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1 Introduction

From quantum mechanics, we know that a 3N wave function that obeys the
Schrodinger equation (SE) can be used to determine the properties of an N-
particle system. However, since the number of atoms of a macroscopic material
is on the order of 1023, for a realistic system, it is not trivial to solve SE, i.e.,
approximations/alternatives become necessary. Hartree eliminated the dimension-
ality problem of electrons yielding single-electron wave functions in a mean-field
approximation for electrons. Since the nuclei are more massive than electrons
and move faster, the Hamiltonian can be further simplified, i.e., motion of nuclei
can be neglected in the Born-Oppenheimer (BO) approximation. Hartree’s method
depends on a three-dimensional space instead of a 3N-dimensional space. However,
electronic correlation is not taken into account. Incorporating antisymmetry of the
wave functions yields the Hartree-Fock (HF) method, whereas pairwise electron-
electron repulsion is replaced by the interaction of the ith electron with the average
electrostatic field, and an exchange term keeps electrons with the same spin apart.
The conceptual framework for chemistry as well as the theoretical foundation
of methods that model chemical compound’s electronic structure is provided by
quantum mechanics [1–8].

In this chapter, we review HF, post-HF (CI, MRCI, CC, MCSCF, CASSCF,
MBPT, LMP2, CCSD(T)), semiempirical (Hückel, CNDO, INDO, NDDO, MNDO,
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AM1, OMx, PM7, RM1), density functional theory ((challenges, LDA, GGA,
meta-GGA, hyper-GGA, hybrids, range separation, screened, fitting, adiabatic,
local, fifth rung) functionals, random phase approximation, thermochemical data
sets, prediction of geometries, reaction barriers and kinetics, hydrogen bonding,
response functions, performance of DFA, van der Waals forces, frontier eigenvalues
and band gaps, time-dependent DFT, vdW-DF, and new trends), basis sets, plane
waves and pseudopotentials, projected augmented plane wave method, generalized
plane waves, wavelets, discrete variable representations, augmented and mixed
basis sets, Wannier functions and real-space grids, quantum Monte Carlo, ab initio
molecular dynamics, quantum mechanics/molecular mechanics, coarse-graining,
and multi-scaling. An overview of selected application areas for materials and
biomolecular structures, including functional materials is also presented, i.e.,
dielectrics, capacitors, batteries, superconductors, hydrogen storage, photovoltaics,
catalysts, nanomaterials, surface adsorption, and functionalization [1–24].

2 Approaches to Solve the SE

At present, there are three approaches to solve the SE. The first is the quantum-
chemical ab initio method that yields a convergent path to exact solutions of
quantum-mechanical SE. Nonetheless, these methods are expensive, and for cor-
related/accurate approaches, they are in general restricted to small molecules. The
second method is density functional theory (DFT) with a good performance/price
ratio, which yields, for medium-sized molecules, sufficiently accurate calculations.
Notwithstanding, the first-principle nature of DFT, the method does not yield a
systematic path for improvement. The third method is quantum-chemical semiem-
pirical, which involves parametrizations and approximations, but makes them
efficient with the possibility of modeling in a realistic manner larger molecules,
but with limited accuracy. The models are also divided into those that depend on
wave function theory (WFT) and those that depend on DFT.

3 Valence Bond and Molecular Orbitals

Concepts of valence and bonding are central to understand reactivity and molecular
structure, whereas the treatment of molecules via quantum mechanics is necessary.
Valence bond (VB) and molecular orbital (MO) theories are two alternatives to
explain chemical bonding. VB, chemically intuitive, helps understand chemical
concepts based on bond/lone pairs. During the second half of twentieth century, with
increasing computer power and programs, the attractive orthogonal MO formalism
has become very tractable, in particular, for medium-sized molecules. MO theory is
an extension to the molecular regime of the atomic structure. They are delocalized
over nuclear framework yielding computationally tractable equations. The linear
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combination of atomic orbitals (LCAO) is at the heart of the MO approach.
Generating MOs from LCAOs helps understand, from an electronic structure
view point, the relationship between atoms and molecules. In VB theory, electron
correlation is overemphasized, whereas in simple MO theory it is neglected. In
polyatomic molecules, directed valence, based on principle of maximum overlap
and valence shell electron pair repulsion (VSEPR) theory, has been successful.
Improvements in both VB and MO theories can lead to convergence [23].

4 HF and Post-HF

For polyatomic molecules, MO theories can be classified as electron-independent
(non-self-consistent field) and electron-dependent SCF methods. The non-SCF has
the possibility of modeling in a realistic manner larger molecules. Hückel’s theory
only includes   basis, whereas extended Hückel theory includes all valence basis.
SCF methods iteratively solve many-electron SE equations in matrix form based
on HF theory. They are ab initio when the Fock matrix is constructed from first
principles and semiempirical when approximation and parameters are used. The HF
method treats interaction of one electron with the average field of other electrons
but does not consider instantaneous electrostatic interactions, whereas correlated
motions of electrons are neglected, yielding higher energies. Correlation energy is
the difference between exact and HF energies. Note that the quantum-mechanical
exchange term, i.e., two electrons of same spin cannot occupy a single orbital, is
included in HF theory [1].

For a good description of properties and structure of molecules, electron
correlation is necessary and thus addressed in post-HF methods, i.e., configuration
interaction (CI), multireference CI (MRCI), multiconfiguration SCF (MCSCF),
coupled cluster (CC), many-body perturbation theory (MBPT), and complete active
space self-consistent field method (CASSCF) [3, 13, 14].

MO theory is improved via configuration interaction (CI), whereas excitation of
one or more electrons (single, double, and multiply occupied) configurations can be
generated. Slater determinants can be used to describe these excited configurations.
In CI methods, we note that HF determines energetically the best determinantal
trial wave function which could however be improved with more configurations.
Excited configurations can be generated promoting electrons from occupied to
virtual orbitals. MRCI uses an expansion of Slater determinants (corresponding to
excitation of ground state configurations and some excited states).

Dynamic correlation for closed shell ion addresses instant correlation between
electrons occupying same spatial electrons, whereas nondynamic correlation
describes electrons avoiding each other by occupying different spatial orbitals.
Consequently, one Slater determinant cannot describe the ground state, and MCSCF
is necessary. In the MCSF, the MOs construct the determinants whereas coefficients
are optimized using the variational principle. The optimization is an iterative-like
procedure.
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In the CASSCF method, the selections of configurations are performed by
partitioning the MOs into inactive and active spaces, whereas the active MOs
have some of the lowest unoccupied as well as highly occupied MOs from an HF
calculation. Other high virtual orbitals and high stable orbitals constitute the inactive
orbitals (doubly occupied or completely unoccupied).

In MBPT, the Hamiltonian operator consists of the unperturbed Hamiltonian
and the perturbation term, yielding corrections of various orders. As one increases
from zero to finite values, the perturbation, the energy, and wave functions change
continuously, which can be written as a Taylor expansion (power of perturbation
parameter). Perturbation approaches (MP2, MP3, etc.) were quite powerful/popular
QM methods which naturally include dispersion effects. However, they show
systematic errors causing unbalance to intermolecular interactions contributions,
whereas the accuracy at MP2 level is not guaranteed.

A traditional well-established WFT methods yield reliable accurate results.
Correlations (electron-electron) are introduced by many-body wave function (WF)
expansions, i.e., single (S), doubly (D), triply (T), etc., excited determinants
(using reference wave functions). In full configuration interaction (FCI), all excited
determinants are included which yields the best variational results (for given basis
set). Due to high computational cost with increasing electrons and basis functions,
these calculations are only performed on small systems.

The coupled cluster (CC) theory was constructed for interacting particles system
using N-particle excitation operators. Once trial wave functions are expressed
as determinant of HF orbitals, one obtains coupled nonlinear equations whose
amplitudes are solved by some iteration technique in order to compute the CC
energy. This approach emerged as very practical reference method. Consequently,
CC with singles, doubles, and perturbative triples has been considered a “gold
standard” for many applications (medium systems) although accuracy in large
systems have not been confirmed. The CCSD(T) approach extrapolated to complete
basis set (CBS) limit, i.e., CCSD(T)/CBC, is accurate for intermolecular interaction
energies providing results of chemical accuracy (1 kcal/mol). For small systems
with dispersive interactions, it may be necessary to use 0.1 kcal/mol subchemical
accuracy.

Other approaches include complete active space with second-order perturbation
theory (CASPT2) and LMP2 theory where the Hartree-Fock orbitals are localized
to lone pairs and bonds from which electrons are correlated, rather than the Hartree-
Fock delocalized canonical orbitals. Electronic structure quantum Monte Carlo
(QMC) is a set of methods for solving the stationary Schrodinger equations using
sampling of wave functions in the space of electron positions and usage of stochastic
processes. This approach also indicates basis set-based limitations.

At this point, it is noteworthy that DFT reasonably includes electron correlation
at a fractional cost of typical post-HF methods previously discussed.
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5 Basis Sets

After selection of methods, it is necessary to represent the orbitals by basis sets,
i.e., a linear combination of functions, which can represent exactly any reasonable
function (limit of complete base set). Quantum chemists have used Slater-type
orbitals (STOs) with a radial part that is exponentially decaying as well as Gaussian-
type orbitals (GTOs), which is widely used in software. The coefficients of the linear
expansions are fixed, and only the orbital expansion coefficients are optimized.
Fixed linear combinations of these primitives can define angular momentum
(contracted basis sets). Slater/Gaussian sets are centered at nuclei (atoms) leading
to linear combination of atomic orbitals (LCAO). WF methods, unfortunately, have
known imitations. The correlation energy converges slowly with size of one-particle
atomic basis sets. There are often basis sets superposition and incompleteness
errors. For benchmark calculations, large basis sets (augmented with diffuse basis
functions) are often necessary [1, 24].

6 Plane Waves and Pseudopotentials

In order to solve the many-body problem SE (with large number of ions and elec-
trons) more simplifications are required for practical purposes. Taking advantage
of symmetry and periodicity of solid structures is one route. In addition, core
electrons are typically not involved in bonding making it advantageous to write
the MO in terms of plane waves with the periodicity of the crystal structure. Plane
waves are rooted in solid-state theory, whereas the periodicity of the lattice yields a
periodic potential, imposed on the density (Bloch’s theorem). Forming a complete
and orthonormal set of functions, plane waves can be used to expand orbitals where
labeling can be given by vectors in reciprocal space yielding simple forms for total
electronic energy and gradients. It is noteworthy that plane waves do not depend
on the positions of the nuclei and are delocalized in space not favoring specific
atoms or regions. To improve quality of basis set, it is necessary to increase the
cutoff energy (largest reciprocal vector included in the finite expansion). Plane
waves also have advantages with delocalized electrons. A plane wave basis is a
lattice-symmetry-adapted three-dimensional Fourier decomposition of the orbitals.
Consequently, ever larger Fourier components are necessary to solve structures in
real space with decreasing small distance scales.

Core electrons can be considered inert and thus removed explicitly. Actually,
they can also be represented by smooth modeless effective potential (effective core
potentials, ECPs), i.e., the pseudopotential which yields pseudo-wave functions
representing valence electrons close to the nuclear core region as smoothly as
possible. Nonetheless, properties that depend essentially on wave function close
to core are not obtained in a straightforward manner. Valence wave functions
are highly oscillatory inside core region where many terms are required for their
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expansion. This leads to the usage of so-called pseudo-wave functions for valence
states (replacing true all-electron wave functions). However, this method is subject
to transferability errors and information on the all-electron wave function in the core
region is lost [4].

7 Plane Wave Methods

In order to address pseudopotential method drawbacks, powerful techniques were
introduced for plane wave calculations, i.e., “soft” norm-conserving ab initio
pseudopotentials, ultrasoft pseudopotentials, and the projector augmented wave
(PAW) method. The PAW method uses operators to map a smooth auxiliary wave
function into the true all-electron single-particle wave function. The wave functions
are decomposed into one with rapid oscillations acting only at nucleus and another
that is smooth everywhere. Although each part is treated separately, information
about the core region is not lost, and the all-electron wave function can at any time
be retrieved [4, 25].

The above methods led to important approaches for plane wave/pseudopotential
electronic structure calculation using the DFT framework. It is noteworthy, however,
that for the plane waves, it may be difficult to put more required basis functions in
regions of space where they are needed such as in systems with strong inhomogene-
ity. For some cases, an enormous cutoff parameter may be needed whereas only a
few regions in real space would suffice.

8 Generalized Plane Waves

A generalization of the plane wave concept is obtained by defining them in curved
space yielding orthonormal functions that form a complete basis set and used for
reciprocal point sampling. As a result, the density of grid points (cutoff energy)
is now highest in regions close to nuclei and lowest in vacuum regions. For a given
accuracy, a lower number of generalized plane waves are required allowing even all-
electron electronic structure calculations where the simple plane wave fails. Other
methods consider the distortion of the metric frozen spherically around atoms via
deformation functionals leading to nonuniform atom-centered meshes in real-space
methods. In such approaches, locally adaptive models based on predefined coor-
dinate transformations are used for Pulay force contributions evaluated explicitly.
Freely floating Gaussians can also be used, which are distributed in space forming
an originless basis set (not atom fixed/localized) [25].
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9 Wavelets and Discrete Variable Representations

Similar to generalized plane waves are powerful multiscale properties of wavelets
which allows exploitation of multiple length scales without introducing Pulay forces
(handled efficiently by wavelet transformation). They also count on powerful routes
to linear scaling. The discrete variable representation (DVR) approach consists of
using continuous functions which satisfy properties of eigenfunction positions on
an auxiliary grid yielding high localization about the auxiliary grid points. Plane
waves are simple but lack the spatial bias of Gaussian basis sets which eliminates
the problem of delocalization at the expense of increased complexity. However,
DVR can be well localized about points on the grid with basis functions that satisfy
orthogonality and completeness relations and constructed for simple basis functions
according to boundary conditions [4, 25, 26].

10 Mixed Basis Sets

There are two extremes: plane waves on one hand and localized Gaussian basis func-
tion on the other, yielding considerable long-standing efforts to combine/exploit the
mutual strengths of these approaches. The projector augmented wave method maps a
smooth auxiliary wave function into true all-electron wave function using operators
which yields highly oscillatory wave functions into components that contains rapid
oscillations smooth and continuous everywhere as well as a contribution with rapid
oscillations only in the core region for each atom. For the PAW method, for example,
each part can be treated separately. Plane waves could represent delocalized wave
functions. Centered radial grids (Gaussians, Bessel functions, polynomials) can be
used for localized contributions. One does not lose information about core region,
and all-electron wave functions can be retrieved [4, 25].

11 Wannier Functions and Real-Space Grids

For periodic solid-state theory calculations, Wannier functions can be of interest
since they are formally obtained from a unitary transformation of Bloch orbitals
and can be, under circumstances, localized exponentially and proven useful for
electronic structure calculations. The generalized Wannier functions (maximally
localized) are periodic analogs of Boys’ localized orbitals for isolated systems [27].

A completely different approach consists of using real-space methods in which
continuous space is substituted by discrete space whereas the derivative operator
and total energy expression are discretized in some way. A number of real-
space approaches have been devised including finite difference approximation
with equally spaced cubic meshes in real space, nonuniform meshes, multigrid
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acceleration, discretization techniques, and finite element methods. In real-space
methods, we can exploit the nearsightedness of electronic matter for linear scaling,
whereas the multiple length scale problem can be addressed by hierarchically
adapting the grid in framework of multigrid methods [28].

12 Intermolecular Interactions

Noncovalent interactions are important in areas such as materials science, chemistry,
biology, and drug design. These are weak interactions, i.e., with minimum changes
in the electronic structures and geometries of the individual components. Hydrogen
bonding and stacking ( -  interactions) are the most studied as they play very
important roles in biochemical systems. Other noncovalent interactions identified
include sigma-hole interaction, halogen bond, blue-shifting hydrogen bond, and
anion-/cation-  interaction. These nonbonding interactions operate at larger (several
angstroms) interatomic distances, whereas overlapping is not necessary since the
attraction arises from electrical properties of participating molecules. These interac-
tions can be described in terms of dispersion, induction (polarization), electrostatic,
and exchange repulsion components. The total intermolecular interaction potential
is determined by the balance of the cited interactions. The classical Coulomb
interaction of the monomers electron distribution (unperturbed by the interaction)
gives the electrostatic interaction. Change of the electrostatic interaction due to
polarization of the monomer charge density by the interacting molecules yields
the induction. Interaction of the instantaneous fluctuations of electronic density
and multipoles induced by fluctuation yields the dispersion term. In other words,
for induction terms, charged molecules polarize neighboring species, whereas
dispersion interactions arise from the interactions between fluctuating multipoles.
The dispersion is a correlation effect requiring a quantum chemical approach.
The attractive short-range forces are opposed due to Pauli principle (exchange
repulsion). Electrons flow from donor to acceptor in charge transfer (CT) inter-
actions. The van der Waals (vdW) forces often describe repulsion and dispersion
contributions, whereas other long-range contributions may also contribute [14,
29, 30].

13 Semi-empirical Methods

The  -electron Hückel method is one of the early semiempirical approaches. This
method uses the connectivity matrix of a molecule to generate MOs. For unsaturated
molecules, it provides good insight into stability, structure, and spectroscopy. All
valence electrons are included in the extended Hückel theory which has been
qualitatively applied to organometallic and inorganic compounds [12].
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Hückel-type methods are noniterative since they only include one-electron
integrals. In semiempirical self-consistent field (SCF) methods, two-electron inter-
actions are explicitly taken into account. The Pariser-Parr-Pople method [31, 32],
among the first SCF approach, was restricted to   electrons yielding, for unsaturated
molecules, a reliably description. Pople introduced the generalization to valence
electrons via integral approximations which satisfied rotational invariance as well
as other consistency criteria. These approximations yielded the complete neglect of
differential overlap (CNDO), intermediate neglect of differential overlap (INDO),
neglect of diatomic differential overlap (NDDO) [31–35].

For organic molecules, Dewar introduced a new parameterization strategy by
addressing the realistic description of ground-state potential surfaces via calibration
against experimental reference data. This line of work yielded MINDO/3 (INDO-
based method) as well as MNDO (NNDO-based method) and AM1. Parameteri-
zation of the MNDO model yielded PM3. The choice of empirical core repulsion
functions determines the formal difference between MNDO and (AM1, PM3) [12,
34–36].

There are two other developments based on INDO approach before 1990, i.e., in
the INDO approach, the orthogonalization corrections to the one-electron integrals
by Jug et al. as well as parametrization for ground-state properties (SINDO1) [37].
This was later upgraded to MSINDO [38]. The INDO/S method by Zerner et al.
focused on vertical excitation energies, using configuration interaction with single
excitations (CIS) [38]. The MNDO model has progressed since the 1990 from
an sp basis to an spd basis. The treatment of heavier elements has thus enabled
improving results for hypervalent main-group elements. The extension to an spd
basis has led to PM6 and PM7 covering the whole periodic table with applications
to both solid-state and molecular properties. The usage of pairwise distance directed
Gaussians (PDDG) for empirical code repulsions resulted in the PDDG/PM3 and
PDDG/MNDO models. Some recent work address hydrogen bonding and dispersion
by using special purpose parameterizations. Using a larger reference data set
introduces the general-purpose RM1 model [39–41].

By including orthogonalization, corrections in the one-electron terms of Fock
matrices yields the OM1, OM2, and OM3 models which go beyond MNDO method
since they can account for the effects of Pauli exchange repulsions [42]. OM3
includes corrections to the two-center and one-electron terms of the Fock matrix
to account for Pauli exchange repulsion. OM1 and OM2 include them in the one-
center electron term.

We note, however, that conceptually, these semiempirical methods can be
considered as simplified ab initio MO approaches. Semiempirical tight-binding
(TB) versions of DFT methods have also been designed, i.e., DFTB approach, as
well as the self-consistent charge (SCC) DFT method. We note that the DFTB
method uses extensive integral approximations and parameterizations, especially
in medium-/large-sized molecules. MNDO methods were mostly used in the 1980s
and 1990s for quantum-chemical computations [43]. At present the MNDO, AM1,
and PM3 approaches are still used along with more recent versions such as PM6 and
PM7. Although DFT calculations have become dominant, OMx methods appear to
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have merit for electronically excited states. INDO/S methods are still useful in many
applications. In biochemistry and materials science, DFTB methods are popular.
Recently, graphic processing units (GPUs) have been used on hybrid platforms to
accelerate numerically the calculations [12].

14 Density Functional Theory

It was recognized in the early 1920s that in a uniform electron gas approximation,
the kinetic energy density could lead (via constraints) to the ground-state energy
functional minimization. However, only in 1964 did Hohenberg and Kohn show
that properties of many-body systems are a function of the ground-state density
and could thus be determined. Consider any system of electrons in an external
potential. Except for a constant, the latter potential will be determined uniquely,
and all the properties of the system as well as the many-body wave function are
determined. Another theorem indicates that for all-electron system, a universal
functional for the energy of the density could be defined. The global minimum
for a given external potential would yield the exact ground-state energy. A new
independent electron problem was provided to substitute the many-body problem.
The independent electron problem can be solved by requiring the ground-state
density and the exact density to be the same. The Kohn-Sham (KS) DFT, in use
today, defines equations (self-consistent) to be solved for a set of orbitals whose
density is defined to be exactly that of the real system.

DFT, with a better cost/performance than WFT, has become, in electronic
structure problems, a very popular tool allowing us to solve the electron correlation
problem which is included in the exchange-correlation potential. However, the exact
formula is not known which yields different approximations for implementations
(B3LYP and PBE are among the popular approximations [2, 9, 15–18, 44–56].

15 Some DFT Challenges

The early basic DFT challenges focused on functionals that could yield a description
of dissociation energies and geometries of molecules. Subsequent challenges were
to address barrier heights of reactions to determine van der Waals interactions
and kinetics of chemical reactions. There is still much debate about the ability
of DFT to predict the small van der Waals interactions. Current research still
tries to determine whether nonlocal functionals of the density are required for
these interactions. Although this is one of the weakest interactions, it is essential
for a good understanding of biological processes involved in protein-drug/protein
interactions [15, 18, 57].

In DFT, simple systems can indicate intricacies of larger systems such as strong
correlations and encompass breakdown of the single-particle picture, based on a
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determinant of single-particle Kohn-Sham orbitals. The quantum nature of matter
is described by a Hamiltonian which for a Coulombic system is determined by a
specified set of nuclei with charges and positions as well as a number of electrons.
One needs to minimize the energy over all possible antisymmetric wave functions in
order to find the appropriate wave function and thus the ground-state energy. In DFT,
the external potential is a ground-state density functional. The observable 3D space
density can be used to describe the interactions between electrons. Consequently,
everything is determined. DFT is very useful for systems with many electrons.
Kohn-Sham theory is formulated as a ground-state energy expression where the
kinetic energy, the nucleus electron potential energy, and the classical electron-
electron repulsion energy are known. Although an explicit form is not available,
much is known about the principal remaining term, the exchange-correlational,
which can be expressed via density functionals.

One of the important challenges of DFT is to maintain simplicity. The DFT
functionals should not become too complicated. However, the method should not be
empirical, and the cost of the simplicity should not be too high. Density functional
approximations (DFA) lie in between. DFT was important for accurate description
of binding energies and geometries of simple molecules. The solid-state community
also widely used DFT since local-density approximation (LDA) was not performing
well, overbinding molecules but yielding good geometries. The introduction of
generalized gradient approximation followed by exact Hartree-Fock exchange led
to B3LYP that has indicated a great performance over numerous systems becoming
the most widely used functional serving as a route for improving DFT functionals
[15, 18, 57].

Another challenge for DFT is to improve description of dispersion/van der Waals
interaction and reaction barriers. One needs to go past equilibrium geometry and
better describe transition states and weakly interacting molecules. However, LDA-
/GGA-type functions underestimate by several kilocalories/mole the transition state
barriers. Basic arguments include the need for a 1/R6 decaying attractive part of
the energy, when the interaction distance increases. LDA or GGA functional do not
show this behavior. Hartree-Fock nonlocal functional indicates repulsive long-range
behavior. For weakly bound dimers, for example, popular functionals often yield
poor results. There is still thus a challenge in DFT to correctly describe covalent
bonding and van der Waals attraction [15, 18, 57].

It is important in developing DFT functional to remember the connection to
the exact exchange-correlation functional and understand how the popular approx-
imations yields known properties of the exact functional. For this purpose, the
uniform/slowly varying electron gas has been very useful. The use of eigenvalues
and orbitals to describe the Kohn and Sham reference system is the basis of most
approximations. It is also possible to consider this as a mathematical artifact not
effectively linked to density/total energy. Some authors suggest substitution of the
electron density by the potential.

Most authors solve single-electron systems using the wave function, whereas
DFT considers their total density. Thus, single electrons could unphysically self-
interact. However, including full exact Hartree-Fock exchange cancels the Coulomb
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term exactly and consequently corrects the self-interaction error. For DFT to
remain strong in the future, it is important to understand theoretical/practical
inconsistencies. In simple systems, we can still find errors of 100 kcal/mol.

Strongly correlated systems are still a challenge/important frontier for DFT. If
we consider infinitely separated protons with different number of electrons, most
functionals fail, and the integer nature of electrons is important to better understand
correlation. For integer number of electrons, the energy functionals should indicate
correctly the discontinuous behavior in order to yield the energy gap and describe
correctly strong correlation.

16 Exchange-Correlation Functionals

16.1 LDA

The form of the uniform electron gas exchange (as a functional of density) was
known from the time of Dirac in 1930. However, Monte Carlo simulations (not
first principles) served to investigate high-/low-density limits. Vosko, Perdew, and
others developed popular LDA correlation functionals. The uniform electron gas has
played an important role in the development of functionals [58, 59].

16.2 GGA

The uniform electron gas can indicate different density from that of molecu-
lar/atomic systems. We note that the gradient of the density at the nucleus tells
what the nucleus is and that the Hohenberg-Kohn proof applies to any external
potential (including nucleus), yielding some insight regarding the importance of the
knowledge of gradient of the density at a fundamental level.

Using the dimensionless reduced gradient for slowly varying uniform elec-
trons gas, the gradient expansion yields major problems when applied directly to
molecules and atoms due to the fact that their densities are not varying slowly. This
can be attributed not to the well-defined nuclei but to the exponentially decaying
atomic tails. This led to development of the generalized gradient approximation
(GGA) with the introduction of functionals for exchange. With mathematical
derivations as well as solid-state physics/chemistry involved, gradient functionals
took some time to be developed. Although many functionals have been developed,
LYP and PBE are among the main ones established [59–62].
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16.3 Meta-GGA

GGA brought an order of magnitude improvement in binding energies with respect
to LDA. There was thus much expectation for inclusion of higher order density
derivatives. Perdew and Schmidt introduced the term meta-GGA via the Jacob’s
ladder of approximation to the exact exchange-correlation functional. The ladder
starts with LDA and continues with GGA. Next, meta-GGA is incorporated with
local ingredients including the kinetic energy density [63].

16.4 Hyper-GGA

Subsequently, at the fourth ring, nonlocal functional of the occupied orbitals involv-
ing functionals with Hartree-Fock exchange terms (hyper-GGA) is introduced.
In the ladder, each rung should satisfy some constraints, whereas each step up
the ladder should have previous rung functionals (B88C, B95, TPSS, and others)
[64–68].

17 Hybrid Functionals

In 1993, an important advance came via inclusion in the functional of some Hartree-
Fock exchange using a linear model that mixed correlation type functionals with
local DFA exchange yielding BHLYP among others. Subsequently, this model was
improved using experimental data (G1 data set of Pople and co-workers) yielding
the B3LYP model (implemented in Gaussian package) which is a linear combination
of HF, LDA, B88, LYP, and VWN [69–76].

18 Range Separation

Another idea is to separate the electron-electron interaction into short-range and
long-range interactions using an error function and different functions for each
interaction. The long-range LDA exchange energy can be calculated from the
exchange-hole explicit form, and the Hartree-Fock potential can be considered
correct in the asymptotic limit. It is thus possible to mix short-range DFA with
long-range Hartree-Fock to yield a corrected functional [77–81].
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19 Screened Functionals

These solid-state types of functionals use long-range DFA and short-range HF yield-
ing an area with interesting applications in solid-state chemistry with improvements
in excitation energies and other properties [82, 83].

20 Fitting

It is difficult to determine an accurate form from first principles. A more accurate
exchange correlation functional can be obtained from a fitting approach, which
consists of using experimental information to determine/test the functionals using
some form of parameterization. Although this model has been successfully used
in B3LYP and B97 functionals, it is not clear how many parameters are required.
Nonetheless, this model has led to development of numerous functionals including
(VS98, £-HCTH, MO6-L, MO6, MO6-2X, MO6-HF) some of which indicate good
improvement over standard B3LYP [66, 67, 76, 84].

21 Adiabatic Functionals

The idea of the adiabatic connection is that the interaction between electrons can
vary with a family of Hamiltonians (H�) and minimizing wave functions §� such
that H�§� D §� and �œ(r) D �(r) for all �. The exchange-correlation energy can
thus be expressed by integral over �. The path is from the noninteracting Kohn-
Sham system (� D 0) to the real physical system (� D 1). An important advance
in the functional development comes from including Hartree-Fock fraction in the
hybrid functional based on adiabatic connections. Functionals can be developed
from the adiabatic connection integrand, using both linear and nonlinear models,
as well as the exact adiabatic connection [65, 85–89].

22 Local Hybrids

Another method consists of using a variable amount of exact exchange at each point
in space. This can be done by using a local variant of exact exchange with a local
mixing function. The mixing function now plays a key role [90–93].
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23 Fifth Rung Functionals

Usage of fifth rung functionals involves unoccupied eigenvalues and orbitals,
whereas the MP2 (second-order many-body perturbation theory) functional is the
simplest form when the eigenvalues are from Hartree-Fock [94–96].

24 Random Phase Approximation

The difference between the single-particle excitations and the many-body formu-
lation yields the random phase approximation (RPA) correlation energy. RPAX
and RPAE differ in choice of eigenvalues and orbitals. Some models combine the
coupled cluster formulation with RPA, whereas others connect range-separation and
second-order screened exchange (SOSEX) with the RPA method [96–99].

25 Performance with Selected Properties

25.1 Thermochemical Data Sets

An important challenge in DFT is to test the results with experimental data of high
quality. Pople and collaborators developed the G1, G2, and G3 sets including large
molecules, ionization energies, heats of formation, proton affinities, and electron
affinities. Boese and Handy and Truhlar’s group as well as Grimme have also
developed data sets (including AE6 and BH6) that can be used to test/benchmark
DFT performance [100–103].

25.2 Prediction of Geometries

DFT has done well with geometries. Even the early LDA, without a satisfactory
energetic performance, yields reasonable geometries. Sometimes, the geometries
are better than GGA (with magnitudes of order better formation heats). For many
geometric quantities, there is also very good performance from hybrid functionals
[18, 104].
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25.3 Reaction Barriers and Kinetics

Functionals indicate good performance for atomization energies but yield poor
results for barrier heights of reactions even for the simplest reactions. Even hybrid
functionals are known to underestimate reaction barriers by 3 kcal/mol. Reaction
rates are also not well addressed. Truhlar’s group work included modification
of exact exchange to yield new functionals (MPW1K, HTBH42, NHTB38) that
address reaction barriers and kinetics [105, 106].

26 Hydrogen Bonding, Inorganic Chemistry,
and Transition Metals

Hydrogen bonding is much weaker than ionic and covalent bonds and is on the order
of 1–10 kcal/mol. They are however much stronger than van der Waals interactions
and weak dispersion. There exists a good difference between functionals that
perform on hydrogen bonding. Since there are electrostatic interactions between
fragments and overlap of electron density, functionals for hydrogen bonding has
been a challenge, yielding wide differences [107].

For inorganic chemistry and main periodic group, there appears to be improve-
ments on going from semilocal GGA to meta-GGA and forward to hybrids. When
barriers are included, the trend is to include/increase Hartree-Fock exchange. For
inorganic/transition metal chemistry, the opposite is suggested, i.e., there is a better
performance with smaller percentages of exchange [18, 108].

27 Response Functions

In general, GGAs overestimate for small molecules the polarizability. Hybrid
functionals improve the performance. Again for polymer chains, polarizability is
overestimated by LDA/GGA and corrected by HF and hybrid functionals. Similarly,
range-separated hybrids perform better for long-distance charge transfer excitations.
On the other hand, for NMR shielding constants, hybrid functionals make the
performance worse [109].

28 Performance of DFA

LDA does well in geometries but not for energetic differences. For energetics,
GGA/meta-GGA is superior to LDA. However, the three models overestimate
polarizabilities and underestimate reaction barriers. For weak interactions and
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hydrogen bonding, there is a wide variance among the methods. For some of the
most recent functionals, a much better description is obtained including Hartree-
Fock exchange in hybrids and range-separated functionals. Inclusion of theoretical
and physically motivated corrections sometimes can yield a worse description of
chemistry although they may yield good results in other areas [18].

29 Van Der Waals Forces and Simple Corrections

For the exact theory, dispersion forces are not a problem, but local/semilocal func-
tions cannot capture the asymptotic 1/R6 behavior. There may be basic/mathematical
flaws in the DFT functional, and thus failure to give correct energy for two fixed
densities at long distances has originated simple corrections.

Since LDA and GGA cannot describe van der Waals long-range behavior, the
correct 1/R6 will be missing. Empirical 1/R6 pairwise correction has been thus
proposed. These can also be functionals of both the density and the nuclear geometry
and extended to higher-order corrections. The coefficients can be calculated from ab
initio methods or derived from experimental information. Nonempirical functionals
can also be developed from the dipole moment of the exact exchange hole.
Pseudopotentials can also be used to capture the dispersion interaction. It is also
possible to develop explicit functionals from the density of two separate fragments
that are weakly interacting [110–113].

30 New Trends

One of the new trends consists of constructing approximate functionals and
minimizing the total energy. One can also allow the interaction between electrons
to vary using a family of Hamiltonians and minimizing the wave functions. Another
approach would be development of models based on implicit density functionals
[15, 18, 57].

Another way to carry out energy minimization with orbital functionals is the
optimized effective potential (OEP) method which depends, however, on the choice
of balanced potential basis sets and orbitals. The theoretical foundation of potential-
centric view was established as potential functional theory (PFT). For nonlocal OEP,
one can optimize the ground-state energy, whereas the optimization variables are
orbitals. Using functionals such as the exact exchange (Exx) yields the generalized
Kohn-Sham (GKS) equations. These are also called Hartree-Fock-Kohn-Sham
equations. For a functional such as B3LYP, GKS and OEP methods can yield similar
results [114, 115].

Although DFT is reaching success and maturity, it is important to understand
the errors which arise from the approximate functionals used in the calculations.
Understanding the root of the errors can offer good insight into improving the
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physics, chemistry, biology, and engineering involved, i.e., delocalization errors,
self-interaction, many-electron self-interaction, and fractional charges errors [116].

Since a system of fractional number of electrons does not supposedly exist, what
is the important perspective of fractional charges? Is the purpose to look at the
properties of the functional rather than the chemistry? [18]

The initial/simple way to use approximate functionals to calculate fractional
charge was to perform calculation on molecules with odd number of electrons.
These were then stretched to infinity. However, the stretching can cause technical
challenges. Another route involves modifications of code to involve fractional
occupation. Generalization to fractional numbers can also be obtained by using
fractional numbers for the frontier orbitals.

Another important question regards the correctness of ensemble or factional
occupation. We must keep in mind that the importance of really understanding
calculations on integer systems is that the density matrix appears to have been
separated into fractional pieces. In other words, it is important to understand the
role of functionals for calculations with fractionals essentially because of their
appearance in real integer calculations [117, 118].

It is known that approximate functionals deviate from linearity condition for
fractional charges with a convex behavior. They will thus give low energies for
delocalized charge distribution or favor delocalized charge distributions over integer
or localized ones yielding delocalization errors. For functionals with concave behav-
ior, for fractional charges, delocalization will raise the energy yielding localization
errors. The delocalization error is essentially an example of delocalized densities
and can have physical consequences [119].

From a quantum perspective, static correlation and degeneracies are inherently
multideterminental. The methods used for these cases are often built upon a
multiconfigurational starting point yielding methods such as CASDFT where a deep
understanding of the method is required [120].

Formal occupation numbers apply in the case of exact degeneracy. This idea
could be extended to near degeneracy or density functional approximation (DFA)
where orbital are not exactly degenerate. Degenerate ensemble of states (spatial
degeneracies) can yield fractional-spin states. Both charge and fractional-spin errors
can produce wrong densities. DFA has been used successfully with fractional spin
to describe spin state splitting in open-shell singlet molecules [18, 121].

For the simple case of one and two electrons with a proton, the long-range
asymptotic DFA behavior indicates challenges in the construction of functions
which raises questions regarding usage of long-range Hartree-Fock exchange. The
screening of the long-range electron-electron interactions is important in solid-state
systems having different external potentials [122].

Although strongly correlated systems are difficult to describe, the problem in
DFT can be focused from the functional perspective, whereas it is necessary to find
one functional that works for all systems. Quantum chemistry divides the correlation
energy into dynamic or nondynamic correlation, whereas the correlation energy is
given by Ec D Eexact – EHF

. DFT dynamic correlation is describable by functionals
such as Ec

LYP and Ec
PBE, i.e., not unlike correlations of uniform electron gas.
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Static correlation functionals of DFT appears for cases with multiple determinants
associated with degeneracy. It can be considered as the deviation from the constancy
condition for fractional spins, whereas we can detect if a DFA describes it correctly
[18, 123].

A fundamental understanding of band gap lies in the change in derivative when
orbitals change between LUMO and HOMO. In band theory, the eigenvalue picture
for the Mott insulators breaks down. The frontier KS and GKS eigenvalues are
the chemical potentials when Exc is an explicit and differentiable functional of the
noninteracting density matrix or orbital functionals. However, the exact functional
cannot be a differentiable and explicit functional of the noninteracting density
matrix for all physical densities/matrices. For Exc the functionals can be non-
differentiable. For a Mott insulator, with zero eigenvalue difference, the gap can
thus be written as Egap D I – A D XC, which includes the explicit discontinuity of
the exchange-correlation term which implies that there is a change in the functional
itself (not only a change in the density or orbitals that functional acts on). XC

represents only the explicit discontinuity of the exchange-correlation term, I is the
ionization potential, and A is the electron affinity. For a pure Mott insulator, only a
change in Exc can yield a gap. This is a new difficult concept [124, 125].

We note that the rapid rise of DFT was supported by the similarity of computation
solving KS equations using simple ab initio methods (HF). However, there is a
strong philosophical difference between both methods, i.e., wave functional versus
exchange functional of density. The actual challenge is concentrated on finding Exc,

31 Frontier Eigenvalues and Band Gaps

The fundamental band gap for solids is the difference between the electron affinity
and the ionization potential, whereas for molecules, it is the chemical hardness
(a one-half factor neglected). For energetics, structure, defects, interfaces, and
electron transport as well as electromagnetic responses, the band gap plays a key
role. The frontier orbitals are either the highest occupied molecular orbital (HOMO)
or the lowest unoccupied molecular orbital (LUMO).

When the exchange functional is an explicit functional of the electron density,
(local or nonlocal), the frontier KS or GKS eigenvalues are the chemical potentials.
The total energy is a linear interpolation between integer points. For functionals
that satisfy exact linearity conditions, those are simple differentiable and depend
explicitly on electron density "HOMO D �I (ionization potential) and "LUMO D �A
(electron affinity). The functional satisfy linearity conditions will determine how
well the frontier KS and GKS determine experiments. Molecules that include
long-range Hartree-Fock exchange should improve the description of the frontier
eigenvalues [18, 121, 126].

We also note that the fundamental band gap can also be understood from the
behavior of E versus N, i.e., as the difference between the electron affinity and
the ionization, whereas this can be compared with derivatives with respect to N
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(difference between derivative to the right and to the left). For an exact functional,
we would observe that the Egap

integer D Egap
derivative. This may explain some of

difficulties of approximate functionals to determine accurate band gaps of solids
[124, 127].

32 vdW-DF Method

Even nearly 100 years after van der Waals received the Nobel Prize in Physics,
the complex manifestations of the vdW force is still a challenging research
area. In physical chemistry, vdW includes a permanent dipole and corresponding
induced dipole (Debye force), two permanent dipoles (Keesom force), and London
dispersion force (two instantaneously induced dipoles). For the condensed-matter
scientist, the latter nonclassical term is the vdW force. The vdW interaction is a true
quantum phenomenon which emanates from dynamic electron correlation causing a
net attraction between fragments of electrons in many-electron systems. Since it is
a correlation effect, vdW interactions are included in exact DFT functional, but in
practice, approximate forms are necessary. Analysis of polarizabilities of interacting
inert atoms, molecules, and surfaces yield for inert atoms molecules and surfaces the
R�6 asymptotic form of London force for atomic and molecular dimers, the Z�3 law
for a neutral molecule on a surface and d�2 interaction law for pairs of solids [128].

The vdW has been important to investigate physical and chemical properties of
functional materials. Indeed, today’s emphasis in computational materials science
has shifted from metals and semiconductors to biological materials and nanomate-
rials due to many low-density vdW regions. The applications of vdW functionals
include interaction of atoms, molecules and solids, molecular solids, surfaces,
adsorption, graphene, metal, oxides, polymers, nanosystems, adsorbate interactions,
clusters, nanotubes, water, and others [15].

Initial vdW-DF work focused on nonlocal correlation. Asymptotic behavior such
as R�6, z�3, and d�2 offered simple vdW parameters/formulas yielding promising
results. Significant improvements for description of vdW-bonded regions originated
vdW-DF0 and vdW-DF1 functionals. vdW-DF2 included nonlocal correlation
energy and exchange energy update to address overestimation of separation and
molecule-molecule interactions. Recently, the focus has been placed on exchange
to improve performance, internal inconsistencies, covalent solids, and systems
with different binding characteristics yielding energies that now approach chemical
accuracy. The vdW-DF-cx functional attempts to use an exchange functional
derived from the same plasmon-based model originating nonlocal correlation
energy. An ultimate solution would be generalization to a unified treatment with an
explicit solution of the electrodynamics to smaller separation. vdW-DF0 attempts
to do such a generalization. The vdW-DF method also has a good potential for
transferability [15].

Phenomena and processes where flexibility of DFT could be important include
molecules on metal surfaces (strongly differing from bulk), charge transfer, and
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screening at grain boundaries. Weaknesses of vdW-DF include lack of spin,
exchange mechanisms, low accuracy for noble-gas dimers, d and f electron effects,
and incorrect asymptotic power laws of low-dimensional structures. Dispersion
interactions are ubiquitous and still challenging but are essential not only for typical
weakly bound systems but also for materials (where they were traditionally consid-
ered negligible). New application areas should include disordered systems, liquids,
several length scale systems, biological/competing interactions systems [15].

33 Time-Dependent DFT

Time-dependent density functional theory (TD-DFT) is an extension of ground-state
(GS) DFT which allows electronic modeling of excited states (ESs). Runge and
Gross in 1984 defined the fundamental equations [129]. Casida provided, 11 years
later, linear-response expression for calculation of excitation energies (TD-DFT)
[46, 130, 131]. For adiabatic approximation, considering the exchange-correlation
independent of the frequency, the so-called memory effect is lost, yielding a pseudo
eigenvalue matrix formulation. When the de-excitation matrix is set to zero, one
obtains Tamm-Dancoff approximation (TDA), which corresponds to configuration
interaction singles (CIS) when HF wave functions are used. The Casida formulation
has been successful for a number of approaches since all single-reference theories
using TD-DFT is straightforward/accessible. The method can treat photoactive
compounds in a realistic environment, i.e., once coupled to environmental models,
large compounds can be considered via scaling [54].

Nonetheless, with this formulation, it is difficult to properly investigate excited
states (ESs), high-spin states, and multi-reference systems although the method has
a good accuracy/computational cost accuracy. Many calculations use the vertical
approximation, whereas frozen geometries (ground-state DFT/X-Ray geometries)
are used, and vibronic effects (coupling between electronic and nuclear degrees of
freedom) are neglected yielding Rydberg, localized, charge-transfer effects, but not
a good comparison with experiment (measured optical spectra). The vertical excita-
tion limits have stimulated new research in computing 0-0 energies/vibrationally
resolved band shapes. However, this implies on one hand expensive Hessians
(second geometrical derivatives of TD-DFT energy) to yield improved potential
energy surfaces (PESs). On the other hand, important information can be obtained.
Analytical geometrical derivative (at least first two) has been increasingly important
in this line of research [46].

TD-DFT approaches that provide data comparable to experiment should become
standard. Development of new exchange functionals such as range-separated
hybrids should allow more accurate studies including charge-transfer effects.
Constricted variational DFT [56], less sensitive than TD-DFT to selected functional,
may be better suited for investigating states with double excitation character.
The equation of motion coupled-cluster expansion, an alternative single-reference
theory, such as CC2, includes contributions for double excitations and can be
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consequently more accurate than TD-DFT. With a computational cost three times
smaller than CC2 with an equivalent accuracy, we have algebraic diagrammatic
construction (ADC). These models can be improved with more correlation effects
and high-computational requirements yielding (CCSD, CC3). Another popular
alternative from solid-state physics is BSE/GW with enhanced accuracy [132].

Continuous developments of TD-DFT permits calculation of larger/more com-
plex systems whereas the role of nonadiabatic coupling cannot be ignored requir-
ing models such as quantum-dynamical wave packet propagation from multi-
configurational time-dependent Hartree (MCTDH) and its multilayer expansion
[133].

34 Force Fields

For large systems with temporal/length scales of ns/hundreds of Á, where QM is
clearly limited, a less expensive computational model such as force fields (FF) are
required. This method uses inter-site potentials to describe interactions between
sites (atomic) requiring a different parameterization (data from QM or experiments)
for each system. The number of bonds is fixed in a conventional FF simulation,
whereas it is possible to capture dynamics and formation/destruction of covalent
bonds in a reactive FF simulation. The classical potential contains bonded and non-
bonded contributions. Molecular bonded potentials contain bond stretch as well as
bond bending and torsion (3-body and 4-body terms). Harmonic functions can be
used to describe stretching and bending, whereas periodic functions can be used
for torsional energy. Nonbonding interactions are typically electrostatic (Coulomb),
whereas for van der Waals, a simple description is quantum fluctuation of charges
whose interaction can be given by the Lennard-Jones (L-J) M model, i.e., a repulsion
12th power term (Pauli repulsion due to overlapping electron orbitals) and an
attractive sixth power (dispersion force of neutral atoms) term. It was shown that
it was possible to reduce scaled L-J term to a single universal binding energy curve
for numerous materials laying the basis for bond-order concept [8, 134, 135].

35 Characterization of PES (MC/MD)

Molecular simulations and computational chemistry have evolved as major tech-
niques to study physics and chemistry of materials, whereas one of the objectives
of molecular simulation is characterization of system’s potential energy surface
(PES) due to the interest in locating minima and saddle point connections on
the PES. Approaches based on energy minimization may work well for well-
ordered, high symmetry, small systems, whereas for other more complex systems,
characterization of the PES requires extensive sampling. There are two traditional
classes of techniques for dynamics and sampling, i.e., Monte Carlo (MC) and
molecular dynamics (MD).
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35.1 Monte Carlo

MC methods employ random number in order to solve a wide range of problems,
including simulation of physical processeş solution of integral and linear operator
equations, and evaluation of multidimensional integrals. In this method, the PES
is characterized using extensive statistical sampling (accessible basins). Random
changes are made in the method to an existing configuration so as to generate new
configurations. A criterion such as the Metropolis criterion can be used to either
accept or reject these configurations [10, 14].

35.2 Quantum Monte Carlo

MC techniques can be applied to problems in quantum mechanics whereas the
intersection of MC and QM methods is referred to as quantum Monte Carlo
(QMC) methods, which are accurate tools for studying molecular quantum mechan-
ics including thorough treatment of static and dynamic correlation effects and
are not constrained by considerations of many-particle expansions and basis
set considerations. In QMC, a trial wave function approximates the true/exact
Schrodinger wave function, and its parameters can be varied to obtain a more
accurate function. The method can be considered as a family of stochastic methods
for solving quantum many-body problems such as the stationary Schrodinger equa-
tion. Stochastic methodologies offer direct/correct particle correlations, favorable
scaling, and a wide range of chemical/physical mechanisms. QMC is a unique
approach combining known analytic insights/direct constructions with robustness
of stochastic methods to capture many-body effects efficiently. Effective core
potentials, periodicity, and noncovalent interactions are addressed in QMC [10, 14].

QMC approach offers new insights of the nature of quantum correlations that are
stimulating for WFT methods. A complete basis set is used for stochastic sampling
(determined automatically) with explicit inclusion of exact nonanalytical behav-
ior (electron-electron cusps). The smooth, long-range, medium correlations are
captured with efficiency. Limitations/challenges include the fundamental Fermion
sign problem, better understanding of errors related to QMC procedures, and
development of new fast algorithms.

The most common approaches to QMC include variational MC (VMC), fixed-
node diffusion MC (FN-DMC), Green’s function MC (GFMC), Fermion MC
(FMC), self-healing diffusion MC (SH DMC), auxiliary field quantum MC
(AFQMC), reputation quantum MC (RQMC), and full-CI Quantum MC (FCI-
QMC). These methods rely on random walks in space of electron configurations.
Time-dependent quantum Monte Carlo (TDQMC) can be seen as a set of coupled
time-dependent Schrodinger equations for the guiding waves in physical space.
Although QMC methods are among the most accurate tools for studying molecular
quantum mechanics, the computed time for each step of a QMC calculation
increases roughly as N3 where N describes the size/number particles of the system
[10, 14].
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Important advantages in QMC include accurate description of noncovalent inter-
actions, larger molecular systems than current WFT approaches (due to low-order
polynomial scaling) and favorable parallelism of algorithms for supercomputer
usage and straightforward treatment of periodicity [136–141].

35.3 Molecular Dynamics

In MD, the PES is sampled, whereas the initial configuration is propagated and
explored with time using Newton’s equation of motion yielding a trajectory (series
of molecular configurations). Classical molecular dynamics, with force fields and
predefined potentials are based on independent electronic structure calculations
or empirical data. At the heart of this model is the description/approximation
of the interatomic interactions mostly determined in advance. The full inter-
action comprises two-body, long-range/short-range interactions, many-body con-
tributions, electrostatic/non-electrostatic interactions represented by appropriate
functional forms. Elaborate methods, including analytic potentials, have been
developed. However, despite significant success, there are serious drawbacks due
to the need to devise fixed predefined potential, i.e., when the electronic struc-
ture/chemical bonding pattern changes qualitatively during simulation or when
different atom/molecules yield different interatomic interactions/parameterizations
and no suitable set of potentials is already available [4, 19, 142, 144].

35.4 Ab Initio Molecular Dynamics

Despite the success of MD, the necessity to construct a predefined/fixed potential
is a drawback in particular for complex systems. Consequently, traditional MD
was extended to (AIMD) ab initio MD or Carr-Parinello (CP), first-principles
MD (FPMD) on the fly, directed extended Lagrangian MD (ELMD), density
functional MD (DFMD), quantum chemical, Fock matrix, Hellmann-Feynman MD,
and quantum MD (QMD). How does this theory work? As the molecular dynamics
trajectory is generated, the forces acting on the nuclei are determined by “on-the
fly” electronic structure calculations. The electronic variables are not represented by
fixed interaction potentials and are not integrated out beforehand. Complex system
can thus be handled by AIMD. The approximation is shifted from constructing an
interaction potential to selecting an approximation for solving Schrodinger equation
[4, 19, 142–144].

AIMD joins ab initio electronic structure theory (solving the wave equation
numerically for Schrodinger and using HF or KS/LDA) with classical molecular
dynamics (for a given interaction Newton’s equation of motion is solved numeri-
cally). However, the relaxation times and correlation lengths are relatively smaller
which is sometimes addressed by increasing computer power. Also, AIMD can yield
promising results in terms of the electronic structure and chemical bonding.
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36 Quantum Mechanics/Molecular Mechanics

Quantum mechanics/molecular mechanics (QM/MM) is one of the first hybrid
models which includes the combination of more accurate QM strength with faster
and more efficient MM methods in order to generate a stronger tool for investigating
larger more complex systems. In this model, the system is divided into two regions,
whereas the outer region is described by a force field and the inner region is treated
quantum-mechanically. Often a small region of the system can be modeled by ab
initio quantum chemistry, whereas the other can be treated more approximately.
The interface between the QM and MM regions is the key issue [3, 145]. A
less expensive alternative is the usage of self-consistent reaction field (SCRF)
approaches, for the coupling of quantum chemical calculations with continuum
models, which has been implemented over the decades in quantum chemical
softwares [3, 5, 6].

37 Coarse-Grained and Multiple Scale Models

The traditional approaches using all atoms are still not adequate for appropriately
simulating large temporal/spatial scales. In the coarse-grained (CG) model, one
neglects some of the atomistic degrees of freedom (DOFs). The CG models can
increase over temporal/spatial limitations of all-atom models. The physics of the
detailed system may be sensitive to small-scale phenomena, and there is a challenge
to develop accurate/transferable force fields, which can be extracted from atomistic
simulations or by reproducing key experimental data [8, 20, 22, 146–152].

CG creates lower resolution/simplified model of the system by grouping atoms
into CG beads (pseudoatoms) whose number determines the level of coarse-graining
(degree depends on number of atoms represented). A lower-resolution model can
be obtained by increasing atom-to-bead ratio, whereas total number of degrees
of freedom is reduced. CG beads interact with each other via potentials yielding
considerable increase in time/space accessibility. The basic idea of simulations with
coarse-graining is thus to represent the system with reduced number of degrees of
freedom (compared to all-atom representation).

In energy-based CG, interaction potentials of beads are derived/parameterized
so that it is possible to reproduce energies of all atom system. In force-matching
method, sum of atomistic forces are mapped onto corresponding CG beads.
Structure-based CG methods depend on reproducing interactions obtained from
atomistic simulations (radial distribution functions). The CG models can relate
phenomena such as energy, force and structure molecular dynamics, or experimental
results. The aim is to provide most efficient computational model with adequate
details. Using coarse-graining, we can achieve a simpler description by reducing
the structural details of a complicated system by grouping into fewer interaction
sites. Challenges of designing CG models include choice of pseudoatom sites
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(represent combined groups of multiple atoms), effective energy function (defines
interaction between the pseudoatoms), and effective dynamical equations (necessary
for dynamic properties).

One of the popular energy-based approaches CG models is the Martini model
which uses a four-to-one mapping scheme (average four heavy atoms are repre-
sented by one interaction site or bead). Standard masses of each bead are assigned to
yield a more computationally efficient model. Main types of interaction considered
are polar, apolar, nonpolar, and charged with subtypes that describe the hydrogen-
bonding capabilities whose combination yields different bead types (diversity leads
to more accurate description of chemical nature and structure).

CG models can simulate large systems with size (100 � 100 � 100 nm3) which
contains millions of particles as well as slow micro- to millisecond range processes.
High-throughput studies can be done via thousands of parallel runs indicating
location/importance of detailed insights regarding fundamental driving forces for
novel pathways at a much smaller computation cost than other available models.

It is of interest to link CG simulations with that of detailed models, whereas
behavior can be determined at multiple scales (different scales share information
regarding interactions). This can be done bottom-up, whereas fundamental physical
principles at detailed scale parametrize a CG scale model, or top-down when larger
scale behavior is used to inform more detailed scale interactions.

The CG Boltzmann inversion (BI) method aims to obtain an accurate reproduc-
tion of structural details via interaction potentials, based on the idea that for particles
to interact with each other via forces that only depend on the scalar distance that
separates them, it is necessary a one-to-one correspondence between potential and
radial distribution function. The radial distribution function indicates correlations
in distribution of particles due to forces exerted on each other from pair potentials.
When atomistic simulations yield CG interactions, the BI method is an example of
multiscale method.

Another model, the force matching method, is also an example of a multiscale
method, whereas the interaction potentials are determined from atomistic simula-
tions (structural information not used).

Another approach is the thermodynamic-based model, whose premise is that
if the local thermodynamic properties are correct, dynamics on long time scales
will be also correct, whereas analytical potentials are often chosen (Lennard-Jones
potentials for nonbonded interactions, harmonic bond stretching/bending potentials
as in atomistic simulations).

Physical and mechanical properties for systems including polymeric materials
can depend on phenomena at different temporal and spatial scales making it neces-
sary to use multiscale techniques for modeling purposes, whereas it is necessary
to establish a link between macroscopic mechanical properties and molecular
constituents. Difficulties arise from a wide range of spatial and temporal scales
involved.

For covalent bonds, typical vibrations are on the length scale of Á with sub-
picosecond time scale. Typical length of a monomer is nanometers (nm with tens of
picoseconds relevant dynamics. Polymer chains are �10–100 nm with single-chain
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interactions of 10–1000 nanoseconds (ns). Polymeric networks are on the order of
1–100 �m indicating relaxation times of micro- to milliseconds. Bulk polymeric
materials indicate length scales of millimeters to centimeters, whereas aging and
relaxation of polymeric materials happen in seconds/hours/years range. These wide
ranges of temporal/length scales show clearly that it is necessary to introduce
multiscale modeling if one wants to characterize correctly the hierarchy of scales.

Future predictions? Our present limitation is for systems containing 107 inter-
acting atoms and 1 �s which can be investigated using particle-based simulations.
Even if we could count on doubling yearly computational performance (Moore’s
law), we could not model with atomistic resolution 1014 atoms (complete cell)
although a bacterial cell may be feasible in the future. Let us go another step further
and consider a typical membrane patch of length L, whereas it is assumed that
the computational effort to increase membrane size scales as L6. Assuming again
Moore’s law, it would take us 40 years to increase the membrane size by a factor
of 10.

38 Simulation of Materials and Biomolecular Structures

The underlying physical laws (encapsulated in the Schrodinger equation) for the
mathematical theory of a large part of physics and chemistry are known from the
1920s. The exact solutions of these laws are not tractable for realistic materials.
Nonetheless, the application of numerous approximations previously discussed
reduces considerable the number of electrons to be simulated. This advancement,
coupled with computational advancements allows techniques such as DFT to solve
the fundamental laws of SE and predict properties of materials and biomolecular
structures.

Inputs of DFT calculations including identities and coordinates of atoms in the
material’s repeating lattice is often used as well as exchange correlation functional
and algorithms for convergence and methods such as pseudopotential approach to
treat the core electrons. The choice of the exchange correlation functional can often
improve the calculation. DFT codes can tackle periodic unit cells with �1000 atoms.
Difficulties can arise in modeling weak van der Walls interactions, long period
dynamics, and finite temperature excited states. However, there are methods for
overcoming these limitations. Linear scaling approaches can be used for larger
systems. TD-DFT can address the electronic excitations. Approaches previously
discussed can model the van der Walls interactions. In order to screen for materials
properties using DFT, the input is given via crystal structure (atomic positions, unit
cells) of hypothetical material, as well as “choice” of approximations/convergence
parameters yielding total energies, charge densities, band, and crystal structures.
Outputs produce descriptors for relevant applications [8, 11, 153–187].

Total energy calculations can yield important properties. The energy difference
between a point defect and the perfect crystal can yield the thermodynamic
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properties of the defects. The energetics of diffusion barriers can be evaluated as the
energy differences along an atom’s migration path. Analyzing the resultant force on
remaining atoms, after displacing some atoms, it is possible to determine phonon
modes (vibrational heat capacity). In the field of catalysis, we can use DFT results
as descriptors to be used in scaling relations or heuristics.

Lithium-ion batteries will provide for the next-generation electric vehicles,
whereas the expected voltage determines energy stored per unit charge. Using
electron localization, it is possible to predict voltage increase in hypothetical doped
materials. High-throughput automation virtual screening of materials can be used to
predict new cathode and anodes [154–156].

Hydrogen can be generated from hydrocarbons via a steam reforming process,
whereas the necessary catalysts can be predicted theoretically and the binding
energies related to catalytic behavior. Since hydrogen can be embedded in a solid
compound, theoretical methods can be used to identify new compound mixtures for
hydrogen storage [16–160].

Traditional superconductors (electron pairing interactions arise from electron-
phonon coupling) can in principle be predicted in systems with anomalously high-
electron density at the Fermi level. Since many materials exhibit phase transition
as a function of pressure, it may be possible to use crystal structure determination
to predict high-pressure superconductivity in materials with unknown structures.
Theoretical methods are expected to evolve to screen for novel higher Tc compounds
[161–164].

Contribution of photovoltaics to the total electricity generation is small. The-
oretical screening can be made on a wide range of materials (chalcogenides,
organic photovoltaics, copolymers, transparent conducting films, alloys). PVs can
be analyzed by looking at the HOMO energy level relative to air and charge-transfer
energy offset of LUMO as well as band gaps [165–167].

Thermoelectric materials drive electrical currents via temperature differences.
Despite their potential applications (transportation vehicles, power generation),
the performance of these materials can be determined by ZT (figure of merit)
which is proportional to electronic conductivity, Seebeck coefficient, and electronic
conductivity). Due to inherent trade-off among these properties, there is a limit
on attainable ZT. In large complex materials, it is not straightforward to obtain,
from DFT, accurate band gaps and carrier lifetimes. Despite difficulties, screening
of materials with improved ZT is still feasible [168, 169].

Using the polarization of an electric field within a material, the capacitor
stores electrostatic energy, i.e., pseudocapacitors, carbon-based supercapacitors,
ferroelectrics, dielectric capacitors. A dielectric capacitor should have high break-
down strength, good cycling stability, and high dielectric constant. The electronic
component of the dielectric constant depends on the band gap. The dielectric
constant can be evaluated as a function of structural and chemical properties. For
most materials, it is not necessary to do, in silico, the entire material design, but
focus the experimental efforts within a structural and chemical space [153, 170].

Molecular modeling is appropriate for developing quantitative and qualitative
knowledge of structure-properties relationships (selective adsorption, catalysis,
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separation technology) for a wide range of systems (bulk, interfaces, molecules)
yielding important information regarding pore size, temperature, shape, and other
variables in selectivity adsorption. Simulation methods are important for computa-
tional study/design of synthetic sorbents and catalysts (zeolites, aluminophosphates,
aluminosilicates, nano, mesotubes, fullerenes, heterofullerenes, pillared clays, dis-
ordered porous solids) as well as surface heterogeneity/equilibrium and kinetics
of fluid adsorption, thermal desorption, surface diffusion, and surface reactions.
Solid oxide fuel cells can be improved by studying the effects of doping one the
ionic conductivity [8, 11]. Future trends should include development/application
of widely understood modern techniques to study adsorption experiments in order
to design new types of catalysts and adsorbents. Usage of experimental databases,
artificial intelligence, and advanced simulation techniques will open new strategic
technologies [11, 153].

Nanotechnology with its applications for electronics, batteries, drug/gene deliv-
ery, water desalination, and diagnostics has an increasing participation in sustainable
technologies that address society needs, i.e., clean water/air/energy supplies. On the
other end, the usage of small size/reactive nature of nanomaterials in addition to
positive contributions, raise issues regarding potential health, environmental, and
safety concerns. There are challenging chemical, biological, and physical issues
involving interactions between biological and nanomaterials that span spatial and
broad length scales. Nanomaterials may be involved in electron transfer in cells,
generation of damaging reactive oxygen species as well as undergo undesired
chemical transformations. Theoretical and computational studies are expected to
play important roles in elucidating the complexity of nano/bio interfaces. Coarse-
grained models (structure and dynamics) may be necessary to access the large
length (>100 nm) and time (>�s-ms) scales relevant to behavior and impact
of nanomaterials with biological settings. Top-down approaches that depend on
semiempirical methods can also provide insights into effects of nanomaterials on
biological structures such as lipid membranes.

In modern surface science technology, modeling the reactions and adsorption
of organic molecules at metal surfaces has important applications in molecular
switches, sensors, photovoltaics, energy devices, and catalysis. The highly tunable
properties of organic molecules and the electrical conductivity of metals can result
in new functionalities not present in either material. An accurate description of
bonding between substrate and adsorbate is essential for control and understanding
functionality and design of these types of hybrid systems in which there is a delicate
balance between van der Waals (vdW), covalent, hydrogen bond, Pauli repulsion,
and charge transfer [144].

Due to nontoxicity, high stability, and abundance, metal oxides such as TiO2

(nano) materials have been the subject of numerous theoretical investigations
regarding chemical and physical fundamental properties. It was challenging for
a long time to correctly describe relative stabilities of anatase and rutile bulk
phases. Inclusion of dispersion in DFT calculations have been suggested to be
important for reproducing the greater stability of rutile. Stable in nanoparticles,
anatase indicates higher photocatalytic/photovoltaic activity, whereas the electronic
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structure plays an important role in these applications, i.e., positions of valence and
conduction band edges relative to the potentials of relevant redox couples determine
occurrence of photocatalytic reactions. The optical absorption is determined by
the band gap. States near conduction and valence band edges have more influence
on chemical reactivity and electrical conductivity. Accurate theoretical description
of band gap is important allowing quantitative energetic prediction of trap states,
impurity levels, defects as well as influence of doping on optical absorption which
is crucial for design of oxides with improved properties. It is also important
whether charge carriers (reducing defects, doping, and photoexcitation) are in
delocalized band states or coupled to lattice polarization forming localized polaronic
states. Choice of electronic structure method is important, and nonstandard DFT
methods are sometimes used [171]. Fullerenes, nanotubes, nanowires, and other
nano systems have been designed and investigated using semiempirical, ab initio,
density functional, and molecular dynamics methods [172–175].

Surface functionalization/modification is used to induce new material’s prop-
erties (hybrid photovoltaics and dye-sensitized solar cells). Molecular dynamics
simulations based on force fields potential allows modeling the sintering of oxide
nanoparticles. Photoelectrochemical and photocatalytic processes can be elucidated
using modern parallel computers and computational algorithms expanding first-
principles electronic structure simulations to better understand realistic oxide
nanocrystals of a few nm size. Simulation models are being applied to an ever
increasing number of diversified areas including crystal structure, phase stability,
mechanical properties, elasticity, theoretical strength, fracture, magnetism, conduc-
tivity, phonon frequencies, liquids, amorphous, semiconductor, insulators, metals),
surfaces, interfaces, and thin films [144].

The earliest example of CG approach in structural biology was developed in the
mid-1970s, i.e., a simplified simulation model of proteins. The field has branched
out considerable since then, yielding many variants of protein representation,
sampling models, and interaction potentials, whereas the growing number of
experimentally solved structures of large biomolecules is too large to be addressed
by all-atom simulations. Some of the CG models enable protein structure prediction.
Interaction schemes are typically based on mean-force potentials (derived from
known protein structures), and the simulation processes can be controlled by the
MC method. One of the future trends of CG dynamics lies in design of approaches
for efficient/reliable transition between atomic resolution and simplified levels.
Using CG approaches, we will be able to send CG scale simulations to detailed
all-atomic simulations (vice versa). CG simulation is playing an increasing role
in protein mechanostability, folding, unfolding, and understanding mechanisms of
virus binding to its host cell. CG simulation of protein-protein interaction dynamics
is now in the spotlight of biomedical research since these interaction dynamics
can yield essential insight into important biological processes as well as causes of
diseases/drug-receptor interactions. Membrane proteins are responsible for molecu-
lar transport across lipid bilayers, signaling, maintaining cell structural stability, and
control of cell-cell interactions. Nonetheless, 1% of all known 3D protein structures
account for membrane proteins. The complexity of these biomolecular structures
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makes CG molecular dynamics (CG-MD) simulations a very valuable approach to
investigate stability, dynamics, and structure-function relationships. The MARTINI
force field is of the most recognized and best performing CG-MD approaches that
uses four-to-one atom mapping enabling treatment of more than 500,000 atoms with
time scales above 100 �s (far beyond classical all-atom MD) [8, 22, 146–152].

Although thermodynamically stable, protein conformation was treated as respon-
sible for biological functions; it is now known that intrinsically disordered proteins
(IDP) can retain their functionality. Conformational studies of protein systems
remain highly challenging. Nonetheless, CG approaches have been used to yield
insights into the binding mechanisms of these complexes. CG protein simulation
thus enables studies of larger protein systems and longer time scales compared with
atomistic models.

Processes which are photoinitiated play very important roles in living organisms,
whereas photosynthesis is performed via absorption of sunlight by bacteria, algae,
and plants. Carbon dioxide and water are converted into oxygen and carbohydrates,
yielding basis for Earth life. Using the rhodopsin protein, vision of animals/humans
is accomplished in the eye, whereas absorption of a photon performs isomerization
of the central retinal chromophore. Phototaxis of plants/bacteria begins with
photoexcitation of protein pigment followed by excitation energy transfer, electron
transfer isomerization among other reactions. For some of these reactions, the
important ultrafast processes occur in very small spatial regions of the protein
environment with only a few nuclear degrees of freedom of the pigment. The
remaining protein environment has often only negligible influence on relevant
excited states of pigment. Consequently, for these systems, DFT can be successfully
applied within QM/MM schemes [176].

The properties of polymers depend on numerous time and length scales which are
coupled. These systems indicate unique viscoelastic properties arising from atom-
istic level interactions. There is thus a need to probe polymers across length/time
scales in order to capture their behavior making their computational modeling very
challenging. With increasing molecular weight, these systems become entangled
yielding long-time diffusive regimes (not accessible to atomistic simulations).
Coarse-graining the polymer, i.e., increasing the time scale and reducing the degrees
of freedom, is one path to overcome the theoretical/computational challenges posed
by polymeric systems [8, 150].

Multiscale top-down and bottom-up approaches have been used to investigate
complex biological systems, whereas an emerging approach is the middle-out
approach which starts with an intermediate biological cell which is gradually
expanded to include both smaller and larger spatial scales [22]. 3D multiscale
numerical models were used to analyze stress/deformation of cells subject to
mechanical loads. There has also been modeling of organ-level bone modeling,
physical and coronary artery processes, wounded epithelial cell monolayers, simula-
tion of heart, and immunological interactions. Future trends aim to describe complex
bio systems and develop predictive models of human disease. CG representations
of the DNA are being developed which should enable extensive simulations that
could permit, in a reasonable amount of time, a better comprehension of essential
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physical/chemical/biological processes involved [146]. Docking, molecular dynam-
ics, pharmacophore modeling, and ADME/Tox predictions have been used in
simulations to propose new drugs for cancer, aids, Alzheimer’s, diabetes, and other
diseases [177–187].

Although protein folding takes several minutes, their hydrogen bonds and van
der Waals interactions occur within picoseconds. Corrosion of metals, in material
engineering, destroy or compromise billions of dollars of advance products/process
of fundamental importance to society. It takes femtoseconds for a single-electron
transfer at metallic surface, minutes for multiple reaction cascades diffusion) and
decades/hundreds of years for macroscopic corrosion and decomposition of metallic
structures. For both materials and biomolecular systems, the underlying phenomena
span a very large hierarchically organized sequence (length and time scales).

Understanding, describing, and predicting these multiscale and multi-
physics/chemistry/biology/engineering phenomena with advanced theoretical-
computational methods is a very important task to assure the well-being of our
society.
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