree-deletion for every deleted label in Lw

10: if �′ is nondominated in Lw then
11: Q.push(�′)
12: Reconstruct paths for each label in Lt and output path/vector pairs

We use the OGDF2 for the representation of graphs, because it is a well tested
graph library. For cache efficiency, we try to use std::vector for collections of
data wherever possible.

Node Selection. In the node-selection variants we use our own implementation
of a ring buffer based on std::vector to implement the queue of open nodes.
Also, only those labels of a node are pushed, which have not been pushed before.

Label Selection. In the label-selection variant we use a std::deque to implement
the queue of open labels. A ring buffer cannot be used easily, because the size
of the queue can vary a lot, i.e., it can be as small as 1 or larger than 2n.

Tree-Deletion Pruning. The successors of each label are stored in an std::list.
The reason for this is that the successor-lists are constructed empty and most
of them remain empty for the whole process of the algorithm. Construction of
empty std::lists is the cheapest operation among the creation of all other
relevant data structures.
2 http://ogdf.net/.

http://ogdf.net/
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Algorithm 2. Abstract version of the NS algorithm
Require: Graph G = (V, A), nodes s, t ∈ V and objective function c : A → Q

d

Ensure: List R of pairs (p, y) for all y ∈ c(Ps,t) and some p ∈ Ps,t such that c(p) = y
1: Lu = ∅ for all u ∈ V \{s}
2: Ls = {(0, s,nil)}
3: Q.push(s)
4: while not Q.empty do
5: u ← Q.pop
6: for (u, w) ∈ A do
7: for not yet pushed label � in Lu do
8: Push � along (u, w) and add the new label to Lw

9: Clean Lw � Tree-deletion for every deleted label in Lw

10: if at least one new label survived the cleaning process and w /∈ Q then
11: Q.push(w)
12: Reconstruct paths for each label in Lt and output path/vector pairs

Cleaning Step. While there is a considerable literature on finding the subset
of minimal vectors in a set of vectors, it is not clear which method to use in
practice. In the node-selection algorithm, we could use the fact that we try
to find the nondominated vectors of two sets of nondominated vectors, which
has been successfully exploited for the biobjective problem in [4]. To make the
comparison between label-selection and node-selection strategies more focused
on the strategies themselves, we use a simple pairwaise comparison between all
pushed labels and all labels at the head of the arc. A more sophisticated method
would make the node-selection strategy only faster. Moreover, the studies on
multiobjective labeling algorithms also employ this method.

5 Computational Study

The experiments were performed on an Intel Core i7-3770, 3.4 GHz and 16 GB
of memory running Ubuntu Linux 12.04. We compiled the code using LLVM 3.4
with compiler flag -O3.

In the computational study, we are concerned with the following questions:
(1) Is label selection really faster than node selection? (2) In which circumstances
is tree-deletion pruning useful? We will answer these questions in the following
subsections.

5.1 Instances

We used three sets of instances. First, we took the instances of [13] and tested
our implementations on them. The aforementioned study is the latest study
which tested implementations of labelling algorithms for MOSP. The properties
of these instances can be seen in Table 1.

The random graph instances are based on a Hamiltonian cycle where arcs are
randomly added to the graph. In the complete graph instances, arcs are added
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between each pair of nodes in both directions. The grid graphs are all square.
The arc costs were choosen uniformly random in [1, 1000]∩N. For each problem
type, there are 50 randomly drawn instances. In summary they make up a set
of 9,050 test problems. The instances are available online, see [13] for details.

The second set of instances is similar to the instances from [7]. They are
based on the road network of Western Europe provided by PTV AG for scientific
use. We conducted our experiments on the road network of the Czech Republic
(CZE, 23,094 nodes, 53,412 edges), Luxembourg (LUX, 30,661 nodes, 71,619
edges), Ireland (IRL, 32,868 nodes, 71,655 edges) and Portugal (PRT, 159,945
nodes, 372,129 edges, only for the tree-deletion experiments). As metrics we
used similar metrics as in [7]: travel distance, cost based on fuel consumption
and travel time. The median Pareto-front sizes are 13.0, 30.5, 12.5 and 133.5,
respectively and thus comparable or larger than those in [7]. For each of the
instances we drew 50 pairs of source and target nodes uniformly at random.

We also evaluated TD on a set of instances coming from the finding of Pareto-
optimal power grid lines. The test area is a small 6 km times 3 km square near
Münster, North Rhine-Westfalia in Germany. The considered criteria for this first
study are bird preservation areas (BCA), landscape preservation areas (LPA),
existing power lines (EPL), freeways (FW), settlement areas (SA), and length
(L). We superimpose an undirected grid graph (i.e., there exists an arc in both
directions) with eight neighbors per inner node and raster pitch of 100 m on
the area we investigate. The resulting graph has 1859 nodes and 12674 edges.
For each criterion, we add one objective. In the case of the BCA, LPA, and SA
criteria, an edge gets the cost of the length of traversing this area. The settlement
area gets a buffer of 400 m which follows German and North Rhine-Westfalian
law. For the EPL and FW criteria, the case is the other way around: Instead
of trying to avoid these linear infrastructures, it is preferable to build the new
line in a 200 m buffer around these. To represent this, we add an area to avoid
everywhere outside the 200 m buffer around the infrastructure. Thus, an edge
gets the cost of the length of not traversing the buffer. To get different instances,
we try out different combinations of criteria.

5.2 Running Times Node Selection vs. Label Selection

In Fig. 2 we see a selection of the results on the RandomN-large, RandomK-large,
GridK-large as well as the real-world road network instance sets.

To evaluate the results we decided to show box plots, because the deviation
of the running times is very large and it is easier to recognize trends. The box
plots give a direct overview on the quartiles (box dimension), median (horizontal
line inside the box), deviation from the mean (whiskers: lines above and below
the box) and outliers (points above and below the whiskers).

We see that the node-selection strategy performs better on all these instances
than the label-selection strategy. The node-selection strategy is up to a factor of
3 faster on both test sets. This is also true for the other large and medium sized
instances where the maximum factors range from 1.4 to 3.17. Detailed box plots
can be found in the appendix.
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Fig. 2. Comparison of the running times (in seconds) of the label-selection (LS) and
node-selection (NS) strategies

Also on the real-world road networks the results are positive. The node-
selection strategy is up to factor of 3.16 faster than the label-selection strategy.

A partial explanation can be attributed to memory management: In the node-
selection strategy a consecutive chunk of memory which contains the values of the
labels pushed along an arc can be accessed in one cache access. While in the label-
selection strategy only one label is picked in each iteration, producing potentially
many cache misses when the next label—potentially at a very different location—
is accessed.

5.3 Tree-Deletion Pruning

The results concerning TD are ambiguous. First, to see how well TD might
work, we performed a set of experiments showing how many labels are touched
by the label-correcting algorithms which could have been deleted when using
tree-deletion pruning. That is, instead of deleting a label, we mark them deleted
and every time we push a label which is marked as being deleted, we count this
event. In Fig. 3, we see the results of this experiment on the CompleteN-large,
CompleteK-large, GridK-large and RandomK-large test sets.

We observe that on these instances, especially the node-selection strategy
tends to produce larger obsolete trees than the label-selection strategy. We also
observe this behavior on the complete-graph instances of medium and large size.
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Fig. 3. Measuring how many nodes have been touched which could have been deleted
by tree-deletion pruning in the label-selection (LS) and node-selection (NS) strategies

The situation is different on the grid-graph instances, where both algorithms
have a similar tendency to produce obsolete trees.

Another observation is that when increasing the number of objectives, the
number of obsolete trees which could have been deleted decreases in the grid and
random graph instances (see Fig. 3c and d). This happens because when looking
at instances with a large number of objectives and totally random objective
values, most labels remain nondominated in the cleaning step. The complete-
graph instances are an exception here. Since there are so many path between a
pair of nodes, a large number of labels is pushed and very many combinations
of cost exist and so still many labels are dominated.

Hence, what we expect is that on instances where a large number of labels
is dominated in the cleaning step the tree-deletion pruning is very useful. The
results of the comparison of the running times can be seen in Fig. 4. It can be
seen on the real-world road networks that the tree-deletion pruning works very
well and we can achieve a speed-up of up to 3.5 in comparison to the pure
node-selection strategy.

On the instances from the power grid line optimization set, we first see that
we cannot optimize all objectives at once because of memory constraints which
was 16 GB in these experiments. The combinations with at least three objectives
which could be solved are shown in Table 2. We observe that the TD strategy
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Fig. 4. Comparison of the running times (in seconds) of the node-selection strategy
with (NS-TD) and without (NS) tree-deletion pruning

Fig. 5. Comparison of the running times (in seconds) of the node-selection strategy
with and without TD on the correlated random networks

again improves the performance of the node-selection strategy on these instances
with a speed-up of up to 2.54.

On the artificial benchmark instances however, the results are not so clear.
TD works well on medium sized grid graphs with a small number of objectives
and also on complete graphs of any size. On the other instances of the artificial
benchmark set, TD performs slightly worse than the pure node-selection strategy,
especially on the large instances.

This behavior can be explained by the large number of labels which are
dominated in the road network instances. The size of the Pareto-fronts are small
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Table 2. Running times and Pareto-front sizes on the power grid optimization
instances. In the penultimate instance, the NS implementation exceeded the memory
limit of 16GB.

Objectives Running time (s) |c(Ps,t)|
NS NS-TD

BPA, LPA, L 4.04 3.72 377

BPA, EPL, L 13.41 6.37 1170

BPA, FW, L 1.13 1.10 280

BPA, SA, L 172.23 76.80 693

LPA, EPL, L 0.30 0.24 109

LPA, FW, L 6.59 4.95 634

LPA, SA, L 11.35 7.49 640

EPL, FW, L 1.65 1.13 428

EPL, SA, L 134.21 52.82 3767

FW, SA, L 40.98 20.97 1301

BPA, LPA, EPL, L 1549.16 941.01 11902

BPA, EPL, FW, L — 508.33 13449

LPA, EPL, FW, L 336.38 222.30 8106

compared to the instances of the artificial test set. So, we hypothesize that the
pruning strategy is especially useful if many labels are dominated in the cleaning
step and large obsolete trees can be deleted in this process. TD seems also to
work better on denser networks.

To test this hypothesis, we created a new set of random graphs. To make the
graphs more dense than in the previous instances, we drew 0.3 times the possible
number of edges and to match the small sized Pareto-fronts of the instances from
[7] with a high correlation of the objective functions, i.e., we used a Gauss copula
distribution with a fixed correlation of 0.7. If the hypothesis is false, TD should
run slower than the pure node-selection strategy on these instances.

But the results in Fig. 5 show that TD beats the pure node-selection strategy
on these graphs. TD achieves a speed-up of up to 1.14. Using a wilcoxon signed
rank test we can also see that the hypothesis that TD is slower than the pure
node-selection strategy on these instances can be refused with a p-value of less
than 10−3.

6 Conclusion

To conclude, we showed in this paper that node-selection strategies in labeling
algorithms for the MOSP problem can be advantageous, especially if imple-
mented carefully. So node-selection strategies should not be neglected as an
option for certain instance classes.
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We showed that the tree-deletion pruning we introduced in the multiobjective
labeling algorithms in this paper, works well on the real-world road networks and
the instances coming from the power grid optimization context. On the artificial
instances it does not seem to work too well, which we can explain by the very low
densities and unrealistic objective functions used in these instances. To show that
TD works well when having larger correlations as in the real-world road networks
and higher densities, we also created instances which had the potential to refute
this hypothesis. But the hypothesis passed the test.
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Abstract. We consider edge insertion and deletion operations that
increase the connectivity of a given planar straight-line graph (PSLG),
while minimizing the total edge length of the output. We show that
every connected PSLG G = (V,E) in general position can be aug-
mented to a 2-connected PSLG (V,E ∪ E+) by adding new edges of
total Euclidean length ‖E+‖ ≤ 2‖E‖, and this bound is the best possi-
ble. An optimal edge set E+ can be computed in O(|V |4) time; however
the problem becomes NP-hard when G is disconnected. Further, there
is a sequence of edge insertions and deletions that transforms a con-
nected PSLG G = (V,E) into a plane cycle G′ = (V,E′) such that
‖E′‖ ≤ 2‖MST(V )‖, and the graph remains connected with edge length
below ‖E‖+‖MST(V )‖ at all stages. These bounds are the best possible.

1 Introduction

Connectivity augmentation is a classical problem in combinatorial optimiza-
tion. A graph is τ -connected (resp., τ -edge-connected) if the subgraph obtained
by deleting any τ − 1 vertices (resp., edges) is connected. Given a graph
G = (V,E) and a parameter τ ∈ N, add a set of new edges E+ of minimum
cardinality or weight such that the augmented graph G′ = (V,E ∪ E+) is τ -
connected (resp., τ -edge-connected). Efficient algorithms are known for both con-
nectivity and edge-connectivity augmentation over abstract graphs and constant
τ [9,20]. In this paper we consider weighted connectivity augmentation for pla-
nar straight-line graphs (PSLGs). The vertices are points in Euclidean plane,
the edges are noncrossing line segments between the corresponding vertices, and
the weight of an edge is its Euclidean length.

The edge- and node-connectivity of a planar graph is at most 5 by
Euler’s theorem. Further, not every PSLG can be augmented to a 3-connected
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(resp., 4-edge-connected) PSLG; see [13] for feasibility conditions. Finding the
minimum number of edges to augment a given PSLG to τ -connectivity or τ -
edge-connectivity is NP-complete [18] for 2 ≤ τ ≤ 5; the reduction requires the
input graph G to be disconnected (the NP-hardness claim for connected input
[18, Corollary 2] turned out to be flawed). Worst case bounds are known for
the most important cases: Every PSLG G with n vertices can be augmented to
2-edge-connectivity with at most �(4n−4)/3� edges [2]; and at most �(2n−2)/3�
new edges if G is already connected [19]. At most b−1 suffice for 2-connectivity,
where b is the number of 2-blocks in G [1]. All these bounds are the best possible.

Our Results. We show that every connected PSLG G = (V,E) with n vertices
in general position can be augmented to a 2-connected PSLG G′ = (V,E ∪ E+)
by adding new edges of total Euclidean length ‖E+‖ ≤ 2‖E‖ (Sect. 3). A set E+

that minimizes ‖E+‖ can be computed in O(|V |4) time (Sect. 4); however the
problem becomes NP-hard when G is disconnected (Sect. 5). Further, there is
a sequence of edge insertions and deletions that transforms a connected PSLG
G into a plane cycle G′ = (V,E′) such that the graph at all stages remains
connected with the sum of Euclidean edge lengths below ‖E‖ + ‖MST(V )‖,
and, at termination, ‖E′‖ ≤ 2‖MST(V )‖, where MST(V ) denotes the Euclidean
minimum spanning tree of V ; these bounds are the best possible (Sect. 6). Our
proof is constructive, and yields a polynomial-time algorithm for computing such
sequences. Complete proofs are provided in the full paper [3].

Related Previous Work. Biconnectivity augmentation over planar graphs
(where no embedding of G is given) is also NP-complete [14]. Over planar graphs
with fixed combinatorial embedding, biconnectivity augmentation remains NP-
hard for disconnected graphs; but there is a near-linear time algorithm when
the input is already connected [11]. Frederickson and Ja’Ja’ [10] show that the
weighted augmentation of a tree to be 2-connected or 2-edge-connected (with-
out planarity constraint) is NP-complete even if the weights are restricted to
{1, 2}. The problem is APX-hard, and breaking the approximation ratio of 2 is a
major open problem [15]. In the geometric setting, we show (in Sect. 4) that the
minimum-weight augmentation of a planar straight-line tree to a 2-connected
(2-edge-connected) PSLGs can be computed efficiently.

The length of the edges in planar connectivity augmentation was studied only
recently in the context of wireless networks. Given a PLSG G = (V,E) where the
vertices induce a 2-edge-connected unit disk graph, Dobrev et al. [7] compute
a 2-edge-connected PSLG by adding edges of length at most 2. Kranakis et
al. [16] studied the combined problem of adding the minimum number of edges
of bounded length: A 2-edge-connected augmentation is possible such that |E+| is
at most the number of bridges in G and maxe′∈E+ ‖e′‖ ≤ 3maxe∈E ‖e‖. However,
finding the minimum number of new edges of bounded length is NP-hard.

2 Preliminaries

Let G = (V,E) be a planar straight-line graph (PSLG), where V is a set of
n points in the plane, no three of which are collinear, and E is a set of open



206 H.A. Akitaya et al.

line segments between pairs of points in V . The length of an edge uv, denoted
‖uv‖, is the Euclidean distance between u and v; the total length of the edges
is ‖E‖ =

∑
e∈E ‖e‖. Denote by F the set of faces of G. The faces of G are the

connected components of the complement of all vertices and edges of G, that is,
R

2\(V ∪⋃
e∈E e). If G is connected, then every bounded face is simply connected.

A walk is an alternating sequence of points (vertices) and line segments
(edges) whose consecutive elements are incident, and hence it is uniquely
described by the sequence of its vertices w = (p0, . . . , pt). A walk is closed if
p0 = pt. A walk is called a path if no vertex appears more than once. Every face
f ∈ F defines a closed walk (p0, . . . , pt) that contain all edges on the boundary
of F , called facial walk, where every edge pi−1pi is incident to the face f , and
consecutive edges in the path, pi−1pi and pipi+1, are also consecutive in the
counterclockwise rotation of all edges incident to pi (see Fig. 2(a)). Note that
every edge e ∈ E occurs twice in the facial walks of the faces of G: A cut vertex
(resp., bridge) occurs twice in some facial walk.

A walk p = (p0, . . . , pt) is convex if 0 < ∠pi−1pipi+1 < π for i = 1, . . . , t − 1
(for closed walks, i = 1, . . . , t), where ∠pi−1pipi+1 is the measure of the minimum
counterclockwise angle that rotates the ray −−−−→pipi−1 into −−−−→pipi+1. A vertex of G
is called convex if 0 < ∠pi−1pipi+1 < π for each pair pi−1pi and pipi+1 of
consecutive edges in the counterclockwise rotation of edges incident to pi; and
reflex otherwise. A convex walk p = (p0, . . . , pt) is safe if not all of its vertices are
collinear, and the vertices lie on the boundary of the convex hull of {p0, . . . , pt}
with the possible exception of the first or last vertex (Fig. 1(a) and (b)).

For a walk p, let γp : [0, 1] → R
2 be a piecewise linear arc from p0 to pt that

traverses the edges of p in the given order. A homotopy between two walks, p =
(p0, . . . , pt) and q = (q0, . . . , qt′), is a continuous function h : [0, 1] × [0, 1] → R

2

such that h(0, ·) = γp(·), h(1, ·) = γq(·), h(·, 0) = p0 = q0, h(·, 1) = pt = qt′ ,
h(a, b) ∈ ⋃

f∈F f for all (a, b) ∈ (0, 1) × (0, 1). Intuitively, the walk p can be
continuously deformed into q in the face f . The walks p and q are homotopic if
such a homotopy exists. Let p = (p0, . . . , pt) be a walk contained in the boundary
walk of a face f ∈ F . The shortest walk from p0 to pt homotopic to p, denoted
geod(p), is called the geodesic between p0 and pt (dotted paths in Fig. 1).

p1

(a) (b) (c)

p0

p2

p3

p1

p0

p2

p3

p1

p0

p2p3

p4

Fig. 1. (a) A convex path p = (p0, . . . , p3) with vertices in convex position. (b) A convex
path p = (p0, . . . , p3), where p3 ∈ conv(p0, p1, p2). (c) A convex path p = (p0, . . . , p4)
with four edges, where geod(p) contains edge p3p4.
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Given a walk p = (p0, . . . , pt) and polygonal environment
⋃

f∈F f with n
vertices, the geodesic can be computed in O(n log n) time [4]. It is known [8,12]
that all interior vertices of geod(p) are reflex vertices of G; and if p is a convex
chain, then so is geod(p) (it may be a straight-line segment). Geodesics play a
crucial role in our worst-case bounds, since ‖geod(p)‖ ≤ ‖p‖ by definition, and
the edges of geod(p) do not cross any existing edges of G. We show the following.

Lemma 1. Let G = (V,E) be a PSLG, and let p = (p0, . . . , pt) be a safe convex
walk contained in some facial walk of G. Then geod(p) is a simple path that does
not contain any vertices of p except for p0 and pt at its endpoints.

Proof. Let H be the convex hull of {p0, . . . , pt} and ∂H its boundary. By assump-
tion, the vertices of p lie on ∂H with the possible exception of p0 and pt, which
may lie in the interior of H. By construction, geod(p) lies in int(H) with the
possible exception of its endpoints p0 and pt. Hence, geod(p) does not contain
any interior vertex of p. �

Lemma 2. Let G = (V,E) be a PSLG, and let p = (p0, . . . , pt) be a convex
walk contained in some facial walk of G. If geod(p1, . . . , pt) is a simple path that
contains none of the vertices p0, p2, . . . , pt−1, then geod(p) is also a simple path
that does not contain any of the vertices p1, . . . , pt−1.

Proof. By Lemma 1, C = (p1, . . . , pt) ∪ geod(p1, . . . , pt) is a simple cycle. Let
p1r be the first edge of geod(p1, . . . , pt). Since geod(p1, . . . , pt) is homotopic to
(p1, . . . , pt), the edge p1r lies in the angular domain ∠p0p1p2, and r 	∈ {p0, p2}.
Consequently, the edge p0p1 lies in the exterior of the cycle C. Note that
geod(p) = geod(p0, p1, r) ∪ geod(r, p1, . . . , pt).

Since geod(p1, . . . , pt) is a convex chain, the interior of triangle Δ(p0, p1, r)
lies in the exterior of C. On the other hand, geod(p0, p1, r) lies in Δ(p0, p1, r),
and so it is disjoint from the vertices p2, . . . , pt. We conclude that geod(p) is a
simple path that does not contain any of the vertices p1, . . . , pt−1. �

3 Bounds on the Sum of Edge Lengths

Let G be a PSLG with no three collinear vertices. Denote by P = P(G) the set
of maximal convex walks contained in the facial walks of G (note that P can be
computed with a graph traversal in O(|E|) time). Partition P into three subsets:
P0 contains the convex walks that consist of a single edge; P1 contains the closed
convex walks (p0, . . . , pt), i.e., p0 = pt; and P2 contains all open convex walks
of two or more edges. We define a dual graph D where the nodes correspond
to the convex walks in P1 ∪ P2, and two nodes are adjacent if and only if the
corresponding convex chains share an edge in E.

Lemma 3. Let G = (V,E) be a connected PSLG with |V | ≥ 3. Then

(a) every edge in E is part of a convex chain in P1 ∪ P2,
(b) the dual graph D is connected.
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The proof of Lemma 3 is provided in [3]. When we modify a given PSLG with
edge insertion operations, we prove the following.

Theorem 1. Let G = (V,E) be a connected PSLG with |V | ≥ 3 and no three
collinear vertices. Then G can be augmented to a 2-edge-connected PSLG G′ =
(V,E ∪ E+) such that ‖E+‖ ≤ 2‖E‖, and this bound is the best possible.

Proof. We prove the upper bound constructively, augmenting a connected PSLG
G = (V,E) incrementally into a 2-edge-connected PSLG G′ = (V,E∪E+). Then
decompose every convex walk in P of two or more edges into edge-disjoint convex
walks of two or three edges. Let C be the set of all resulting convex paths of two
or three edges (that is, we discard convex walks that consist of a singe edge and
convex cycles of 3 edges). See Fig. 2(b) for an illustration.

)c()b()a(

Fig. 2. (a) A PSLG G = (V,E) with its boundary walks. (b) Dashed lines indicate
convex paths of two or three edges in C; dotted lines indicate maximal convex paths of a
single edge, and triangles. (c) The 2-edge-connected PSLG G′ = (V,E ∪E+) produced
by our algorithm.

For each convex path p ∈ C, augment G with the edges of geod(p) (refer to
Fig. 2(c)), and denote by G′ the resulting graph. Note that G′ is 2-edge-connected
since every edge in E is part of a cycle by Lemma 3(a): Each cycle is either a
triangle in G, or a cycle p ∪ geod(p) for some p ∈ C; and every edge in E+ is
part of a cycle by construction. By definition, edges in E+ do not cross any edge
in E. The cycles p ∪ geod(p) are interior disjoint, hence the defined geodesics
cannot cross each other. Therefore G′ is a PSLG.

Next, we derive an upper bound for ‖E+‖. Every e ∈ E appears twice in the
boundary walks of the faces of G, and so it appears in at most two convex paths
in C. By definition, ‖geod(p)‖ ≤ ‖p‖ for every p ∈ C. Overall, we have

‖E+‖ =
∑

p∈C
‖geod(p)‖ ≤

∑

p∈C
‖p‖ ≤

∑

p∈P
‖p‖ = 2‖E‖.

We now show a matching lower bound. For every ε > 0, let Gε be defined
on four vertices p1 = (0, 0), p2 = (0, ε), p3 = (1, 0), and p4 = (1, ε) with edge
set E = {p1p2, p2p3, p3p4}; refer to Fig. 3. Since p1 and p4 are leaves in G,
and p1p4 would cross p2p3, both p1p3 and p2p4 have to be added. We have
limε→0 ‖E+‖/‖E‖ = 2, and the ratio ‖E+‖/‖E‖ ≤ 2 is the best possible. �
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ε

Fig. 3. A PSLG G = (V,E) with three solid edges, where the augmentation to 2-edge-
connectivity requires the addition of the dashed edges.

We strengthen Theorem 1 to vertex-connectivity.

Theorem 2. Let G = (V,E) be a connected PSLG with |V | ≥ 3 and no three
collinear vertices. Then G can be augmented to a 2-connected PSLG G = (V,E∪
E+) such that ‖E+‖ ≤ 2‖E‖, and this bound is the best possible.

Proof. We prove the upper bound constructively. Consider the convex walk in
P1∪P2, defined above. We augment G into G′ = (V,E∪E+) such that the vertex
set of each convex walk in P1 ∪ P2 induces a 2-connected subgraph in G′; and
every new edge in E+ is part of one of these subgraphs. Note that this implies
that G′ is 2-connected: By Lemma 3(a), every vertex is part of a 2-connected
subgraph; if two 2-connected subgraphs share two vertices, then their union is
2-connected. By Lemma 3(b) the union of the subgraphs induced by the convex
chains is 2-connected. In the remainder of the proof, we consider a single convex
walks p ∈ P1 ∪ P2.
Case 1: p = (p0, . . . , pt) ∈ P1. If the vertices p0, . . . , pt−1 are distinct, then p is a
cycle, and all vertices of the walk are part of a 2-connected component. Otherwise
p1 = pt−1. In this case, (p1, . . . , pt−1) forms a convex polygon, whose interior
contains p0 = pt but no other vertices. Consequently, t ≥ 4, and the only cut
vertex along the walk is p1. Add the edge p0p2, where ‖p0p2‖ ≤ ‖p0p1‖+‖p1p2‖ ≤
‖p‖ by the triangle inequality (Fig. 4(a)). As a result, the vertices of p induce a
2-connected subgraph.
Case 2: p = (p0, . . . , pt) ∈ P2. We decompose p into edge-disjoint walks recur-
sively as follows. If geod(p) does not contain any interior vertex of p, then we are
done. Otherwise, let H be the convex hull of {p0, . . . , pt} and let p′ = (pi, . . . , pj)
be the subchain along ∂H. By Lemma 1, the set of interior vertices of geod(p′)
does not contain any vertex of p′. Starting from p′, successively append the edges
of p proceeding pi or following pj while the path p′ maintains the property that
p′ contains no interior vertices of geod(p′). Then recurse on any prefix or suf-
fix path in p \ p′. We obtain a decomposition of p into subpaths p′ such that
p′ ∪geod(p′) is a simple cycle (Fig. 4(b)). By Lemma 2, any two such consecutive
paths share two vertices. Consequently, the union of the cycles p′ ∪ geod(p′) is a
2-connected graph.

Analogously to the proof of Theorem1, we have ‖E+‖ ≤ 2‖E‖, and the same
lower bound construction shows that this bound is the best possible. �

4 Algorithms for Connectivity Augmentation from 1 to 2

Let F be a face of a PSLG G, and let WF = (p0, . . . , pn), p0 = pn be the
(closed) facial walk of F . We define the graph GF = (VF , EF ), where VF is
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)b()a(

Fig. 4. Examples for (a) case 1 and (b) case 2.

the set of vertices in WF and EF = {{pi, pi+1} where i ∈ {1, . . . , n}}. Given a
walk Ws,t = (ps, . . . , pt) contained in WF , a vertex vc is a cut vertex relative to
Ws,t if it appears more than once in Ws,t. For every pair 1 ≤ i < j ≤ n, we
introduce a weight function, corresponding to the feasibility of an edge pipj . Let
f(i, j) = ‖pipj‖ if the line segment pipj does not cross any edge in EF , lies in
the face F and in the wedges ∠pi−1pipi+1 and ∠pj−1pjpj+1; and let f(i, j) = ∞
otherwise. Note that two feasible edges, {pi, pj} and {pi′ , pj′}, do not cross if
their indices do not interleave (i.e., if 1 ≤ i < j ≤ i′ < j′ ≤ n).

We present a dynamic programming algorithm A that finds a set E+ of edges
of minimum total weight such that (VF , EF ∪ E+) is a 2-connected PSLG. We
call an optimal solution EOPT .

Remark 1. Every edge in EOPT lies in the face F . Indeed, suppose (VF , EF ∪E+)
is a 2-connected PSLG and {pi, pj} ∈ E+ is outside F . Then pi and pj are part
of a simple cycle formed by some edges of GF , and (VF , EF ∪ (E+ \ {pi, pj})) is
also 2-connected, showing that E+ is not optimal.

By Remark 1, each face of the input can be treated independently. If we insert
an edge in face F , then it decomposes F into two faces F1 and F2 that can
be considered independently. However, defining subproblems in terms of faces
might generate an exponential number of subproblems. Instead we define our
subproblems in term of continuous intervals of the facial walk of F .

We characterize an optimal solution EOPT for GF in terms of local prop-
erties of the subproblems Ws,t. Let pc be a cut vertex with respect to a walk
Ws,t. The vertices between two consecutive occurrences of pc in Ws,t are called
descendants of pc. A non-descendant of pc in Wi,j is a vertex in WF that is
neither a descendant in Wi,j nor equal to pc. The k-th group of descendants is
the set of vertices between the k-th and (k + 1)-st occurrence of pc. A set E′ of
feasible edges satisfies a group if there is a cycle in the graph G′

F = (VF , EF ∪E′)
that contains a descendant in that group and a non-descendant of pc; and E′

satisfies a cut vertex pc if it satisfies all of its groups. If (VF , EF ∪ E+) is a
2-connected PSLG, then E+ satisfies all cut vertices in W1,n. Indeed, suppose
E+ does not satisfy a vertex pc, then the deletion of pc would disconnect one of
its groups of descendants from the rest of GF , hence pc would be a cut vertex
in (VF , EF ∪ E+).

Let C[s, t], s ≤ t, be the minimum weight of an edge set E′ that satisfies
all groups of all cut vertices relative to Ws,t and such that {pi, pj} ∈ E′, i, j ∈
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Fig. 5. Examples of cases (ii), (iii) and (iv) of the dynamic programming.

{s, . . . , t} and (VF , EF ∪E′) is a PSLG. Algorithm A uses the following recursive
relation to compute subproblems C[s, t] and returns C[1, n].

(i) If Ws,t does not contain any cut vertex relative to Ws,t, then C[s, t] = 0.
(ii) If ps = pt and s 	= t, then C[s, t] = ∞.
(iii) If ps is not a cut vertex relative to Ws,t, then C[s, t] = min{C[s + 1, t],

mink∈{s+2,...,t−1}{C[s, k] + C[k, t] + f(s, k)}}.
(iv) If ps is a cut vertex relative to Ws,t, let X = {descendants of ps in Ws,t} ×

{non-descendants of ps in Ws,t}. Set C[s, t] = min(pi,pj)∈X{C[s, i]+C[i, j]+
C[j, t] + f(i, j)}.

Correctness. We show that A correctly computes C[s, t] and that C[1, n] cor-
responds to an optimal edge set E′. The base case (i) is trivial.

In case (ii), ps = pt is a cut vertex of WF , and all other vertices in W [s, t]
are descendants of ps. Therefore, there is no edge incident to a non-descendant
of ps in Ws,t, and ps cannot be satisfied in Ws,t (Fig. 5(a)).

In case (iii), since ps does not have descendants, the set E′ corresponding to
C[s, t] either has no edge incident to ps or it has an edge between ps and some
descendant pk of a cut vertex pc in Ws,t. In the former case, we have C[s, t] =
C[s + 1, t] since E′ satisfies all cut vertices relative to Ws+1,t. In the latter, the
edge {ps, pk} creates a cycle satisfying the group of descendants containing vk for
every cut vertex in Wc,k. It divides F into two faces: F1 (resp., F2) whose facial
walk contains Ws,k (resp., Wk,t). Every group that still needs to be satisfied is
either in F1 or F2. If E1 (resp., E2) is the set with minimum weight between
vertices in Ws,k (resp., Wk,t) that satisfies the groups of descendants in F1 (resp.,
F2), then E′ = E1 ∪ E2 ∪ {{s, k}}.

In case (iv), all non-descendants of ps in Ws,t are in the set {pk+1, . . . , pt},
where pk is the last occurrence of ps in Ws,t. E′ must contain at least one
edge in X in order to satisfy ps. Let {pi, pj} ∈ X be an edge that minimizes
i, breaking ties by maximizing j. Then, every edge {pi′ , pj′} ∈ E′ such that
(pi′ , pj′) ∈ X is between vertices in Wi,j . In particular, there exist no edge in
E′ between a vertex in Ws,i and Wj,t. We can partition E′ into E1, E2, and
E3 such that they each contain only edges between vertices in Ws,i′ , Wi′,j′ , and
Wj′,t respectively, each of them being the minimum-weight set that satisfies the
groups of descendants in their respective subproblems. The edges in E1, E2, E3

cannot cross since they correspond to edge-disjoint walks in WF . Thus, we have
C[s, t] = C[s, i′] + C[i′, j′] + C[j′, t′] + f(i′, j′).
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Let E′ be the edge set corresponding to C[1, n]. Since E′ satisfies all cut
vertices in W1,n, which corresponds to the cut vertices of GF , the graph (VF , EF ∪
E′) is 2-connected. Since E′ is a minimum-weight edge set that satisfies all groups
of W1,n by definition, we have ‖E′‖ = ‖EOPT ‖.

Running Time. The feasible edge weights f(i, j) can be precomputed in O(n2)
time [6,17] for all i, j ∈ {1, . . . , n}. There are O(n2) subproblems, and each can
be computed in O(n2) time since it depends on O(n2) smaller subproblems.
Hence algorithm A takes O(n4) time.

Theorem 3. For a connected PSLG (V,E), an edge set E+ of minimum weight
such that (V,E ∪ E+) is 2-connected can be computed in O(|V |4) time.

Proof. We identify the faces of (V,E) and run algorithm A in all faces. By
Remark 1, the union of the optimal solutions for each face is the optimal solution
for G. Since the size of the union of all facial walks is O(|V |), algorithm A takes
O(|V |4) time. �

Theorem 4. For a connected PSLG (V,E), an edge set E+ of minimum weight
such that (V,E ∪ E+) is 2-edge-connected can be computed in O(|V |4) time.

Theorems 3 and 4 extend to any nonnegative weight function. In particular,
a minimum cardinality edge set E+ can also be computed in O(|V |4) time.

5 Hardness of Connectivity Augmentation from 0 to 2

Theorem 5. Given a (disconnected) PSLG G = (V,E) and a positive integer k,
deciding whether there exists an edge set E+ such that ‖E+‖ ≤ k and (V,E∪E+)
is a 2-edge-connected PSLG is NP-hard.

Proof. We reduce from Planar-Monotone-3SAT, which is NP-complete [5].
An instance of this problem is given by a plane bipartite graph between n vari-
ables and m clauses such that the variables are embedded on the x-axis, no edge
crosses the x-axis and every clause has degree 2 or 3. A clause is called posi-
tive if it is embedded on the upper half-plane and negative otherwise. Planar-
Monotone-3SAT asks if there is an assignment from {true, false} to variables
such that each positive (resp., negative) clause is adjacent to at least one true
(resp., false) variable. Given such an instance we build a PSLG G = (V,E) as
follows. We divide the reduction into variable, wire and clause gadgets.

Variable Gadget. A gadget of a variable adjacent to two positive and one
negative clause is shown in Fig. 6(a). The gray boxes and small disks represent
2-connected components and leaves respectively. Each leaf requires at least one
edge for the augmentation and the closest node from each of them is 1 unit
apart. A pair of leaves can possibly share an edge and the i-th gadget for each
i ∈ {1, . . . , n} has an even number of leaves ti, hence the gadget requires at least
ti/2 length. There are exactly two possible ways to achieve this bound and they
encode the true/false value of the variable. Figure 6(a) can be generalized to
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Fig. 6. Dotted and dashed lines represent true and false assignments respectively.
Shaded rectangles represent cycles. (a) Variable gadget. (b) Connection between vari-
able and wire gadgets. (c) Turn in a wire gadget. (d) Clause gadget.

other variables by repeating, omitting and changing the length and number of
leaves of the component highlighted in the figure.

Wire Gadget. The wire gadget that connects the i-th variable to the r-th
clause, denoted as the (i, r)-wire, share the edge ei,r with the i-th variable gadget
and its first leaf is called li,r (Fig. 6(b)). Turns, if needed, can be done as in
Fig. 6(c).

Clause Gadget. The r-th clause gadget contains a special leaf called cr shown
in red in Fig. 6(d) that is located at an odd distance L1 from at most three
leaves, say li,r, lj,r, lk,r. If the clause is incident to two variables, use the turn
Fig. 6(c) as a clause gadget, naming the upper left leaf cr. If the r-th clause is
positive, we place all li,r at an even distance from each other, which makes the
position of cr always realizable. Use reflections through the x-axis for negative
clauses.

Let ti,r be the number of leaves of the (i, r)-wire. We set k =
∑n

i=1 ti/2 +∑
All (i,r)-wires(�ti,r/2 + 1).
Assume that the Planar-Monotone-3SAT instance has a satisfying

assignment. We build E+ as follows. For each variable assigned false (resp.,
true) add the edges shown as dashed (resp., dotted) lines of Fig. 6(a) to E+.
For each (i, r)-wire add to E+ all dashed lines shown in Fig. 6(b), (c) and the
closest dashed line in Fig. 6(d) from the (i, r)-wire if the i-th variable is assigned
false and the r-th clause is positive; or if the i-th variable is assigned true and
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the r-th clause is negative. Add the dotted lines otherwise. We obtain E+ such
that ‖E+‖ = k and the graph (V,E ∪ E+) is 2-edge-connected.

Assume that there exists E+ such that ‖E+‖ = k and the graph (V,E ∪E+)
is 2-edge-connected. We call (i, r)-leaves the set of all leaves in the (i, r)-wire
and the two leaves in the clause gadget adjacent to it. Since the number of
(i, r)-leaves is odd and the closest point from any such leaf is at least 1 unit
away, the minimum length required to have at least an edge in E+ incident to
each leaf is �ti,r/2 + 1. Since k is the sum of all such lower bounds, then: (i)
the subset of E+ that is incident to a (i, r)-leaf must have exactly �ti,r/2 + 1
unit length edges; and (ii) the subset of E+ that is incident to the i-th variable
gadget must be either the set of dashed or dotted lines in Fig. 6(a). Assume that
E+ contains the dotted lines in Fig. 6(a) in the i-th variable gadget. Then, for
a positive clause r, E+ must contain an edge between li,r and a point in the
maximal 2-connected component of G that contains ei,r, or else the bridge in G
that connects such 2-connected component will remain a bridge in (V,E ∪ E+).
Therefore, all other (i, r)-leaves must be matched in order to satisfy (i). Since
(V,E ∪E+) is 2-edge-connected, cr is connected to some other leaf. Then, if it is
connected to a (i, r)-leaf, the i-th variable gadget uses the dotted edges (true).
By applying the symmetric argument for negative clauses, all such clauses must
be incident to a variable gadget using dashed edges (false). Then we have also
a satisfying assignment for the Planar-Monotone-3SAT instance. �

Corollary 1. Given a (disconnected) PSLG G = (V,E) and k > 0, finding a
set E+ such that ‖E+‖ ≤ k and (V,E ∪E+) is a 2-connected PSLG is NP-hard.

Proof. The same reduction used in the proof of Theorem5 also works for 2-
connectivity. Notice that the length required by leaves is the same and any E+,
‖E+‖ ≤ k, that augments G to 2-edge-connected also achieves 2-connectivity. �

6 Dynamic Plane Graphs

Theorem 6. Let G = (V,E) be a connected PSLG with |V | ≥ 3 and no three
collinear vertices. Then there exists a sequence of edge insertion and deletion
operations that transforms G into a plane cycle G′ = (V,E′) such that ‖E′‖ ≤
2‖MST(V )‖ and that every intermediate graph is a connected planar straight-line
graph of weight at most ‖E‖ + ‖MST(V )‖. These bounds are the best possible.

Proof sketch. The upper bound is proven with an algorithm while the lower
bound is based on the graph shown in Fig. 3. The algorithm is divided into
five phases. Phase 1 applies successive edge deletions until a spanning tree of
V is obtained. Phase 2 applies a sequence of edge replacements (an insertion
followed by a deletion) to transform the graph into a spanning tree contained in
the Delaunay triangulation of V . Phase 3 applies edge replacements within the
Delaunay triangulation to transform the graph into the MST of V . Phase 4 first
created a cycle by inserting an edge of the convex hull, and then grows a weakly
simple cycle, by replacing an edge of the component with a path that visits one



Minimum Weight Connectivity Augmentation 215

additional vertex, until it spans V . Finally, phase 5 transforms a weakly simple
cycle into a simple cycle by connecting the two neighbors of a repeated vertex
with a geodesic. See the full paper [3] for a complete proof.
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Abstract. We show that for several pattern graphs on four vertices
(e.g., C4), their induced copies in host graphs with n vertices and
no clique on k + 1 vertices can be deterministically detected in time
Õ(nωkμ + n2k2), where Õ(f) stands for O(f(log f)c) for some constant
c, and µ ≈ 0.46530. The aforementioned pattern graphs have a pair
of non-adjacent vertices whose neighborhoods are equal. By considering
dual graphs, in the same asymptotic time, we can also detect four ver-
tex pattern graphs, that have an adjacent pair of vertices with the same
neighbors among the remaining vertices (e.g., K4), in host graphs with
n vertices and no independent set on k + 1 vertices.

By using the concept of Ramsey numbers, we can extend our method
for induced subgraph isomorphism to include larger pattern graphs hav-
ing a set of independent vertices with the same neighborhood and n-
vertex host graphs without cliques on k+1 vertices (as well as the pattern
graphs and host graphs dual to the aforementioned ones, respectively).

Keywords: Induced subgraph isomorphism · Matrix multiplication ·
Witnesses for Boolean matrix product · Time complexity

1 Introduction

The problems of detecting subgraphs or induced subgraphs of a host graph
that are isomorphic to a pattern graph are basic in graph algorithms. They are
generally termed as subgraph isomorphism and induced subgraph isomorphism
problems, respectively. Such well-known NP-hard problems as the independent
set, clique, Hamiltonian cycle or Hamiltonian path can be regarded as their
special cases.

Recent examples of applications of some variants of subgraph isomorphism
include bio-molecular networks [1], social networks [19], and automatic design of
processor systems [20]. In the aforementioned applications, the pattern graphs
are typically of fixed size which allows for polynomial-time solutions.

For a pattern graph on k vertices and a host graph on n vertices, the fastest
known general algorithms for subgraph isomorphism and induced subgraph
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 217–227, 2017.
DOI: 10.1007/978-3-319-53925-6 17



218 M. Kowaluk and A. Lingas

isomorphism run in time O(nω(�k/3�,�(k−1)/3�,�k/3�)) [4,12,17], where ω(p, q, r)
denotes the exponent of fast matrix multiplication for rectangular matrices of
size np × nq and nq × nr, respectively [15]. For k ≥ 6, they also run in time
O(mω(�k/3�,�(k−1)/3�,�k/3�)/2) [4,12], where m denotes the number of edges in a
(connected) host graph. Further, we shall denote ω(1, 1, 1) by just ω. It is known
that ω ≤ 2.373 [16,23] and for example ω(1, 2, 1) ≤ 3.257 [15].

There are several known examples of pattern graphs of fixed size k for which
one succeeded to design algorithms for subgraph isomorphism or/and induced
subgraph isomorphism yielding asymptotic time upper bounds in terms of n
lower than those offered by the aforementioned general method. For instance,
for each pattern graph on k vertices having an independent set of size s, an
isomorphic subgraph of an n-vertex graph can be (deterministically) detected in
time O(nω(�(k−s)/2�,1,�(k−s)/2�)) ≤ O(nk−s+1), assuming k = O(1) [13]. Also, an
induced subgraph isomorphic to the generalized diamond Kk − e, i.e., Kk with
a single edge removed, as well as an induced subgraph isomorphic to the path
on k vertices, Pk, can be detected in O(nk−1) time [10,21] which improves the
general bound from [4] for k ≤ 5.

More recent examples yields the randomized algorithm of Vassilevska
Williams et al. for detecting an induced subgraph isomorphic to a pattern graph
on four vertices different from K4 and the four isolated vertices (4K1) [22], sub-
suming similar randomized approach from [6]. Their algorithm runs in the same
asymptotic time as that based on matrix multiplication for detecting triangles
(i.e., K3) from [11], i.e., in O(nω) time. The authors of [22] succeeded to obtain
a deterministic version of their algorithm also running in the triangle asymp-
totic time for the diamond which is K4 with one removed edge, denoted by
K4 − e. In fact there are few known earlier examples of pattern graphs on four
vertices, different from the diamond, for which isomorphic induced subgraphs
can be deterministically detected in an n vertex host graph substantially faster
than by the general method. The earliest example is P4, a path on four vertices,
which can be detected in O(n + m) time [2], where m is the number of edges
in the host graph. The other example is a paw which is a triangle connected to
the fourth vertex by an edge, denoted by K3 + e. It can be detected in O(nω)
time [18]. The third example is a claw which is a star with three leaves, it can be
also detected in O(nω) time [4]. (Analogous upper bounds hold for the pattern
graphs that are the complement to one of the aforementioned pattern graphs.)

Summarizing, there are twelve pairwise non-isomorphic pattern graphs on
four vertices. For P4 and its complement one can detect deterministically an
isomorphic induced subgraph in an n vertex host graph in O(n2) time, while
for the diamond, paw and claw, it takes O(nω) time. Thus, only for the cycle
on four vertices, C4, and its complement, and K4 and its complement, there are
no known deterministic algorithms for the induced subgraph isomorphism that
are asymptotically faster than the general method yielding the O(nω(1,2,1))-time
bound. See also Table 1.

In this paper, we show in particular that if an n-vertex host graph does
not contain a clique on k + 1 vertices then for the pattern graph C4 the induced
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Table 1. Known upper bounds on the deterministic time complexity of induced sub-
graph isomorphism for pattern graphs on four vertices.

4-vertex pattern graph Deterministic time complexity

P4 O(n2) [2]

Claw O(n2.373) [4]

Paw K3 + e O(n2.373) [18]

Diamond K4 − e O(n2.373) [22]

C4 O(n3.257) [4]

K4 O(n3.257) [4]

subgraph isomorphism can be solved in time Õ(nωkμ+n2k2), where Õ(f) stands
for O(f(log f)c) for some constant c, and μ ≈ 0.46530. We also show that if the
host graph does not contain a clique on k + 1 vertices then one can detect an
independent set on four vertices in the host graph in time Õ(nωkμ +n2k2). Note
that our upper time-bounds subsume the general O(nω(1,2,1)) ≈ O(n3.257) bound
for pattern graphs on four vertices for k = O(n0.628). Our method works for all
pattern graphs on four vertices that have a pair of non-adjacent vertices with
the same neighborhood and all n-vertex host graphs without cliques on k + 1
vertices in time Õ(nωkμ + n2k2). By considering the dual graphs, we obtain
the same asymptotic upper bound for the detection of an induced subgraph
isomorphic to a given pattern graph with four vertices and a pair of adjacent
vertices with the same neighbors among the remaining vertices in an n-vertex
host graph without independent sets on k + 1 vertices. (We denote the class of
aforementioned 4-vertex pattern graphs and the class of pattern dual to them
by F−

s (4) and F+
s (4), respectively.)

By using the concept of Ramsey numbers, we can extend our method for
induced subgraph isomorphism to include larger pattern graphs having a set
of independent vertices with the same neighborhood and n-vertex host graphs
without cliques on k + 1 vertices (as well as the pattern graphs and host graphs
dual to the aforementioned ones, respectively). In particular, we obtain an
Õ(nω(k(k+3)

2 )μ+n2(k(k+3)
2 )3) bound on the time complexity of induced subgraph

isomorphism for pattern graphs with five vertices among which three are inde-
pendent and have the same neighbors and n-vertex host graphs without cliques
on k+1 vertices. (We denote the class of these 5-vertex pattern graphs by F−

s (5)
and the class of graphs dual to them by F+

s (5), respectively.) See Table 2 for the
summary of our results for pattern graphs on four and five vertices.

Our paper is structured as follows. In the next section, we provide basic
definitions and facts. In Sect. 3, we present our algorithms for the detection of
induced subgraphs isomorphic to pattern graphs on four vertices, in graphs with-
out large cliques or large independent sets. In Sect. 4, we extend our algorithms
for induced subgraph isomorphism to include larger pattern graphs. We conclude
with Final Remarks.
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Table 2. Upper bounds on the deterministic time complexity of induced subgraph
isomorphism for pattern graphs on four and five vertices and restricted host graphs
presented in this paper (µ ≈ 0.46530). K2,3 denotes the complete bipartite graph with
two vertices on one side and three vertices on the other side. (2, 3)−fan can be obtained
from K2,3 by connecting the two vertex side by an edge.

Pattern graph class Deterministic time complexity Host graph with

F−
s (4), e.g., C4 and 4K1 Õ(nωkμ + n2k2) no k + 1 clique

F+
s (4), e.g., K4 and 2K2 Õ(nωkμ + n2k2) no k + 1 ind. set

F−
s (5), e.g., K2,3, (2, 3) − fan Õ(nω( k(k+3)

2
)μ + n2( k(k+3)

2
)3) no k + 1 clique

F+
s (5), e.g., K5 and K5 − e Õ(nω( k(k+3)

2
)μ + n2( k(k+3)

2
)3) no k + 1 ind. set

2 Preliminaries

A subgraph of the graph G = (V,E) is a graph H = (VH , EH) such that VH ⊆ V
and EH ⊆ E.

An induced subgraph of the graph G = (V,E) is a graph H = (VH , EH) such
that VH ⊆ V and EH = E ∩ (VH × VH).

The neighborhood of a vertex v in a graph G is the set of all vertices in G
adjacent to v.

For q ≥ 4, we shall distinguish the family F−
s (q) of pattern graphs H on q

vertices v1, v2, ..., vq such that v1, ..., vq−2 form an independent set and have the
same neighbors among the remaining two vertices vq−1, vq. We shall also denote
the family of pattern graphs dual to those in F−

s (q) by F+
s (q). Note that the

latter family consists of pattern graphs H on q vertices v1, v2, ..., vq such that
v1, ..., vq−2 form a clique and have the same neighbors among the remaining two
vertices vq−1, vq.

The adjacency matrix A of a graph G = (V,E) is the 0 − 1 n × n matrix
where for 1 ≤ i, j ≤ n, A[i, j] = 1 iff {i, j} ∈ E.

A witness for an entry B[i, j] of the Boolean matrix product B of two Boolean
matrices A1 and A2 is any index k such that A1[i, k] and A2[k, j] are equal
to 1 [9].

Fact 1. The fast matrix multiplication algorithm runs in O(nω) time, where ω
is not greater than 2.3728639 [16] (cf. [23]).

Fact 2. The k-witness algorithm from [9] takes as input an integer k and two
n×n Boolean matrices, and returns a list of q witnesses for each positive entry of
the Boolean matrix product of those matrices, where q is the minimum of k and
the total number of witnesses for this entry. It runs in Õ(nωk(3−ω−α)/(1−α)+n2k)
time, where α ≈ 0.30298 (see [15]). One can rewrite the upper time bound as
Õ(nωkμ + n2k), where μ ≈ 0.46530 [9].

For two natural numbers p, s, the Ramsey number R(p, s) is the minimum
number � such that any graph on at least � vertices contains a complete subgraph
(clique) on p vertices or an independent set on s vertices.

Fact 3. For p, s ≥ 2, R(p, s) ≤ (
p+s−2

s−1

)
holds [3].
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3 The Algorithms

The idea of our algorithm for detecting induced subgraphs isomorphic to C4

depicted in Fig. 1 is simple. First, we check if there is a pair of non-adjacent
vertices connected by more than k different paths of length two in the host graph,
by computing the arithmetic square of the adjacency matrix of the host graph.
If so, there must be a pair of non-adjacent middle vertices of the aforementioned
paths of length two, since all the middle vertices cannot induce a clique on more
than k vertices. We conclude that the host graph contains a subgraph isomorphic
to C4. Otherwise, for each pair of non-adjacent vertices i, j, we examine the
set of all middle vertices of paths of length two connecting i with j for the
containment of a pair of non-adjacent vertices. Since the aforementioned middle
vertices correspond to witnesses for the (i, j) entry of the Boolean square of the
adjacency matrix of the host graph, we can use the k-witness algorithm from [9]
described in Fact 2 to compute the middle vertices.

Lemma 1. Algorithm 1 is correct.

Proof. Let B be the Boolean square of the adjacency matrix A. Witnesses of
B[i, j] are just middle vertices of different paths of length two connecting the
vertices i and j. The answer YES is returned if A[i, j] = 0 and the set of witnesses
contains at least two vertices and it does not form a clique. Then, i and j are
not adjacent, and there are two paths of length two connecting i and j whose
middle vertices are not adjacent. Thus, there is an induced C4 in G.

Fig. 1. An algorithm for detecting an induced subgraph isomorphic to C4 in a graph
with no (k + 1)-clique.
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To prove the correctness of the answer NO suppose that there is an induced
C4 in G. We may assume w.l.o.g. that it is induced by the vertices q, r, i, j, where
A[i, j] = 0 and A[q, r] = 0. Note that q and r belong to the set W [i, j] of witnesses
of B[i, j]. Since A[q, r] = 0, W [i, j] does not induce a clique. Consequently,
Algorithm 1 would return YES. �	
Lemma 2. Algorithm 1 runs in time O(nω + T (n, k) + n2k2), where T (n, k)
stands for the time necessary to solve the k-witness problem for two n×n Boolean
matrices.

Proof. The computation of C takes O(nω) time. The first double loop takes
O(n2) time. To implement the second double loop we need to solve the k-witness
problem. It takes T (n, k) time. After that, the second double loop takes O(n2k2)
time since the considered sets W [i, j] are of size not exceeding k, and we can
test if l ≤ k vertices induce a clique in O(k2) time. �	
By combining Lemmata 1, 2 with Fact 2, we obtain our first main result.

Theorem 1. Let G be a graph on n vertices with no clique on k + 1 vertices.
We can decide if G contains an induced subgraph isomorphic to C4 in time
Õ(nωkμ + n2k2), where μ ≈ 0.46530.

Recall that F−
s (4) is the family of graphs H on four vertices v1, v2, v3, v4 such

that v1, v2 are not adjacent and have the same neighbors among the remaining
two vertices v3, v4. Clearly, C4 belongs to F−

s (4). Also, 4K1 (i.e., an independent
set on four vertices), K4 − e, P3 + K1 and the paw belong to F−

s (4).
We can immediately generalize Algorithm 1 and Theorem 1 to include the

detection of a given member H ∈ F−
s (4) in the graph G satisfying the require-

ments of Theorem 1.
Consider the distinguished pair of non-adjacent vertices v1, v2 in H. Let

v3, v4 be the two remaining vertices. Finally, let H̄ stand for the graph dual
to H, and Ā for the adjacency matrix of H̄. In the generalized Algorithm 1, we
match v3, v4 with i, j, respectively, and v1, v2, with witnesses for the entry
corresponding to (i, j) of an appropriated Boolean matrix product. In case of
C4, both v3 and v4 are neighbors of v1 and v2, so we use the Boolean product
of A with A. Generally, for H ∈ F−

s (4), we have to replace the Boolean product
A × A with that of two matrices A1, A2 defined as follows:

– if {v3, v1}, {v3, v2} are edges of H then A1 = A,
– otherwise, {v3, v1}, {v3, v2} are edges of H̄ and A1 = Ā,
– if {v1, v4}, {v2, v4} are edges of H then A2 = A,
– otherwise, {v1, v4}, {v2, v4} are edges of H̄ and A2 = Ā.

Also, to count the number of witnesses for respective entries of the Boolean
product of A1 and A2, in the first step of the generalized algorithm, we compute
the arithmetic product of A1 and A2 treated as arithmetic matrices, instead of
the arithmetic product of A with A. Finally, if {v3, v4} is an edge of H then we
have to replace the condition A[i, j] = 0 with A[i, j] = 1.

By arguing analogously as in the proof of Theorem1, we obtain the following
generalization.
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Fig. 2. An algorithm for detecting an induced subgraph isomorphic to H ∈ F−
s (4) in

a graph with no (k + 1)-clique.

Theorem 2. Let H ∈ F−
s (4), and let G be a graph on n vertices with no clique

on k + 1 vertices. We can decide if G contains an induced subgraph isomorphic
to H in time Õ(nωkμ + n2k2), where μ ≈ 0.46530.

Recall that F+
s (4) is the family of graphs on four vertices dual to those in

F−
s (4), i.e., graphs that have a pair of adjacent vertices with the same neighbor-

hood. Note that in particular K4, K3 + K1, 2K2, and again K4 − e belong to
F+

s (4).
By considering dual graphs, we obtain the following corollary from Theo-

rem 2.

Corollary 1. Let H ∈ F+
s (4), and let G be a graph with n vertices and no inde-

pendent set on k + 1 vertices. We can decide if G contains an induced subgraph
isomorphic to H in time Õ(nωkμ + n2k2), where μ ≈ 0.46530.

Corollary 2. Let H ∈ F−
s (4) ∩ F+

s (4), and let G be a graph on n vertices
which does not contain a clique on k + 1 vertices or an independent set on k + 1
vertices. We can decide if G contains an induced subgraph isomorphic to H in
time Õ(nωkμ + n2k2), where μ ≈ 0.46530.

Note that F−
s (4) ∩ F+

s (4) = {K4 − e, K2 + 2K1}.
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4 Extensions to Larger Pattern Graphs

Recall that for q ≥ 4, F−
s (q) stands for the family of graphs H on q vertices

v1, v2, ..., vq such that v1, ..., vq−2 form an independent set and have the same
neighbors among the remaining two vertices vq−1, vq.

We can easily generalize Algorithm 2 and Theorem 2 to include the detection
of a given member H ∈ F−

s (q), where q ≥ 4, in the graph G satisfying the
requirements of Theorem 2.

In Algorithm 2, it is sufficient for a pair of vertices i, j satisfying A[i, j] = a
to deduce or verify that the set of witnesses for the (i, j) entry of the Boolean
matrix product contains a pair of non-adjacent vertices in order to detect an
induced subgraph isomorphic to the pattern graph H. Now, we have to deduce
or verify that the aforementioned set of witnesses contains an independent set
on q − 2 vertices in G instead. If the set of witnesses contains no less than the
Ramsey number R(k + 1, q − 2) of vertices then it fulfills this requirement since
we assume that the host graph G does not contain a clique on k + 1 vertices.
Otherwise, we have to go through all subsets of q − 2 witnesses to check if any
of them forms an independent set. If we do not know the exact Ramsey number
R(k + 1, q − 2) but only an upper bound t on R(k + 1, q − 2), we have to use t
instead. Thus the threshold on the number of witness becomes now t−1 instead
of k, and we have to use Fact 2 to find up to t − 1 witnesses. The generalized
algorithm is depicted in Fig. 3.

Lemma 3. Algorithm 3 runs in time Õ(nω(t − 1)μ + n2(t − 1)q−2), where μ ≈
0.46530.

Proof. As a straightforward generalization of Algorithm 2, Algorithm 3 runs in
time O(nω + T (n, t) + n2tq−2), where T (n, t) stands for the time necessary to
solve the (t − 1)-witness problem for two n × n Boolean matrices. By Fact 2, we
obtain the lemma. �	
Theorem 3. Let q ≥ 4, H ∈ F−

s (q), and let G be a graph on n vertices with
no clique on k + 1 vertices. Next, let t be a known upper bound on R(k + 1,
q − 2). We can decide if G contains an induced subgraph isomorphic to H in
time Õ(nω(t − 1)μ + n2(t − 1)q−2), where μ ≈ 0.46530.

Proof. We use Algorithm 3. Its correctness follows from the discussion preceding
its pseudocode. Lemma 3 yields the time bound. �	

By Fact 3, we can easily conclude that R(k + 1, 3) ≤ (k+2)(k+1)
2 . Hence, we

obtain the following corollary.

Corollary 3. Let H ∈ F−
s (5), and let G be a graph on n vertices with no clique

on k + 1 vertices. We can decide if G contains an induced subgraph isomorphic
to H in time Õ(nω(k(k+3)

2 )μ + n2(k(k+3)
2 )3).

Note that H ∈ F−
s (5) includes K2,3, (2, 3) − fan (see Table 2), K2 + 3K1

and 5K1 among other things. We leave to the reader stating the results implied
by Theorem 3 and Corollary 3 for the dual pattern and host graphs.
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Fig. 3. An algorithm for detecting an induced subgraph isomorphic to H ∈ F−
s (q),

q ≥ 4, in a graph with no (k + 1)-clique.

5 Final Remarks

The authors of [12] have shown that if one knows the number of induced sub-
graphs of an n vertex host graph that are isomorphic to a given 4-vertex pattern
then one can compute the analogous number for each of the twelve 4-vertex pat-
tern graphs in O(nω) time. This result has been generalized to include pattern
graphs on more than four vertices in [13]. Thus, in particular, if we knew that
the host graph is free from K4 then we could compute for each pattern graph
H on four vertices the number of induced subgraphs isomorphic to H in O(nω)
time. Generally, graphs with some forbidden subgraphs, induced subgraphs, or
minors (e.g., planar graphs) are widely studied in algorithmics. Typically, the
forbidden subgraphs are of small fixed size. In our approach the forbidden (k+1)
clique (or, an (k + 1) independent set, respectively) can be very large, e.g., even
larger than

√
n and we can still obtain an upper time-bound on detecting for

instance induced subgraphs isomorphic to C4 better than the known O(nω(1,2,1)
one.

One of the reviewers posed an interesting question of whether or not our pat-
tern detection algorithms can be extended to include pattern finding algorithms
without substantially increasing their running times. For instance, consider our
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algorithm for C4 detection. Suppose that i, j is a pair of non-adjacent vertices
in the input graph. If C4 is detected by finding a pair of non-adjacent witnesses
among at most k witnesses of B[i, j], then we can easily locate an induced sub-
graph isomorphic to C4. However, if C4 is detected by checking that B[i, j] has
more than k witnesses then we need to know at least k +1 witnesses of B[i, j] in
order to locate a pair of non-adjacent ones. Thus, we can extend our algorithm
for C4 and the other ones to the finding variant by increasing the number of
witnesses to compute for each positive entry of B by one. This increases the
running times of our algorithms solely marginally.

Acknowledgments. The research has been supported in part by the grant of polish
National Science Center 2014/13/B/ST6/00770 and Swedish Research Council grant
621-2011-6179, respectively.
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Abstract. For an integer d ≥ 2, a distance-d independent set of an
unweighted graph G = (V, E) is a subset S ⊆ V of vertices such that for
any pair of vertices u, v ∈ S, the number of edges in any path between
u and v is at least d in G. Given an unweighted graph G, the goal of
Maximum Distance-d Independent Set problem (MaxDdIS) is to find
a maximum-cardinality distance-d independent set of G. In this paper
we focus on MaxD3IS on cubic (3-regular) graphs. For every fixed integer
d ≥ 3, MaxDdIS is NP-hard even for planar bipartite graphs of maximum
degree three. Furthermore, when d = 3, it is known that there exists
no σ-approximation algorithm for MaxD3IS oncubic graphs for constant
σ < 1.00105. On the other hand, the previously best approximation ratio
known for MaxD3IS on cubic graphs is 2. In this paper, we improve the
approximation ratio into 1.875 for MaxD3IS on cubic graphs.

1 Introduction

Let G be an unweighted graph; we denote by V (G) and E(G) the sets of vertices
and edges, respectively, and let n = |V (G)|. An independent set (or stable set)
of G is a subset S ⊆ V (G) of vertices such that {u, v} �∈ E holds for all u, v ∈
S. In theoretical computer science and combinatorial optimization, one of the
most important and most investigated computational problems is the Maximum
Independent Set problem (MaxIS for short): Given a graph G, the goal of
MaxIS is to find an independent set S of maximum cardinality in G.

In this paper, we consider a generalization of MaxIS, named the Maximum
Distance-d Independent Set problem (MaxDdIS for short). For an integer
d ≥ 2, a distance-d independent set of an unweighted graph G is a subset S ⊆
V (G) of vertices such that for any pair of vertices u, v ∈ S, the distance (i.e., the
number of edges) of any path between u and v is at least d in G. For an integer
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d ≥ 2, MaxDdIS is formulated as the following class of problems [1,5]: Given
an unweighted graph G, the goal of MaxDdIS is to find a maximum-cardinality
distance-d independent set of G.

When d = 2, MaxDdIS (i.e., MaxD2IS) is equivalent to the original MaxIS.
Zuckerman [13] proved that MaxD2IS cannot be approximated in polynomial
time, unless P = NP, within a factor of n1−ε for any ε > 0. Moreover, MaxD2IS
remains NP-hard even if the input graph is a cubic planar graph, a triangle-
free graph, or a graph with large girth. Fortunately, however, it is well known
that MaxD2IS can be solved in polynomial time when restricted to, for example,
bipartite graphs [10], chordal graphs [7], circular-arc graphs [8], comparability
graphs [9], and many other classes [3,11,12].

For every fixed integer d ≥ 3, Eto et al. [5] proved that MaxDdIS is NP-hard
even for planar bipartite graphs of maximum degree three. Furthermore, they
showed that it is NP-hard to approximate MaxDdIS on bipartite graphs and
chordal graphs within a factor of n1/2−ε (ε > 0) for every fixed integer d ≥ 3
and every fixed odd integer d ≥ 3, respectively. On the other hand, interestingly,
they showed that MaxDdIS on chordal graphs is solvable in polynomial time for
every fixed even integer d ≥ 2. As the other positive results, Agnarsson et al. [1]
showed the tractability of MaxDdIS on interval graphs, trapezoid graphs, and
circular-arc graphs.

In this paper, we focus only on cubic (i.e., 3-regular) graphs as input. For
d = 2 i.e., MaxD2IS (MaxIS), it is known that it is NP-hard even for cubic
planar graphs. Furthermore, Chleb́ık and Chleb́ıková [4] proved the 1.0107-
inapproximability for MaxD2IS on cubic graphs. On the other hand, we can
obtain polynomial-time 1.2-approximation algorithms for MaxD2IS on cubic
graphs by applying the Δ+3

5 -approximation algorithm proposed by Berman and
Fujito [2] for the problem on general graphs of maximum degree Δ ≤ 613.

When d = 3, it is known that there exists no σ-approximation algorithm
for MaxD3IS on cubic graphs for constant σ < 1.00105. As for approximability,
by using the above Δ+3

5 -approximation algorithm for MaxD2IS as a subrou-
tine, we can obtain a 2.4-approximation algorithm for MaxD3IS on cubic graphs.
The previously best approximation ratio known for MaxD3IS on cubic graphs
is 2 [6]. In this paper, we refine the 2-approximation algorithm and design a
1.875-approximation algorithm for MaxD3IS on cubic graphs. Due to the page
limitation, however, we omit some details and proofs from this extended abstract.

2 Preliminaries

Let G = (V,E) be an unweighted graph, where V and E denote the set of vertices
and the set of edges, respectively. V (G) and E(G) also denote the vertex set and
the edge set of G, respectively. We denote an edge with endpoints u and v by
{u, v}. A path P of length � from a vertex v0 to a vertex v� is represented as
a sequence of vertices such that P = 〈v0, v1, · · · , v�〉. A cycle C of length � is
similarly written as C = 〈v0, v1, · · · , v�−1, v0〉. For a pair of vertices u and v,
the length of a shortest path from u to v, i.e., the distance between u and v is
denoted by distG(u, v).
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For a graph G and its vertex v, we denote the (open) neighborhood of v in G
by D1(v) = {u ∈ V (G) | {v, u} ∈ E(G)}, i.e., for any u ∈ D1(v), distG(v, u) = 1
holds. More generally, for d ≥ 1, let Dd(v) = {w ∈ V (G) | distG(v, w) = d} be
the subset of vertices that are distance-d away from v. Similarly, let D1(S) be the
open neighborhood of a subset S of vertices, D2(S) be the open neighborhood
of D1(S) ∪ S, and so on. That is, Dk(S) = D1

(⋃k−1
i=1 Di(S) ∪ S

)
. The degree

of v is denoted by deg(v) = |D1(v)|. A graph is r-regular if the degree deg(v) of
every vertex v is exactly r ≥ 0, and a 3-regular graph is often called cubic graph.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G) and E(GS) ⊆ E(G).
For a subset of vertices U ⊆ V , let G[U ] be the subgraph induced by U . For
a positive integer d ≥ 1 and a graph G, the dth power of G, denoted by Gd =
(V (G), Ed), is the graph formed from V (G), where all pairs of vertices u, v ∈ G
such that distG(u, v) ≤ d are connected by edges {u, v}’s.

Let OPT (G) be an optimal distance-3 independent set on input G. We say
that an algorithm ALG is a σ-approximation algorithm for MaxDdIS or that ALG’s
approximation ratio is at most σ if |OPT (G)| ≤ σ · |ALG(G)| holds for any input
G, where ALG(G) is a distance-d independent set returned by ALG. Then, we
can obtain the following proposition on the upper bound of |OPT (G)| [6]:

Proposition 1 [6]. Consider a cubic graph G = (V,E) with |V | = n vertices.
Then, the size |OPT (G)| of every optimal solution of MaxD3IS is at most n

4 .

Let ALG2 be a Δ+3
5 -approximation algorithm for MaxD2IS on graphs with

the maximum degree Δ proposed in [1]. Then, we obtain the following simple
algorithm: First, construct the second power G2 of an input cubic graph G, and
then obtain a distance-2 independent set of G2 by using ALG2. Note that any
distance-2 independent set of G2 is a distance-3 independent set of G and the
maximum degree of G2 of the cubic graph G is nine. Hence the above algorithm
achieves a 2.4-approximation ratio for MaxD3IS on cubic graphs [6].

The previously best approximation ratio for MaxD3IS on cubic graphs is 2 [6]:

Proposition 2 [6]. There exists a polynomial-time 2-approximation algorithm
for MaxD3IS on cubic graphs.

The basic strategies of the above algorithm are quite straightforward; the
algorithm iteratively picks a vertex v into the distance-3 independent set, say,
D3IS(G), and eliminates all the vertices in {v}∪D1(v)∪D2(v) from candidates
of the solution: Given a graph G, (i) in the first iteration of the algorithm, the
first vertex, say, s1, is selected into D3IS(G), then B1 = {s1}∪D1(s1)∪D2(s1)
is removed from V (G), and set V = V (G)\B1 since any vertex in B1 cannot be a
candidate of the solution. One can see that |B1| ≤ 10. (ii) In the second iteration,
the second vertex, say, s2, is selected from neighbor vertices in D1(B1) of B1

into D3IS(G), and then B2 = {s2} ∪ D1(s2) ∪ D2(s2) is removed from V . Note
that |B1 ∩ B2| ≥ 2 holds since there must exist at least two vertices between
s1 and s2 from the fact distG(s1, s2) ≥ 3. That is, |B2 \ B1| ≤ 8 and thus
at most eight vertices are removed from V in the second iteration. Similarly,
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when si for 3 ≤ i ≤ � are selected into D3IS(G), at most eight vertices are
removed from V . Therefore, roughly speaking, the algorithm can find one vertex
among eight ones, i.e., a distance-3 independent set of n/8 vertices among n
vertices. Since |OPT (G)| ≤ n/4, the approximation ratio is 2 (= (n/4)/(n/8) ≥
|OPT (G)|/|ALG(G)|).

3 Approximation Algorithm for MaxD3IS on Cubic
Graphs

Algorithm. In this section, we improve the approximation ratio from the pre-
vious 2 to 1.875 for MaxD3IS on cubic graphs. Now we make a simple obser-
vation; see Fig. 1(a). In the previous algorithm in [6], if si−1 is selected in the
(i − 1)th iteration and black vertices are removed from the solution candidates,
then we select, for example, v1 into a solution D3IS(G) in the ith iteration since
distG(si−1, v1) = 3, and remove eight “gray” vertices, v1 through v8, from the
solution candidates. In other words, we can select one vertex v1 into the solution
among (at most) eight candidates in {v1} ∪ D1(v1) ∪ D2(v1)\B, where B is a set
of “non-candidate vertices.” For the case in Fig. 1, however, if we select a neighbor
v2 of v1 into D3IS(G), then at most seven vertices in {v2}∪D1(v2)∪D2(v2)\B
(= {v1, v2, v3, v4, v5, v6, v9}) are removed; now we could select one among seven
candidates. As a desirable example, if we can averagely select one vertex into
D3IS(G) among seven vertices in an iteration, then we can find a solution of
size n/7, i.e., we achieve the 7/4-approximation ratio. Hence, it is our goal to
find a vertex s such that |{s} ∪ D1(s) ∪ D2(s) \ B| is as small as possible in each
iteration. As another desirable example, if v1 has two neighbors in B as shown
in Fig. 1(b), then |{v1} ∪ D1(v1) ∪ D2(v1) \ B| ≤ 4. In the following, we show
that we can averagely select one vertex among “15/2” vertices, which implies
the approximation ratio of (n/4)/(2n/15) = 15/8 = 1.875.

B

si−1
v1

v5

v4 v2

v3

v6

v7

v8

v9

D1(B)
B

si−1 v1

(a) (b)

Fig. 1. Observations (a) and (b)

Our new algorithm ALG basically selects (i) the first candidate vertex vf

from D1(B) if |{vf} ∪ D1(vf ) ∪ D2(vf ) \ B| ≤ 7, but (ii) a neighbor u of vf

if |{vf} ∪ D1(vf ) ∪ D2(vf ) \ B| ≥ 8. Unfortunately, however, there are special
subgraphs such that for any neighbor u ∈ D1(vf ) of the first candidate vf ,
|{u} ∪ D1(u) ∪ D2(u) \ B| ≥ 8 must hold. Therefore, ALG initially finds such
special subgraphs and gives some special treatments to them as preprocessing.
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There are five special subgraphs, SG1, SG2, SG3, SG4 and SG5 illustrated in
Figs. 2(a), (b), (c), (d), and (e), respectively. The special subgraph SG1 consists
of nine “gray” vertices. On the other hand, each of SG1 through SG4 has eight
vertices, including the first candidate vf and its two neighbors in D1(vf ). Note
that the black vertex v in D1(vf ) may be not in B.

vf
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w

u1

u2

w1

w2

v

v1

(a) SG1
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w2

v1

v

(e) SG5

Fig. 2. Special subgraphs (a) SG1, (b) SG2, (c) SG3, (d)SG4, (e) SG5

(a) See Fig. 2(a). The first special subgraph SG1 has nine gray vertices,
the first candidate vf , its three neighbor vertices v, u and w, two neighbors
u1 and u2 of u, two neighbors w1 and w2 of w, and the top vertex v1, where
distG(vf , v1) = 2. The vertex v1 is connected to either of u1 and u2 and either
of w1 and w2. As shown in Fig. 2(a), assume that the graph has two edges
{v1, u2} and {v1, w1}. Furthermore, there are three edges, {u1, w1}, {u1, w2},
and {u2, w2}. For SG1, our algorithm ALG selects u1 which is not connected to v1,
and v into D3IS(G), and eliminates nine vertices in V (SG1) and three vertices
in (D1(v)∪D2(v))\V (SG1), i.e., (at most) 12 vertices in {{v, u1}∪D1({v, u1})∪
D2({v, u1})} from the solution candidates. That is, we can averagely select one
vertex among six ones.

(b) See Fig. 2(b). The second special subgraph SG2 has eight gray vertices,
V (SG2) = {vf , u, w, v1, u1, u2, w1, w2}, where distG(vf , v1) = 2. Furthermore,
(b1) neither of u1 and u2 (w1 and w2, resp.) is connected to w (u, resp.), and
(b2) u1 is connected to either w1 or w2, and u2 is connected to the other. With-
out loss of generality, assume that u1 (u2, resp.) is connected to w1 (w2, resp.)
as shown in Fig. 2(b). (b3) Either of (distG(u1, w2), distG(u2, w1)) = (1, 3),
(1, 1), and (3, 3) holds. Note that the case (distG(u1, w2), distG(u2, w1)) = (3, 1)
is essentially the same as the case (distG(u1, w2), distG(u2, w1)) = (1, 3). If
distG(u1, w2) = distG(u2, w1) = 3, then ALG selects u2 and w1 into D3IS(G). If
(distG(u1, w2), distG(u2, w1)) = (1, 3), then ALG selects u2 and w1 into D3IS(G).
If distG(u1, w2) = distG(u2, w1) = 1, then ALG selects one arbitrary vertex in
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{u1, u2, w1, w2} into D3IS(G). One can see that the case where distG(u1, w2) =
distG(u2, v1) = distG(w1, v1) = 1 is essentially equivalent to SG1.

(c) See Fig. 2(c). The third special subgraph SG3 has eight gray vertices,
vf , u, w, u1, u2, w1, w2, and v′

f , where distG(v′
f , vf ) ≥ 3. The conditions (c1)

and (c2) are the same as (b1) and (b2), respectively. (c3) The conditions on
distG(u1, w2) and distG(u2, w1) are different from the above: distG(u1, w2) = 2
or distG(u2, w1) = 2 holds. That is, there is exactly one vertex between u1 and
w2, or exactly one vertex between u2 and w1. For SG3 with distG(u1, w2) = 2
in Fig. 2(c), ALG selects vf and v′

f into D3IS(G).
(d) See Fig. 2(d). The fourth special subgraph SG4 consists of eight gray

vertices, vf , u, w, u1, u2, w1, w2, and v1, where distG(vf , v1) = 2. (d1) is the
same as (b1). (d2) The vertex v1 is connected to one of u1 and u2, and one of
w1 and w2. Now, without loss of generality, we assume that there are two edges
{v1, u2} and {v1, w2} as shown in Fig. 2(d). (d3) There is no edge {u2, w2}. (d4)
There exists neither edge {u1, u2} nor {w1, w2}. Therefore, possibly, there are
further three edges, {u1, w1}, {u1, w2}, and {u2, w1}. If distG(u1, w1) = 1 and
distG(u1, w2) ≥ 2 (i.e., SG4 does not have the edge {u1, w2}), then ALG selects
two vertices w2 and u into D3IS(G). If distG(u1, w2) ≥ 2 and distG(u2, w1) = 1,
then ALG selects two vertices w2 and u into D3IS(G). If distG(u1, w1) ≥ 2 and
distG(u2, w1) = 1, then ALG selects two vertices w and u1 into D3IS(G).

(e) See Fig. 2(e). The fifth special subgraph SG5 consists of eight gray ver-
tices, vf , u, w, u1, u2, w1, w2, and v1. (e1) is the same as (b1). (e2) There are
three edges, {v1, u2}, {u2, w1}, and {u1, w1}. One can verify that if the graph
has an edge {v1, w2}, it can be regarded as SG4, and if there is an edge {u1, w2},
it can be regarded as SG1 or SG2. Therefore, all the three vertices v1, u1 and w2

have neighbors which are not in SG5. If the black vertex v is not in B, then ALG
selects v and w1 into D3IS(G), and |{v, w1} ∪ D1({v, w1}) ∪ D2({v, w1})| ≤ 13.
If v is in B, then ALG selects w and v1 into D3IS(G).

Recall that our algorithm ALG first finds every special subgraph and deter-
mines a (part of) solution in the special subgraphs as the preprocessing phase.
After that, ALG iteratively executes the general phase, that is, it selects (i) the
first candidate vertex vf from D1(B) if |{vf} ∪ D1(vf ) ∪ D2(vf ) \ B| ≤ 7, but
(ii) a neighbor u of vf if |{vf}∪D1(vf )∪D2(vf )\B| ≥ 8 into the distance-3 inde-
pendent set. The following is the detailed description of ALG. In the preprocessing
phase (Phase 1), the first candidate vertex vf is selected and removed from a
set F ; the subgraph induced by {vf} ∪ D1(vf ) ∪ D2(vf ) is repeatedly checked
whether it is identical to SG1; after all SG1’s have been processed, the subgraph
induced by {vf}∪D1(vf )∪D2(vf ) is checked whether it is one of the four special
subgraphs SG2, SG3, SG4, and SG5; and vf is stored into a set C of “already
checked” vertices. The vertex si in the distance-3 independent set is stored in
D3IS(G); its (closed) neighbors in {si}∪D1(si)∪D2(si) are eliminated from V
and stored into B.
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Algorithm ALG

Input: Cubic graph G = (V,E).
Output: Distance-3 independent set D3IS(G) of G.
Initialization: Set C = ∅, B = ∅, D3IS(G) = ∅, and F = ∅.
Phase 1. Find all special subgraphs and determine a partial solution in them.

/* The vertices in all the special subgraphs SG1, SG2, SG3,
SG4, and SG5 are labeled as shown in Figures 2(a), (b), (c),
(d), and (e), respectively. */
Step 0. Select arbitrarily one vertex v from V and set F = F ∪ {v}.
Step 1. (i) If B ∪ C �= V and thus F �= ∅, then select arbitrarily one vertex

vf ∈ F , and set C = C ∪{vf}. If the induced subgraph G[{vf}∪D1(vf )∪
D2(vf ) \ B] includes SG1, then set D3IS(G) = D3IS(G) ∪ {v, u1}, B =
B ∪ {v, u2} ∪ D1({v, u2}) ∪ D2({v, u2}), F = D1(B ∪ C). Repeat Step 1.
(ii) If B ∪ C = V , then set C = ∅ and F = D1(B) \ B, and goto Step 2.

Step 2. (i) If B ∪ C �= V , then select vf ∈ F and set C = C ∪ {vf}. If the
induced subgraph G[{vf} ∪ D1(vf ) ∪ D2(vf ) \ B] does not include any of
the special subgraphs SG2, SG3, SG4, and SG5, then set F = D1(B ∪C)
and repeat Step 2. If G[{vf} ∪ D1(vf ) ∪ D2(vf ) \ B] includes SG2, SG3,
SG4 and SG5, then execute Case 2-1, Case 2-2, Case 2-3, and Case
2-4, respectively. (ii) If B ∪ C = V , then goto Phase 2.
Case 2-1: (i) If distG(u1, w2) = distG(u2, w1) = 3, then set D3IS(G) =

D3IS(G) ∪ {u2, w1} and B = B ∪ {u2, w1} ∪ D1({u2, w2}) ∪
D2({u2, w1}). (ii) If distG(u1, w2) = 1 and distG(u2, w1) = 3, then
set D3IS(G) = D3IS(G) ∪ {u2, w1} and B = B ∪ {u2, w1} ∪
D1({u2, w1}) ∪ D2({u2, w1}). (iii) If distG(u1, w2) = distG(u2, w1) =
1, then set D3IS(G) = D3IS(G)∪{u1} and B = B∪{u1}∪D1({u1})∪
D2({u1}). Set F = D1(B ∪ C) and goto Step 2.

Case 2-2: Set D3IS(G) = D3IS(G) ∪ {vf , v′
f} and B = B ∪ {vf , v′

f} ∪
D1({vf , v′

f}) ∪ D2({vf , v′
f})). Set F = D1(B ∪ C) and goto Step 2.

Case 2-3: (i) If distG(u1, w2) ≥ 2 and distG(u1, w1) = 1, then set
D3IS(G) = D3IS(G)∪{u,w2} and B = B ∪{u,w2}∪D1({u,w2})∪
D2({u,w2}). (ii) If distG(u1, w2) ≥ 2 and distG(u2, w1) = 1, then
D3IS(G) = D3IS(G)∪{u,w2} and B = B ∪{u,w2}∪D1({u,w2})∪
D2({u,w2}). (iii) If distG(u1, w1) ≥ 2 and distG(u2, w1) = 1, then
D3IS(G) = D3IS(G)∪{w, u1} and B = B ∪{w, u1}∪D1({w, u1})∪
D2({w, u1}). Set F = D1(B ∪ C) and goto Step 2.

Case 2-4: (i) If v �∈ B (i.e., v ∈ C), then set D3IS(G) = D3IS(G) ∪
{v, w1}, C = C\{v}, and B = B∪{v, w1}∪D1({v, w1})∪D2({v, w1}).
If v ∈ B, then D3IS(G) = D3IS(G)∪{w, v1} and B = B ∪{w, v1}∪
D1({w, v1}) ∪ D2({w, v1}). Set F = D1(B ∪ C) and goto Step 2.

Phase 2. If B �= V , then repeat the following Step 3. Otherwise, goto Termi-
nation.
Step 3. Select one vertex vf from D1(B) \ B such that |{vf} ∪ D1(vf ) ∪

D2(vf ) \ B| is minimum among all vertices in F . (Case 3-1) If |({vf} ∪
D1(vf )∪D2(vf )\B| ≤ 7, then D3IS(G) = D3IS(G)∪{vf} and B = B∪
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{vf}∪D1({vf})∪D2({vf}). (Case 3-2) If |({vf}∪D1(vf )∪D2(vf )\B| ≥ 8
and at most one vertex in D2(vf )\B is adjacent to vertices in B∪D2(vf ),
then set D3IS(G) = D3IS(G) ∪ {vf} and B = B ∪ {vf} ∪ D1({vf}) ∪
D2({vf}). (Case 3-3) If |{vf}∪D1(vf )∪D2(vf )\B| ≥ 8 and at least two
vertices in D2(vf ) \ B are adjacent to vertices in B ∪ D2(vf ), then select
one, say, u, of two vertices in D1(vf ) such that |{u} ∪ D1(u) ∪ D2(u) \ B|
is minimum. (Case 3-4) If |{vf} ∪ D1(vf ) ∪ D2(vf ) \ B| ≥ 8 and |{u} ∪
D1(u) ∪ D2(u) \ B| = |{w} ∪ D1(w) ∪ D2(w) \ B| = 7 for u,w ∈ D1(vf )
and u is in a cycle 〈u, u1, u2〉, then Set D3IS(G) = D3IS(G) ∪ {u} and
B = B ∪ {u} ∪ D1({u}) ∪ D2({u}). Goto Step 3.

Termination. Terminate and output D3IS(G) as a solution. [End of ALG]

Approximation Ratio. The algorithm ALG always outputs a feasible solution
since ALG eliminates all vertices in {s} ∪ D1(s) ∪ D2(s) from the solution candi-
dates if s is in the solution. In this section, we will investigate the approximation
ratio of ALG. We first give notation used in the following. Suppose that given
a graph G, ALG outputs ALG(G) = D3IS(G) = {s1, s2, · · · , s�}. Also, without
loss of generality, suppose that ALG selects those � vertices into D3IS(G), one by
one in the order, i.e., first s1, next s2, and so on. Let vi denote the first candidate
vertex when the ith vertex si is selected into D3IS(G), and it is called the ith
first candidate. Also, we call si the ith solution vertex.

For a vertex v, let B(v) = {v} ∪ D1(v) ∪ D2(v) be a set of vertices such
that distG(u, v) ≤ 2 for any u ∈ B(v). Especially, for the ith solution vertex
si in ALG(G) (i = 1, · · · , �), we call B(si) the ith solution block. Let B−(si) =
B(si)∩(

⋃i−1
j=1 B(sj)) and B+(si) = B(si)\(

⋃i−1
j=1 B(sj)), and we call B−(si) and

B+(si) the ith old solution block and the ith new solution block, respectively.
Consider the time when the ith solution si is selected and

⋃i
j=1 B(sj) are

removed from V . Then, we define the separate vertices in B(si) by SV (si) =
D1(V \ (

⋃i
j=1 B(sj))) ∩ B+(si) for each i (1 ≤ i ≤ � − 1). Let SV (ALG) =

⋃�−1
i=1 SV (si). Also, we define the near separate vertices from si by SVnear(si) =

(D1(si) ∪ D2(si)) ∩ (
⋃i−1

j=1 SV (sj)). Note that SVnear(si) is not in B+(si). Let

B∗(si) = B+(si) ∪ SVnear(si). Moreover, let SVnear(ALG) =
⋃�−1

i=1 SVnear(si)
and SVfar = SV (ALG) \ SVnear(ALG). Now consider � integers, δ1 through δ�,
which are associated with � new solution blocks, B+(s1) through B+(s�), and
initially set δ1 = · · · = δ� = 0. Recall that each separate vertex sv in SVfar must
be connected to one or two vertices not in B(si). Now suppose that sv in SVfar

is connected to a vertex in B+(sj). Then, we set δj = +1. Suppose that sv is
connected to two vertices, one in B+(sj) and one in B+(sk) for j �= k. Then, if
j > k, then we set δj = +1; otherwise, δk = +1. Therefore,

∑�
i=1 δi = |SVfar|

holds.

Lemma 1. Suppose that |B(vi) \ ⋃i−1
j=1 B(sj)| = 8. Also, suppose that the ith

solution vertex si is selected in Phase 2 of ALG, and si is not the first candidate
vi. Then, |B+(si)| ≤ 7 holds, and furthermore, if |B+(si)| = 7, then si must be
in a cycle of length at most three. (The proof is omitted.)
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Lemma 2. Suppose that si (2 ≤ i ≤ �) is selected into D3IS(G) in Phase 2
of ALG. Then, |B∗(si)| ≤ 9 holds. (The proof is omitted.)

Lemma 3. Suppose that given a graph G = (V (G), E(G)), only Phase 1
is executed in ALG. Then, |V (G)|/|ALG(G)| ≤ 7.5 is satisfied. (The proof is
omitted.)

From Lemma 1, if |B+(vi)| = 8 for 2 ≤ i ≤ � holds, then we can assume that
si is always identical to vi. Then, we can obtain the following lemma:

Lemma 4. Suppose that |B+(vi)| = 8 for 2 ≤ i ≤ � and vi is selected into
D3IS(G) in Phase 2 of ALG, i.e., si = vi Then, |SV (si)| − δi ≥ 4 is satisfied.

Proof. Since |B+(si)| = 8 holds and si = vi, then (Case 3-2) in Phase 2
must be executed. Therefore, we can assume that at most one vertex in D2(si)\⋃i−1

j=1 B(sj) is adjacent to vertices in
⋃i−1

j=1 B(sj) ∪ D2(vi), which means that at
least four vertices in D2(si) \ ⋃i−1

j=1 B(sj) are not connected to any vertex in
⋃i−1

j=1 B(sj) ∪ D2(vi). Therefore, we obtain |SV (si)| ≥ 4. Suppose that δi ≥ 1,
i.e., there must exist one vertex, say, sv, which is connected to a vertex, say,
u in D2(si) ∩ B+(si), and the other neighbors of sv are in

⋃i−1
j=1 B(sj). Hence

|B+(u)| ≤ 7 holds, which implies that for the first candidate vi in B+(si),
|B+(si)| ≤ |B+(vi)| ≤ 7, which is a contradiction. Hence δi = 0. As a result,
|SV (si)| − δi ≥ 4 is satisfied. This completes the proof of this lemma. �

If δi > |SV (si)| is satisfied, then we call the iteration when si is selected
negative iteration; otherwise, positive iteration.

Lemma 5. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. Then, if
the iteration is negative, then |B+(si)| ≤ 6 is satisfied.

Proof. Since the current iteration is negative, there must exist a separate vertex,
say, sv, in

⋃i−1
j=1 SV (sj) such that sv is connected to some vertices in D2(si) ∩

B+(si) but not connected to any vertex in
∑�

j=i+1 B+(sj), and δi ≥ 1. If each
vertex, say, v′, in D2(si) ∩ B+(si) is connected to two separate vertices, then
|B+(si)| ≤ |B+(v′)| ≤ 4, which is a contradiction. If v′ is connected to one
separate vertex and another in

∑i−1
j=1 B(sj), then |B+(si)| ≤ |B+(v′)| ≤ 5, again

contradiction. Also, if a vertex, say, v′′, in D2(si) ∩ B+(si) is connected to two
vertices in

∑i−1
j=1 B(sj), then |B+(si)| ≤ |B+(v′′)| ≤ 6. Therefore, there must be

at least one separate vertex, say, sv, which is connected to a non-separate one,
say, sv. Now, |B+(vi)| ≤ 7 and thus si = vi. In the following, we assume that
|B+(vi)| = 7. Here there are only two cases as illustrated in Fig. 3.

(Case 1) See Fig. 3(a). Suppose that δi = 1 and thus |SV (si)| = 0. Then,
there is at least one separate vertex sv which is connected to u1, u2 or w1 but
not connected to any in

∑�
j=i+1 B+(sj). If distG(sv, w1) = 1, then |B+(si)| =

|B+(vi)| ≤ |B+(w1)| ≤ 5. If distG(sv, u1) = 1 (or equivalently, distG(sv, u2) =
1), then u1 must be connected to one of {u2, u3, v}. If distG(u1, u2) = 1, then
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Fig. 3. Two cases in the proof of Lemma 5.

|B+(si)| = |B+(vi)| ≤ |B+(u1)| ≤ 5. Moreover, if distG(u1, u3) = 1 and
distG(u2, w1) = 1, then |B+(si)| = |B+(vi)| ≤ |B+(u1)| ≤ 6. If distG(u1, u3) = 1
and distG(u2, v) = 1, then distG(v, w1) = 1 must hold and thus the graph is iden-
tical to SG4. As a result, this lemma holds. Now, suppose that δi ≥ 2, and there
are at least two separate vertices, say, sv1 and sv2, which are connected to differ-
ent two vertices in {u1, u2, w1}. Suppose that distG(u1, sv1) = distG(u2, v2) = 1.
If v is connected to both u1 and u2, then |B+(si)| = |B+(vi)| ≤ |B+(u1)| ≤ 5. If
v is connected to u1 (or u2) and w1, then |B+(si)| = |B+(vi)| ≤ |B+(u1)| ≤ 6.
Therefore, this lemma holds.

(Case 2) See Fig. 3(b). First, without loss of generality, let u1 be the
non-separate vertex which is connected to vertices in D2(si) \ ⋃i−1

j=1 B(sj). If
distG(u1, u2) = 1, then |B+(u1)| ≤ 5 < 6, and thus this lemma holds. Next,
consider the case distG(u1, w1) = 1. Note that distG(u1, w2) = 1 is essentially
equivalent to distG(u1, w1) = 1. There are two cases: (2-1) δi = 1 and (2-
2) δi ≥ 2. (2-1) If δi = 1, then |SV (si)| = 0. One can see that w2 cannot be
connected to u2 since such a graph is SG1 or SG2. Now suppose that w1 is
not connected to any in B+(vi) ∩ D2(vi). Then, w1 must have two neighbors
in

⋃i−1
j=1 B(sj) and hence |B+(w1)| ≤ 6. Therefore, w1 must be connected w2

and another vertex in
⋃i−1

j=1 B(sj), which implies that |B+(w1)| ≤ 6. (2-2) The
condition δ ≥ 2 means that there are two far separate vertices for B+(si).
If only one vertex in B+(si) is connected to those far separate vertices, then
|B+(u)| ≤ 4 and thus |B+(vi)| ≤ 4, which is a contradiction. Therefore, we
assume that two far separate vertices, sv1 and sv2, are connected two vertices in
D2(vi)∩B+(vi), i.e., one to one. Note that two vertices in D2(vi)∩B+(vi) cannot
be connected to vertices in

⋃i−1
j=1 B(sj). The essentially different cases we have

to consider are: (i) distG(sv1, u1) = distG(sv2, u2) = 1, and (ii) distG(sv1, u2) =
distG(sv2, w1) = 1. (i) distG(sv1, u1) = distG(sv2, u2) = 1. If distG(u1, u2),
then |B+(u1)| ≤ 4. If distG(u1, w1) = 1, then u2 must be connected to w1

since the graph with distG(u2, w2) = 1 is identical to SG2 or SG3. There-
fore, |B+(u2)| ≤ 5, contradiction. (ii) distG(sv1, u2) = distG(sv2, w1) = 1.
The similar arguments to the above ones can be applied and details are
omitted here. �
Corollary 1. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. Then,
if |B+(si)| = 7, then |SV (si)| ≥ δi is satisfied.
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Proof. From Lemma 5, the iteration when si is selected must be positive, i.e.,
|SV (si)| ≥ δi hold from the definition. �
Lemma 6. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. If
|B+(si)| ≥ 5, then δi ≤ βi, where βi = |D2(si) ∩ B+(si)|.
Proof. Suppose for contradiction that δi > βi. Since δi edges are incident with
βi vertices, there must exist one vertex, say, u ∈ D2(vi) \ ⋃i−1

j=1 B(sj) which is
the endpoint of at least two of δi edges, i.e., the vertex u is connected to at
least two far separate vertices. Furthermore, they cannot be connected to any
vertex in B+(sj) for i < j ≤ �. One can verify that |B+(u)| ≤ 4 holds for
the vertex u. Since ALG selects vi such that |B+(vi)| is minimum as the first
candidate, |B+(vi)| ≤ |B+(u)| ≤ 4 must holds for vi, which is a contraction to
the assumption that |B+(si)| ≥ 5. As a result, δi ≤ βi. �
Lemma 7. Suppose that si ∈ D3IS(G) is selected in Phase 2 of ALG. Then,
(1) if |B+(si)| = 6 or (2) |B+(si)| = 5, then |SV (si)|−δi ≥ −2. (3) If |B+(si)| =
4, then |SV (si)| − δi ≥ −4. (The proof is omitted.)

In the following, we assume that ALG selects �1 vertices, s1 through s�1 ,
and �2 vertices, s�1+1 through s�1+�2 , into D3IS(G) in Phase 1 and Phase 2,
respectively. That is, � = �1+�2. Let ik denote the number of the solution vertices
si such that |B+(si)| = k for 5 ≤ k ≤ 8. Also, let i≤4 denote the number of the
solution vertices si such that |B+(si)| ≤ 4. Let SV ′(ALG) =

⋃�
i=�1+1 SV (si)

and SV ′
near(ALG) =

⋃�
i=�1+1 SVnear(si). Then, if Phase 1 is executed (i.e., at

least one special subgraph is included in the input graph G), then let p be the
number of vertices which are put into B in Phase 1 and connected to vertices
in

⋃�
i=�1+1 B+(si); otherwise, i.e., if no special subgraphs are not included in G

and thus Phase 1 is not executed, then let p be equal to |SV (s1)|.
Lemma 8. (1) If Phase 1 of ALG is not executed, then |SVnear(ALG)| ≥ p +
4i8 − 2i6 − 3i5 − 4i≤4 is satisfied. (2) Suppose that Phase 1 is executed and
si ∈ D3IS(G) is selected in Phase 2 for �1 +1 ≤ i ≤ �. Then |SV ′

near(ALG)| ≥
p + 4i8 − 2i6 − 3i5 − 4i≤4 is satisfied.

Proof. (1) We first assume that Phase 1 is not executed. Since |SVnear(ALG)| =
|SV (ALG)| − |SVfar|, it satisfies |SVnear(ALG)| = |SV (ALG)| − |SVfar| ≥∑�

i=1 |SV (si)|−
∑�

i=1 δi =
∑�

i=1(|SV (si)|−δi). By Lemmas 4 and 7, and Corol-
lary 1, we can know

∑�
i=1(|SV (si)| − δi) ≥ (|SV (s1)| − 0) +

∑�
i=2(|SV (si)| −

δi) ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4. (2) Suppose that Phase 1 is executed and
si ∈ D3IS(G) is selected in Phase 2 for �1 +1 ≤ i ≤ �. Then, |SV ′

near(ALG)| =
(p + |SV ′(ALG)|) − |SVfar| ≥ p +

∑�
i=�1+1(|SV (si)| − δi). By Lemmas 4 and 7,

and Corollary 1, |SV ′
near(ALG)| ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4. This completes the

proof of this lemma. �
Corollary 2. (1) If Phase 1 of ALG is not executed, then it satisfies 4i8 ≤ 9�+
1+2i6+3i5+4i≤4−n−p. (2) Suppose that Phase 1 is executed and si ∈ D3IS(G)
is selected in Phase 2 for �1 + 1 ≤ i ≤ �. Let n2 = |⋃�

i=�1+1 B+(si)|. Then,
4i8 ≤ 9�2 + 2i6 + 3i5 + 4i≤4 − n2 − p is satisfied.
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Proof. (1) Suppose that Phase 1 is not executed. From Lemma 8,∑�
i=1(|B∗(si)| − |B+(si)|) ≥ |SVnear(ALG)| ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4. Since

|B∗(si)| ≤ 9 holds for i ≥ 2 from Lemma 2, 10+9(�−1) ≥ |B+(s1)|+9(�−1)−n ≥
p+4i8−2i6−3i5−4i≤4 and we can obtain the inequality 4i8 ≤ 9�+1+2i6+3i5+
4i≤4 − n − p. (2) Suppose that Phase 1 is executed. From Lemma 8, we know∑�

i=�1+1(|B∗(si)|− |B+(si)|) ≥ |SV ′
near(ALG)| ≥ p+4i8 −2i6 −3i5 −4i≤4. Fur-

thermore, since |B∗(si)| ≤ 9 holds for i ≥ 2 from Lemma 2, the following inequal-
ity holds: 9�2 − n2 ≥ ∑�

i=�1+1(|B∗(si)| − |B+(si)|) ≥ p + 4i8 − 2i6 − 3i5 − 4i≤4.
Hence, we get 4i8 ≤ 9�2 + 2i6 + 3i5 + 4i≤4 − n2 − p. �
Theorem 1. ALG achieves an approximation ratio of 1.875 + O( 1

n ).

Proof. We need to investigate the following three situations: (1) 1 ≤ �1 < �,
i.e., both Phase 1 and Phase 2 are executed, (2) �1 = 0, i.e., Phase 1 is not
executed, and (3) �1 = �, i.e., Phase 2 is not executed. (1) One can see that
7.5�1 +8i8 +7i7 +6i6 +5i5 +4i≤4 ≥ n holds. From � = �1 + i8 + i7 + i6 + i5 + i≤4,
we obtain 4� + i5 + 2i6 + 3i7 + 4i8 + 3.5�′ ≥ n. Furthermore, since i7 = � − �1 −
i8 − i6 − i5 − i≤4 holds, we get 4� + i5 + 2i6 + 3(� − �1 − i8 − i6 − i5 − i≤4) +
4i8 + 3.5�1 ≥ n. That is, 7� − 2i5 − i6 − 3i≤4 + i8 + 0.5�1 ≥ n holds. Recall that
4i8 ≤ 9�2 + 2i6 + 3i5 + 4i≤4 − n2 − p as shown in Corollary 2. Since �2 = � − �1
and n2 ≥ n − 7.5�1, we get 4i8 ≤ 9� + 2i6 + 3i5 + 4i≤4 − n − 1.5�1 − p. Since
�1 ≤ � − 1, we obtain � ≥ (5n + 1.5)/37.5 > n/7.5. (2) �2 = � and n2 = n.
Obviously, p ≥ 1. From |B+(s1)| ≤ 10 and the definitions on ik, 10 + 8i8 + 7i7 +
6i6 + 5i5 + 4i≤4 ≥ |B+(s1)| + 8i8 + 7i7 + 6i6 + 5i5 + 4i≤4 ≥ n holds. Note that
1 + i8 + i7 + i6 + i5 + i≤4 = �. Hence, we obtain 7� + i8 − 2i5 − i6 − 3i≤4 + 3 ≥ n.
From Corollary 2, 7� + (9� + 2i6 + 3i5 + 4i≤4 − n)/4 − 2i5 − i6 − 3i≤4 + 3 ≥ n
holds. Therefore, we obtain � ≥ (5n − 12)/37 > (5n − 12)/37 ≥ n/7.5 − 12/37.
(3) From Lemma 3, � ≥ n/7.5. Since |OPT (G)| ≤ n

4 holds from Proposition 1,
ALG achieves the approximation ratio of 1.875 + O(1/n). �
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Abstract. In many scientific and engineering applications, there are
occasions where points need to be inserted uniformly onto a sphere.
Previous works on uniform point insertion mainly focus on the offline
version, i.e., to compute N positions on the sphere for a given interger
N with the objective to distribute these points as uniformly as possible.
An example application is the Thomson problem where the task is to
find the minimum electrostatic potential energy configuration of N elec-
trons constrained on the surface of a sphere. In this paper, we study the
online version of uniformly inserting points on the sphere. The number
of inserted points is not known in advance, which means the points are
inserted one at a time and the insertion algorithm does not know when
to stop. As before, the objective is achieve a distribution of the points
that is as uniform as possible at each step. The uniformity is measured
by the gap ratio, the ratio between the maximal gap and the minimal
gap of any pair of inserted points. We give a two-phase algorithm by
using the structure of the regular dodecahedron, of which the gap ratio
is upper bounded by 5.99. This is the first result for online uniform point
insertion on the sphere.

1 Introduction

In this paper, we consider the problem of inserting points onto the sphere such
that the inserted points are as uniformly spaced as possible. There are many
applications, e.g., the Thomson problem [13] which was introduced by the physi-
cist Sir Joseph John Thomson in 1904; the objective is to determine the config-
uration of N electrons on the surface of a unit sphere that minimizes the elec-
trostatic potential energy, which translates directly into the problem of placing
N points on the surface of the sphere as uniformly as possible. The minimum
energy configuration of the Thomson problem and other configurations with

c© Springer International Publishing AG 2017
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uniform point distribution on the unit sphere play important roles in many sci-
entific and engineering applications [3,6,8,9], e.g., 3D projection reconstruction
of Computed Tomography (CT) or Magnetic Resonance Images (MRI).

From the perspective of computer science, the traditional Thomson problem
is offline, i.e., the number of points is known in advance and the objective is to
place these points on the sphere as uniformly as possible. Inserting points in an
online fashion is also an interesting problem, which might have its application
in real life. An example is to assign an unknown number of volunteers as they
show up to an area where a rescue mission is in progress. In the online version,
the points are inserted over a time span, and the strategy has no idea about the
number of points to be inserted. The position of a point cannot be changed after
it has been inserted.

Any solution to the online problem is to be measured by the uniformity of
the distribution of the points. There are several ways to define the uniformity
of a set of points. Some studies define the uniformity according to the minimal
pairwise distance [7,11]. In discrepancy theory [5,10], uniformity is defined as
the ratio between the maximal and minimal number of points in a fixed shape
within the area. In this paper, uniformity is defined to be the gap ratio, which
is the ratio between the maximal gap and the minimal gap between any pair of
points.

Formally, let S be the surface of a 3-dimensional unit sphere. The task is
to insert a sequence of points onto S. Let pi be the i-th point to be inserted
and Si = {p1, . . . , pi} be the configuration in S after inserting the i-th point.
In configuration Si, let the maximal gap be Gi = maxp∈Sminq∈Si

2· �

d (p, q),

the minimal gap be gi = minp,q∈Si,p�=q

�

d (p, q), where
�

d (p, q) is the spherical
distance between points p and q, i.e., the shortest distance along the surface of the
sphere from p to q. In other words, the maximal gap is the spherical diameter of
the largest empty circle while the minimal gap is the minimal spherical distance
between two inserted points. We call ri = Gi/gi the i-th gap ratio. The objective
is to insert points onto S as uniformly as possible so that the maximal gap ratio
(min maxi ri) during the insertion of the whole set of points is minimized.

The problem of uniformly inserting points in a given area has been studied
before. Teramoto et al. [12] and Asano and Teramoto [2] showed that the Voronoi
insertion is a good strategy on the plane; moreover, the gap ratio of the Voronoi
insertion is proved to be at most 2. They also studied insertion onto a one-
dimensional line; if the algorithm knows the number n of the points to be
inserted, an insertion strategy with maximal gap ratio 2�n/2�/(�n/2�+1) can be
derived. If the points must be inserted at the fixed grid points, Asano [1] gave an
insertion strategy with uniformity 2 for the one dimensional case. For insertion
on two-dimensional grid, Zhang et al. [14] proved the lower bound to be at least
2.5 and gave an algorithm with the maximal gap ratio 2.828. Recently, Bishnu
et al. [4] considered some variants and measurements of the insertion on the
Euclidean space.

In the remainder of this paper, we present a strategy for online inserting
points uniformly onto the surface of a sphere with a maximal gap ratio of no
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more than 5.99. This is the first result for the problem of online insertion of
points on sphere.

2 Point Insertion Strategy

A simple intuitive idea is to greedily insert the incoming point at the “center”
of the largest empty spherical surface area. The early steps of such a greedy
approach are simple; however, when many points have been inserted, the shapes
of different local structures may vary significantly and the configuration may
become very complicated. As a result, the computational cost of finding the
largest empty spherical surface area and then computing its center may become
prohibitive.

Observe that once some points have been inserted, the sphere is partitioned
into local structures and the next point insertion within the area of some local
structure will only affect the local configuration, i.e., the spherical distances
(including the max gap and min gap) outside this area do not change. Based on
this observation, a two-phase strategy can be devised. In the first phase, we use
a polyhedron to approximate the sphere and points are inserted at the vertices
of the polyhedron. After all vertices of the polyhedron are occupied, the second
phase starts. In the second phase, we recursively compute the point positions
in all faces of the polyhedron, and the inserted points on the sphere are the
projections of these positions onto the sphere.

As mentioned before, the computation cost of the simple greedy approach
is large due to the complicated local structures on the sphere when the a large
number of points have been inserted. In this paper, a regular dodecahedron
is used to simulate the shape of the sphere. A regular dodecahedron has twelve
identical regular pentagonal faces and twenty vertices. In the first phase, handling
the insertion of twenty points on the sphere is quite straightforward and the gap
ratio is not large. The main advantage of the regular dodecahedron lies in the
processing of the second phase. Since all faces of the decahedron are identical,
we only need to consider how to insert points onto the sphere with respect to a
regular pentagon. When the number of points inserted increases, the refinement
of the regular pentagon contains local structures which can be categorized as
three types (see Sect. 2.2). Then according to these three types of local shapes, we
can impose a recursive procedure to compute the next point insertion positions.

Since changing the radius of the sphere does not affect the gap ratio, for the
convenience of computation, we assume that the radius of the sphere is

√
3. Thus,

the length of each edge of the corresponding regular dodecahedron is 4√
5+1

. In
the following, we give the details of the two phases of our algorithm.

2.1 The First Phase

In our strategy, the sphere can be divided into 12 sections by projecting the
20 vertices and all edges of the regular dodecahedron onto the sphere, as
shown in Fig. 1. On the dodecahedron, eight orange vertices with coordinates
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(±1, ±1, ±1) form a cube (dotted lines). Let O be the center of the cube and
let φ = (1 +

√
5)/2 ≈ 1.618 be the golden ratio. Four green vertices lying at

(0, ±1/φ, ±φ) form a rectangle on the yz-plane. Four blue vertices lying at
(±1/φ, ±φ, 0) form a rectangle on the xy-plane. Four pink vertices lying at
(±φ, 0, ±1/φ) form a rectangle on the xz-plane.

Fig. 1. Vertex distribution of the regular dodecahedron. (Color figure online)

The insertion strategy of the twenty points is as follows.

1. First insert eight points at orange vertices with coordinates (±1, ±1, ±1), i.e.,
the vertices of the cube (A,B,C,D,A1, B1, C1,D1). The order of the inserted
points is A, C1, followed by an arbitrary order of the remaining 6 points.

2. Then insert the remaining twelve points in any arbitrary order.

Lemma 1. During the insertion at the first eight vertex points of the dodecahe-
dron, the gap ratio is no more than 2.55.

Proof. After the insertion of two points at A and C1, the maximal gap and the
minimal gap are both the spherical distance between these two points, i.e.,

G2 = g2 =
�

d (A,C1).

In this case, the gap ratio r2 = 1.
Note that the radius of the sphere is

√
3. Arbitrarily choose any one of the

remaining six points, w.l.o.g., say B. After the insertion at B, the maximal gap
is still G3 =

�

d (A,C1) =
√

3π while the minimal gap decreases to g3 =
�

d (A,B),
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which is the value of
√

3∠AOB. Since |OA| = |OB| =
√

3 and |AB| = 2,
∠AOB = 2 · arcsin(

√
3
3 ) = 1.231 and g3 = 2.132. Thus, the gap ratio r3 =

G3/g3 = 2.55.
After inserting any other points in this sub-phase, the value of the minimal

gap does not change while the value of the maximal gap may decrease. After all
the eight points have been inserted, the maximal gap

G8 =
√

3 · ∠AOB1 = 3.309

while the minimal gap g8 = g3. Thus at this stage, the gap ratio is G8/g8 = 1.55.
Hence, the maximal gap ratio for inserting the first eight points is 2.55. ��
Now we analyze the gap ratio for inserting the remaining twelve points at

the vertices of the dodecahedron.

Lemma 2. During the process of inserting the remaining twelve vertex points
of the dodecahedron, the maximal gap ratio for the sphere is at most 2.615.

Proof. W.l.o.g., assume that the first point inserted in this sub-phase is E, and
thus the minimal gap g9 =

�

d (A,E). At this stage, since all eight points on the
cube have been inserted, the maximal gap G9 =

�

d (A,B1) = 3.309.

g9 =
√

3 · 2 · arcsin
|AE|/2

R
=

√
3 · 2 · arcsin

2
(
√

5 + 1)
√

3
= 1.264.

Thus, the gap ratio

r9 =
G9

g9
= 2.618.

For the remaining eleven points in this sub-phase, the minimal gap will not
decrease while the maximal gap will not increase. Hence, the maximal gap in
this sub-phase is at most 2.615. ��
Lemma 3. The maximal gap ratio in the first phase is 2.618.

2.2 The Second Phase

After all the vertices on the dodecahedron have been inserted, the second phase
begins. As mentioned before, the regular dodecahedron has some good property
and consequently, further point insertions can be done recursively on the sphere
with respect to the corresponding structures of the faces of the dodecahedron
after some points have been inserted onto them. Moreover, in our strategy, we
first compute positions on the faces of the regular dodecahedron, and the true
insertions will be done at the projected positions of these computed points on
the sphere.

By such an implementation, point insertion on the sphere is reduced to the
point insertion on the plane faces of the dodecahedron, which is much easier
to handle. However, the gap ratio on the plane (pentagon) is smaller than that
on the sphere. In the remaining part of this subsection, we first show that the
difference of the gap ratios on sphere and on plane is quite small, and then we
give the strategy of how to insert points on a pentagon.
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The Difference of the Gap Ratio. W.l.o.g., we consider point insertion
on the pentagon AJBFE. First, we consider the situation where two inserted
points are both on the sphere and on the pentagon. Since only five vertices of
the pentagon satisfy such condition, there are two cases to be examined. Let the
edge of the pentagon be �, i.e., |AJ | = �. Let O′ be the center of the pentagon
AJBFE. Since |AJ |2 = |AO′|2 + |JO′|2 − 2|AO′| · |JO′| cos(2π/5), we have
|AO′| = |JO′| = 0.85�, and |OO′| =

√
R2 − |AO′|2 = 1.11�.

– First, we consider the subsituation that the two inserted points are not adja-
cent vertices of the pentagon. W.l.o.g., let A and B denote these two inserted
points. Since the angle ∠AJB = 3π/5, we can see that |AB| = 1.618�. By the
property of the regular dodecahedron, the radius of the sphere R = 1.4�. We
then have

�

d (A,B) = R · ∠AOB = R · 2 · arcsin
|AB|
2R

= 1.231R.

Thus,
�

d (A,B)
|AB| = 1.066.

– Then we consider the subsituation that the two inserted points are adjacent
vertices of the pentagon. W.l.o.g., let A and J denote these two inserted points.
By a similar analysis, we have

�

d (A, J) = R · ∠AOJ = R · 2 · arcsin
|AJ |
2R

= 0.73R.

Thus,
�

d (A, J)
|AJ | = 1.023.

By the above analysis, we can see that for two positions that are on the
sphere, the ratio between the spherical distance and the direct distance is
monotonically increasing with respect to the corresponding subtended angle.

Next we consider the situation that both of the two inserted points lie inside
the pentagon.

As shown in Fig. 2, C and D are two points lying inside the pentagon, and
C ′ and D′ are their projections on the sphere respectively. Let |C ′D′| be the
direct distance between C ′ and D′; thus,

|C ′D′|
|CD| ≤ R

|OO′| = 1.26.

According to the previous description,
�

d (C ′,D′)/|C ′D′| ≤ �

d (A,B)/|AB|
since with respect to the sphere, the subtended angle is maximized for A and B.

Thus,
�

d (C ′,D′)
|CD| =

�

d (C ′,D′)
|C ′D′| · |C ′D′|

|CD| ≤ 1.34.
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Fig. 2. Points on the plane and the corresponding projections on the sphere.

For any two spherical distances
�

d (A,B) and
�

d (C,D), its ratio is upper
bounded by

�

d (A,B)
�

d (C,D)
≤ 1.34 · |AB|

|CD| .

Therefore, the comparison between two spherical distances can be reduced
to the comparison between two direct distances and the ratio would not change
much.

Insertion on the Pentagon. In this part, we describe how to compute the
point insertion positions on the pentagon.

The pentagon can be recursively partitioned into smaller polygons of one
of three shapes, as shown in Fig. 3. For the pentagon AJBFE, by connecting
non-adjacent vertices, we can see that the pentagon is partitioned into eleven
parts, one smaller pentagon ajbfe, five isosceles triangles with vertex angle π

5
(Aae, Jja, Bbj, Ffb and Eef), and five isosceles triangles with vertex angle 3π

5
(AJa, JBj, BFb, FEf and EAe).

The isosceles triangles can be further partitioned into smaller isosceles trian-
gles of the above two shapes, as shown in Fig. 4. For example, in isosceles triangle
AJj, by adding the point p1, two isosceles triangles, say Jjp1 and AJp1 emerge,
which are still of the above two shapes. For isosceles triangle AeE, by adding a
point h1, AeE is partitioned into two isosceles triangles Aeh1 and Ah1E, both
of which are again of the above two shapes.

In the above description, we can see that the pentagon can be recursively par-
titioned into three types of polygons. Such property can be used in the insertion
strategy in order to reduce the complexity of the computation.

Insertion Strategy. In the insertion strategy, three queues Q1, Q2 and Q3 are
used to store these three types of shapes; for each type, the sizes of the objects in
the corresponding queue are non-increasing, where the size of a polygonal shape
is defined to be the length of its longest edge.

When a new point comes in, the following procedure applies.
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Fig. 3. The insertion in the pentagon.

(a) isosceles acute triangle (b) isosceles obtuse triangle

Fig. 4. The insertion in isosceles triangle.

– Compare the insertions on the heads of these three queues and select the one
with the largest minimal gap if the point is inserted at an appropriate position.
As shown in Fig. 3, the inserted points in pentagon AJBFE can be a, j, b, f or
e, respectively; as shown in Fig. 4(a), the inserted point in the isosceles acute
triangle AJj is p1; as shown in Fig. 4(b), the inserted point in the isosceles
obtuse triangle AeE is h1 or h2. Assume that the selected polygon is P .

– Determine the point insertion position x on the corresponding polygon P .
– Note that P is partitioned into some smaller polygons. Remove P from the

head of the queue and then add these smaller polygons at the tail of the
corresponding queues.

– Find the point insertion position X which is the projection of x onto the
sphere.

Note that when we are processing a triangle, the inserted point is on an edge
of the triangle, which is also on the edge of another triangle with the same size
and of the same type or the other type. In this case, both of these two triangles
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will be partitioned and removed from the queue, and the newly created smaller
triangles will be added at the tails of the corresponding queues.

Lemma 4. After a point is inserted in the above operation, in each of the three
queues, the sizes of the objects are still in non-increasing order.

Proof. This lemma can be proved as follows.

– First, we consider the pentagon. Initially, there are twelve pentagons with the
same size. When each of them is processed, a smaller one will appear and the
larger one will be removed from the queue. Since the queue is ordered in the
initial stage, the order property will hold at any time.

– Then we consider the isosceles triangle. Initially, the queue is empty and thus
it is ordered. After the partition of a pentagon or an isosceles triangle, if the
order does not hold, i.e., the size of the newly created polygon is larger than
the size of the tail polygon in the same queue. This means that the selection
criteria is violated. Contradiction!

Hence, this lemma follows. ��

Gap Ratio Analysis. In this part, we analyze the gap ratio of the above
strategy. Since there are three different shapes, we will study all these three
cases one by one.

– First, we consider point insertion in a pentagon; the inserted points are shown
in Fig. 3. Let O1 be the center of the pentagon AJBFE, as shown in Fig. 3.
In this case, the maximal gap is twice of |O1A|, which is the radius of the
circumcircle of the pentagon. Thus, at this stage, the maximal gap

G = 2 · |O1A| = 2 · 0.85� = 1.7�

where � is the length of the pentagon.
During the point insertion operation, the minimal gap is lower bounded by
the length of the smaller pentagon. Thus, the minimal gap g is at least

|BE| − |Ba| − |eE| = |BE| − 2 · |Ba|.

Note that the length of an edge x of a triangle XY Z can be computed by x =√
y2 + z2 − 2yz cos ∠X. After computation, we have |BE| = 1.617�, |Ba| =

0.618�. Thus, g ≥ 0.38�. Therefore, the gap ratio just after point insertion on
the pentagon is at most

G

g
· 1.34 = 5.99.

– Then we consider point insertion in an isosceles acute triangle. Since all such
isosceles acute triangles are of the same shape, after insertion, the gap ratio
will be the same too. This case can be analyzed as shown in Fig. 4(a), i.e.,
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by considering the insertion in the acute triangle AJj. Due to the selection
criteria, the maximal gap is the spherical diameter. Thus,

G =
2 · |AJ | · |Jj| · |jA|

√
(|AJ |+ |Jj|+ |jA|)(−|AJ |+ |Jj|+ |jA|)(|AJ | − |Jj|+ |jA|)(|AJ |+ |Jj| − |jA|) .

Since |AJ | = |jA| = � and |Jj| =
√|AJ |2 + |jA|2 − 2 · |AJ | · |jA| cos ∠JAj =

0.618�, we have G = 1.05�.
After insertion, the minimal gap is the distance between p1 and j, Thus,

g =
√

|Jj|2 + |Jp1|2 − 2 · |Jj| · |Jp1| cos ∠jJp1.

Note that the triangle Jjp1 is still an isosceles acute triangle with the angle
∠jJp1 = π/5, and we have g = 0.382�. Therefore, the gap ratio is at most

G

g
· 1.34 = 3.68.

– Lastly, we consider point insertion in an isosceles obtuse triangle. Similar to
the previous case, we only need to consider the insertion on the triangle AeE,
which is shown in Fig. 4(b). Since it is an isosceles obtuse triangle, the max-
imal gap is at most twice the distance |eh1|. After insertion, the triangle is
partitioned into an isosceles obtuse triangle Aeh1 and an isosceles acute tri-
angle Ah1E. In this case, the minimal gap is the distance between e and h1,
i.e., |eh1|. Thus, the gap ratio at this stage is at most

G

g
· 1.34 ≤ 2.68.

Combining all the above cases, we have the following concluding theorem.

Theorem 1. The maximal gap ratio of the insertion strategy is at most 5.99.

3 Conclusion and Discussion

Uniform insertion of points is an interesting problem in computer science. With
the help of the dodecahedron and the pentagon, we give a two-phase insertion
strategy with gap ratio of no more than 5.99 in the paper.

Is it possible to further reduce the gap ratio by using other structures? How
about some regular simpler structure, e.g., isocahedron? If we split the isocahe-
dron into four congruent sub-triangles regularly, the gap ratio will be larger since
the newly inserted points are on the side of the isocahedron. From the definition,
the maximal gap is the spherical diameter of the largest empty circle while the
minimal gap is the minimal spherical distance between two inserted points. So,
if points are inserted on the side of some configuration, the ratio might be not
good.
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Computing the Center Region and Its Variants
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Abstract. We present an O(n2 log4 n)-time algorithm for computing
the center region of a set of n points in the three-dimensional Euclidean
space. This improves the previously best known algorithm by Agarwal,
Sharir and Welzl, which takes O(n2+ε) time for any ε > 0. It is known
that the complexity of the center region is Ω(n2), thus our algorithm is
almost tight.

The second problem we consider is computing a colored version of
the center region in the two-dimensional Euclidean space. We present an
O(n log4 n)-time algorithm for this problem.

1 Introduction

Let P be a set of n points in R
d. The (Tukey) depth of a point x in R

d with
respect to P is defined to be the minimum number of points in P contained in
a closed halfspace containing x. A point in R

d of largest depth is called a Tukey
median. The Tukey median is a generalization of the standard median in the
one-dimensional space to a higher dimensional space.

Helly’s theorem implies that the depth of a Tukey median is at least �n/(d+
1)�. In other words, there always exists a point in R

d of depth at least �n/(d+1)�.
Such a point is called a centerpoint of P . We call the set of all points in R

d of
depth at least �n/(d + 1)� the center region of P .

The Tukey median and centerpoint are considered as alternative concepts
of the center of points. They are robust against outliers and do not rely on
distances. Moreover, they are invariant under affine transformations [4].

In this paper, we consider two problems. The first problem is computing the
center region of points in R

3. Previously, Agarwal, Sharir and Welzl presented
an algorithm for this problem which takes O(n2+ε) time for any ε > 0 [3]. The
constant hidden in the big-O notation is proportional to ε. Moreover, as ε goes
to 0, the constant goes to infinity. We present an algorithm for this problem
which takes O(n2 log4 n) time, improving the algorithm by Agarwal, Sharir and
Welzl. It answers an open problem given in this paper.

Then we consider a colorful center region, in which each point has exactly
one color among k ∈ N colors. We represent each color as an integer between

This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by
the government of Korea.

c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 254–265, 2017.
DOI: 10.1007/978-3-319-53925-6 20



Computing the Center Region and Its Variants 255

1 and k. Then the colorful (Tukey) depth of x in R
d is naturally defined to be

the minimum number of different colors of points contained in a closed halfspace
containing x. A colorful Tukey median is a point in R

d of largest colorful depth.
The colorful depth and the colorful Tukey median have some properties simi-

lar to the (standard) depth and Tukey median. We prove that the colorful depth
of a colorful Tukey median is at least �k/(d + 1)�. Then the colorful centerpoint
and colorful center region are defined naturally. We call a point in R

d with col-
orful depth at least �k/(d + 1)� a colorful centerpoint. The set of points of all
colorful centerpoints is called the colorful center region.

Previous Work. In R
2, the first nontrivial algorithm for computing a Tukey

median is given by Matousěk [8]. Their algorithm computes the set of all points
of Tukey depth at least a given value as well as a Tukey median. The algorithm
takes O(n log5 n) time for computing a Tukey median and O(n log4 n) time for
computing the region of Tukey depth at least a given value.

Although it is the best known algorithm for computing the region of Tukey
depth at least a given value, a Tukey median can be computed faster. Langerman
and Steiger [7] present an algorithm to compute a Tukey median of points in R

2

in O(n log3 n) deterministic time. Later, Chan [4] gave an algorithm to compute
a Tukey median of points in R

d in O(n log n + nd−1) expected time.
A centerpoint of points in R

2 can be computed in linear time [5]. On the
other hand, it is not known whether a centerpoint of points in R

d for d > 2
can be computed faster than a Tukey median. Note that a Tukey median is a
centerpoint.

The center region of points in R
2 can be computed using the algorithm

by Matousěk [8]. For R
3, Agarwal, Sharir and Welzl present an O(n2+ε)-time

algorithm for any ε > 0 [3]. However, it is not known whether the center region
of points in R

d can be computed efficiently for d > 3.
All these results consider every input point to be identical, except for its

position. Now, suppose that there are k different types of facilities and we have
n facilities of these types. Then the standard definitions of the center of n points
including centerpoints, center regions, and Tukey medians do not give a good
representative of the n facilities of these types. Motivated from this, the center
of colored points and its variants have been studied in the literature [1,2,6].

Another motivation of colored points comes from discrete imprecise data.
Suppose that we have k imprecise points and each imprecise point has a candi-
date set of points. We know that each imprecise point lies in exactly one point
in its candidate set, but we do not know the exact position. We can consider
points of the same color to be points in some candidate set.

However, the centers of colored points defined in most previous results [1,2,6]
are sensitive to distances, which are not adequate to handle imprecise data.
Therefore, a more robust definition of a center of colored points is required.
We believe that the colorful center region and colorful Tukey median can be
alternative definitions of the center of colored points.

Our Result. We present an algorithm to compute the center region of n points
in R

3 in O(n2 log4 n) time. This is faster than the previously best known algo-
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rithm [3]. Moreover, it is almost tight as the complexity of the center region is
Ω(n2) [3].

We also present an algorithm to compute the colorful center region of n points
in R

2 in O(n log4 n) time. We obtain this algorithm by modifying the algorithm
for computing the (standard) center region of points in R

2 in [5].
We would like to mention that a colorful Tukey median can be computed by

modifying the algorithms for the standard version of a Tukey median without
increasing the running times, which take O(n log n + nd−1) expected time in
R

d [4] and O(n log3 n) deterministic time in R
2 [7].

All missing proofs can be found in the full version of this paper.

2 Preliminaries

In this paper, we use a duality transform that maps a set of input points to a set
of hyperplanes. Then we transform each problem into an equivalent problem in
the dual space and handle the problem using the arrangement of the hyperplanes.
The Tukey depth is closely related to the level of an arrangement. This is a
standard way to deal with the Tukey depth [3,4,7,8]. Thus, in this section, we
introduce a duality transform and some definitions for an arrangement.

Duality Transform. A standard duality transform maps a point x ∈ R
d to the

hyperplane x∗ = {z ∈ R
d : 〈x, z〉 = 1} and vice versa, where 〈x, z〉 is the scalar

product of x and z for any two points x, z ∈ R
d. Then x lies below a hyperplane

s if and only if the point s∗ lies below the hyperplane x∗.

Level of an Arrangement. Let H be a set of hyperplanes in R
d. A point x ∈ R

d

has level i if exactly i hyperplanes lie below x (or pass through x.) Note that
any point in the same cell in the arrangement of H has the same level. For an
integer � > 0, the level � in the arrangement of H is the set of all points of level
at most �. We define the level of an arrangement of a set of convex polygonal
curves in a similar way.

3 Computing the Center Region in R
3

Let S be a set of n points in R
3. In this section, we present an O(n2 log4 n)-time

algorithm for computing the set of points of Tukey depth at least � with respect
to S for a given value �. We achieve our algorithm by modifying the algorithm
by Agarwal et al. [3].

3.1 The Algorithm by Agarwal, Sharir and Welzl

We first describe how the algorithm by Agarwal, Sharir and Welzl works. Using
the standard duality transform, they map the set S of points to a set S∗ of n
planes in R

3. Then the problem reduces to computing the convex hull of points
of the level � in the arrangement of the planes in S∗.
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Let Λ� be the level � in the arrangement of the planes in S∗. They compute a
convex polygon Kh for each plane h ∈ S∗ with the property that CH(Λ� ∩ h) ⊂
Kh ⊂ CH(Λ�) ∩ h. By definition, the convex hull of Kh’s over all planes h in S∗

is the convex hull of Λ�. Thus, once we have such a convex polygon Kh for every
plane h, we can compute the set of points of Tukey depth at least � with respect
to S∗.

To this end, they sort the planes in S∗ in the following order. Let h+ be
the closed halfspace bounded from below by a plane h, and h− be the closed
halfspace bounded from above by a plane h. We use 〈h1, . . . , hn〉 to denote the
sequence of the planes in S∗ sorted in this order. This order satisfies the following
property: for any index i, the level of a point x ∈ hi in the arrangement of S∗

is the number of halfplanes containing x among all halfplanes h+
j ∩ hi for j ≤ i

and all halfplanes h−
j′ ∩ hi for all j′ > i.

In the following, we consider each plane in S∗ one by one in this order and
show how to define and compute Kh for each plane h. Let Ki = Khi

for any i.
For h1, the convex hull of the level � in the arrangement of all lines in {h1∩ hj :

1 < j ≤ n} satisfies the property for K1. So, let K1 be the convex hull of such
points. It can be computed in O(n log4 n) time by the algorithm in [8].

Now, suppose that we have handled all planes h1, . . . , hj−1 and we have
K1, . . . ,Kj−1. Let Γj = {Ki ∩ hj : 1 ≤ i < j}. Let Rj be the convex hull of all
line segments (rays, or lines) in Γj , which is clearly contained in CH(Λ�). Then
Agarwal, Sharir and Welzl define Kj = CH(Rj ∪ (Λ� ∩hj)). Moreover, they show
that this set consists of at most two connected components. Due to this property,
they can give a procedure to compute the intersection of Kj with a given line
segment. More precisely, they give the following lemma.

Lemma 1 (Lemma 2.11. [3]). Given a triangle � ⊂ hj, the set Zj of edges
of the convex hull of Kj that intersect the boundary of �, a segment e ⊂ �, the
subset G ⊂ Hj of the m planes that cross �, and an integer u < m, such that
the level u of the arrangement of G coincides with Λ� within �, the edge of Kj

intersecting e can be computed in O(m log3(m + s)) time1.

We denote this procedure by INTERSECTION(e, Zj ,�, G, u). By applying
this procedure with inputs satisfying the assumption in the lemma, we can obtain
the edge of Kj intersecting e.

To compute the boundary of Kj , they recursively subdivide the plane hj into
a number of triangles using 1/r-nets.

In the following, we show how to compute Kj within a given triangle �
in O(m1+ε) time, where m is the number of lines in H = {hi ∩ hj : i �= j}
intersecting �. We assume that we are given a triangle �, a set of lines in
H intersecting �, a set Zj of edges of the convex hull of Kj intersecting the
boundary of �, and an integer u such that the level u of the arrangement of G
coincides with Λ� within �.
1 The authors in [3] roughly analyze this procedure and mention that this procedure
takes O(m polylog(m + s)) time. We analyze the running time of this procedure to
give a more tight bound.
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Initially, we have a (degenerate) triangle � = hj , and a set G = H =
{hi ∩ hj : i �= j} of lines, an empty set Zj , and an integer u = �.

Consider the set system (G, {{h ∈ G : h ∩ τ �= φ} : τ is a triangle}). Let
r ∈ R be a sufficiently large number. We compute a 1/r-net N ⊂ G of size
O(r log r) and triangulate every cell in the arrangement of N restricted to �.

For each side e of the triangles, we apply INTERSECTION(e, Zj ,�, G, u).
Then we can obtain partial information of Kj . Note that �′ does not intersect
the boundary of Kj for a triangle �′ none of whose edge crosses the boundary of
Kj . Therefore, it is sufficient to consider only the triangles some of whose edges
cross the boundary of Kj . There are O(|N |α(|N |)) such triangles.

Moreover, for each such triangle �′, it is sufficient to consider the lines cross-
ing �′ in G. So, let G′ be the set of all lines intersecting �′. A line lying above
�′ does not affect the level of a point in �′, so we do not need to consider it.
For a line lying below �′, the level of a point in �′ in the arrangement of G
coincides with the level of the point in the arrangement of G minus one. Thus,
let u′ be u minus the number of lines in G lying below �′. The following lemma
summarizes this argument.

Lemma 2. Consider a triangle � and a set G of lines such that the level u
of the arrangement of G coincides with Λ� within �. For a triangle �′ ⊂ �,
the level u′ of the arrangement of G′ coincides with Λ� within �, where u′ is u
minus the number of lines in G lying below �′ and G′ is the set of lines in G
intersecting �′.

By recursively applying this procedure, we can obtain Kj ∩ �. This means
that we can obtain Kj because � is initially set to hj .

Now, we analyze the running time of this procedure. Let T (m,μ) be the run-
ning time of the subproblem within �, where m is the number of lines interesting
� in G and μ is the number of vertices of Kj lying inside �. Then we have the
following recurrence inequality.

T (m,μ) ≤
∑

�′
T (

m

r
, μ′) + O(m log3(m + s) + μ)

for m ≥ Ar log r, where A is some constant independent of r. This inequality
holds because the number of lines in G intersecting a triangle �′ is O(m/r) by
the property of 1/r-nets.

Solving this inequality, we have T (m,μ) = O(m1+ε) for any constant ε >
0. Initially, we have n lines in H, thus we can compute Kj in O(n1+ε) time.
Therefore, we can compute Kj for all 1 ≤ j ≤ n in O(n2+ε) time, and compute
Λ� in the same time.

Theorem 1 (Theorem 2.10. [3]). Given a set S of n points in R
3 and an

integer � ≥ 0, the set of points of depth at least � can be computed in O(n2+ε)
time for any ε.
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3.2 Our Algorithm

In this subsection, we show how to compute Kj for an integer 1 ≤ j ≤ n in
O(n log4 n) time. This leads to the total running time of O(n2 log4 n) by replacing
the corresponding procedure in the algorithm by [3]. Recall that the previous
algorithm by Agarwal, Sharir, Welzl considers the triangles in the triangulation
of the arrangement of an 1/r-net. Instead, we consider finer triangles.

Again, consider a triangle �, which is initially set to the plane hj . We have a
set G of line segments (lines, or rays), which is initially set to H = {hj ∩hi : i �=
j}, and an integer u, which is initially set to �. We compute a 1/r-net N of the
set system defined on the lines in H intersecting � as the previous algorithm
does. Then we triangulate the cells in the arrangement of N .

(a () b () c)
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x
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Fig. 1. (a) The gray triangle is a triangle we obtained from e1 and e2. (b) If x lies
outside of �, we obtain two triangles. (c) The gray region is the convex hull of all
triangles we obtained. Any line segment intersects at most four triangles in E′.

For each side e of the triangles, we compute the edge of Kj intersecting e
by applying INTERSECTION(e, Zj ,�, G, u). Let E be the set of triangles at
least one of whose sides intersect Kj , and K be the set of edges of Kj intersect-
ing triangles in E. The previous algorithm applies this procedure again for the
triangles in E. But, our algorithm subdivides the triangles in E further.

We sort the edges in K in clockwise order along Kj . (We can do this although
we do not know Kj .) For two consecutive edges e1 and e2 in K, let x be the
intersection of two lines containing e1 and containing e2. See Fig. 1(a). Note that
both e1 and e2 intersect a common triangle �′ in E. Let h1 and h2 be two sides
of �′ intersecting e1 and e2, respectively.

If x is contained in �′, then we consider the triangle with three corners x,
e1 ∩ h1, and e2 ∩ h2. See Fig. 1(a). If x is not contained in �′, let x1 be the
intersection of the line containing e1 with the side of �′ other than h1 and h2.
See Fig. 2(b). Similarly, let x2 be the intersection of the line containing e2 with
the side of �′ other than h1 and h2. In this case, we consider two triangles; the
triangle with corners e1 ∩ h1, x1, e2 ∩ h2 and the triangle with corners x1, x2,
e2 ∩ h2.
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Now, we have one or two triangles for each two consecutive edges in K. Let
E′ be the set of such triangles. By construction, the union of all triangles in E′

contains all vertices of Kj . In other words, once we have the intersection of the
boundary of Kj with each triangles in E′, we can compute the intersection of
the boundary of Kj with �. Thus, it is sufficient to consider the triangles in E′.

For each triangle in E′, we compute the intersection of the boundary of Kj

with the triangle recursively as the previous algorithm does. For each triangle
�′ ∈ E′, we define G′ to be the set of lines in G intersecting �′. And we define
u′ to be u minus the number of line segments lying below �′. By Lemma 2, the
level u′ of the arrangement of G′ coincides with Λ� within �.

The following lemma and corollary allow us to obtain a faster algorithm. For
an illustration, see Fig. 1(c).

Lemma 3. A line intersects at most four triangles in E′.

Corollary 1. The total complexity of G′ over all triangles �′ ∈ E′ is four times
the number of line segments in G.

Now, we analyze the running time of our algorithm. We iteratively subdivide
hj using 1/r-nets until we obtain Kj . Initially, we consider the whole plane hj ,
which intersects at most n lines in H. In the ith iteration, each triangle we
consider intersects at most n/ri lines in H by the property of 1/r-nets. This
means that in O(logr n) iterations, every triangle intersects a constant number
of lines in H. Then we stop subdividing the plane. We can compute Kj lying
inside each triangle in the final iteration in constant time.

Consider the running time for each iteration. For each triangle, we first com-
pute a 1/r-net in time linear to the number of lines crossing the triangle. Then
we apply the procedure in Lemma 1 for each edge in the arrangement of the
1/r-net. This takes O(m/r2 log3 m) time, where m is the number of lines in H
crossing the triangle.

In each iteration, we have O(n) triangles, because every triangle contains at
least one vertex of Kj . Moreover, the sum of the numbers of lines intersecting
the triangles is O(n) by Corollary 1. This concludes that the running time for
each iteration is O(n log3 n).

Since we have O(logr n) iterations, we can compute Kj in O(n log4 n) time.
Recall that the convex hull of the level � of the arrangement of the n planes is
the convex hull of Kj ’s for all indices 1 ≤ j ≤ n. Therefore, we can compute the
level � in O(n2 log4 n) time, and compute the set of points of depth at least � in
the same time.

Theorem 2. Given a set of n points in R
3 and an integer � ≥ 0, the set of

points of depth at least � can be computed in O(n2 log4 n) time.

4 Computing the Colorful Center Region in R
2

Now, we consider the colored version of the Tukey depth in R
2. Let � > 0 be an

integer at most n. Let P be a set of n points in R
2 each of which has exactly
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one color from 1 to k. For each color i, we assume that there exists a point in P
which has color i.

In this section, we present an algorithm to compute the set of all points of
colorful depth at least � with respect to P . By setting � = �k/(d + 1)�, we can
compute the center region using this algorithm.

4.1 Properties of the Colorful Tukey Depth

Before describing the algorithm, we show some properties of the colorful Tukey
depth, which are analogous to properties of the (standard) Tukey depth. The
proofs in this section are similar to proofs for the standard version.

The following lemma gives a lower bound of the colorful depth of a colorful
Tukey median.

Lemma 4. The colorful depth of a colorful Tukey median is at least �k/(d+1)�.
By definition, Lemma 4 implies the following corollary. However, a colorful

centerpoint is not unique.

Corollary 2. A colorful centerpoint always exists.

4.2 A Duality Transform

Let S be a set of n points in R
2. Now, we present an algorithm to compute the

set of all points of colorful depth at least a given value � with respect to S. Our
algorithm follows the approach of the algorithm in [5]. As their algorithm does,
we use a duality of points and lines. Then our problem reduces to computing the
convex hull of a level of the arrangement of convex polygonal curves, not lines.

The standard duality transform maps a point s to a line s∗, and a line h to
a point h∗. Let S∗ = {s∗ : s ∈ S}. Each line s∗ in S∗ has the same color as s.
Now, we consider the colorful depth of a point in the dual space. We define a
colorful level of a point x ∈ R

2 with respect to S∗ to be the number of different
colors of lines lying below x or containing x. Then a point x ∈ R

2 with respect
to S has colorful depth at least � if and only if all points in the line x∗ have
colorful level at least � and at most k − �.

Note that a line in S∗ with color i lies below a point x if and only if x lies
above the lower envelope of lines in S∗ of color i. With this property, we can
give an alternative definition of the colorful level. For each color i, we consider
the lower envelope Ci of lines in S∗ which have color i. The colorful level of a
point x ∈ R

2 is the number of lower envelopes Ci lying below x or containing x.
In other words, the colorful level of a point with respect to P ∗ is the level of the
point with respect to the set of the lower envelopes Ci for i = 1, . . . , k.

Thus, in the following, we consider the arrangement of the lower envelopes Ci

for i = 1, . . . , k. A cell in this arrangement is not necessarily convex. Moreover,
this arrangement does not satisfy the property in Lemma 4.1 of [8]. Thus, the
algorithm in [8] does not handle the colored version directly.
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Let L� be the set of points in R
2 of colorful level at most �. Similarly, let

U� be the set of points in R
2 of colorful level at least �. By definition, a point

of colorful depth at most � belongs neither to L� nor to Uk−�. Moreover, such a
point lies outside of both the convex hull of L� and the convex hull of Uk−�.

Thus, once we have the convex hull of L� and the convex hull of Uk−�, we
can compute the set of all points of colorful depth at most � in linear time. In
the following, we show how to compute the convex hull of L�. The convex hull
of Uk−� can be computed analogously.

4.3 Computing the Intersection of a Line and a Convex Hull

Let h be a vertical line in R
2. In this subsection, we give a procedure to compute

the intersection of h and the convex hull of L�. This procedure is used as a
subprocedure of the algorithm in Sect. 4.4. We slightly modify the procedure by
Matousěk [8], which deals with the standard (noncolored) version of the problem.
Let CH(L�) be the convex hull of L�.

We apply the two-level parametric search by Megiddo [9]. In the first level,
we check whether a point x in h lies above CH(L�) or not. This procedure is
used as a subprocedure in the second level. In the second level, we compute the
intersection of h and CH(L�).

Lemma 5. It can be checked in O(n log n+k log2 n) time whether a given point
x lies above the convex hull of L�. In addition, we can compute the lines tangent
to CH(L�) passing through x in the same time.

Lemma 6. Given a vertical line h, the intersection of h and CH(L�) can be
computed in O(min{n log3 n, n log2 n + k log4 n}) time.

4.4 Computing the Convex Hull of L�

We are given a set of k polygonal curves (lower envelopes) of total complexity
O(n) and an integer �. Let C be the set of the line segments which are the edges
of the k polygonal curves. Recall that L� is the set of points of colorful level at
most �. That is, L� is the set of points lying above (or contained in) at most �
polygonal curves. In this subsection, we give an algorithm to compute the convex
hull of L�.

Basically, we subdivide the plane into O(n) vertical slabs such that the inte-
rior of each vertical slab does not contain any vertex of the k polygonal curves.
We say a vertical slab is elementary if its interior contains no vertex of the
k polygonal curves. Let A be an elementary vertical slab and QA be the set
of the intersection of A with the line segments in C intersecting A. That is,
QA = {e ∩ A : e ∈ C and e ∩ A �= φ}.

Consider the arrangement of the line segments in QA restricted to A. See
Fig. 2(a). Let CH(L�,A) denote the convex hull of points of level at most � in this
arrangement. Note that CH(L�,A) is contained in CH(L�) ∩ A, but it does not
coincide with CH(L�) ∩ A.
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Fig. 2. (a) CH(L�)∩ A coincides with the convex hull of x1, x2, and CH(L�,A). (b) We
put e1 only to Q′

A2 and e2 to both sets.

By the following observation, we can compute CH(L�) ∩ A once we have
CH(L�,A).

Observation 1. The intersection of the boundary of CH(L�) with A coincides
with the convex hull of x1, x2, and CH(L�,A), where x1 and x2 are the intersec-
tions of CH(L�) with the vertical lines bounding A.

The subdivision of R2 with desired property is trivial. We consider all ver-
tical lines passing through endpoints of the line segments in C. However, the
total complexity of QA over all slabs A is Ω(n2). To obtain a near-linear time
algorithm, we have to avoid considering all line segments in QA. We will choose
a subset Q′

A of QA and a value �′ such that CH(L�)∩A coincides with the convex
hull of the level �′ with respect to Q′

A, and the total complexity of Q′
A is linear.

In the following, we show how to choose Q′
A for every elementary slab.

Subdividing the Region into Two Vertical Slabs. Initially, the subdivi-
sion of R2 is the plane itself. We subdivide each region further. After O(log n)
iterations, every region in the subdivision is elementary. While we subdivide a
region, we choose a set Q′

A for every region A. In the final subdivision, such a
set satisfies the desired property.

Now, we consider a vertical slab A. Assume that we already have Q′
A and a

level �′ for A. We assume further that we already have the intersection points
x1 and x2 of CH(L�) with the vertical line bounding A. We will compute the
convex hull CH(L�′,A) of the level �′ of the arrangement of Q′

S recursively.
We find the vertical line hmed passing through the median of the endpoints of

line segments in C with respect to their x-coordinates in O(n) time. The vertical
line subdivides the slab A into two subslabs. Let A1 be the subslab lying left to
the vertical line, and A2 be the other subslab. We compute CH(L�′,A) ∩ hmed by
applying the algorithm in Lemma 6 in O(min{N log3 N,N log2 N + k log4 N} =
O(N log3 N) time, where N = |Q′

A|. We denote the intersection point by x.
While computing x, we can obtain the slope τ of the edge of CH(L�) containing
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x. (If x is the vertex of the convex hull, we can obtain the slope τ of the edge
lying left to x.) See Fig. 2(b).

We show how to compute two sets Q′
A1

,Q′
A2

and two integers �′
1, �

′
2 such that

CH(L�′,A) is the convex hull of CH(L�′
1,A1) and CH(L�′

2,A2), where CH(L�′
t,At

) is
the convex hull of the level �′

t in the arrangement of Q′
At

for t = 1, 2. The two
sets are initially set to be empty, and two integers are set to be �′. Then we
consider each line segment s in Q′

A. If s is fully contained in one subslab At,
then we put s only to Q′

At
.

Otherwise, s intersects hmed. If s lies above x, then we compare the slope
of s and τ . Without loss of generality, we assume that τ ≥ 0. If the slope of s
is larger than τ , CH(L�′,A) ∩ S2 does not intersect s. Thus, a point of level at
most �′ in the arrangement of Q′

A restricted to A2 has level at most �′ in the
arrangement of Q′

A \ {s} restricted to A2. This means that we do not need to
put s to Q′

A2
. We put s only to Q′

A1
. The case that the slope of s is at most τ

is analogous.
Now, consider the case that s lies below x. If both endpoints are contained

in the interior of S, we put s to both Q′
A1

and Q′
A2

. Otherwise, s crosses one
subslab, say A1. In this case, we put s to Q′

A2
. For A1, we check whether s lies

below the line segment connecting x1 and x. If so, we set �′
1 to �′

1 − 1 and do not
put s to the set for A1. This is because CH(L�′,A) contains s. Otherwise, we put
s to the set for A1.

After considering every line segment in Q′
A, we have two sets Q′

At
and two

integers �t for t = 1, 2. The line segments in Q′
At

with the same color form a
convex polygonal curve. However, the endpoints of each convex polygonal curve
do not necessarily lie on the lines bounding At. We remove the part of the
line segments lying outside of At. For a convex polygonal curve some of whose
endpoints lie in the interior of At, we extend such an endpoint a in the direction
opposite to the edge of the curve incident to a until it hits the boundary of At.
Then the endpoints of each convex polygonal curves obtained from the updated
set At lie on the lines bounding At.

Moreover, these sets and integers satisfy the following. CH(L�′,A) is the con-
vex hull of CH(L�′

1,A1) and CH(L�′
2,A2), where CH(L�′

t,At
) is the convex hull of

the level �′
t in the arrangement of Q′

At
for t = 1, 2. Thus, we can recursively

compute CH(L�′
1,A1) and CH(L�′

2,A2) and merge them to obtain CH(L�′,A).
We analyze the running time of the procedure. In the ith iteration, each ver-

tical slab in the subdivision contains at most n/2i endpoints of the line segments
in C. Thus, we can complete the subdivision in O(log n) iterations.

Each iteration takes O(
∑

j nj log3 nj) time, where nj is the complexity of
Q′

Aj
for the jth slab Aj . By construction, each line segment in C is contained

in at most two sets Q′
A and Q′

A′ for two vertical slabs A and A′ in the same
iteration. Therefore, each iteration takes O(

∑
j nj log3 nj) = O(n log3 n) time,

except for the final iteration.

Computing the Convex Hull Inside an Elementary Vertical Slab. In the
final iteration, we have O(n) elementary vertical slabs. Each elementary vertical
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slab has a set of line segments whose total complexity is O(n). In addition, each
elementary vertical slab has an integer. For each elementary vertical slab with
integer �′, we have to compute the convex hull of the level �′ in the arrangement
of its line segments.

Matousěk [8] gave an O(n log4 n)-time algorithm to compute the convex hull
of the level � in the arrangement of lines. In our problem, we want to compute
the convex hull of the level � in the arrangement of lines restricted to a vertical
slab. The algorithm in [8] works also for our problem (with modification). This
modification is straightforward, so we omit this procedure.

Lemma 7. The convex hull of L� can be computed in O(n log4 n) time.

Theorem 3. Given a set P of n colored points in R
2 and an integer �, the

set of points of colorful depth at most � with respect to P can be computed in
O(n log4 n) time.

Corollary 3. Given a set P of n colored points in R
2, the colorful center region

of P can be computed in O(n log4 n) time.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop,
B., Sacristán, V.: Smallest color-spanning objects. In: Heide, F.M. (ed.) ESA
2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001). doi:10.1007/
3-540-44676-1 23

2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: The farthest color Voronoi diagram and related problems. Technical
report, University of Bonn (2006)

3. Agarwal, P.K., Sharir, M., Welzl, E.: Algorithms for center and tverberg points.
ACM Trans. Algorithms 5(1), 1–20 (2008)

4. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), pp. 430–436 (2004)

5. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of
points in linear time. Discrete Comput. Geom. 12(3), 291–312 (1994)

6. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the small-
est color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-45030-3 59

7. Langerman, S., Steiger, W.: Optimization in arrangements. In: Alt, H., Habib, M.
(eds.) STACS 2003. LNCS, vol. 2607, pp. 50–61. Springer, Heidelberg (2003). doi:10.
1007/3-540-36494-3 6

8. Matousek, J.: Computing the center of a planar point set. In: Discrete and Compu-
tational Geometry: Papers from the DIMACS Special Year. American Mathematical
Society (1991)

9. Megiddo, N.: Applying parallel computation algorithms in the design of serial algo-
rithms. J. ACM 30(4), 852–865 (1983)

http://dx.doi.org/10.1007/3-540-44676-1_23
http://dx.doi.org/10.1007/3-540-44676-1_23
http://dx.doi.org/10.1007/978-3-642-45030-3_59
http://dx.doi.org/10.1007/978-3-642-45030-3_59
http://dx.doi.org/10.1007/3-540-36494-3_6
http://dx.doi.org/10.1007/3-540-36494-3_6


Fault-Tolerant Spanners in Networks
with Symmetric Directional Antennas

Mohammad Ali Abam1, Fatemeh Baharifard2, Mohammad Sadegh Borouny1,
and Hamid Zarrabi-Zadeh1(B)

1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

zarrabi@sharif.edu
2 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract. Let P be a set of points in the plane, each equipped with
a directional antenna that can cover a sector of angle α and range r.
In the symmetric model of communication, two antennas u and v can
communicate to each other, if and only if v lies in u’s coverage area
and vice versa. In this paper, we introduce the concept of fault-tolerant
spanners for directional antennas, which enables us to construct commu-
nication networks that retain their connectivity and spanning ratio even
if a subset of antennas are removed from the network. We show how to
orient the antennas with angle α and range r to obtain a k-fault-tolerant
spanner for any positive integer k. For α ≥ π, we show that the range
13 for the antennas is sufficient to obtain a k-fault-tolerant 3-spanner.
For π/2 < α < π, we show that using range 6δ + 19 for δ = �4/| cos α|�,
one can direct antennas so that the induced communication graph is a
k-fault-tolerant 7-spanner.

1 Introduction

Omni-directional antennas, whose coverage area are often modelled by a disk,
have been traditionally employed in wireless networks. However, in many recent
applications, omni-directional antennas have been replaced by directional anten-
nas, whose coverage region can be modelled as a sector with an angle α and a
radius r (also called transmission range), where the orientation of antennas can
vary among the nodes of the network. The point is that by a proper orientation
of directional antennas, one can generate a network with lower radio wave over-
lapping and higher security than the traditional networks with omni-directional
antennas [4].

There are two main models of communication in networks with directional
antennas. In the asymmetric model, each antenna has a directed link to any
node that lies in its coverage area. In the symmetric model, there exists a link
between two antennas u and v, if and only if u lies in the coverage area of v,
and v lies in the coverage area of u. The symmetric model of communication is
more practical, especially in networks where two nodes must handshake to each
other before transmitting data [6].
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 266–278, 2017.
DOI: 10.1007/978-3-319-53925-6 21
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In this paper, we consider the symmetric model for communication in
directional antennas, and study two properties of the communication graphs:
k-connectivity and spanning ratio. A network is k-connected if it remains
connected after removing or destroying any k − 1 of its nodes. Further-
more, if after some failure of nodes, it still has some desirable prop-
erties, we say that the network is fault-tolerant. Therefore, the fault-
tolerance property is more general than the connectivity. A network is
called a spanner, if there is a short path between any pairs of nodes,
within a guaranteed ratio to the shortest paths between those nodes
in an underlying base graph. This ratio is called the stretch factor.
A fault-tolerant spanner has the property that when a small number of nodes
fail, the remaining network still contains short paths between any pair of nodes.
(See [14] for an overview of the properties of geometric spanner networks.)

Related Work. The problem of orienting directional antennas to obtain a
strongly connected network was first studied by Caragiannis et al. [5] in the
asymmetric model. They showed that the problem is NP-hard for α < 2π/3, and
presented a polynomial time algorithm for α ≥ 8π/5 with optimal radius. The
problem was later studied for other values of α, and approximation algorithms
were provided to minimize the transmission range of connected networks [1,7].
However, the communication graphs obtained from these algorithm could have a
very large stretch factor, such as O(n), compared to the original unit disk graph
(i.e., the omni-directional graph of radius 1). Therefore, subsequent research
was shifted towards finding a proper orientation such that the resulting graph
becomes a t-hop spanner [4,11]. In a t-hop spanner, the number of hops (i.e.,
links) in a shortest link path between any pair of nodes is at most t times the
number of hops in the shortest link path between those two nodes in the base
graph, which happens to be a unit disk graph in this case.

The connectivity of communication graphs in the symmetric model was first
studied by Ben-Moshe et al. [3] in a limited setting where the orientation of
antennas were chosen from a fixed set of directions. Carmi et al. [6] later consid-
ered the general case, and proved that for α ≥ π/3, it is always possible to orient
antennas so that the induced graph is connected. In their presented algorithm,
the radius of the antennas were related to the diameter of the nodes. Subsequent
work considered the stretch factor of the communication graph. Aschner et al. [2]
studied the problem for α = π/2 and obtained a symmetric connected network
with radius 14

√
2 and a stretch factor of 8, assuming that the unit disk graph

of the nodes is connected. Recently, Dobrev et al. [8] proved that for α < π/3
and radius one, the problem of connectivity in the symmetric model is also NP-
hard. They also showed how to construct spanners for various values of α ≥ π/2.
A summary of the current records for the radius and the stretch factor of the
communication graphs in the symmetric model is presented in Table 1.

The problem of k-connectivity in wireless networks has been also studied in
the literature, mostly for omni-directional networks [12,13], where the objective
is to assign transmission range such that the network can sustain fault nodes
and remain connected. The stretch factor of the constructed network is also
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Table 1. Summary of the previous results for netwroks with symmetric directional
antennas. In all these results, the unit disk graph of the nodes (antennas) is assumed
to be connected. Here, δ =

√
3 − 2 cos α(1 + 2 sin α

2
).

Angle of antenna Stretch factor Radius Ref.

π/2 8 14
√

2 [2]

π/2 7 33 [9]

5 718

π/2 ≤ α < 2π/3 9 10 [8]

2π/3 ≤ α < π − 5

2π/3 ≤ α < π 6 6

α ≥ π − max(2, 2 sin α
2

+ 1)

α ≥ π 3 max(2, 2 sin α
2

+ δ)

studied in some limited settings. In [10], a setting is studied where antennas
are on a unit segment or a unit square, and a sufficient condition is obtained
on the angle of directional antennas so that the energy consumption of the
k-connected networks is lower when using directed rather than omni-directed
antennas. In [15], a tree structure is built on directed antennas, and a fault-
tolerance property is maintained by adding additional links to tolerate failure in
limited cases, namely, when only a node or a pair of adjacent nodes fail.

Our Results. In this paper, we study the problem of finding fault-tolerant
spanners in networks with symmetric directional antennas. The problem is for-
mally defined as follows. Given a set P of n points in the plane, place antennas
with angle α and radius r on P , so that the resulting communication graph is
a k-fault-tolerant t-spanner. A graph G on the vertex set P is a k-fault-tolerant
t-spanner, if after removing any subset S ⊆ P of nodes with |S| < k, the result-
ing graph G \ S is a t-spanner of the unit disk graph of P . In the rest of the
paper, we assume that the unit distance is sufficiently large to ensure that the
unit disk graph of P is k-connected. To the best of our knowledge, this is the
first time that fault-tolerance is studied in networks with symmetric directional
antennas.

We show that for any α ≥ π, we can place antennas with angle α and radius
9, such that the resulting communication graph is k-connected. Moreover, we
show that by increasing the radius to 13, we can guarantee that the resulting
graph is a k-fault-tolerant 3-spanner. When π/2 < α < π, we consider two cases
depending on whether the distribution of antennas is sparse or dense. We prove
that for sparse distribution, we can place antennas with angle α and radius
6δ + 19, where δ = �4/| cos α|�, such that the resulting communication graph
is a k-fault-tolerant 7-spanner. Moreover, for dense distribution, we prove that
our algorithm yields a k-fault-tolerant 4-spanner using radius δ. Our results are
summarized in Table 2.
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We recall that the k-connectivity of the unit disk graph is assumed in the
rest of the paper. In other words, we compared the radius and stretch factor of
our k-connected directional network to those of a k-connected omni-directional
network. While this assumption is reasonable, it is possible to relax it, and
only assume the connectivity of the unit disk graph, which is the minimum
requirement assumed in the related (non-fault-tolerant) work. If we replace the
k-connectivity assumption with 1-connectivity, the radius and stretch factor of
our constructed network is increased by a factor of k, as explained in Sect. 5.

Table 2. Summary of our results for netwroks with symmetric directional antennas.
In these results, the unit disk graph of the nodes is assumed to be k-connected. Here,
δ = �4/| cos α|�.

Angle of antenna Stretch factor Radius Ref.

α ≥ π – 9 Theorem 1

α ≥ π 3 13 Theorem 2

π/2 < α < π (sparse) 7 6δ + 19 Theorem 3

π/2 < α < π (dense) 4 δ Theorem 3

2 Preliminaries

Let P be a set of points in the plane, and G be a graph on the vertex set P .
For two points p, q ∈ P , we denote by δG(p, q) the shortest hop (link) distance
between p and q in G. If the graph G is clear from the context, we simply write
δ(p, q) instead of δG(p, q). Throughout this paper, the length of a path in a graph
refers to the number of edges on that path. For two points p and q in the plane,
the Euclidean distance between p and q is denoted by ‖pq‖.

Let B(c, r) denote a (closed) disk of radius r centered at c. We define A(c, r) ≡
B(c, r)−B(c, r−1) to be an annulus of width 1 enclosed by two concentric circles
of radii r − 1 and r, centered at c. Note that by our definition, A(c, r) is open
from its inner circle, and is closed from the outer circle.

A graph G is k-connected, if removing any set of at most k−1 vertices leaves
G connected. Given a point set P , we denote by UDG(P ) the unit disk graph
defined by the set of disks B(p, 1) for all p ∈ P . We say that P is k-connected, if
UDG(P ) is k-connected. Let G = UDG(P ). A graph H on the vertex set P is a
t-spanner of G, if for any two vertices u and v in G, we have δH(u, v) ≤ t·δG(u, v).
We say that the subgraph H ⊆ G is a k-fault-tolerant t-spanner of G, if for all
sets S ⊆ P with |S| < k, the graph H \ S is a t-spanner of G \ S.

Fact 1. Let G and H be two k-connected graphs, and E be a set of edges between
the vertices of G and H. If E contains a matching of size k, then the graph
G ∪ H ∪ E is k-connected.
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Fact 2. Let G be a k-connected graph, and v be a new vertex adjacent to at least
k vertices of G. Then G + v is k-connected.

Lemma 1. Let P be a k-connected point set, and r be a positive integer. If
|P | ≥ rk, then for any point p ∈ P , B(p, r) contains at least rk points of P .

Proof. Fix a point p, and let q be the furthest point from p in P . If ‖pq‖ ≤ r,
then the disk P ⊆ B(p, r), and we are done. Otherwise, consider the annuli
Ai = A(p, i) for 1 ≤ i ≤ r + 1, and let A0 = {p}. Each Ai must be non-empty,
because otherwise, p is disconnected from q in UDG(P ). Now, we claim that
each Ai, for 1 ≤ i ≤ r, contains at least k points. Otherwise, if |Ai| < k for
some 1 ≤ i ≤ r, then removing the points of Ai disconnects Ai−1 from Ai+1,
contradicting the fact that P is k-connected. �

3 Antennas with α ≥ π

In this section, we present our algorithm for orienting antennas with angle at
least π. The main ingredient of our method is a partitioning algorithm which we
describe below.

Partitioning Algorithm. The following algorithm builds a graph H on the
input point set P . The graph will induce a partitioning on the input set, as
described in Lemma 2. In the following algorithm, p is an arbitrary point of P ,
and r is a positive integer.

Algorithm 1. Partition(P, p, r)
1: add vertex p to graph H
2: P = P \ B(p, 2r)
3: while ∃q ∈ P ∩ B(p, 2r + 1) do
4: Partition(P, q, r)
5: add edge (p, q) to graph H

Lemma 2. Let P be a k-connected point set, p be an arbitrary point in P , and
|P | ≥ kr for a positive integer r. Let H = (V,E) be the graph obtained from
Partition(P, p, r). For each v ∈ V , we define Qv = P ∩ B(v, r). Moreover, we
define Fv to be the set of all points in P \ ∪u∈V Qu closer to v than any other
point in V (ties broken arbitrarily). Then the followings hold:

(a) H is connected, and for each edge (u, v) ∈ E, 2r < ‖uv‖ ≤ 2r + 1.
(b) P is partitioned into disjoint sets Qv and Fv.
(c) Qv has at least kr points, for all v ∈ V .
(d) Fv is contained in B(v, 2r), for all v ∈ V .
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p0

p1

p6

p2

p4

p7

p3

p5

H

Fig. 1. A partitioning obtained by Algorithm 1. The induced graph H is shown by dark
edges.

Proof.

(a) The graph H computed by the algorithm is obviously connected, as each
new vertex created by calling Partition in line 4 is connected in line 5 to a
previous vertex of H. Moreover, lines 2 and 3 of the algorithm enforce that
any two adjacent vertices in H have distance between 2r and 2r + 1.

(b) The sets Fv are disjoint by their definition. The sets Qv are also disjoint,
because any two vertices in H have distance more than 2r by line 2 of the
algorithm.

(c) This is a corollary of Lemma 1.
(d) This is clear from lines 2 and 3 of the algorithm. �
We call each set Qv a group, and the points in Fv the free points associated to
the group Qv. We call v the center of Qv. Two groups Qu and Qv are called
adjacent groups, if there is an edge (u, v) in the graph H.

Orienting Antennas. Here, we show how to place antennas with angle at
least π on a point set P , so that the resulting communication graph becomes
k-connected, with a guaranteed stretch factor. In the rest of this section, we
describe our method for α = π. However, the method is clearly valid for any
larger angle.

Theorem 1. Given a k-connected point set P with at least 2k points in the
plane, we can place antennas with angle π and radius 9 on P , such that the
resulting communication network is k-connected.

Proof. We run Algorithm 1 with r = 2 on the point set P to obtain the graph
H = (V,E). For each v ∈ V , let Qv and Fv be the sets defined in Lemma 2. Since
r = 2, each set Qv has at least 2k points. We partition Qv by a horizontal line
�v into two equal-size subsets Uv and Dv, each of size at least k, where points in
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Uv (resp., in Dv) are all above (resp., below) �v. (Points on �v can be placed in
either Uv or Dv.) Now, we orient antennas in Dv upward, and antennas in Uv

downward. Moreover, we orient antennas in Fv upward if they are below �v, and
downward if they are above or on �v (see Fig. 2).

v

Fv

Dv

Uv

Fig. 2. The orientation of antennas with angle π in Qv ∪ Fv.

Let Gπ be the communication graph obtained by the above orientation, where
the radius of each antenna is set to 4r+1 = 9. Since each node in Dv has distance
at most 2r to any node in Uv, Qv forms a complete bipartite graph, with each
part having size at least k, and hence, it is k-connected. Now, we show that the
graph on Q = ∪Qv is k-connected. Note that the distance between the centers
of any two adjacent groups Qu and Qv is at most 2r +1, and the farthest points
in the groups have distance at most 4r + 1. By setting the radius of antennas to
4r + 1, either all members of Du connect to all members of Uv, or all members
of Uu connect to all members of Dv. So there is a matching of size k between
any two adjacent groups, and hence, Q is k-connected by Fact 1. Since Fv is
contained in B(v, 2r), the farthest points in Qv ∪ Fv are at distance 4r, and
hence, each node in Fv connects to at least k nodes in Qv. Therefore, the whole
communication graph is k-connected by Fact 2. �
Theorem 2. Given a k-connected point set P with at least 2k points in the
plane, we can place antennas with angle π and radius 13 on P , such that the
resulting communication network is a k-fault-tolerant 3-spanner.

Proof. We use the same orientation described in the proof of Theorem1. Now,
we show that by setting radius of antennas to 6r + 1 = 13, the resulting graph
Gπ is a k-fault-tolerant 3-spanner. Fix a set S ⊆ P with |S| < k. We show that
for any edge (p, q) ∈ UDG(P ) \ S, there is a path between p and q in Gπ \ S
of length at most 3. Let Tv = Qv ∪ Fv. Suppose p ∈ Tu and q ∈ Tv. Assume
w.l.o.g. that �u is below or equal to �v. Since ‖pq‖ ≤ 1, the centers of Qu and Qv

are at most 4r + 1 apart. Therefore, by setting the radius to 6r + 1, we have a
matching of size k between Du and Uv in Gπ. We distinguish the following four
cases based on the order of points and lines on the y-axis:
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– p ≤ �u and q ≤ �v. Since |S| < k, there is a vertex w ∈ Uv \ S such that p
and q are both connected to w. Therefore, δG(p, q) = 2 in this case.

– p ≤ �u and q > �v. Since |S| < k, there is an edge (w, x) ∈ (Du \ S,Uv \ S).
Now, the path 〈p, x, w, q〉 is a path of length 3 in G.

– p > �u and q > �v. Since |S| < k, there is a vertex w ∈ Du \ S such that p
and q are both connected to w. Therefore, δG(p, q) = 2 in this case.

– p > �u and q < �v. This case is analogous to the second case. �

4 Antennas with π/2 < α < π

We now pay our attention to a more challenging case where the goal is to orient
the antennas with angle π/2 < α < π on a point set P , so that the resulting
communication graph becomes k-connected. Let δ = �4/| cos α|�. We distinguish
two cases based on the distribution of P on the plane. P is called α-sparse if the
diameter of P (i.e. the distance of the farthest pair of points in P ) is at least δ.
Otherwise, P is called α-dense.

Lemma 3. If P is α-sparse, then the diameter of P ∩ B(p, δ + 3) is at least δ,
for any p ∈ P .

Proof. Let (q, q′) be the farthest pair of points in P . If both q and q′ are contained
in B(p, δ + 3), we are done. Otherwise, at least one of q and q′ (say q) is outside
B(p, δ + 3). Since UDG(P ) is connected, A(p, δ + 1) must contain some point t
of P . Since t is inside B(p, δ + 1) and ‖tp‖ > δ, the diameter of P ∩ B(p, δ + 3)
is at least δ. �

Algorithm Sketch. We first sketch the whole algorithm, and then go into
details of each part. The algorithm is almost similar to the one given in the
previous section for α = π. We run Algorithm 1 with r = δ + 3 on the point set
P to obtain the graph H = (V,E). We then add edges to H to make any two
vertices of H whose distance is at most 4r + 1 adjacent. For each v ∈ V , let Qv

and Fv be the sets defined in Lemma 2. We orient antennas in Qv ∪Fv such that
the resulting graph is k-connected. We then make the radius of the antennas
large enough, so that for any two adjacent groups Qu and Qv, their union (and
consequently Q = ∪Qv) becomes k-connected.

Observation 1. If P is α-dense, H = (V,E) is a single vertex.

We start explaining how to make each Qv k-connected. We define α-cone to be
a cone with angle 2α − π. Let σ(c) be an α-cone with apex c and let σ̄(c) be the
reflection of σ(c) about c. Our algorithm relies on the following lemma.

Lemma 4.

– If the diameter of Qv is at least δ, then there is an α-cone σ(c) for some point
c on the plane such that both σ(c) and σ̄(c) contain at least 2k points of Qv.
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– If the diameter of Qv is less than δ but Qv contains at least 8k · π/(2α − π)
points, then there is an α-cone σ(c) for some point c on the plane such that
both σ(c) and σ̄(c) contain at least 2k points of Qv.

The proof of this lemma is omitted in this version due to lack of space.

We recall that if P is α-sparse, the diameter of each set Qv is at least δ. If P is
α-dense, we only have one set Qv and then we only need the extra assumption
that P contains at least 8k · π/(2α − π) points, in order to use the lemma in our
algorithm.

Orienting Qv ∪ Fv . Let σ(c) be the α-cone obtained in Lemma 4. Let �1 and
�2 be the lines passing through the sides of σ(c) (and σ̄(c) as well), and let � be
the bisector of the angle 2π−2α whose sides are �1 and �2 (see Fig. 3 to get more
intuition). We define and depict four types of orienting antennas with angle α
in Fig. 3 naming O1, O2, O3 and O4. In each type, each side is parallel to one of
the lines �1, �2, and �.

σ(c) σ̄(c)2α − π2α − π

π − − α

π − απ − α

1

α

O1

α
O4

α

O3

α

O2

c

2

α π

Fig. 3. Cones σ(c) and σ̄(c), and four orientations with angle α.

Backbone Antennas. We select 2k point of Qv ∩σ(c) and arbitrarily partition
them into two sets Dv and Uv of size k. Similarly, we select 2k point of Qv ∩ σ̄(c)
and arbitrarily partition them into two sets D̄v and Ūv of size k. We use types
O1, O2, O3, and O4 for orienting antennas in Dv, Uv, D̄v, and Ūv, respectively.
We call each of these four sets a backbone set. Regardless of the antennas radii,
this orientation holds the following properties:
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– Each antenna in Dv ∪ Uv covers each antenna in D̄v ∪ Ūv and vice versa.
– Each point in the plane is covered by all antennas in one of the backbone

sets.

To orient antenna p in Qv ∪ Fv other than backbone antennas, we detect
which backbone set covers p (i.e. p is visible from all antennas in the backbone
set). Let Oi be the orientation type used to orient the backbone set. We orient
p with type Ōi where Ōi is the reflection of Oi about its apex. Figure 4 depicts
how to orient antennas depending on their subdivisions induced by �1, �2, and �.

1

2

c

Fv

σ(c)

σ̄(c)

O1

O2

O3

O4

Qv

Fig. 4. The orientation of antennas with angle π/2 < α < π in Qv ∪ Fv

Radius. If P is α-dense, we set the radius to be δ as the distance of any two
antennas is at most δ. For the α-sparse set P , we need that any two visible
backbone antennas u′ and v′ from two adjacent groups Qu and Qv cover each
other. Since their distance is at most ‖u′u‖ + ‖uv‖ + ‖vv′‖ ≤ r + 4r + 1 + r ≤
6(δ + 3) + 1, we set the radius to be 6δ + 19.

k-Connectivity. For any v ∈ V , the induced graph over (Dv ∪ Uv, D̄v ∪ Ūv) is
a bipartite complete graph. Moreover, any antenna in Qv ∪ Fv other than the
backbone antennas has a direct connection with at least k backbone antennas.
All these simply imply that the induced graph over Qv ∪ Fv is k-connected.

Lemma 5. Suppose p, q ∈ Qv ∪ Fv and q is a backbone antenna. p and q are in
connection with each other via at most three links, even if at most k−1 antennas
are destroyed.

Proof. Assume w.l.o.g. that q ∈ Dv. We know p is visible from all members of
one backbone set. This backbone set can be either Dv, Uv, D̄v, or Ūv. If this
backbone set is either Dv, D̄v or Ūv, we reach q from p with at most two links.
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Otherwise, with 3 links we can get q from p. Since each backbone set has k
members and any member of Dv ∪ Uv is visible to D̄v ∪ Ūv and vice versa, the
proof works even if at most k − 1 antennas are destroyed. �
Graph H = (V,E) has only one vertex if P is α-dense. Therefore, using Lemma 5
we can simply show any two points are in connection with other via at most
4 links even if k − 1 antennas are destroyed. Note that any antenna is either a
backbone antenna or directly connected to a backbone antenna. Next we assume
P is α-sparse.

Here, we need to show the connection of two adjacent groups Qv and Qu

remain safe even if k − 1 antennas are destroyed. We partition the backbone
antennas in Qv (similarly in Qu) into k sets Si

v (i = 1, . . . , k) of size 4, each
containing one antenna from the sets Dv, Uv, D̄v, and Ūv. We know each point
in the plane is visible from one member of Si

v, and moreover, two sets Si
v and Si

u

can be separated by a line. This together with the following proposition implies
that there are two backbone antennas p ∈ Si

v and q ∈ Si
u which are visible to

each other, and hence, with the radius specified for antennas they are in the
coverage area of each other.

Proposition 1 ([2]). Let A and B be two sets containing 4 antennas with
angle at least π/2. Suppose both A and B cover the entire plane regardless of the
antennas radius. If there exists a line � that separates A and B, then by setting
the radius unbounded, the network induced by A ∪ B is connected.

The above discussion shows that there are at least k distinct links between the
backbone antennas of two adjacent groups Qv and Qu. Therefore, even if k − 1
antennas are destroyed, the connection between Qv and Qu remains safe. This
together with Lemma 5 implies that for any two antennas p ∈ Qv ∪ Fv and
q ∈ Qu ∪ Fu, there is a connection via at most 7 links.

Stretch Factor. Let p and q be two arbitrary points in P , and let x0 =
p, x1, . . . , xt = q be the shortest link distance between p and q in UDG(P ) \ S,
where S is the fault set with size at most k − 1. Since ‖xixi+1‖ ≤ 1, either there
exists v ∈ V such that xi, xi+1 ∈ Qv ∪ Fv, or there exist two adjacent u, v ∈ V
such that xi ∈ Qv ∪ Fv and xi+1 ∈ Qu ∪ Fu. This shows that in the commu-
nication graph obtained by our algorithm, each link (xi, xi+1) either exist or is
replaced by a path of length at most 4 in the α-dense set P , and a path of length
at most 7 in the α-sparse set P . Therefore, our resulting graph is a 4-spanner
and a 7-spanner for the α-dense set P and the α-sparse set P , respectively.

Putting all these together, we get the main theorem of this section.

Theorem 3. Suppose P is a k-connected point set in the plane, and α is a given
angle in the range (π/2, π). Let δ = �4/| cos α|�. Then, the followings hold:

– If P is α-sparse, we can place antennas with angle α and radius 6δ+19 on P ,
such that the resulting communication network is a k-fault-tolerant 7-spanner.
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– If P is α-dense and contains at least 8k·π/(2α−π) points, we can place anten-
nas with angle α and radius δ on P , such that the resulting communication
network is a k-fault-tolerant 4-spanner.

5 Concluding Remarks

In this paper, we studied the problem of constructing fault-tolerant spanners in
networks with symmetric directional antennas, and presented the first algorithms
for placing antennas with angles α > π/2, so that the resulting communication
graph is a k-fault-tolerant t-spanner, for small stretch factors t ≤ 7.

Throughout this paper, we assumed that UDG(P ) is k-connected. This
assumption can be relaxed to the connectivity of UDG(P ) at the expense of
increasing the radius and stretch factor. If we replace the k-connectivity with a
1-connectivity assumption, the radius of antennas implied by Lemma1 is multi-
plied by k, and hence, the radius and stretch factor of our constructed network is
increased by a factor of k. For example, on a point set whose UDG is connected,
our algorithm constructs a k-fault-tolerant spanner with radius 13k and stretch
factor 3k. A natural open problem is to find fault-tolerant spanners with smaller
radius and/or stretch factors. The case π/3 ≤ α ≤ π/2 is also open for further
investigation.
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Abstract. This work addresses the problem of Gathering a swarm of
point robots when the plane of deployment has non-intersecting transpar-
ent convex polygonal obstacles. While multiplicity detection is enough
for gathering three or more asynchronous robots without obstacles, it is
shown that in the presence of obstacles, gathering may not be possible
even in the FSYNC model with all of multiplicity detection, memory, chi-
rality and direction-only axis agreement. Initial configurations for which
gathering is impossible are characterized. For other configurations, a dis-
tributed algorithm for the gathering problem is proposed without any
extra assumption on the capabilities of the robots. The algorithm works
even if the configuration contains points of multiplicities.

Keywords: Gathering ·Asynchronous ·Oblivious · Polygonal obstacle ·
Swarm robots

1 Introduction

A Robot Swarm is a distributed system of autonomous, memoryless, homoge-
neous mobile robots which can move freely on the infinite two-dimensional plane.
The robots are anonymous, i.e., they cannot be distinguished by a unique iden-
tity or by their appearances. They do not communicate with each other directly.
The communication is done implicitly by sensing the positions of other robots.
The robots are memoryless or oblivious in the sense that they do not remem-
ber any information from the previous computational cycles. Each robot has
its own local coordinate system. The robots follow the same execution cycle
Look-Compute-Move [10].

We consider the ASYNC [8] model, where robots are activated asynchro-
nously and independently from other robots. The time taken to complete an
action is unpredictable but finite. Chirality or orientation of axes may be differ-
ent for different robots. The primary objective of research in this field is to find
strategies for cooperation, control and interaction to solve fundamental classes of
problems like geometric pattern formation, gathering, convergence, flocking etc.
Researchers have also identified sets of conditions under which certain problems
are unsolvable.

The Gathering problem (also known as Homing/Rendezvous/Point Forma-
tion) is defined as bringing multiple autonomous mobile robots into a point which
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 279–291, 2017.
DOI: 10.1007/978-3-319-53925-6 22
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is not fixed in advance. The existing works have considered the plane of motion
to be free of obstacles. We consider a model in which the region of deployment
has a finite number of non-interesting convex polygonal obstacles. The robots
can see through the obstacles but they can not pass through them. An instance
of this model is the case when the obstacles are holes in the plane which hinder
movements but cause no visual obstruction.

1.1 Related Works

The problem of gathering has received extensive attention in the field of swarm
robotics [10]. In FSYNC model, the gathering problem is solvable without any
extra assumption [10]. Suzuki and Yamashita proved that in the SSYNC model,
gathering problem is not solvable for two robots without any agreement on the
local coordinate systems even with strong multiplicity detection [14]. Prencipe
proved that for n > 2 robots, there does not exists any deterministic algorithm
for the gathering problem in absence of multiplicity detection and any form
of agreement on the local coordinate systems [13]. Flocchini et al. solved the
gathering problem in the ASYNC model with oblivious robots having limited
visibility and knowledge of a common direction [9]. Cieliebak et al. proposed
an algorithm for gathering in the ASYNC model with multiplicity detection for
n ≥ 5 robots [4]. All of these works have considered robots to be dimensionless
i.e., point robots. The gathering problem for fat robots (represented as unit discs)
have also been investigated by the researchers [1,5,11]. The gathering problem
under different fault models have been addressed by many researchers [2,3,6].

To the best of our knowledge, this paper is the first attempt to study the
problem of gathering in the ASYNC model with the assumptions that the plane
of motion has non-intersecting convex polygonal obstacles.

1.2 Our Contribution

This paper proposes a distributed algorithm for gathering if the initial con-
figuration, consisting of the obstacles as well as the robots, does not have any
rotational symmetry. The algorithm does not assume any extra capability for the
robots. The obstacles provide some fixed reference points. However, the gather-
ing problem is not solvable in general, if the configuration of the obstacles and
the robots has rotational symmetry, even if robots have multiplicity detection
capability, memory, chirality and direction-only axis agreement [7] and robots
are fully synchronous.

2 Robot Model and Terminology

This work adopts the basic the ASYNC model (CORDA model). The robots
are represented as points in the two dimensional Euclidean plane. The visibility
range of a robot is assumed to be unlimited. We consider non-rigid motion of the
robots i.e., a robot may stop before reaching its destination. However, to ensure
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finite time reachability to the destination point, there exists a fixed value δ > 0
such that in each movement, where the robot does not reach its destination, it
moves a distance not less than δ towards its destination [10]. The value of δ is
not known to the robots.

Initially the robots are stationary and in arbitrary positions. Multiple robots
may share same position on the plane. However, the robots do not have multi-
plicity detection capabilities i.e., they can not identify multiple robots at a point.
The total number of robots in the system is not known to the robots. The region
of deployment of the robots has finite non-zero number of non-intersecting con-
vex polygonal obstacles. The robots have full visibility through the polygons but
they can not pass through them. No robot can lie inside or on the boundary of
a polygon.

Let R = {r1, r2, . . . , rn} be the set of n homogeneous robots. The posi-
tion occupied by a robot ri ∈ R at time t is denoted by ri(t). Let R(t) be
the collection of all such positions occupied by the robots in R at time t. Let
P = {P1, P2, . . . , Pm} denote the set of mutually non-intersecting convex polyg-
onal obstacles where m ≥ 1. For a polygon Pi ∈ P, let Piv denote the set of
vertices of Pi. Let Pv = {P1v, P2v, . . . , Pmv} be the collection of all such sets of
vertices for the polygons in P. Note that in our model, Piv ∩ Pjv = ∅ for i �= j.
The set of all vertices of all the polygons in P is denoted by P̂v. The center of
gravity of a point set A is denoted by CoG(A). We use O to denote CoG(P̂v). If
O lies inside a polygon, the polygon containing O is called the central polygon
and is denoted by Pc. By a configuration C(t) at time t, we mean the set P∪R(t).

The distance of point x from a polygon Pi is the minimum euclidean distance
between x and a point y in Pi and it is denoted by dist(x, Pi). The distance
between two polygons Pi, Pj ∈ P, is the minimum distance between two points
in Pi and Pj and it is denoted by dist(Pi, Pj). The minimum of all the distances
of the robot positions in R(t) from a polygon Pi ∈ P at time t is denoted by
σi(t) i.e., σi(t) = min{dist(rj(t), Pi) : ∀rj(t) ∈ R(t)}. Let Σ(t) = min{σi(t) :
∀Pi ∈ P}.

Let

Dp =

{
min{dist(Pi, Pj),∀Pi, Pj ∈ P} if |P| > 1
l if |P| = 1

where l is the length of the smallest side of the polygon in P,

Δ(t) =

{
min{σc(t),Dp/4} if O lies inside Pc

Dp/4 otherwise

and

ζ(t) =

{
min{Σ(t),Dp/4} if O lies inside Pc

Dp/4 otherwise

For every polygon, we define an extended version of it by expanding the
boundaries. A polygon in P\{Pc} is extended by an amount ζ(t). The polygon
Pc is extended by an amount Δ(t). Note that these extended polygons are also
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convex and non-overlapping. Let Pai be the extended version of Pi. The polygon
Pai is called the auxiliary polygon of Pi. The auxiliary polygons are used in the
path computations for the robots. Let ab denote the line segment joining two
points a and b (including the end points a and b).

3 Preliminaries

This section describes some basic results which are used to develop the gathering
algorithm.

Definition 1. A straight line L is called a line of symmetry for P, if (i) for
every polygon Pi ∈ P, such that L passes through the interior of Pi, L is a line
of symmetry for Pi (ii) for every polygon Pi ∈ P, such that L does not pass
through the interior of Pi, there exists a Pj ∈ P, such that Pj is the mirror
image of Pi about L.
Definition 2. A point O is called the center of rotational symmetry for P with
an angle of symmetry 0 < θ ≤ π, if (i) for every polygon Pi ∈ P, such that O
lies in the interior of Pi, O is the center of rotational symmetry for Pi with θ as
an angle of symmetry (ii) for every polygon Pi ∈ P, such that O does not lie in
the interior of Pi, there exists a Pj ∈ P, such that Pj can be obtained by rotating
Pi by an angle θ about O.

Definition 3. A straight line L is a line of symmetry for P ∪ R(t), if L is a
line of symmetry for P as well as for R(t). Similarly, a point O is the center of
rotational symmetry for P ∪ R(t), if O is the center of rotational symmetry for
P as well as for R(t) with the same angle of symmetry.

Note that if a set of points A (polygons P) has more than one line of symme-
try, then A (P) has rotational symmetry with center of gravity of A (P) as the
center of rotational symmetry. A set of points A (polygons P) is asymmetric if
it has neither a line of symmetry nor rotational symmetry. We use the notion
of ordering as defined in [11]. A set of points A (polygons P) is orderable, if
a deterministic algorithm can produce a unique sequencing of the points in A
(polygons in P) such that the sequencing does not depend on the local coordi-
nate systems.

Result 1 [11]. If a set of points A (polygons P) does not have any line of
symmetry or rotational symmetry, then the points in A (polygons in P) are
orderable.

Observation 1. If a set of points A has only one line of symmetry L, then
positive and negative directions can be defined along L.
Observation 2. If a set of points A has both a line of symmetry and rotational
symmetry, then A has multiple lines of symmetry.
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4 Algorithm GatheringObstacles()

Our objective is to compute a unique point which remains intact under the
motion of robots and all robots can agree on that point. If such a point exists
in the initial configuration P ∪ R(t0), then we are done. Otherwise, we convert
the initial configuration into one where such a point can be defined. The point
O is fixed and invariant under orthogonal coordinate transformations. If O lies
outside the obstacles, then O serves our purpose. If O lies inside an obstacle,
we adopt different strategies to have such a point. If the set P does not have
rotational symmetry, a gathering point is defined in terms of the points in P̂v.
Since the obstacles are stationary, this point is also fixed. When P has rotational
symmetry, the positions of the robots along with the polygons are considered
to compute a unique gathering point. If P ∪ R(t) has no rotational symmetry,
a unique robot position is created on the boundary of Pac which serves the
purpose. During the creation of such unique point, the movements of the robots
are coordinated in such a way that they do not create any rotational symmetry
of P ∪ R(t). If the initial configuration P ∪ R(t0) has rotational symmetry,
then gathering is not possible. When O lies inside or on the boundary of the
obstacle Pc and P∪R(t) has no rotational symmetry, there are following possible
scenarios:

(A) P has no rotational symmetry: In this case, P has at most one
line of symmetry. If P is asymmetric, we fix an ordering of the vertices of the
polygons in P. Let p be the first vertex of Pc in that ordering such that p �= O.
Draw the straight line L through p and O. The direction from O along L on
which p lies is defined as the positive direction of L and denoted by L+. This
definition remains invariant since it involves only fixed points. If P has exactly
one line of symmetry L, by Observation 1, we can define the positive direction
L+ along L. In both the cases, we consider the point r on L+ which is Dp/4
distance apart from Pc. Since this point is defined in terms of polygons in P, it
is a fixed point and we take this point as our desired gathering point. Robots
move towards r.

(B) P has rotational symmetry: The Observation 2 implies that either
(i) P has more than one line of symmetry or (ii) P has no line of symmetry. In
scenario (ii), P ∪ R(t) is asymmetric. When P has multiple lines of symmetry,
these lines of symmetry define different wedges w.r.t. O. When P has rotational
symmetry but no line of symmetry, the wedges are defined in the following way:
consider the robot positions having minimum Euclidean distance from O. Let
S(t) be the set of these robot positions. Since P ∪ R(t) is orderable, consider
the robot position ri(t) ∈ S(t), which has highest ordering among the robot
positions in S(t). Let Li(t) be the line joining ri(t) and O. The line Li(t) divides
the plane into two non-overlapping wedges.

The set P ∪R(t) has at most one line of symmetry. Our approach focuses on
the number of robot positions on Pac and performs actions accordingly.

(B.1) Pac contains no robot position on its boundary: If in the initial
configuration, there is no robot on Pac, we create at least one robot position
on Pac. In the following discussion, we shall be talking about paths from robot
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positions to the auxiliary polygons. Any path computation will serve our purpose
as long as: (i) the computation is done with auxiliary polygons (ii) if the robot
stops in the middle, the newly computed path would again be the remaining
portion of the original path and (iii) each path is completely contained inside
one of the wedges as defined above. Since polygons are non-interesting and no
polygon disconnects a wedge, it is possible to find such paths. In particular one
may consider the piece-wise linear voronoi diagram for convex sites [12] with the
extended polygons. The path may be obtained by projecting a perpendicular on
a voronoi edge and then following voronoi edges to the destination, with the final
segment being a perpendicular from the destination point. When P has multiple
lines of symmetry, for each wedge, we compute the intersection point between its
bisector and Pac. On the other hand, when P has rotational symmetry but no line
of symmetry, the intersection point between Li(t) and Pac is considered. These
intersection points are called wedge points. The shortest paths are computed
from each robot position to the wedge point of the wedge it belongs to. If a
robot position lies on a line of symmetry, both the adjacent wedge points are
equidistant. Any one of them may be considered for path computation.

(a) P has no line of symmetry: If the line segment ri(t)O intersects Pac

only, then the robots at ri(t) move towards the intersection point of ri(t)O and
Pac along the line segment ri(t)O. Other robots in the system waits until Pac

has one robot position on its boundary. Now suppose, the line segment ri(t)O
intersects at least one obstacle other than Pc. Let Pm be the nearest obstacle to
ri(t) among such obstacles. The robots at ri(t) computes a point r̂ on the line
segment ri(t)O such that distance of r̂ from Pm is 1

2Σ(t) (any distance less than
Σ(t) will work). The robots at ri(t) move towards r̂ along the line segment ri(t)O.
Other robots wait until, at least one of these robots reaches a point on ri(t)O,
which realizes Σ(t′) for some t′ > t. Let w be the unique point on ri(t)O which
realizes Σ(t′). The movements of the robots at ri(t) towards r̂ do not change
the asymmetry of P ∪ R(t). Once such a point w is created, the robots compute
the set F (t′) of robot positions over R(t′)\{w}, having shortest paths to the
wedge point (the shortest paths should completely lie within one of the wedges
defined by Li(t)). The robot position in F (t′), which appears first in an ordering
of P ∪ R(t′), is selected. The robots at this point move towards the wedge point
along the corresponding shortest path(s). Rest of the robots wait until at least
one robot reaches Pac. During this whole process, P ∪R(t) remains asymmetric.

(b) P has multiple lines of symmetry: Let T (t) be the set of all robot
positions, which have the shortest paths to the corresponding wedge points. The
following are the different possibilities:

b.1. |T (t)| = 1 : Let ri(t) be the corresponding robot position. If the point
ri(t) does not lie on any wedge boundary, then the robots at this point move to
the corresponding wedge point along the shortest path(s). Otherwise, the robots
at ri(t) choose any of one of the wedge points corresponding to the neighbouring
wedges of ri(t) and move towards it. Since multiple robots may be located at
ri(t), it may happen that two robots at ri(t) choose two different wedge points as
their destinations. The other robots do not move till at least one robot reaches
Pac.
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b.2. |T (t)| > 1 : Since P ∪ R(t) has at most one line of symmetry, we have
following cases only:

b.2.1. P ∪ R(t) is asymmetric: The set P ∪ R(t) is orderable [11].
We fix any ordering. Let ri(t) be the point in T (t), which appears first in this
ordering. If the point ri(t) does not lie on the boundary of the wedges, the
robots at this point move to the corresponding wedge point along the shortest
path. Otherwise, the robots at ri(t) choose any one of the wedge points in the
neighbouring wedges and move towards it. If ri(t) contains multiple robots, the
robots at this points may move to both of the wedge points.

b.2.2. P ∪ R(t) has exactly one line of symmetry: Let L be the
line of symmetry of P ∪ R(t). We define positive and negative directions along
L as stated in Observation 1. Let L+ and L− denote the positive and negative
sides of L respectively, with O as the origin.

(i) L passes through at least one member of T (t): If L passes through
robot positions in T (t), consider the robot position in T (t) which lies on L+

and has smallest Euclidean distance from O. Let ri(t) be this robot position.
The robots at ri(t) arbitrarily choose any one of the wedge points in the
neighbouring wedges and move towards wedge point(s) along the shortest
path(s).

(ii) L does not pass through any member of T (t): In this case, we move the
robots in such a way that even if symmetry occurs, L remains as the unique
line of symmetry for the whole configuration. We consider the pair of points
in T (t) which are closest to L+. If there is more than one such pair, we
choose the one having smallest euclidean distance from O. Let these points
be rl(t) and rk(t). If these two points do not lie on the wedge boundaries,
the active robots at these two points move towards the corresponding wedge
points. Otherwise, the robots at each point has two options. For each of the
points, the robots select the wedge point which makes smaller angle with
L+.

(B.2) Pac contains exactly one robot position on its boundary: The
robots which observe this point on Pac, move towards it along paths not crossing
Pac.

(B.3) Pac contains more than one robot position on its boundary:
If at any time there are more than one robot position on Pac, we create a unique
fixed robot position on Pac.

If possible, we divide the perimeter of Pac into two polygonal chains such
that (i) one of them contains all the robot positions (the robot positions at the
joint belong to both the chains) and (ii) the chain containing the robots is not
longer than the other chain.

Let both the chains have same length and vi and vj be the two joints of the
chains. The robots do one of the followings to change the lengths of the chains:
(1) if P ∪ R(t) is asymmetric, the robot positions are orderable. Without loss of
generality, suppose that vi has higher order than vj . The robots at vi move along
the boundary of Pac towards the next nearest vertex of Pac on the chain satisfying
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any one of the followings: (a) if Pac contains more than two robot positions, the
chain contains the other robot positions (b) if Pac contains exactly two robot
positions, the chain contains the vertex of Pac, having highest order among the
vertices of Pac (2) if P ∪ R(t) has one line of symmetry L, the positive and the
negative directions are defined along L. The robots at vi and vj move towards
the corresponding next nearest vertices of Pac on the chain intersected by L+.
The robots move along the boundary of Pac.

Once we have a polygonal chain having length less than half of the perimeter
of Pac and containing all the robots, we move the robots towards the middle
vertex of the corresponding chain. If the middle vertex is not unique, the robots
move to the nearest one. In each movement, a robot tries to reach the next vertex
on its path. This process continues till all robots lie on a single edge or reach at
a single vertex of Pac. If the robots lie on a single edge, they gather at the mid
point of the edge.

If such a division is not possible, we update Pac with a newer version which
is obtained by expanding the boundaries of Pc by an amount Δ(t)/2. It may
be noted that the expansion can be made by any amount less than Δ(t). Now
we have a new Pac with no robot position on its boundary. We follow the same
strategies as described in (B.1). According to the strategies in (B.1), the new
Pac would contain at most two robots on its boundary. Since robots on old Pac

move to the boundary of new Pac along the straight lines and these straight
lines completely lie in the corresponding wedges in which robots lie, the updated
configuration P∪R(t′) can have at most one line of symmetry. Suppose, there are
two robot positions on the updated Pac. If these two robot positions define two
polygonal chains of the updated Pac with unequal lengths, then we are done.
Otherwise, the two polygonal chains would have same length and the robots
follow the same strategy as described above to reduce the length of one of the
chains. This implies that the process of creating new polygonal chains with
unequal lengths will terminate in finite time. Note that none of our strategies,
described above, creates this scenario. This scenario is possible only in one of the
initial configurations. Also this is the only case in which Pac, initially defined, is
changed. In all other cases Pac remains intact.

4.1 Correctness of GatheringObstacles()

In this section we prove that if the initial configuration does not have rotational
symmetry, the robots gather in finite time by executing GatheringObstacles().
To prove the correctness of our approach, we show that in possible cases, our
approach provides, within finite time, a unique gathering point which remains
intact under the motion of the robots.

Lemma 1. Suppose P ∪ R(t0) has no rotational symmetry. During the whole
execution of algorithm GatheringObstacles(), P ∪ R(t) does not become rota-
tionally symmetric.
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Proof. The obstacles are static. If P has no rotational symmetry, then the
lemma is true. If P has rotational symmetry, during the execution of algorithm
GatheringObstacles(), following are the possible scenarios:

– Pac contains exactly one robot position on its boundary: The robots
on Pac do not move. Whenever other robots move to this point, they move
along the shortest paths having no intersections with Pac. Hence, the lemma
is true.

– Pac contains no robot position on its boundary: In this scenario, P
has either multiple lines of symmetry or no line of symmetry. First consider
the case when P has multiple lines of symmetry. The set P ∪ R(t) has at
most one line of symmetry. Robots having positions in T (t) move towards at
most two wedge points. All the shortest paths to these wedge points lie in
the corresponding wedges in which the wedge points lie. If the robots move
towards a single wedge point, the lemma follows immediately. If the robots
move towards two wedge points, the angle made by these two wedge points
at O is less than π. This implies the lemma.
Next, consider the case when P has no line of symmetry. In this case, P ∪R(t)
is asymmetric. A robot position ri(t) is selected. The robots at ri(t) move
straight either to the boundary of Pac or move to a point which would be a
unique robot position in the system realizing the quantity min{Σ(t′), Dp

4 },
t′ > t. The robots move along the straight line to the corresponding des-
tination point. Until, at least one robot reaches the destination point, other
robots do not move. Thus, these movements of the robots do not make P∪R(t)
rotationally symmetric.

– Pac contains more than one robot position on its boundary: Suppose,
it is possible to define two polygonal chains, one with all robot positions. Since
the robots move along the chain which contains them, to create a unique
robot position on the chain and the length of this chain is at most half of
the perimeter of Pac, the movements of these robots do not make P ∪ R(t)
rotationally symmetric. If it is not possible to define such polygonal chains,
the robots move to the updated version of Pac. At most two robot positions are
selected and the robots at these positions are asked to move to the boundary
of the new Pac. The robots follow same strategies as in the case of (B.1) when
initial Pac contains no robot positions. Thus, in this case, lemma follows from
the same arguments as in the case when Pac contains no robot positions. 
�

Lemma 2. Let P ∪ R(t0) have no rotational symmetry. If P has rotational
symmetry and initially Pac does not contain any robot position on its boundary,
during the execution of algorithm GatheringObstacles(), Pac will have at least
one robot position on its boundary in finite time.

Proof. Since Pac does not contain any robot position, by definition, the polygon
Pac is defined by the obstacles. This implies that Pac is independent of the
movements of the robots. By Lemma 1, P ∪ R(t) does not become rotationally
symmetric during the whole execution of the algorithm. This implies that at
least one robot reaches the boundary of Pac in finite time. 
�
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Lemma 3. Let P have rotational symmetry and P ∪ R(t0) have no rotational
symmetry. Suppose, Pac contains more than one robot position on its boundary
and it cannot be decomposed into two polygonal chains as described in (B.3) of
Sect. 4. During the execution of algorithm GatheringObstacles(), there exits a
time t > t0 such that Δ(t′) does not change, ∀t′ ≥ t. Furthermore, Pac at time
t can be decomposed into two desired polygonal chains.

Proof. According to algorithm GatheringObstacles(), at most two robot posi-
tions are selected and the robots at these positions are asked to move towards
at most two points on the boundary of the updated Pac which is defined by the
quantity Δ(t0)

2 . The robots move along straight lines towards their respective
destination points. Once at least a robot starts moving towards the updated
Pac, the value of Δ() is dependent solely on the robots positions. There are two
possibilities: (i) at least one robot reaches the boundary of the computed Pac

at time t or (ii) at least one robot position is created by some static robot (in
between old and the computed Pac) such that this robot position realizes the
value Δ(t) and all other robots agree on this value. These imply that Δ(t′) does
not change for t′ ≥ t. The polygon Pac at time t′ depends only on the robot posi-
tions and it contains at most two robot positions. By Lemma1, P cupR(t) has
at most one line of symmetry. Hence, Pac can be decomposed into two desired
polygonal chains. 
�

During the whole execution of algorithm GatheringObstacles(), none of the
strategies creates a configuration in which Pac contains more than one robot
position such that it cannot be decomposed into two polygonal chains. Only an
initial configuration can have such scenario. The above lemma implies that the
process of updating Pac in (B.3) of Sect. 4, when Pac contains more than one
robot position on its boundary and it cannot be decomposed into two polygonal
chains, terminates in finite time.

Lemma 4. Let P∪R(t0) have no rotational symmetry. Suppose P has rotational
symmetry and Pac contains more than one robot position on its boundary. During
the execution of algorithm GatheringObstacles(), there is a time t ≥ t0 such that
Pac does not change after time t and Pac has exactly one robot position on its
boundary, ∀t′ ≥ t.

Proof. First consider the initial configuration P ∪R(t0). Suppose the circumfer-
ence of Pac can be decomposed into two polygonal chains, one containing all the
robots. Our approach asks the robots to move along the corresponding polygonal
chain of Pac to merge the robot positions on Pac into one point. Since P ∪ R(t)
has at most one line of symmetry, the robots can agree on the corresponding
polygonal chain to move along. The polygonal chain is of finite length. In each
movement, robots move towards the nearest vertex of the chain in the direction
of its destination. Hence after a finite time, we are left with either one robot
position or two robot positions, sharing same edge, on the polygonal chain. In
the later case robots move to the mid point of the corresponding edge. This
creates exactly one robot position on Pac within finite time. In this process, Pac
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remains same. If the circumference of Pac cannot be decomposed into two desired
polygonal chains, then by Lemma3, there exits t such that Pac becomes static
and it can be decomposed into two desired polygonal chains. Hence, the lemma
follows from the same foregoing arguments. 
�
Lemma 5. Algorithm GatheringObstacles() deterministically solves the gather-
ing problem within finite time provided the initial configuration P ∪ R(t0) does
not have rotational symmetry,

Proof: When CoG(P) i.e., O lies outside the obstacles, then we are done. The
point O is static and serves as the point of gathering. Otherwise, according to
our algorithm:

– When P is asymmetric or has one line of symmetry, our algorithm chooses a
point r based on the vertices of the polygons.Thus, r is a fixed point and is
not affected by the movements of the robots.

– When P has more than one line of symmetry, our approach involves the robot
positions in R(t). If P ∪R(t) does not have rotational symmetry, according to
our algorithm we have the following: (i) if Pac does not change and contains
exactly one robot position on its boundary, this unique robot position on
Pac serves as the gathering point. Since the robots move towards this point
along paths not crossing Pac (such paths exists because polygons are non-
overlapping), the robot position on Pac remains fixed under the movements of
the robots (ii) otherwise, by Lemmas 2 and 4, Pac becomes static and contains
exactly one robot position in finite time, which implies the corresponding of
the lemma.

Therefore, algorithm GatheringObstacles() deterministically solves the gath-
ering problem in finite time. 
�

Combining the above results, we have the following theorem.

Theorem 1. The gathering problem is solvable in finite time, without any extra
assumption on the capabilities of the robots, in the presence of non-intersecting
convex polygonal obstacles, when the initial configuration of the polygons and the
robot positions does not have rotational symmetry.

Theorem 2. If P ∪ R(t) has rotational symmetry around O which lies inside
an obstacle in P, there does not exist any deterministic algorithm that solves
the gathering problem starting from P ∪ R(t). The problem remains unsolvable
even if we arm the robots strong multiplicity detection, memory, chirality and
direction-only axis agreement and have them move in FSYNC model.

5 Conclusion

This paper studies the gathering problem in the presence of transparent polyg-
onal obstacles. Obstacles are fixed objects. They help us by providing fixed
reference points. One may identify certain fixed points (i.e., independent of axes
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and robot positions) based on these reference points. However if all these points
fall within the obstacles and hence are unreachable, the advantage is lost. On the
other hand obstacles also create problems in finding paths. A distributed algo-
rithm has been proposed which solves the gathering problem without any extra
assumption on the capabilities of the robots if the initial configuration does not
have any rotational symmetry. The gathering is impossible if the initial configu-
ration has rotational symmetry. The problem remains unsolvable even if robots
have multiplicity detection, memory, chirality and direction-only axis agreement
in the FSYNC model. While it would be interesting to consider opaque obstacles,
it is not sure whether much can be expected from that model.
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Abstract. Depth-first search (DFS) is a well-known graph traversal
algorithm and can be performed in O(n + m) time for a graph with
n vertices and m edges. We consider dynamic DFS problem, that is, to
maintain a DFS tree of an undirected graph G when edges and vertices
are gradually inserted into or deleted from G. We present an algorithm
for this problem which takes worst case O(

√
mn · polylog(n)) time per

update and requires only (3m + o(m)) log n + O(m) bits of space. This
is the first sublinear worst case update time algorithm for this problem
which requires only O(m log n) bits. Moreover, the time complexity of
this algorithm is close to, or under particular condition better than, the
state-of-the-art algorithm of Chen et al. [5], which requires O(m log2 n)
bits of space.

1 Introduction

Depth-first search (DFS) is a fundamental algorithm for searching graphs. As a
result of performing DFS, a rooted tree which spans all vertices reachable from
the root is constructed. This rooted tree is called DFS tree, which is used as a
tool for many graph algorithms such as finding strongly connected components
of digraphs and detecting articulation vertices or bridges of undirected graphs.
Generally, for a graph with n vertices and m edges, DFS can be performed in
O(n + m) time, and DFS tree can be constructed in the same time.

The graph structure that appears in the real world often changes gradually
with time. Therefore the following problem is considered: when a graph G and its
DFS tree T are given, for an online sequence of updates on G, we try to rebuild a
DFS tree for G after each update. This problem is called dynamic DFS problem.
Here single update on the graph is one of the following four operations: insertion
or deletion of one edge, or those of one vertex (and accompanying edges).

Until recently, there are few papers for the dynamic DFS problem, despite
of the simplicity of DFS in static setting. For directed acyclic graphs, Franciosa
et al. [6] proposed an incremental (i.e. supporting only insertion of edges) algo-
rithm and later Baswana and Choudhary [2] proposed a decremental (i.e. sup-
porting only deletion of edges) algorithm. For undirected graphs, Baswana and
Khan [3] proposed an incremental algorithm. However, these algorithms support
only either of insertion or deletion. Moreover, none of these algorithms achieve
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 295–307, 2017.
DOI: 10.1007/978-3-319-53925-6 23
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Table 1. Comparison of required space and worst case update time for dynamic DFS.

[1] [5] Ours

Space (bit) O(m log2 n) O(m log2 n) (3m + o(m)) log n + O(m)

Update time

Under (I) O(
√

mn log2.5 n) O(
√

mn log1.5 n) O(
√

mn log1.75 n/
√

log log n)

Under (II) O(
√

mn log2.5 n) O(
√

mn log1.5 n) O(
√

mn log1.25 n)

Under (III) O(n log3 n) O(n) O(n log n)

the worst case time complexity of o(m) per single update though the amortized
computational time is better than the static DFS algorithm. This means in the
worst case the computational time becomes the same as the static algorithm.

Recently, Baswana et al. [1] proposed a dynamic DFS algorithm for undi-
rected graphs which overcomes these two problems. This algorithm supports all
four types of graph updates and achieves the worst case O(

√
mn · polylog(n))

time per update. Thus it is expected that various graph problems in dynamic
setting can be solved with it.

A drawback of their works is that these algorithms require O(m log2 n) bits
for the auxiliary data structures, which is O(log n) times larger space than the
adjacency list of original graph. This is unsuitable for the large graph. Therefore
we want to compress the required space of these algorithms.

Related Works and Our Results. Very recently, Chen et al. [5] improved
the algorithms of Baswana et al. [1] and reduced the time complexity1. However,
their algorithms still use O(m log2 n) bits. We use a part of their ideas.

First, we improve the way to solve a query that is frequently used in the
algorithm of [1]. Second, we compress the data structures used in [1,5] using
wavelet tree [7]. Third, we propose a space-efficient algorithm for dynamic DFS
problem in undirected graphs. Here we consider the following three conditions
on the updates on the graph: (I) all four kinds of updates can appear, (II)
three kinds of updates other than edge deletion can appear, and (III) only edge
insertion appear. Our algorithm requires only (3m+o(m)) log n+O(m) bits under
every condition, and the worst case update time is better than [1]. Moreover, the
update time is, under (II) better than and under (I) close to, the results of [5].
These results are summarized in Table 1. If amortized update time is permitted,
our algorithm requires only (2m + o(m)) log n + O(m) bits.

2 Preliminaries

Throughout this paper, n denotes the number of vertices and m denotes the
number of edges. We assume that a graph is always simple, i.e. has no self-loops
1 However, in their paper there is a bit too strong assumption on queries used in their

algorithms, and we succeed to remove this assumption. details are in Sect. 4.
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or parallel edges, since they make no sense in constructing DFS tree. We also
assume that n = o(m), or more specifically, m = ω(n log0.5 n).

Bit Vectors. Let B[1..l] be a 0,1-sequence of length l, and consider two queries
on B: rankc(i, B) returns the number of c in B[1..i] and selectc(i, B) returns
the position of the i-th occurrence of c in B (c = 0, 1). Then there exists a data
structure such that rank and select queries for c = 0, 1 can be answered in
all O(1) time and the required space is l + O(l log log l/ log l) = l + o(l) bits.
Moreover, the space can be reduced to lH0(B) + o(l) bits while keeping O(1)
query time [12], where H0(B) ≤ 1 is the zeroth-order empirical entropy of B.
When 1 occurs v times in B, lH0(B) = v log l

v + (l − v) log l
l−v ≤ v log el

v .
The bit vector described above is static, i.e. the 0,1-sequence B never changes

once the data structure is built. Instead, we can consider a “dynamic” bit vec-
tor that allows insertion or deletion (indels) of bits. Then there exists a data
structure for a binary sequence of length l such that rank, select queries and
indels of one bit can be done in all O(log l/ log log l) time and the required space
is l + o(l) bits [11]. The space can also be reduced to lH0(B) + o(l) bits while
keeping the same query time [11].

Wavelet Trees. Let S[1..l] be an integer sequence of symbols [0, σ − 1].
A wavelet tree [7] for S is a complete binary tree with σ leaves and σ − 1
internal nodes, each internal node of which has a bit vector. Each internal node
v corresponds to an interval of symbols [lv, rv] ⊆ [0, σ − 1]; the root corresponds
to [0, σ − 1] and its left (right) child to [0, �σ/2�] ([�σ/2� + 1, σ − 1]), and these
intervals are recursively divided until leaves, each of which corresponds to one
symbol. The bit vector Bv[1..lv] corresponding to the internal node v is defined
as follows: let Sv[1..lv] be the subsequence of S which consists of elements with
symbols [lv, rv], and if the symbol Sv[i] corresponds to the left child of v then
Bv[i] = 0, otherwise Bv[i] = 1. The wavelet tree requires (l + o(l)) log σ bits of
space, and can be built in O(l log σ/

√
log l) time [9].

3 Overview of the Algorithms of Baswana et al.

In this section, we give an overview of the algorithms proposed by Baswana
et al. [1], and describe some lemmas used in this paper.

3.1 Fault Tolerant DFS Algorithm

We first refer to the algorithm for fault tolerant DFS problem. This problem is
described as follows: when an undirected graph G and its DFS tree T are given,
we try to rebuild a DFS tree for the new graph obtained by deleting k(≤ n)
edges or vertices from G. In this part U denotes a set of vertices and edges we
want to delete from G, and G − U denotes the new graph obtained by deleting
vertices and edges in U from G.
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The algorithm for this problem proposed in [1] is, roughly speaking, as fol-
lows: first the forest obtained by deleting vertices and edges in U from T is
divided into paths and trees (they refer to this partition as disjoint tree par-
tition), and then the new DFS tree T ′ for G − U is gradually built while the
partition is also gradually updated. The key point of reducing computational
complexity is that taking advantage of partitioning, the number of edges accessed
by this algorithm can be decreased from m. At this time, it must be ensured
that the edges not accessed by this algorithm are not needed to construct the
new DFS tree T ′. In order to achieve this, they utilize a reduced adjacency list
L and two queries Q and Q′. Here Q and Q′ are defined as follows.

Problem 1 [1]. A connected undirected graph G and its DFS tree T , which is
a directed rooted spanning tree, are given, and later a set U of vertices and
edges is given. Then for three vertices w, x, y in G − U , the following query is
considered. Among all edges which directly connect a subtree T (w) of T rooted
at w (a vertex w) and a path path(x, y) in T connecting x and y, the query
Q(T (w), x, y) (Q′(w, x, y)) returns an edge whose endpoint on path(x, y) is the
nearest to x. If there are no edges between T (w) (or w) and path(x, y), this query
should return ∅. In this query we can assume that T (w) ({w}) and path(x, y)
have no common vertices and contain no vertices or edges in U . We can also
assume that x is an ancestor of y in T , y is an ancestor of x in T , or x = y.

During the construction of T ′, the edges added to L are chosen carefully by
Q and Q′, and instead of the whole adjacency list of G, only L is accessed.

In fact, this fault tolerant DFS algorithm can be easily extended to handle
insertion of vertices/edges other than deletion updates [1]. From now we consider
each of the three conditions (I), (II) and (III) described in Sect. 1. Then the time
complexity of algorithm can be summarized in the following lemma.

Lemma 1 [1]. Suppose that the query Q (Q′) can be solved in O(f) (O(f ′))
time if U has no edges, or O(g) (O(g′)) time if U has an edge. Then for any
k(≤ n) updates on graph, a new DFS tree can be built in O(k · Gn) time under
the condition (I), O(k ·Fn) time under (II), and O(fn) time under (III), where
F = f log n + f ′ and G = g log n + g′.

3.2 Dynamic DFS Algorithm

Next we refer to the algorithm for dynamic DFS. Baswana et al. [1] proposed
an algorithm for this problem by using the fault tolerant DFS algorithm as a
subroutine. The heart of their result can be summarized in the following lemma.

Lemma 2 [1]. Suppose that for any k(≤ n) updates on the original undirected
graph G, a new DFS tree can be built in O(k · g + h) time with a data structure
D constructed in O(f) time. Then for any online sequence of updates on the
graph, a new DFS tree after each update can be built in amortized/worst case
O(

√
fg + h) time per update, if

√
f/g ≤ n holds.
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First we refer to the amortized (not worst case) update time algorithm. Their
idea is to rebuild the data structure D which solves Q and Q′ after every c =√

f/g updates. To explain this idea in detail, let Gj be the graph obtained by
applying first jc updates on G, and Tj be the DFS tree for Gj reported by this
algorithm. For the first c updates, use the data structure D0 (i.e. perform fault
tolerant DFS with D0 for each arrival of update) constructed from the original
graph G and DFS tree T . After c updates are processed, build the data structure
D1 from G1 and T1, and use D1 for next c updates. Similarly, after jc updates
are processed, the data structure Dj is built from Gj and Tj , and Dj is used
for next c updates. In this way the construction time of D is amortized over c
updates and achieves the amortized time complexity in Lemma 2.

Next we proceed to the worst case update time algorithm. The idea to achieve
the efficient “worst case” update time described in [1] is to divide the building
process of data structure over c updates. For the first c =

√
f/g updates, use

the data structure D0 built from the original graph G and DFS tree T . For the
next c updates, use again D0 and build D1 gradually from G1 and T1. Similarly,
from (jc+1)-st to ((j +1)c)-th updates on the graph, use Dj−1 for fault tolerant
DFS and build Dj gradually from Gj and Tj . We call this moment phase j of
the algorithm. In this way the construction time of data structures is divided,
and the efficient worst case update time in Lemma 2 is achieved.

4 Query Reduction to Orthogonal Range Search Problem

In this section, it is shown that Q and Q′ can be answered by solving orthogonal
range successor (predecessor) query. This idea is first proposed by Chen et al. [5]
and we use a part of their work, but our idea differs from theirs. Here the
orthogonal range successor (predecessor) query is defined as follows.

Problem 2. On grid points in a 2-dimensional plane, k points are given. Then
for any rectangular regions R = [x1, x2] × [y1, y2], we want to answer the point
whose y-coordinate is the smallest (largest) among those within R. This query
is called orthogonal range successor (predecessor) query, and we abbreviate it as
ORS (ORP) query. If there are no points within R, the query should return ∅.

First we show how a set of points is constructed from G. The first step is
the same as Baswana et al. [1]: a heavy-light (HL) decomposition [13] of T is
calculated, and then the order L of vertices is decided according to the pre-order
traversal of T , such that for the first time a vertex v is visited, the next vertex
to visit is one that is directly connected with a heavy edge derived from the HL
decomposition. Then the vertices of G are numbered from 0 to n − 1 according
to L; the vertex id of v is denoted by num(v). The next step is the same as Chen
et al. [5]: we consider a grid G and, for each edge (i, j) of G, put two points on
the coordinates (num(i),num(j)) and (num(j),num(i)) in G. This is equivalent
to consider the adjacency matrix of G, thus 2m points are placed.

Next we show that the query Q can be converted to single ORS/ORP query
on G. This idea is first proposed by Chen et al. [5], but their argument is a bit
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incomplete, as described below. Here we define some symbols: for two vertices
a and b in G, a ≺ b means a is an ancestor of b in T , a 	 b means a ≺ b or
a = b, and a ‖ b means neither a 	 b nor b 	 a holds, i.e. a and b have no
ancestor-descendant relation. Let p be the parent of w (which appears in the
query Q(T (w), x, y)) in T . Then there are five patterns on the configuration of
x, y, p as drawn in Fig. 1, assuming x 	 y: (i) p ≺ x 	 y, (ii) x 	 p 	 y, (iii)
x 	 y ≺ p, (iv) x ‖ p and y ‖ p, and (v) x ≺ p and y ‖ p. However, Chen et al. [5]
argued only the pattern (ii), which makes trouble when the online sequence of
updates involves deletion of edges or vertices.

(i)

y

x
p

w

(ii)

y

x
p

w

(iii)
y
x

p
w

(iv)

y

x p
w

(v)

y

x

p
w

Fig. 1. The configurations of path(x, y) and T (w) in T that can appear in Q(T (w), x, y).

Now we show a way to convert Q to single ORS/ORP query on G for any
patterns. Let [q, r] be an interval in L occupied by the vertices of T (w) (the
vertices of T (w) occupy single interval in the vertex numbering since L is a pre-
order traversal of T ). We employ the fact that T is a DFS tree for an undirected
graph G iff all non-tree edges in G are back edges, i.e. if x ‖ y then x and y are
not directly connected. For convenience, we call this fact DFS property. Note
that Chen et al. [5] also employ this fact. Consider the case x 	 y. Then the
query Q is converted to single ORS query. The case y 	 x is almost the same as
the case x 	 y, except that Q is converted to single ORP query.

In fact, we prove that the ORS/ORP query to which Q is converted can be
decided by the vertex id of x, y and p. First, if (a) num(p) < num(x) ≤ num(y)
then the answer for Q(T (w), x, y) is ∅: (a) can appear in pattern (i) or (iv), and in
these patterns there are no edges between T (w) and path(x, y) due to DFS prop-
erty. Second, if (b) num(x) ≤ num(p) ≤ num(y) then the rectangle is R = [q, r]×
[num(x),num(LCA(y, w))] where LCA(y, w) is the lowest common ancestor of
y and w in T : (b) can appear in (ii) or (v), and in these patterns all the edges
between T (w) and path(x, y) are indeed between T (w) and path(x,LCA(y, w))
again due to DFS property (in (ii), LCA(y, w) = p). Note that it does not mat-
ter if there are some branches forked from path(x,LCA(y, w)), since the vertices
of these branches have no ancestor-descendant relations with those of T (w).
The LCA query can be solved in O(1) time with a data structure of O(n log n)
bits constructed in O(n) time [4]. Finally, if (c) num(x) ≤ num(y) < num(p)
then the rectangle is R = [q, r] × [num(x),num(y)]. The inequality (c) can
appear in (iii), (iv) or (v). In (iii) it does not matter if there are some branches
forked from path(x, y) because of DFS property. In (iv) there are no edges
between T (w) and path(x, y), and the ORS query also returns ∅. In (v) the
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ORS query reports correctly the edge connecting T (w) and path(x,LCA(y, w)),
since num(x) ≤ num(y) < num(p).

Finally we consider the query Q′. Using the method of Baswana et al. [1], Q′

can be converted to O(log n) ORS/ORP queries on G thanks to the property of
HL decomposition (note that the method of Baswana et al. [1] can be interpreted
as solving O(log n) ORS/ORP queries). From Lemma 1, it does not matter if Q′

is solved O(log n) times slower than Q is.
At this time it is noted that when U includes some edges (other than vertices)

elimination of points from G must be supported, since deletion of edges from G
means that. These observations are summarized in the following theorem.

Theorem 1. Suppose that there exists a data structure D which solves single
ORS/ORP query on an l× l grid G with k points in O(f(l, k)) time and supports
deletion of one point from G in O(g(l, k)) time. Then Q (Q′) can be answered in
O(f(n, 2m)) (O(f(n, 2m) log n)) time and deletion of single edge can be done in
O(g(n, 2m)) time with D. If U does not include edges, it is not necessary for D
to support deletion of points.

5 Compression of Data Structures

In this section, we show a way to solve Q and Q′ space-efficiently.
The ORS/ORP query on an l × l grid with k points can be solved efficiently

with wavelet tree [10]. The method is to build an integer array S[1..k] which con-
tains the y-coordinates of the points sorted by the corresponding x-coordinates.
Additionally, a bit vector B = 0m[0]10m[1]1 · · · 0m[l−1]1 is constructed (where
m[i] is the number of points whose x-coordinate is i), which enables us to inter-
convert between the position in S and the x-coordinate with O(1) rank and
select queries. Then the ORS/ORP query is converted to the range next (pre-
vious) value query [10] (we abbreviate it as RN (RP) query) on S, that is, for any
interval [a, b] and integer p, to answer the smallest (largest) element in S[a..b]
which is not less than (not more than) p. The RN/RP query can be solved with
O(log l) rank and select queries on the wavelet tree W for S [10]. Here W takes
(2m + o(m)) log n bits and B takes (n + 2m)H0(B) + o(m) bits.

However, now W has information of both directions for each edge of G. This
is redundant since G is an undirected graph, thus we want to hold information
of only one direction for each edge. In fact, the placement of points on G is
symmetric since the adjacency matrix of G is also symmetric. Therefore even if
only half of these points are stored, i.e. for each two points (i, j) and (j, i) either
one is stored, it is likely that we can solve ORS/ORP query by the following
way: first solve query on halved points, second transpose R and again solve query
on halved points, and finally combine these two results. However, at this time
a problem arises: when R is transposed, a switch between x- and y-coordinate
occurs, and we need to consider a symmetric variant of ORS/ORP query, that is,
to answer the point whose “x-coordinate” is the smallest (largest) among those
within R. Although it is sufficient to build data structures additionally for the
symmetric variant, this doubles the required space, which makes no sense.
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Recall that we already build an integer array S[1..k]. In fact, the symmetric
variant of ORS/ORP query corresponds to the following query on S.

Problem 3. An integer sequence S[1..l] is given. Then for any interval [a, b] ⊆
[1, l] and two integers p, q, we want to answer the leftmost (rightmost) element
in S[a..b] which is not less than p and not more than q. We call this problem
range leftmost (rightmost) value query, and abbreviate it as RL (RR) query. If
there is no such element, the query should return 0.

These queries are generalization of prevLess query [8], which is the RR query
with a = 1 and p = 0. It is already known that the prevLess query can be
efficiently solved with the wavelet tree W for S [8].

Now we show that the RL/RR query can also be efficiently solved with W.
We show only the solution of RL query, since RR query can be solved by almost
the same strategy. Recall that the interval of symbols [p, q] can be covered with
O(1) internal nodes or leaves per level, since W is a complete binary tree. Let
V1, . . . , Vr be such nodes or leaves. First, we begin with the interval [a, b] of
position in the bit vector of the root of W, and traverse these intervals of position
while descending W, until reaching one of V1, . . . , Vr. Traversing intervals can
be done with O(1) rank queries per node. Then the leftmost position of the
traversing interval of each of V1, . . . , Vr is the candidate for answer. Second, we
traverse the positions of candidates using select queries while ascending to the
root. If both children of a node v have a candidate, v has two candidates for
answer during this process. Here only the left one of the two can be a candidate,
thus it can be done with O(1) select queries per node. We use O(log σ) rank
and select queries overall. Hence we obtain the following lemma.

Lemma 3. Suppose that S[i] ∈ [0, σ − 1] for all i = 1, . . . , l. Then using the
wavelet tree W for S, both RL and RR queries can be answered with O(log σ)
rank and select queries on W.

The pseudocode for solving RL query by the wavelet tree for S is given in
Algorithm 1. Calling RL(root, [p, q], [a, b], [0, σ−1]) yields the position i of answer
for the query if the answer exists, otherwise returns 0. Note that if i is given, we
can obtain S[i] with O(log σ) rank and select queries on W.

Now we can solve Q and Q′ with information of only one direction for each
edge. First, we concatenate the “halved” adjacency list of G into single inte-
ger array S (of length m). Then for a query rectangle R = [x1, x2] × [y1, y2] of
ORS/ORP query, we first solve the ORS/ORP query with halved points by the
corresponding RN/RP query on S. Second, we transpose the query rectangle R
and solve the symmetric ORS/ORP query with halved points by the correspond-
ing RL/RR query on S. Combining these two results yields the answer for the
original ORS/ORP query. Here we should again construct the bit vector B as
above, but it takes only (n+m)H0(B)+o(m) ≤ n log e(n+m)

n +o(m) = o(m) log n
bits. Note that if U has some edges, deletion of elements of S and B must be
supported. That can be achieved by substituting B and the bit vectors in W for
dynamic bit vectors. Therefore we can obtain the following theorem.
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Algorithm 1. Range Leftmost Value by Wavelet Tree.
1: function RL(v, [p, q], [a, b], [α, ω])
2: if a > b or [α, ω] ∩ [p, q] = ∅ then return 0
3: if [α, ω] ⊆ [p, q] then return a
4: γ ← �(α + ω)/2�
5: i ← RL(left(v), [p, q], [rank0(Bv, a − 1) + 1, rank0(Bv, b)], [α, γ])
6: j ← RL(right(v), [p, q], [rank1(Bv, a − 1) + 1, rank1(Bv, b)], [γ + 1, ω])
7: if i 	= 0 and j 	= 0 then return max(select0(Bv, i), select1(Bv, j))
8: else if i 	= 0 then return select0(Bv, i)
9: else if j 	= 0 then return select1(Bv, j)

10: else return 0
11: end function

Theorem 2. With a data structure which takes (m+o(m)) log n bits and can be
built in O(m

√
log n) time, Q (Q′) can be solved in O(log n) (O(log2 n)) time if U

has no edges, or Q (Q′) can be solved in O(log2 n/ log log n) (O(log3 n/ log log n))
time and deletion of one edge can be done in O(log2 n/ log log n) time otherwise.

6 Space-Efficient Dynamic DFS

In this section, we show a way to solve dynamic DFS problem space-efficiently.
following the algorithms of Baswana et al. [1].

6.1 Fault Tolerant DFS

We begin with the case of fault tolerant DFS problem. Following the original
algorithm described in Sect. 3.1, the important point is that once a data structure
for answering Q and Q′ is built, the whole adjacency list of the original graph is
no longer needed. Moreover, information used in the algorithm other than the
data structure and the reduced adjacency list takes only O(n log n) = o(m) log n
bits: there are O(n) words of information for the original DFS tree T (including
the data representing the disjoint tree partition), O(1) words of information
attached to each vertex and each edge in T , a stack which have at most O(n)
elements, and a partially constructed DFS tree, but these sum up to only O(n)
words. Since we have already shown that the data structure takes (m+o(m)) log n
bits, we have only to consider the size of the reduced adjacency list L. From [1],
it can be concluded that for any k(≤ n) graph updates, the number of edges in L
is at most O(nk log n) under (I)/(II), and O(n) under (III). The time complexity
of this algorithm can be calculated from Lemma 1 and Theorem 2.

Theorem 3. Let G be an undirected graph and suppose that the DFS tree T for
G is given. Then for any k(≤ n) updates on G, a new DFS tree can be built
in O(nk log3 n/ log log n) time and (m + o(m)) log n + O(nk log2 n) bits of space
under (I), O(nk log2 n) time and (m + o(m)) log n + O(nk log2 n) bits of space
under (II), and O(n log n) time and (m + o(m)) log n bits of space under (III),
with a data structure constructed in O(m

√
log n) time.
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6.2 Amortized Update Time Dynamic DFS

Next, we focus on the amortized update time dynamic DFS algorithm. During
the “amortized time” algorithm described in Sect. 3.2, we should do both the
reconstruction of D and the fault tolerant DFS, and store information of up to
last c updates. Therefore we have to consider (a) how many edges the reduced
adjacency list L may have, (b) how much space is required to store information
of updates, and (c) how to rebuild the data structure space-efficiently.

First we consider (a). Since we rebuild D after every c updates, we solve the
fault tolerant DFS problem with at most c updates. Therefore we can obtain
an upper bound on the number of edges in L. Under the condition (I), we can
say f = m

√
log n, g = n log3 n/ log log n and h = 0 for Lemma 2, thus the size

of L is at most O(n log n · √
f/g) = O(

√
mn log log n/ log0.25 n) = o(m). Under

(II), we can say f = m
√

log n, g = n log2 n and h = 0, thus the upper bound is
O(

√
mn log0.25 n) which is o(m) under the assumption m = ω(n log0.5 n). Under

(III), we can say f = m
√

log n, g = log n and h = n log n since O(k · g + h) =
O(n log n) holds for k ≤ n, and the upper bound is O(n), as described in Sect. 6.1.
Hence we can conclude that L takes only o(m) log n bits in any conditions.

Next we consider (b), but this is almost the same as (a). Under (I)/(II), the
number of edges inserted or deleted during c updates is up to n

√
f/g, since

indels of one vertex involves indels of accompanying edges, which can be at most
n arcs. This is smaller than the maximum size of L. Under (III), the number of
edges inserted during c updates is up to

√
f/g =

√
m/ log0.25 n which is o(m).

Finally we consider (c). Let Lj be the order of vertices in Gj defined by the
pre-order traversal of Tj . As described in Sect. 5, the data structure Dj is indeed
a pair of bit vector Bj and wavelet tree Wj . These data structures can be built
from two arrays Mj [0..n] and Sj [1..m] meeting the following conditions.

1. 0 = Mj [0] ≤ Mj [1] ≤ · · · ≤ Mj [n] = m.
2. The elements of Sj have one-to-one correspondence with the edges in Gj ;

Sj [k] corresponds to the edge (i, Sj [k]) for k = Mj [i] + 1, . . . ,Mj [i + 1]
(i = 0, . . . , n − 1). Here the numbering of vertices from 0 to n − 1 is decided
according to Lj . We call Sj [Mj [i] + 1..Mj [i + 1]] the block k of Sj .

3. The elements of Sj in each block are sorted in ascending order.

Note that Sj takes m log n bits and Mj takes O(n log m) = o(m) log n bits.
Now we describe the way to rebuild the data structures space-efficiently.

During use of Bj−1 and Wj−1, we also retain Mj−1 and Sj−1. After jc updates
are processed, i.e. Tj is reported, we rebuild the data structures as follows.

1. Destroy Bj−1 and Wj−1.
2. Sort the inserted/deleted edges during the last c updates in the same order

as Sj−1, and create a new array S′
j by merging these information with Sj−1.

Simultaneously Mj−1 is updated to M ′
j to meet S′

j .
3. Decide the order Lj of vertices in Gj by the pre-order traversal of Tj .
4. Create Mj and Sj from M ′

j and S′
j (details are described below), and destroy

M ′
j and S′

j . Then build Bj and Wj from Mj and Sj .
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Note that the number of edges inserted/deleted during c updates is up to o(m),
and sorting can be done in linear time and o(m) log n bits of working space by
radix sort. Merging two sorted arrays can also be done in linear time. Therefore
we have only to consider the process of creating Mj and Sj .

This process is divided into three steps as an example shown in Fig. 2: ReNum-
ber, ReArrange and Reverse. In ReNumber, the elements of S′

j , which have an old
numbering that came from Lj−1, is replaced by the new numbering that came
from Lj . Note that the old-to-new and the new-to-old correspondence tables of
these numberings can be both stored in only O(n log n) bits of space. Next, in
ReArrange, a new array S′′

j is created by sorting the blocks of S′
j in the ascending

order of Lj using M ′
j , and later M ′

j and S′
j are destroyed. At the same time an

array M ′′
j is created in the same manner as M ′

j . The final step Reverse is almost
the same as a counting sort for S′′

j , but each element of a new array Sj is not the
element of S′′

j itself but the vertex id of the other end of edge derived from M ′′
j ,

and later M ′′
j and S′′

j are destroyed. Note that the counter used in the counting
sort takes only O(n log m) bits, and at the end of Reverse Mj can be easily built
from this counter. This step reverses the direction of each edge retained in the
array, but it makes no problem. Now Mj and Sj meet all conditions.

5 0 1 4 2 1 7 3 6 7 1 0
0 1 2 3 4 5 6 7

Sj

ReNumber
7 3 5 1 6 5 4 2 0 4 5 3
3 5 6 2 1 7 0 4

Sj
ReArrange

5 5 4 6 7 3 3 5 1 2 0 4
0 1 2 3 4 5 6 7

Sj

Reverse
7 6 7 4 5 1 7 0 1 6 2 3
0 1 2 3 4 5 6 7

Sj

Fig. 2. An example of the process of creating Mj and Sj from M ′
j and S′

j .

The whole process to rebuild data structures takes O(m
√

log n) time,
since building single wavelet tree takes O(m

√
log n) time and the others take

only O(m) time. In the whole process, data structures or arrays which take
(m + o(m)) log n bits are Wj−1, Sj−1, S′

j , S′′
j , Sj and Wj , and at any time this

algorithm retains at most two of them. Since all other data take only o(m) log n
bits, the space required by the algorithm is (2m+o(m)) log n+O(m) bits where
the O(m) term is the working space of building wavelet tree. Combining these
observations with Lemma 2 yields the following theorem.
Theorem 4. Suppose that an original undirected graph G and its DFS tree T
is given. Then for any online sequence of updates on G, a new DFS tree after
each update can be built in amortized O(

√
mn log1.75 n/

√
log log n) time under

(I), O(
√

mn log1.25 n) time under (II), and O(n log n) time under (III). This
algorithm requires only (2m + o(m)) log n + O(m) bits once data structures for
the original graph are built.

6.3 Worst Case Update Time Dynamic DFS

Finally we consider the worst case update time algorithm for the dynamic
DFS, following the “worst case time” algorithm described in Sect. 3.2. To imple-
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ment this space-efficiently, again we must consider (a), (b) and (c) described
in Sect. 6.2, but two of them are almost the same argument. In the worst case
time algorithm, we should solve the fault tolerant DFS problem with at most 2c
updates and store information of last 2c updates. Thus both the maximum size
of reduced adjacency list and the required space for the information of updates
are doubled, but these doublings are absorbed in the big O notation.

Therefore we have only to consider (c). Here Dj denotes the pair of the bit
vector Bj and the wavelet tree Wj . Then during phase 0, D0 is used to perform
fault tolerant DFS and rebuilding of data structures is not needed. During phase
j(≥ 1), Dj−1 is used and the following processes are done gradually: first destroy
Dj−2 (this is not needed for phase 1), and then build Mj , Sj and Dj from Mj−1,
Sj−1 in the same way as Sect. 6.2. At the end of phase j there exist Dj−1, Mj ,
Sj and Dj , and we can continue to the next phase j + 1.

Finally we consider how much space is needed to implement this algorithm.
In phase j, Dj−1 takes (m + o(m)) log n bits, and rebuilding the data structures
requires at most (2m+o(m)) log n+O(m) bits as described in Sect. 6.2. Therefore
the total required space is (3m + o(m)) log n + O(m) bits.

Theorem 5. Suppose the same assumption as Theorem4. Then for any online
sequence of updates, a new DFS tree after each update can be built in worst case
O(

√
mn log1.75 n/

√
log log n) time under (I), O(

√
mn log1.25 n) time under (II),

and O(n log n) time under (III). This algorithm requires only (3m+o(m)) log n+
O(m) bits once data structures for the original graph are built.
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Abstract. We study the problem of computing the k-visibility region
in the memory-constrained model. In this model, the input resides in
a randomly accessible read-only memory of O(n) words, with O(log n)
bits each. An algorithm can read and write O(s) additional words of
workspace during its execution, and it writes its output to write-only
memory. In a given polygon P and for a given point q ∈ P , we say
that a point p is inside the k-visibility region of q, if and only if the
line segment pq intersects the boundary of P at most k times. Given a
simple n-vertex polygon P stored in a read-only input array and a point
q ∈ P , we give a time-space trade-off algorithm which reports the k-
visibility region of q in P in O(cn/s+n log s+min{�k/s�n, n log logs n})
expected time using O(s) words of workspace. Here c ≤ n is the number
of critical vertices for q, i.e., the vertices of P where the visibility region
may change. We also show how to generalize this result for polygons with
holes and for sets of non-crossing line segments.

Keywords: Memory-constrained model · k-visibility region · Time-
space trade-off

1 Introduction

Memory constraints on mobile and distributed devices have led to an increasing
concern among researchers to design algorithms that use memory efficiently. One
common model to capture this notion is the memory-constrained model [2]. In
this model, the input is provided in a randomly accessible read-only array of
O(n) words, with O(log n) bits each. There is an additional read/write memory
consisting of O(s) words of O(log n) bits each, which is called the workspace of
the algorithm. Here, s ∈ {1, . . . , n} is a parameter of the model. The output is
written to a write-only array.
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Suppose we are given a polygon P and a query point q ∈ P . We say that
the point p ∈ P is k-visible from q if and only if the line segment pq properly
intersects the boundary of P at most k times (p and q are not counted toward k).
The set of k-visible points of P from q is called the k-visibility region of q within
P , and it is denoted by Vk(P, q); see Fig. 1. Visibility problems have played and
continue to play a major role in computational geometry since the dawn of the
field, leading to a rich history; see [16] for an overview. The concept of visibility
through a single edge first appeared in [11]. Recently, k-visibility for k > 1
has been introduced and applied to model coverage of wireless devices whose
radio signals can penetrate a given number k of walls [1,13]. There are some
other results in this context; for example see [4,10,12,14,15,17,20]. While the
0-visibility region consists of one connected component, the k-visibility region
may be disconnected in general. A previous work [3] presents an algorithm for a
slightly different variant of this problem, which computes the set of points in the
plane which are k-visible from q in presence of a polygon P in O(n2) time using
O(n) space. In this case the k-visibility region is a single connected component.

The optimal classic algorithm for computing the 0-visibility region runs in
O(n) time using O(n) space [18]. In the memory-constrained model using O(1)
workspace, there is an algorithm which reports the 0-visibility region of a point
q ∈ P in O(nr̄) time, where r̄ denotes number of reflex vertices of P in output [6].
This algorithm scans the boundary of P in counterclockwise order and it reports
the maximal chains of adjacent vertices of P which are 0-visible from q. More
precisely, it starts from a visible vertex vstart, and it finds vvis, the next visible
reflex vertex with respect to q, in O(n) time. The first intersection of the ray
qvvis with the boundary of P is called the shadow of vvis. Depending on the type
of vvis, the end vertex of the maximal visible chain starting at vstart, is either
vvis or its shadow, and in each case the other one is the start vertex of the next
maximal visible chain. Thus, in each iteration the algorithm reports a maximal
visible chain and it repeats this procedure r̄ times, where r̄ is the number of
visible reflex vertices of P . This takes O(nr̄) time using O(1) workspace. When
the workspace is increased to O(s), such that s ∈ O(log r) and r is the number
of reflex vertices of P with respect to q, they present O(nr/2s +n log2 r) time or
O(nr/2s + n log r) randomized expected time algorithm. The method is based
on a divide-and-conquer approach which uses the previous algorithm as base
algorithm and in each step of the recursion, it splits a chain into two subchains
with roughly half of the visible reflex vertices of the chain. Due to differences
between the properties of the 0-visibility region and the k-visibility region, there
seems to be no straightforward way to generalize this approach. In [5] a general
method for transforming stack-based algorithms into the memory-constrained
model is provided, which can be used as an alternative method to obtain a
time-space trade-off to compute the 0-visibility region.

Here, we look at the more general problem of computing the k-visibility region
of a simple polygon P from q ∈ P using a small workspace, and we establish
a trade-off between running time and workspace. Unless stated otherwise, all
polygons will be understood to be simple.
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v3

v1

v2
q
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v5v6

v7
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P

Fig. 1. The gray region is V2(P, q). The vertices v1, . . . , v8 are critical for q. Here
v1, v2, v3 and v6 are start vertices, while v4, v5, v7 and v8 are end vertices. The boundary
of P is partitioned into 8 disjoint chains, i.e., the counterclockwise chain v3v5.

2 Preliminaries and Definitions

We assume that our simple polygon P is given in a read-only array as a list
of n vertices in counterclockwise (CCW) order along the boundary. This input
array also contains a query point q ∈ P . The aim is to report Vk(P, q), using
O(s) words of workspace. We assume that the vertices of P are in weak general
position, i.e., the query point q does not lie on the line determined by any two
vertices of P . Without loss of generality, assume that k is even and that k < n.
If k is odd, we compute Vk−1(P, q), which is by definition equal to Vk(P, q), and
if k ≥ n then P is completely k-visible. The boundary of Vk(P, q) consists of
part of the boundary of P and some chords that cross the interior of P to join
two points on its boundary. We denote the boundary of a planar set U by ∂U .

Let θ ∈ [0, 2π), and let rθ be the ray from q that forms a CCW angle θ with
the positive-horizontal axis. An edge of P that intersects rθ is called an inter-
secting edge of rθ. The edge list of rθ is defined as the sorted list of intersecting
edges of rθ, according to their intersection with rθ (from q). The jth member of
the edge list of rθ is denoted eθ(j). When rotating rθ around q in CCW order,
the edge list of rθ does not change unless rθ stabs a vertex v of P . If rθ stabs v,
then the edge lists of rθ−ε and of rθ+ε differ, for any small ε > 0. The difference
is caused only by edges incident to v. If these edges lie on opposite sides of rθ,
then the edge list of rθ+ε is obtained from the edge list of rθ−ε by exchanging
the incident edge of v, which is in the edge list of rθ−ε, with the other incident
edge of v. If both incident edges of v lie on the same side of rθ, we call v a critical
vertex; see Fig. 1. If both incident edges of v lie on the right/left side of rθ, then
the edge list of rθ+ε is obtained by removing/adding the two incident edges of v
from/to the edge list of rθ−ε. For simplicity, if rθ stabs a vertex v, we define the
edge list of rθ equal to the edge list of rθ+ε, for a small ε > 0. The number of
critical vertices in P is denoted by c. A chain is defined as a maximal sequence
of edges of P which does not contain a critical vertex, except at the beginning
and at the end. The critical vertex v is called an end vertex/a start vertex if
both incident edges to v lie on the right/left side of rθ. The name is due to the
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fact that an end/start vertex shows the end/start of two chains in the edge list;
see Fig. 1. The angle of a vertex v which lies on the ray rθ refers to θ.

Observation 2.1. Suppose we are given an edge e of a chain C of P , and a
ray rθ. We can find the edge of C which intersects rθ (if it exists) by scanning
the chain C of P in O(|C|) time using O(1) words of workspace.

The above observation implies that, any edge of a chain may be used as a
proper representative of the chain and its other edges. Thus, in the edge list,
each edge refers to its containing chain. Obviously, in direction θ, only the first
k + 1 members of the edge list of rθ are k-visible from q, which leads us to focus
on chains and their order in the edge list. As we explained before, when rotating
rθ around q, the structure of the edge list of rθ (i.e., the chains and their order)
changes only when rθ stabs a critical vertex v. We will see that in this case a
segment on rθ may belong to ∂Vk(P, q). Obviously, v is k-visible if its position
on rθ is not after eθ(k + 1).

Lemma 2.2. If rθ stabs a k-visible end (or start) vertex v, then the segment
on rθ between eθ(k) and eθ(k+1) (or eθ(k+2) and eθ(k+3)), if these two edges
exist, is an edge of Vk(P, q).

Proof. If v is an end vertex, then for small enough ε > 0, the edges eθ(k) and
eθ(k+1) are respectively eθ−ε(k+2) and eθ−ε(k+3), so they are not k-visible in
direction θ−ε. These edges are also eθ+ε(k) and eθ+ε(k+1), so they are k-visible
in direction θ +ε. Hence, the segment on rθ between eθ(k) and eθ(k +1) belongs
to ∂Vk(P, q). Similarly, if v is a start vertex, the segment between eθ(k + 2) and
eθ(k + 3) belongs to ∂Vk(P, q); see Fig. 2. ��

Lemma 2.2 leads to the following definition: for a ray rθ that stabs a k-visible
end (or start) vertex v, the segment between eθ(k) and eθ(k + 1) (or eθ(k + 2)
and eθ(k + 3)), if they exist, is called the window of rθ; see Fig. 2.

Observation 2.3. The boundary of Vk(P, q) has O(n) vertices.

Proof. ∂Vk(P, q) consists of part of ∂P and windows; thus, a vertex of Vk(P, q)
is either a vertex of P or an endpoint of a window. Since each critical vertex
causes at most one window, the number of vertices of Vk(P, q) is O(n). ��

Obviously, if P has no critical vertex, then no window exists, and ∂Vk(P, q) =
∂P . Thus, we assume that P has at least one critical vertex. From now on,
ei(j) denotes the jth intersecting edge of the ray qvi, where vi is a vertex of
P . However, instead of ei(j), it suffices to find an arbitrary edge of the chain
containing ei(j) and then apply Observation 2.1 to find ei(j). Therefore, we refer
to any edge of the chain containing ei(j) by ei(j). In the following algorithms,
for any critical vertex vi, we determine ei(k +1) which helps to find the window
of qvi (if it exists), and also the part of ∂P which is in ∂Vk(P, q). However,
depending on how much workspace is available, we have different approaches for
finding all ei(k + 1). Details follow in the next sections.
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Fig. 2. The ray rθ in the top/bottom figure stabs the end/start vertex v. The segment
w is a window of 4-visible region. The tiled regions are not 4-visible for q.

3 A Constant-Memory Algorithm

In this section, we assume that only O(1) words of workspace is available. Sup-
pose v0 and v1 are the critical vertices with respectively first and second smallest
(polar) angles. We start from qv0 and we find e0(k+1) in O(kn) time using O(1)
words of workspace. Basically, we perform a simple selection subroutine as fol-
lows: pass over the input k+1 times, and in each pass, find the next intersecting
edge of qv0 until the (k + 1)th one, e0(k + 1). If v0 does not lie after e0(k + 1)
on qv0, i.e., if v0 is k-visible, we report the window of qv0 (if it exists). Since the
window is defined by e0(k) and e0(k +1) or by e0(k +2) and e0(k +3), it can be
found in at most two passes over the input. Then we report the part of ∂Vk(P, q)
lying between qv0 and qv1 while scanning ∂P . In fact, for each edge e ∈ P which
is in the edge list of qv0 and lies before e0(k+1) on qv0, we report the segment of
e which is between qv0 and qv1. We repeat the above procedure for v1 except for
determining e1(k + 1) which is done in O(n) time using e0(k + 1) as follows: for
1 ≤ i, if vi is an end or a start vertex the incident edges to vi are respectively in
the edge list of qvi−1 or qvi and not in the other one; see Fig. 3. Except for edges
incident to vi, all the other intersecting edges of qvi−1 intersect qvi in the same
order, and vice versa. Hence, if ei−1(k + 1) lies before vi on qvi, then it defines
ei(k + 1). Otherwise, if vi is an end/a start vertex, then the second right/left
neighbour of ei−1(k + 1) in the edge list of qvi−1/qvi defines ei(k + 1). However,
in all cases the chain of ei(k + 1) is found by at most two passes over the input;
applying Observation 2.1, the edge ei(k +1) is obtained. Notice that here and in
the following algorithms, if there are less than k + 1 intersecting edges on qvi−1,
we store the last intersecting edge of qvi−1, and the number of intersecting edges
of qvi−1. We this edge instead of ei−1(k +1), in the same procedure as above, to
find ei(k + 1) or the last intersecting edge of qvi and the number of intersecting
edges of qvi. The algorithm repeats the above procedure until all critical vertices
have been processed. The number of critical vertices is c, and processing each of
them takes O(n) time, except for the selection subroutine during processing v0,
which takes O(kn) time. Thus, the running time of the algorithm is O(kn+ cn),
using O(1) words of workspace. This leads to the following theorem:
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vi−1

Fig. 3. Left: vi is an end vertex and ei(5) is the second intersecting chain to the right
of ei−1(5). Right: vi is a start vertex and ei(5) is the second intersecting chain to the
left of ei−1(5).

Theorem 3.1. Given a simple polygon P with n vertices in a read-only array,
a point q ∈ P , and a parameter k ∈ N, there is an algorithm which reports
∂Vk(P, q) in O(kn + cn) time using O(1) words of workspace, where c is the
number of critical vertices of P .

4 Memory-Constrained Algorithms

In this section, we assume that word of O(s) workspace is available, and we
show how to exploit the additional workspace to compute the k-visibility region
faster. We provide two algorithms, the first one is presented only for better
understanding of the second algorithm, which provides a better running time. In
the first algorithm we process all the vertices in contiguous batches of size s in
angular order. In each iteration we find the next batch of s vertices, and using
the edge list of the last processed vertex, we construct a data structure which is
used to find the windows of the batch. Using the windows we report ∂Vk(P, q) in
the interval of the batch. In the second algorithm we improve the running time
by skipping the non-critical vertices. Specifically, in each iteration we find the
next batch of s adjacent critical vertices, and similarly as the first algorithm,
we construct a data structure for finding the windows, which requires a more
involved approach to be updated. We first state Lemma4.1, which is implicitly
mentioned in [8] (see the second paragraph in the proof of Theorem 2.1).

Lemma 4.1. Given a read-only array A of size n and an element x ∈ A, there
is an algorithm that finds the s smallest elements in A, among those elements
which are larger than x, in O(n) time using O(s) additional words of workspace.

Proof. In the first step, insert the first 2s elements of A which are larger than
x into workspace memory (without sorting them). Select the median of the 2s
elements in memory in O(s) time and remove the elements which are larger than
the median. In the next step, insert the next batch of s elements of A which are
larger than x into memory and again find the median of the 2s elements in
memory and remove the elements which are larger than the median. Repeat the
latter step until all the elements of A are processed. Clearly, at the end of each
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step, the s smallest elements of the ones which have been already processed, are
in memory. Since the number of batches or steps is O(n/s), the running time of
the algorithm is O(n) and it uses only O(s) word of workspace. ��
Lemma 4.2. Given a read-only array A of size n and a parameter k ∈ N, there
is an algorithm that finds the kth smallest element in A in O(�k/s�n) time using
O(s) additional word of workspace.

Proof. In the first step, apply Lemma 4.1 to find the first batch of s smallest
elements in A and insert them into workspace memory in O(n) time. If k < s
select the kth smallest element in memory in O(s) time; otherwise, find the
largest element in memory, which plays the role of x in Lemma 4.1. In step i,
apply Lemma 4.1 to find the ith batch of s smallest elements in A and insert them
into memory. If k < i ·s select the (k− (i−1)s)th smallest element in memory in
O(s) time and stop; otherwise, find the largest element in memory and repeat.
The element being sought is in the �k/s�th batch of s smallest elements of A;
therefore, we can find it in O(�k/s�n) time using O(s) word of workspace. ��

In addition to our algorithm in Lemma4.2 there are several other results
on the selection problem in the read-only model; see Table 1 of [9]. There are
O(n log logs n) expected time randomized algorithms for selection problem using
O(s) words of workspace in the read-only model [7,19]. Depending on k, s and n
we choose one of the latter algorithms or the algorithm of Lemma4.2. In conclu-
sion, the running time of selection in the read-only model using O(s) words
of workspace, which is denoted by Tselection, is O(min{�k/s�n, n log logs n})
expected time. Next we describe how to apply Lemmas 4.1 and 4.2.

4.1 Algo 1: Processing All the Vertices

First we find the critical vertex v0 with smallest angle. We apply Lemma 4.1 to
find the batch of s vertices with smallest angles after v0, and we sort them in
workspace memory in O(s log s) time. For qv0 we use the selection subroutine
(with O(s) word of workspace) to find e0(k + 1), and if v0 is a k-visible vertex
we report its window (if it exists).

Then, we apply Lemma 4.1 to find the two batches of 2s adjacent intersecting
edges to the right and to the left of e0(k+1) on qv0, we insert them in a balanced
search tree T . In other words, in T we store all e0(j), for k+1−2s ≤ j ≤ k+1+2s,
sorted according to their intersection with qv0. These edges are candidates for
the (k+1)th intersecting edge of the next s rays in angular order or ei(k+1), for
1 ≤ i ≤ s. This is because, as we explained in Sect. 3, if ei(k + 1) belongs to the
edge list of qvi−1, there is at most one edge between ei−1(k + 1) and ei(k + 1)
in the edge list. Therefore, ei(k + 1) is either an in the edge list of qv0, and
in this case there are at most 2i − 1 edges between e0(k + 1) and ei(k + 1), or
ei(k+1) is an edge which is inserted in T later; see Fig. 4. More specifically, after
creating T , we start from v1, the next vertex with smallest angle after v0, and
according to the type of v1, we update T : if v1 is a non-critical vertex we change
the incident edge to v1 which is already in T with the other incident edge to v1;
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if v1 is an end (start) critical vertex, we remove (insert) the two edges which are
incident to v1. In all cases we update T only if the incident edges to v1 are in
the interval of the 2s intersecting edges of qv0 in T , this takes O(log s) time. By
updating T we can find e1(k + 1) and the window of qv1 (if it exists) using the
position of e0(k + 1) or its neighbours in T in O(1) time.

In the same procedure for 1 ≤ i ≤ s, using T and ei−1(k + 1), we determine
ei(k + 1) and the window of qvi, which take O(s log s) total time. Whenever we
find and report a window, we insert its endpoints into a balanced search tree
W in O(log s) time. In W the endpoints of windows are sorted according to the
indices of the edges of P on which they lie. For reporting the part of ∂Vk(P, q)
between qv0 and qvs, we use W (as a sorted array) and also E which is the set of
edges ei(k + 1), 1 ≤ i ≤ s. We know that, if there is no endpoint of a window on
a segment, then the visibility of the segment is consistent on the entire segment.
Using this, we walk on ∂P and for each edge e of P , we check if its endpoints,
restricted to the interval of the batch, are k-visible or not (in O(1) time using E).
We also check if there is any endpoint of windows on e (in O(|we|) time, where
|we| is the number of windows’ endpoints on e). By having this information we
report the k-visible segments of e restricted to the interval of the batch. Since
the endpoints of windows are sorted according to their positions on ∂P , we do
not check any member of W more than one time. It follows that the procedure
of reporting the k-visible part of ∂P takes O(n) time in each batch.

q

v1
v2

. . .
vs

v0
e0(3)

e1(3)

v3
e3(3)

e2(3)

Fig. 4. The vertices v0, v1, . . . , vs are the first batch of s vertices in angular order. The
edge e1(3) is the second right neighbour of e0(3) because v1 is an end vertex. The edge
e2(3) is the second left neighbour of e1(3) which is inserted in T while processing v2.
The edge e3(3) is on the same chain as e2(3) because v3 is a non-critical vertex.

After processing the first batch of vertices, we apply Lemma 4.1 to find the
next batch of s vertices with smallest angle, and we sort them in memory in
O(s log s) time. The last updated T is not usable anymore, because it does not
necessarily contain any right or left neighbours of es(k+1). Applying Lemma4.1
as before, we find the two batches of 2s adjacent intersecting edges to the right
and to the left of es(k + 1) on qvs and we insert them into T . Then similarly
for each s < i ≤ 2s we find ei(k + 1) and its corresponding window and we
update T , W and E. Overall, finding a batch of s vertices, sorting and process-
ing them, reporting the windows and the k-visible part of ∂P in the batch, take
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O(n + s log s) time. Moreover, we run the selection subroutine in the first
batch. We repeat this procedure for O(n/s) iterations, until all the vertices
are processed. Thus, the running time of the algorithm is O(n/s(n + s log s)) +
Tselection. Since Tselection is dominated, Theorem 4.3 is follows:

Theorem 4.3. Given a simple polygon P with n vertices in a read-only array, a
point q ∈ P and a parameter k ∈ N, there is an algorithm which reports ∂Vk(P, q)
in O(n2/s + n log s) time using O(s) words of workspace.

4.2 Algo 2: Processing only Critical Vertices

In this algorithm we process critical vertices in contiguous batches of size s in
angular order. This algorithm works similarly as the algorithm in Sect. 4.1, but it
differs in constructing and updating the data structure for finding the windows.
In each iteration of this algorithm we find the next batch of s critical vertices
with smallest angles and sort them in workspace memory in O(s log s) time. As
in the previous algorithm, we construct a data structure T , which contains the
possible candidates for the (k + 1)th intersecting edges of the rays to critical
vertices of the batch. In each step, we process a critical vertex, and we use T
to find its corresponding window and we update T . For updating T efficiently,
we use another data structure, which is called Tθ; see below. After finding the
windows of the batch, we report the k-visible part of ∂P in the interval of the
batch. We repeat the same procedure for the next s critical vertices.

q

v1

. . .
vs

v0

v2

e0(4)
e0(1)

Fig. 5. The vertices v0, v1, . . . , vs are the first batch of s critical vertices in angular
order. The endpoint of the edge e0(1) is between qv1 and qv2, so e0(1) will be changed
in T after processing v1. The endpoint of e0(4) is between qv0 and qv1, so e0(4) will be
changed in T after processing v0.

In the first iteration, after computing v1, . . . , vs, the angular sorted critical
vertices after v0, we find the two batches of 2s adjacent intersecting edges to
the right and to the left of e0(k + 1) on qv0. We sort them and insert them in a
balanced search tree T , which takes O(n+ s log s) time. Then for each edge in T
we determine the larger angle of its endpoints. This angle shows the position of
the endpoint between the rays from q to the critical vertices. Specifically, if the
edge is incident to a non-critical vertex, this angle determines the step in which
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the edge in T should be updated to the other incident edge to the vertex; see
Fig. 5. By traversing ∂P we determine these angles for the edges in T and we
insert them in a balanced search tree Tθ, whose entries are connected through
cross-pointers to their corresponding edges in T . We construct Tθ in O(n+s log s)
time using O(s) words of workspace.

Now for finding the (k +1)th intersecting edge of qv1 we update T , so that it
contains the edge list of qv1: If there is any angle in Tθ which is smaller than the
angle of v1, we change the corresponding edge of the angle in T with its previous
or next edge in P . In other words, we have found a non-critical vertex between
qv0 and qv1, so we change its incident edge, which has been already in T , with
its other incident edge. Then we find the larger angle of the endpoints of the new
edge and insert it in Tθ. These two steps take O(1) and O(log s) time for each
angle that meets the condition. By doing these steps, changes in the edge list
which are caused by non-critical vertices between qv0 and qv1 are handled. Then
we update T and consequently Tθ according to the type of v1, with the same
procedure as in the previous algorithm: if v1 is an end (start) critical vertex,
we remove (insert) the two edges which are incident to v1, this can be done
in O(log s) time. Now T contains 2s intersecting edges of qv1, and we can find
e1(k+1) using the position of e0(k+1) and its neighbours in T in O(1) time. We
repeat this procedure for all critical vertices in this batch. In summary, updating
T considering the changes that are caused by critical and non-critical vertices
of the batch takes respectively O(s log s) and O(n′ log s) time, where n′ is the
number of non-critical vertices that lie on the interval of the batch.

While processing the batch, we insert all ei(k + 1), 1 ≤ i ≤ s into E. Also
whenever we find a window we report it and we insert its endpoints, sorted
according to the indices of the edges of P on which they lie, into a balanced
search tree W in O(log s) time. After processing all the vertices of the batch, we
use W (as a sorted array) and E to report the k-visible part of ∂P restricted to
the interval of the batch. We know that, if there is no endpoint of a window on
a chain, then the visibility of the chain is consistent on the entire chain. Using
this, we walk on ∂P and for each chain C, we check if its endpoints, restricted
to the interval of the batch, are k-visible or not (in O(1) time using E). We
also check whether there is any endpoint of windows on C (in O(|we|+ |C|) time
using W , where |we| is the number of windows’ endpoints on the chain). Then we
report the k-visible segments of C restricted to the interval of the batch. Since
the endpoints of windows are sorted according to their positions on ∂P , we do
not check any member of W more than one time. It follows that the procedure
of reporting the k-visible part of ∂P takes O(n) time in each batch.

In the next iteration, we repeat the same procedure for the next batch of
critical vertices until all critical vertices are processed. Since the batches do not
have any intersections, each non-critical vertex lies only on one batch. Thus,
updating T in all batches takes O(n log s) time. All together, finding the batches
of s sorted critical vertices, constructing and updating the data structures and
reporting ∂Vk(P, q) take O(cn/s + n log s) total time, in addition to Tselection in
the first batch. This leads to the following theorem:
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Theorem 4.4. Given a simple polygon P with n vertices in a read-only array, a
point q ∈ P and a parameter k ∈ N, there is an algorithm which reports ∂Vk(P, q)
in O(cn/s + n log s + min{�k/s�n, n log logs n}) expected time using O(s) words
of workspace, where c is the number of critical vertices of P .

5 Variants and Extensions

Our results can be extended in several ways; for example, computing the k-
visibility region of a point q inside a polygon P , when P may have some holes,
or computing the k-visibility region of a point q in presence of a set of non-
crossing segments inside a bounding box in the plane (the bounding box is only
for bounding the k-visibility region). For the first problem, all the arguments
in the algorithms for simple polygons hold for polygon with holes. The only
remarkable issue is walking on ∂P to report the k-visible segments of ∂P . Here,
after walking on the outer part of ∂P , we walk on the boundary of the holes one
by one and we apply the same procedures for them. If there is no window on the
boundary of a hole, then it is completely k-visible or completely non-k-visible.
For such a hole, we check if it is k-visible and, if so, we report it completely. This
leads to the following corollary:

Corollary 5.1. Given a polygon P with h ≥ 0 holes and n vertices in a read-
only array, a point q ∈ P and a parameter k ∈ N, there is an algorithm which
reports ∂Vk(P, q) in O(cn/s + n log s + min{�k/s�n, n log logs n}) expected time
using O(s) words of workspace. Here c is the number of critical vertices of P .

In the second problem for a set of n non-crossing segments inside a bounding
box in the plane, the output is the part of the segments which are k-visible. Here,
the endpoints of all segments are critical vertices and should be processed. In
the parts of the algorithm where a walk on the boundary is needed, reading the
input sequentially leads to similar results. Similarly, there may be some segments
with no windows’ endpoints on. For these we only need to check visibility of an
endpoint to decide whether they are completely k-visible or completely non-k-
visible. This leads to the following corollary:

Corollary 5.2. Given a set of n non-crossing segments S in a read-only array
which lie in a bounding box B, a point q ∈ B and a parameter k ∈ N, there is
an algorithm which reports Vk(S, q) in O(n2/s + n log s) time using O(s) words
of workspace, where Vk(S, q) is the k-visible subsets of segments in S from q.

6 Conclusion

We have proposed algorithms for a class of k-visibility problems in the
constrained-memory model, which provide time-space trade-offs for these prob-
lems. We leave it as an open question whether the presented algorithms are
optimal. Also, it would be interesting to see whether there exists an output sen-
sitive algorithm whose running time depends on the number of windows in the
k-visibility region, instead of the critical vertices in the input polygon.
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Abstract. We consider the space-efficient implementation of greedy
algorithms for several fundamental problems on intervals. We assume
a random access machine model with read-only access to input stored
in Θ(n) words of memory, augmented with a random access memory
(workspace) of size Θ(s) bits, where lg n ≤ s ≤ n. Our implementations
are based on the efficient realization of an abstract data structure that
we call a temporal priority queue that supports extract-min and advance-
time operations for a static collection of entities, each of which is active
for some pre-specified interval of time. This realization is a generaliza-
tion of the memory-adjustable navigation pile proposed by Asano et al.
in studying time-space tradeoffs for sorting.

Using temporal priority queues we are able to implement familiar
greedy algorithms for the maximum independent set problem and a vari-
ety of dominating set problems on intervals, using O(m(lg (sk/m) + n/s))
time and Θ(s) bits of workspace, where k is the size of output and m =
min(sk, n). Choosing s = Θ(n) this achieves O(n lg k) output-sensitive
time complexity for the maximum independent set problem on intervals,
previously realized using Ω(n) words of workspace.

1 Introduction

Motivated by the large and rapidly growing size of data sets, arising in applica-
tions involving biological data, social networks, etc., there has been a significant
resurgence of interest in algorithms designed to run with a limited workspace.
Various computational models that lend themselves to the analysis of time-space
trade-offs have been the subject of study for several decades. Among the earliest
of these was the multi-pass streaming model introduced by Munro and Paterson
for selection and sorting problems [16]. In this model, the data is stored on a read-
only sequential-access medium, which captures in a reasonable way the cost of
accessing input data stored on a hard disk drive (HDD), since sequential access
is fast compared with the random-access on a HDD. On the other hand, solid
state drives (SSD) are widely used on computers or mobile devices. For SSDs,
random-access time is almost same as the sequential-access, and the speed of the
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 320–332, 2017.
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random-access is faster than that of sequential-access on HDD in general. For the
reason, we consider a read-only random-access machine model in this paper [1,8].
Specifically, we assume a read-only random-access memory for input, a write-only
memory for output, and a limited random-access memory for general computation
(workspace). See [3,8] for a survey of read-only random-access machine models for
sorting and selection.

This paper deals with several fundamental problems concerning sets of inter-
vals on the real line, using this read-only random-access machine model. Sets
of real-valued intervals are a fundamental geometric structure for which there
are many important applications in scheduling, bioinfomatics, etc. In many
instances optimization problems on intervals can be solved using simple greedy
algorithms [15, Chap. 4]. The most direct implementations often start by sorting
the input data, taking Θ(n lg n) time1 and Θ(n) words where n is the size of
input. We are interested in understanding how these same greedy algorithms can
be efficiently implemented with significantly less workspace.

Priority Queues. A general priority queue is an abstract data structure that
stores a collection of elements and supports find-min, insert, and extract
operations, efficiently. Building on earlier work of Pagter and Rauhe [17],
Katajainen and Vitale [14] introduced a data structure called a navigation pile
that provides, among other things, a space-efficient implementation of a general
priority queue, with applications to sorting. Using the same structure, Darwish
and Elmasry analyzed the time-space tradeoff for the 2D convex-hull problem [7].

Asano et al. [1] presented a memory-adjustable variant of this structure,
called a memory-adjustable navigation pile, that serves to implement a priority
queue restricted in a way that it produces only monotonically increasing extrac-
tion sequences. (This restriction, that we refer to as the monotone extraction
property is consistent with important applications such as sorting).

A memory-adjustable navigation pile (or MANP) can be viewed as a complete
binary tree, with s ≥ lg n leaves, built on top of an equitable, but otherwise
arbitrary, partition of the input into s buckets. Each node of a navigation pile
provides efficient access to the smallest viable representative from among the
buckets associated with the leaves of its subtree, where an element is viable as
long as its value exceeds that of the most recently extracted element. To restrict
the workspace to a total of Θ(s) auxiliary bits, this access is indirect: the specified
access information suffices only to localize the element to an interval within one
of its associated buckets. The monotone extraction property ensures that the
selection of new bucket representatives can be done with the aid of a single filter
value (the most recent output), thereby avoiding the need for Θ(n) bits to mark
previously extracted elements.

Unfortunately the monotone extraction property alone does not adequately
model situations, arising naturally in the implementation of greedy algorithms on
intervals, where extraction of some elements makes others ineligible for extrac-
tion. In such situations the indirect association of representatives with nodes
of the navigation pile creates complications in maintaining the invariant that
1 The symbol lg denotes log2.
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all representatives are viable. To address this problem we introduce another
abstract data structure, which we call a temporal priority queue, that facilitates
a direct implementation of several greedy algorithms on intervals, and can be
implemented with a natural augmentation of the MANP of Asano et al.

Section 2 recalls some of the details of memory-adjustable navigation piles
and explains their essential limitation for the implementation of greedy opti-
mization algorithms on intervals. Temporal priority queues, and their realization
as temporal memory-adjustable navigation piles, are described in Sect. 3. Appli-
cations to the implementation of a greedy algorithm for a maximum independent
set in a collection of intervals, and several dominating set problems on intervals,
are described in Sects. 4 and 5 respectively. The remainder of this section sets out
some of the relevant background concerning optimizations on sets of intervals
and then summarizes our results.

Optimization on Sets of Intervals. The Maximum Independent Set
(MIS) problem on intervals, takes as input a collection of intervals and asks
for a maximum size subset whose elements are pairwise disjoint. The MIS prob-
lem for intervals has a simple linear-time greedy solution assuming the input
is sorted. Snoeyink [18] described an output-sensitive algorithm using divide-
prune-and-conquer that runs in O(n lg k) time and Θ(n) words, where k is the
output size of the solution. Recently, Bhattacharya et al. [2] studied this MIS
problem with restrictions on workspace. They showed how to address the prob-
lem using a memory-adjustable heap implementation of a priority queue. This
structure executes find-min operations in O(1) time. However, when O(s) words
are available as a workspace, extract operations require updates to the structure
whose total cost, for k extractions, is O(m(lg s + n/s)), where m = min(sk, n).

A set of intervals on a straight line provides an implicit representation of the
intersection graph of these intervals, called an interval graph. The MIS problem
on interval graphs, and also on the more general graph classes, e.g., chordal
graphs and circular-arc graphs, can be solved in linear time and space [9,12]. In
a similar way, MIS algorithms for some of these more general graph classes have
been formulated in terms of their implicit representations, e.g. a set of arcs on
a circle [10].

A subset D of a set of intervals I is a dominating set if every interval in
I intersects at least one interval in D. A minimum size dominating set can be
constructed in linear time on interval and circular-arc graphs [13], and efficient
algorithms have been constructed for a variety of other domination problems
on these same graph classes [4]. Cheng et al. proposed efficient dominating set
algorithms on a set of intervals [5]. These algorithms use dynamic programming
taking linear space for a sorted intervals, and are not output sensitive. See [6,11]
for a survey of results for a variety of dominating set problems on various graph
classes.



Space-Efficient and Output-Sensitive Implementations 323

Our Results. Our contributions in this paper are as follows:

– We propose an abstract data structure, called a temporal priority queue,
that provides a natural generalization of priority queues with the monotone
extraction property;

– We describe an efficient implementation of temporal priority queues, using
temporal memory-adjustable navigation piles;

– We show how greedy algorithms for Maximum Independent Set (MIS),
Minimum Connected Dominating Set (MCDS), and Minimum Domi-
nating Set (MDS) problems on intervals can all be implemented, using tem-
poral memory-adjustable navigation piles, to run in O(m(lg (sk/m) + n/s))
time, using Θ(s) bits for workspace, where s ≥ lg n. (Choosing s = Θ(n) this
achieves the optimal O(n lg k) output-sensitive time complexity, previously
realized [18] for the maximum independent set problem only with the aid of
Ω(n) words of workspace.)

2 Navigation Piles

In this section, we first recall some of the essential details of the memory-
adjustable navigation pile (MANP) structure, proposed by Asano et al. [1] as a
space-efficient implementation of priority queues with the monotone extraction
restriction. The original navigation pile structure, introduced by Katajainen and
Fabio [14], stores Θ(n) bits where n is the size of an input. Asano et al. modified
the navigation pile to a memory-adjustable structure using a workspace of Θ(s)
bits for lg n ≤ s. The MANP structure supports the priority queue operations
find-min and insert in O(1) time, and extract in O(n/s + lg s) time. To
avoid the complications associated with insert operations, that do not arise in
our modifications of MANP structures, we describe a structure that has been
initialized by batch insertion, and thereafter executes find-min and extract
operations only.

An MANP is a complete binary tree T with s leaves built on top of an
equitable partition of the input array A = [e1, . . . , en] into s, lg n ≤ s ≤ n
buckets {B1, . . . , Bs} such that Bi = [e(i−1)�n/s�+1, . . . , ei�n/s�], for each i. The
size of each bucket Bi is �n/s� for i ∈ {1, . . . , s−1}, and |Bs| = n− (s−1)�n/s�.
(For ease of description, we assume hereafter that s is a power of 2.)

The leaves of T (nodes of height 0) are associated with individual buckets,
and each internal node x with height h is associated with the 2h consecutive
buckets covered by the leaves in the subtree rooted at x. Each node x with
height h ≤ �lg n�/2 stores 2h bits, called navigation bits that serve to describe
implicitly the location of the minimum of the representatives from among the
buckets covered by node x. Specifically, the interval of inputs contained in each
of the 2h buckets covered by a node x at height h is divided into �n/(s · 2h)�
blocks of contiguous elements, called quantiles, and the 2h bits associated with
x specify the quantile that contains the minimum viable element in all of the
buckets covered by x. (Recall that viable elements are those whose value exceed
that of the most recently extracted element, initialized to −∞). The first h bits
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represents the bucket that contains the specified quantile and the second h bits
represents the index of the quantile within the bucket. If h > �lg n�/2, nodes
with height h have �lg n� bits and point to the minimum element in the buckets,
directly. Since the number of nodes with height h is s/2h and each node at height
h stores min(2h, �lg n�) bits, it follows that the total number of bits used in an
MANP is

∑lg s
h=0

(
(s/2h) · min(2h, �lg n�)), which is O(s).

An MANP supports find-min and extract operations. To support the
find-min operation in O(1) time, a pointer is kept to the minimum element
in the navigation pile, by using lg n bits separately. This minimum pointer is
updated following every extract operation.

To extract an element in O(lg s + n/s) time from a navigation pile, we start
by locating the bucket containing the representative associated with the root of
the pile. We then update the information of the lg s nodes on the path from the
leaf associated with this bucket, to the root. To update each internal node x
on the path, we access the representatives associated with the two children of
x and compare their keys. We set the navigation information at x to point to
the quantile containing the element with the smaller of these two keys. We can
obtain the position of the quantile of an internal node in constant time because
navigation bits are stored in a bit vector in breadth-first order. After getting
to this position, we scan for the minimum viable element in the quantile. For
a node of height h, the size of the quantile (and so the scan cost) is at most
�n/(s · 2h)�. By summing on this cost over the updating path, the total update
cost is O(n/s + lg s). See the analysis in [1] for additional details.

The monotone extraction property is exploited to avoid explicitly marking
extracted elements. Instead the most recently extracted element is maintained
as used as a filter in maintaining/certifying the viability of representatives. In
our applications, unlike sorting which was the motivating application for the
design of MANPs, it is expected that the extraction of some elements will inac-
tivate others, i.e. render them ineligible for future extraction, independent of
their viability. This leads to complications in updating an MANP following an
extraction, specifically the reestablishment of the viable-representatives invariant
which asserts that all representatives in the MANP are viable.

Directly coupling the inactivation of elements to their viability ensures that
MANP updates accompanying an extraction can be confined to one leaf-to-root
path in the MANP. A more relaxed extraction assumption, arising naturally in
several priority queue applications, is that whenever an element becomes inac-
tive, it must be the case that all elements with smaller keys are also inactive.
What this assumption implies is that whenever the representative associated
with a node x is inactive, so too is the representative associated with any ances-
tor of x in the MANP. This is easily implemented by maintaining a separate
inactivation threshold that is increased with each extraction to some value at
least as large as the most recently extracted key. With this in hand, we can
modify the MANP by adding an operation refresh that efficiently reestablishes
the viable-representatives invariant.
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Although this relaxation makes it possible to model certain situations in
which extraction of some elements will lead to the inactivation of others, there
remain situations in which this hereditary property of inactivation does not hold.
Thus we are led to the formulation of another even more relaxed priority queue
model that we call a temporal priority queue. In this model, each element e has
associated with them (i) a key k(e), (ii) an activation interval (l(e), r(e)) and (iii)
an activation-time update value t(e). At any given activation-time t, an extrac-
tion operation (i) locates the viable element e, among those whose activation
intervals intersect t(l(e) < t < r(e)), whose associated key k(e) is smallest, (ii)
returns the value k(e) of this smallest key, and (iii) updates the activation-time
to the activation-time update value t(e) which is larger than t. Fixing the acti-
vation interval of elements with key k(e) as (−∞, k(e)) and choosing k(e) as
the associated activation-time update value, reduces the structure to a priority
queue with the monotone extraction property. In general, however, temporal pri-
ority queues, while still producing monotonic extraction sequences, can exhibit
inactivation behaviour fully decoupled from key values.

In the next section we first formulate and analyze the refresh operation
for MANPs implementing priority queues that satisfy the following hereditary
inactivation assumption:

Assumption 1. If an element with key value x has become inactive then so too
has every element with key value y < x.

This restricted structure is an essential component of our temporal MANP imple-
mentation of more general temporal priority queues, the full description of which
closes the section.

3 Temporal Memory-Adjustable Navigation Piles

Refreshing Memory-Adjustable Navigation Piles. We begin by assum-
ing that we have a memory-adjustable navigation pile P whose elements sat-
isfy the hereditary inactivation assumption. We propose a new operation
refresh for such navigation piles to reestablish the viable representatives invari-
ant. The standard priority-queue operation extract performs a bottom-up
update, that is, extract updates elements from a leaf to the root. In contrast,
refresh performs updates in a top-down recursive fashion. We describe the
refresh procedure in Procedure 1 and analyze its correctness and efficiency in
Lemmas 2 and 4 below.

The following lemma, which need not hold in general, follows directly from
our assumption that the elements of P satisfy Assumption 1:

Lemma 1. If the representative associated with a node x of P becomes inactive
so too does the representative of all ancestors of x in P.

From the lemma above, if the representative of the root is inactive, we can follow
the inactive nodes from the root to all inactive leaves.
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Procedure 1. refresh(v: a node v in an MANP)
/* assume the hereditary inactivation assumption holds */

1 if v has height h > 0 then
2 let vl and vr be left and right children of v, respectively;
3 if the representative associated with vl is inactive then refresh (vl);
4 if the representative associated with vr is inactive then refresh (vr);
5 Find the representatives el and er associated with vl and vr, respectively;
6 if the key of el is smaller than that of er then
7 set the navigation bits of v to point to the quantile associated with el

8 else
9 set the navigation bits of v to point to the quantile associated with er

Lemma 2. Every initially inactive representative associated with some node in
P is reset, by Procedure 1, to the smallest viable active element among the buckets
covered by v.

Proof. First note that, by the hierarchical inactivation assumption, if the repre-
sentative associated with v is active to start this representative is unchanged by
the procedure. Otherwise, we establish our claim by induction on h, the height
of v in P. If h = 0 the assertion holds trivially, since the quantile associated with
v is the entire bucket associated with v.

For h > 0, we know, by the induction hypothesis, that following steps 4 and
5, the representatives associated with the children vl and vr of v are correctly
set. Given this it is clear that step 6 sets the navigation bits associated with v
correctly. �	

The time complexity of the refresh procedure obviously depends on the
number of nodes (equivalently recursive calls) whose representatives are updated
in the process. To estimate the number of such nodes, we take advantage of a
straightforward counting result bounding the number of nodes in a binary tree
with a specified height and number of leaves.

Lemma 3. Let T be a binary tree with height h and � leaves. The number of
nodes in T is at most � lg (2h/�) + � − 1.

We now turn to the analysis of the complexity of the refresh procedure on
navigation piles.

Lemma 4. For an MANP P using O(s) bits, the refresh operation, when
invoked at the root of P, takes O (b (n/s + lg (s/b))) time, where b is the number
of buckets whose representatives are updated.

Proof. In a given recursive call with a node at height h > 0 the refresh proce-
dure accesses the representatives associated with both of its children, compares
their keys, and reassigns the navigation bits associated with v. Since nodes do
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not have a direct pointer to their representatives, rather they point to a quan-
tile containing the representative, it takes time proportional to the size of this
quantile, specifically O(max{1, �n/(s ·2h)�}) time for nodes at height h, to carry
out these steps.

Now if b buckets have their representatives updated, recursive calls are made
to at most b nodes at every height h ≤ lg(n/s) and the quantiles are scanned
at most four times for each node, for a total cost of

∑lg(n/s)
h=0 4b�n/(s · 2h)�,

which is O(bn/s). For nodes at height h > lg(n/s) the quantile size is O(1) so
the associated cost for all such nodes is bounded by the total number of nodes
which, by Lemma 3 is at most b lg (s/b) + b − 1. �	
Details of Temporal Memory-Adjustable Navigation Piles. A tempo-
ral memory-adjustable navigation pile (T-MANP) can be viewed as a pair of
MANPs built on top of the same partition of the input elements into s buckets.
The first (primary MANP) is a standard MANP based on keys of representative
bucket elements that are viable with respect to both the key value and activation
interval (i.e. the key exceeds that of the most recently extracted element and the
activation interval intersects the current activation time). The second activation
MANP maintains activation events which are right endpoints r(e) of activation
intervals, and chooses as a representative for each bucket the smallest activation
event, among its elements, that exceeds the current activation time. Namely, the
elements in the activation MANP are most likely to be inactive in the buckets.

The role of the second MANP is to trigger a re-selection of the bucket rep-
resentatives in the primary MANP, whenever any one of the elements in that
bucket experiences an activation event (i.e. changes activation status). Of course,
the bucket representative might not change with this re-selection, but this is a
conservative strategy that ensures that once all of the representatives in the
activation MANP are viable with respect to the current activation time, all of
the representatives in the primary MANP are fully viable.

When an element e is extracted from the primary MANP, we (i) use its
associated activation-time update value to update the current activation-time,
(ii) refresh the representatives in the activation MANP, (iii) update the repre-
sentatives in the primary MANP of all buckets whose activation MANP repre-
sentatives have changed, and then, if there were no such changes, (iv) update
the bucket representative in the primary MANP of the bucket containing the
most recently extracted element. We note that, by design, extractions from the
activation MANP satisfy the hereditary inactivation assumption and so its ele-
ments can be refreshed (step (ii)) in batch, as described above. We also note
that the updates in step (iii) involve exactly the nodes in the primary MANP
whose corresponding nodes in the activation MANP were undated in step (ii).
Finally, the updates in step (iv) occur, as in the standard MANP, along a single
leaf to root path.

Thus, the extraction cost for our T-MANP is dominated by the cost of
refreshing its associated activation MANP, unless of course the latter experi-
ences no updates, in which case the extract cost, like that of a standard MANP,
is O(n/s). We summarize this result in the following:
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Theorem 1. A T-MANP using O(s) navigation bits, can be maintained at a
cost of O(b(n/s+lg (s/b))) time per extract-min operation, where b denotes the
number of buckets whose representatives are updated following the extraction.

4 Algorithms for Maximum Independent Set on Intervals

Let I be an (unsorted) set of intervals on a straight line. A subset of I is
independent if for any two distinct intervals I and I ′ in the subset, I∩I ′ = ∅. The
problem Maximum Independent Set (MIS) asks for an independent subset of
I which has the maximum cardinality. We define l(I) and r(I) as the coordinate
of the left and right endpoints of the interval I ∈ I, respectively.

There is a well-known greedy algorithm for the MIS problem on intervals [15].
The algorithm selects intervals in an iterative fashion, where the next selection
is the interval with the smallest right endpoint among those whose left end-
point is larger than the right endpoint of the most recently selected interval.
Equivalently, if interval I is the most recently selected interval, we say that an
interval I ′ is active if l(I ′) > r(I), and make the next selection the active inter-
val J that minimizes r(J). In the most straightforward implementation, we first
sort intervals with increasing order of the right endpoints. Then, we can find
output intervals by sweeping the sorted array once. However, the algorithm of
this implementation runs in O(n lg n) time and Θ(n) words for workspace. In
this section, we propose a simple implementation of this MIS algorithm, using a
T-MANP.

For each interval I, we choose r(I) as its associated key, since our recurring
goal is to find the interval with the minimum right endpoint among currently
active intervals. The representatives of the primary MANP has the smallest right
endpoint in active intervals. The activation interval associated with I is defined
by (−∞, l(I)), and associated the activation-time update value is r(I). By this
definition, an interval is active exactly when its activation interval intersects the
current activation-time.

With these choices for key values and activation intervals, the T-MANP
implements the greedy algorithm correctly. It follows that

Theorem 2. Given a set of n intervals and O(s) bits for workspace,
the maximum independent set of the intervals can be constructed in
O (m (lg (sk/m) + n/s)) time, where k is the size of the solution and m =
min(n, sk).

Proof. Finding an interval which has the minimum right endpoint is imple-
mented by a single extract-min operation which, by Lemma 4, takes O(bi(n/s+
lg (s/bi))) time where bi is the number of buckets of intervals whose repre-
sentatives on the activation MANP are refreshed in iteration i. Thus in total
the algorithm takes c

∑k
i=1 bin/s + c

∑k
i=1 bi lg (s/bi) time, where c is some

non-negative constant. We will show that (i)
∑k

i=1 bin/s = O(mn/s) and (ii)∑k
i=1 bi lg (s/bi) = O(m lg (sk/m)) where m = min(n, sk).
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To show (i) above, we first observe that
∑k

i=1 bi = O(min(n, sk)). For each
interval, the interval is chosen as a representative in the T-MANP a constant
number of times, since the current activation-time increases monotonically. On
the other hand, for each ith iteration, bi ≤ s because the activation MANP
maintains at most s intervals. Thus the total number of refreshed intervals is at
most min(n, sk). Therefore,

∑k
i=1 bin/s = O(mn/s).

To show (ii), we demonstrate that
∑k

i=1 bi lg (s/bi) ≤ m lg (sk/m). Let n′ =∑k
i=1 bi and pi = bi/n′, for each i. Note that, n′ ≤ min(n, sk) from previous

paragraph and
∑k

i=1 pi = 1. It follows that:

k∑

i=1

bi lg
s

bi
= n′

(
k∑

i=1

pi lg
s

n′ +
k∑

i=1

pi lg
1
pi

)
≤ n′

(
lg

s

n′ +
k∑

i=1

1
k

lg k

)
= n′ lg

sk

n′

where the inequality follows from the fact that,
∑k

i=1 pi lg (1/pi) is maximized
when pi = 1/k, that is, bi = n′/k for each i. �	

5 Algorithms for Dominating Set Problems

Let I be an interval in a set of intervals I. We define N(I) to be a set of
intervals that intersect I and N [I] = N(I)∪ I. For a set of intervals I ′, N(I ′) =⋃

I∈I′ N(I) and N [I ′] =
⋃

I∈I′ N [I]. A set of intervals D is a dominating set if
every interval not in D intersects to at least one interval in D, that is, N [D] = I.
We say that an interval I is dominated by I ′ ∈ D if I ∈ N [I ′], and is undominated
if there is no interval I ′ ∈ D such that I ∈ N [I ′]. The Minimum Dominating
Set (MDS) problem is to find the minimum cardinality of a dominating set on a
set of intervals. A set of intervals I ′ is connected if for any two intervals I and J in
I ′, there is a sequence of intervals I = I1, I2, . . . , Ik = J such that Ii ∩ Ii+1 = ∅
for 1 ≤ i ≤ k − 1. The Minimum Connected Dominating Set Problem
(MCDS) is to find the minimum cardinality of a connected dominating set on
intervals.

In this section, we first propose a simple implementation of an algorithm for
MCDS. Following this we propose an algorithm for MDS that can be viewed as
a combination of our algorithms for MIS and MCDS.

Minimum Connected Dominating Set. It is known that there is a greedy
algorithm for MCDS [11]. Let J be a last outputted interval as a solution in the
algorithm. We find an interval J ′ which has the maximum right endpoint in N [J ],
and then, we output J ′ and set J = J ′. We repeat the process until there is an
undominated interval. In the initialization, we set an interval with the minimum
right endpoint as J . In a simple implementation using O(1) workspace of the
algorithm, we scan the full input using O(n) time for finding the interval J ′ and
an undominated interval. The algorithm iterates k time in the while loop and it
takes O(n) time to find each J ′. Thus, it takes O(kn) time and O(1) workspace.
In this implementation, we scan all the blocks to find J ′. We would like restrict
our scan to blocks which include candidates of the next output interval. To
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decide whether the block may have a candidate, we maintain a T-MANP using
O(s) bits.

We define a T-MANP for our implementation as follows. We choose, for each
interval I, a key-value matching its right endpoint r(I), an activation interval
(l(I), r(I)) , and an activation-time update value r(I). The next output interval
J ′ has the maximum right endpoint such that l(J ′) < r(J) < r(J ′), where J is
the most recent interval selected by the algorithm. If the current activation time
is set to r(J), then the active element with the maximum key is precisely the
next element to be selected. The time complexity of this implementation can be
obtained by a direct modification of the proof of Theorem 2. Therefore, we have
the following theorem.

Algorithm 2. Greedy Algorithm for MDS
1 Set J = [−∞, −∞];
2 while There is an undominated interval do
3 Find an LUDI I which does not intersect J ;
4 Find an interval J ′ with maximum right endpoint in intervals N(I);
5 Output J ′ and set J = J ′;

Theorem 3. Our implementation of the greedy Minimum Connected Dominat-
ing Set algorithm using a T-MANP finds a minimum connected dominating set
and runs in O (m (lg (sk/m) + n/s)) time using O(s) bits, where m = min(n, sk)
and k is the size of the optimal solution.

Minimum Dominating Set. Let D be a subset of a set of intervals I. We
define U(D) as the set of intervals in I that are undominated by intervals in
D. An interval is called a leftmost undominated interval, LUDI for short, if the
right endpoint of the interval is minimum among all intervals in U(D). A greedy
algorithm for minimum dominating set on intervals is presented in Algorithm 2.
There is a straightforward implementation of this MDS algorithm using O(n lg n)
time (and Θ(n) words) to pre-sort the intervals, followed by k iterations of time
O(n) each of which selects one more interval in the output.

We improve the implementation to output-sensitive time using a T-MANP
with O(s) bits of workspace. The idea is to use two cooperating T-MANPs,
one to find the next LUDI and one to compute the next output interval. The
first, like our MIS structure, associates with each interval I the key-value r(I),
the activation interval (−∞, l(I)), and the activation-time update value r(I).
As before, the current activation time is maintained as r(J), where J is the
most recently output interval. The representative associated with its root is the
desired LUDI interval.

The second structure uses the right endpoint of the current LUDI interval
as its current activation time, and associates with each interval I the key-value
r(I), the activation interval (l(I), r(I)), and the activation-time update value
r(I). This ensures that active intervals are those that are intersected by r(J),
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and the maximum one among these is the desired next output. Like our MCDS
structure it extracts the active element with the maximum key.

In our implementation the outputs of the two T-MANP structures lead to
updates on the other but, as before, intervals are bucket representatives only
a constant number of times before they are inactive in all structures, and so
our analysis from our MIS and MCDS implementations carry over directly. We
summarize the properties of this implementation in the following:

Theorem 4. Our implementation of the greedy Minimum Dominating Set
algorithm using a T-MANP finds a minimum dominating set and runs in
O (m (lg (sk/m) + n/s)) time, using O(s) bits, where m = min(n, sk) and k
is the size of the optimal solution.

References

1. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only
data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol.
7876, pp. 32–41. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38236-9 4

2. Bhattacharya, B.K., De, M., Nandy, S.C., Roy, S.: Maximum independent set for
interval graphs and trees in space efficient models. In: Canadian Conference on
Computational Geometry (CCCG 2014) (2014)

3. Borodin, A.: Time space tradeos (getting closer to the barrier?). In: International
Symposium on Algorithms and Computation (ISAAC 1993), pp. 209–220 (1993)

4. Chang, M.: Efficient algorithms for the domination problems on interval and
circular-arc graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

5. Cheng, S., Kaminski, M., Zaks, S.: Minimum dominating sets of intervals on lines.
Algorithmica 20(3), 294–308 (1998)

6. Corneil, D.G., Stewart, L.K.: Dominating sets in perfect graphs. Discrete Math.
86(1–3), 145–164 (1990)

7. Darwish, O., Elmasry, A.: Optimal time-space tradeo for the 2D convex-hull prob-
lem. In: European Symposium on Algorithms (ESA 2014), pp. 284–295 (2014)

8. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19–26 (1987)

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

10. Golumbic, M.C., Hammer, P.L.: Stability in circular arc graphs. J. Algorithms
9(3), 314–320 (1988)

11. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Chapman & Hall/CRC Pure and Applied Mathematics. CRC Press, Boca Raton
(1998)

12. Hsu, W., Spinrad, J.P.: Independent sets in circular-arc graphs. J. Algorithms
19(2), 145–160 (1995)

13. Hsu, W., Tsai, K.: Linear time algorithms on circular-arc graphs. Inf. Process.
Lett. 40(3), 123–129 (1991)

14. Katajainen, J., Vitale, F.: Navigation piles with applications to sorting, priority
queues, and priority deques. Nordic J. Comput. 10(3), 238–262 (2003)

15. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston (2005)

http://dx.doi.org/10.1007/978-3-642-38236-9_4


332 T. Saitoh and D.G. Kirkpatrick

16. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980)

17. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Foundations
of Computer Science (FOCS 1998), pp. 264–268 (1998)

18. Snoeyink, J.: Maximum independent set for intervals by divide and conquer with
pruning. Networks 49(2), 158–159 (2007)



Computational Complexity



Algorithms for Automatic Ranking
of Participants and Tasks in an Anonymized

Contest

Yang Jiao(B), R. Ravi, and Wolfgang Gatterbauer

Tepper School of Business, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

yangjiao@andrew.cmu.edu

Abstract. We introduce a new set of problems based on the Chain
Editing problem. In our version of Chain Editing, we are given a set of
anonymous participants and a set of undisclosed tasks that every par-
ticipant attempts. For each participant-task pair, we know whether the
participant has succeeded at the task or not. We assume that participants
vary in their ability to solve tasks, and that tasks vary in their difficulty
to be solved. In an ideal world, stronger participants should succeed at
a superset of tasks that weaker participants succeed at. Similarly, easier
tasks should be completed successfully by a superset of participants who
succeed at harder tasks. In reality, it can happen that a stronger par-
ticipant fails at a task that a weaker participants succeeds at. Our goal
is to find a perfect nesting of the participant-task relations by flipping a
minimum number of participant-task relations, implying such a “nearest
perfect ordering” to be the one that is closest to the truth of participant
strengths and task difficulties. Many variants of the problem are known
to be NP-hard.

We propose six natural k-near versions of the Chain Editing prob-
lem and classify their complexity. The input to a k-near Chain Editing
problem includes an initial ordering of the participants (or tasks) that
we are required to respect by moving each participant (or task) at most
k positions from the initial ordering. We obtain surprising results on
the complexity of the six k-near problems: Five of the problems are
polynomial-time solvable using dynamic programming, but one of them
is NP-hard.

Keywords: Chain Editing · Chain Addition · Truth discovery ·
Massively open online classes · Student evaluation

1 Introduction

1.1 Motivation

Consider a contest with a set S of participants who are required to complete
a set Q of tasks. Every participant either succeeds or fails at completing each
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 335–346, 2017.
DOI: 10.1007/978-3-319-53925-6 26



336 Y. Jiao et al.

task. The identities of the participants and the tasks are anonymous. We aim
to obtain rankings of the participants’ strengths and the tasks’ difficulties. This
situation can be modeled by an unlabeled bipartite graph with participants on
one side, tasks on the other side, and edges defined by whether the participant
succeeded at the task. From the edges of the bipartite graph, we can infer that a
participant a2 is stronger than a1 if the neighborhood of a1 is contained in (or is
“nested in”) that of a2. Similarly, we can infer that a task is easier than another
if its neighborhood contains that of the other. See Fig. 1 for a visualization of
strengths of participants and difficulties of tasks. If all neighborhoods are nested,
then this nesting immediately implies a ranking of the participants and tasks.
However, participants and tasks are not perfect in reality, which may result in a
bipartite graph with “non-nested” neighborhoods. In more realistic scenarios, we
wish to determine a ranking of the participants and the tasks when the starting
graph is not ideal, which we define formally in Sect. 1.2.
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Fig. 1. An ideal graph is shown. Participants and tasks may be interpreted as students
and questions, or actors and claims. Participant a1 succeeds at b1 to b2; a2 succeeds
at b1 to b4; a3 succeeds at b1 to b5. The nesting of neighborhoods here indicate that
participant a1 is weaker than a2, who is weaker than a3, and task b1 and b2 are easier
than b3 and b4, which in turn are easier than b5.

1.1.1 Relation to Truth Discovery
A popular application of unbiased rankings is computational “truth discovery.”
Truth discovery is the determination of trustworthiness of conflicting pieces of
information that are observed often from a variety of sources [24] and is moti-
vated by the problem of extracting information from networks where the trust-
worthiness of the actors are uncertain [15]. The most basic model of the problem
is to consider a bipartite graph where one side is made up of actors, the other
side is made up of their claims, and edges denote associations between actors and
claims. Furthermore, claims and actors are assumed to have “trustworthiness”
and “believability” scores, respectively, with known a priori values. According
to a number of recent surveys [15,20,24], common approaches for truth discov-
ery include iterative procedures, optimization methods, and probabilistic graphic
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models. Iterative methods [9,13,22,27] update trust scores of actors to believabil-
ity scores of claims, and vice versa, until convergence. Variants of these methods
(such as Sums, Hubs and Authorities [18], AverageLog, TruthFinder, Investment,
and PooledInvestment) have been extensively studied and proven in practice [2].
Optimization methods [3,19] aim to find truths that minimize the total distance
between the provided claims and the output truths for some specified continu-
ous distance function; coordinate descent [5] is often used to obtain the solution.
Probabilistic graphical models [23] of truth discovery are solved by expectation
maximization. Other methods for truth discovery include those that leverage
trust relationships between the sources [14]. Our study is conceptually closest to
optimization approaches (we minimize the number of edge additions or edits),
however we suggest a discrete objective for minimization, for which we need to
develop new algorithms.

1.1.2 Our Context: Massively Open Online Courses
Our interest in the problem arises from trying to model the problem of auto-
matic grading of large number of students in the context of MOOCs (massively
open online courses). Our idea is to crowd-source the creation of automatically
gradable questions (like multiple choice items) to students, and have all the stu-
dents take all questions. From the performance of the students, we would like
to quickly compute a roughly accurate ordering of the difficulty of the crowd-
sourced questions. Additionally, we may also want to efficiently rank the strength
of the students based on their performance. Henceforth, we refer to participants
as students and tasks as questions in the rest of the paper.

1.1.3 Our Model
We cast the ranking problem as a discrete optimization problem of minimizing
the number of changes to a given record of the students’ performance to obtain
nested neighborhoods. This is called the Chain Editing problem. It is often
possible that some information regarding the best ranking is already known. For
instance, if the observed rankings of students on several previous assignments
are consistent, then it is likely that the ranking on the next assignment will
be similar. We model known information by imposing an additional constraint
that the changes made to correct the errors to an ideal ranking must result
in a ranking that is near a given base ranking. By near, we mean that the
output position of each student should be within at most k positions from the
position in the base ranking, where k is a parameter. Given a nearby ranking
for students, we consider all possible variants arising from how the question
ranking is constrained. The question ranking may be constrained in one of the
following three ways: the exact question ranking is specified (which we term the
“constrained” case), it must be near a given question ranking (the “both near”
case), or the question ranking is unconstrained (the “unconstrained” case). We
provide the formal definitions of these problems next.
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1.2 Problem Formulations

Here, we define all variants of the ranking problem. The basic variants of Chain
Editing are defined first and the k-near variants are defined afterward.

1.2.1 Basic Variants of Chain Editing
First, we introduce the problem of recognizing an ideal input. Assume that we
are given a set S of students, and a set Q of questions, and edges between S
and Q that indicate which questions the students answered correctly - note that
we assume that every student attempts every question. Denote the resulting
bipartite graph by G = (S ∪ Q,E). For every pair (s, q) ∈ S × Q, we are given
an edge between s and q if and only if student s answered question q correctly.
For a graph (V,E), denote the neighborhood of a vertex x by N(x) := {y ∈ V :
xy ∈ E}.

Definition 1. We say that student s1 is stronger than s2 if N(s1) ⊃ N(s2).
We say that question q1 is harder than q2 if N(q1) ⊂ N(q2). Given an ordering
α on the students and β on the questions, α(s1) ≥ α(s2) shall indicate that s1
is stronger than s2, and β(q1) ≥ β(q2) shall indicate that q1 is harder than q2.

Definition 2. An ordering of the questions satisfies the interval property if
for every s, its neighborhood N(s) consists of a block of consecutive questions
(starting with the easiest question) with respect to our ordering of the questions.
An ordering α of the students is nested if α(s1) ≥ α(s2) ⇒ N(s1) ⊇ N(s2).

Definition 3. The objective of the Ideal Mutual Orderings (IMO) problem is to
order the students and the questions so that they satisfy the nested and interval
properties respectively, or output NO if no such orderings exist.

Observe that IMO can be solved efficiently by comparing containment rela-
tion among the neighborhoods of the students and ordering the questions and
students according to the containment order.

Proposition 1. There is a polynomial time algorithm to solve IMO.

All missing proofs are in the full version of the paper [16]. Next, observe that
the nested property on one side is satisfiable if and only if the interval property
on the other side is satisfiable. Hence, we will require only the nested property
in subsequent variants of the problem.

Proposition 2. A bipartite graph has an ordering of all vertices so that the
questions satisfy the interval property if and only if it has an ordering with the
students satisfying the nested property.

Next, we define several variants of IMO.

Definition 4. In the Chain Editing (CE) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set of
edge edits that admits an ordering of the students satisfying the nested property.
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A more restrictive problem than Chain Editing is Chain Addition. Chain
Addition is variant of Chain Editing that allows only edge additions and no
deletions. Chain Addition models situations where students sometimes acciden-
tally give wrong answers on questions they know how to solve but never answer
a hard problem correctly by luck, e.g. in numerical entry questions.

Definition 5. In the Chain Addition (CA) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set
of edge additions that admits an ordering of the students satisfying the nested
property.

Analogous to needing only to satisfy one of the two properties, it suffices to
find an optimal ordering for only one side. Once one side is fixed, it is easy to
find an optimal ordering of the other side respecting the fixed ordering.

Proposition 3. In Chain Editing, if the best ordering (that minimizes the num-
ber of edge edits) for either students or questions is known, then the edge edits
and ordering of the other side can be found in polynomial time.

1.2.2 k-near Variants of Chain Editing
We introduce and study the nearby versions of Chain Editing or Chain Addition.
Our problem formulations are inspired by Balas and Simonetti’s [4] work on
k-near versions of the TSP.

Definition 6. In the k-near problem, we are given an initial ordering α : S →
[|S|] and a positive integer k. A feasible solution exhibits a set of edge edits (addi-
tions) attaining the nested property so that the associated ordering π, induced by
the neighborhood nestings, of the students satisfies π(s) ∈ [α(s) − k, α(s) + k].

Next, we define three types of k-near problems. In the subsequent problem
formulations, we bring back the interval property to our constraints since we
will consider problems where the question side is not allowed to be arbitrarily
ordered.

Definition 7. In Unconstrained k-near Chain Editing (Addition), the student
ordering must be k-near but the question side may be ordered any way. The
objective is to minimize the number of edge edits (additions) so that there is a
k-near ordering of the students that satisfies the nested property.

Definition 8. In Constrained k-near Chain Editing (Addition), the student
ordering must be k-near while the questions have a fixed initial ordering that
must be kept. The objective is to minimize the number of edge edits (additions)
so that there is k-near ordering of the students that satisfies the nested property
and respects the interval property according to the given question ordering.

Definition 9. In Both k-near Chain Editing (Addition), both sides must be
k-near with respect to two given initial orderings on their respective sides. The
objective is to minimize the number of edge edits (additions) so that there is a
k-near ordering of the students that satisfies the nested property and a k-near
ordering of the questions that satisfies the interval property.
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1.3 Main Results

In this paper, we introduce k-near models to the Chain Editing problem and
present surprising complexity results. Our k-near model captures realistic sce-
narios of MOOCs, where information from past tests is usually known and can
be used to arrive at a reliable initial nearby ordering.

We find that five of the k-near Editing and Addition problems have poly-
nomial time algorithms while the Unconstrained k-near Editing problem is NP-
hard. Our intuition is that the Constrained k-near and Both k-near problems
are considerably restrictive on the ordering of the questions, which make it easy
to derive the best k-near student ordering. The Unconstrained k-near Addition
problem is easier than the corresponding Editing problem because the correct
neighborhood of the students can be inferred from the neighborhoods of all
weaker students in the Addition problem, but not for the Editing version.

Aside from restricting the students to be k-near, we may consider all possi-
ble combinations of whether the students and questions are each k-near, fixed,
or unconstrained. The remaining (non-symmetric) combinations not covered by
the above k-near problems are both fixed, one side fixed and the other side
unconstrained, and both unconstrained. The both fixed problem is easy as both
orderings are given in the input and one only needs to check whether the order-
ings are consistent with the nesting of the neighborhoods. When one side is fixed
and the other is unconstrained, we have already shown that the ordering of the
unconstrained side is easily derivable from the ordering of the fixed side via
Proposition 3. If both sides are unconstrained, this is exactly the Chain Edit-
ing (or Addition) problem, which are both known to be NP-hard (see below).
Figure 2 summarizes the complexity of each problem, including our results for
the k-near variants, which are starred. Note that the role of the students and
questions are symmetric up to flipping the orderings.

Questions
Students

Unconstrained
k-near

Constrained
Editing Addition

Unconstrained NP-hard [26,10] NP-hard O(n3k2k+2) O(n2)

k-near
Editing NP-hard O(n3k4k+4) O(n3k2k+2)

Addition O(n3k2k+2) O(n3k4k+4) O(n3k2k+2)

Constrained O(n2) O(n3k2k+2) O(n3k2k+2) O(n2)

Fig. 2. All variants of the problems are shown with their respective complexities.
The complexity of Unconstrained/Unconstrained Addition [26] and Editing [10] were
derived before. All other results are given in this paper. Most of the problems have
the same complexity for both Addition and Editing versions. The only exception is the
Unconstrained k-near version where Editing is NP-hard while Addition has a polyno-
mial time algorithm.

To avoid any potential confusion, we emphasize that our algorithms are not
fixed-parameter tractable algorithms, as our parameter k is not a property of
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problem instances, but rather is part of the constraints that are specified for the
outputs to satisfy.

The remaining sections are organized as follows. Section 2 discusses existing
work on variants of Chain Editing that have been studied before. Section 3 shows
the exact algorithms for five of the k-near problems and includes the NP-hardness
proof for the last k-near problem. Section 4 summarizes our main contributions.

2 Related Work

The earliest known results on hardness and algorithms tackled Chain Addi-
tion. Before stating the results, we define a couple of problems closely related
to Chain Addition. The Minimum Linear Arrangement problem considers as
input a graph G = (V,E) and asks for an ordering π : V → [|V |] minimizing∑

vw∈E |π(v)−π(w)|. The Chordal Completion problem, also known as the Min-
imum Fill-In problem, considers as input a graph G = (V,E) and asks for the
minimum size set of edges F to add to G so that (V,E ∪ F ) has no chordless
cycles. A chordless cycle is a cycle (v1, . . . , vr, v1) such that for every i, j with
|i − j| > 1 and {i, j} 
= {1, r}, we have vivj /∈ E. Yannakakis [26] proved that
Chain Addition is NP-hard by a reduction from Linear Arrangement. He also
showed that Chain Addition is a special case of Chordal Completion on graphs
of the form (G = U ∪ V,E) where U and V are cliques. Recently, Chain Editing
was shown to be NP-hard by Drange et al. [10].

Another problem called Total Chain Addition is essentially identical to Chain
Addition, except that the objective function counts the number of total edges in
the output graph rather than the number of edges added. For Total Chain Addi-
tion, Feder et al. [11] give a 2-approximation. The total edge addition version of
Chordal Completion has an O(

√
Δ log4(n))-approximation algorithm [1] where

Δ is the maximum degree of the input graph. For Chain Addition, Feder et
al. [11] claim an 8d+2-approximation, where d is the smallest number such that
every vertex-induced subgraph of the original graph has some vertex of degree
at most d. Natanzon et al. [21] give an 8OPT -approximation for Chain Addition
by approximating Chordal Completion. However, no approximation algorithms
are known for Chain Editing.

Modification to chordless graphs and to chain graphs have also been stud-
ied from a fixed-parameter point of view. A fixed-parameter tractable (FPT)
algorithm for a problem of input size n and parameter p bounding the value of
the optimal solution, is an algorithm that outputs an optimal solution in time
O(f(p)nc) for some constant c and some function f dependent on p. For Chordal
Completion, Kaplan et al. [17] give an FPT in time O(2O(OPT ) + OPT 2nm).
Fomin and Villanger [12] show the first subexponential FPT for Chordal Com-
pletion, in time O(2O(

√
OPT log OPT ) + OPT 2nm). Cao and Marx [7] study a

generalization of Chordal Completion, where three operations are allowed: ver-
tex deletion, edge addition, and edge deletion. There, they give an FPT in time
2O(OPT log OPT )nO(1), where OPT is now the minimum total number of the three
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operations needed to obtain a chordless graph. For the special case of Chain Edit-
ing, Drange et al. [10] show an FPT in time 2O(

√
OPT log OPT ) + poly(n). They

also show the same result holds for a related problem called Threshold Editing.
On the other side, Drange et al. [10] show that Chain Editing and Threshold

Editing do not admit 2o(
√

OPT )poly(n) time algorithms assuming the Exponen-
tial Time Hypothesis (ETH). For Chain Completion and Chordal Completion,

Bliznets et al. [6] exclude the possibility of 2O(
√

n/ log n) and 2O(OPT
1
4 / logc k)nO(1)

time algorithms assuming ETH, where c is a constant. For Chordal Completion,
Cao and Sandeep [8] showed that no algorithms in time 2O(

√
OPT−δ)nO(1) exist

for any positive δ, assuming ETH. They also exclude the possibility of a PTAS
for Chordal Completion assuming P 
= NP . Wu et al. [25] show that no con-
stant approximation is possible for Chordal Completion assuming the Small Set
Expansion Conjecture. Table 1 summarizes the known results for the aforemen-
tioned graph modification problems.

Table 1. Known results

Chordal Chain

Editing Unknown approximation,
FPT [9]

Unknown approximation,
FPT [9]

Addition 8OPT -approx [21],
FPT [9]

8OPT -approx [21],
8d + 2-approx [11], FPT [9]

Total addition O(
√

Δ log4(n))-approx [1],
FPT [9]

2-approx [11], FPT [9]

For the k-near problems, we show that the Unconstrained k-near Editing
problem is NP-hard by adapting the NP-hardness proof for Threshold Editing
from Drange et al. [9]. The remaining k-near problems have not been studied.

3 Polynomial Time Algorithms for k-near Orderings

We present our polynomial time algorithm for the Constrained k-near Addi-
tion problem and state similar results for the Constrained k-near Editing prob-
lem, the Both k-near Addition and Editing problems, and the Unconstrained
k-near Addition problem. The algorithms and analyses for the other polyno-
mial time results use similar ideas as the one for Constrained k-near Addition.
They are provided in detail in the full paper [16]. We also state the NP-hardness
of the Unconstrained k-near Editing problem and provide the proof in the full
paper [16].

We assume correct orderings label the students from weakest (smallest label)
to strongest (largest label) and label the questions from easiest (smallest label)
to hardest (largest label). We associate each student with its initial label given
by the k-near ordering. For ease of reading, we boldface the definitions essential
to the analysis of our algorithm.
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Theorem 1 (Constrained k-near Editing). Constrained k-near Editing can
be solved in time O(n3k2k+2).

Proof. Assume that the students are given in k-near order 1, . . . , |S| and that
the questions are given in exact order 1 ≤ · · · ≤ |Q|. We construct a dynamic
program for Constrained k-near Editing. First, we introduce the subproblems
that we will consider. Define C(i, ui,Ui, vji) to be the smallest number of
edges incident to the weakest i positions that must be edited such that ui is in
position i, Ui is the set of students in the weakest i − 1 positions, and vji is the
hardest question correctly answered by the i weakest students. Before deriving
the recurrence, we will define several sets that bound our search space within
polynomial size of n = |S| + |Q|.
Search Space for Ui. Given position i and student ui, define Pi,ui

to be the set
of permutations on the elements in

[
max{1, i−k},min{|S|, i+k−1}]\{ui}. Let

Fi,ui
:=

{
{π−1(1), . . . , π−1(k)} :π∈ Pi,ui

, π(a) ∈ [a−k, a+k]∀a ∈ [
max{1, i−k},

min{|S|, i + k − 1}] \ {ui}
}

. The set Pi,ui
includes all possible permutations of

the 2k students centered at position i, and the set Fi,ui
enforces that no student

moves more than k positions from its label. We claim that every element of
Fi,ui

is a candidate for Ui \ [
1,max{1, i − k − 1}] given that ui is assigned to

position i. To understand the search space for Ui given i and ui, observe that
for all i ≥ 2, Ui already must include all of

[
1,max{1, i − k − 1}] since any

student initially at position ≤ i − k − 1 cannot move beyond position i − 1 in
a feasible solution. If i = 1, we have U1 = ∅. From now on, we assume i ≥ 2
and treat the base case i = 1 at the end. So the set Ui \ [

1,max{1, i − k − 1}]
will uniquely determine Ui. We know that Ui cannot include any students with
initial label [k + i, |S|] since students of labels ≥ k + i must be assigned to
positions i or later. So the only uncertainty remaining is which elements in[
max{1, i−k},min{|S|, i+k−1}]\{ui} make up the set Ui\

[
1,max{1, i−k−1}].

We may determine all possible candidates for Ui \
[
1,max{1, i−k−1}] by trying

all permutations of
[
max{1, i − k},min{|S|, i + k − 1}] \ {ui} that move each

student no more than k positions from its input label, which is exactly the set
Fi,ui

.

Feasible and Compatible Subproblems. Next, we define Si =
{

(ui, Ui, vji) :

ui ∈ [
max{1, i−k},min{|S|, i+k}], Ui \ [

1,max{1, i−k −1}] ∈ Fi,ui
, vji ∈ Q∪

{0}
}

. The set Si represents the search space for all possible vectors (ui, Ui, vji)
given that ui is assigned to position i. Note that ui is required to be within k
positions of i by the k-near constraint. So we encoded this constraint into Si.
To account for the possibility that the i weakest students answer no questions
correctly, we allow vji to be in position 0, which we take to mean that Ui ∪ {ui}
gave wrong answers to all questions.

Now, we define Ri−1,ui,Ui,vji
:= {(ui−1, Ui−1, vji−1) ∈ Si−1 : vji−1 ≤

vji , Ui = {ui−1} ∪ Ui−1}. The set Ri−1,ui,Ui,vji
represents the search space for

smaller subproblems that are compatible with the subproblem (i, ui, Ui, vji).
More precisely, given that ui is assigned to position i, Ui is the set of students
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assigned to the weakest i − 1 positions, and vji is the hardest question
correctly answered by Ui ∪ ui, the set of subproblems of the form (i − 1,
ui−1, Ui−1, vji−1) which do not contradict the aforementioned assumptions
encoded by (i, ui, Ui, vji) are exactly those whose (ui−1, Ui−1, vji−1) belongs to
Ri−1,ui,Ui,vji

. We illustrate compatibility in Fig. 3.

Weakest

Strongest

Permutable 
except 

…
…

…
…

Easiest

Hardest

…
…

…

Compatible

Weakest

Strongest

Permutable 
except 

…
…

…
…

Easiest

Hardest

…
…

…

…

Fig. 3. Subproblem (i − 1, ui−1, Ui−1, vji−1) is compatible with subproblem
(i, ui, Ui, vji) if and only if vji−1 is no harder than vji and Ui = {ui−1}∪Ui−1. The cost
of (i, ui, Ui, vji) is the sum of the minimum cost among feasible compatible subprob-
lems of the form (i − 1, ui−1, Ui−1, vji−1) and the minimum number of edits incident
to ui to make its neighborhood exactly {1, . . . , vji}.

The Dynamic Program. Finally, we define cui,vji
to be the smallest number

of edge edits incident to ui so that the neighborhood of ui becomes exactly
{1, . . . , vji}, i.e. cui,vji

:= |NG(ui)�{1, . . . , vji}|. We know that cui,vji
is part of

the cost within C(i, ui, Ui, vji) since vji is the hardest question that Ui ∪ {ui} is
assumed to answer correctly and ui is a stronger student than those in Ui who
are in the positions before i. We obtain the following recurrence.

C(i, ui, Ui, vji) = min
(ui−1,Ui−1,vji−1 )∈Ri−1,ui,Ui,vji

{C(i−1, ui−1, Ui−1, vji−1)}+cui,vji

The base cases are C(1, u1, U1, vj1) = |NG(u1)�{1, . . . , vj1}| if vj1 > 0, and
C(1, u1, U1, vj1) = |NG(u1)| if vj1 = 0 for all u1 ∈ [1, 1 + k], vj1 ∈ Q ∪ {0}.

By definition of our subproblems, the final solution we seek is
min(u|S|,U|S|,vj|S| )∈S|S| C(|S|, u|S|, U|S|, vj|S|).
Running Time. Now, we bound the run time of the dynamic program. Note
that before running the dynamic program, we build the sets Pi,ui

, Fi,ui
, Si,

Ri−1,ui,Ui,vji
to ensure that our solution obeys the k-near constraint and that

the smaller subproblem per recurrence is compatible with the bigger subproblem
it came from. Generating the set Pi,ui

takes (2k)! = O(kk) time per (i, ui).
Checking the k-near condition to obtain the set Fi,ui

while building Pi,ui
takes

k2 time per (i, ui). So generating Si takes O(k · kkk2 · |Q|) time per i. Knowing
Si−1, generating Ri−1,ui,Ui,vji

takes O(|S|) time. Hence, generating all of the sets
is dominated by the time to build ∪i≤|S|Si, which is O(|S|k3kk|Q|) = O(n2kk+3).
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After generating the necessary sets, we solve the dynamic program. Each sub-
problem (i, ui, Ui, vji) takes O(|Ri−1,ui,Ui,vji

)| time. So the total time to solve the
dynamic program is O(

∑
i∈S,(ui,Ui,vji

)∈Si
|Ri−1,ui,Ui,vji

|) = O(|S||Si||Si−1|) =
O(n(k · kk · n)2) = O(n3k2k+2). ��
Theorem 2 (Constrained k-near Addition). Constrained k-near Addition
can be solved in time O(n3k2k+2).

Theorem 3 (Unconstrained k-near Addition). Unconstrained k-near
Addition can be solved in time O(n3k2k+2).

Theorem 4 (Unconstrained k-near Editing). Unconstrained k-near Edit-
ing is NP-hard.

Theorem 5 (Both k-near Editing). Both k-near Editing can be solved in
time O(n3k4k+4).

Theorem 6 (Both k-near Addition). Both k-near Addition can be solved in
time O(n3k4k+4).

We present the proofs of the above theorems in the full paper [16].

4 Conclusion

We proposed a new set of problems that arise naturally from ranking partic-
ipants and tasks in competitive settings and classified the complexity of each
problem. First, we introduced six k-near variants of the Chain Editing problem,
which capture the common scenario of having partial information about the final
orderings from past rankings. Second, we provided polynomial time algorithms
for five of the problems and showed NP-hardness for the remaining one.

Acknowledgments. This work was supported in part by the US National Science
Foundation under award numbers CCF-1527032, CCF-1655442, and IIS-1553547.
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Abstract. Let G be a graph such that each edge has its list of available
colors, and assume that each list is a subset of the common set consisting
of k colors. Suppose that we are given two list edge-colorings f0 and fr
of G, and asked whether there exists a sequence of list edge-colorings of
G between f0 and fr such that each list edge-coloring can be obtained
from the previous one by changing a color assignment of exactly one edge.
This problem is known to be PSPACE-complete for every integer k ≥ 6
and planar graphs of maximum degree three, but any computational
hardness was unknown for the non-list variant in which every edge has
the same list of k colors. In this paper, we first improve the known result
by proving that, for every integer k ≥ 4, the problem remains PSPACE-
complete even for planar graphs of maximum degree three and bounded
bandwidth. Since the problem is known to be solvable in polynomial time
if k ≤ 3, our result gives a sharp analysis of the complexity status with
respect to the number k of colors. We then give the first computational
hardness result for the non-list variant: for every integer k ≥ 5, the non-
list variant is PSPACE-complete even for planar graphs of maximum
degree k and bandwidth linear in k.

1 Introduction

Recently, reconfiguration problems [10] have been intensively studied in the field
of theoretical computer science. The problem arises when we wish to find a
step-by-step transformation between two feasible solutions of a combinatorial
(search) problem such that all intermediate results are also feasible and each step
conforms to a fixed reconfiguration rule, that is, an adjacency relation defined
on feasible solutions of the original search problem. (See, e.g., the survey [9] and
references in [6,13].)

1.1 Our Problem

In this paper, we study the reconfiguration problem for (list) edge-colorings
of a graph [11,12]. Let C = {1, 2, . . . , k} be the set of k colors. A (proper)
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{1,2,3,4}

{1,4}
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(a) f0 (b) f1 (c) f2 = fr

Fig. 1. A sequence of list edge-colorings of the same graph with the same list.

edge-coloring of a graph G = (V,E) is a mapping f : E → C such that f(e) �=
f(e′) holds for every two adjacent edges e, e′ ∈ E. In list edge-coloring, each edge
e ∈ E has a set L(e) ⊆ C of colors, called the list of e. Then, an edge-coloring f
of G is called a list edge-coloring of G if f(e) ∈ L(e) holds for every edge e ∈ E.
Figure 1 illustrates three list edge-colorings of the same graph G with the same
list L; the list of each edge is attached to the edge, and the color assigned to each
edge is written in bold with an underline. Clearly, an (ordinary) edge-coloring
of G is a list edge-coloring of G for which L(e) = C holds for every edge e of G,
and hence list edge-coloring is a generalization of edge-coloring.

Ito et al. [12] introduced an adjacency relation defined on list edge-colorings
of a graph, and define the list edge-coloring reconfiguration problem,
as follows: Suppose that we are given two list edge-colorings of a graph G (e.g.,
the leftmost and rightmost ones in Fig. 1), and we are asked whether we can
transform one into the other via list edge-colorings of G such that each differs
from the previous one in only one edge color assignment; such a sequence of
list edge-colorings is called a reconfiguration sequence. We call this problem the
list edge-coloring reconfiguration problem. For the particular instance
of Fig. 1, the answer is “yes” as illustrated in the figure, where the edge whose
color assignment was changed from the previous one is depicted by a thick line.

For convenience, we call the problem simply the non-list variant (formally,
edge-coloring reconfiguration) if L(e) = C holds for every edge e of a
given graph.

1.2 Known and Related Results

Despite recent intensive studies on reconfiguration problems (in particular, for
graph colorings [1–5,7,11,12,14,16]), as far as we know, only one complexity
result is known for list edge-coloring reconfiguration. Ito et al. [11]
proved that list edge-coloring reconfiguration is PSPACE-complete
even when restricted to k = 6 and planar graphs of maximum degree three.
(Since the list of each edge is given as an input, this result implies that the prob-
lem is PSPACE-complete for every integer k ≥ 6.) They also gave a sufficient
condition for which any two list edge-colorings of a tree can be transformed into
each other, which was improved by [12]; but these sufficient conditions do not
clarify the complexity status for trees, and indeed it remains open.
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As a related problem, the (list) vertex-coloring reconfiguration
problem has been studied intensively. (List vertex-coloring reconfigura-
tion and its non-list variant are defined analogously.) Bonsma and Cereceda [3]
proved that vertex-coloring reconfiguration is PSPACE-complete for
every integer k ≥ 4. On the other hand, Cereceda et al. [5] proved that both list
vertex-coloring reconfiguration and its non-list variant are solvable in
polynomial time for any graph if k ≤ 3. Thus, the complexity status of vertex-
coloring reconfiguration is analyzed sharply with respect to the number
k of colors.

Edge-coloring in a graph G can be reduced to vertex-coloring in the line graph
of G. By this reduction, we can solve list edge-coloring reconfiguration
for any graph if k ≤ 3. However, the reduction does not work the other way, and
hence this reduction does not yield any computational hardness result. Indeed,
the complexity of edge-coloring reconfiguration was an open question
proposed by [11].

1.3 Our Contribution

In this paper, we precisely analyze the complexity of (list) edge-coloring
reconfiguration; in particular, we give the first complexity result for the
non-list variant.

We first improve the known result for list edge-coloring reconfigura-
tion by proving that, for every integer k ≥ 4, the problem remains PSPACE-
complete even for planar graphs of maximum degree three and bounded band-
width. Recall that the problem is solvable in polynomial time if k ≤ 3, and
hence our result gives a sharp analysis of the complexity status with respect to
the number k of colors. We then give the first complexity result for the non-
list variant: for every integer k ≥ 5, edge-coloring reconfiguration is
PSPACE-complete even for planar graphs of maximum degree k and bandwidth
linear in k.

We roughly explain our main technical contribution. Both our results can be
obtained by constructing polynomial-time reductions from Nondeterministic
Constraint Logic (NCL, for short), introduced by Hearn and Demaine [8].
This problem is often used to prove the computational hardness of puzzles and
games, because a reduction from this problem requires to construct only two
types of gadgets, called and and or gadgets. However, there is another dif-
ficulty for our problems: how the gadgets communicate with each other. We
handle this difficulty by introducing the “neutral orientation” to NCL. In addi-
tion, our and/or gadgets are very complicated, and hence for showing the cor-
rectness of our reductions, we clarify the sufficient conditions (which we call
“internally connected” and “external adjacency”) so that the gadgets correctly
work. We show that our gadgets indeed satisfy these conditions by a computer
search.
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2 Nondeterministic Constraint Logic

In this section, we define the nondeterministic constraint logic prob-
lem [8].

An NCL “machine” is an undirected graph together with an assignment
of weights from {1, 2} to each edge of the graph. An (NCL) configuration of
this machine is an orientation (direction) of the edges such that the sum of
weights of in-coming arcs at each vertex is at least two. Figure 2(a) illustrates
a configuration of an NCL machine, where each weight-2 edge is depicted by a
thick (blue) line and each weight-1 edge by a thin (orange) line. Then, two NCL
configurations are adjacent if they differ in a single edge direction. Given an
NCL machine and its two configurations, it is known to be PSPACE-complete
to determine whether there exists a sequence of adjacent NCL configurations
which transforms one into the other [8].

An NCL machine is called an and/or constraint graph if it consists of only
two types of vertices, called “NCL and vertices” and “NCL or vertices” defined
as follows:

1. A vertex of degree three is called an NCL and vertex if its three incident
edges have weights 1, 1 and 2. (See Fig. 2(b).) An NCL and vertex u behaves
as a logical and, in the following sense: the weight-2 edge can be directed
outward for u if and only if both two weight-1 edges are directed inward for
u. Note that, however, the weight-2 edge is not necessarily directed outward
even when both weight-1 edges are directed inward.

2. A vertex of degree three is called an NCL or vertex if its three incident edges
have weights 2, 2 and 2. (See Fig. 2(c).) An NCL or vertex v behaves as a
logical or: one of the three edges can be directed outward for v if and only if
at least one of the other two edges is directed inward for v.

It should be noted that, although it is natural to think of NCL and/or vertices
as having inputs and outputs, there is nothing enforcing this interpretation; espe-
cially for NCL or vertices, the choice of input and output is entirely arbitrary
because an NCL or vertex is symmetric.

For example, the NCL machine in Fig. 2(a) is an and/or constraint graph.
From now on, we call an and/or constraint graph simply an NCL machine, and
call an edge in an NCL machine an NCL edge. NCL remains PSPACE-complete
even if an input NCL machine is planar and bounded bandwidth [17].

Fig. 2. (a) A configuration of an NCL machine, (b) NCL and vertex u, and (c) NCL
or vertex v. (Color figure online)
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3 Our Results

In this section, we give our results. Observe that list edge-coloring recon-
figuration can be solved in (most conveniently, nondeterministic [15]) poly-
nomial space, and hence it is in PSPACE. Therefore, we show the PSPACE-
hardness. Our reductions from NCL take a similar construction, and hence we
first give the common preparation in Sect. 3.1. Then, we prove the PSPACE-
hardness of list edge-coloring reconfiguration in Sect. 3.2 and the non-
list variant in Sect. 3.3.

3.1 Preparation for Reductions

Suppose that we are given an instance of NCL, that is, an NCL machine and
two orientations of the machine.

We subdivide every NCL edge vw into a path vv′w′w of length three by
adding two new vertices v′ and w′. (See Fig. 3(a) and (b).) We call the edge
v′w′ a link edge between two NCL vertices v and w, and call the edges vv′

and ww′ connector edges for v and w, respectively. Notice that every vertex in
the resulting graph belongs to exactly one of stars K1,3 such that the center
of each K1,3 corresponds to an NCL and/or vertex. Furthermore, these stars
are all mutually disjoint, and joined together by link edges. (See Fig. 3(c) as an
example.)

Our reduction thus involves constructing three types of gadgets which corre-
spond to link edges and stars of NCL and/or vertices; we will replace each of
them with its corresponding gadget. In our reduction, assigning the color 1 to
the connector edge vv′ always corresponds to directing vv′ from v′ to v (i.e., the
inward direction for v), while assigning the color 4 to vv′ always corresponds to
directing vv′ from v to v′ (i.e., the outward direction for v).

3.2 List Edge-Coloring Reconfiguration

In this subsection, we prove the following theorem.

v’ w’v wv w

(a)                                                    (b)                                                             (c)

Fig. 3. (a) An NCL edge vw, (b) its subdivision into a path vv′w′w, and (c) the result-
ing graph which corresponds to the NCL machine in Fig. 2(a), where newly added
vertices are depicted by (red) large circles, link edges by (green) thick lines and con-
nector edges by (blue) thin lines. (Color figure online)
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Theorem 1. For every integer k ≥ 4, the list edge-coloring reconfig-
uration problem is PSPACE-complete for planar graphs of maximum degree
three and bounded bandwidth.

We prove the theorem in the remainder of this subsection. As we have men-
tioned in Sect. 3.1, it suffices to construct three types of gadgets which correspond
to link edges and stars of NCL and/or vertices.

• Link edge gadget
Recall that, in a given NCL machine, two NCL vertices v and w are joined by a
single NCL edge vw. Therefore, the link edge gadget between v and w should be
consistent with the orientations of the NCL edge vw, as follows (see also Fig. 4):
If we assign the color 1 to the connector edge vv′ (i.e., the inward direction for v),
then ww′ must be colored with 4 (i.e., the outward direction for w); conversely,
vv′ must be colored with 4 if we assign 1 to ww′. In particular, the gadget must
forbid a list edge-coloring which assigns 1 to both vv′ and ww′ (i.e., the inward
directions for both v and w), because such a coloring corresponds to the direction
which illegally contributes to both v and w at the same time. On the other hand,
assigning 4 to both vv′ and ww′ (i.e., the outward directions for both v and w)
corresponds to the neutral orientation of the NCL edge vw which contributes to
neither v nor w, and hence we simply do not care such an orientation.

Figure 5 illustrates our link edge gadget between two NCL vertices v and
w. Figure 6(b) illustrates the “reconfiguration graph” of this link edge gadget
together with two connector edges vv′ and ww′: each rectangle represents a
node of the reconfiguration graph, that is, a list edge-coloring of the gadget,
where the underlined bold number represents the color assigned to the edge,

neutral

{1,4} {1,4}

{1,4} {1,4}

{1,4} {1,4}

{1,4} {1,4} forbidden

v wv ww’v’

Fig. 4. (a) Color assignments to connector edges, (b) their corresponding orientations
of the edges vv′ and ww′, and (c) the corresponding orientations of an NCL edge vw.
(Color figure online)
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{3,1}{1,2}{2,3}

w wv ’v’

Fig. 5. Link edge gadget for list edge-coloring reconfiguration.

{1,2}{2,3}{3,1} {1,4}

neutral

{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

edge gadget

v w

(a) (b)

Fig. 6. (a) Three orientations of an NCL edge vw, and (b) all list edge-colorings of the
link edge gadget with two connector edges.

and two rectangles are joined by an edge in the reconfiguration graph if their
corresponding list edge-colorings are adjacent. Then, the reconfiguration graph
is connected as illustrated in Fig. 6(b), and the link edge gadget has no list edge-
coloring which assigns 4 to the two connector edges vv′ and ww′ at the same
time, as required. Furthermore, the reversal of the NCL edge vw can be simulated
by the path via the neutral orientation of vw, as illustrated in Fig. 6(a). Thus,
this link edge gadget works correctly.

• And gadget
Consider an NCL and vertex v. Figure 7(a) illustrates all valid orientations of the
three connector edges for v; each box represents a valid orientation of the three
connector edges for v, and two boxes are joined by an edge if their orientations
are adjacent. We construct our and gadget so that it correctly simulates this
reconfiguration graph in Fig. 7(a).

Figure 8 illustrates our and gadget for each NCL and vertex v, where e1,
e2 and ea correspond to the three connector edges for v such that e1 and e2
come from the two weight-1 NCL edges and ea comes from the weight-2 NCL
edge. Figure 7(b) illustrates the reconfiguration graph for all list edge-colorings
of the and gadget, where each large box surrounds all colorings having the
same color assignments to the three connector edges for v. Then, we can see
that these list edge-colorings are “internally connected,” that is, any two list
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edge-colorings in the same box are reconfigurable with each other without recol-
oring any connector edge. Furthermore, this gadget preserves the “external adja-
cency” in the following sense: if we contract the list edge-colorings in the same
box in Fig. 7(b) into a single vertex, then the resulting graph is exactly the graph
depicted in Fig. 7(a). Therefore, we can conclude that our and gadget correctly
works as an NCL and vertex.

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

1 1

2

1 1

2

1 1

2

1 1

2
1 1

2

(a)

(b)

Fig. 7. (a) All valid orientations of the three connector edges for an NCL and vertex
v, and (b) all list edge-colorings of the and gadget in Fig. 8.

• Or gadget
Figure 9 illustrates our or gadget for each NCL or vertex v, where e1, e2 and
e3 correspond to the three connector edges for v. To verify that this or gadget
correctly simulates an NCL or vertex, it suffices to show that this gadget satisfies
both the internal connectedness and the external adjacency. Since this gadget
has 1575 list edge-colorings, we have checked these sufficient conditions by a
computer search of all list edge-colorings of the gadget.
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{1,4}

{3,2}{4,3}

{1,4}

{2,4}

{4,1}

e1 e2

ea

Fig. 8. And gadget for list edge-coloring reconfiguration.

{1,4}{4,3}{3,2}{2,4}
{4,1}

{1,2}{2,3,1}{1,2}{4,3}{3,2}{2,4}{4,1}

{1,2,3}

{3,1}

{4,3}
{2,3}

{3,1,2}

{2,3}

{4,2}

{2,4}{4,1}

{4,1}

{3,4}

{2,4}

{4,3}

{1,4}

{3,1}e1

e2

e3

Fig. 9. Or gadget for list edge-coloring reconfiguration.

Reduction. As we have explained before, we replace each of link edges and stars
of NCL and/or vertices with its corresponding gadget; let G be the resulting
graph. Since NCL remains PSPACE-complete even if an input NCL machine is
planar, bounded bandwidth and of maximum degree three, the resulting graph
G is also planar, bounded bandwidth and of maximum degree three; notice that,
since each gadget consists of only a constant number of edges, the bandwidth of
G is also bounded.

In addition, we construct two list edge-colorings of G which correspond to
two given NCL configurations C0 and Cr of the NCL machine. Note that there
are (in general, exponentially) many list edge-colorings which correspond to the
same NCL configuration. However, by the construction of the three gadgets,
no two distinct NCL configurations correspond to the same list edge-coloring
of G. We thus arbitrarily choose two list edge-colorings f0 and fr of G which
correspond to C0 and Cr, respectively.

This completes the construction of our corresponding instance of list edge-
coloring reconfiguration. Clearly, the construction can be done in poly-
nomial time. Due to the page limitation, we omit the correctness proof of our
reduction.

3.3 Edge-Coloring Reconfiguration

In this subsection, we prove the following theorem for the non-list variant.
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Theorem 2. For every integer k ≥ 5, the edge-coloring reconfiguration
problem is PSPACE-complete for planar graphs of maximum degree k and band-
width linear in k.

To prove the theorem, similarly as in the previous subsection, we will con-
struct three types of gadgets corresponding to a link edge and stars of NCL
and/or vertices. However, since we deal with the non-list variant, every edge
has all k colors as its available colors. Thus, we construct one more gadget, called
a color gadget, which restricts the colors available for the edge. The gadget is
simply a star having k leaves, and we assign the k colors to the edges of the star
in both f0 and fr. (See Fig. 10(a) as an example for k = 5.) Note that, since
the color set consists of only k colors, these k edges must stay the same colors
in any reconfiguration sequence. Thus, if we do not want to assign a color c to
an edge e, then we connect the leaf edge with the color c to an endpoint v of
e. (See Fig. 10(b).) In this way, we can treat the edge e as if it has the list L(e)
of available colors. However, we need to pay attention to the fact that all edges
e′ sharing the endpoint v cannot receive the color c by connecting such color
gadgets to v. Therefore, our gadgets are constructed so that all endpoints of
connector edges shared by other gadgets are attached with the same color gad-
gets which forbid colors 2 and 5, 6, . . . , k, and hence we can connect the gadgets
consistently.

{2,4,5}
1

2
3 4

5

1

2
3

4
5

e

1
2

3

4
5

e’
(a) (b)

Fig. 10. (a) Gadget for restricting a color (k = 5), and (b) edge e whose available
colors are restricted to {2, 4, 5}.

Figures 11 and 12 illustrate all gadgets for the non-list variant, where the
available colors for each edge is attached as the list of the edge. Notice that
the gadget in Fig. 11 forbids the colors i, j, and 6, 7, . . . , k. Then, the link edge
gadget and and/or gadgets have 10, 40, 477192 edge-colorings, respectively. We
have checked that all gadgets satisfy both the internal connectedness and the
external adjacency by a computer search of all edge-colorings of the gadgets.

Recall that NCL remains PSPACE-complete even if an input NCL machine is
planar, bounded bandwidth, and of maximum degree three. Thus, the resulting
graph G is also planar. Notice that only the size of the color gadget depends
on k, and the other (parts of) gadgets are of constant sizes. Since k ≥ 5, the
maximum degree of G is k, i.e., the degree of the center of each color gadget. In
addition, since each of link edge and and/or gadgets contains only a constant
number of color gadgets, the number of edges in each gadget can be bounded
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Fig. 11. Explanatory note for the gadgets in Fig. 12.
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Fig. 12. Link edge, and, and or gadgets for the non-list variant.

by a linear in k. Since the bandwidth of the input NCL machine is a constant,
that of G can be bounded by a linear in k.

4 Conclusion

In this paper, we have shown the PSPACE-completeness of list edge-coloring
reconfiguration and its non-list variant. We emphasize again that our result
for list edge-coloring reconfiguration gives a sharp analysis of the com-
plexity status with respect to the number k of colors. In addition, our result is
the first complexity hardness result for the non-list variant.
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Abstract. We show the first upper bound for resolution size of a SAT
instance by pathwidth of its incidence graph. Namely, we prove that if
an incidence graph of an unsatisfiable CNF formula has pathwidth pw,
the formula can be refuted by a resolution proof with at most O∗(3pw)
clauses. It is known that modern practical SAT-solvers run efficiently for
instances which have small and narrow resolution refutations. Resolution
size is one of the parameters which make SAT tractable, whereas it is
shown that even linearly approximating the resolution size is NP-hard. In
contrast, computing graph based parameters such as treewidth or path-
width is fixed-parameter tractable, and also efficient FPT algorithms for
SAT of bounded such parameters are widely researched. However, few
explicit connection between these parameters and resolutions or SAT-
solvers are known. In this paper, we provide an FPT algorithm for SAT
on path decomposition of its incidence graph. The algorithm can con-
struct resolution refutations for unsatisfiable formulas, and analyzing the
size of constructed proof gives the new bound.

Keywords: Satisfiability · Parameterized complexity · Resolution size ·
Incidence graph · Pathwidth

1 Introduction

1.1 Background

SAT is an important problem both in theory and practice, since it is the most fun-
damental NP-complete problem and has many practical applications. Although
performance of SAT-solvers has been improved and modern SAT-solvers can
solve large instances of SAT with millions of variables, there is no theoretical
explanation of their performance for general instances of SAT. Therefore studies
about what kind of formulas can be solved efficiently and why modern SAT-
solvers can solve such kind of formulas efficiently are needed.

Most of modern SAT-solvers are based on Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [10] which works by choosing a variable and assign-
ing truth value to it. In actual implementations, many other heuristics and algo-
rithms are used with DPLL. Conflict-Driven Clause Learning (CDCL) is one of
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 359–369, 2017.
DOI: 10.1007/978-3-319-53925-6 28
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such algorithms for solving SAT proposed by Marques-Silva and Sakallah in 1996
[16], which is a major breakthrough in SAT solving and widely used in modern
SAT-solvers. Since Beame et al. [6] showed that the behavior of SAT-solvers
with DPLL and CDCL can be regarded as searching resolution refutations for a
given formula, it has been recognized that there is a strong connection between
the performance of solvers and characteristics of formulas in resolution proof
system (formal definitions of resolutions are given in Sect. 2). Indeed, the size of
a resolution refutation (resolution size) is a lower bound for time complexity of
solvers. In addition, it is shown by Atserias et al. [4] that, for an unsatisfiable
formula with n variables and resolution width k, many of modern SAT-solvers
can learn the empty clause with high probability in at most O(n2k+2) conflicts.

However, there are some difficulties to deal with resolution width and size
directly. One of the difficulties is about general intractability of resolution; it is
shown by Haken [12] that there are infinitely many CNF formulas φ such that
the resolution size of φ cannot be bounded by a polynomial of the size of φ.
For a relationship between SAT and resolution, Alekhnovich and Razborov [2]
showed that SAT cannot be solved in polynomial time of the resolution size of an
input formula unless W[P] ⊆ co-FPR, one of the hypotheses in computational
complexity believed to be false, holds. Another difficulty is that to determine the
value of resolution width or size of a formula φ is harder than to just solve SAT
for φ, because, to be precise, resolution width and size are parameters defined by
proofs of SAT instances, not by parameters of SAT instances (formulas itself).
Actually, it is proven by Alekhnovich et al. [1] that even linearly approximating
the minimum size of propositional proof is NP-hard for many proof systems,
including resolution. Thus, although resolution width and size are key charac-
teristics of SAT instances, it is nearly impossible to develop algorithms for SAT
exploiting resolution width or size explicitly. On the other hand, by considering
graph representation of formulas, we can develop algorithms using graph based
parameters such as treewidth or branchwidth. This is because both treewidth
and branchwidth can be computed in linear time for small width [8,17].

1.2 Graph Representations and Resolution

Several kinds of graph representations are considered for SAT. In terms of para-
meterized complexity, there are three kinds of graph representations mainly stud-
ied: primal, dual, and incidence graphs. There are FPT algorithms (dynamic
programming on tree decompositions) for the treewidth of these three kinds
of graphs known [15]. For the connection with resolution, Alekhnovich and
Razborov [3] showed that the resolution width is bounded by the branchwidth
of hypergraph representation which can be seen as more detailed primal graphs.

In this paper, we focus on incidence graphs. The reason is that incidence
graphs have essentialy more information about structures of formulas than pri-
mal and dual graphs. Indeed, treewidth of primal and dual graphs can easily
become large by only one variable or one clause. For example, primal graphs
become complete graphs if there is a clause containing all the variables, even
though such clauses are very weak since they forbid only one truth assignment
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out of 2n possibilities. At the same time, branchwidth of hypergraphs becomes
n, the maximum possible value, by a such large clause. In contrast, one clause
with many variables generally does not immediately increase the treewidth of
incidence graphs so much. Furthermore, the treewidth of incidence graphs tends
to be smaller than that of primal and dual graphs. To be exact, if the treewidth
of primal or dual graph is k, then the incidence graph has treewidth at most
k + 1 [13].

We show a new connection between incidence pathwidth and resolution size
by presenting an algorithm for SAT on path decompositions. Although path-
width is not the same as treewidth, path decomposition can be regarded as
a special case of tree decomposition, thus these parameters have deep connec-
tions. Pathwidth is lower bounded by treewidth, and also is upper bounded by
treewidth times a logarithm of the number of vertices [14].

1.3 Our Results

The following theorem is our main result (formal definitions of resolution, path-
width and treewidth are given in Sect. 2).

Theorem 1. For an unsatisfiable formula φ with incidence pathwidth pw(φ),
there exists a resolution refutation of φ whose size is O∗(3pw(φ)).

It is possible to construct resolution refutations of size O∗(3pw(φ)), since
this result is obtained by developing a constructive algorithm. Descriptions of
algorithms and proofs are in Sect. 3. We also can obtain a following connection
between incidence treewidth and resolution size by using an upper bound of
pathwidth [14].

Corollary 1. For an unsatisfiable formula φ with incidence treewidth tw(φ),
there exists a resolution refutation of φ whose size is |φ|O(tw(φ)).

1.4 Resolution Size and Width

Although results of this paper focus on resolution size and do not mention about
resolution width, there are some notable relationships between resolution width
and size shown. In one direction, resolution width can be bounded by using the
width of a formula and resolution size; w(φ � 0) ≤ w(φ) + O(

√
n ln S(φ)) holds

[7], where w(φ � 0), S(φ) are resolution width and size of a formula φ, w(φ)
is the size of the largest clause in φ, and n is the number of variables. This
result indicates that the resolution width becomes small when the resolution
size is small and the formula has no large clauses. In another direction, for a
bound of resolution size by resolution width, it is shown that an obvious upper
bound is essentially optimal. The size of resolution proofs of resolution width
w is obviously bounded by the number of distinct clauses nO(w). Atserias et al.
[5] proved that if w = O(nc) for some constant c < 1/2, there exists 3-CNF
formulas which have maximally long proofs, that is, formulas requiring nΩ(w)
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clauses to refute by resolution. This result demonstrates that the bound of the
number of rounds SAT-solvers take by resolution width and size [4] is optimal
up to a constant in the exponent.

2 Preliminaries and Notations

2.1 Satisfiability and Resolution

A literal is a Boolean variable or its negation and a clause is a disjunction of
literals. We say that a propositional formula φ is in conjunctive normal form
(CNF) or φ is a CNF formula if φ is a conjunction of clauses. We regard a clause
and a formula as a set of literals and clauses, respectively. For a clause C and
a formula φ, we denote a set of variables occurring in it by Vars(C) or Vars(φ).
That is, Vars(C) = {x | x ∈ C} ∪ {x | x ∈ C} and Vars(φ) =

⋃
C∈φ Vars(C).

A truth assignment for a formula φ is a function σ : Vars(φ) → {0, 1}. A
truth assignment σ satisfies φ if a formula obtained by replacing occurrences of
each variable x and its negation x by σ(x) and 1−σ(x), respectively, is evaluated
to 1. We say that φ is satisfiable if there exists a truth assignment satisfying φ,
otherwise φ is unsatisfiable. Satisfiability (SAT) is the problem to decide whether
a given formula is satisfiable.

Resolution is one of the propositional proof systems and has only one infer-
ence rule (resolution rule):

C ∨ x D ∨ x
C ∨ D

Resolution rule takes two clauses and produces a new implied clause
(resolvent). A resolution refutation of a formula φ is a sequence of clauses
C1, C2, . . . , Ck such that

– for each i (1 ≤ i ≤ k), Ci is a clause occurring in φ or a resolvent of two
previous clauses, and

– the last clause Ck is an empty clause.

The size (or length) of the refutation is the number k of clauses. The width
of the refutation is a maximum number of literals in clauses (max1≤i≤k |Ci|).

Since an empty clause is inconsistent (always false), a resolution refutation
of φ can be regarded as a proof of unsatisfiability of φ. Indeed, it is known that
φ is unsatisfiable if and only if there exists a resolution refutation of φ. For an
unsatisfiable formula φ, a resolution size and width of φ is the minimum size and
width of resolution refutations of φ, respectively.

If a sequence of clauses (Ci) satisfies the first condition of a resolution refu-
tation of a formula φ but does not satisfy the second condition (i.e., Ck 	= ∅),
we can regard (Ci) as a proof of that Ck is a logical consequence of φ.
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2.2 Treewidth and Pathwidth

Definition 1. Let G = (V (G), E(G)) be an undirected graph. A tree decompo-
sition of G is a pair of a tree T = (V (T ), G(T )) and labels X : V (T ) → P(V (G))
of tree vertices such that

–
⋃

v∈V (T ) X(v) = V (G),
– for each vertex v ∈ V (G), the subgraph of T induced by the vertices containing

v in their label is connected, and
– for each edge (v1, v2) ∈ E(G), there exists a vertex w ∈ V (T ) which has both

v1 and v2 in its label.

A width of a tree decomposition is defined as maxv∈V (T ) |X(v)| − 1. A
treewidth of a graph is the minimum width of its tree decompositions.

Path decompositions and pathwidth are defined similarly. The difference of
them is that in the definition of path decomposition, T is restricted to a simple
path. For a graph G, we denote a treewidth and pathwidth of G by tw(G) and
pw(G), respectively. Since a path decomposition is also a tree decomposition,
pw(G) ≥ tw(G) holds. For upper bound of a pathwidth, it is shown that pw(G) =
O(log |V (G)| · tw(G)) [14].

In this paper, the pathwidth of a SAT instance is defined as a pathwidth of
its incidence graph.

Definition 2. For a SAT instance φ, an incidence graph of φ is a bipartite
graph Gφ whose vertices are variables and clauses in φ. There is an edge (x, c)
if and only if a clause c ∈ φ contains x or x.

We denote a pathwidth of a SAT instance φ by pw(φ), which actually means
pw(Gφ).

We assume that a path decomposition of φ with pathwidth pw(φ) is also
given as input when we develop an algorithm later. For convenience, we also
assume that given path decompositions are nice.

Definition 3. Let (T,X) be a path decomposition of a graph G with vertices
t1, t2, . . . , t|V (T )| along the path. The path decomposition (T,X) is nice when
each edge vertex ti (2 ≤ i ≤ |V (T )|) has one of following 2 characteristics:

– (introduce) ∃v ∈ V (G). X(ti) = X(ti−1) ∪ {v}.
– (forget) ∃v ∈ V (G). X(ti) = X(ti−1) \ {v}.

Nice decompositions are mainly considered for tree decompositions. The
above definition of nice path decompositions are naturally obtained by restricting
nice tree decompositions to path decompositions.

Remark 1. There is an fixed-parameter tractable algorithm for computing path-
width and path decompositions [9]. Also we can transform a path decomposition
into nice one with the same width in linear time. Thus the assumption can be
made without loss of generality.
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3 Results

3.1 Finding a Resolution Refutation on a Path Decomposition

This section is devoted to proof of the Theorem 1. Instead of repeating the the-
orem, we describe here the more detailed theorem which immediately implies
Theorem 1.

Theorem 2. There exists an algorithm which takes a CNF formula φ and the
nice path decomposition (T,X) of its incidence graph with path-width pw(φ) as
inputs, runs in 2O(pw(φ))|φ|O(1) time, and

– produces a satisfying assignment of φ if φ is satisfiable.
– constructs a resolution refutation of size O∗(3pw(φ)) if φ is unsatisfiable.

Note that we assume that the nice path decomposition is also given for
simplicity. There is a fixed-parameter tractable algorithm for computing path
decompositions [9] and we can easily convert path decompositions into nice ones
in polynomial time.

First we provide a detailed procedure of the algorithm and proof of its cor-
rectness to solve SAT on a path decomposition of a given formula, which can
construct a resolution refutation for an unsatisfiable formula. Then we analyze
the size of a resolution refutation constructed by the algorithm in the next sub-
section.

In the following description, we denote vertices of T as t1, t2, ..., t|V (T )| along
the path, and each bag X(ti) as Xi for simplicity. We also assume following for
given inputs and the algorithm:

– Both X1 and X|V (T )| are empty. This means that along the path each variable
in φ is introduced once and then finally forgotten. This assumption can be
done by simple preprocessing to add some introduce nodes and forget nodes
to a given path decomposition. The preprocessing increases the number of
vertices in T by only O(pw(φ)).

– Through the algorithm, clauses which have both of a variable and its negation
are ignored. Such clauses are obviously always true, thus ignoring them does
not affect the correctness of the algorithm. If an input φ contains such clauses,
they also should be ignored.

Before presenting an algorithm, we introduce an operation to a set of clauses
which will be used in the algorithm. This operation is the almost same as the
one used in the algorithm for branch decompositions [3].

Definition 4. For a set of clauses C and a variable x,

Cx = {C ∨ D | C ∨ x,D ∨ x ∈ C} ∪ {C | C ∈ C, x 	∈ Vars(C)}.
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Fig. 1. Solving SAT on a path decomposition

This operation replaces clauses in C which has x or x with all possible resol-
vents for x. Clauses without x remain unchanged through the operation. One
of the notable properties of this operation is that Cx no longer contains x (i.e.,
x 	∈ Vars(Cx)), since we assumed that no clauses have both x and x. We can
informally say that this operation removes a variable x, but keep all information
about resolution for x.

Figure 1 shows the procedure to solve SAT on path decomposition and con-
struct resolution refutations for unsatisfiable formulas. Although this algorithm
is so simple that it just applies the operation introduced above to the input φ
in the order in which variables are forgotten, this algorithm correctly decides
whether the given formula is satisfiable or not and construct a resolution refu-
tation.

The correctness of this algorithm can be confirmed by soundness and com-
pleteness of the Davis Putnam resolution [11]. We describe the proof of the cor-
rectness for completeness and to show how to produce a satisfying assignment
for satisfiable formulas.

Lemma 1. φ is unsatisfiable if and only if the algorithm ends with the empty
clause.

Proof. The “if” side of this lemma is rather easy to prove. Through the algo-
rithm, every time C is updated, new clauses introduced to C are also introduced
to R. Thus all clauses in C are always contained by R. Since the new clauses are
all resolvents of the clauses in C, R can be regarded as a resolution proof of a
clause in R. If C contains the empty clause at the end of the algorithm, R also
contains the empty clause. Therefore, R is a resolution refutation of a formula φ.

To prove “only if” side, we use an induction on the for-loop in the algorithm.
If φ is unsatisfiable, C is also unsatisfiable when the algorithm starts. In addition,
if C is unsatisfiable when the algorithm ends, then C contains the empty clause,
because applying the operation on variable x removes all occurrence of x in C
and all variables were forgotten at the end. Thus it is sufficient to show that if



366 K. Imanishi

C is unsatisfiable, Cx is also unsatisfiable for any variable x. We can show this
fact by proving its contraposition; if Cx is satisfiable, C is also satisfiable.

Suppose that there exists a truth assignment σ satisfying Cx. Note that σ(x)
is undefined since Vars(Cx) does not contain x. Let us consider clauses in C under
the assignment σ. We can split them into following three groups:

– Clauses without a variable x. These clauses remain unchanged in Cx, thus the
clauses are satisfied by σ.

– Clauses containing x. Let Ai ∨ x ∈ C for 1 ≤ i ≤ a be such clauses.
– Clauses containing x. Let Bj ∨ x ∈ C for 1 ≤ j ≤ b be such clauses.

By definition of the operation, Cx contains all clauses of the form Ai ∨ Bj

for all i, j. If there exists a clause Ai that is not satisfied by σ, then clauses Bj

for all j are satisfied by σ, since Ai ∨ Bj ∈ Cx are all satisfied. Therefore, we
can satisfy C by defining σ(x) to be true if there exists a unsatisfied clause Ai,
otherwise false.

We can use the argument in the above proof to construct a satisfying assign-
ment for a satisfiable formula. If φ is satisfiable, then Cx is also satisfiable since
clauses in Cx are all logical consequences of φ, that is there exists a truth assign-
ment satisfying Cx. From the argument in the above proof, we can construct a
satisfying assignment of C by setting x be appropriate value. Thus we can con-
struct a satisfying assignment for φ by looking operations performed backward
and deciding the truth assignment for each variable.

Note that in the above proof of correctness we did not use the order of
forgotten variables. This means that the algorithm correctly determines whether
given formulas are satisfiable or not even if the order of operations performed on
C changes arbitrarily. Performing operations in the order of forgotten variables
is required and essential to bound the number of clauses in constructed proofs.

3.2 Bound of the Running Time and the Resolution Size

To conclude the proof for Theorem2, we have to bound the size of resolution
refutations constructed by the above algorithm; namely we show the following
theorem.

Theorem 3. For an unsatisfiable formula φ, at the end of the algorithm shown
in Fig. 1, the size of R (the number of clauses in R) is O∗(3pw(φ)).

Since R is a resolution refutation of φ, Theorem 1 follows from this theorem.
To prove this theorem, it is sufficient to show nearly the same lemma for C.

Lemma 2. Through the algorithm shown in Fig. 1, the size of C is always less
than or equal to 3pw(φ)+1 + |φ|.

Theorem 3 follows from Lemma 2 because the size of R is increased by at
most |Cx| (= O∗(3pw(φ)) if Lemma 2 holds) for at most |V (T )| times through the
algorithm. Then, let us go on to the proof of Lemma2.
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Proof. Clauses in C can be categorized into two types; a clause appears in φ or
not. Obviously the number of clauses appearing in φ is bounded by |φ|. We show
that the number of clauses which do not appear in φ is bounded by 3pw(φ)+1.

Assume that we are just finished looking at a vertex v with variables V (v)
and clauses C(v). Let F be a set of variables already forgotten at that moment,
and D be a clause in C \φ. It is easily confirmed that D may contain variables in
V (v) in arbitrary combinations (note that there are 3|V (v)| possible combinations,
since each variable can be taken or not, and taken variables can be negated or
not), but does not contain variables in F . The problem is about the remaining
part of D; what can we say about variables not in V (v) and F? To answer this
question we use the following fact: if D contains a literal l which is not a variable
in V (v) and F , then there exists a clause L ∈ C(v) such that l ∈ L.

This fact is confirmed as follows. The first thing to be noted is that D can
be derived with resolution by introduced clauses. Since all resolutions are per-
formed on forgotten variables, clauses not introduced yet (in other words, clauses
without forgotten variables) are not resolved at this moment. The next is that
forgotten clauses, which are introduced and then already forgotten before the
vertex v, do not have variables not in V (v) and F . Thus variables not in V (v)
and F can only come from clauses in C(v).

By this fact, the remaining part of D can be characterized by a subsequence
of R. Suppose R = (R1, R2, . . . , R|R|) and D = Rk. Then there exists a (not
necessarily consecutive) subsequence of R such that it can be regarded as a proof
of D under φ by resolution. The remaining part of D is determined by, for each
clause C in C(v), whether the proof of D under φ, a subsequence of R, contains
C or not.

For a clause C in C(v), let C ′ be a clause obtained by removing variables
in V (v) and F from C. If the proof of D under φ contains C, then we can say
that C ′ ⊆ D. A variable x 	∈ V (v) ∪ F is not in Vars(D) if we cannot say that
D contains x or x from the above fact.

Finally we can bound the size of C by above arguments. If a combination of
variables in V (v) (3|V (v)| possibilities) and clauses in C(v) contained by a proof
under φ (2|C(v)| possibilities) are specified, we can uniquely determine a clause
which may be in C. That is, if a set of literals LV over variables in V (v) and a
set of clauses CV ⊆ C(v) are given, we can construct a clause which possibly
be in C as the union of LV and clauses obtained by removing variables in V (v)
and F from clauses in CV . In addition, all clauses in C (without ones appearing
in φ) are characterized by above properties. Therefore C can contain at most
3|V (v)|2|C(v)| + |φ| ≤ 3pw(φ)+1 + |φ| clauses.

We proved Lemma 2 and thus Theorem 2 and Theorem 1 are also proved. By
using the bound of path-width pw(φ) = O(tw(φ) log |φ|) [14], we immediately
get the bound of resolution size by incidence treewidth, which we mentioned as
Corollary 1 in the previous section.

Corollary 1. For an unsatisfiable formula φ with incidence treewidth tw(φ),
there exists a resolution refutation of φ whose size is |φ|O(tw(φ)).
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Since 3pw(φ) = |φ|O(tw(φ)), the resolution size of an unsatisfiable formula φ is
bounded by |φ|O(tw(φ)).

Note that a computation of the operation Cx can be done in polynomial
time of the size of C, thus the algorithm runs in 2O(pw(φ))|φ|O(1) time. That is,
the algorithm is a fixed-parameter tractable algorithm for SAT on pathwidth of
incidence graphs.

4 Conclusion

The result of this paper indicates that SAT instances of bounded pathwidth or
treewidth can be rather easily solved by modern SAT-solvers. Although it is
believed that we cannot solve SAT in polynomial time of resolution size [2], the
paper [4] about connections between CDCL solvers and resolutions provides the
more detailed bound 4 km ln(4knm)nk+1 of the number of restarts, where n is the
number of variables, k and m are the resolution width and size, respectively. This
means that shorter proofs are relatively easily found by modern solvers, and we
showed that SAT instances with smaller pathwidth and treewidth have smaller
resolution sizes. Thus, we may conclude that the pathwidth and treewidth of
incidence graphs are one of the keys to grasp the structure of easily solved SAT
for modern solvers.

There are several open questions about connections between resolution and
graph based parameters. First, can we develop an algorithm on tree decomposi-
tions which can construct resolution refutations for unsatisfiable formulas, or we
can bound the resolution size by the exponential factors of incidence treewidth
with constant base? Although in this paper we showed an upper bound of the res-
olution size by incidence treewidth, that bound is exponential factor of incidence
treewidth with non-constant base and is obtained indirectly from the algorithm
on path decompositions.

Second, is there any lower bounds for resolution size by graph based para-
meters, especially pathwidth or treewidth? If we can bound resolution size from
both upper and lower sides, then we can compare such bounds with other general
(not necessary to involve resolution proofs) fixed-parameter tractable algorithms
to study capabilities and limitations of resolution.

Acknowledgements. I would like to thank Hiroshi Imai for helpful advice for writing
this paper, and Yoichi Iwata for motivating this work by providing a lot of information
about SAT, CDCL, and other related researches.
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Abstract. In the Maximum Planar Subgraph (Mps) problem, we
are given a graph G, and our goal is to find a planar subgraph H with
maximum number of edges. Besides being a basic problem in graph the-
ory, Mps has many applications including, for instance, circuit design,
factory layout, and graph drawing, so it has received a lot of atten-
tion from both theoretical and empirical literature. Since the problem is
NP-hard, past research has focused on approximation algorithms. The
current best known approximation ratio is 4

9
obtained two decades ago

(Călinescu et al. SODA 1996) based on computing as many edge-disjoint
triangles in an input graph as possible. The factor of 4

9
is also the limit

of this “disjoint triangles” approach.
This paper presents a new viewpoint that highlights the essences of

known algorithmic results for Mps, as well as suggesting new directions
for breaking the 4

9
barrier. In particular, we introduce the Maximum

Planar Triangles (Mpt) problem: Given a graph G, compute a sub-
graph that admits a planar embedding with as many triangular faces as
possible. Roughly speaking, any ρ-approximation algorithm for Mpt can
easily be turned into a 1

3
+ 2ρ

3
approximation for Mps. We illustrate the

power of the Mpt framework by “rephrasing” some known approxima-
tion algorithms for Mps as approximation algorithms for Mpt (solving
Mps as by-products). This motivates us to perform a further rigorous
study on the approximability of Mpt and show the following results:

– Mpt is NP-hard, giving a simplified NP-hardness proof for Mps as
a by-product.

– We propose a natural class of greedy algorithms that captures all
known greedy algorithms that have appeared in the literature. We
show that a very simple greedy rule gives better approximation ratio
than all known greedy algorithms (but still worse than 4

9
).

Our greedy results, despite not improving the approximation factor, illus-
trate the advantage of overlapping triangles in the context of greedy
algorithms. The Mpt viewpoint offers various new angles that might be
useful in designing a better approximation algorithm for Mps.

1 Introduction

In the maximum planar subgraph problem (Mps), we are given an input graph G,
and our objective is to compute a planar subgraph H with the maximum number
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 373–384, 2017.
DOI: 10.1007/978-3-319-53925-6 29
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of edges. Mps has arisen in many distinct applications, including for instance,
architectural floor planning, and circuit design. Besides the applications, the
problem is fundamentally interesting and has often been used as a subroutine in
solving other basic graph drawing problems: Graph drawing problems generally
aim at computing an embedding of a graph G with respect to some optimization
criterion. To draw G, one usually starts with a drawing of a planar subgraph H
and then draws the remaining edges in G − E(H), so it is natural to start with
H that contains the maximum number of edges (for more detail, see [13] and
references therein).

Mps is NP-hard, so past research has focused on approximation algorithms.
Liu and Geldmacher showed that the problem is NP-hard [11], and later in SODA
1996, Călinescu et al. showed that it is in fact APX-hard [2]. By Euler’s Formula,
any planar graph has at most 3n−6 edges. This means that simply outputting a
spanning tree gives immediately a 1

3 -approximation algorithm. Many heuristics
were proposed [1,5,6], but they were shown to be unable to improve over the
1
3 -approximation guarantee.

To beat the “trivial” factor of 1
3 , Călinescu et al. (implicitly) proposed a

framework of “augmenting” a spanning tree by edge-disjoint triangles. Indeed,
adding one extra triangle to the spanning tree gives us one more edge, so it is nat-
ural to aim at adding as many triangles as possible. They showed that a simple
algorithm based on greedily adding disjoint triangles gives a 7

18 -approximation
and also devised a 4

9 -approximation by computing a maximum triangular struc-
ture1 in G in polynomial time. The factor of 4

9 , however, is a limitation of this
approach, as there is a graph G for which even a maximum triangular structure
contains only a 4

9 -fraction of the number of edges in a maximum planar sub-
graph. Hence, the state of the art techniques on this problem have, more or less,
reached their limitation.

1.1 Our Contributions

In this paper, we propose a new viewpoint that highlights the essences of known
algorithmic results for Mps. We hope that, through this viewpoint, some promis-
ing directions towards improved approximation algorithms become visible. We
not only give better explanations on previous results, but also suggest potential
directions for breaking the 4

9 barrier.
One message that was implicit in Călinescu et al.’s approach is that “the

more triangles, the better the subgraph is as an approximate solution for Mps”.
They show nicely that if one only aims at maximizing disjoint triangles, then the
problem can be reduced to the matroid parity problem, for which polynomial
time algorithms exist. Some obvious questions arise:

Do we have any advantage in terms of approximating Mps if we want to
maximize triangles that are allowed to overlap? Is the resulting optimiza-
tion problem tractable?

1 A graph is a triangular structure if all cycles are of length three.
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The goal of this paper is to address these two questions. We are able to
provide partial answers in the restricted context of greedy algorithms.

Our New Viewpoint: Maximum Planar Triangles (Mpt). First, we quantify the
connection between triangles and Mps by introducing a new optimization prob-
lem, that we call Maximum Planar Triangle (Mpt): Given a graph G, com-
pute a subgraph H and its embedding with a maximum number of triangular
faces.

Theorem 1. If there is a β-approximation algorithm for Mpt, then there is
min(12 , 1

3 + 2β
3 − O( 1

n ))-approximation algorithm for Mps.

This shows, in particular, that a 1
4 -approximation for Mpt would imme-

diately imply a (12 − O(1/n))-approximation for Mps and that a (16 + ε)-
approximation algorithm would suffice for improving the best known approx-
imation factor.

We justify that Mpt is the right formulation to study by showing that many
known algorithmic results can be obtained through approximating Mpt.

Theorem 2. All greedy heuristics proposed in the literature are 1
12 approxima-

tion for Mpt, thus yielding 7
18 − O(1/n) approximation for Mps.

The proof of this theorem is obtained via rather straightforward applica-
tions/modifications of the previous results. We only include them here for the
sake of completeness and to provide exposition on the Mpt framework.

Unlike the question of finding disjoint triangles, overlapping triangles can be
hard to compute, as shown in the following result:

Theorem 3. Mpt is NP-hard.

A New Greedy Framework: Match-and-Merge. The main goal of this paper is to
study the advantages of overlapping triangles over the disjoint ones. To this end,
we consider a class of greedy algorithms and analyze how greedy rules that allow
overlapping triangles perform strictly better than the non-overlapping ones.

In particular, we introduce a systematic study of a greedy framework, that
we call Match-And-Merge. Roughly speaking, the algorithms in this class
iteratively find isomorphic copies of “pattern graphs” and merge connected com-
ponents in the so far computed subgraph until no pattern can be applied. The
algorithm in this class can be concisely described by a set of merging rules and
the iterations to apply them. This class of algorithms is relatively rich: All known
greedy algorithms can be cast concisely in this framework.

Theorem 4. There is a greedy algorithm with approximation factor 1
11 and 13

33
for Mpt and Mps respectively.

These ratios are better than the approximation ratios achieved by other algo-
rithms of the same kind; all previous greedy algorithms did not perform better
than 1

12 for Mpt and 7
18 for Mps respectively.
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Related Results: More recently, [3] shows an approximation algorithm for
weighted Mps in which we are given a weighted graph G, and the goal is to
maximize the total weight of a planar subgraph of G. [4] considers maximum
series-parallel subgraphs and gives a 7

12 -approximation.
Special cases of Mps also received attention, partly due to their connection

to extremal graph theory. For instance, [7] shows that the problem is APX-
hard even in cubic graphs. In [10], Kühn et al. showed a structural result that
when the graph is dense enough (i.e. has large minimum degree), then there
is a triangulated planar subgraph that can be computed in polynomial time.
Therefore, Mps is polynomial-time solvable when the minimum degree is large.
The proof of this result relies on Szemerédi’s Regularity Lemma.

2 Preliminaries

Let G = (V,E) be a graph. For any subset S ⊆ V , we use G[S] to denote the
induced subgraph of G on S. We denote by V (G) and E(G) the set of nodes
and edges of G respectively. Moreover, if G is a plane graph we use f(G) to
denote the number of faces of G and by fj(G) the number of faces of G with
a boundary containing exactly j edges. Let t(G) denote the number of edges
necessary to turn G into a maximal plane graph. By Euler’s Formula it follows
that |E(G)| + t(G) = 3|V (G)| − 6 and therefore t(G) does not depend on the
embedding of G. The following lemma was proven in [2].

Lemma 1 [2]. For any plane graph G, f3(G) ≥ 2|V (G)| − 4 − 2t(G).

The following observation will be used in our proof of Theorem1.

Lemma 2. Let H be any connected subgraph of a connected plane graph. Then
|E(H)| ≥ |V (H)| + f3(H) − 2.

In the following sections, whenever we discuss Mps or Mpt on a graph G,
we will denote by OPTmps the number of edges in a maximum planar subgraph
H of G, and by OPTmpt the maximum number of triangular faces in a plane
subgraph H ′ of G.

3 Our New Concepts

In this section, we highlight our two new conceptual ideas: (i) the formulation of
Mpt and its connection to Mps and (ii) the Match-And-Merge framework.
As discussed earlier, the Mpt abstraction allows a cleaner analysis for algorithms
in our framework, and therefore from this section on, we will focus on the case
of Mpt instead of Mps.
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3.1 MPS ⇒ MPT

We show that an algorithm for Mpt can be used for Mps. Let G be an input
instance for Mps, and H be a planar subgraph of G that corresponds to the opti-
mal solution. That is, |E(H)| = OPTmps. For simplicity, we abbreviate |E(H)|
and |V (H)| by m and n respectively. We can write m in terms of (1 + γ)n for
some γ ≥ 0.

By Euler’s Formula m = 3n − 6 − t(H), so t(H) = (2 − γ)n − 6. If we fix an
embedding of H, then by Lemma 1, the number of triangular faces in H must
be at least 2n − 4 − 2t(H) = 2n − 4 − 2(2 − γ)n + 12 > (2γ − 2)n. This implies
that OPTmpt ≥ (2γ − 2)n. This term is only meaningful when γ ≥ 1, so we
distinguish between the following two cases that would imply Theorem1.

– If OPTmps < 2n: This implies that any spanning tree is a 1
2 -approximation

algorithm.
– Otherwise if OPTmps ≥ 2n, then γ ∈ [1, 2] (notice that γ can never be more

than 2) and as argued above there are at least (2γ − 2)n triangular faces
in H. Then if we run a β-approximation algorithm for Mpt, we will get a
plane subgraph H ′ of G with f3(H ′) ≥ β(2γ − 2)n. We may assume that
H ′ is connected: Otherwise, one can always add arbitrary edges to connect
components without affecting planarity. By Lemma2, |E(H ′)| ≥ β(2γ−2)n+
n − 2 = (1 + β(2γ − 2))n − 2. The worst approximation factor is obtained by
the infimum of the following term:

inf
γ∈[1,2]

1 + β(2γ − 2)
1 + γ

.

To analyze this infimum, we first write a function g(γ) = 1+β(2γ−2)
1+γ . The

derivative dg
dγ can be written as 4β−1

(1+γ)2 . As long as β ∈ (0, 1/4], we have
dg
dγ < 0, so this function is decreasing in γ. This means that the infimum is
achieved at the maximum value of γ, i.e. at the boundary γ = 2. Plugging
in γ = 2 gives the infimum as 1+2β

3 , leading to the approximation ratio of
1+2β

3 − 2/n, as desired.

3.2 MATCH-AND MERGE

To achieve a 4
9 -approximation for Mps in [2] the authors reduce Mps to the

linear matroid parity problem. The reduction is very simple but the process of
picking the triangles is done by the black-box that solves the linear matroid
parity problem. We introduce a class of simple greedy algorithms so that we can
focus on studying the advantage of picking (potentially) overlapping triangles.

First, we formally define the term merging rules. Let G be an input graph.
At any point of execution of the algorithm, let E′ be a subset of edges in E(G)
that have been included so far and C be the connected components in G′ =
(V (G), E′).
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Let H be a graph (that we refer to as pattern) and P = (V1, V2, . . . , Vk) be a
partition of V (H). We say that an (H,P)-rule applies to G′ if there is a subgraph
H ′ in G that is isomorphic to H and such that, if we break H ′ into components
based on C to obtain U1, . . . , U�, then � = k and H ′[Ui] is isomorphic to H[Vi].
When the rule is applied, all H-edges joining different components of C will be
added. If P is a collection of singletons, we only use the abbreviation H-rule
instead of (H,P)-rule: In this case, the rules would look for isomorphic copies of
H where vertices come from different components in C. Next we will show how
previously proposed algorithms fit into this framework.

– K3-rule: The K3-rule, when applied to G′, will merge three connected com-
ponents C1, C2, C3 ∈ C such that there are v1 ∈ C1, v2 ∈ C2, v3 ∈ C3 where
{v1, v2, v3} induces K3. This rule has been used in many algorithms. The
CA0 algorithm in [4] can be concisely described in our framework as follows:
Iteratively apply K3-rule until it cannot be applied any further.

– Poranen’s rule: The (K3, {{1, 2} , {3}})-rule would look for a triangle
(v1, v2, v3) such that an edge (v1, v2) belongs to one component C1 ∈ C and
vertex v3 to another component C2 ∈ C. The purpose of this rule is obvious:
It will create triangles that are not necessarily disjoint. This rule has been
used in two algorithms, CA1 and CA2, suggested by Poranen [12]. Both CA1

and CA2 use the same set of rules, except that they differ in the conditions
on which the rule is applied. Lemma 5 shows that having more rules does not
necessarily improve the performance of a greedy algorithm.

Indeed, so far it was not clear whether there exists an (H,P)-rule that would
improve over a 1

12 -approximation for Mpt.

4 Analysis of Match-And-Merge Rules

We first analyze the approximation ratios of known algorithms in the context
of Mpt. We show that these algorithms give 1

12 -approximations, but not better.
Next, we propose a new diamond rule that leads to an improvement.

4.1 K3-rule Gives a 1
12

-approximation

The first algorithm we analyze for its performance in Mpt was introduced in
[2] as the first algorithm to exceed the trivial 1

3 -approximation ratio for Mps.
Recall that the algorithm does the following: Repeatedly apply the K3-rule until
it cannot be applied anymore.

Lemma 3. The approximation ratio of Algorithm CA0 for Mpt is 1
12 .

Proof. Let S1 ⊆ E(G) denote the planar subgraph that CA0 computed after the
K3-rule stops applying. Any component in S1 is either a collection of triangular
faces or just a single vertex. Let C = {C1, . . . , Cr} be a collection of all compo-
nents in S1 that contain at least one triangular face. Let pi be the number of
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triangular faces found in component Ci, and p be the number of triangular faces
found in S1, so p =

∑r
i=1 pi.

Let G∗ be an optimal solution for Mpt in G and G∗
i the plane subgraph of

G∗ induced on Ci. It is easy to make the following observation.

Proposition 1. No triangle in G∗ joins three different components of C.

Let Δin(Ci) denote the number of triangular faces in G∗ that have all three
vertices in V (Ci) and let Δout(Ci) be the number of triangular faces in G∗

with two vertices in V (Ci) and a vertex not in V (Ci). Then
∑r

i=1(Δin(Ci) +
Δout(Ci)) = f3(G∗), due to Proposition 1. Now notice that,

p

f3(G∗)
=

∑r
i=1 pi∑r

i=1(Δin(Ci) + Δout(Ci))
≥ min

i

pi

Δin(Ci) + Δout(Ci)
.

Therefore, it suffices to show locally that pi/(Δin(Ci) + Δout(Ci)) ≥ 1/12.
Every edge in G∗

i can be incident to at most two triangular faces in G∗. By
Euler’s Formula there are at most 3|V (G∗

i )|−6 edges in G∗
i . Therefore Δin(Ci)+

Δout(Ci) ≤ 6|V (G∗
i )|−12. Finally, the following simple lemma relates the number

of triangles to the number of vertices in each component. The following lemma
was proven in [2] as part of the analysis of CA0.

Lemma 4 [2]. Let X be a connected component constructed by iteratively merg-
ing three vertices in different connected components. Then we have |V (X)| =
2p + 1 where p is the number of triangles in X.

This implies |V (Ci)| = 2pi + 1 for all i. Therefore, Δin(Ci) + Δout(Ci) ≤
6|V (Ci)| − 12 = 12pi + 6 − 12 = 12pi − 6, and pi

Δin(Ci)+Δout(Ci)
≥ 1

12 for every i.

Bad Example: We conclude this subsection by giving an example where
CA0 does not achieve a ratio better than 1

12 . To do this it suffices to bound
pi/(Δin(Ci) + Δout(Ci)) locally. The example is the same as the one used in [2]
to show that CA0 cannot exceed 7

18 for Mps. Consider a sequence of k triangles,
where the consecutive ones are joined by a vertex. Call this plane graph H. This
is supposed to represent a component in the solution given by CA0. Then the
bad example H ′′ is obtained as follows: First triangulate H to get H ′. Then for
each face of H ′ add a vertex inside the face and connect it to the three bounding
vertices of the face. The final graph is denoted by H ′′. Let |V (H)| = n. The
number of triangles in H is exactly k = (n − 1)/2. The number of triangular
faces in H ′ is 2n − 4, and each face of H ′ will give rise to three faces in H ′′. So
f3(H ′′) = 3(2n − 4) = 6n − 12. Clearly limn→∞

(n−1)/2
6n−12 = 1

12 .
The second algorithm in [2], differs from CA0 in the fact that it does not just

find any triangular structure but a maximum triangular structure in G.

4.2 Other Proposed Rules Do Not Break 1
12

-Approximation

In this subsection we describe two algorithms CA1 and CA2 given in [12] by
Poranen and analyze them for their performance in Mpt as well as Mps. These
algorithms are basically the following (in Match-And-Merge framework):
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1. Check if (K3, {{1, 2}, {3}})-rule applies.
2. If not, check if K3-rule applies.
3. If at least one of the rules applies, go back to (1).

It is easy to see that these algorithms perform at least as good as CA0

for Mpt (i.e. at least 1
12 -approximation for Mpt). Based on their empirical

successes, performed in [12], the author conjectured that they can even reach
a 4

9 -approximation ratio in Mps matching the currently best known algorithm
given in [2]; this would hint to a 1

6 -approximation for Mpt.
We show a bad example where both algorithms can be as bad as a 1

12 -
approximation for Mpt and a 7

18 -approximation for Mps. This refutes the pos-
sibility of improvements over 7

18 using CA1 and CA2 in Mps.

Lemma 5. There is a graph G such that running CA1 or CA2 on G may yield
at most 1

12OPTmpt triangular faces, and 7
18OPTmps edges.

Due to space limitation, the bad example is deferred to the full version.

4.3 D4 and K3 Lead to a 1
11

-Approximation

We now propose a new rule that leads to a better approximation ratio. Let D4

be the diamond graph (i.e. K4 with one edge removed). This pattern graph intu-
itively captures the ideas of having two triangles sharing an edge. Our algorithm
CA3 proceeds in the following steps:

1. Keep applying D4-rule until it cannot be applied any further.
2. Keep applying K3-rule until it cannot be applied.

Now we analyze the performance of CA3 in Mpt. Let H be an optimal solu-
tion for Mpt on a given graph G. Let G′ = (V,E′) be the subgraph of G with
E′ as computed by CA3 after leaving the second loop and C = {C1, . . . , Cr} be
the collection of connected components in G′. Let C′ be the connected compo-
nents in G′ formed after leaving the first loop; we call them dense components.
(Notice that the components formed by diamonds are denser than those formed
by adding triangles.) Notice that components in C are obtained by combining
components in C′. The following properties hold at the end of the algorithm.

Proposition 2.

– For any four distinct dense components X,Y,Z,W ∈ C′ and four vertices
x ∈ X, y ∈ Y, z ∈ Z,w ∈ W , the induced subgraph G[{x, y, z, w}] is not a
diamond.

– For any three distinct components X,Y,Z ∈ C and three vertices x ∈ X, y ∈
Y, z ∈ Z, the induced subgraph G[{x, y, z}] is not a triangle.

For some connected component C in C, we denote by Δin(C) the number of
triangular faces in H whose three vertices belong to the induced subgraph G[C].
In addition we denote by Δout(C) the number of triangular faces in H that have
an edge in G[C] and one vertex in V \V (C). The following lemma follows easily.
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Lemma 6. f3(H) =
∑

C∈C (Δin(C) + Δout(C)).

For a fixed component C ∈ C, let Δ(C) denote the sum Δin(C) + Δout(C).

Δ(C) = Δin(C)+Δout(C) = (3Δin(C)+Δout(C))−2Δin(C) ≤ 2|E(H[C])|−2Δin(C).

The last inequality follows from the fact that each triangle contributing to
Δin(C) uses three edges in C, while triangles in Δout(C) use only one edge.

Diamond Clusters and Triangular Cacti: Fix some component C of
C. We can break C into several parts based on the structure of C′. Let
DC be the collection of non-singleton dense connected components in C, i.e.
DC = {C ′ ∈ C′ : C ′ ⊆ C and |V (C ′)| > 1}. Each non-singleton subcomponent
X ∈ DC is called a diamond cluster inside C; notice that |V (X)| ≥ 4. Let
F = E(G′[C])\(⋃

X∈DC
E(G′[X])

)
be the edges remaining after removing edges

in induced subgraphs of components in DC . Observe that the graph (C,F ) con-
sists of connected components that are formed by applying the K3-rule. Let TC

be such a collection of non-singleton connected components. Each Y ∈ TC is a
connected triangular cactus in the component C. Notice that the components in
DC are disjoint, and the same holds for TC . For each X ∈ DC and Y ∈ TC , let
c(X) and l(Y ) be the number of triangles in G′[X] and that in G′[Y ] respectively.

Proposition 3. C ⊆ (⋃
X∈DC

X
) ∪ (⋃

Y ∈TC
Y

)

Now we want to express the number of vertices |V (C)| in terms of the sizes
of the connected triangular cacti and diamond clusters in C. Let I be the set of
vertices such that every vertex in I belongs to some diamond cluster X and to
some connected triangular cactus Y . Then |V (C)| is given by

|V (C)| =
∑

X∈DC

|V (X)| +
∑

Y ∈TC

|V (Y )| − |I|

Lemma 7. For each diamond cluster X ∈ DC , we have |V (X)| = 1 + 3
2c(X).

Invoking Lemma 4, for each connected cactus Y ∈ TC , we have |V (Y )| =
2l(Y ) + 1. Let t = |TC | and k = |DC |. We now bound |I| in terms of k and t.

Lemma 8. |I| = k + t − 1.

From these observations we derive an upper bound on the number of vertices
in any component C, in terms of p (the number of triangles inside the diamond
clusters) and l (the number of triangles inside the connected triangular cacti).

|V (C)| =
∑

X∈DC

|V (X)| +
∑

Y ∈TC

|V (Y )| − |I|

=
∑

X∈DC

(1 +
3
2
c(X)) +

∑

Y ∈TC

(2l(Y ) + 1) − k − t + 1

= (k +
3
2
p) + (t + 2l) − k − t + 1 =

3
2
p + 2l + 1.

The following is the main lemma that crucially exploits the new diamond rule.
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Lemma 9. Δout(C) ≤ 15p + 8l − 6k.

Proof. Each triangle that contributes to Δout(C) must have an edge that appears
in H[C]; we call them supporting edges. Let E∗ be the set of such edges. Denote
by E∗

1 the set of supporting edges whose two endpoints belong to the same
diamond cluster X ∈ DC . Let E∗

2 denote E∗ \ E∗
1 .

Claim. The subgraph (V (C), E∗
2 ) is triangle-free.

Now since (V (C), E∗
2 ) is triangle-free, Euler’s formula together with the upper

bound on |V (C)| imply that |E∗
2 | ≤ 2|V (C)|− 4 ≤ 3p+4l − 2. Moreover, we can

bound the edges in E∗
1 by applying Euler’s formula to each diamond cluster X ∈

DC . That is, |E∗
1 | ≤ ∑

X∈DC
(3|V (X)|− 6) =

∑
X∈DC

(
9
2c(X) − 3

)
= 9

2p − 3k.
Next, Δout(C) ≤ 2|E∗| since each edge in E∗ can only support at most two
triangles. Plugging in the values of |E∗

1 | and |E∗
2 | gives

Δout(C) ≤ 2(|E∗
1 | + |E∗

2 |) ≤ 2(
9
2
p − 3k + 3p + 4l − 2) ≤ 15p + 8l − 6k.

Lemma 10. CA3 gives a 1
11 -approximation for Mpt.

Proof. We will bound the approximation ratio locally, i.e. for each connected
component C, we argue that p + l ≥ 1

11Δ(C), which will imply that when
summing over all components in C the number of triangles is at least 1

11f3(H).
Using Euler’s formula, we get

Δ ≤ 2|E(H[C])| − 2Δin ≤ 6|V (H[C])| − 12 − 2Δin ≤ 9p + 12l − 6 − 2Δin (1)

The first inequality follows by a simple counting argument. Note that the last
inequality follows from the fact that |V (H[C])| ≤ 3

2p + 2l + 1. From Lemma 9,
we have that

Δ = Δin + Δout ≤ 15p + 8l − 6k + Δin. (2)

Adding (1) with twice of (2) gives us 3Δ ≤ 39p + 28l, which implies that Δ ≤
13p + 10l. Finally, we can combine this with (1) to get Δ ≤ 11(p + l).

5 Hardness of Maximum Planar Triangles

In this section, we prove that Mpt is NP-hard, as a by-product simplifying the
Mps NP-hardness proof by Liu and Geldmacher [11]. Our reduction is from
the Hamiltonian path problem in bipartite graphs. In [9], it is shown that the
Hamiltonian cycle problem in bipartite graphs is NP-complete; it follows easily
that the same holds for the Hamiltonian path problem.

Construction: Let G be an instance of the Hamiltonian path problem, i.e.
G is a connected bipartite graph with n vertices. Note that G is triangle-free.
Let G′ be a copy of G, augmented with two vertices s and t, where s and t
are both connected to every vertex in V (G); we call the edges that connect
vertices in G to {s, t} auxiliary edges. More formally, V (G′) = V (G)∪{s, t} and
E(G′) = E(G) ∪ {(s, v) : v ∈ V (G)} ∪ {(t, v), v ∈ V (G)}.
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Analysis: We argue that there exists a spanning subgraph H of G′ and
an embedding φH of H with 2n − 2 triangular faces, if and only if G has
a Hamiltonian path. First assume that G has a Hamiltonian path P . We
show how to construct a spanning subgraph H of G′, that has an embed-
ding φH with 2n − 2 triangular faces. Let V (H) = V (P ) ∪ {s, t} and E(H) =
E(P ) ∪ {(s, v) : v ∈ V (P )} ∪ {(t, v) : v ∈ V (P )}. For φH simply draw P on the
plane on a vertical line, placing s and t on the left and right side of the line
respectively.

To prove the converse, now assume that there exists a spanning subgraph H
of G′ and an embedding φH of H with at least 2n − 2 triangular faces. Notice
that each triangular face in H must be formed by an edge in E(G) (called
supporting edge) together with two auxiliary edges as G is triangle-free. Denote
by H ′ = H \ {s, t}, which is a subgraph of G. We will show that there exists a
Hamiltonian path in H ′ and therefore also in G.

Let Es and Et be the sets of edges in H ′ that support triangles formed with s
and t in H respectively. Notice that the number of triangles in φH is |Es|+ |Et|.
We need the following structural lemma.

Lemma 11. The subgraph (V (G), Es) (respectively (V (G), Et)) of H ′ has the
following properties:

i. The maximum degree of a vertex in (V (G), Es) is at most two.
ii. If (V (G), Es) contains a cycle C, then Es \ E(C) = ∅.
Proof. We first prove (i). Assume otherwise that some vertex v is adjacent to
three supporting edges vv1, vv2, vv3 for s. Suppose that the triangular faces
(s, v, v1) and (s, v, v2) are adjacent in φH , sharing the edge sv. Then the tri-
angle (s, v, v3) cannot be a face, as it must contain one of the two faces in
{(s, v, v1), (s, v, v2)}, a contradiction.

For (ii) note that every edge in Es is incident to at least one triangular
face in H. Assume now that Es contains a cycle C and Es \ E(C) �= ∅. As
Es ⊆ E(H ′) ⊆ E(G) and G is bipartite |V (C)| ≥ 4. Note that by planarity s
and the edges in Es \ E(C) must be embedded on the same side of C (inside
or outside of C). Once we embed C, s and all auxiliary edges between C and
s, every edge in E(C) is incident to a triangular face (one of which is the outer
face of the current graph) formed with the auxiliary edges and the face on the
other side of C. Embedding any edge of Es \ E(C) on the same side as s and
adding the auxiliary edges from its endpoints to s results in destroying one of
these triangular faces.

Lemma 11 implies that all subgraphs in H ′ induced by the endpoints of sup-
porting edges for s (or t) must either be a disjoint union of paths or a cycle.
Therefore Es and Et contribute at most n edges each to the triangular faces in
H. At the same time we know that in order to form at least 2n − 2 triangular
faces in φH , one of them must have size at least n − 1. To complete the proof
we consider the possible compositions of edges from Es and Et in H ′:
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– If Es or Et induces a cycle C of length n, G contains a Hamiltonian path.
– If one of Es and Et has size at least n − 1 and at the same time induces a

single path in H ′, then this path is also a Hamiltonian path in G.
– It remains to analyze the case where both Es and Et induce a cycle of length

n − 1 in H ′. Let C be the cycle induced by Es in H ′ and u be the vertex in
V (G) \ V (C). As G is connected there is a vertex v in C that is a neighbor of
u in G. Let P be a path starting in u and ending in one of the neighbors of v
in C. Clearly, P is a Hamiltonian path in G.

Acknowledgement. We are grateful to an anonymous reviewer, whose detailed sug-
gestions contributed to a clearer presentation of this work.
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Abstract. Given a graph G, the maximum internal spanning tree prob-
lem (MIST for short) asks for computing a spanning tree T of G such
that the number of internal vertices in T is maximized. MIST has pos-
sible applications in the design of cost-efficient communication networks
and water supply networks and hence has been extensively studied in
the literature. MIST is NP-hard and hence a number of polynomial-time
approximation algorithms have been designed for MIST in the litera-
ture. The previously best polynomial-time approximation algorithm for
MIST achieves a ratio of 3

4
. In this paper, we first design a simpler algo-

rithm that achieves the same ratio and the same time complexity as the
previous best. We then refine the algorithm into a new approximation
algorithm that achieves a better ratio (namely, 13

17
) with the same time

complexity. Our new algorithm explores much deeper structure of the
problem than the previous best. As our recent 1

2
-approximation algo-

rithm for the weighted version of the problem shows, the discovered
structure may be used to design better algorithms for related problems.

1 Introduction

The maximum internal spanning tree problem (MIST for short) requires the
computation of a spanning tree T in a given graph G such that the number
of internal vertices in T is maximized. MIST has possible applications in the
design of cost-efficient communication networks [7] and water supply networks
[1]. Unfortunately, MIST is clearly NP-hard because the problem of finding a
Hamiltonian path in a given graph is NP-hard and can be easily reduced to
MIST. MIST is in fact APX-hard [5] and hence does not admit a polynomial-
time approximation scheme.
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Since MIST is APX-hard, quite a number of polynomial-time approximation
algorithms for MIST and its special cases have been designed (see [5] and a long
list of references therein). The previously best polynomial-time approximation
algorithm for MIST achieves a ratio of 3

4 [5]. Unlike the other previously known
approximation algorithms for MIST, the algorithm in [5] is based on a simple but
crucial observation that the maximum number of internal vertices in a spanning
tree of a graph G can be bounded from above by the maximum number of edges
in a triangle-free path-cycle cover of G.

In the weighted version of MIST (WMIST for short), each vertex of the
given graph G has a nonnegative weight and the objective is to find a spanning
tree T of G such that the total weight of internal vertices in T is maximized. A
number of polynomial-time approximation algorithms for WMIST and its special
cases have been designed (see [2] and the references therein). The best known
polynomial-time approximation algorithm for WMIST achieves a ratio of 1

2 [2].
In the parameterized version of MIST (PMIST for short), we are asked to decide
whether a given graph G has a spanning tree with at least a given number k
of internal vertices. PMIST and its special cases and variants have also been
extensively studied in the literature (see [6] and a long list of references therein).
The best known kernel for PMIST is of size 2k and it leads to the fastest known
algorithm for PMIST with running time O(4knO(1)) [6].

In this paper, we first give a new approximation algorithm for MIST that
is simpler than the one in [5] but achieves the same approximation ratio and
time complexity. In more details, the time complexity is dominated by that
of computing a maximum triangle-free path-cycle cover in a graph. We then
show that the algorithm can be refined into a new approximation algorithm for
MIST that has the same time complexity as the algorithm in [5] but achieves
a better ratio (namely, 13

17 ). To obtain our algorithm, we use three new main
ideas. The first main idea is to bound the maximum number of internal vertices
in a spanning tree of a graph G by the maximum number of edges in a special
(rather than general) triangle-free path-cycle cover of G. Roughly speaking, we
can figure out that certain vertices in G must be leaves in an optimal spanning
tree of G, and hence we can require that the degrees of these vertices be at
most 1 when computing a maximum triangle-free path-cycle cover C of G. In
this sense, C is special and can have significantly fewer edges than a maximum
(general) triangle-free path-cycle cover of G, and hence gives us a tighter upper
bound. The second idea is to carefully modify C into a spanning tree T by local
improvement. Unfortunately, we can not always guarantee that the number of
internal vertices in T is at least 13

17 times the number of edges in C. Our third
idea is to show that if this unfortunate case occurs, then an optimal spanning
tree of G cannot have so many internal vertices. Although the improvement of
approximation ratio may not look so significant, our ideas may be used to design
even better approximation or parameterized algorithms for MIST and related
problems in the future. Indeed, we have recently applied some of the ideas to
obtain a polynomial-time approximation algorithm for WMIST that achieves a
ratio of 1

2 [2], significantly improving the previous best (namely, 1
3 − ε [4]).
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2 Basic Definitions

Throughout this chapter, a graph means a simple undirected graph (i.e., it has
neither parallel edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the
edge set of G by E(G). For a subset U of V (G), G − U denotes the graph
obtained from G by removing the vertices in U (together with the edges incident
to them), while G[U ] denotes G − (V (G) \ U). We call G[U ] the subgraph of G
induced by U . For a subset F of E(G), G − F denotes the graph obtained from
G by removing the edges in F . An edge e of G is a bridge of G if G − {e} has
more connected components than G, and is a non-bridge otherwise. A vertex v
of G is a cut-point if G − {v} has more connected components than G.

Let v be a vertex of G. The neighborhood of v in G, denoted by NG(v), is
{u | {v, u} ∈ E(G)}. The degree of v in G, denoted by dG(v), is |NG(v)|. If
dG(v) = 0, then v is an isolated vertex of G. If dG(v) ≤ 1, then v is a leaf of G;
otherwise, v is a non-leaf of G. We use L(G) to denote the set of leaves in G.

Let H be a subgraph of G. NG(H) denotes
⋃

v∈V (H) NG(v) \ V (H). A port
of H is a u ∈ V (H) with NG(u) \ V (H) �= ∅. When H is a path, H is dead if
neither endpoint of H is a port of H, while H is alive otherwise. H and another
subgraph H ′ of G are adjacent in G if V (H)∩V (H ′) = ∅ but NG(H)∩V (H ′) �= ∅
(or equivalently, NG(H ′) ∩ V (H) �= ∅).

A cycle in G is a connected subgraph of G in which each vertex is of degree 2.
A path in G is either a single vertex of G or a connected subgraph of G in which
exactly two vertices are of degree 1 and the others are of degree 2. A vertex v
of a path P in G is an endpoint of P if dP (v) ≤ 1, and is an internal vertex of P
if dP (v) = 2. The length of a cycle or path C is the number of edges in C and
is denoted by |C|. A k-cycle is a cycle of length k, while a k-path is a path of
length k. A tree (respectively, cycle) component of G is a connected component
of G that is a tree (respectively, cycle). In particular, if a tree component T of
G is indeed a path (respectively, k-path), then we call T a path (respectively,
k-path) component of G.

A tree-cycle cover (TCC for short) of G is a subgraph H of G such that
V (H) = V (G) and each connected component of H is a tree or cycle. Let H be
a TCC of G. H is a Hamiltonian path (respectively, cycle) of G if H is a path
(respectively, cycle), and is a spanning tree of G if H is a tree. H is a path-cycle
cover (PCC for short) of G if each tree component of H is a path. H is a path
cover of G if H has only path components. A triangle-free TCC (TFTCC for
short) of G is a TCC without 3-cycles. Similarly, a triangle-free PCC (TFPCC
for short) of G is a PCC without 3-cycles. A TFPCC of G is maximum if its
number of edges is maximized over all TFPCCs of G. For convenience, let t(n,m)
denote the time complexity of computing a maximum TFPCC in a graph with
n vertices and m edges. It is known that t(n,m) = O(n2m2) [3].

Suppose G is connected. The weight of a spanning tree T of G, denoted by
w(T ), is the number of non-leaves in T . We use opt(G) to denote the maximum
weight of a spanning tree of G. An optimal spanning tree (OST for short) of G
is a spanning tree T of G with w(T ) = opt(G).
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3 A Simple 3
4
-Approximation Algorithm

Throughout the remainder of this paper, G means a connected graph for which
we want to find an OST. Moreover, T denotes an OST of G. For convenience,
let n = |V (G)| and m = |E(G)|.

3.1 Reduction Rules

We want to make G smaller (say, by deleting one or more vertices or edges from
G) without decreasing opt(G). For this purpose, we define two strongly safe
operations on G below. Here, an operation on G is strongly safe if performing it
on G does not change opt(G).

Operation 1. If |V (G)| > 3 and E(G) contains two edges {u1, v} and {u2, v}
such that both u1 and u2 are leaves of G, then delete u2.

Operation 2. If for a non-bridge e = {u1, u2} of G, G − {ui} has a connected
component Ki with u3−i �∈ V (Ki) for each i ∈ {1, 2}, then delete e. (Com-
ment: When |V (K1)| = |V (K2)| = 1, Li and Zhu [5] showed that Operation
2 is strongly safe.)

Li and Zhu [5] showed that Operation 1 is strongly safe. We can show that
Operation 2 is strongly safe.

An operation on G is weakly safe if performing it on G yields one or
more graphs G1, . . . , Gk such that (1) |V (G)| ≥ ∑k

i=1 |V (Gi)|, |E(G)| ≥∑k
i=1 |E(Gi)|, and |V (G)|+|E(G)| >

∑k
i=1 |V (Gi)|+

∑k
i=1 |E(Gi)|, (2) opt(G) ≤∑k

i=1 opt(Gi) + c for some nonnegative integer c, and (3) given a spanning tree
Ti for each Gi, a spanning tree T of G with w(T ) ≥ ∑k

i=1 w(Ti)+ c can be com-
puted in linear time. Note that the last two conditions in the definition imply
that opt(G) =

∑k
i=1 opt(Gi) + c.

Operation 3. If G has a bridge e = {u1, u2} such that for each i ∈ {1, 2}, ui is
a cut-point in the connected component Gi of G − e with ui ∈ V (Gi), then
obtain G1 and G2 as the connected components of G − e.

Operation 4. If G has a cut-point v such that one connected component K of
G−{v} has at least two but at most 8 vertices, then obtain G1 from G−V (K)
by adding a new vertex u and a new edge {v, u}.

The number 8 in the definition of Operation 4 is not essential. It can be
chosen at one’s discretion as long as it is a constant. We here choose the number
8, because it will be the smallest number for the proofs of several lemmas in this
paper to go through. We can show Operations 3 and 4 are weakly safe.

An operation on G is safe if it is strongly or weakly safe on G.
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3.2 The Algorithm

As in [5], the algorithm is based on a lemma which says that G has a path cover
P such that opt(G) is bounded from above by the number of edges in P. We
next state the lemma in a stronger form and give an extremely simple proof.

Lemma 1. Given a spanning tree T̃ of G, we can construct a path cover P of
G such that |E(P)| ≥ w(T̃ ) and dP(v) ≤ 1 for each leaf v of T̃ .

Proof. We construct P from T̃ by rooting T̃ at an arbitrary non-leaf and then
for each non-leaf u of T̃ , deleting all but one edge between u and its children.

Now, the outline of the algorithm is as follows.

1. Whenever there is an i ∈ {1, 2} such that Operation i can be performed on
G, then perform Operation i on G.

2. Whenever there is an i ∈ {3, 4} such that Operation i can be performed on
G, then perform the following steps:
(a) Perform Operation i on G. Let G1, . . . , Gk be the resulting graphs.
(b) For each j ∈ {1, . . . , k}, compute a spanning tree Tj of Gj recursively.
(c) Combine T1, . . . , Tk into a spanning tree T̃ of G such that w(T̃ ) ≥∑k

i=1 w(Ti) + c.
(d) Return T̃ .

3. If |V (G)| ≤ 8, then compute and return an OST of G in O(1) time.
4. Compute a maximum TFPCC C of G. (Comment: By Lemma 1, opt(G) ≤

|E(C)|).
5. Perform a preprocessing on C without decreasing |E(C)|.
6. Transform C into a spanning tree T̃ of G such that w(T̃ ) ≥ 3

4 |E(C)|.
7. Return T̃ .

Only Steps 5 and 6 are unclear. So, we detail them below. First, Step 5 is
done by performing the next three operations until none of them is applicable.

Operation 5. If C has a dead path component P such that 2 ≤ |P | ≤ 4 and
G[V (P )] has an alive Hamiltonian path Q, then replace P by Q.

Operation 6. If an endpoint u of a path component P of C is adjacent to a
vertex v of a cycle C of C in G, then combine P and C into a single path by
replacing one edge incident to v in C with the edge {u, v}.

Operation 7. If an endpoint u1 of a path component P1 of C is adjacent to
an internal vertex u2 of another path component P2 in G such that one edge
e′ incident to u2 in P2 satisfies that combining P1 and P2 by replacing e′

with the edge {u1, u2} yields two paths Q1 and Q2 with max{|Q1|, |Q2|} >
max{|P1|, |P2|}, then replace P1 and P2 by Q1 and Q2. (Comment: For each
i ∈ {5, 6, 7}, Operation i does not change the maximality of C. Due to the
maximality, no endpoint of a path component P1 of C is adjacent to an end-
point of another path component P2 in G.)
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Lemma 2. Immediately after Step 5, the following hold:

1. C is a maximum TFPCC of G and hence has at least opt(G) edges.
2. If a path component P of C is of length at most 3, then P is alive.
3. If an endpoint v of a path component P of C is a port of P , then each vertex

in NG(v) \V (P ) is an internal vertex of a path component Q of C with |Q| ≥
2|P | + 2.

We next detail Step 6. First, for each path component P of C with 1 ≤
|P | ≤ 3, we select one edge eP ∈ E(G) connecting an endpoint of P to a vertex
not in P , and add eP to an initially empty set M . Such eP exists by Statement 2
in Lemma 2. Moreover, by Statement 3 in Lemma2, the endpoint of eP not in P
appears in a path component Q of C with |Q| ≥ 4. So, for two path components
P1 and P2 in C, eP1 �= eP2 . Consider the graph H obtained from C by adding the
edges in M . Each connected component of H is a cycle of length at least 4 or a
tree. Suppose we modify H by performing the following three steps in turn:

– Whenever H has two cycles C1 and C2 such that some edge e = {u1, u2} ∈
E(G) satisfies u1 ∈ V (C1) and u2 ∈ V (C2), delete one edge of C1 incident to
u1 from H, delete one edge of C2 incident to u2 from H, and add e to H.

– Whenever H has a cycle C, choose an edge e = {u, v} ∈ E(G) with u ∈ V (C)
and v �∈ V (C), delete one edge of C incident to u from H, and add e to H.

– Whenever H has two connected components C1 and C2 such that some edge
e = {u1, u2} ∈ E(G) satisfies u1 ∈ V (C1) and u2 ∈ V (C2), add e to H.

Step 6 is done by obtaining T̃ as the final modified H. Obviously, for each
cycle C of C, at least |C| − 1 ≥ 3

4 |C| vertices of C are internal vertices of T̃ .
Moreover, for each path component P of C with |P | ≥ 4, at least |P | − 1 ≥ 3

4 |P |
vertices of P are internal vertices of T̃ . Furthermore, for each path component
P of C with 1 ≤ |P | ≤ 3, at least |P | vertices of P are internal vertices of T̃ .
So, T̃ has at least 3

4 |E(C)| internal vertices. Obviously, all steps of the algorithm
excluding Steps 2b and 4 can be done in O(|E(G)|2) time. Now, we have:

Theorem 1. The algorithm achieves an approximation ratio of 3
4 and runs in

O(m2) + t(n,m) time.

We improve the algorithm below. The first idea is to introduce more safe
reduction rules (cf. Sect. 4). The second is to compute a better upper bound
on opt(G) than that given by a maximum TFPCC (cf. Sect. 5). The third is to
perform a more sophisticated preprocessing on C (cf. Sect. 6). The last idea is to
transform C into a spanning tree of G more carefully (cf. Sect. 7).

4 More Safe Reduction Rules

In addition to the four safe reduction rules in Sect. 3.1, we further introduce the
following rules.
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Operation 8. If for four vertices u1, . . . , u4, NG(u3) = NG(u4) = {u1, u2},
G − {u2} has a connected component K with u1 �∈ V (K), then delete the
edge e = {u2, u3}.

Operation 9. If for five vertices u1, . . . , u5, NG(u3) = NG(u4) = NG(u5) =
{u1, u2}, then delete the edge e = {u2, u3}.

Operation 10. If for two vertices u and v of G, G − {u, v} has a connected
component K with |V (K)| ≤ 6 such that V (G) �= V (K) ∪ {u, v} and
G[V (K) ∪ {u, v}] has a Hamiltonian path P from u to v, then delete all
edges of G[V (K) ∪ {u, v}] that do not appear in P .

Operation 11. If G has an edge e = {u1, u2} with dG(u1) = dG(u2) = 2, then
obtain G1 from G by merging u1 and u2 into a single vertex u1u2.

We can show that Operations 8 through 10 are strongly safe and Operation
11 is weakly safe.

Accordingly, we need to modify Step 1 of the algorithm by choosing i from
{1, 2, 8, 9, 10} and also modify Step 2 by choosing i from {3, 4, 11}. Obviously,
after the modification, Steps 1 and 2 can be done in O(n2m) time.

5 Computing a Preferred TFPCC C
In this section, we consider how to refine Step 4. Because of Steps 1 and 3, we
hereafter assume that |V (G)| ≥ 9 and there is no i ∈ {1, . . . , 4, 8, . . . , 11} such
that Operation i can be performed on G. Then, we can prove the next lemma:

Lemma 3. Suppose C is a cycle of G with |C| ≤ 8. Let A be the set of ports of
C. Then, the following hold.

1. |A| ≥ 2.
2. If |A| = 2, then the two vertices in A are not adjacent in C and |C| �= 5.
3. If |A| = 2 and |C| = 4, then G[V (C)] and C are the same graph.

To refine Step 4, our idea is to compute C as a preferred TFPCC of G. Before
defining what the word “preferred” means here, we need to prove a lemma. For
ease of explanation, we assume, without loss of generality, that there is a linear
order (denoted by ≺) on the vertices of G. Then, we can prove the next lemma:

Lemma 4. Suppose u1 and u3 are two vertices of G such that u1 ≺ u3 and
Condition C1 below holds. Then, G has an OST in which u1 or u3 is a leaf.
Consequently, G has an OST in which u1 is a leaf.

C1. For two vertices u2 and u4 in V (G)\{u1, u3}, NG(u1) = NG(u3) = {u2, u4}.
If Condition C1 in Lemma 4 holds for u1 and u3, we refer to u2 and u4 as

the boundary points of the pair p = (u1, u3), and refer to the edges incident to
u1 or u3 as the supports of p.

Let Π be the set of pairs (u1, u3) of vertices in G satisfying Condition C1.
It is worth pointing out that for each p ∈ Π and each boundary point u of p,
dG(u) ≥ 3 because otherwise Operation 4 could be performed on G.
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Lemma 5. No two pairs in Π share a support.

Lemma 6. G has an OST in which u1 is a leaf for each (u1, u3) ∈ Π.

Now, we are ready to make two definitions. Let C be a TFPCC of G. C is
special if for every pair (u1, u3) ∈ Π, dC(u1) ≤ 1. C is preferred if C is special
and |E(C)| is maximized over all special TFPCCs of G.

Lemma 7. If C is a preferred TFPCC of G, then opt(G) ≤ |E(C)|.
Lemma 8. We can compute a preferred TFPCC C of G in t(2n, 2m) time.

Recall t(n,m) = O(n2m2) [3]. By Lemma 8, after modifying Step 4 by com-
puting C as a preferred TFPCC of G, Step 4 can still be done in t(n,m) time.

6 Preprocessing C
In this section, we consider how to refine Step 5. So, suppose that we have com-
puted a preferred TFPCC C of G as in Lemma 8. To refine Step 5, we repeatedly
perform not only Operations 5 through 7 but also the following three operations
on C until none of the six is applicable.

Operation 12. If a cycle C1 of C has an edge e1 = {u1, u
′
1} and another cycle

or path component C2 of C has an edge e2 = {u2, u
′
2} such that e = {u1, u2} ∈

E(G) and e′ = {u′
1, u

′
2} ∈ E(G), then combine C1 and C2 into a single cycle

or path by replacing e1 and e2 with e and e′.
Operation 13. If an endpoint u1 of a path component P1 of C is adjacent to

an endpoint u2 of another path component P2 of C in G, then combine P1

and P2 into a single path by adding the edge {u1, u2}.
Operation 14. If e = {u, v} is an edge of a path component of C such that for

some isolated vertex x of C, {u, x} ∈ E(G) and {v, x} ∈ E(G), then replace
e by the edges {u, x} and {v, x}.

Lemma 9. Immediately after the refined preprocessing step, the following hold:

1. C is a TFPCC of G and has at least opt(G) edges.
2. If a path component P of C is of length at most 3, then P is alive.
3. If an endpoint v of a path component P of C is a port of P , then each vertex

in NG(v) \V (P ) is an internal vertex of a path component Q of C with |Q| ≥
2|P | + 2.

4. No pair (u1, u3) ∈ Π satisfies that u1 appears in a cycle of C.
5. If a dead path component P of C is of length 4, then both endpoints of P are

leaves in G.
6. Each 4-cycle C of C has at least three ports.

Obviously, the refined preprocessing (i.e., Step 5) can be done in O(nm) time.



An Approximation Algorithm for Maximum Internal Spanning Tree 393

7 Transforming C into a Spanning Tree

In this section, we consider how to refine Step 6. So, suppose that we have
just performed the refined preprocessing on C as in Sect. 6. Let Γ be the set
of (ordered) pairs (P,Q) of path components of C such that |P | ≥ 1 and some
endpoint v of P is adjacent to a vertex u of Q in G. Note that dC(u) = 2 and
2|P | + 2 ≤ |Q| by Statement 3 in Lemma 9. Suppose we obtain a subset Γ ′ of Γ
from Γ as follows.

– For each path component P of C such that there are two or more path com-
ponents Q of C with (P,Q) ∈ Γ , delete all but one pair (P,Q) from Γ .

Now, consider an auxiliary digraph D such that the vertices of D one-to-one
correspond to the path components P of C with |P | ≥ 1 and the arcs of D one-
to-one correspond to the pairs in Γ ′. By Statement 3 in Lemma 9, D is a rooted
forest (in which each leaf is of in-degree 0, each root is of out-degree 0, and each
vertex is of out-degree at most 1).

To transform C into a spanning tree of G, the idea is to modify C in three
stages. C is initially a TFPCC of G and we will always keep C being a TFTCC
of G. For each i ∈ {1, 2, 3}, we use Ci to denote the C immediately after the i-th
stage. For convenience, we use C0 to denote the C immediately before the first
stage. Moreover, for each i ∈ {1, 2, 3} and each connected component C of Ci, we
use b(C) to denote the number of edges {u, v} ∈ E(C0) such that {u, v} ⊆ V (C).

In the first stage, we modify C by performing the following step:

1. For each pair (P,Q) ∈ Γ ′, add an arbitrary {u, v} ∈ E(G) to C such that u
is an endpoint of P and v appears in Q.

Lemma 10. Each connected component of C1 that is not a path or cycle is a
tree T̂ satisfying Condition C2 below:

C2. b(T̂ ) ≥ 5, |L(T̂ )| ≤ b(T̂ ) − 2, and w(T̂ ) ≥ 4
5b(T̂ ).

Hereafter, a connected component of C is good if it is a tree T̂ satisfying
Condition C2 in Lemma 10 or Condition C3 below, while it is bad otherwise.

C3. w(T̂ ) ≥ b(T̂ ) = 4 and |L(T̂ )| = 3.

Lemma 11. Suppose C is a bad connected component of C1. Then, C is a cycle
of length at least 4, a 0-path, or a 4-path whose endpoints are leaves of G. More-
over, if C is a 0-path, then the unique vertex u ∈ V (C) satisfies that each
v ∈ NG(u) is an internal vertex of a tree component of C1 and no two vertices
in NG(u) are adjacent in C1.

We next want to define several operations on C none of which will produce a
new cycle or a new bad connected component in C. An operation on C is good if
it either just connects two or more connected components of C into a single good
connected component, or modifies a good connected component of C so that it
has more internal vertices (and hence remains good).

In the second stage, we modify C by repeatedly performing the following
operations on C until none of them is applicable.
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Operation 15. If C has two cycles C1 and C2 such that |C1| + |C2| ≥ 10 and
some edge e = {v1, v2} of G satisfies v1 ∈ V (C1) and v2 ∈ V (C2), then
connect C1 and C2 into a single path T by deleting one edge incident to v1
in C1, deleting one edge incident to v2 in C2, and adding the edge e.

Operation 16. If C has a cycle C1 of length at least 5 and a good connected
component C2 such that some edge e = {v, u} of G satisfies v ∈ V (C1) and
u ∈ V (C2), then connect C1 and C2 into a single tree T by deleting one edge
incident to v in C1 and adding the edge e.

Operation 17. If C has a cycle C of length at least 6 and a 4-path component
P such that some edge e = {v, u} of G satisfies v ∈ V (C) and u ∈ V (P ), then
connect C and P into a single tree T by deleting one edge incident to v in C
and adding the edge e.

Operation 18. If C has a 0-path component P whose unique vertex u has two
neighbors v1 and v2 in G such that v1 and v2 fall into different connected com-
ponents C1 and C2 of C, then connect P , C1, and C2 into a single connected
component T by adding the edges {u, v1} and {u, v2}.

Operation 19. If C has a good connected component C1 and another connected
component C2 such that some leaf u of C1 is adjacent to a vertex v of C2 in
G, then connect C1 and C2 into a single tree component T by deleting one
edge incident to v in C2 if C2 is a cycle, and further adding the edge {u, v}.

Operation 20. If a cycle C of C has an edge e = {v1, v2} such that some
u1 ∈ NG(v1)\V (C) and some u2 ∈ NG(v2)\V (C) fall into different connected
components C1 and C2 of C other than C, then connect C, C1, and C2 into
a single tree component T by deleting e, deleting one edge incident to u1 if
C1 is a cycle, deleting one edge incident to u2 if C2 is a cycle, and adding the
edges {v1, u1} and {v2, u2}.

Operation 21. If a good connected components C of C is not a Hamiltonian
path of G but is a dead path whose endpoints are adjacent in G, then choose
an arbitrary port u of C, modify C by adding the edge of G between the
endpoints of C and deleting one edge incident to u in C, and further perform
Operation 19.

Operation 22. If a good connected component C of C is not a path but has
two leaves u and v with {u, v} ∈ E(G), then modify C by first finding an
arbitrary vertex x on the path P between u and v in C with dC(x) ≥ 3, then
deleting one edge incident to x in P , and further adding the edge {u, v}.

Operation 23. If C has a 0-path component C1, a 4-path component P , and
a connected component C2 other than C1 and P such that the center vertex
u3 of P is adjacent to a vertex x of C2 in G and the unique vertex v of C1

is adjacent to the other two internal vertices u2 and u4 of P (than u3) in G,
then connect C1, P , and C2 into a single connected component T by deleting
the edge {u2, u3}, deleting one edge incident to x if C2 is a cycle, and adding
the edges {v, u2}, {v, u4}, {u3, x}.

We can show that Operations 15 through 23 are good.
We next show that the above operations lead to a number of useful properties

of C2. The properties are stated in the next five lemmas:
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Lemma 12. Each 4-cycle of C2 is adjacent to at most one other connected com-
ponent of C2 in G.

Lemma 13. No two 4-cycles of C2 are adjacent in G.

Lemma 14. No 4-cycle C of C2 is adjacent to a 4-path component of C2 in G.

Lemma 15. No 4-cycle of C2 is adjacent to a 5-cycle of C2 in G.

Lemma 16. Let C be a connected component of C2. Then, C is a 4-cycle, 5-
cycle, 0-path, 4-path, or good connected component. Moreover, the following hold:

1. If C is a 0-path, then its unique vertex u satisfies that for a single tree com-
ponent C ′ of C2, each v ∈ NG(u) is an internal vertex of C ′, and u is a leaf
of G if C ′ is bad.

2. If C is a 4-path component of C2, then its endpoints are leaves of G and each
internal vertex u of C satisfies that each neighbor of u in G is a leaf of G,
a vertex of a 5-cycle of C2, or an internal vertex of a 4-path component or a
good connected component of C.

3. If C is a 4-cycle of C2, then each vertex u of C satisfies that each neighbor of
u in G is an internal vertex of a good connected component of C2.

4. If C is a 5-cycle of C2, then each vertex u of C satisfies that each neighbor of
u in G is an internal vertex of a 4-path component of C2.

5. If C is a good connected component but not a Hamiltonian path of G, then
for each leaf u of C, each neighbor of u in G is an internal vertex of C.

Finally, in the third stage, we complete the transformation of C into a span-
ning tree of G by further modifying C by performing the following steps:

1. For each cycle C of C, first select an arbitrary edge e = {u, v} ∈ E(G) such
that u ∈ V (C) and v ∈ V (G) \ V (C), then delete one edge incident to u in
C, and further add e. (Comment: Since no two cycles in C2 are adjacent in
G, v appears in a tree component of C. Moreover, after this step, C has only
tree components.)

2. Arbitrarily connect the connected components of C into a tree by adding some
edges of G.

It is easy to see that for each i ∈ {15, . . . , 23}, Operation i can be done in
O(m) time. So, the second stage takes O(nm) time. Since the other two stages
can be easily done in O(m) time, the refined Step 6 can be done O(nm) time.

8 Performance Analysis

Let g2 (respectively, g3) be the number of internal vertices in connected com-
ponents of C2 satisfying Condition C2 (respectively, C3), b2 (respectively, b3) be
the total number of edges in C0 whose endpoints appear in the same connected
components of C2 satisfying Condition C2 (respectively, C3), c4 (respectively, c5)
be the number of 4-cycles (respectively, 5-cycles) in C2, and p4 be the number of
4-path components in C2. We can show the next lemma and theorem:
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Lemma 17. Let Tapx be the spanning tree of G outputted by the refined algo-
rithm. Then, the following hold:

1. w(Tapx) ≥ 3c4 + 4c5 + 3p4 + g2 + g3 ≥ 3c4 + 4c5 + 3p4 + 4
5b2 + b3.

2. opt(G) ≤ 4c4 + 5c5 + 4p4 + b2 + b3.
3. opt(G) ≤ 3c4 + 5c5 + 3p4 + 2g2 + 2g3.

Theorem 2. The algorithm achieves an approximation ratio of 13
17 and runs in

O(n2m) + t(2n, 2m) time.

Proof. Let Tapx be as in Lemma 17, and r = w(Tapx)/opt(G). By Lemma 17,
r ≥ max{r1, r2}, where r1 = 3c4+4c5+3p4+g2+g3

4c4+5c5+4p4+b2+b3
and r2 = 3c4+4c5+3p4+g2+g3

3c4+5c5+3p4+2g2+2g3
.

Note that r1 ≥ min
{

4
5 , r′

1

}
and r2 ≥ min

{
4
5 , r′

2

}
, where r′

1 = 3c4+3p4+g2+g3
4c4+4p4+b2+b3

and
r′
2 = 3c4+3p4+g2+g3

3c4+3p4+2g2+2g3
. So, it suffices to show that max{r′

1, r
′
2} ≥ 13

17 . This is done if
r′
1 ≥ 13

17 . Thus, we assume that r′
1 < 13

17 . Then, c4+p4 > 17g2+17g3−13b2−13b3.

Hence, r′
2 > 52g2+52g3−39b2−39b3

53g2+53g3−39b2−39b3
≥ min

{
52g2−39b2
53g2−39b2

, 52g3−39b3
53g3−39b3

}
. Now, since g2 ≥

4
5b2, 52g2−39b2

53g2−39b2
≥ 13

17 . Moreover, since g3 ≥ b3, 52g3−39b3
53g3−39b3

≥ 13
14 . Therefore, r′

2 > 13
17 .

The running is clearly as claimed.

Recall that t(n,m) = O(n2m2) [3]. So, the algorithm takes O(n2m2) time.
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Abstract. We consider a single allocation hub-and-spoke network
design problem which allocates each non-hub node to exactly one of
given hub nodes so as to minimize the total transportation cost. This
paper deals with a case in which the hubs are located in a cycle, which
is called a cycle-star hub network design problem. The problem is essen-
tially equivalent to a cycle-metric labeling problem. The problem is useful
in the design of networks in telecommunications and airline transporta-
tion systems. We propose a 2(1 − 1/h)-approximation algorithm where
h denotes the number of hub nodes. Our algorithm solves a linear relax-
ation problem and employs a dependent rounding procedure. We analyze
our algorithm by approximating a given cycle-metric matrix by a convex
combination of Monge matrices.

1 Introduction

In this paper, we propose a 2(1 − 1/h)-approximation algorithm for cycle-star
hub network design problems with h hubs and/or a cycle-metric labeling problem
with h labels.

Hub-and-spoke networks arise in airline transportation systems, delivery sys-
tems and telecommunication systems. Hub networks have an important role
when there are many origins and destinations. Hub facilities work as switching
points for flows. In order to reduce transportation costs and set-up costs in a
large network, each non-hub node is allocated to exactly one of the hubs instead
of assigning every origin-destination pair directly.

Hub location problems (HLPs) consist of locating hubs and of designing hub
networks so as to minimize the total transportation cost. HLPs are formulated
as quadratic integer programming problem by O’Kelly [25], first. Since O’Kelly
proposed HLPs, many researches on HLPs have been done in various applications
(see [3,9,12,16,20,26] for example).

In this paper, we discuss the situation in which the locations of the hubs
are given, and deal with a problem, called a single allocation hub-and-spoke net-
work design problem, which finds a connection of the non-hubs to the given
hubs minimizing total transportation cost. Sohn and Park [27,28] proposed a
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 397–408, 2017.
DOI: 10.1007/978-3-319-53925-6 31
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polynomial time exact algorithm for a problem with 2 hubs and proved NP-
completness of the problem even if the number of hubs is equal to 3. Iwasa
et al. [18] proposed a simple 3-approximation algorithm and a randomized
2-approximation algorithm under the assumptions of triangle inequality. They
also proposed a (5/4)-approximation algorithm for the special case where the
number of hubs is 3. Ando and Matsui [5] deal with the case in which all the
nodes are embedded in a 2-dimensional plane and the transportation cost of an
edge per unit flow is proportional to the Euclidean distance between the end
nodes of the edge. They proposed a randomized (1 + 2/π)-approximation algo-
rithm. Saito et al. [29] discussed some facets of polytopes corresponding to the
convex hull of feasible solutions of the problem.

Fundamental HLPs assume a full interconnection between hubs. Recently,
several researches consider incomplete hub networks which arise especially in
telecommunication systems (see [4,8,10,11] for example). These models are use-
ful when set-up costs of hub links are considerably large or full interconnection
is not required. There are researches which assume that hub networks constitute
a particular structure such as a tree [14,15,19,23], a star [22,30,31], a path [24]
or a cycle [17].

In this paper, we consider a single allocation hub-and-spoke network design
problem where the given hubs are located in a cycle. We call this problem the
cycle-star hub network design problem. When the number of hubs is 3, the hub
network becomes a 3-cycle and constitutes a complete graph. Thus, the 4/3-
approximation algorithm for a complete 3-hub network proposed in [18] is valid
for this special case. In this paper we propose a 2(1 − 1/h)-approximation algo-
rithm when a set of h hubs forms an h-cycle. To the best of our knowledge, our
algorithm is the first approximation algorithm for this problem.

A single allocation hub-and-spoke network design problem is essentially equiv-
alent to a metric labeling problem introduced by Kleinberg and Tardos in [21],
which has connections to Markov random field and classification problems that
arise in computer vision and related areas. They proposed an O(log h log log h)-
approximation algorithm where h is the number of labels (hubs). Chuzhoy and
Naor [13] showed that there is no polynomial time approximation algorithm with
a constant ratio for the problem unless P = NP. We deal with a cycle-metric label-
ing problem where a given metric matrix is defined by an undirected cycle and
non-negative edge length. Thus, our results give an important class of the metric
labeling problem, which has a polynomial time approximation algorithm with a
constant approximation ratio.

2 Problem Formulation

Let H = {1, 2, . . . , h} be a set of hub nodes and N be a set of non-hub nodes
where |H| ≥ 3 and |N | = n. This paper deals with a single assignment hub
network design problem which assigns each non-hub node to exactly one hub
node. We discuss the case in which the set of hubs forms an undirected cycle, and
the corresponding problem is called the cycle-star hub network design problem.
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More precisely, we are given an undirected cycle Γ = (H,T ) defined by a vertex-
set H and an edge-set T = {{1, 2}, {2, 3}, . . . , {h − 1, h}, {h, 1}}. In the rest of
this paper, we identify hub i and hub h + i when there is no ambiguity. For
each edge e = {i, i + 1} ∈ T , the corresponding length, denoted by ce or ci i+1

represents a non-negative cost per unit of flow on the edge. For each ordered
pair (p, i) ∈ N × H, cpi also denotes a non-negative cost per unit flow on an
undirected edge {p, i}. We denote a given non-negative amount of flow from a
non-hub p to another non-hub q by wpq(≥ 0). Throughout this paper, we assume
that wpp = 0 (∀p ∈ N). We discuss the problem for finding an assignment of
non-hubs to hubs which minimizes the total transportation cost defined below.

When non-hub nodes p and q (p �= q) are assigned hubs i and j, respectively,
an amount of flow wpq is sent along a path ((p, i), Ωij , (j, q)) where Ωij denotes
a shortest path in Γ = (H,T ) between i and j. For each pair of hub nodes
(i, j) ∈ H2, cij denotes the length of a shortest path Ωij . More precisely, cycle
Γ contains exactly two paths between i and j and cij denotes the minimum of
the lengths of these two paths. It is easy to see that cij = cji. In the rest of
this paper, a matrix C = (cij) defined above is called a cost matrix and/or a
cycle-metric matrix. The transportation cost corresponding to a flow from p to
q is defined by wpq(cpi + cij + cqj).

Now we describe our problem formally. First, we introduce a 0–1 variable xpi

for each pair {p, i} ∈ N × H as follows:

xpi =
{

1 (p ∈ N is assigned to i ∈ H),
0 (otherwise).

We have a constraint
∑

i∈H xpi = 1 for each p ∈ N , since each non-hub is
connected to exactly one hub. Then, the cycle-star hub network design problem
can be formulated as follows:

SAP: min.
∑

(p,q)∈N2

wpq

(
∑

i∈H

cpixpi +
∑

j∈H

cjqxqj +
∑

(i,j)∈H2

cijxpixqj

⎞

⎠

s. t.
∑

i∈H

xpi = 1 (∀p ∈ N),

xpi ∈ {0, 1} (∀(p, i) ∈ N × H).

The above formulation also appears in [18,28]. In case h = 3, 3-cycle Γ is a
complete graph, and thus the corresponding problem is NP-complete [28].

Next we describe an integer linear programming problem proposed in [18],
which is derived from SAP by employing the linearization technique introduced
by Adams and Sherali [1]. We replace xpixqj with ypiqj . We have a new constraint∑

i∈H ypiqj = xqj from the equation
∑

i∈H xpi = 1 by multiplying both sides by
xqj . We also obtain a constraint

∑
j∈H ypiqj = xpi in a similar way. Then we

obtain the following 0–1 integer linear programming problem:
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SAPL: min.
∑

(p,q)∈N2

wpq

(
∑

i∈H

cpixpi +
∑

j∈H

cjqxqj +
∑

(i,j)∈H2

cijypiqj

⎞

⎠

s. t.
∑

i∈H

xpi = 1 (∀p ∈ N),

∑

j∈H

ypiqj = xpi (∀(p, q) ∈ N2,∀i ∈ H, p < q),

∑

i∈H

ypiqj = xqj (∀(p, q) ∈ N2,∀j ∈ H, p < q),

xpi ∈ {0, 1} (∀(p, i) ∈ N × H),

ypiqj ∈ {0, 1} (∀(p, q) ∈ N2,∀(i, j) ∈ H2).

By substituting non-negativity constraints of all the variables for 0–1 con-
straints in SAPL, we obtain a linear relaxation problem, denoted by LRP. We
can solve LRP in polynomial time by employing an interior point algorithm.

3 Monge Property and Dependent Rounding Procedure

First, we give the definition of a Monge matrix. A comprehensive research on
the Monge property appears in a recent survey [7].

Definition 1. An m×n matrix C ′ is a Monge matrix if and only if C ′ satisfies
the so-called Monge property

c′
ij + c′

i′j′ ≤ c′
ij′ + c′

i′j for all 1 ≤ i < i′ ≤ m, 1 ≤ j < j′ ≤ n.

Although the Monge property depends on the orders of the rows and columns, in
this paper, we say that a matrix is a Monge matrix when there exist permutations
of rows and columns which yield the Monge property.

For each edge e ∈ T , we define a path Γ e = (H,T \ {e}) obtained from cycle
Γ by deleting the edge e. Let Ce = (ce

ij) be a cost matrix where ce
ij denotes the

length of the unique subpath of Γ e connecting i and j.

Lemma 1. For any edge e = {�, � + 1} ∈ T , a Monge matrix is obtained from
Ce by permuting rows and columns simultaneously in the ordering (� + 1, � +
2, . . . , h, 1, 2, . . . , �).

Proof is omitted (see [7] for example).
Next, we approximate a given cost matrix (cycle-metric matrix) C by a con-

vex combination of h Monge matrices {Ce | e ∈ T}. Alon et al. [2] considered
approximating a cycle-metric matrix by a probability distribution over path-
metric matrices, and showed a simple distribution such that the expected length
of each edge is no more than twice its original length. The following theorem
improves their result especially when the size of the cycle (number of hubs) is
small.



Approximation Algorithm for Cycle-Star Hub Network Design Problems 401

Theorem 1. Let C be a cost matrix obtained from a cycle Γ = (H,T ) and
non-negative edge lengths (ce | e ∈ T ). Then, there exists a vector of coefficients
(θe | e ∈ T ) satisfying

θe ≥ 0 (∀e ∈ T ),
∑

e∈T

θe = 1, and C ≤
∑

e∈T

θeC
e ≤ 2

(
1 − 1

h

)
C.

Proof. When there exists an edge e◦ ∈ T satisfying ce◦ ≥ (1/2)
∑

f∈T cf , it is
easy to see that for every pair (i, j) ∈ H2, there exists a shortest path Ωij on
cycle Γ = (H,T ) between i and j excluding edge e◦. Thus, a given cost matrix C
is equivalent to the Monge matrix Ce◦

. In this case, the desired result is trivial.
We assume that 2ce < L =

∑
f∈T cf (∀e ∈ T ) and introduce a positive

coefficient θe for each e ∈ T defined by

θe =
ce

K

∏

f∈T\{e}
(L − 2cf )

where K is a normalizing constant which yields the equality
∑

e∈T θe = 1. Let
Ωij ⊆ T be a set of edges in a shortest path in Γ between i and j. The definition
of the coefficients (θe | e ∈ T ) directly implies that for each pair (i, j) ∈ H2,

∑

e∈T

θec
e
ij =

∑

e�∈Ωij

θecij +
∑

e∈Ωij

θe(L − cij) =
∑

e∈T

θecij +
∑

e∈Ωij

θe(L − 2cij)

≤ cij

∑

e∈T

θe +
∑

e∈Ωij

θe(L − 2ce)

= cij +
∑

e∈Ωij

⎛

⎝(L − 2ce)
ce

K

∏

f∈T\{e}
(L − 2cf )

⎞

⎠

= cij +

∏
f∈T (L − 2cf )

K

∑

e∈Ωij

ce = cij +

∏
f∈T (L − 2cf )

K
cij .

From the assumption, the last term appearing above is positive. Then, we have

K∏
f∈T (L − 2cf )

=

∑
e∈T

(
ce

∏
f∈T\{e}(L − 2cf )

)

∏
f∈T (L − 2cf )

=
∑

e∈T

ce

L − 2ce
.

Now we introduce a function f(z1, . . . , zh) =
∑h

�=1 z�/(L − 2z�) defined on a
domain {z ∈ [0, L/2)h | z1 + · · · + zh = L}. From the convexity and symmetry
of variables of f , the minimum of f is attained at z1 = z2 = · · · = zh = L/h,
and f(L/h, . . . , L/h) = 1/(1 − 2/h), which gives the following inequality

∑

e∈T

θec
e
ij ≤ cij +

∏
f∈T (L − 2cf )

K
cij ≤ cij +

(
1 − 2

h

)
cij = 2

(
1 − 1

h

)
cij .

Since C ≤ Ce (∀e ∈ T ), it is obvious that C ≤ ∑
e∈T θeC

e.
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Dependent Rounding (x,y;π)

Input: A feasible solution (x,y) of LRP and a total order π of the hubs.
Step 1: Generate a random variable U which follows a uniform distribution defined

on [0, 1).
Step 2: Assign each non-hub node p ∈ N to a hub π(i), where i ∈ {1, 2, . . . h} is the

minimum number that satisfies U < xpπ(1) + · · · + xpπ(i).

Fig. 1. Dependent rounding π� where (π(1), π(2), π(3), π(4)) = (2, 3, 4, 1).

Next, we describe a rounding technique proposed in [18]. We will describe a
connection between the Monge matrix and the rounding technique, later.

The above procedure can be explained roughly as follows (see Fig. 1). For each
non-hub p ∈ N , we subdivide a rectangle of height 1 with horizontal segments
into smaller rectangles whose heights are equal to the values of the given feasible
solution xpπ(1), xpπ(2), . . . , xpπ(h). Here we note that

∑
i∈H xpπ(i) = 1 (∀p ∈ N).

We assume that the smaller rectangles are heaped in the order π. We generate a
horizontal line whose height is equal to the random variable U and round a vari-
able xpi to 1 if and only if the corresponding rectangle intersects the horizontal
line.

Given a feasible solution (x,y) of LRP and a total order π of H, a vec-
tor of random variables Xπ, indexed by N × H, denotes a solution obtained
by Dependent Rounding (x,y;π). In the following, we discuss the probability
Pr[Xπ

piX
π
qj = 1].

Lemma 2 [18]. Let (x,y) be a feasible solution of LRP and π a total order of
H. A vector of random variables Xπ obtained by Dependent Rounding (x,y;π)
satisfies that

(1) E[Xπ
pi] = xpi (∀(p, i) ∈ N × H),

(2) E[Xπ
piX

π
qj ] = yπ

piqj(∀(p, q) ∈ N2,∀(i, j) ∈ H2),
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where yπ is a unique solution of the following system of equalities

i′∑

i=1

j′∑

j=1

yπ
pπ(i)qπ(j) = min

⎧
⎨

⎩

i′∑

i=1

xpπ(i),

j′∑

i=1

xqπ(j)

⎫
⎬

⎭
(∀(p, q) ∈ N2,∀(i′, j′) ∈ H2

)
.

(1)

Proof is omitted (see [18]).
In the rest of this paper, a pair of vectors (x,yπ) defined by (1) is called a

north-west corner rule solution with respect to (x,y;π). When x is non-negative
and

∑
i∈H xpi =

∑
i∈H xqi holds, the unique solution of (1) gives the so-called

north-west corner rule solution for a Hitchcock transportation problem (Fig. 2
shows an example of a north-west corner rule solution where details are given
in [18]). Here we note that the above definition is different from the ordinary
definition of the north-west corner rule solution, which is known as a result of a
procedure for finding a feasible solution of a Hitchcock transportation problem.
In the rest of this section, we describe Hitchcock transportation (sub)problems
contained in LRP.

Fig. 2. North-west corner rule solution where (π(1), π(2), π(3), π(4)) = (2, 3, 4, 1). In
this case, E[Xπ

p1X
π
q1] = 0.2, E[Xπ

p4X
π
q1] = 0.1, E[Xπ

p4X
π
q4] = 0.2, E[Xπ

p3X
π
q4] = 0.1,

E[Xπ
p3X

π
q3] = 0.1, E[Xπ

p3X
π
q2] = 0.2, and E[Xπ

p2X
π
q2] = 0.1.

Let (x◦, y◦) be a feasible solution of LRP. For any p ∈ N , x◦
p denotes a

subvector of x◦ defined by (x◦
p1, x

◦
p2, . . . , x

◦
ph). When we fix variables x in LRP

to x◦, we can decompose the obtained problem into n2 Hitchcock transportation
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problems {HTP(x◦
p,x

◦
q , C) | (p, q) ∈ N2} where

HTP (x◦
p,x

◦
q , C) :min.

∑

i∈H

∑

j∈H

cijypiqj

s. t.
∑

j∈H

ypiqj = x◦
pi (∀i ∈ H),

∑

i∈H

ypiqj = x◦
qj (∀j ∈ H),

ypiqj ≥ 0 (∀(i, j) ∈ H2).

Next, we describe a well-known relation between a north-west corner rule
solution of a Hitchcock transportation problem and the Monge property.

Theorem 2 If a given cost matrix C = (cij) is a Monge matrix with respect to
a total order π of hubs, then the north-west corner rule solution yπ defined
by (1) gives optimal solutions of all the Hitchcock transportation problems
{HTP (x◦

p,x
◦
q , C) | (p, q) ∈ N2}.

Proof is omitted here (see [6,7] for example).

4 Approximation Algorithm

In this section, we propose an algorithm and discuss its approximation ratio.
First, we describe our algorithm.

Algorithm4
Step 1: Solve the linear relaxation problem LRP and obtain an optimal solution

(x∗,y∗).
Step 2: For each edge e ∈ T , execute Dependent Rounding (x∗,y∗;πe) where πe

denotes a total order (πe(1), πe(2), . . . , πe(h)) = (�+1, �+2, . . . , h, 1, 2, . . . , �−1, �).
Step 3: Output a best solution obtained in Step 2.

In the rest of this section, we discuss the approximation ratio. We define

W ∗
1 =

∑

(p,q)∈N2

wpq

⎛

⎝
∑

i∈H

cpix
∗
pi +

∑

j∈H

cjqx
∗
qj

⎞

⎠

and

W ∗
2 =

∑

(p,q)∈N2

wpq

⎛

⎝
∑

(i,j)∈H2

cijy
∗
piqj

⎞

⎠

where (x∗,y∗) is an optimal solution of LRP.
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Theorem 3 Algorithm4 is a 2(1 − 1/h)-approximation algorithm.

Proof Let z∗∗ be the optimal value of the original problem SAP and (θe | e ∈ T )
be a vector of coefficients defined in Theorem 1. For each e ∈ T , (Xπ(e)) denotes
a solution obtained by Dependent Rounding(x∗,y∗;πe) and yπ(e) be the north-
west corner rule solution defined by (1) (where π is set to πe). Then we have
that

2
(

1 − 1
h

)
z∗∗ ≥ 2

(
1 − 1

h

)
(optimal value of LRP) = 2

(
1 − 1

h

)
(W ∗

1 + W ∗
2 )

≥ W ∗
1 + 2

(
1 − 1

h

)
W ∗

2 = W ∗
1 +

∑

(p,q)∈N2

wpq

⎛

⎝
∑

(i,j)∈H2

2
(

1 − 1
h

)
cijy

∗
piqj

⎞

⎠

≥
∑

e∈T

θeW
∗
1 +

∑

(p,q)∈N2

wpq

⎛

⎝
∑

(i,j)∈H2

∑

e∈T

θec
e
ijy

∗
piqj

⎞

⎠ (Theorem 1)

=
∑

e∈T

θeW
∗
1 +

∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

⎛

⎝
∑

(i,j)∈H2

ce
ijy

∗
piqj

⎞

⎠

⎞

⎠

≥
∑

e∈T

θeW
∗
1 +

∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

(
optimal value of HTP(x∗

p,x
∗
q , C

e)
)
⎞

⎠

=
∑

e∈T

θeW
∗
1 +

∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

⎛

⎝
∑

(i,j)∈H2

ce
ijy

π(e)
piqj

⎞

⎠

⎞

⎠ (Theorem 2)

=
∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

⎛

⎝
∑

i∈H

cpix
∗
pi +

∑

j∈H

cjqx
∗
qj +

∑

(i,j)∈H2

cijy
π(e)
piqj

⎞

⎠

⎞

⎠

=
∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

(∑
i∈H cpiE[Xπ(e)

pi ] +
∑

j∈H cjqE[Xπ(e)
qj ]

+
∑

(i,j)∈H2 cijE[Xπ(e)
pi X

π(e)
qj ]

)⎞

⎠

= E

⎡

⎣
∑

e∈T

θe

⎛

⎝
∑

(p,q)∈N2

wpq

(∑
i∈H cpiX

π(e)
pi +

∑
j∈H cjqX

π(e)
qj

+
∑

(i,j)∈H2 cijX
π(e)
pi X

π(e)
qj

)⎞

⎠

⎤

⎦

≥ E

⎡

⎣min
e∈T

⎧
⎨

⎩
∑

(p,q)∈N2

wpq

(∑
i∈H cpiX

π(e)
pi +

∑
j∈H cjqX

π(e)
qj

+
∑

(i,j)∈H2 cijX
π(e)
pi X

π(e)
qj

)⎫
⎬

⎭

⎤

⎦

= E[Z]

where Z denotes the objective value of a solution obtained by Algorithm4.
The last inequality in the above transformation is obtained from the equality∑

e∈T θe = 1 and the non-negativity of coefficients (θe | e ∈ T ).
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5 Discussions

In this paper, we proposed a polynomial time 2(1−1/h)-approximation algorithm
for a cycle-star hub network design problem with h hubs. Our algorithm solves
a linear relaxation problem and employs a dependent rounding procedure. The
attained approximation ratio is based on an approximation of a cycle-metric
matrix by a convex combination of Monge matrices.

Lastly we discuss a simple independent rounding technique which indepen-
dently connects each non-hub node p ∈ N to a hub node i ∈ H with probabil-
ity x∗

pi, where (x∗,y∗) is an optimal solution of LRP. Iwasa et al. [18] showed
that the independent rounding technique gives a 2-approximation algorithm for
a single allocation hub-and-spoke network design problem under the following
assumption.

Assumption 1 A given symmetric non-negative cost matrix C satisfies cij ≤
cik + ckj (∀(i, j, k) ∈ H3) and cij ≤ cpi + cpj (∀(i, j, p) ∈ H2 × N).

We also have the following result.

Lemma 3 Under an assumption that cij ≤ cpi + cpj (∀(i, j, p) ∈ H2 × N),

a
(

3
2 − 1

2(h−1)

)
-approximation algorithm (for a cycle-star hub network design

problem) is obtained by choosing the better of the two solutions given by
Algorithm4 and the independent rounding technique.

Proof Let a random variable Z2 be an objective function value with respect to
a solution obtained by the independent rounding technique. Iwasa et al. [18]
showed that E[Z2] ≤ 2W ∗

1 +W ∗
2 . In the proof of Theorem3, we have shown that

E[Z] ≤ W ∗
1 + 2(1 − 1/h)W ∗

2 . By combining these results, we obtain that

E[min{Z2, Z}] ≤ E
[

h − 2
2(h − 1)

Z2 +
h

2(h − 1)
E[Z]

]

=
h − 2

2(h − 1)
E[Z2] +

h

2(h − 1)
E[Z]

≤ h − 2
2(h − 1)

(2W ∗
1 + W ∗

2 ) +
h

2(h − 1)

(
W ∗

1 + 2
(

1 − 1
h

)
W ∗

2

)

=
(

3
2

− 1
2(h − 1)

)
(W ∗

1 + W ∗
2 ) ≤

(
3
2

− 1
2(h − 1)

)
(opt. val. of SAP).
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Improved Approximation for Two Dimensional
Strip Packing with Polynomial Bounded Width
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Abstract. We study the well-known two-dimensional strip packing
problem. Given is a set of rectangular axis-parallel items and a strip of
width W with infinite height. The objective is to find a packing of these
items into the strip, which minimizes the packing height. Lately, it has
been shown that the lower bound of 3/2 of the absolute approximation
ratio can be beaten when we allow a pseudo-polynomial running-time
of type (nW )f(1/ε), for any function f . If W is polynomially bounded
by the number of items, this is a polynomial running-time. We present
a pseudo-polynomial algorithm with approximation ratio 4/3 + ε and

running time (nW )1/εO(21/ε)
.

Keywords: Strip packing · Pseudo polynomial running time · Structure
analysis

1 Introduction

An instance of the strip packing problem consists of a strip of width W ∈ N and
infinite height, and a set of items I, where each item i ∈ I has width wi ∈ N

and height hi ∈ N, such that all items fit into the strip (i.e. wi ≤ W f.a. i ∈ I).
A packing of the items is a mapping ρ : I → N × N, i �→ (xi, yi), where

xi ≤ W − wi. We say an inner point of a placed item i is a point (x, y) ∈ N×N,
with yi ≤ y < yi + hi and xi ≤ x < xi + wi. We say two items i and j overlap if
there exists a point (x, y) ∈ N×N, such that (x, y) is an inner point of i and an
inner point of j. A packing is feasible if no two items overlap. The objective is
to find a feasible packing, which minimizes its height maxi∈I yi +hi. For a set of
items S we denote its area by A(S) :=

∑
i∈S hiwi. We denote the packing area

by W × maxi∈I yi + hi.
Strip packing is one of the classical two-dimensional packing problems, which

received a high research interest [2–4,6,7,10–16]. It arises naturally in many prac-
tical applications as manufacturing and logistics as well as in computer science.
In computer science strip packing can be used to model scheduling parallel jobs
on consecutive addresses. Here the width W of the strip equals the number of
given processors.

Research was supported by German Research Foundation (DFG) project JA 612/14-2.

c© Springer International Publishing AG 2017
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If W occurs polynomially in the running time, it is called pseudo-polynomial.
If W ≤ poly(n) the running time can be considered polynomial. The algorithm
with the so far best absolute approximation ratio using pseudo-polynomial run-
ning time is the algorithm by Nadiradze and Wiese [13]. Their algorithm has an
absolute approximation ratio of 1.4 + ε.

Results and Methodology. We present an algorithm with absolute approximation
ratio 4/3 + ε, which has a pseudo-polynomial running time. The main difficulty
arises when placing items which have a small width and a large height. If the
considered algorithm can not place all these items into the area W × OPT, it
would have to place it above this area, adding its height to the height of the
packing. Since these items can have a height up to OPT this can double the
height of the packing.

In [13] Nadiradze and Wiese presented a new technique to handle tall items,
which have small width and height larger than 0.4OPT. They managed to place
all these items into the area W × OPT. In this packing some of the items with
height up to 0.4OPT are shifted upwards and are placed above OPT. These
shifted items are responsible for adding 0.4OPT to the absolute approximation
ratio.

We present a new structural result, leading to an algorithm, that can place
all items with height at least 1

3OPT in W × OPT. By this optimization just
items with height up to 1

3OPT have to be placed above this area, which results
in an approximation algorithm with absolute approximation ratio 4/3 + ε. This
is possible since we could reduce the area of the items, that have to be shifted
on top of the optimal packing area. The key to this better approximation lies in
Lemma 5.

The second improvement to the algorithm in [13] lies in the running time.
The main idea in [13] is to divide the packing area into a constant number of
rectangular areas. The number of these areas depends on ε and can be quite
large (i.e. Ω(61/δ)). Since the number of these boxes influences the choice of δ
this induces a very large running time, i.e. O(W 1/δ), where in the worst case

δ ∈ Ω(1/ exp1/ε
6 (1/ε)), where exp1/ε

6 (1/ε) := 6...6
1/ε

and the 6 occurs 1/ε times
(tower of exponents). We manage to reduce the number of these areas dramat-
ically (i.e. O(1/ε3δ2) which implies δ ∈ Ω(εO(21/ε))). How we find this better
partition is described in the proof of Lemma7. The result of our research is
summarized in the following theorem:

Theorem 1. For each ε > 0 there is an algorithm that finds a solution for each
instance of the strip packing problem with height at most (4/3 + ε)OPT. The

algorithm needs at most (nW )1/εO(21/ε)
operations.

An algorithm with the same approximation ratio was developed indepen-
dently and at the same time by Gálvez et al. [5]. They extended their approach
to strip packing with rotations, but did not improve the running time.
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Related Work. The first algorithm for the strip packing problem was described by
Baker and Coffman [3] in 1980. If the rectangles are ordered by descending width,
this algorithm has an asymptotic approximation ratio of 3. The first algorithms
with proven absolute approximation ratios of 3 and 2.7 were given by Coffman
et al. [4]. After that Sleator [15] presented an algorithm which generates a sched-
ule of height 2OPT (I)+hmax(I)/2, where hmax is the largest height of the items.
So this algorithm has an asymptotic approximation ratio 2. Schiermeyer [14]
and Steinberg [16] improved this algorithm independently to an algorithm with
absolute approximation ratio 2. Harren and van Stee were the first to beat the
barrier of 2. They presented an algorithm with an absolute approximation ratio
of 1.9396 [8]. The so far best absolute approximation is given by the algorithm by
Harren et al. [7], which has an absolute approximation ratio of (5/3+ε)OPT (I).
A reduction from the partition problem gives a lower bound on the absolute
approximation ratio of 3/2 · OPT for any polynomial approximation algorithm.

In the asymptotic case, the barrier of 3/2 can be beaten. Golan [6] presented
the first algorithm with asymptotic approximation ratio smaller than 3/2. It has
an asymptotic approximation ratio of 4/3. Next Baker et al. [2] gave an algorithm
with asymptotic ratio 5/4. After that Kenyon and Rémila [12] presented an
AFPTAS which has an approximation ratio of (1 + ε)OPT and an additive
constant O(hmax/ε2). Later the additive constant was improved by Jansen and
Solis-Oba [10] at the expense of the processing time of the algorithm. They
presented an APTAS, which generates a schedule of height (1 + ε)OPT + hmax.

If we allow pseudo-polynomial processing time, there are better approxima-
tions possible. This is thanks to the fact that the underlying partition problem
is solvable in pseudo-polynomial time. Jansen and Thöle [11] presented an algo-
rithm with approximation ratio 3/2+ε. Recently Nadiradze and Wiese [13] have
presented an algorithm which beats the bound 3/2. It has an approximation ratio
of 1.4+ ε. On the negative side Adamaszek et al. [1] have shown that there is no
pseudo-polynomial algorithm with approximation ratio smaller than 12

11OPT.

2 Simplifying the Input Instance

Let ε > 0, such that 1/ε ∈ N. Further, let an instance of the strip packing
problem be given and consider an optimal solution to it, which has a packing
height of OPT. We will show in the following that it is possible to transform
this optimal solution into a solution which has a particular structure. By this
transformation we add at most (1/3 + ε)OPT to the height of the packing,
resulting in a packing with height (4/3 + ε)OPT. When we know the structure
of the optimal packing, we can use the same techniques as in [13] to describe an
algorithm. Notice that we can find the height of the optimal packing by a binary
search framework in O(log(OPT)) steps, which is polynomial in the input size.
The described algorithm would also work if we would approximate the optimal
packing height within the range of (1+O(ε)), which would result in O(log(1/ε))
steps of the framework, but for the simplification of the notation we use the
exact height.
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The first step in the transformation as well as in the algorithm is to partition
the set of items I. Let δ = δ(ε) > μ = μ(ε) be two suitable constants depending
on ε. We define the set of large items L := {i ∈ I|hi ≥ δOPT, wi ≥ δW},
tall items T := {i ∈ I \ L|hi ≥ (1/3 + ε)OPT}, vertical items V := {i ∈
I \T |hi ≥ δOPT, wi ≤ μW}, medium sized vertical items MV := {i ∈ I \T |hi ≥
δOPT, μW < wi < δW}, horizontal items H := {i ∈ I|hi ≤ μOPT, wi ≥ δW},
small items S := {i ∈ I|hi ≤ μOPT, wi ≤ μW} and medium sized horizontal
items MH := I \ (L ∪ T ∪ V ∪ MV ∪ H ∪ S).

The medium sized items will be placed outside the optimal packing area. To
guarantee that these items do not occupy to much space there, their total area
has to be small. We achieve this by finding appropriate values for δ and μ, whose
existence is stated in Lemma 1. It is a standard argument which follows by the
pigeon-hole principle and is often used in packing algorithms, e.g. in [10]. The
proofs not stated in this short version can be found in the full version [9].

Lemma 1. Consider the sequence σ0 = ε6, σi+1 = σ2
i ε6. There is a value j ∈

{0, . . . , 6/ε − 1} such that when defining δ = σj and μ = σj+1 the total area of
the items in MV ∪ MH is at most ε/6 · OPT · W .

Note that σi = ε6(2
i+1−1). Since σ is strictly monotonic decreasing we have

δ ≥ σ6/ε−1 = εk, for k = 6 ·26/ε. The next step in our transformation is to round
the heights of the items in L ∪ T ∪ V and shift them such that they start and
end at certain heights. Our rounding strategy is similar to the strategy in [13]
but we manage to reduce the number of different heights.

Lemma 2. Let δ = εk for some value k ∈ N. At a loss of at most a factor
1 + 2ε in the approximation ratio we can ensure that each item i ∈ L ∪ T ∪ V
with εl−1OPT ≥ hi ≥ εlOPT for some l ∈ N≤k has height hi = kiε

l+1OPT =
ki/εk−l · εk+1OPT for some ki ∈ {0, . . . , 1/ε − 1}. Furthermore the items’
y-coordinates can be placed at multiples of εl+1OPT.

3 Partitioning the Packing Area

We apply the rounding according to Lemma2, obtaining a packing where each
item in L ∪ T ∪ V starts and ends at multiples of δε. The packing has now a
height of (1 + 2ε)OPT. We will show that we can partition its packing area into
a constant number of rectangular areas, such that each of these areas contains
items just from one of the following sets: L, H ∪ S, or T ∪ V ∪ S. We allow
items from H ∪ S or T ∪ V ∪ S to be positioned into more than one area. While
the placement of the items L or H is simple, it is difficult to place the items
from T ∪ V , without increasing the height of the packing too much. Note that
there are at most 1/δ2 large items since each of them covers an area of at least
δ2WOPT.

Lemma 3. We can partition the area W × (1 + 2ε)OPT into at most 4(1 +
2ε)/(εδ2) rectangular boxes. These boxes can be partitioned into sets of boxes
BL,BH and BT∪V such that
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– boxes in BL are identified by items i ∈ L, i.e. they have box height hi and box
width wi,

– BH consists of at most (1 + 2ε)/(εδ2) − |L|/δ many boxes of height εδOPT,
each of them containing at least some item in H but only items in H ∪ S,

– BT∪V consists of at most 3(1+2ε)/(εδ2) many boxes, each of them containing
only items in T ∪ V ∪ S,

– no item in H is intersected vertically by any box border,
– no item in T ∪ V is intersected horizontally by any box border,
– no item in L is intersected by any box border.

OPT

(1 + 5ε)OPTmedium sized items
some horizontal items

m
ed

iu
m

it
em

s

shifted vertical items

3εOPT′

(1/3 + ε)OPT

(3ε/2)W (1 − 3ε/2)W

Fig. 1. Structure of the simplified packing. Boxes in BH are hatched and boxes in
BT∪V are dotted. Above the packing area we need an area for medium sized items,
some horizontal and some vertical items, that have to be shifted up.

An overview over the simplified partition can be found in Fig. 1. To simplify
the argumentation in the following, we forget about the items in S. We are
going to show that it is possible to partition the area in each box in BT∪V

into a constant number of subboxes. By this partition, we will get subboxes for
vertical and small items BV and other subboxes BT , which will contain only
tall items, which have the height of the subbox. To achieve this property, we
have to rearrange the items in the boxes B ∈ BT∪V . In the following, we will
focus on the more interesting case, where the height of the box h(B) is at least
(2/3 + 2ε)OPT. Let B̂T∪V ⊆ BT∪V be the set of boxes with height at least
(2/3 + 2ε)OPT and B̌T∪V := BT∪V \ B̂T∪V .

Let us, for now, assume that we are allowed to slice all vertical items vertically
as often as we desire. If we consider a packing of items, where some of the vertical
items are sliced, we call it a fractional packing. We call all tall items, which are
crossed (vertically) by a box border unmovable and the other tall items movable.
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The first step is to shift tall items up or down respectively such that all movable
tall items either touch the top or the bottom of the box. That items can be
rearranged this way was shown in Lemma 1.4 in [13].

Lemma 4 [13]. If we are allowed to slice the items in V vertically, we can
ensure the following: In each box B ∈ BT∪V there is a packing where all movable
tall items are either touching the top or the bottom of the box.

Let us from now on assume that all movable tall items are touching the top
or the bottom of the boxes in BT∪V . We now want to reorder the tall items to
find a partition into subboxes BV and BT . If we reorder the tall items, it can
happen that not all vertical items can be placed in the box. All vertical items
that can not be placed in the box have to be shifted above the packing area.
Since we have just the area W ×(1/3+ε)OPT to pack the shifted items and MV ,
we have to be careful, not to shift too many items. The first step is to introduce
pseudo and dummy items similar as described in [13].

For B ∈ B̂T∪V let (xl, yb) be the left bottom corner and (xr, yt) the top right
corner respectively. Let X = {x1, x2, . . . , xk−1} be the x-coordinates of the left
bottom corner of the tall items in the packing, ordered in increasing order. Define
x0 := xl and xk := xr. If [xj−1, xj) × [yb, yt) does not overlap any tall item, we
introduce one pseudo item with size [xj−1, xj) × [yb, yt). If [xj−1, xj) × [yb, yt)
overlaps with exactly one tall item i of height hi, we introduce one pseudo item
which covers the area [xj−1, xj) × [yb + hi, yt) if i touches the bottom, or a
pseudo item which covers the area [xj−1, xj) × [yb, yt − hi) otherwise. In the
case [xj−1, xj)× [yb, yt) overlaps exactly two tall items. In this case we introduce
xj − xj−1 dummy items of width 1 and height ht − hb, where ht is the height of
the item at the top and hb the item at the bottom respectively. Obviously, all
vertical items in B can be placed fractionally into the area of the pseudo and
the dummy items.

Let P be the set of introduced pseudo items for the box B. A reordering of
the tall and pseudo items in B is a rearrangement of the items, such that we just
change the x-coordinate of the bottom-left corner, but not the y-coordinate. It
is feasible if there are no two items in T ∪ P that overlap. For each reordering
we have an individual set of dummy items D. If we reorder the tall and pseudo
items, it can happen, that it is not possible to place all the items which are
contained fractionally in the original set of dummy items into the new set of
dummy items. Unlike in [13] we have to ensure that at least a constant amount
of these items can be placed in B. We are now going to analyze which amount
of these items can be placed in any reordering.

Lemma 5. Let B ∈ B̂T∪V with width w, D be its set of dummy items, and P
its set of pseudo items. Let β := min{|hi − hj | : i, j ∈ T ∪ P, hi 	= hj} be the
minimal difference between the heights of two items in T ∪ P . Let t ∈ T ∪ P be
the shortest item touching the top and b ∈ T ∪ P be the shortest item touching
the bottom, with ht > 0 and hb > 0. Define h := (h(B) − ht − hb). For each
feasible reordering of the tall and pseudo items and each α ≤ β/(β + h), we can
find a subset S ⊆ D, with |S| ≥ αw that can be placed in the reordered packing.
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w

D

l

αw w

D

r

αw

Fig. 2. Two orderings of the items in T ∪ P .

Proof. Let D′ be the set of dummy items in a given feasible reordering. We sort
both sets D and D′ in ascending order and index them from 1 to w. We will
show that the 
αw� smallest items in D fit into the 
αw� largest items in D′.
Let l be the item with index 
αw� in the set D and let r be the item with index
w − 
αw� + 1 in the set D′. If hl ≤ hr the 
αw� shortest items in D can be
placed into the 
αw� longest items in D, see Fig. 2.

Assume for contradiction that hl > hr. We know that A(D) = A(D′), since
the set of tall and pseudo items is unchanged. Since each dummy item with index
≥ l has height at least hl, we know that A(D) ≥ hl(w −
αw�+1). Furthermore
we know that A(D′) ≤ hr(w −
αw�+1)+h(
αw�− 1), since each dummy item
i with i ≤ r has height at most hr and each dummy item i with i > r has height
at most h. So in total we have

hl(w − 
αw� + 1) ≤ A(D) = A(D′) ≤ hr(w − 
αw� + 1) + h(
αw� − 1).

Since hl > hr and the difference between two items out of T ∪P is at least β we
have hl ≥ hr + β. This leads to

(hr + β)(w − 
αw� + 1) ≤ hl(w − 
αw� + 1) ≤ hr(w − 
αw� + 1) + h(
αw� − 1).

It follows that wβ ≤ (β + h)(
αw� − 1). Since 
αw� − 1 < αw this leads to
β < (β + h)α, which is a contradiction for each α ≤ β/(h + β).

All the dummy items that can not be placed into the rearranged packings
will be placed in an extra box V0 of height (1/3 + ε)OPT and width (1 − α)W .
Since next to this box we have to place a box for medium sized items we want α
to be as large as possible. The following Lemma states some useful properties,
we can assume when reordering the items in T ∪ P .

Lemma 6. If we increase the height of the packing area W × (1 + 2ε)OPT by
3εOPT, we can assume that each item in T ∪P has a height, which is a multiple
of εOPT. Furthermore, at each side of a box, there is at most one tall item
overlapping its border, that touches either its bottom or top and has a height,
that is a multiple of εOPT.

Since now each item height in T ∪P is a multiple of εOPT we have β ≥ εOPT.
Let us take a look at items that are very tall with respect to the size of a box
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B ∈ B̂T∪V . Consider an item i with height larger than h(B)−(1/3+ε)OPT. Since
each tall item has height at least (1/3+ ε)OPT, there can be no tall item placed
above or below this item. By construction, there is one pseudo item directly
above or below i. We combine i and the pseudo item to one new pseudo item
which has height h(B) and width wi. Now it holds that the distance between
items touching the bottom and items touching the top is at most (1/3+3ε)OPT.
So we can choose α = 2ε < ε/(1/3 + 4ε) for ε < 1/24.

Note that there are at most R := (1/3 + 3ε)/ε + 2 = (1/3 + 5ε)/ε possible
item heights in P ∪T with respect to a box B ∈ BT∪V . In the next step, we show
how it is possible to rearrange the tall and pseudo items touching the top and
the bottom of a box, such that we need few boxes for tall and vertical items.

Lemma 7. Let B ∈ B̂T∪V . We can find a rearrangement of tall and pseudo
items in B, such that we can partition B into at most O(1/ε2) subboxes BV and
BT , such that each subbox BT contains just tall items with height h(BT ), and
all vertical items in B can be packed fractionally into the subboxes BV and one
extra box VB of size (1/3 + ε)OPT × (1 − 2ε)w(B).

Proof. We consider two cases. In the first no tall item overlaps the left or right
border of B. For this case it is shown in [13] that we can simply sort the items
from T ∪ P touching the top of B in descending order of heights and the items
touching the bottom in ascending order. We sort tall and pseudo items of the
same height such that pseudo items are positioned left to the tall items. By this
reordering no two items overlap. And we have at most one group of items of the
same size on each side of the box. For each group of tall items of the same size
we introduce one subbox for BT , which contains exactly these group of tall items
and for each group of pseudo item we introduce one subbox in BV . Furthermore
for each group of dummy items of the same size, we introduce one subbox in BV

analogously. Since we have at most R different item sizes, we introduce at most
2R boxes for tall items BT . Since the height of the items touching the bottom
and touching the top are changing at most 2R times totally, we introduce at
most 4R subboxes for vertical items BV .

In the second case, it is possible that tall items overlap the box B on the left
or right side. By Lemma 6 we can assume that there is at most one tall item per
box side. Now we reorder the items differently from [13]. We reduce the number
of boxes from an exponential to a quadratic function in the number of different
heights in T ∪ P .

Let hb be the height of a tallest item touching the bottom of the box and bl

be the leftmost and br the rightmost item of height hb. Similarly choose ht, tl, tr
with respect to the top. Further, let il be the item in {tl, bl} which is further
left and ir the item which in {tr, br}, which touches the other border. W.l.o.g
let il = bl. We draw a vertical line at the left border of bl. The item cut by this
line defines a new unmovable item b′. We do the same on the right side of tr and
name the cut item t′ (see Fig. 3). Now the movable items touching the top are
sorted in ascending order with respect to their height, while the movable items
touching the bottom are sorted in descending order.
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bl

tr

t′

b′

bl

tr

t′

b′

Fig. 3. A packing before and after the reordering of the items.

We show, that in this reordering no two items overlap. There is no tall item
touching the bottom that overlaps b′ since each item touching the bottom has
height at most hb. Since b′ was placed above bl this means b′ fits above each
item in the box B. Similarly one can see that no item overlaps t′. Assume there
is an item ib touching the bottom that overlaps an item it touching the top. Let
p = (xp, yp) be a point, which is overlapped by the item ib and it. Let (xl, yb)
denote the left bottom corner of bl and (xr, yt) the right top corner of tl. The
reordering guarantees the existents of a set of items Ib touching the bottom
with total width greater than xp − xl, which is placed between xl and xr and
has height at least yp − yb. Furthermore there must be a set of items It with
total width greater than xr −xp touching the bottom and having height at least
yt − yp. Since the area the items can be placed in has a width of xr − xl and the
sets Ib and It have a total width of w(It ∪ Ib) > xp − xl + xr − xp = xr − xl by
the pidgin hole principle there must be an item in Ib that overlaps an item in It

in the original packing, which is a contradiction.
Now for each group of tall, pseudo and dummy items between il and ir having

the same hight, we introduce subboxes as described above. We have introduced
at most R + 1 boxes to BT and at most 4R + 2 boxes to BT . The total number
of different heights touching the bottom and touching the top, on the left of il
is at least one smaller than in the whole box. Same holds for the number on the
right side of ir.

ir

b′

il

t′

ir

b′

il

t′

Fig. 4. A recursive rearrangement of the tall and pseudo items with updated labels.

We repeat the following step until a break condition occur. In each step, we
will reduce the total number of different heights of the items touching the top
and bottom by at least one. We look on the left side of il. W.l.o.g. let il touching
the bottom of the box. Let b′ be the item, which was intersected by the vertical
line at the left border of il. Let ht be the height of the largest item touching the
top left of il. We rename the item il as ir and redefine il as the left most item
touching the top, which has height ht. Between the items il and ir we proceed
as above (Fig. 4).
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By choosing il as the leftmost tallest item touching the top we have reduced
the total number of different heights touching the top and bottom in the remain-
ing area, which has to be reordered, by at least one. We repeat the described
step until one of the following conditions occur:

1. The tallest item touching the top and the tallest item touching the bottom
have a summed height of at most h.

2. the item ir is the unmovable item, which overlaps the left border.

If condition 1 occur in any reordering of the items it can not happen that a tall
or pseudo item touching the bottom overlaps any tall or pseudo item touching
the top, since their height is not large enough. So at this point we simply sort the
items touching the top in ascending order and the items touching the bottom
just as well.

If condition 2 occur we repeat the normal reordering step once again. When
we draw the vertical line, it will be placed exactly on the box border, and we
are finished.

We repeat this steps analog on the right side of the initial ir. As seen before
in each of the reordering steps we introduce at most 2R + 1 subboxes to BT and
at most 4R + 2 subboxes to BV . In each of the partition steps, we reduce the
total number of different heights touching the bottom and the top by one. If
the tallest item at the top and the tallest item at the bottom are both smaller
than h(B)/2 condition 1 is fulfilled. Since in each partitioning step the number
of tall item sizes is reduced by one, we need at most R steps until the tallest
item on the bottom and the tallest item on the top both have a height of at most
h(B)/2. By all these steps we have created at most one box with height h(B),
since this item is the largest item in the first step and it touches the bottom as
well as the top. So if we sort the tall items in this box, we generate at most R
further boxes. So we partition B into at most 2R + 2 parts, each containing at
most 2R subboxes for tall items and at most 4R subboxes for vertical items. So
in totat we have |BT | ≤ (2R+2)2R = (2(1/3+5ε)/ε+2)2(1/3+5ε)/ε ≤ 1.3/ε2

and |BV | ≤ (2R + 2)4R = (2(1/3 + 5ε)/ε + 2)4(1/3 + 5ε)/ε ≤ 2.2/ε2, if ε ≤ 24.
Considering Lemma 5 clearly all vertical items fit into the boxes BV and the

additional box VB .

Lemma 8. We can find a rearrangement of the items in each box B ∈ B̌T∪V

such that we can partition the area in B into at most O(1/ε) subboxes BV and
BT , such that all vertical items can be packed fractionally in the subboxes BV ,
and each subbox in B′ ∈ BT contains just tall items with height h(B′).

Since the boxes in B̌T∪V can be partitioned into less boxes than the boxes
B̂T∪V , the following Lemma follows from Lemmas 5, 6 and 7.

Lemma 9. We can partition the packing area W × (1 + 5ε)OPT such that we
introduce at most O(1/ε3δ2) boxes for tall items BT , each containing just items
with the same height, and at most O(1/ε3δ) boxes BV for vertical items, such that
all vertical items can be packed fractionally into the boxes BV and an additional
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box V0 with height (1/3 + ε)OPT and width (1 − 2ε)W . Furthermore at most
|L| boxes BL containing large items, and at most O(1/εδ2) boxes BH , such that
all horizontal items fit fractionally into BH . Furthermore the area of the small
items fit into the free spaces in BH ∪ BV .

4 Algorithm

We define boxes H0 with size W × 2εOPT, BMH with size W × εOPT, BMV

with size 3εW/2× (1/3+ε)OPT and BV with size (1−3ε/2)W × (1/3+ε)OPT.

Lemma 10. Let a partition into boxes BL, BH , BT , and BV be given, such that
|BL ∪ BH ∪ BT ∪ BV | ∈ O(1/ε3δ2). There is an algorithm with running time
O(n log n + W (1/εδ)O(1)

) that places all the items in I into the boxes BL ∪ BH ∪
BT ∪ BV ∪ {H0, BMH , BMV , BV } or decides that such packing does not exist.

Let us summarize what the structure of the adjusted optimal packing looks
like (see Fig. 1): We have stretched the optimal packing area, such that it has a
height of (1+5ε)OPT. We have an extra box H0 for horizontal items, which has
height 2εOPT and width W . We place this box exactly above the packing area of
height (1+5ε)OPT. For the medium sized items, we have introduced two boxes.
One has height εOPT and can be placed above the box for horizontal items. The
other has height (1/3 + ε)OPT and width (3ε/2)W . We will place this box next
to the extra box for vertical items, which has height (1/3 + ε)OPT and width
(1 − 3ε/2)W . So the total height of the current packing is (4/3 + 9ε)OPT. So
if we substitute ε with ε′ := ε/9 the simplified packing has a height of at most
(4/3 + ε)OPT.

The algorithm works as follows: First we set ε′ := min{ε/9, 1/24}. After that
we have to find the height of the optimal packing OPT with a binary search
framework, which takes O(log(OPT)) steps. For each guessed packing height
we find the correct values for δ and μ and round the items in T ∪ V ∪ L. This
can be done in O(n). Now we guess the structure of the packing. There are at

most W 1/εO(21/ε)
possibilities. For each of the guessed partitions, we check with

the algorithm from Lemma 10 if we can place the items in I into that partition.

The total running time is bounded by log(OPT)(nW )1/εO(21/ε)
. If we use just

an approximation of the value OPT the binary search needs just log(1/ε) steps,

which results in a running time of (nW )1/εO(21/ε)
.
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7. Harren, R., Jansen, K., Prädel, L., Van Stee, R.: A (5/3 + ε)-approximation for
strip packing. Comput. Geom. 47(2), 248–267 (2014)

8. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-
dimensional packing problems. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX/RANDOM 2009. LNCS, vol. 5687, pp. 177–189. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03685-9 14

9. Jansen, K., Rau, M.: Improved approximation for two dimensional strip packing
with polynomial bounded width. CoRR abs/1610.04430 (2016)

10. Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource aug-
mentation. Discrete Optim. 6(3), 310–323 (2009)
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Abstract. Given a directed acyclic graph (DAG) G = (V, E) with n
vertices and m edges, we consider random edge lengths. That is, as the
input, we have a ∈ Z

m
>0, whose components are given for each edges

e ∈ E. Then, the random length Ye of edge e is a mutually indepen-
dent random variable that obeys a uniform distribution on [0, ae]. In
this paper, we consider the probability that the longest path length is at
most a certain value x ∈ R≥0, which is equal to the probability that all
paths in G have length at most x. The problem can be considered as the
computation of an m-dimensional polytope KG(a , x) that is a hyper-
cube truncated by exponentially many hyperplanes that are as many
as the number of paths in G. This problem is #P -hard even if G is a
directed path. In this paper, motivated by the recent technique of deter-
ministic approximation of #P -hard problems, we show that there is a
deterministic FPTAS for the problem of computing Vol(KG(a , x)) if the
pathwidth of G is bounded by a constant p. Our algorithm outputs a
value V ′ satisfying that 1 ≤ V ′/Vol(KG(a , x)) ≤ 1 + ε and finishes in
O(p421.5pn( 2mnp

ε
)3pL) time, where L is the number of bits in the input.

If the pathwidth p is a constant, the running time is O(n(mn
ε

)3pL).

1 Introduction

In this paper, we consider the longest path problem in directed acyclic graphs
(DAGs) with random edge lengths. We consider a DAG G = (V,E) with vertex
set V = {v1, . . . , vn} and edge set E ⊆ V × V where |E| = m. We assume that
the vertex set V = {v1, . . . , vn} are topologically ordered. Then, we consider m
mutually independent random variables. The distribution of the random edge
lengths are uniform distribution given by a vector a ∈ Z

m
>0, where each compo-

nent aij of a is given for each edge (vi, vj) ∈ E. Let Xij for e = (vi, vj) ∈ E
be mutually independent random variables uniformly distributed over [0, 1]. For
each edge e = (vi, vj) ∈ E, Ye = aijXij is the random edge length with its
distribution function Fij(x) = Pr[aijXij ≤ x]. Let Π be the set of all paths from
the sources to the terminals in G, where a source (resp. a terminal) is a vertex
with indegree (resp. outdegree) 0. We are to compute the probability that the
longest path length XMAX = maxπ∈Π

{∑
e∈π aeXe

}
is at most a certain value

x ∈ R≥0.
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This problem is well studied in the field of VLSI design (see e.g., [4]). The
time difference (signal delay) between the input and the output of each logical
circuit product may be different even though they are produced in the same
line of the same design. The signal delay fluctuates because the signal delay of
each logical gate fluctuates. Therefore, the VLSI makers would like to know if
sufficient number of their new chips are going to perform as expected before they
start costly mass-production. To estimate the signal delay of a logical circuit,
we consider the longest path length in a DAG by considering each of gates and
lines as an edge and each fluctuating signal delay as a random edge length.

When the edge lengths are mutually independent and uniformly distributed,
the distribution function Pr[XMAX ≤ x] of the longest path length is equal to
the volume of a polytope

KG(a , x) def=

{
x ∈ [0, 1]m

∣∣∣∣∣
∧

π∈Π

∑

e∈π

aexe ≤ x

}
.

If G is a directed path, KG(a , x) is called a 0−1 knapsack polytope. Computing
the volume of KG(a , x) is #P -hard even if G is a directed path (see [7])1.
However, we show that there is a deterministic FPTAS (fully polynomial time
approximation scheme) if the pathwidth of G is bounded by a constant p. In this
paper, we show the following theorem.

Theorem 1.1. Suppose that the pathwidth of G is bounded by a constant p.
There is an algorithm that approximates Vol(KG(a, x)) in O(p421.5pn( 2mnp

ε )3pL)
time satisfying 1 ≤ V ′/Vol(KG(a, x)) ≤ 1 + ε, where V ′ is the output of the
algorithm, and L is the number of bits in the input. If p is bounded by a constant,
the running time is O(n(mn

ε )3pL).

The running time of our algorithm depends on the number L of input bits
because we use the linear programming [17] as the subroutine.

In n-dimensional space, computing the volume of a polytope is hard if the ran-
domness is not available. In 1986, Lovász [14] considered an n-dimensional convex
body that is accessible by membership oracle, and showed that no determinis-
tic polynomial time algorithm can achieve the approximation ratio of 1.999n

(See also Elekes [9]). The bound is updated by Bárány and Füredi [3] up to
(cn/ log n)n/2, where c does not depend on n. Dyer and Frieze [7] showed that
computing the volume of the 0 − 1 knapsack polytope K is #P -hard.

Then, the randomized approximation has been studied. Dyer et al. [8] showed
the first FPRAS (fully polynomial time randomized approximation scheme)
that finishes in O∗(n23) time for volume of the general n-dimensional convex
body. Here O∗ ignores the factor of poly(log n) and 1/ε factor. There are faster
FPRASes [6,15]. The current fastest FPRAS [6] runs in O∗(n3) time for well-
rounded convex bodies.

1 Intuitively, the breakpoints of the function F (x) = Vol(KG(a , x)) increases expo-
nentially with respect to n. For example, consider the case where each component
ai of a is ai = 2i for i = 1, . . . , n.
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The above results lead us to a challenge in algorithm design: Is it possible to
approximate the volume of the convex body K if we can access K not only by
the membership oracle?

Recently, there are some deterministic approximation algorithms for the vol-
ume of the knapsack polytope. Li and Shi [13] showed an FPTAS for distribution
function of the sum of the discrete random variables. Their algorithm can be used
to approximate Vol(KG(a , x)) if G is a directed path. Their algorithm is based
on the dynamic programming due to Štefankovič et al. [16] (See also [10,11]).

Ando and Kijima [1], motivated by the deterministic approximation tech-
nique of the above results, showed another FPTAS that is based on the approxi-
mate convolution integral. Their algorithm runs in O(n3/ε) time. Especially, the
FPTAS in [1] is extensible to the volume of the multiple constraint knapsack
polytope. Given m × n matrix A ∈ Zmn

≥0 and a vector b ∈ Zm
≥0, the multiple

constraint knapsack polytope Km(A, b) is

Km(A, b) def= {x ∈ [0, 1]n|Ax ≤ b}.

Their algorithm finishes in O((n2ε−1)m+1nm log m) time. Thus, there is an
FPTAS for Vol(Km(A, b)) if the number of constraints m is bounded by a con-
stant. We show, in this paper, that the result in [1] can be extended to the
volume of the knapsack polytopes with Ω(2n) constraints. That is, the volume
of KG(a , x) in case the pathwidth of G is at most p.

We here note some results about the pathwidth for undirected graphs and
directed graphs. As for the undirected pathwidth, Bodlaender [5] found an algo-
rithm that finds the path decomposition of an undirected graph G with its width
at most p in linear time with respect to the graph size if the pathwidth of G
is bounded by a constant p. Johnson et al. [12] defined the directed treewidth.
They proved that many NP-hard problems, including computing the directed
treewidth, can be solved in polynomial time on the directed graphs with at most
constant directed treewidth. To make the argument easier, we use the pathwidth
of the underlying undirected graph of G.

Definition 1.2. A path decomposition of G is a sequence B = {B1, . . . , Bb} of
subsets of V satisfying the following three conditions. We call B ∈ B a bag.

1.
⋃

B∈B B = V ;
2. (u, v) ∈ E ⇒ ∃B ∈ B s.t. {u, v} ⊆ B;
3. if 1 ≤ i ≤ j ≤ k ≤ b, then Bi ∩ Bk ⊆ Bj.

The width of path decomposition B is maxB∈B |B| − 1. The pathwidth of G is
the minimum of the width of all possible path decomposition.

This paper is organized as follows. In Sect. 2, we explain our notations for mul-
tiple integrals. In Sect. 3, we show how we can compute the volume of KG(a , x)
by a repetition of definite integrals. In Sect. 4, we show our approximation algo-
rithm for the volume of KG(a , x). In Sect. 5, we prove the approximation ratio
and the running time so that our algorithm is an FPTAS for the volume of
KG(a , x). We finish this paper with the conclusion and the future work in Sect. 6.
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2 Preliminaries About Notations

We would like to introduce some notations about vector components. Let C
be a set and consider a vector x ∈ R

|C|. Each component of x is specified by
an element of C. That is, x (c) is a component of x for c ∈ C. Let C1 and
C2 be two sets. Let x ∈ R

|C1| and y ∈ R
|C2| be two vectors. Then we write

w = (x ,y) meaning that w is a concatenation of x and y . That is, w ∈ R
|C1∪C2|

so that w(c) = x (c) for c ∈ C1 and w(c′) = y(c′) for c′ ∈ C2. We consider this
concatenation of vectors only in cases where x and y has the same component
for the same element of C1 ∪ C2 (i.e., x (c) = y(c) holds for any c ∈ C1 ∪ C2).

Throughout this paper, we are concerned with the integrals with respect to
dummy variables z1, . . . , zn. We define v as an n-dimensional vector of variables
v = (z1, . . . , zn), where each component zi is associated to vi ∈ V (i.e., v(vi) =
zi). We write u = v(C) for some C ⊆ V , u is a vector with |C| components
where u(vi) = zi for vi ∈ C. We consider a multiple integral with |C| dummy
variables of some |C| variables function F (z ), where z = v(C). We write

∫

z∈R|C|
F (z )dz =

∫

z (v1)∈R

· · ·
∫

z (v|C|)∈R

F (z ) dz (v1) · · · dz (v|C|),

for C = {v1, . . . , v|C|}.

3 Exact Computation Using Path Decomposition

We show a variant of Theorem 1 in [2] so that the running time for computing the
volume of KG(a , x) is bounded by using the width of the path decomposition
of G. We first give the definition of terms and symbols. We compute a par-
tial computation result for each bag and put them together so that we obtain
Vol(KG(a , x)).

Here, we define some terms and symbols. Let B = {B1, . . . , Bb} be the path
decomposition of G. Let Gi,j be the subgraph induced in G by Bi ∪ · · · ∪ Bj .
We define that a source of Gi,j is a vertex that has no incoming edge from the
vertices in Gi,j or, a vertex that has one or more incoming edge from outside
of Gi,j . Also, a terminal of Gi,j is a vertex that has no outgoing edge to the
vertices in Gi,j or, a vertex that has one or more outgoing edge to outside of
Gi,j . Let Si,j and Ti,j be the sets of the sources and the terminals of Gi,j . We
call Si,i (resp. Ti,i) as the set of the sources (resp. the terminals) of bag Bi. Let
Πi,j(vs, vt) be the set of paths from a source vs to a terminal vt of Gi,j . Let
sij = v(Si,j) and t ij = v(Ti,j), where v is a |V |-dimensional vector with each
of its component given as a variable zi for each vi ∈ V . Then, Φi,j(sij , t ij) is an
|Si,j ∪ Vi,j | variables function

Φi,j(sij , t ij)
def= Pr

⎡

⎢⎢⎣
∧

vs∈Si,j
vt∈Ti,j

∧

π∈Πi,j(vs,vt)

∑

e∈π

aeXe ≤ zs − zt

⎤

⎥⎥⎦ .
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Roughly speaking, zi means the longest path length from vi to the terminal (e.g.,
z1 = x, zn = 0) in this formula. The following is the Theorem 1 in [2].

Theorem 3.1. [2] Let H(x) be the step function satisfying H(x) = 1 for x > 0
and H(x) = 0 for x ≤ 0. Then we have

Pr[XMAX ≤ x] =
∫

Rn−1

H(x − z1)
∏

1≤i≤n−1

⎛

⎝ ∂

∂zi

∏

i+1≤j≤n

Fij(zi − zj)

⎞

⎠ dzi. (1)

Here, Fij(x) = Pr[aijXij ≤ x] if (vi, vj) ∈ E; otherwise Fij(x) = 1 for x ∈ R.

Corollary 3.2. Let Ii,j = (Bi ∪ · · · ∪ Bj) \ (Si,j ∪ Ti,j). For sij = v(Si,j) and
tij = v(Ti,j), we have

Φi,j(sij , tij) =
∫

z∈R
|Ii,j |

∏

vs∈Si,j
(vs,vk)∈Ei,j

H(zs − zk)
∂

∂zk

∏

(vk,v�)∈Ei,j

Fk�(zk − z�)dz, (2)

where Fk�(x) = Pr[ak�Xk� ≤ x] and zi = v(Ii,j).

Proof. We consider a DAG G′
i,j with vertex set Bi ∪ · · · ∪ Bj ∪ {v+, v−}, where

v+ and v− are the source and the terminal, respectively. G′
i,j is obtained by

connecting v+ to each source vs ∈ Si,j of Gi,j by an edge with constant length
x − zs. Also we connect each terminal vt ∈ Ti,j of Gi,j to v− by an edge with
constant length zt. Then by Theorem 3.1 with sufficiently large x, we have the
claim. 	


We further transform (2) into the following lemma. We omit the proof due
to the space limit.

Lemma 3.3. Let Ji = (T1,i−1 ∩ Si,i) ∪ (Ti,i ∩ S1,i−1). Let zi = v(Ji), si =
v(Si,i \Ji), and ti = v(Ti,i \Ji). For i = 2, . . . , b, let φi(si, zi, ti) be the derivative
of Φi,i(si, zi, ti) with respect to all zj’s for vj ∈ Ji, that is

φi(si, zi, ti)
def=

⎛

⎝
∏

vj∈Ji

∂

∂zj

⎞

⎠Φi,i(si, zi, ti).

Let s̃i = v(S1,i), t̃i = v(T1,i), s′
i−1 = v(S1,i−1 \Ji) and t′i−1 = v(T1,i−1 \Ji). We

have

Φ1,i(s̃i, t̃i) =
∫

zi∈[0,x]|Ji|
Φ1,i−1(s′

i−1, zi, t
′
i−1)φi(si, zi, ti)dzi. (3)

Here Ji is the set of vertices by which the bags Bi and Bi−1 are joined. We
consider the paths that goes backward the bags of the path decomposition by
considering T1,i ∩ S1,i−1 as a part of Ji.

We can prove the following.
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Lemma 3.4. Let s̃i = v(S1,i), t̃i = v(T1,i), s′
i−1 = v(S1,i−1 \ Ji), t′i−1 =

v(T1,i−1 \ Ji), si = v(Si,i \ Ji), ti = v(Ti,i \ Ji), and zi = v(Ji). We have

Φ1,i(s̃i + (c1 + c2)1, t̃i) ≥
∫

zi∈[0,x]|Ji|

Φ1,i−1(s′
i−1 + c11, zi, t

′
i−1)φi(si, zi + c21, ti)dzi,

where 1 is the vector whose components are all 1.

The volume of KG(a , x) is Φ1,b(x1,0). The computation of Φ1,b(x1,0) is
hard because there may be exponentially many breakpoints in the derivative of
some order of Φ1,b(x1,0) with respect to x.

4 Approximation Algorithm

The idea is an extension of the algorithm in [1] for the volume of multiple
constraint knapsack polytope. For si = v(Si,i) and t i = v(Ti,i), we first
approximate Φi,i(si, t i) by a staircase function Ai(M, si, t i) using parameter
M . Then, as an approximation of φi(si, t i), we compute the discrete difference
of A(M, si, t i). We compute an extended form of the convolution of the dif-
ferences for i = 1, . . . , b so that we have the approximation of Φ1,b(s̃b, t̃b) for
s̃b = v(S1,b) and t̃b = v(T1,b).

We approximate Φi,i(si, t i) by counting. Consider a rectangular paral-
lelepiped Pi given by

Pi
def= {x ∈ R

|Ei,i||0 ≤ xe ≤ min{1, x/ae} for e ∈ Ei,i},

where Ei,i is the edge set of Gi,i. Let M = �2mnp/ε be an integer parameter of
our algorithm. We divide Pi into M |Ei,i| cells whose size in xe axis direction is
min{1, x/ae}/M for e ∈ Ei,i. Then, we count the number Ni(M, si, t i) of cells
that intersects with K ′

Gi,
(si, t i), where

K ′
Gi,i

(si, t i)
def=

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ Pi

∣∣∣∣∣∣∣∣

∧

vs∈Si,i
vt∈Ti,i

∧

π∈Πi,i(vs,vt)

∑

e∈π

aexe ≤ zs − zt

⎫
⎪⎪⎬

⎪⎪⎭
.

We can decide if the intersection is empty by using the linear programming. That
is, the decision problem is the linear programming with |Ei,i| (≤ p2) variables
and |Π(i, i)| (≤ 2p) inequalities, where p = max1≤i≤b |Bi|− 1 is the width of the
path decomposition. We have an approximation of Φi,i(si, t i) as

Ai(M, si, t i) = Ni

(
M,

⌈
siM

x

⌉
x

M
,

⌈
t iM

x

⌉
x

M

) ∏
e∈Ei

min
{

1, x
ae

}

M |Ei,i| , (4)

where
⌈
siM

x

⌉
(resp.

⌈
tiM

x

⌉
) is a vector with each element

⌈
zjM

x

⌉
corresponding

to vj ∈ Si,i (resp. vj ∈ Ti,i).



An FPTAS for Computing the Distribution Function 427

Let LP(n′,m′) be the time to solve the linear programming with n′ variables
and m′ constraints. Vaidya’s algorithm [17] can solve the linear programming in
O(((m′ + n′)n′2 + (m′ + n′)1.5n′)L′) time, where L′ is bounded by the number
of bits in the input of the linear programming. Since the number of constraints
is the number of paths in a bag, we have m′ = O(2p) and L′ ≤ mpL, where L
is the number of the bits of our problem (i.e., L is the number of bits necessary
for a , x and G). We have the following observation.

Observation 4.1. Let si = v(Si,i) and ti = v(Ti,i). we can compute
Ai(M, si, ti) in O(LP(p2, 2p)Mp) = O(p221.5pLMp) time, where p is the width
of the path decomposition of G, and L is the number of bits necessary for a, x
and G. If p is bounded by a constant, the running time is O(LMp).

Here, we have L = O(
∑

e∈E log ae + log x + log n + 2m log n).
It remains to, for si = v(Si,i \ Ji), z i = v(Ji) and t i = t(Ti,i \ Ji), show

how we put Ai(M, si, t i)’s together for i = 1, . . . , b into the approximation of
Φ1,b(s̃b, t̃b).

We approximate (3) using Ai(M, si, t i)(= Ai(M, si, z i, t i)). Since
Ai(M, si, z i, t i) is a staircase function, we consider discrete difference instead of
the derivative of Ai(M, si, z i, t i). We define the difference operator Δ(zj), i.e.,

Δ(zj)Ai(M, si, z i, t i)
def= Ai

(
M, si, z i +

x

M
ej , t i

)
− Ai(M, si, z i, t i).

Then, by assuming an order in the vertices in Ji, we repeatedly take the difference
for zj ’s corresponding to vj ∈ Ji. For the simplicity, we write

Δ(z i)Ai(M, si, z i, t i)
def= Δ(zj1) · · · Δ(zj|Ji|)Ai(M, si, z i, t i),

where Ji = {vj1 , . . . , vj|Ji|}. To obtain the values of Δ(z i)A(M, si, z i), t i), we
first compute the value of Ai(M, si, z i, t i) for the gridpoints of (si, z i, t i). That
is, the values of Ai(M, si, z i, t i)’s of points (si, z i, t i) = v(Si,i ∪ Ti,i) = (x/M)i
for i ∈ {0, . . . , M}|Si,i∪Ti,i|. Then, we compute Δ(zj)Ai(M, (x/M)i) for all
i ∈ {0, . . . , M}|Si,i∪Ti,i|. We store the values in an array with (M + 1)|Si,i∪Ti,i|

elements and then compute Δ(zj′)Δ(zj)Ai(M, (x/M)i) similarly for vj′ ∈ Ji.
This way we repeat computing the differences. When we obtain the values of
Δ(z i)Ai(M, (x/M)i) for i ∈ {0, . . . ,M}|Si,i∪Ti,i|, we will have |Ji| arrays with
(M + 1)|Si,i,∪Ti,i| elements each. We have the following observation.

Observation 4.2. Given zi = v(Ji), si = v(Si,i \ Ji), ti = v(Ti,i \
Ji), and Ai(M, �x/Mi) for all i ∈ {0, . . . , M}|Si,i∪Ti,i|, we can compute
Δ(zi)Ai(M, si, zi, ti) in O(pMp) time.

We set Ψ1(M, s1, t1)
def= A1(M, s1, t1). Let i ′ = {i′1, i

′
2, . . . , i

′
|Ji|} be an integer

vector with |Ji| components, where 0 ≤ i′j ≤ M for each vj ∈ Ji. We define the
approximation Ψi(M, si, z i, t i) of Φi,i(si, z i, t i) by

Ψi(M, si, z i, t i)
def=

∑

i ′∈{0,...,M}|Ji|

Ψi−1

(
M,si−1,

x

M
i ′,t i−1

)
Δ(z i)Ai

(
M,si,

x

M
i ′,t i

)
, (5)
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where si−1 = v(S1,i−1 \ Ji) and t i−1 = v(T1,i−1 \ Ji).
The following pseudocode shows our algorithm A.

Algorithm A(G,a , x,B)
Input: DAG G, edge lengths parameter a ∈ Z

m
>0, x ∈ R,

and bags of a path decomposition B = {B1, . . . , Bb} of G;
1. For i = 1, . . . , b do
2. Compute Ai(M, (x/M)i) for all i ∈ {0, . . . , M}|Si,i∪Ti,i| by (4);
3. Compute Δ(z i)Ai(M, (x/M)i) for all i ∈ {0, . . . ,M}|Si,i∪Ti,i|;
4. done;
5. Set Ψ1(M, (x/M)i) := A1(M, (x/M)i for i ∈ {0, . . . , M}|S1,1∪T1,1|;
6. For i = 1, . . . b do
7. Compute Ψi(M, (x/M)i ′) for i ′ ∈ {0, . . . , M}|S1,i∪T1,i| by (5);
8. done;
9. Output Ψb(M,x1,0).

As for the running time, we have the following observation. We actually set
M = �2mnp/ε to bound the approximation ratio at most 1 + ε.

Observation 4.3. If a path decomposition of G with width p is given, our
algorithm outputs a value V ′ = Ψb(x1, 0) satisfying V ′/Φ1,b(x1,0) ≤ 1 + ε
in O(LP(p2, 2p)bp2(M + 1)3p) = O(p421.5pn( 2mnp

ε )3pL) time, where L is the
number of bits in the input. If p is bounded by a constant, the running time is
O(n(mn

ε )3pL).

5 Analysis

In this section, we bound the approximation ratio. We first bound the approxima-
tion error “horizontally”. We show that Ψb(M,x1,0) is bounded by Φ1,b(x1,0)
and its translation from below and from above. Then, we prove the “vertical”
approximation ratio by showing that the upper bound and the lower bound are
not too far away from each other.

To “horizontally” bound the approximation error, we prove the following
lemmas. After that, we obtain the “vertical” approximation ratio.

Lemma 5.1. Let si = v(Si,i \ Ji), ti = v(Ti,i \ Ji), and zi = v(Ji). Let Ii =
Bi \ (Si,i ∪ Ti,i). Then,

Φi,i(si, zi, ti) ≤ Ai(M, si, zi, ti) ≤ Φi,i

(
si, zi +

(|Ii| − 1)x
M

1, ti

)
.

Proof. Since we count all the cells that intersects with K ′
Gi,i

(si, t i), (=
K ′

Gi,i
(si, z i, t i), si = v(Si,i), t i = v(Ti,i)) , the earlier inequality is obvious.

The latter inequality is shown as follows. Let C ⊆ [0, 1]|Ei,i| be a cell
on the border (i.e., C �= C \ K ′

Gi,i
(si, t i) �= ∅). Then, we claim C ⊆

K ′
Gi,i

(
si + (|Ii|−1)x

M 1, t i

)
. Let c1, c2 ∈ C be two vertices of C such that

c1 ∈ K ′
Gi,i

(s, t) and c2 �∈ K ′
Gi,i

(s, t). Let c1(e) = xe and c2(e) = xe + 1/M for
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e ∈ Ei,i. Since |π| ≤ |Ii| − 1 for vs ∈ Si,i, vt ∈ Ti,i and π ∈ Πi,i(vs, vt), we have
that

zs − zt ≤
∑

e∈π

min{ae, x}xe +
∑

e∈π

min{ae, x}
M

≤ zs − zt +
(|Ii| − 1)x

M
,

by definition of K ′
Gi,i

(si, t i). This shows the lemma. 	

By Lemma 5.1, we have the following lemma.

Lemma 5.2. Let s̃i−1 = v(S1,i−1 \Ji), t̃i−1 = v(T1,i−1 \Ji) and zi = v(Ji). Let
F (si−1, zi, ti−1) be an |S1,i ∪ T1,i| variables staircase function such that for any
zi ∈ R

|Ji|,

F (si−1, zi, ti−1) = F

(
si−1,

⌈
ziM

x

⌉
x

M
, ti−1

)
,

where �ziM/x is a vector such that its element for vj ∈ V is �zjM/x. For
si = v(Si,i \ Ji) and ti = v(Ti,i \ Ji), we have

∫

zi∈[0,x]|Ji|
F (si−1, zi, ti−1)φi(si, zi, ti)dz

≤
∑

i={0,...,M}|Ji|

F
(
si−1,

x

M
i, ti−1

)
Δ(zi)Ai

(
M, si,

x

M
i, ti

)

≤
∫

zi∈[0,x]|Ji|
F (si−1, zi, ti−1)φi

(
si, zi +

(|Ii| − 1)px

M
1, ti

)
dz.

Proof. Since F (si−1, z i, t i−1) is a staircase function that is a constant in each
cell, the lemma is clear from Lemma 5.1. 	


The following lemma shows the “horizontal” error bound.

Lemma 5.3. Let s̃i = v(S1,i), t̃i = v(T1,i). For i = 1, . . . , b,

Φ1,i(s̃i, t̃i) ≤ Ψi(M, s̃i, t̃i) ≤ Φ1,i

(
s̃i +

|⋃1≤j≤i Bj |px

M
1, t̃i

)
.

Proof. Since the inequality on the left is obvious by the definition, we prove the
inequality on the right in the following. The proof is induction on i. As for the
base case, we have that, for s̃1 = v(S1,1) and t̃1 = v(T1,1).

Ψ1(M, s̃1, t̃1) = A1(M, s̃1, t̃1) ≤ Φ1,1

(
s̃1 +

|I1|x
M

1, t̃1

)
,

by Lemma 5.1. Let s ′
i−1 = v(S1,i−1 \ Ji), t ′

i−1 = v(T1,i−1 \ Ji), si = v(Si,i \ Ji),
t i = v(Ti,i \ Ji), and z i = v(Ji). As the induction hypothesis, we assume that

Ψi−1(M, s ′
i−1, z i, t

′
i−1) ≤ Φ1,i−1

(
s ′

i−1 +
|⋃1≤j≤i−1 Bj |px

M
1, z i, t

′
i−1

)
.
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Then,we have

Ψi(M, s̃i, t̃ i)

=
∑

i∈{0,...,M}|Ji|

Ψi−1

(
M, s ′

i−1,
x

M
i , t ′

i−1

)
Δ(z i)Ai

(
M, si,

x

M
i , t i

)
(∵ Definition)

≤
∫

z i∈[0,x]|Ji|

Ψi−1

(
M, s ′

i−1, z i, t
′
i−1

)
φi

(
si, z i +

|Ii|px

M
1, t i

)
dz i (∵ Lemma 5.2)

≤
∫

z i∈[0,x]|Ji|

Φ1,i−1

⎛

⎝s ′
i−1+

∣∣∣
⋃

1≤j≤i−1 Bj

∣∣∣ px

M
1, z i, t

′
i−1

⎞

⎠φi

(
si, z i+

|Ii|px

M
1, t i

)
dz i

(∵ Induction hypo.)

≤ Φ1,i

⎛

⎝s̃i +

⎛

⎝|Ii|p +

∣∣∣∣∣∣

⋃

1≤j≤i−1

Bj

∣∣∣∣∣∣
p

⎞

⎠ x

M
1, t̃ i

⎞

⎠ (∵ Lemma 3.4)

≤ Φ1,i

(
s̃i +

|⋃1≤j≤i Bj |px

M
1, t̃ i

)
(∵ Φ1,i(s, t) ≤ Φ1,i(s ′, t) if s ≤ s ′).

	

The following shows the “vertical” approximation ratio of our algorithm.

Lemma 5.4. Let M = �2mnp/ε where n = |V |,m = |E|. Then
1 ≤ Ψb(M,x1,0)/Φ1,b(x1,0) ≤ 1 + ε.

Proof. Since the earlier inequality is clear by the definition. We prove the latter
inequality. Since we have that Ψb(M,x1,0) is at most

Φ1,b

(
x1 +

|⋃1≤j≤b Bj |px

M
1,0

)
≤ Φ1,b

(
x1 +

npx

M
1,0

)

by Lemma 5.3, we bound, from below,

Φ1,b(x1,0)
Ψb(M,x1,0)

≥ Φ1,b(x1,0)
Φ1,b

(
x1 + npx

M 1,0
) .

Then, we claim that

Φ1,b(x1,0)
Φ1,b

(
x1 + npx

M 1,0
) ≥

(
1

1 + np/M

)m

=
(

1
1 + 1

2mε

)m

.

This claim is verified as follows. By definition of Φ1,b(x1,0), is the volume of

KG(a , x) =

{
x ∈ [0, 1]m

∣∣∣∣∣
∧

π∈Π

∑

e∈π

aexe ≤ x

}
.
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Consider another polytope KG(a , x) that is obtained by scaling KG(a , x) by
1 + np/M , that is,

KG(a , x) def= {x ∈ R
m|∃y ∈ KG(a , x) s.t. x = (1 + np/M)y}

=

⎧
⎨

⎩x ∈ [0, 1 + np/M ]m

∣∣∣∣∣∣

∧

π∈Π1,i

∑

e∈π

aexe ≤ x(1 + np/M)

⎫
⎬

⎭ .

Then, it is clear that KG(a , x + npx/M) ⊆ KG(a , x). This implies that

Φ1,b(x1,0)
Φ1,b

(
x1 + npx

M 1,0
) =

Vol(KG(a , x))
Vol(KG(a , x + npx/M))

≥ Vol(KG(a , x))
Vol(KG(a , x))

=
(

1
1 + np/M

)m

=
(

1
1 + 1

2mε

)m

,

which shows the claim. Now we have
(

1
1 + 1

2mε

)m

≥
(

1 − 1
2mε

)m

≥ 1 − mε

2m
= 1 − ε

2
.

The first inequality is because ((1 + 1
2mε )(1 − 1

2mε ))
m ≤ 1. Then,

Φ1,b(x1 + npx
M ,0)

Φ1,b(x1,0)
≤ 1

1 − ε/2
≤ 1 + ε,

for 0 ≤ ε ≤ 1, we have the lemma. The restriction ε ≤ 1 is not essential. We set
ε = 1 instead of larger approximation ratio. 	


Now Theorem 1 is clear from Lemma 5.4 and Observation 4.3.

6 Conclusion and Discussion

In this paper, we showed that there is an FPTAS for the distribution function
of the longest path length of a DAG G if the pathwidth of G is bounded by
a constant p. Though the problem is #P -hard for a directed path (see [7]),
there are cases where there are exponentially many paths in G. The idea of our
algorithm may be extended to the DAGs with constant treewidth by making the
description slightly more complex.

For the future work, the cases in which the pathwidth of G is large would be
interesting. Also, it would be interesting if we can find some #P -hard volumes
such that there is an FPTAS that is based on the staircase approximation.
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Abstract. We consider a puzzle consisting of colored tokens on an n-
vertex graph, where each token has a distinct starting vertex and a set
of allowable target vertices for it to reach, and the only allowed transfor-
mation is to “sequentially” move the chosen token along a path of the
graph by swapping it with other tokens on the path. This puzzle is a vari-
ation of the Fifteen Puzzle and is solvable in O(n3) token-swappings. We
thus focus on the problem of minimizing the number of token-swappings
to reach the target token-placement. We first give an inapproximability
result of this problem, and then show polynomial-time algorithms on
trees, complete graphs, and cycles.

1 Introduction

In this paper, we consider the following puzzle on graphs. Let G = (V,E) be an
undirected unweighted graph with vertex set V and edge set E. Suppose that
each vertex in G has a color in C = {1, 2, . . . , |C|}, |C| ≤ |V |, and has a token of
a color in C. Then, we wish to transform the current token-placement into the
c© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 435–447, 2017.
DOI: 10.1007/978-3-319-53925-6 34
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(h)
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1

32

v1 v2

v3 v4

v5

Fig. 1. An example of Sequential Token Swapping. (a) An input graph and its
initial token-placement. (b)–(g) Intermediate token-placements. (h) The target token-
placement. Token colors on vertices are written inside circles. We sequentially swap
the token on v4 along the walk 〈v4, v1, v2, v4, v3, v1, v2, v5〉. For each solid line, the two
tokens on its endpoints are swapped.

one such that a token of color i is placed on a vertex of color i for all vertices
by a “sequential” token swapping. For a walk W = 〈w1, w2, . . . , wk〉1 of G, a
sequential swapping is to swap the two tokens on wi and wi+1 in the order of
i = 1, 2, . . . , k − 1. Intuitively, the token on w1 is moved to wk along W and
for each i = 2, 3, . . . , k, the token on wi is shifted to wi−1. Figure 1 shows an
example of a sequential swapping. If there exists a color i such that the number
of vertices of color i is not equal to the number of tokens of color i in a current
token-placement, then we cannot transform the token-placement into the target
one. Thus, without loss of generality, we assume that the number of vertices of
color i for each i = 1, 2, . . . , |C| is equal to the number of tokens of the same
color.

Our problem is regarded as a variation of the Fifteen Puzzle or 15 Puzzle [1]
if we assume that vertices and tokens are labeled. There are some generalizations
for the Fifteen Puzzle. Ratner and Warmuth [5] considered the Fifteen Puzzle
on a N × N board. They demonstrated that the problem of finding the shortest
solution of the Fifteen Puzzle on N × N board is NP-complete. Goldreich [3]
generalized the problem to a game on graphs. He demonstrated that the problem
of finding the shortest solution of the Fifteen Puzzle on graphs is NP-complete.
Kornhauser et al. [4] and Wilson [6] also considered the problem of the Fifteen
Puzzle on graphs. See Demaine and Hearn’s survey [2] on the Fifteen Puzzle and
its related puzzles for further details.

Recently, Yamanaka et al. [7,8] considered the same problem with the dif-
ferent swapping rule which is to swap any two tokens on adjacent vertices.
Yamanaka et al. [7] dealt with the case where the number of colors is equal

1 In this paper, we denote a walk of a graph by a sequence of vertices.
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to the number of vertices, and showed a polynomial-time 2-approximation algo-
rithm for trees and a polynomial-time exact algorithm for complete bipartite
graphs. However, the complexity of the problem was not proved in the paper.
On the other hands, Yamanaka et al. [8] considered the more general case in
which the number of colors is equal to or smaller than the number of vertices.
They demonstrated that the problem is NP-complete when the number of colors
is 3 or more, and otherwise the problem is polynomially solvable.

In this paper, we consider the sequential token swapping problem which asks
to find the shortest walk W such that the sequential swapping along W gives
the target token-placement. We first demonstrate an inapproximability of our
problem even if the number of colors is 2. This result shows a difference on
complexity between the problem in [8] and our problem in the sense that, when
the number of colors is 2, the former is polynomially solvable, however the latter
is computationally hard. Then, we present some positive results for restricted
graph classes: trees, complete graphs, and cycles.

Due to space limitations, several proofs are omitted.

2 Preliminaries

2.1 Notations

In this paper, we assume without loss of generality that graphs are simple and
connected. Let G = (V,E) be an undirected unweighted graph with vertex set
V and edge set E. We sometimes denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We always denote |V | by n. For a vertex v in
G, let NG(v) be the set of all neighbors of v. that is, NG(v) = {w ∈ V (G) |
(v, w) ∈ E(G)}. Let NG[v] = NG(v) ∪ {v}. Each vertex of a graph G has a color
in C = {1, 2, . . . , |C|}. We denote by c(v) ∈ C the color of a vertex v ∈ V .
A token is placed on each vertex in G. Each token also has a color in C. For a
vertex v, we denote by f(v) the color of the token placed on v. Then, we call
the surjective function f : V → C a token-placement of G. Note that, since c is
also a function from V to C, it can be regarded as a token-placement of G. Let
f and f ′ be two token-placements of G. For a walk W = 〈w1, w2, . . . , wh〉 of G,
a sequence S = 〈f1, f2, . . . , fh〉 of token-placements is a swapping sequence of W
between f and f ′ if the following three conditions (1)–(3) hold:

(1) f1 = f and fh = f ′;
(2) fk is a token-placement of G for each k = 1, 2, . . . , h; and
(3) fk is obtained from fk−1 by swapping the two tokens on wk−1 and wk for

each k = 2, 3, . . . , h.

Intuitively, a swapping sequence of W represents to move the token on w1 to wh

along W .
Let S be a sequence. Then, the length of S, denoted by len(S), is defined to

be the number of elements in S minus one. The length of a swapping sequence S,
len(S), indicates the number of token-swappings in S. For two token-placements
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f and c of G, we denote by OPTSTS(G, f, c) the minimum length of a swapping
sequence between f and c. Given two token-placements f and c of a graph G
and a nonnegative integer �, the Sequential Token Swapping problem is to
determine whether or not OPTSTS(G, f, c) ≤ � holds. We call f and c the initial
and target token-placements of G, respectively.

2.2 Polynomial-Length Upper Bound

We prove that, if there exists a swapping sequence between two token-
placements, then the length of the sequence is polynomial.

Theorem 1. For any graph G and an initial token-placement f and a target
token-placement c, if there exists a swapping sequence between the two token-
placements, OPTSTS(G, f, c) is at most n3.

Proof. We show that, if the instance (G, f, c) has a swapping sequence, one can
construct a swapping sequence of length at most n3 using an existing result [4].
Let Pi be a permutation from the set of tokens of color i in f to the set of tokens
of color i in c, for each i = 1, 2, . . . , |C|. We denote by P = {P1, P2, . . . , P|C|} the
set of the permutations. Then, by using the permutations in P, we can create
an initial token-placement f ′ and a target token-placement c′ such that, using a
color set C ′ = {1, 2, . . . , n}, the token colors of any two vertices in f ′ are distinct
and the token colors of any two vertices in c′ are also distinct. Note that, for f ′

and c′, the target place (vertex) of each token is unique and a swapping sequence
between f ′ and c′ is also a swapping sequence between f and c. Then, we can
observe that, among all the pairs of token-placements which are created from all
possible permutation sets, there exists at least one swapping sequence of length
at most n3 if and only if, for f and c, there exists a swapping sequence of length
at most n3.

Kornhauser et al. [4] showed that, for two token-placement of C ′ and a token
t, one can decide whether there exists a swapping sequence between the two
token-placements in which t is moved, and if a swapping sequence exists one can
find a swapping sequence of length at most n3. By applying their method to all
the pairs of the token-placements which are created from all possible permutation
sets and all tokens, one can obtain a swapping sequence of length at most n3 if
a swapping sequence exists. �	

3 Inapproximability

In this section, we demonstrate an inapproximability of Sequential Token
Swapping problem. To show the hardness result, we give a gap-preserving reduc-
tion from the following problem:

Problem: Maximum Vertex-Disjoint Path Cover on Undirected
Bipartite Graphs
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Instance: An undirected bipartite graph G = (V,E) with partite sets X and
Y such that |X| = |Y |.

Question: Find a set of vertex-disjoint paths that cover all the vertices in G
such that the paths contain the maximum number of edges.

If an input graph G is hamiltonian, then a hamiltonian path in the graph is an
optimal solution and the number of edges in the path is n − 1, where n is the
number of vertices in G. We can show that (1 − ε,1)-gap Maximum Vertex-
Disjoint Path Cover on Undirected Bipartite Graphs problem is NP-
hard (We omit the proof of this claim). Thus, we give a gap-preserving reduction
from the problem to Sequential Token Swapping problem with only 2 colors.
Let OPTU-MVDPC(G) denote the optimal value, which is the number of edges in
paths in an optimal path cover, of Maximum Vertex-Disjoint Path Cover
on Undirected Bipartite Graphs problem for an input graph G.

Theorem 2. There is a gap preserving reduction from Maximum Vertex-
Disjoint Path Cover on Undirected Bipartite Graphs problem to
Sequential Token Swapping problem that transforms a bipartite graph G =
(V,E) with partite sets X and Y such that |X| = |Y | to a graph H = (VH , EH)
and its two token-placements f, c with 2 colors, where n = |V | such that

(1) if OPTU-MVDPC(G) = n − 1, then OPTSTS(H, f, c) = n − 1 and
(2) if OPTU-MVDPC(G) < (1−ε)(n−1), then OPTSTS(H, f, c) > (1+ε)(n−1).

Proof. Let G be an instance of Maximum Vertex-Disjoint Path Cover
on Undirected Bipartite Graphs problem. Now we construct an instance
of Sequential Token Swapping problem, that is a graph, an initial token-
placement, and a target one. We first construct a copy G′ = (V ′, E′) of G, and
denote its two partite sets by X ′ and Y ′. We set f(u) = 1 and c(u) = 2 for
every vertex u ∈ X ′, and set f(v) = 2 and c(v) = 1 for every vertex v ∈ Y ′.
We then insert “connection gadgets” for non-adjacent vertex pairs between X ′

and Y ′, as follows. Let A = {(u, v) | u ∈ X ′, v ∈ Y ′, and (u, v) /∈ E′}. The
connection gadget for (u, v) ∈ A consists of two paths of length 2 connecting
u ∈ X ′ and v ∈ Y ′ (see Fig. 2). For the two intermediate vertices w and z in
the paths, we set f(w) = 1 and c(w) = 1, and f(z) = 2 and c(z) = 2. We
denote the obtained graph and its initial and target token-placements by H, f ,
and c, respectively. Figure 3 shows an example of the reduction graph. In the
figure, connection gadgets are represented as dotted lines for convenience. The
reduction graph, its initial token-placement, and its target token-placement can
be constructed in polynomial time.

Now we show that, an optimal solution of the reduced instance of Sequen-
tial Token Swapping can be obtained from an optimal solution of an instance
of Maximum Vertex-Disjoint Path Cover on Undirected Bipartite
Graphs, as follows. Let P be a maximum vertex-disjoint cover of G and let
cost(P) =

∑
P∈P len(P ), where len(P ) is the number of edges in the path P ∈ P.

We construct a swapping sequence between f and c from P. Let P1 and P2 be
two paths in P such that P1 contains an endpoint v1 in X ′ and P2 contains
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u

v

1 2w
z

Fig. 2. A connection gadget.

(a) (b) (c)

X

Y

1 1 1 1 1 1

2 2 2 2 2 2 1 1 1 1 1 1

2 2 2 2 2 2X’

Y’

X’

Y’

Fig. 3. An example of reduction. (a) A bipartite graph G = (V,E) with partite sets X
and Y such that |X| = |Y |. (b) The reduction graph H and its initial token-placement
f . Connection gadgets are represented as dotted lines. (c) The target token-placement.

an endpoint v2 in Y ′. Then, we connect v1 ∈ X ′ and v2 ∈ Y ′ with a path of
the connection gadget between v1 and v2. Note that v1 and v2 are not adjacent
from optimality of P. When a token is sequentially swapped from v1 ∈ X ′ to
v2 ∈ Y ′, we choose the path with the intermediate vertex of color 2. Otherwise,
we choose the path with the intermediate vertex of color 1. Since |X| = |Y |, by
repeating the above process, we can find a path spanning all vertices in X ′ ∪Y ′.
Note that, since |X| = |Y | holds again, the number of paths whose endpoints
are both in X ′ are equal to the number of paths whose endpoints are both in
Y ′. Then, by swapping the token on an endpoint to the other endpoint along
the obtained path, we have the target token-placement.

Let S be the swapping sequence obtained from P by the above process. Now,
we show that S is optimal. We assume for a contradiction that S ′ is a better
solution than S. Let W be the walk corresponding to S, and let m be the the
number of edges in W in connection gadgets. Similarly, let W ′ be the walk
corresponding to S ′, and let m′ be the number of edges in W ′ in connection
gadgets. Then, W ′ is a path spanning vertices in X ′ ∪ Y ′. More precisely, a
vertex in X ′ ∪Y ′ appears once in W ′ and an intermediate vertex in a connection
gadget appears at most once in W ′. Note that every vertex v in H does not
appear twice or more, since to visit v twice or more produces redundant token-
swappings. Hence, we can construct a path cover from W ′, as follows. First,
we split W ′ into subsequences by regarding intermediate vertices as boundaries
and removing the intermediate vertices. Then we obtain the set of subsequences.
Since W ′ spans the vertices in X ′ ∪ Y ′ and visits each vertex at most once, the
set is a path cover of G. Let P ′ denote the path cover obtained from W ′.
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Now, to derive a contradiction, we first focus on the two path covers P and
P ′, and then we derive an inequality between |P| and |P ′|, more specifically the
number of paths in P is smaller than or equal to the number of paths in P ′.
Since each of P and P ′ visits every vertex in X ′ ∪ Y ′ exactly once, we have
cost(P) = (n − 1) − |P| + 1 and cost(P ′) = (n − 1) − |P ′| + 1. Then, we also
have cost(P) ≥ cost(P ′), since P ′ is an optimal path cover. Thus, we obtain
|P| ≤ |P ′|.

Next we focus on the two walks W and W ′ and we also derive an inequality
between |P| and |P ′|. Since S ′ is a shorter swapping sequence than S, len(W ) >
len(W ′) holds. Each of W and W ′ visits every vertex in X ′ ∪ Y ′ exactly once.
Therefore, the number of edges in connection gadgets in W is greater than the
number of edges in connection gadgets in W ′, that is m > m′. Since W and
W ′ include exactly two edges in each connection gadget in W and W ′, we have
|P| = m

2 + 1 and |P ′| = m′
2 + 1, respectively. Therefore, |P| > |P ′| holds, which

contradicts to |P| ≤ |P ′|. Therefore, S is an optimal swapping sequence of H,
f , and c.

Now, we demonstrate the claims (1) and (2).
If OPTU-MVDPC(G) = n − 1, then G has a hamiltonian path P . Note that

an endpoint of P is in X and the other is in Y since |X| = |Y |. By sequentially
swapping the token on an endpoint of P in H to the other endpoint, we obtain
the target token-placement. Hence, OPTSTS(H, f, c) ≤ n−1. Since we must visit
every vertex v in H such that f(v) �= c(v), the number of such vertices minus
one is a lower bound for OPTSTS(H, f, c). Therefore OPTSTS(H, f, c) = n − 1.

Let S be an optimal swapping sequence obtained from an optimal path cover
P of G by the transformation above. The length of S is equal to the sum of the
number of edges in P and the number of edges in the connection gadgets which
used in S. (Recall that at most two edges in each connection gadget are used in
S.) Therefore we have the following equation:

len(S) = cost(P) + 2(|P| − 1)
= (n − 1) + (|P| − 1) (1)

If OPTU-MVDPC(G) < (1 − ε)(n − 1), then |P| is bounded from below:

|P| = (n − 1) − cost(P) + 1
> (n − 1) − (1 − ε)(n − 1) + 1
= ε(n − 1) + 1. (2)

From Equality (1) and Inequality (2), we have OPTSTS(H, f, c) > (1 + ε)
(n − 1). �	

From Theorem 2, even if the number of colors is 2, there is no polynomial-time
(1 + ε)-approximation algorithm, unless P = NP .

4 Polynomial-Time Algorithms

In the previous section, we showed the inapproximability of Sequential Token
Swapping problem even if the number of colors is 2. On the other hand, if
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graph classes are restricted, the problem can be solved in polynomial time for
any number of colors. In this section, we consider the problem of computing the
minimum numbers of token-swappings for trees, complete graphs, and cycles.

4.1 Trees

Let G = (V,E) be a tree, and let f and c be an initial and a target token-
placements of G, respectively. We show below that Sequential Token Swap-
ping problem on trees can be solved in linear time.

First we repeat to remove a leaf v with f(v) = c(v) until the tree has no such
leaf. If all the vertices are removed, then we return zero as a solution. We assume
otherwise. Let G′ be the obtained tree. Note that G′ is a tree with two or more
vertices, and hence G′ has two or more leaves. If G′ has three or more leaves,
the input tree and its token-placements f and c is a no-instance. Recall that
only one token is sequentially moved. Hence we assume that G′ have exactly two
leaves. For the token on each leaf v, which satisfies f(v) �= c(v), we sequentially
move the token on v to its target vertex. We finally check whether or not the
obtained token-placement is the target one. If the answer is yes for at least one
of them, then the sequential token-swapping above is optimal. Otherwise, the
input tree and its token-placements f and c is a no-instance. Hence we have the
following theorem.

Theorem 3. For a tree G, an initial token-placement f , and a target token-
placement c one can compute OPTSTS(G, f, c) in O(n) time.

4.2 Complete Graphs

Let G = (V,E), f , and c be a complete graph, an initial token-placement and a
target token-placement, respectively. Let C = {1, 2, . . . , |C|}, |C| ≤ n, be the set
of colors. For a token-placement f , let V ′(f) ⊆ V be the set of vertices v such
that f(v) �= c(v).

We first introduce a multiple digraph D(f) = (VD(f), ED(f)) called the
destination graph as follows:

– VD(f) = {i | i ∈ C and i = f(v) for some v ∈ V ′(f)}.
– ED(f) = {(f(v), c(v)) | v ∈ V ′(f)}

Note that VD(f) corresponds to the set of the colors each of which is a color of
at least one token placed in a vertex in V ′(f) and each arc (f(v), c(v)) ∈ ED(f)
corresponds to a vertex v ∈ V ′(f). Since, for each color in C, the number of
vertices in G of the color is equal to the number of tokens of the same color,
each node in destination graph D(f) has the same numbers of incoming edges
and outgoing edges. Thus, each connected component of D(f) has a directed
Euler cycle. Therefore, D(f) consists of only strongly connected components.
Let s(f) be the number of strongly connected components in D(f). Then we
claim the following:
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Claim. For a complete graph, an initial token-placement f , and a target token-
placement c, OPTSTS(G, f, c) = |V ′(f)| + s(f) − 2.

The claim above immediately implies the following theorem, since we can
calculate the values of |V ′(f)| and s(f) in O(n) time.

Theorem 4. For a complete graph G, an initial token-placement f , and a target
token-placement c one can compute OPTSTS(G, f, c) in O(n) time.

In the rest of this section, we prove the above claim. First we show that
OPTSTS(G, f, c) ≤ |V ′(f)| + s(f) − 2 by constructing a swapping sequence of
length |V ′(f)|+s(f)−2, then we show that OPTSTS(G, f, c) ≥ |V ′(f)|+s(f)−2
by using a potential function.

Upper Bound. We present an algorithm that finds a swapping sequence
of length |V ′(f)| + s(f) − 2. Let Ci, i = 1, 2, . . . , s(f), be a strongly con-
nected component of D(f). Recall that Ci has a directed Euler cycle. We here
denote a directed Euler cycle as a sequence of directed edges: For each Ci,
i = 1, 2, . . . , s(f), let 〈ei,1, ei,2, . . . , ei,ti〉 denote a directed Euler cycle of Ci,
where ti is the number of edges in Ci. For each ei,j , let vi,j be the corresponding
vertex in V ′(f). Let

W = 〈 v1,1, v1,2, . . . , v1,t1 ,

v2,1, v2,2, . . . , v2,t2 , v1,t1 ,

v3,1, v3,2, . . . , v3,t3 , v1,t1 ,

. . . ,

vs(f),1, vs(f),2, . . . , vs(f),ts(f)
, v1,t1〉.

be a walk in V ′(f). Now we show that the length of W is |V ′(f)|+s(f)−2 and the
target token-placement c is obtained by swapping along W . This immediately
implies that we have a swapping sequence between f and c of length |V ′(f)| +
s(f) − 2.

Since each vertex in V ′(f) \ {v1,t1} appears exactly once and v1,t1 appears
s(f) times, len(W ) = |V ′(f)|+ s(f)−2. Let f ′ be the token-placement obtained
by sequentially swapping the token on v1,1 along W , and let vi,j , 1 ≤ j ≤ ti − 1,
denote a vertex in V ′(f) \ {v1,t1}. Since vi,j appears exactly once, f ′(vi,j) =
f(vi,j+1) holds. Recall that vi,j and vi,j+1 correspond to ei,j and ei,j+1 in the
directed Euler cycle of Ci, respectively. Thus, f(vi,j+1) = c(vi,j) holds. Next, let
us consider the vertex vi,ti in V ′(f) \ {v1,t1}. It can be observed that, while we
traverse from vi,1 to vi,ti , v1,t1 has f(vi,1), since the sequence 〈ei,1, ei,2, . . . , ei,ti〉
is an Euler cycle, f(vi,1) = c(vi,ti) holds. Thus, vi,ti has its expected token after
the token-swappings on vertices of Ci. Finally, we have f ′(v1,t1) = c(v1,t1), since
f(v1,1) = c(v1,t1) holds.
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Lower Bound. Now we show that the length of any swapping sequence is
at least |V ′(f)| + s(f) − 2. Let S = 〈f1, f2, . . . , fh〉 be an arbitrary swapping
sequence between f and c for a walk W = 〈w1, w2, . . . , wh〉. Note that f1 = f
and fh = c. We call the token x on w1 in f the moving token of S. Let D(fi) be
the destination graph for each token-placement.

First, we define a potential function p(fi). Let p1(fi) be the number of vertices
in V ′(fi) except the vertex with the moving token x, and let p2(fi) be the number
of strongly connected components in D(fi) that do not include x. We define the
potential function as p(fi) = p1(fi) + p2(fi). Then,

p(fi) ≥ (|V ′(fi)| − 1) + (s(fi) − 1)

and

p(c) = 0.

Note that for any token-placement fi �= c,

p(fi) ≥ 1.

Now we can show the following lemma.

Lemma 1. p(fi+1) ≥ p(fi) − 1 holds.

Hence, the length of any swapping sequence f is at least p(f). This completes
the proof of Theorem4.

4.3 Cycles

In this section, we present two algorithms for cycles. The first algorithm runs in
O(n4) time, while the second one is faster and runs in O(n2) time. Let G = (V,E)
be a cycle with n vertices, and let f and c be an initial and a target token-
placements of G. For cycles, the moving token goes clockwise or counterclockwise.
In the shortest sequential swapping, the moving token does not turn back, since
changing the direction produces redundant token-swappings. Hence, the moving
token always goes either clockwise or counterclockwise. The optimal solution is
the shortest sequential swapping among both directions. Thus, in this section, we
suppose that the moving token always goes clockwise, since the same discussion
can be applied to the other direction.

Näıve Algorithm

We denote vertices in clockwise order on the cycle by 〈v1, v2, . . . , vn〉. We first
define the following n × n table T [x][k]:

T [x][k] =

{
1 f(vx) = c(v(x−k) mod n)
0 otherwise.
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The value of T [x][k] represents whether or not the token on vx is placed on
its expected vertex after the token goes counterclockwise by k token-swappings.
Using this table, we make sure the token-placement after a sequential swapping
is identical to the target one.

If we move the token on a vertex vx clockwise with a sequential swapping of
length n−1, then all other tokens are shifted once counterclockwise. Similarly, if
we move the token on vx clockwise with a sequential swapping of length i(n−1),
for i = 1, 2, . . . , n − 1, then all other tokens are shifted i times counterclockwise.
Thus, a sequential token-swapping of length i(n − 1) + j moves each token on
vw, w = x + 1, x + 2, . . . , x + j (mod n), i + 1 times counterclockwise and each
token on vw, w = x − 1, x − 2, . . . , x + j + 1 (mod n), i times counterclockwise.
Therefore, we have the following observation.

Observation 1. The token-placement obtained by a sequential swapping of
length i(n − 1) + j with the moving token on vx is identical to the target one if
and only if

(1) T [w][i + 1] = 1 for each w = x + 1, x + 2, . . . , x + j (mod n)
(2) T [w][i] = 1 for each w = x − 1, x − 2, . . . , x + j + 1 (mod n)
(3) T [x][i − j] = 1.

From this observation, we have a näıve algorithm. We denote a candidate of a
solution by a triple (x, i, j) for 1 ≤ x ≤ n, 1 ≤ i ≤ n − 1, and 1 ≤ j ≤ n − 1.
A triple (x, i, j) is feasible if it satisfies the above three conditions. The näıve
algorithm simply investigates whether or not every triple (x, i, j) is feasible, then
returns the triple that minimizes the value of (n − 1)i + j among all the feasible
triples. This algorithm runs in O(n4) time.

Theorem 5. For a cycle G, an initial token-placement f , and a target token-
placement c one can compute OPTSTS(G, f, c) in O(n4) time.

Improvement

In this subsection, we improve the running time of the näıve algorithm. We
construct three other tables that store auxiliary information to efficiently check
the conditions in Observation 1.

First we define the table T ′. For a vertex vx, 1 ≤ x ≤ n, and an integer k,
1 ≤ k ≤ n−1, T ′[x][k] stores the maximum index s such that T [w][k] = 1 for all
w = x+1, x+2, . . . , x+s (mod n). Intuitively, the entry s = T ′[x][k] means that,
after k token-swappings, all consecutive tokens f(w), w = x + 1, x + 2, . . . , x + s
(mod n), are placed on their expected vertices, f(x + s + 1 mod n) is placed on
an unexpected vertex. Similarly, we define the table T ′′, as follows. For a vertex
vx, 1 ≤ x ≤ n, and an integer k, 1 ≤ k ≤ n − 1, T ′′[x][k] stores the maximum
index s such that T [w][k] = 1 for any w = x − 1, x − 2, . . . , x − s (mod n). The
table T ′′ focuses on the consecutive tokens from vx in the opposite direction of
T ′. We also define the table T ′′′. The table T ′′′[x][k] stores the maximum index
s such that T [x][�] = 0 for any � = k, k − 1, . . . , k − s + 1 (mod n). Intuitively,



446 K. Yamanaka et al.

this entry means how many token-swappings we need to place the moving token,
which is placed on vx in f , on its expected vertex, after the token is swapped k
times counterclockwise.

Our goal is to find the feasible triple (x, i, j) that minimizes the value of
(n − 1)i + j. To find such a triple, for every pair of (x, i), we find the smallest j
such that the triple (x, i, j) is feasible. Among them, the triple that minimizes
the value of (n − 1)i + j is a desired solution.

Now we describe the algorithm. Suppose we are given a pair of (x, i), 1 ≤
x ≤ n and 1 ≤ i ≤ n−1. First, we investigate a range of j using the tables. Since
a feasible triple needs to satisfy the first and second conditions in Observation 1,
we have two ranges j ≤ T ′[x][i+1] and j ≥ n−T ′′[x][i]−1. Let jmin ≤ j ≤ jmax

be the range of j which satisfies the above two inequalities. Note that, if the
range is empty, it implies that there is no feasible triple for the given pair (x, i)
and thus the algorithm returns false. Then, we investigate whether there is j,
jmin ≤ j ≤ jmax, with the third condition in Observation 1. This can be checked
by jmin + T ′′′[x][i − jmin] ≤ jmax. If the inequality is true, then the algorithm
returns j = jmin + T ′′′[x][i − jmin]. Note that this value is the minimum j for
the given pair (x, i) from the definition of T ′′′. Otherwise, the algorithm returns
false. Therefore, we have the following theorem.

Theorem 6. For a cycle G, an initial token-placement f , and a target token-
placement c, one can compute OPTSTS(G, f, c) in O(n2) time.
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Abstract. The token swapping problem (TSP) and its colored version
are reconfiguration problems on graphs. This paper is concerned with
the complexity of the TSP and two new variants; namely parallel TSP
and parallel colored TSP. For a given graph where each vertex has a
unique token on it, the TSP requires to find a shortest way to modify a
token placement into another by swapping tokens on adjacent vertices.
In the colored version, vertices and tokens are colored and the goal is to
relocate tokens so that each vertex has a token of the same color. Their
parallel versions allow simultaneous swaps on non-incident edges in one
step. We investigate the time complexity of several restricted cases of
those problems and show when those problems become tractable and
remain intractable.

1 Introduction

Yamanaka et al. [14] have introduced a kind of reconfiguration problem on
graphs, called the token swapping problem (TSP)1. Suppose that we have a
simple graph where each vertex is assigned a token. Each token is labeled with
its unique goal vertex, which may be different from where the token is currently
placed. We want to relocate every misplaced token to its goal vertex. What
we can do is to swap the two tokens on the ends of an arbitrary edge. The
problem is to decide how many swaps are needed to realize the goal token place-
ment. The upper half of Fig. 1 illustrates a problem instance and a solution.
The graph has 4 vertices 1, 2, 3, 4 and 4 edges {1, 2}, {1, 3}, {2, 4}, {3, 4}. Each
token i is initially put on the vertex 5 − i. By swapping the tokens on the edges
{3, 4}, {1, 3}, {2, 4}, {3, 4} in this order, we can match the indices of the tokens
and vertices.

Yamanaka et al. have presented several positive results on the TSP in addi-
tion to classical results which can be seen as special cases of the TSP [7]. Namely,
graph classes for which the TSP can be solved in polynomial-time are paths,
cycles, complete graphs and complete bipartite graphs. They showed that the
TSP for general graphs belongs to NP. The NP-hardness is recently shown

1 No salesman is traveling in this paper.
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Fig. 1. Vertices and tokens are shown by circles and squares, respectively. Optimal
solutions for the TSP and the PTSP are shown by small and big arrows, respectively.

in the preliminary version [9] of this paper and by Miltzow et al. [11] and
Bonnet et al. [2] independently. On the other hand, some polynomial-time
approximation algorithms are known for different classes of graphs including
the general case [6,11,14]. For more backgrounds of the problem, the reader is
referred to [14,15].

A variant of the TSP is the c-colored token swapping problem (c-CTSP).
Tokens and vertices in the c-CTSP are colored by one of the c admissible colors.
The c-CTSP is to decide how many swaps are required to relocate the tokens
so that each vertex has a token of the same color. Yamanaka et al. [15] have
investigated the c-CTSP and shown that the 3-CTSP is NP-complete while the
2-CTSP is solvable in polynomial time. This problem and a further generalization
are also studied in [2].

This paper is concerned with the TSP and variants of it. First, we give a
proof of the NP-hardness of the TSP.

– The TSP is NP-complete even when graphs are restricted to bipartite graphs
where every vertex has degree at most 3 (Theorem 1).

The result is tight with respect to the maximum vertex degree as the problem
is in P if an input graph is a path or a cycle. In addition, we present two
polynomial-time solvable subcases of the TSP. One is of lollipop graphs, which
are combinations of a complete graph and a path. The other is the class of graphs
which are combinations of a star and a path.

Variants of the TSP we will consider in this paper are the parallel versions
of the TSP and c-CTSP. While in the TSP just one pair of tokens is swapped
at once, the parallel token swapping problem (PTSP) allows us to swap token
pairs on unadjacent edges simultaneously. We call a set of compatible swaps a
parallel swap. The PTSP is to estimate how many parallel swaps are needed to
achieve a goal token configuration. Figure 1 compares optimal solutions for the
same instance of the TSP and the PTSP, where two parallel swaps are enough
to relocate all the tokens to the goal vertices. Our main results concerning those
problems include the following.
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– The PTSP is NP-complete even to decide whether an instance admits a solu-
tion consisting of 3 parallel swaps (Theorem 4).

– One can decide in polynomial time whether an instance of the PTSP admits
a solution consisting of 2 parallel swaps (Theorem 6).

– A polynomial-time algorithm that approximately solves the PTSP on paths is
presented. It gives a parallel swap sequence whose length is at most one larger
than that of an optimal solution (Theorem 7).

– The parallel 2-CTSP is NP-complete (Theorem 9).

The last result contrasts the fact that the 2-CTSP is solvable in polynomial-
time [15].

One may consider the TSP and PTSP as special cases of the minimum gen-
erator sequence problem (MGSP) [4]. The MGSP is to determine whether one
can obtain a permutation f on a finite set X by multiplying at most k permuta-
tions from a finite permutation set Π , where all of X, f , k and Π are input. The
problem is known to be PSPACE-complete if k is specified in binary notation [7],
while it becomes NP-complete if k is given in unary representation [4]. In the
TSP and PTSP, permutation sets Π are restricted to the ones that have a graph
representation. However, this does not necessarily mean that the NP-hardness
of the PTSP implies the hardness of the MGSP, since the description size of all
the admissible parallel swaps on a graph is exponential in the graph size.

2 Time Complexity of the Token Swapping Problem

We denote by G = (V,E) an undirected graph whose vertex set is V and edge
set is E. More precisely, elements of E are subsets of V consisting of exactly two
distinct elements. A configuration f (on G) is a permutation on V , i.e., bijection
from V to V . By [u]f we denote the orbit {f i(u) | i ∈ N } of u ∈ V under f . We
call each element of V a token when we emphasize the fact that it is in the range
of f . We say that a token v is on a vertex u in f if v = f(u). A swap on G is a
synonym for an edge of G, which behaves as a transposition. For a configuration
f and a swap e ∈ E, the configuration obtained by applying e to f , which we
denote by fe, is defined by

fe(u) =

{
f(v) if e = {u, v},

f(u) otherwise.

For a sequence �e = 〈e1, . . . , em〉 of swaps, the length m is denoted by |�e|. For
i ≤ m, by �e|≤i we denote the prefix 〈e1, . . . , ei〉. The configuration f�e obtained
by applying �e to f is (. . . ((fe1)e2) . . . )em. We say that the token f(u) on u is
moved to v by �e if f�e(v) = f(u). We count the total moves of each token u ∈ V
in the application as

move(f,�e, u) = |{ i ∈ {1, . . . , m} | (f�e|≤i−1)−1(u) �= (f�e|≤i)−1(u) }| .
Clearly move(f,�e, u) ≥ dist(f−1(u), (f�e)−1(u)), where dist(u1, u2) denotes the
length of a shortest path between u1 and u2, and

∑
u∈V move(f,�e, u) = 2|�e|.
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We denote the set of solutions for a configuration f by

SOL(G, f) = {�e | �e is a swap sequence on G such that f�e is the identity} .

A solution �e0 ∈ SOL(G, f) is said to be optimal if |�e0| = min{|�e| | �e ∈
SOL(G, f)}. The length of an optimal solution is denoted by OPT(G, f).

Problem 1 (Token Swapping Problem, TSP).

Instance: A graph G, a configuration f on G and a natural number k.
Question: OPT(G, f) ≤ k?

2.1 TSP Is NP-complete

This subsection proves the NP-hardness of the TSP by a reduction from the
3DM, which is known to be NP-complete [8].

Problem 2 (Three dimensional matching problem, 3DM).

Instance: Three disjoint sets A1, A2, A3 such that |A1| = |A2| = |A3| and a set
T ⊆ A1 × A2 × A3.
Question: Is there M ⊆ T such that |M | = |A1| and every element of A1 ∪
A2 ∪ A3 occurs just once in M?

An instance of the 3DM is denoted by (A, T ) where A = A1∪A2∪A3 assuming
that the partition is understood. Let Ak = {ak,1, . . . , ak,n} for k ∈ {1, 2, 3} and
T = {t1, . . . , tm}. For notational convenience we write a ∈ t if a ∈ A occurs in
t ∈ T by identifying t with the set of the elements of t. We construct an instance
(GT , f) of the TSP as follows. The vertex set of GT is VA ∪ VT with

VA = {uk,i, u
′
k,i | k ∈ {1, 2, 3} and i ∈ {1, . . . , n}},

VT = {vj,k, v′
j,k | j ∈ {1, . . . , m} and k ∈ {1, 2, 3}}.

The edge set ET is given by

ET = {{uk,i, v
′
j,k}, {u′

k,i, vj,k} | ak,i ∈ Ak occurs in tj ∈ T}
∪ {{vj,k, v′

j,l} ⊆ VT | j ∈ {1, . . . , n} and k �= l}.

We call the subgraph induced by {vj,1, v
′
j,2, vj,3, v

′
j,1, vj,2, v

′
j,3} the tj-cycle. The

initial configuration f is defined by

f(uk,i) = u′
k,i and f(u′

k,i) = uk,i for all ak,i ∈ Ak and k ∈ {1, 2, 3},

f(vj,k) = vj,k and f(v′
j,k) = v′

j,k for all tj ∈ T and k ∈ {1, 2, 3}.

In the initial configuration f , all and only the tokens in VA are misplaced.
Each token uk,i ∈ VA on the vertex u′

k,i must be moved to uk,i via (a part of)
tj-cycle for some tj ∈ T in which ak,i occurs. To design a short solution for
(GT , f), it is desirable to have swaps at which both of the swapped tokens get
closer to the destination. If (A, T ) admits a solution, then one can find an optimal
solution for (GT , f) of length 21n, where 9n of the swaps satisfy this property
as we will see in Lemma 1. On the other hand, such an “efficient” solution is
possible only when (A, T ) admits a solution as shown in Lemma 2.
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Lemma 1. If (A, T ) has a solution then OPT(GT , f) ≤ 21n with n = |A1|.
Proof. We show in the next paragraph that for each tj ∈ T , there is a sequence
σj of 21 swaps such that gσj is identical to g except (gσj)(uk,i) = g(u′

k,i) and
(gσj)(u′

k,i) = g(uk,i) if ak,i occurs in tj for any configuration g. If M ⊆ T is a
solution, by collecting σj for all tj ∈ M , we obtain a swap sequence σM of length
21n such that fσM is the identity.

Let tj = (a1,i1 , a2,i2 , a3,i3). We first move each of the tokens uk,ik on the
vertex u′

k,ik
to the vertex vj,k and the tokens u′

k,ik
on uk,ik to v′

j,k. We then
move the tokens uk,ik on vj,k to the opposite vertex v′

j,k of the tj-cycle for
each k ∈ {1, 2, 3} while moving u′

k,ik
on v′

j,k to vj,k in the opposite direction
simultaneously. At last we make swaps on the same 6 edges we used in the
first phase. The above procedure consists of 21 swaps and gives the desired
configuration. 
�
Lemma 2. If OPT(GT , f) ≤ 21n with n = |A1| then (A, T ) has a solution.

Proof. We first show that 21n is a lower bound on OPT(GT , f). Suppose that
fσ is the identity. For each token uk,i ∈ VA, we have

move(f, σ, uk,i) ≥ dist(uk,i, f
−1(uk,i)) = dist(uk,i, u

′
k,i) = 5 .

The adjacent vertices of the vertex u′
k,i are vj,k such that ak,i ∈ tj . Among those,

let τ(uk,i) ∈ VT be the vertex to which uk,i goes for its first step, i.e., the first
occurrence of u′

k,i in σ is as {u′
k,i, τ(uk,i)}. This means that move(f, σ, τ(uk,i)) ≥

2, since the token τ(uk,i) must once leave from and later come back to the vertex
τ(uk,i). The symmetric discussion holds for all tokens u′

k,i. Therefore, noting that
τ is an injection, we obtain

|σ| =
1
2

∑

x∈VA∪VT

move(f, σ, x) ≥ 1
2

∑

x∈VA

(
move(f, σ, x)+move(f, σ, τ(x))

) ≥ 21n .

This has shown that if fσ is the identity and |σ| ≤ 21n, then

(1) move(f, σ, x) = 5 for all x ∈ VA,
(2) move(f, σ, y) �= 0 for y ∈ VT if and only if y = τ(x) for some x ∈ VA.

Let Mσ = { y ∈ VT | move(f, σ, y) �= 0 } = { τ(x) ∈ VT | x ∈ VA }. We are
now going to prove that if vj,1 ∈ Mσ then {vj,2, vj,3, v

′
j,1, v

′
j,2, v

′
j,3} ⊆ Mσ, which

implies that M̃σ = { tj ∈ T | vj,1 ∈ Mσ } is a solution for (A, T ).
Suppose vj,1 ∈ Mσ and let tj ∩ A1 = {a1,i}. This means that τ(u1,i) =

vj,1 and u1,i goes from u′
1,i to u1,i through (u′

1,i, vj,1, v
′
j,2, vj,3, v

′
j,1, u1,i) or

(u′
1,i, vj,1, v

′
j,3, vj,2, v

′
j,1, u1,i) by (2) and (1). In either case, v′

j,1 ∈ Mσ. Suppose
that u1,i takes the former (u′

1,i, vj,1, v
′
j,2, vj,3, v

′
j,1, u1,i). Then v′

j,2, vj,3 ∈ Mσ.
Just like vj,1 ∈ Mσ implies v′

j,1 ∈ Mσ, we now see vj,2, v
′
j,3 ∈ Mσ. 
�

It is known that the 3DM is still NP-complete if each a ∈ A occurs at most
three times in T [5]. Assuming that T satisfies this constraint, it is easy to see
that GT is a bipartite graph with maximum vertex degree 3.

Theorem 1. The TSP is NP-complete even on bipartite graphs with maximum
vertex degree 3.
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2.2 PTIME Subcases of TSP

In this subsection, we present two graph classes on which the TSP can be solved
in polynomial time. One is that of lollipop graphs, which are obtained by con-
necting a path and a complete graph with a bridge. That is, a lollipop graph is
Lm,n = (V,E) where V = {−m, . . . ,−1, 0, 1, . . . , n} and

E = {{i, j} ⊆ V | i < j ≤ 0 or j = i + 1 > 0}.

The other class consists of graphs obtained by connecting a path and a star.
A star-path graph is Qm,n = (V,E) such that V = {−m, . . . ,−1, 0, 1, . . . , n} and

E = {{i, 0} ⊆ V | i < 0} ∪ {{i, i + 1} ⊆ V | i ≥ 0}.

Algorithms 1 and 2 give optimal solutions for the TSP on lollipop and star-path
graphs in polynomial time, respectively. Proofs are found in [10].

Algorithm 1. TSP Algorithm for Lollipop Graphs
Input: A lollipop graph Lm,n and a configuration f on Lm,n

for k = n, . . . , 1, 0, −1, . . . , −m do
Move the token k to the vertex k directly;

end for

Algorithm 2. TSP Algorithm for Star-Path Graphs
Input: A star-path graph Qm,n and a configuration f on Qm,n

for k = n, . . . , 1, 0, −1, . . . , −m do
while the token on the vertex 0 has an index less than 0 do

Move the token on the vertex 0 to its goal vertex;
end while
Move the token k to the vertex k;

end for

3 Parallel Token Swapping Problem

The parallel token swapping problem (PTSP) is the parallel version of the TSP.
Definitions and notation for the TSP are straightforwardly generalized for the
PTSP. A parallel swap S on G is a synonym for an involution which is a subset
of E, or for a matching of G, i.e., S ⊆ E such that {u, v1}, {u, v2} ∈ S implies
v1 = v2. For a configuration f and a parallel swap S ⊆ E, the configuration
obtained by applying S to f is defined by fS(u) = f(v) if {u, v} ∈ S and
fS(u) = f(u) if u /∈ ⋃

S. Let

P-SOL(G, f) = {�S | �S is a parallel swap sequence s.t. f �S is the identity}
P-OPT(G, f) = min{|�S| | �S ∈ P-SOL(G, f)}.
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Problem 3 (Parallel Token Swapping Problem, PTSP).

Instance: A graph G, a configuration f on G and a natural number k.
Question: P-OPT(G, f) ≤ k?

It is trivial that P-OPT(G, f) ≤ OPT(G, f) ≤ P-OPT(G, f)|V |/2, since any
parallel swap S consists of at most |V |/2 (single) swaps. Since OPT(G, f) ≤
|V |(|V | − 1)/2 holds [14], the PTSP belongs to NP.

Yamanaka et al. [14] discussed the relation between the TSP and parallel
sorting on an SIMD machine consisting of several processors with local memory
which are connected by a network [1]. The relation to the PTSP is more direct.

Theorem 2. If there is a parallel sorting algorithm with r rounds for an inter-
connection network G, then P-OPT(G, f) ≤ r for any configuration f on G.

3.1 PTSP Is NP-complete

We show the NP-hardness of the PTSP by a reduction from a restricted kind
of the satisfiability problem, which we call PPN-Separable 3SAT (Sep-SAT for
short). For a set X of (Boolean) variables, ¬X denotes the set of their negative
literals. A 3-clause is a subset of X ∪ ¬X whose cardinality is at most 3. An
instance of the Sep-SAT consists of three finite collections F1, F2, F3 of 3-clauses
such that for each variable x ∈ X, the positive literal x occurs just once in
each of F1, F2 and the negative literal ¬x occurs just once in F3. We will simply
denote a Sep-SAT instance as F = F1 ∪ F2 ∪ F3, from which one can find the
right partition in polynomial time.

Theorem 3 [10]. The Sep-SAT is NP-complete.

We give a reduction from the Sep-SAT to the PTSP. For a given instance F =
{C1, . . . , Cn} over a variable set X = {x1, . . . , xm} of the Sep-SAT, we define
a graph GF = (VF , EF ) in the following manner. Let F be partitioned into
F1, F2, F3 where each of F1 and F2 has just one occurrence of each variable as a
positive literal and F3 has just one occurrence of each negative literal. Define

VF = {ui, u
′
i, ui,1, ui,2, ui,3, ui,4 | 1 ≤ i ≤ m}

∪ {vj , v
′
j | 1 ≤ j ≤ n} ∪ {vj,i | xi ∈ Cj or ¬xi ∈ Cj}.

The edge set EF is the least set that makes GF contain the following paths of
length 3:

(ui, ui,1, ui,2, u
′
i) and (ui, ui,3, ui,4, u

′
i) for each i ∈ {1, . . . ,m},

(vj , vj,i, ui,k, v′
j) if xi ∈ Cj ∈ Fk or ¬ xi ∈ Cj ∈ Fk .

It is not hard to see that GF is a bipartite graph. Vertices vj and v′
j have degree

at most 3 for j ∈ {1, . . . , n}, while ui,k has degree 4 for i ∈ {1, . . . , m} and
k ∈ {1, 2, 3}. The initial configuration f is defined to be the identity except

f(ui) = u′
i, f(u′

i) = ui, f(vj) = v′
j , f(v′

j) = vj ,
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for each i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. Since dist(w, f(w)) = 3 if w �= f(w),
obviously P-OPT(GF , f) ≥ 3.

Here we describe an intuition behind the reduction by giving the following
observation between a 3-step solution for (GF , f) and a solution for F :

– tokens ui and u′
i pass vertices ui,1 and ui,2 iff xi should be assigned 0, while

they pass over ui,3 and ui,4 iff xi should be assigned 1,
– if tokens vj and v′

j pass a vertex ui,k for some k ∈ {1, 2} then Cj ∈ Fk is
satisfied thanks to xi, while if they pass over ui,3 then Cj ∈ F3 is satisfied
thanks to ¬xi.

Of course it is contradictory that a clause Cj ∈ F1 is satisfied by xi ∈ Cj which
is assigned 0. This impossibility corresponds to the fact that there are no i, j
such that both ui and vj with Cj ∈ F1 go to their respective goals via ui,1 in a
3-step solution.

Theorem 4. To decide whether P-OPT(G, f) ≤ 3 is NP-complete even when G
is restricted to be a bipartite graph with maximum vertex degree 4.

One can modify the above reduction so that every vertex has degree at most 3
by dividing vertices ui,k into two vertices of degree at most 3. Let

VF = {ui, u
′
i, ui,1, u

′
i,1, ui,2, u

′
i,2, ui,3, u

′
i,3, ui,4, u

′
i,4 | 1 ≤ i ≤ m}

∪ {vj , v
′
j | 1 ≤ j ≤ n } ∪ { vj,i, v

′
j,i | xi ∈ Cj or ¬xi ∈ Cj} .

Our graph GF contains the following paths of length 5:

(ui, ui,1, u
′
i,1, ui,2, u

′
i,2, u

′
i) and (ui, ui,3, u

′
i,3, ui,4, u

′
i,4, u

′
i) for each i ∈ {1, . . . , m},

(vj , vj,i, ui,k, u′
i,k, v′

j,i, v
′
j) ifxi ∈ Cj ∈ Fk or ¬xi ∈ Cj ∈ Fk.

The initial configuration f is defined similarly to the previous construction.

Theorem 5. To decide whether P-OPT(G, f) ≤ 5 is NP-complete even when
G is restricted to be a bipartite graph with maximum vertex degree 3.

3.2 PTIME Subcases of PTSP

In this subsection we discuss tractable subcases of the PTSP. In contrast to
Theorem 4, the 2-step PTSP is decidable in polynomial time. In addition, we
present an approximation algorithm for finding a solution for the PTSP on paths
whose length can be at most one larger than that of an optimal solution.

2-Step PTSP. It is well-known that any permutation can be expressed as a
product of 2 involutions, which means that any problem instance of the PTSP
on a complete graph has a 2-step solution. Graphs we treat are not necessarily
complete but the arguments by Petersen and Tenner [12] on involution fac-
torization lead to the following observation, which is useful to decide whether
P-OPT(G, f) ≤ 2 for general graphs G.
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Corollary 1. 〈S, T 〉 ∈ P-SOL(G, f) if and only if the set of orbits under f is
partitioned as {{[u1]f , [v1]f}, . . . , {[uk]f , [vk]f}} (possibly [uj ]f = [vj ]f for some
j ∈ {1, . . . , k}) so that for every j ∈ {1, . . . , k},

{f i(uj), f−i(vj)} ∈ Š and {f i+1(uj), f−i(vj)} ∈ Ť for all i ∈ Z,

where Š = S ∪ {{v} | v ∈ V − ⋃
S} for a parallel swap S.

Theorem 6. It is decidable in polynomial time if P-OPT(G, f) ≤ 2 for any G
and f .

Proof. Suppose G and f are given. One can compute in polynomial time all the
orbits [·]f . Let us denote the subgraph of G induced by a vertex set U ⊆ V by
GU and the sub-configuration of f restricted to [u]f ∪ [v]f by fu,v. The set

Γf = {{[u]f , [v]f} | P-OPT(G[u]f∪[v]f , fu,v) ≤ 2}
can be computed in polynomial time by Corollary 1. It is clear that
P-OPT(G, f) ≤ 2 if and only if there is a subset Γ ⊆ Γf in which every
orbit occurs exactly once. This problem is a very minor variant of the prob-
lem of finding a perfect matching on a graph, which can be solved in polynomial
time [3]. 
�

One can calculate the number of 2-step solutions in P-SOL(Kn, f) for any con-
figuration on the complete graph Kn using Petersen and Tenner’s formula [12].
On the other hand, it is a #P-complete problem to calculate |P-SOL(G, f)|
for general graphs G. This can be shown by a reduction from the problem
of calculating the number of perfect matchings in a bipartite graph, which is
known to be #P-complete [13]. For H = (V,E), let the vertex set of G be
V ′ = {ui | u ∈ V and i ∈ {1, 2}} and the edge set E′ = {(ui, vj) | (u, v) ∈
E and i, j ∈ {1, 2}}. The initial configuration is defined by f(u1) = u2 and
f(u2) = u1 for all u ∈ V . Then it is easy to see that |P-SOL(G, f)| = 2m for the
number m of perfect matchings in H. Note that if H is bipartite, then so is G.

Approximation Algorithm for the PTSP on Paths. We present an
approximation algorithm for the PTSP on paths which outputs a parallel
swap sequence whose length is no more than P-OPT(Pn, f) + 1, where Pn =
({ 1, . . . , n}, { {i, i + 1} | 1 ≤ i < n }) and f is a configuration on Pn. We say
that a swap {i, i + 1} ∈ E is reasonable w.r.t. f if f(i) > f(i + 1), and more-
over, a parallel swap sequence �S = 〈S1, . . . , Sm〉 is reasonable w.r.t. f if every
e ∈ Sj is reasonable w.r.t. f〈S1, . . . , Sj−1〉 for all j ∈ {1, . . . , m}. The parallel
swap sequence 〈S1, . . . , Sm〉 output by Algorithm 3 is reasonable and satisfies
the condition which we call the odd-even condition: for each odd number j, all
swaps in Sj are of the form {2i−1, 2i} for some i ≥ 1, and for each even number
j, all swaps in Sj are of the form {2i, 2i + 1} for some i ≥ 1.

Lemma 3. Suppose that g = fS for a reasonable parallel swap S w.r.t. f . For
any 〈S1, . . . , Sm〉 ∈ P-SOL(Pn, f), there is 〈S′

1, . . . , S
′
m〉 ∈ P-SOL(Pn, g) such

that S′
j ⊆ Sj for all j ∈ {1, . . . , m}.
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The lemma implies that we may assume without loss of generality that an
optimal solution 〈S1, . . . , Sm〉 is reasonable and moreover if f〈S1, . . . , Sj〉(i) >
f〈S1, . . . , Sj〉(i + 1) then {i, i + 1} ∩ ⋃

Sj+1 �= ∅ for j < m.

Algorithm 3. Approximation algorithm for PTSP on paths
Input: A configuration f0 on Pn

Output: A solution �S ∈ P-SOL(Pn, f0)
Let j = 0;
while fj is not identity do

Let j = j + 1, Sj = {{i, i + 1} | fj−1(i) > fj−1(i + 1) and i + j is even} and
fj = fj−1Sj ;

end while
return 〈S1, . . . , Sj〉;

Let us denote the output of Algorithm 3 by AP(Pn, f0).

Theorem 7. AP(Pn, f0) ∈ P-SOL(Pn, f0)and |AP(Pn, f0)| ≤ P-OPT(Pn, f0)+1.

Proof. Let �T = AP(Pn, f0). It is obvious that �T ∈ P-SOL(Pn, f0) and it is odd-
even. It is easy to see by Lemma 3 that |�T | ≤ |�S| for any odd-even solution
�S ∈ P-SOL(Pn, f0).

We next show that every swap sequence �S = 〈S1, . . . , Sm〉 admits an equiv-
alent odd-even sequence that is not much longer than the original. Without
loss of generality we assume that Sj ∩ Sj+1 = ∅ for any j (in fact, any reason-
able parallel swap sequence meets this condition). For a parallel swap sequence
�S = 〈S1, . . . , Sm〉, define Œ(�S) = 〈S′

1, . . . , S
′
m+1〉 by delaying swaps which do

not meet the odd-even condition, that is,

S′
j = {{i, i + 1} ∈ Sj ∪ Sj−1 | i + j is even}

for j = 1, . . . , m + 1 assuming that S0 = Sm+1 = ∅. By the parity restriction,
each S′

j is a parallel swap. It is easy to show by induction on j that

f〈S′
1, . . . , S

′
j〉(i) =

{
f〈S1, . . . , Sj−1〉(i) if {i, i + 1} ∈ Sj and i + j is odd,

f〈S1, . . . , Sj〉(i) otherwise,

for each j ∈ {1, . . . , m + 1}, which implies that f �S = fŒ(�S). Therefore, for an
optimal reasonable solution �S0, we have |�S0| + 1 = |Œ(�S0)| ≥ |�T |. 
�

4 Parallel Colored Token Swapping Problem

The colored token swapping problem (CTSP) is a generalization of the TSP,
where each token is colored and different tokens may have the same color. By
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swapping tokens on adjacent vertices, the goal coloring configuration should be
realized. More formally, a coloring is a map f from V to N. The definition of a
swap application to a configuration can be applied to colorings with no change.
We say that two colorings f and g are consistent if |f−1(i)| = |g−1(i)| for all
i ∈ N. Since the problem is a generalization of the TSP, obviously it is NP-
hard. Yamanaka et al. [15] have investigated subcases of the CTSP called the
c-CTSP where the codomain of colorings is restricted to {1, . . . , c}. We discuss
the parallel version of the c-CTSP in this section.

Problem 4 (Parallel c-Colored Token Swapping Problem, c-PCTSP).

Instance: A graph G, two consistent c-colorings f and g, and a number k ∈ N.
Question: Is there �S with |�S| ≤ k such that f �S = g?

Define P-OPT(G, f, g) = min{|�S| | f �S = g} for two consistent colorings f and
g. Since P-OPT(G, f, g) can be bounded by P-OPT(G,h) for some configuration
h, the c-PTSP belongs to NP.

Yamanaka et al. have shown that the 3-CTSP is NP-hard by a reduction
from the 3DM. It is not hard to see that their reduction works to prove the NP-
hardness of the 3-PCTSP. We then obtain the following theorem as a corollary
to their discussion.

Theorem 8. To decide whether P-OPT(G, f, g) ≤ 3 is NP-hard even if G is
restricted to be a planar bipartite graph with maximum vertex degree 3 and f
and g are 3-colorings.

Yamanaka et al. have shown that the 2-CTSP is solvable in polynomial time on
the other hand. In contrast, we prove that the 2-PCTSP is still NP-hard.

Theorem 9. To decide whether P-OPT(G, f, g) ≤ 3 is NP-hard even if G is
restricted to be a bipartite graph with maximum vertex degree 4 and 2-colorings
f and g.

Proof. We prove the theorem by a reduction from the Sep-SAT. We use the same
graph used in the proof of Theorem 4. The initial and goal colorings f and g are
defined to be f(w) = 1 and g(w) = 1 for all w but f(ui) = g(u′

i) = 2 for each
xi ∈ X, f(vj) = g(v′

j) = 2 for each Cj ∈ F1 ∪ F3 and f(v′
j) = g(vj) = 2 for each

Cj ∈ F2. The claim that F is satisfiable if and only if P-OPT(GF , f, g) = 3 can
be established by the same manner as the proof of Theorem 4. 
�
We can also show the following using the ideas for proving Theorems 5 and 8.

Theorem 10. To decide whether P-OPT(G, f, g) ≤ 5 is NP-hard even if G is
restricted to be a bipartite graph with maximum vertex degree 3 and f and g are
2-colorings.
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Abstract. Let I, J be two given independent sets of a graph G. Imag-
ine that the vertices of an independent set are viewed as tokens (coins).
A token is allowed to move (or slide) from one vertex to one of its neigh-
bors. The Sliding Token problem asks whether there exists a sequence
of independent sets of G starting from I and ending with J such that
each intermediate member of the sequence is obtained from the previous
one by moving a token according to the allowed rule. In this paper, we
claim that this problem is solvable in polynomial time when the input
graph is a block graph—a graph whose blocks are cliques. Our algorithm
is developed based on the characterization of a non-trivial structure that,
in certain conditions, can be used to indicate a no-instance of the prob-
lem. Without such a structure, a sequence of token slidings between any
two independent sets of the same cardinality exists.

1 Introduction

Recently, motivated by the purpose of understanding the solution space of a
problem, many theoretical computer scientists have focused on the study of
reconfiguration problems. Reconfiguration problems are the set of problems in
which we are given a collection of feasible solutions, together with some reconfig-
uration rule(s) that defines an adjacency relation on the set of feasible solutions
of the original problem. The question is, using a reconfiguration rule, whether
there is a step-by-step transformation which transforms one feasible solution to
another, such that each intermediate result is also feasible. A simple example
is the famous Rubik’s cube puzzle. The reconfigurability of several well-known
problems, including satisfiability, independent set, vertex-colouring,
matching, clique, etc. have been studied extensively. For more information
about this research area, see the survey [10].

As the independent set problem is one of the most important problems
in the computational complexity theory, its reconfiguration variants have been
well-studied [5,7,8]. Recall that an independent set of a graph is a set of pairwise
non-adjacent vertices. Among these variants, the Sliding Token problem (first
introduced by Hearn and Demaine [5]) is of particular interest (see [8] for the
other variants). Given two independent sets I and J of a graph G, and imagine
that a token is placed on each vertex in I. Then, the Sliding Token problem
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asks whether there exists a sequence (called a TS-sequence) S = 〈I1, I2, . . . , I�〉
of independent sets of G such that

(a) I1 = I, I� = J , and |Ii| = |I| = |J | for all i, 1 ≤ i ≤ �; and
(b) for each i, 1 ≤ i ≤ �−1, there is an edge uv in G such that Ii \ Ii+1 = {u}

and Ii+1 \ Ii = {v}.

If such a sequence S exists, we say that S reconfigures I to J in G and write
I

G� J . An example of a TS-sequence is given in Fig. 1. Observe that “ G�”
is indeed an equivalence relation. Sliding Token is PSPACE-complete even
for planar graphs [5] and bounded-treewidth graphs [9]. On the positive side,
polynomial-time algorithms have been designed recently for claw-free graphs [1],
cographs [8], trees [2], bipartite permutation graphs [4], and cactus graphs [6].

Fig. 1. Example of a TS-sequence 〈I1, I2, . . . , I5〉 in a given graph that reconfigures I1
to I5. The vertices in independent sets are depicted by black circles (tokens).

A block of a graph G is a maximal connected subgraph with no cut vertex.
A block graph is a graph whose blocks are cliques (for example, see the graph
in Fig. 1). Note that, in order to preserve the independence property of the set
of tokens, a token sometimes needs to make “detours”. This restriction indeed
makes Sliding Token more complicated (recall that the problem is PSPACE-
complete even for bounded-treewidth graphs), even when the input graph is a
tree (see [2]). As there might be exponential number of paths between any two
vertices of a block graph (while in a tree, there is a unique path), for each token,
we may have exponentially many choices of “routes” to slide and possibly super
polynomial detours in general. Thus, in this case, the problem becomes more
difficult. In this paper, we design a polynomial-time algorithm for solving the
Sliding Token problem for block graphs.

Our algorithm is designed based on the following observations. Given a block
graph G and an independent set I of G, one can characterize the properties of
a non-trivial structure, called (G, I)-confined clique (Sect. 4). More precisely, we
claim that one can find all (G, I)-confined cliques in polynomial time (Lemma3),
and, in certain conditions, we can easily derive if an instance of Sliding Token
is a no-instance (Lemma 5). Without such a structure, we claim that for any
pair of independent sets I, J , I is reconfigurable to J (and vice versa) if and
only if they are of the same cardinality (Lemma 9).

Due to the limitation of space, some proofs are omitted.
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2 Preliminaries

Graph Notation. We define some notation that is commonly used in graph
theory. For the notation that is not mentioned here, see [3]. Let G be a given
graph, with edge set E(G) and vertex set V (G).

We sometimes denote by |G| the size of V (G). For a vertex v, we define
NG(v) = {w ∈ V (G) : vw ∈ E(G)}, NG[v] = NG(v) ∪ {v} and degG(v) =
|NG(v)|. For two vertices u, v, we denote by distG(u, v) the distance between u
and v in G. For a graph G, sometimes we write I ∩ G and I − G to indicate the
sets I ∩ V (G) and I \ V (G), respectively.

For X ⊆ V (G), we denote by G[X] the subgraph of G induced by vertices of
X. We write G−X to indicate the graph G[V (G)\X]. Similarly, for an induced
subgraph H of G, G − H indicates the graph G[V (G) \ V (H)], and we say that
the graph G − H is obtained by removing H from G.

Notation for SLIDING TOKEN. We now define some useful notation for tack-
ling Sliding Token. For a TS-sequence S, we write I ∈ S if an independent
set I of G appears in S. For a vertex v, if there exists I ∈ S such that v ∈ I,
then we say that S involves v. We say that S = 〈I1, I2, . . . , I�〉 slides (or moves)
the token t placed at u ∈ I1 to v /∈ I1 in G if after applying the sliding steps
described in S, the token t is placed at v ∈ I�. For convenience, we sometimes
identify the token placed at a vertex with the vertex itself, and simply say “a
token in an independent set I.”

Let W ⊆ V (G) and assume that I ∩ W 	= ∅. We say that a token t placed at
some vertex u ∈ I ∩ W is (G, I,W )-confined if for every J such that I

G� J , t
is always placed at some vertex of W . In other words, t can only be slid along
edges of G[W ]. In case W = {u}, t is said to be (G, I)-rigid. The token t is
(G, I)-movable if it is not (G, I)-rigid.

Let H be an induced subgraph of G. H is called (G, I)-confined if I ∩ H
is a maximum independent set of H and all tokens in I ∩ H are (G, I, V (H))-
confined. In particular, if H is a clique of G, we say that it is a (G, I)-confined
clique. Note that if H is a clique then |I ∩ H| ≤ 1. We denote by K(G, I) the set
of all (G, I)-confined cliques of G. For a vertex v ∈ V (H), we define Gv

H to be
the (connected) component of GH containing v, where GH is obtained from G
by removing all edges of H.

3 Some Useful Observations

In this section, we present several useful observations. These observations will
be implicitly used in many statements of this paper. The next proposition char-
acterizes some properties of a (G, I)-confined induced subgraph.

Proposition 1 ([6, Lemma 1]). Let I be an independent set of a graph G. Let
H be an induced subgraph of G. Then the following conditions are equivalent.
(i) H is (G, I)-confined.
(ii) For every independent set J satisfying I

G� J , J ∩ H is a maximum inde-
pendent set of H.
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(iii) I∩H is a maximum independent set of H and for every J satisfying I
G� J ,

any token tx placed at x ∈ J ∩ H is (Gx
H , J ∩ Gx

H)-rigid.

The next proposition says that when G is disconnected, one can deal with
each component separately. In other words, when dealing with Sliding Token,
it suffices to consider only connected graphs.

Proposition 2 ([6, Proposition 2]). Let I, J be two given independent set of
G. Assume that G1, . . . , Gk are the components of G. Then I

G� J if and only
if I ∩ Gi

Gi� J ∩ Gi for i = 1, 2, . . . , k.

In the next proposition, we claim that in certain conditions, a TS-sequence
in a subgraph of G can be somehow “extended” to a sequence in G, and vice
versa.

Proposition 3 ([6, Proposition 3]). Let u be a vertex of a graph G. Let
S = 〈I1, I2, . . . , I�〉 be a TS-sequence in G such that for any I ∈ S, u ∈ I. Let

G′′ = G − NG[u]. Then I1 ∩ G′ G′′
� I� ∩ G′. Moreover, for any TS-sequence

S ′ = 〈I ′
1, . . . , I

′
l〉 in G′′, I ′

1 ∪ {u} G� I ′
l ∪ {u}.

In case G is a block graph, we also have:

Proposition 4. Let I be an independent set of a block graph G. Let B be a block
of G and suppose that I ∩ B = {u}. Let S = 〈I1, I2, . . . , I�〉 be a TS-sequence in

G such that for any J ∈ S, u ∈ J . Let G′ = G − B. Then I1 ∩ G′ G′
� I� ∩ G′.

Moreover, for any TS-sequence S ′ = 〈I ′
1, . . . , I

′
l〉 in G′ such that NG(u)∩ I ′

i = ∅,
where i ∈ {1, 2, . . . , �}, I ′

1 ∪ {u} G� I ′
l ∪ {u}.

Proposition 5. Let G be a block graph and let I be an independent set of G.
Let v ∈ V (G) be such that no token in NG(v)∩ I is (G, I,NG[v])-confined. Then
there exists an independent set J of G such that I

G� J and NG[v] ∩ J = ∅.
Proposition 6. Let I be an independent set of a block graph G. Let w ∈ V (G).
Assume that no block of G containing w is (G, I)-confined. If there exists some
vertex x ∈ NG[w]∩I such that the token tx placed at x is (G, I,NG[w])-confined,
then x is unique. Consequently, there must be some independent set J such that
I

G� J and NG[w] ∩ J = {x}. Moreover, let H be the graph obtained from G by
turning NG[w] into a clique, called Bw. Then tx is (G, J,NG[w])-confined if and
only if Bw is (H,J)-confined.

4 Confined Cliques in Block Graphs

In this section, we show that one can compute K(G, I) in polynomial time, where
G is a block graph and I is an independent set of G. First, we prove an useful
characterization of (G, I)-confined cliques.



464 D.A. Hoang et al.

Fig. 2. (a) B is (G, I)-confined and (b) B is not (G, I)-confined.

Lemma 1. Let I be an independent set of a block graph G. Let B be a block of
G with I ∩ B 	= ∅. Let G′ = G − B. Then B is (G, I)-confined (see Fig. 2(a)) if
and only if either G = B or for every cut vertex v ∈ V (B), one of the following
conditions holds.

(i) There exists a block B′ 	= B of G containing v such that B′−v is (G′, I∩G′)-
confined (for example, the vertices v1 and v2 in Fig. 2(a)).

(ii) For every block B′ 	= B of G containing v, B′−v is not (G′, I∩G′)-confined;
and for every w ∈ NG(v) \ V (B), either
(ii-1) there exists a block B′′ of G′ containing w such that B′′ is (G′, I ∩

G′)-confined (for example, the vertex v4 in Fig. 2(a)); or
(ii-2) every block B′′ of G′ containing w is not (G′, I ∩ G′)-confined;

and there exists x ∈ NG′ [w] ∩ I such that the token tx placed at
x is (G′, I ∩ G′, NG′ [w])-confined (for example, the vertex v3 in
Fig. 2(a)).

Next, we characterize (G, I)-rigid tokens.

Lemma 2. Let I be an independent set of a block graph G. Let u ∈ I. The token
t placed at u is (G, I)-rigid (see Fig. 3) if and only if for every v ∈ NG(u), there
exists a vertex w ∈ (

NG(v) \ {u}) ∩ I such that one of the following conditions
holds.

(i) The token tw placed at w is (G′′, I ∩ G′′)-rigid, where G′′ = G − NG[u] (for
example, the vertex w1 in Fig. 3(a)).

(ii) The token tw placed at w is not (G′′, I ∩ G′′)-rigid; and the block B′ of G
containing v and w satisfies that B′−v is (G′′, I∩G′′)-confined (for example,
the vertices w3 and w4 in Fig. 3(a)).

The next lemma says that one can compute all (G, I)-confined blocks in
polynomial time, where G is a block graph and I is an independent set of G.
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Fig. 3. (a) The token placed at u is (G, I)-rigid and (b) the token placed at u is
(G, I)-movable.

Lemma 3. Let I be an independent set of a block graph G. Let m = |E(G)|. Let
B be a block of G with I ∩ B 	= ∅. Then, one can check if B is (G, I)-confined
in O(m) time. Consequently, one can compute K(G, I) in O(m2) time.

Proof. We describe a recursive function CheckConfined(G, I, H) which
returns yes if an input induced subgraph H is (G, I)-confined, where I is an
independent set of G and H is either a clique or a vertex. Otherwise, it returns
no and a TS-sequence SH in G which slides the token in I ∩ H (if exists) to a
vertex in

⋃
v∈V (H) NG(v)\V (H). Clearly, if I∩H = ∅ then CheckConfined(G,

I, H) returns no and there is no such SH described above. Thus, we now assume
that I ∩ H 	= ∅. Note that since H is either a clique or a vertex, |I ∩ H| = 1.
By definition, it is clear that if G = H then CheckConfined(G, I, H) returns
yes. Then, we now consider the case when G 	= H, i.e., G contains more than
one block. Let u be the unique vertex in I ∩ H, and tu be the token placed at
u. Let G′ = G − H and G′′ = G − NG[u]. If H is a clique, we will use Lemma 1
to check if H is (G, I)-confined. On the other hand, if H contains only vertex
u (i.e., H = ({u}, ∅)), we will use Lemma 2 to check if H is (G, I)-confined (by
definition, it is equivalent to checking if tu is (G, I)-rigid).

If H is a clique, then by Lemma 1, for every cut vertex v ∈ V (H), we need
to check if one of the conditions (i), (ii) of Lemma1 holds. Note that since v is
a cut vertex, there is at least one block B′ 	= H of G containing v. To check if
Lemma 1(i) holds, we recursively call CheckConfined(G′, I ∩ G′, B′ − v) for
every block B′ 	= H of G containing v. If CheckConfined(G′, I ∩ G′, B′ − v)
returns no for all blocks B′ 	= H of G containing v, i.e. Lemma 1(i) does not
hold, we can construct a TS-sequence Sv in G that slides tu to v as follows.
If u = v then nothing needs to be done. Thus, we assume that u 	= v, which
then implies that v /∈ I. In order to slide tu to v, we need to make sure that
for every block B′ 	= H of G containing v, if I ∩ (B′ − v) 	= ∅, the token in
I ∩ (B′ − v) need to be moved to a vertex not in B′ − v first. To do this, note
that for each such B′, the function CheckConfined(G′, I ∩ G′, B′ − v) also
returns a TS-sequence SB′−v in G′ that slides the token in I ∩ (B′ − v) to a
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vertex in
⋃

x∈V (B′−v) NG′(x) \ V (B′ − v). By Proposition 4, such a sequence
SB′−v can indeed be performed in G. Hence, Sv can be constructed (using the
results from CheckConfined(G′, I ∩G′, B′ −v)) by first performing all SB′−v,
then performing a single step of sliding tu to v. If Lemma 1(i) does not hold, for
every w ∈ NG(v) \ V (H), we need to check if Lemma 1(ii) holds. We first need
to check whether there exists a block B′′ of G′ containing w such that B′′ is
(G′, I ∩ G′)-confined. This can be done by calling CheckConfined(G′, I ∩ G′,
B′′) for all blocks B′′ of G′ containing w such that I ∩ B′′ 	= ∅. If the result is
no for every such B′′, i.e., Lemma 1(ii-1) does not hold, we still need to check if
Lemma 1(ii-2) holds. To do this, we consider the following cases.

◦ Case 1: |NG′ [w] ∩ I| = 0. In this case, Lemma 1(iii) does not hold, which
then implies that CheckConfined(G, I, H) returns no. To see this, we
shall construct a TS-sequence SH in G that slides tu to w ∈ NG(v)\V (H).
Indeed, SH can be constructed by simply performing two steps of sliding:
tu to v, and then tu from v to w (since |NG′ [w] ∩ I| = 0).

◦ Case 2: |NG′ [w] ∩ I| = 1. Let K be the block graph obtained from G′

by turning NG′ [w] into a clique, called Bw. By Proposition 6, checking if
Lemma 1(iii) holds is equivalent to checking if Bw is (K, I)-confined. In
case Lemma 1(iii) holds, the construction of SH can be done by first sliding
the token in NG′ [w]∩I to some vertex not in NG′ [w]∩I (converting a TS-
sequence in K to a TS-sequence in G′ as in Proposition 6, and extending
that TS-sequence to a TS-sequence in G using Proposition 4), and then
use the process described in Case 1 to slide tu to w.

◦ Case 3: |NG′ [w] ∩ I| ≥ 2. We first show how to construct an indepen-
dent set J such that I

G� J and |NG′ [w] ∩ J | ≤ 1. Note that since
|NG′ [w] ∩ I| ≥ 2, we have w /∈ I. The idea of this construction comes
from Propositions 5 and 6. Proposition 6 indeed implies that there is at
most one token tx in NG′ [w] ∩ I that is (G′, I ∩ G′, NG′ [w])-confined. In
other words, all tokens in NG′ [w] ∩ I except tx (if exists) can be slid to
a vertex not in NG′ [w]. Now, for each block B′′ of G′ containing w with
I ∩ B′′ 	= ∅, from the results of calling CheckConfined(G′, I ∩ G′′, B′′),
we obtain a TS-sequence SB′′ in G′ (which can also be extended in G using
Proposition 4) that moves the token in I ∩B′′ to a vertex not in B′′. Note
that SB′′ may or may not contain the step of sliding the token in I ∩B′′ to
w. If for some block B′′ of G′ containing w with I ∩B′′ 	= ∅, SB′′ contains
such a step, then clearly it will move all other tokens in I∩NG′ [w] “out of”
NG′ [w] first, and then moves the token in I ∩ B′′ to w. Stop at this point,
we obtain an independent set J such that I

G� J and |NG′ [w] ∩ J | = 1.
The only token in NG′ [w] ∩ J is now indeed the token placed at w. On
the other hand, if for all blocks B′′ of G′ containing w with I ∩ B′′ 	= ∅,
SB′′ does not contain the step of sliding the token in I ∩B′′ to w, then we
simply perform all such SB′′ . Since G is a block graph, all such SB′′ can
indeed be performed independently, i.e., no sequence involves any vertex
that is involved by other sequences. At the end of this process, we obtain
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an independent set J such that I
G� J and |NG′ [w] ∩ J | = 0. Once we

have J , the checking process can indeed be done using either Case 1 or
Case 2. Keep in mind that the construction of J uses only the results
that can be obtained from the recursive callings of the CheckConfined
function.

In the above arguments, we have analyzed the cases that CheckConfined(G,
I, H) returns no using Lemma 1, where H is a clique. In all other cases,
CheckConfined(G, I, H) indeed returns yes (by Lemma 1).

If H contains only a single vertex u, then by Lemma 2, we need to check that
for every v ∈ NG(u), whether there exists a vertex w ∈ (

NG(v) \ {u}) ∩ I such
that one of the conditions (i), (ii) of Lemma2 holds. Clearly, if

(
NG(v) \ {u}) ∩

I = ∅, one can construct a TS-sequence SH that slides tu to v by performing the
single step of sliding tu to v, and hence CheckConfined(G, I, H) returns no.
Next, we consider the case when

(
NG(v) \ {u}) ∩ I 	= ∅. In this case, for every

w ∈ (
NG(v) \ {u}) ∩ I, we recursively call CheckConfinedG′′, I ∩ G′′, {w}

to check if Lemma 2(i) holds. If CheckConfined(G′′, I ∩ G′′, {w}) = no for all
w ∈ (

NG(v) \ {u}) ∩ I, we still need to check if Lemma 2(ii) holds by calling
CheckConfined(G′′, I ∩ G′′, Bw − v) for all w ∈ (

NG(v) \ {u}) ∩ I, where Bw

denotes the (unique) block of G containing both v, w. If CheckConfined(G′′,
I ∩G′′, Bw −v) returns no for all w ∈ (

NG(v)\{u})∩I, we can indeed return no
for the function CheckConfined(G, I, H). TheTS-sequence SH that moves tu to
v in this case can be constructed as follows. For each w ∈ (

NG(v)\{u})∩ I, since
CheckConfined(G′′, I ∩ G′′, Bw − v) returns no, there must be a TS-sequence
SB′−v in G′′ (which can be extended to G using Proposition 3) that slides the token
in I ∩ (B′ − v) to a vertex in

⋃
z∈V (B′−v) NG′(B′ − v) \ V (B′ − v). SH then can

be constructed by first performing all such SB′−v, and then performing a single
step of sliding tu to v. In the above arguments, we have analyzed the cases that
CheckConfined(G, I, H) returns no using Lemma 2, where H is a vertex. In all
other cases, CheckConfined(G, I, H) indeed returns yes (by Lemma 2).

Next, we analyze the complexity of the described algorithm. First of all, note
that all the TS-sequences mentioned in the described algorithm can indeed be
construction using the results from the recursive callings of the CheckConfined
function. Thus, the running time of our algorithm is indeed proportional to the
number of callings of the CheckConfined function. For a vertex v ∈ V (G),
let f(v) be the number of calling CheckConfined related to v, in the sense
that the function CheckConfined is either called for v or for a block contain-
ing v. Thus, the total number of callings CheckConfined is indeed bounded
by

∑
v∈V (G) f(v). Moreover, from the described algorithm, note that f(v) is

at most O(degG(v)). Hence, checking if H is (G, I)-confined takes at most
O(

∑
v∈V (G) degG(v)) = O(m) time, where H is either a clique or a vertex. Con-

sequently, since the number of blocks of G is O(m), computing K(G, I) takes at
most O(m2) time.
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5 Sliding Tokens on Block Graphs

Let G be a block graph, and let I, J be two independent sets of G. In this section,
we prove the following main result of this paper.

Theorem 1. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G. Then, one can decide if I

G� J
in O(m2) time, where m = |E(G)|.
To prove Theorem 1, we shall describe a polynomial-time algorithm for deciding
if I

G� J , estimate its running time, and then prove its correctness. The following
algorithm checks if I

G� J .

◦ Step 1:
• Step 1-1: If K(G, I) 	= K(G, J), return no.
• Step 1-2: Otherwise, remove all cliques in K(G, I) and go to Step 2.

Let G′ be the resulting graph.
◦ Step 2: If |I ∩ F | 	= |J ∩ F | for some component F of G′, return no.

Otherwise, return yes.

We now analyze the time complexity of the algorithm. Let m,n be respec-
tively the number of edges and vertices of G. By Lemma 3, Step 1-1 takes at
most O(m2) time. Step 1-2 clearly takes at most O(n) time. Hence, Step 1
takes at most O(m2) time. Step 2 takes at most O(n) time. In total, the algo-
rithm runs in O(m2) time.

The rest of this section is devoted to showing the correctness of the algorithm.
First of all, the following lemma is useful.

Lemma 4. Let I be an independent set of a block graph G. Let w ∈ V (G).
Assume that every block of G containing w is not (G, I)-confined. Then, there is
at most one block B of G containing w such that B − w is (G′, I ∩ G′)-confined,
where G′ = G − w.

The next lemma ensures the correctness of Step 1-1.

Lemma 5. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G. Then, it is a no-instance if
K(G, I) 	= K(G, J).

In the next lemma, we claim that Step 1-2 is correct.

Lemma 6. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G satisfying that K(G, I) =
K(G, J). Let G′ be the graph obtained from G by removing all cliques in

K(G, I) = K(G, J). Then, I
G� J if and only if I ∩ G′ G′

� J ∩ G′. Further-
more, K(G′, I ∩ G′) = K(G′, J ∩ G′) = ∅.
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Proof. Let S = 〈I = I1, I2, . . . , I� = J〉 be a TS-sequence in G that reconfigures
I to J . We claim that there exists a TS-sequence S ′ in G′ that reconfigures I∩G′

to J ∩G′. Note that for any independent set I of G, I ∩G′ forms an independent
set of G′. Moreover, for i = 1, 2, . . . , � − 1, let uv be an edge of G such that
u ∈ Ii \ Ii+1 and v ∈ Ii+1 \ Ii, then clearly u and v must be either both in G′ or
both in some block B ∈ K(G, I). Hence, the sequence S ′ = 〈I1 ∩ G′, . . . , I� ∩ G′〉
reconfigures I1 ∩ G′ = I ∩ G′ to I� ∩ G′ = J ∩ G′.

Let S ′ = 〈I ∩ G′ = I ′
1, I

′
2, . . . , I

′
l = J ∩ G′〉 be a TS-sequence in G′ that

reconfigures I ∩ G′ to J ∩ G′. We claim that there exists a TS-sequence S in G
that reconfigures I = (I∩G′)∪⋃

B∈K(G,I)(I∩B) to J = (J ∩G′)∪ ⋃
B∈K(G,I)(J ∩

B). Note that for an independent set I ′ of G′ and a block B ∈ K(G, I), it is not
necessary that I ′ ∪ (I ′′ ∩ B) forms an independent set of G, where I ′′ is an
independent set of G such that I

G� I ′′. For a component F of G′, one can
construct a TS-sequence S ′

F = 〈I ′
1 ∩ F, . . . , I ′

l ∩ F 〉 in F . We now describe how
to construct S. Let A =

⋃
B∈K(G,I)

⋃
v∈I∩B

(
NG(v) ∩ V (F )

)
. For a component

F of G′, we consider the following cases.

◦ S ′
F does not involve any vertex in A. In this case, note that for

every independent set IF of F and a block B ∈ K(G, I), the set IF ∪
(J ∩ B) forms an independent set of G, where J is any independent set
of G satisfying I

G� J . Thus, such a sequence S ′
F above indeed can be

“extended” to a TS-sequence in G.
◦ S ′

F involves vertices in A. Note that for a block B ∈ K(G, I), since
G is a block graph, there is at most one vertex v ∈ V (B) satisfying that
NG(v) ∩ V (F ) 	= ∅. Moreover, if there exists two vertices u1, u2 ∈ V (F )
such that NG(ui) ∩ V (B) 	= ∅ (i = 1, 2) then they must be adjacent to
the same vertex in B. Let v be the unique vertex in I ∩ B and assume
that NG(v) ∩ V (F ) 	= ∅. Then, the token tv placed at v must not be
(G, I)-rigid. To see this, note that, if the token t placed at u ∈ I is (G, I)-
rigid, then by definition of confined cliques, any block of G containing u
must be in K(G, I). Hence, for a block B ∈ K(G, I) and v ∈ I ∩ B with
NG(v) ∩ V (F ) 	= ∅, there exists a TS-sequence S ′(B, v) in G that moves
the token tv placed at v to some other vertex in B. Since G is a block
graph, if there are two of such block B, say B1 and B2, with v1 ∈ I ∩ B1

and v2 ∈ I ∩ B2, then clearly S ′(B1, v1) does not involve any token which
is involved by S ′(B2, v2) (and vice versa).

Now, we construct a TS-sequence S in G that reconfigures I to J as follows.
First, we perform all TS-sequence S ′

F that does not involve any vertex in A.
Next, for a component F with the corresponding sequence S ′′

F involving let
B ∈ K(G, I) such that there exists a (unique) vertex v ∈ I ∩ B satisfying that
NG(v) ∩ V (F ) ⊆ A. For such component F and such block B, we first perform
S ′(B, v), then perform S ′

F , and then perform S ′(B, v) in reverse order. Note
that if after performing S ′(B, v), the token tv (originally placed at v) is placed
at some vertex w ∈ J , then in the step of reversing S ′(B, v), we do not reverse the
step of sliding tv to w. At this moment, we have reconfigured I∩G′ to J∩G′ in G.
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It remains to reconfigure I ∩ B to J ∩ B in G for each block B ∈ K(G, I), which
can be done using the observation that for any vertex v ∈ J ∩B, NG(v)∩J 	= ∅.

Finally, we claim that K(G′, I ∩ G′) = ∅. Similar arguments can also be
applied for showing K(G′, J ∩ G′) = ∅. Assume for the contradiction that there
exists some block B′ ∈ K(G′, I ∩ G′). Let v be the unique vertex in I ∩ B′, and
let B be the block of G containing B′. We consider the following cases.

◦ B = B′.
Note that since B′ is a block of both G and G′, it follows that B′ is
not (G, I)-confined. In other words, there exists a TS-sequence S in G
that slides the token tv placed at v ∈ I ∩ B′ to some vertex not in B′.
Moreover, as before, we have proved that such a TS-sequence can indeed
be “restricted” to G′ based on the observation that for any independent
set I of G, I ∩ G′ forms an independent set of G′ and any sliding step is
performed either along edges of G′ or along edges of some (G, I)-confined
block. Therefore, B′ is not (G′, I ∩ G′)-confined, a contradiction.

◦ |V (B) \ V (B′)| = 1.
Let w be the unique vertex in V (B)\V (B′). Note that since w is a vertex
of some (G, I)-confined block C 	= B, the token tv placed at v cannot be
slid to w in G. Since B is not (G, I)-confined, as before, there exists a
TS-sequence S in G that slides the token tv placed at v ∈ I ∩ B′ to some
vertex not in B′. Moreover, S does not move tv to w, which means that
it moves tv to some vertex of G′ that is not in B′. Thus, S can indeed be
“restricted” to G′, which means that B′ is indeed not (G′, I ∩ G′)-confined,
a contradiction.

Before proving the correctness of Step 2, we need some extra definitions.
Let B be a block of a block graph G. A block B′ 	= B of G is called a neighbor
of B if V (B) ∩ V (B′) 	= ∅. B is called safe if it has at most one cut vertex and
at most one neighbor having more than one cut vertex. A vertex v ∈ V (G) is
called safe if it is a non-cut vertex of a safe block of G.

The next two lemmas are useful for showing the correctness of Step 2.

Lemma 7. Let I be an independent set of a block graph G such that K(G, I) = ∅.
Let v be a safe vertex of G. Then, there exists an independent set J of G with
I

G� J and v ∈ J .

Lemma 8. Let I be an independent set of a block graph G such that K(G, I) =
∅. Let v ∈ I be a safe vertex of G and let Bv be the (unique) safe block of
G containing v. Let G∗ be the subgraph of G obtained by removing Bv. Then,
K(G∗, I ∩ G∗) = ∅.

The following lemma ensures the correctness of Step 2.

Lemma 9. Let (G, I, J) be an instance of the Sliding Token problem, where
I, J are two independent sets of a block graph G satisfying that K(G, I) =
K(G, J) = ∅. Then, I

G� J if and only if |I| = |J |.
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Proof. The only-if-part is trivial. We shall prove the if-part, i.e., if |I| = |J | then
I

G� J . More precisely, we claim that there exists an independent set I∗ such that
I

G� I∗ and J
G� I∗. Indeed, I∗ can be constructed as follows. Initially, I∗ = ∅.

◦ Pick a safe vertex v of G. (Note that the “tree-like” structure of a block graph
ensures that one can always find a safe block, and hence a safe vertex.)

◦ Slide a token from I and a token from J to v. Then, add v to I∗. This can
be done using Lemma 7. Let I ′ and J ′ be the resulting independent sets.

◦ Let G′ be the graph obtained by removing Bv – the (unique) block of G
containing v.

◦ Repeat the above steps with the new triple (G′, I ′ \ {v}, J ′ \ {v}) instead of
(G, I, J). The procedure stops when there is no token to move.

The correctness of this construction is followed from Lemmas 7 and 8.
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