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Abstract
Epigenetics play a central role in the regulation of many important cellular pro-
cesses, and dysregulations at the epigenetic level could be the source of serious 
pathologies, such as neurological disorders affecting brain development, neuro-
degeneration, and intellectual disability. Despite significant technological 
advances for epigenetic profiling, there is still a need for a systematic under-
standing of how epigenetics shapes cellular circuitry, and disease pathogenesis. 
The development of accurate computational approaches for analyzing complex 
epigenetic profiles is essential for disentangling the mechanisms underlying cel-
lular development, and the intricate interaction networks determining and sens-
ing chromatin modifications and DNA methylation to control gene expression. In 
this chapter, we review the recent advances in the field of “computational epi-
genetics,” including computational methods for processing different types of epi-
genetic data, prediction of chromatin states, and study of protein dynamics. We 
also discuss how “computational epigenetics” has complemented the fast growth 
in the generation of epigenetic data for uncovering the main differences and sim-
ilarities at the epigenetic level between individuals and the mechanisms underly-
ing disease onset and progression.
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25.1	 �Chromatin Structure, Combinatorial Complexity 
of Histone Modifications, and Mechanisms of Epigenetic 
Regulation

Epigenetic phenomena constitute a very important regulatory checkpoint in many key 
cellular processes such as DNA maintenance and repair [1, 2], epigenetic inheritance 
[3, 4], and gene expression [5, 6]. While the genome underlying structure – i.e., DNA 
sequence – is highly stable, epigenetic signatures are dynamic [7–9], with different 
epigenetic phenomena having different degrees of stability and variability, causing 
most of the phenotypic differences across cells in multicellular organisms. Fluctuations 
in DNA condensation, and the establishment of heterochromatic or euchromatic 
regions, are determined by covalent modifications of chromatin, including DNA 
methylation of CpG islands [10–12], and a wide range of histone modifications [9, 13, 
14], which form complex combinatorial networks of histone marks, that constitute the 
“histone code” [15]. Moreover, DNA methylation and histone modification pathways 
are significantly interconnected [16–18], and the cross talk between DNA and histone 
epigenetic modifications significantly increases the combinatorial complexity of the 
mechanisms of epigenetic regulation. Although not yet fully understood, there are two 
characterized mechanisms by which epigenetic modifications exert their function [9]: 
the first is the disruption of contacts between nucleosomes in order to “unravel” chro-
matin, and the second is the recruitment of nonhistone proteins [9]. A wide family of 
epigenetic signaling proteins – i.e., readers, writers, and erasers – [19–22] recognize 
the complex code of epigenetic modifications, controlling the condensation levels of 
genomic regions, and the susceptibility of these regions to be transcribed [5, 6], to be 
subject of DNA repair [1, 2] or be involved in other cellular processes. The central role 
of epigenetics in the regulation of a broad range of key cellular processes explains 
their implication in multiple common and serious human pathologies [23–25], such as 
developmental diseases [26–28], cancer [29–32], and neurological disorders [33–37]. 
Despite technological advances for the study of mechanisms of epigenetic regulation, 
we still lack a systematic understanding of how the epigenomic landscape contributes 
to cellular circuitry, lineage specification, and the onset and progression of human 
disease [38]. Due to the significant complexity of the mechanisms of epigenetic regu-
lation, computational and bioinformatics approaches have been essential for disentan-
gling these mechanisms at the genome-wide level and for answering important 
questions such as how the epigenetic level senses environmental cues during lineage 
specification and development and which are the interactions among different chro-
matin modifications to control transcription.

In this chapter, we review the state of the art of computational approaches and 
bioinformatics tools for genome-wide epigenetic research. We cover the field of 
“computational epigenetics” and discuss recent advances in computational methods 
for processing and quality control of different types of epigenetic data, the prediction 
of chromatin states and the study of the dynamics of chromatin, and the analysis of 3D 
structure of chromatin. We also address the status of different collaborative projects 
and databases comprising a wealth of genome-wide epigenetic data. We discuss how 
the fast growth in the generation of epigenetic data, boosted by the development of 
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high-throughput sequencing (HTS) experimental technologies and inter-institutional 
public/private collaborative projects, has been complemented and prompted by the 
development of computational methods for analyzing and rationalizing huge quanti-
ties of epigenetic data. The steady decrease in the cost of technologies for generating 
epigenetic data has also opened the possibility of performing epigenetic surveys in 
human populations. In this regard, we also examine the recent development in the 
computational approaches used to perform these studies for uncovering the main dif-
ferences and similarities at the epigenetic level between individuals and their implica-
tion in cellular differentiation, gene regulation, and disease.

25.2	 �Whole Genome Annotation of Histone Modifications: 
Computational Tools for Data Quality Control 
and Mapping of Epigenetic Data

The characteristics and specificities of the wide range of computational methods 
commonly used for the analysis of epigenetic data depend significantly on the par-
ticularities of the experimental techniques used to perform epigenomic profiling. 
The techniques available for profiling histone modifications (and the other epigen-
etic phenomena described in the next sections of this chapter) are described in detail 
in a previous chapter of this book, but it would be important to summarize their 
commonalities and differences to discuss the different computational approaches 
used to analyze the epigenetic data generated in each case. The most commonly 
used experimental approaches to profile histone posttranslational modifications are 
ChIP-on-chip [39–41], ChIP-seq [42–44], and mass spectrometry [45–48]. In ChIP-
on-chip, histone modification-specific antibodies, bound to chromatin regions bear-
ing the corresponding modification, are cross-linked to DNA by treatment with 
formaldehyde. Next, chromatin is collected and fragmented by sonication or using 
nucleases, and the fragments bearing the histone modification are enriched by using 
an antibody matrix specific to the histone modification-specific antibody  – i.e., 
immunoprecipitation. The DNA in the enriched fragments is released reverting 
cross-linking by increasing temperature, and purified DNA fragments are amplified 
and labeled with fluorescent dyes for further quantitation. Finally, purified DNA is 
hybridized to a tilling microarray, which allows the identification of regions over-
represented in the immunoprecipitated DNA relative to control DNA – i.e., regarded 
as epigenetically modified. ChIP-seq shares the initial steps of the ChIP-on-chip 
technique, but unlike the former, it relies on HTS DNA sequencing rather than on 
microarrays for identifying the sequences enriched in histone marks. Unlike immu-
noprecipitation techniques, proteomic profiling using mass spectrometry (MS) 
allows the detailed characterization of histone tail posttranslational modifications. 
This technique relies on the chromatographic separation of histones from cell 
lysates, followed by enzymatic digestion of individual histones for the accurate 
assignment and quantification of the amino acids bearing different kinds of post-
translational modifications [9, 13, 14], following top-down, bottom-up, or middle-
down approaches [47, 49].
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Immunoprecipitation techniques are by far the most commonly used, thanks to 
their high-throughput capabilities and the developments in the production of highly 
specific histone modification-specific antibodies. The main bioinformatics problem 
for the analysis of ChIP-on-chip data is establishing a ranking of genomic regions 
overrepresented on the arrays from raw probe intensities. In this regard, many differ-
ent approaches have been specifically developed for performing peak calling from 
ChIP-on-chip experiments. In general, these methods have a set of common steps, 
encompassing the normalization of the intensities of hybridized fragments, assess-
ment of the statistical significance of the intensities of each peak with respect to the 
whole array, and finally merging overlapping overrepresented regions [39–41, 50]. 
The list of peak-calling packages for processing ChIP-on-chip data is fairly ample 
and diverse, including Tilescope [51], an automated data processing toolkit for ana-
lyzing high-density tiling microarray data that integrates data normalization, combi-
nation of replicate experiments, tile scoring, and feature identification in an 
easy-to-use online suite. Tilemap [52] is a stand-alone package that provides a flex-
ible way to study tiling array hybridizations under multiple experimental conditions 
in Affymetrix ChIP-on-chips. Ringo [53] is an R package devised for NimbleGen 
microarrays, which facilitates the construction of automated programmed workflows 
and enables the scalability and reproducibility of the analyses in comparison to other 
ChIP-on-chip peak callers. The abovementioned list of bioinformatics tools for pro-
cessing ChIP-on-chip microarray data is by no means exhaustive, and there is a wide 
spectrum of other approaches, including ACME [54], HGMM [55], ChIPOTle [56], 
HMMTiling [57], and MAT [58], among others. Notwithstanding the diversity of 
tools for processing ChIP-on-chip data, the bioinformatics analysis of tiling microar-
rays shares the same drawbacks of the algorithms for analyzing DNA arrays, as they 
fail to accurately estimate histone modifications spanning extended genomic regions 
and underestimate weak binding events [50].

The key bioinformatics challenge in the analysis of ChIP-seq data is the fast and 
accurate mapping of thousands to millions of short reads, corresponding to the 
regions bearing a specific histone modification, to the reference genome. Many 
sequence aligners for solving the problems of mapping short sequence reads have 
been developed, such as Bowtie [59], BWA [60], SOAP [61], and BLAT [62], among 
a wide list of others (for a detailed review on short-read alignment methods see [63]). 
Other methods with alignment strategies optimized for reads obtained with specific 
sequencing platforms have been developed, including commercial suites such as 
ELAND that form part of the SOLEXA pipeline (http://www.solexa.com/), and the 
Broad Institute sequencing platform [64] (http://genomics.broadinstitute.org/). 
While mapping short reads to a reference genome, special care should be taken to the 
quality control of sequencing data. For instance, random fragmentation of ChIP-seq 
samples treated with sonication renders an array of overlapping reads corresponding 
to the same genomic regions, and these duplicated reads should be removed, using 
for example SAMtools [65]. This requirement for quality control is not necessary, 
however, while analyzing ChIP-seq data generated from samples treated with nucle-
ases, because the likelihood of the generation of overlapping reads is rather low. The 
assessment of “uniquely mapped” and “unique reads” is also a very important step in 
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the quality control of ChIP-seq data. The former correspond to reads that aligned to 
specific regions, excluding repetitive genomic loci and non-repetitive regions with 
highly similar sequences, while the latter correspond to de-duplication PCR reads. In 
this regard, depending on the specificities of the ChIP-seq dataset, removal of dupli-
cated reads to reduce amplification artifacts could result in an underestimation of real 
binding events. On the other hand, not removing duplicate reads could cause the 
inclusion of a significant amount of false positives, which could have strong implica-
tions in the downstream analysis of ChIP-seq data. Therefore, alignment of short 
sequence reads to the reference genome, and quality control of sequencing data, still 
remains a bioinformatics challenge. The analysis of the signal-to-noise ratio of 
sequencing signals also constitutes an important step on ChIP-seq quality control. 
The estimation of the “fraction of reads in peaks” (FRiP) – i.e., number of reads per 
region – and cross-correlation profiles (CCPs), i.e., read clustering prior to peak call-
ing [66], are very useful for assessing the signal-to-noise ratio. Based on these met-
rics, different approaches for estimating the signal-to-noise ratio of ChIP-seq 
sequencing data have been developed [67].

The procedures for performing peak calling from ChIP-seq samples are different 
from those commonly used for ChIP-on-chip experiments. There exists a myriad of 
different peak callers based on different statistical criteria, which cannot be covered 
here in detail (for a detailed review, please see [68]). The general procedure fol-
lowed by all of these algorithms includes the identification of enriched sequence 
read density for different chromosome loci, relative to a background sequence read 
distribution. The first step common to all ChIP-seq peak callers is the generation of 
a signal profile by integrating reads mapped to specific genomic regions. Different 
tools rely on sliding-window approaches for smoothing the discrete distribution of 
read counts into a continuous signal profile distribution. Tools such as CisGenome 
[69] follow this rationale, estimating the number of reads above a predefined peak 
cutoff, and others like SISSRs [70], Peakzilla [71], and SPP [72] also take into 
account the correspondence of read counts in positive and negative strands to 
improve peak resolution. Other tools use more sophisticated approaches for inte-
grating the signals in sequence windows. For example, MACS [73] uses the local 
Poisson model to identify local biases in genomic positions, F-Seq [74] and QuEST 
[75] rely on kernel density estimations, and PICS [76] uses a Bayesian hierarchical 
t-mixture model for smoothing count reads in the genomic signal profile. The 
HOMER program suite [77] has been also widely used for peak calling and is spe-
cially useful for analyzing broad peak corresponding to histone modifications – e.g., 
H3K9me3 – spanning large chromosome regions. Other tools such as JAMM [78] 
and PePr [79] integrate information from biological replicates to determine enrich-
ment site widths in neighboring narrow peaks, whereas GLITR [80] and PeakSeq 
[81] use tag extension –i.e., extension of ChIP-seq tags along their strand direc-
tion – to identify genomic regions enriched in sequence reads. The selection of the 
background distribution used in the comparison with the sample analyzed is also an 
essential step in peak calling. Although there is no consensus on which is the best 
background distribution, different datasets have been used as control sample, such 
as ChIP-seq data for histone H3, or from experiments using a control antibody for 
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nonbinding proteins, such as immunoglobulins [66, 82]. The following steps during 
peak calling include the selection of the statistical criteria for identifying enriched 
peaks, which usually correspond to a specific cutoff for the enrichment of peaks 
relative to the background, or estimating metrics with more statistical support, such 
as the false discovery rate (FDR). Once enriched peaks are identified for a selected 
number of genes, or genome wide, most peak calling algorithms allow ranking and 
selection of the more significant peaks by estimating their corresponding p-values 
and q-values. Despite the great variety of peak calling toolkits for analyzing ChIP-
seq data, the comparison of the performance of different approaches shows that 
different programs produce very different peaks in terms of peak size, number, and 
position relative to genes [83, 84] when presented to the same input dataset. Thus, 
as different tools usually generate significantly different epigenomic profiles, peak 
calling of ChIP-seq data remains a difficult task, and the selection of the best per-
forming methods usually depends on the species, sample conditions, and target pro-
teins [43].

The bioinformatics analysis of histone posttranslational modification profiles 
obtained with MS is significantly dependent on the specific MS approach used – 
e.g., top-down, bottom-up, or middle-down approaches [47, 49]. The preprocessing 
of MS data for removing false fragment ion assignments can be performed with 
different programs, such as Thrash [85], MS-Deconv [86], or YADA [87]. These 
approaches can also be used to deconvolute ion signals with multiple charges into 
mono-charged ion mass values from bottom-up MS profiles, but are unable to pro-
duce good results for other approaches generating longer peptides [88]. Unlike 
immunoprecipitation techniques, in which PTM-specific antibodies are used to pro-
file one histone modification per experiment, the analysis of cell lysates with MS 
has the added difficulty of having to deal with the genome-wide profile of all the 
histone modifications. Due to the huge combinatorial complexity of this problem, 
current approaches concentrate on the most common histone PTM [47], which 
might overlook unknown, but functionally relevant modifications. Top-down and 
middle-down proteomics strategies require specialized search algorithms and anno-
tation tools, due to the great complexity of the MS spectra generated for intact or 
large polypeptides [89]. Methods such as ProSight PTM [90], MX-Align+ [91], 
ROCCIT [92], and MLIP [93] are tools specifically suited for performing database 
sequence searches from neutral mass lists of precursor and fragment ions obtained 
with top-down approaches. Different implementations of the THRASH [85] algo-
rithm have been adapted for top-down histone modification profiling [94, 95], as 
well as MS-Deconv tool [86], developed specifically to analyze MS spectra from 
complete proteins. These methods offer a number of different functionalities for 
guiding the search for specific modifications that allows a significant reduction of 
the search space, which can increase the significance of assigned peaks. Other tools 
allow tackling the complex problem of identifying different histone PTM fragments 
with fairly similar ion masses [93, 96]. The software VEMS is included in this cat-
egory [97], which can discriminate acetyl and trimethyl lysine histone modifica-
tions. In summary, mass spectrometry constitutes a very powerful approach for the 
genome-wide profiling of histone modifications, but there is still a need for the 
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development of more accurate bioinformatics approaches to allow a more compre-
hensive and thorough study of MS histone modification spectra.

25.3	 �Bioinformatics Approaches for Analyzing Genome-
Wide Methylation Profiling

DNA methylation, which is the only epigenetic phenomena involving the direct 
modification of genome underlying structure, can be profiled experimentally with 
bisulfite sequencing [98, 99], bisulfite microarrays [100, 101], and enrichment 
methods, such as MeDIP-seq and MethylCap-seq [102–104]. Different computa-
tional approaches have been developed for processing genome-wide profiling data 
obtained with each of the abovementioned techniques. In the case of bisulfite 
sequencing data, methylated cytosines are protected from chemical modification – 
i.e., sulfonation – induced by treatment with bisulfite, while unmethylated cytosines 
are sulfonated and appear as thymines after sequencing. Following, the reads 
obtained at the sequencing stage are mapped back to the reference genome, and the 
ratios of Cs and Ts are measured, representing the methylation levels of genomic 
regions. In principle, aligners such as those currently used for mapping ChIP-seq 
reads (please see in the previous section in this chapter) can be used for processing 
bisulfite sequencing reads, but in this case it is necessary to account for the under-
representation of unmethylated Cs. Moreover, different approaches specifically 
suited for analyzing this data have been developed, comprising RRBSMAP [105], 
RMAP [106], GSNAP [107], and Segemehl [108], among others, which have been 
coined as wildcard aligners. These tools offer multiple functionalities for wildcard-
ing Cs in the sequencing reads during the alignment and also adjusting the matrices 
used for scoring tag alignment for accommodating base mismatches. Furthermore, 
wildcard aligners allow the efficient and fast alignment to large genomic regions, 
although they tend to overestimate highly methylated regions. A second group of 
tools (MethylCoder [109], BRAT [110], and Bismark [111]) follow a more straight-
forward strategy, leveraging from well-established short-read alignment tools, and 
use a three-letter alphabet – i.e., considering T, G, and A – in the alignment. Three-
letter alignment approaches are not very efficient for scanning large genomic 
regions, as a significant proportion of regions are filtered out of the alignment due 
to lack of sequence complementarity, caused by an increased alignment ambiguity. 
Once bisulfite sequence reads are aligned to the reference genome, the methylation 
levels of specific genomic regions can be estimated by using variant caller algo-
rithms, which allow the quantitation of the frequency of Cs and Ts. For instance, 
Bis-SNP [112] relies on a Bayesian inference approach to evaluate strand-specific 
base calls and base call quality scores, and experiment-specific bisulfite conversion 
efficiency to derive fairly accurate DNA methylation estimates. Faster variant call-
ers have been developed, including MethylExtract [113] that implements a modified 
version of the VarScan algorithm [114], and BS-SNPer [115] based on a “dynamic 
matrix algorithm” and Bayesian modeling, which are able to process large quanti-
ties of genomic sequences.
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The most widely used bisulfite microarrays are Illumina® Infinium Methylation 
Assay [100], which allows single-CpG-site resolution quantitative measurement of 
genome-wide methylation profiles. In this assay, cytosine methylation at CpG 
islands is detected by multiplexed genotyping of bisulfite-converted genomic DNA, 
upon treatment with bisulfite (this technique also relies on bisulfite selective DNA 
modification of unmethylated regions, as described above). The assay uses two site-
specific probes, one for methylated and another for the unmethylated loci. The 
Infinium MethylationEPIC BeadChip Kit enables quantitative genome-wide profil-
ing of almost 900,000 methylation sites at the single-nucleotide resolution, encom-
passing expert-selected coverage of up to 99% of RefSeq genes, 95% of CpG 
islands, and ENCODE enhancer regions. In addition to the great potential of this 
technology, it has been the focus of intense research for the development of propri-
etaries and open-source bioinformatics tools for processing Illumina Methylation 
Arrays. The GenomeStudio software developed by the chip supplier enables dif-
ferential methylation analysis for small-scale studies, also including advanced tools 
for visualization of large amounts of data, plotting, and statistical analysis. The R/
Bioconductor BeadArray toolkit [116] is also available for performing large-scale 
stand-alone analysis requiring more intense calculations or parallel computing 
infrastructures. Infinium® arrays include multiple probes for performing sample-
dependent and sample-independent data quality control, which is the input of pack-
ages like IMA [117] and LumiWCluster [118]. These tools use different approaches 
for removing noisy probes from the chip data, which are straightforwardly filtered 
out based on the median detection p-value cutoff in the case of IMA, while 
LumiWCluster relies on a more sophisticated weighted likelihood model based on 
clustering methylation data. Background correction should also be performed for 
removing nonspecific signals and differences between replicates. This step can be 
performed with the GenomeStudio Infinium integrated package, but also with many 
other toolkits, such as lumi [119], limma [120], and BeadArray [116]. After the 
initial quality control, microarray data need to be normalized to remove random 
noise, technical artifacts, and measurement variation inherent to microarrays. 
Normalization should be performed between different replicate array measure-
ments, i.e., between array, and internally for each array, i.e., within array. This can 
be accomplished with HumMethQCReport [121] and lumi [119], which use spline 
and weighted scatter smoothing for normalizing methylation data, but there are also 
many other alternative approaches based on different statistical approaches [122]. 
Special interest should also be put on scaling the signal obtained for the two differ-
ent probes used in this technique – i.e., probes for methylated and unmethylated 
loci – that produce rather different signal distributions, due to the bias towards CpG 
islands in the genome [100]. Peak rescaling is usually performed with methods such 
as SWAN [123] that implements a sub-quantile within-array normalization (SQN) 
procedure, similar to the rationale followed in another study implementing a pipe-
line for processing Illumina® Infinium Methylation BeadChip [124]. Other 
approaches use variations of this procedure, such as the mixture quantile normaliza-
tion method to rescale the distributions of the methylation and unmethylation probes 
into distributions that can be compared statistically [125, 126]. Batch effects, which 
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are also common on DNA methylation arrays, can be corrected with toolkits like 
CpGassoc [127], MethLAB [128], and ISVA [129] R/Bioconductor packages.

Enrichment techniques, such as MeDIP-seq and MethylCap-seq [102–104], are 
based on the use of proteins that specifically bind to methylated DNA regions – e.g., 
5-methylcytosine-specific antibodies [104, 130] (methylated DNA immunoprecipi-
tation (MeDIP)) or methyl-binding domain proteins [131, 132] (MethylCap) – to 
enrich hypermethylated fragments that are subject to HTP or microarray sequenc-
ing. The bioinformatics processing of methylation data generated with these 
approaches can be performed with the same methods describe above for processing 
sequencing or microarray platforms. Moreover, there are some methods exclusively 
tailored for enrichment data, like MEDIPS [133], an R/Bioconductor suite that 
enables processing multiple replicates and performing a great variety of statistical 
analyses. Another toolkit, coined as Batman [102], which stands for “Bayesian tool 
for methylation analysis” relies on the knowledge that almost all DNA methylation 
in mammals occurs at CpG dinucleotides and uses a standard Bayesian inference 
approach to estimate the posterior distribution of the methylation state parameters 
from data to generate quantitative methylation profiles. A very interesting study 
built on a thorough comparison of more than 20 different software tools has resulted 
in the development of RnBeads [134], an integrative suite that supports all genome-
scale and genome-wide DNA methylation assays, implemented to facilitate stand-
alone running of complex pipelines in high-performance computing infrastructures. 
With this toolkit, it is possible to perform all the steps of DNA methylation data 
analysis, ranging from data visualization, quality control, handling batch effects, 
correction for tissue heterogeneity, and differential DNA methylation analysis.

25.4	 �Computational Analysis of Chromatin Accessibility Data

The chromatin accessibility of genomic regions can be profiled with methodologies 
such as DNase-seq [135], FAIRE-seq [136], and ATAC-seq [137], which rely on 
different experimental principles and produce rather different data outputs. DNase-
seq and ATAC-seq are based on the use of endonucleases – i.e., DNase I and engi-
neered Tn5 transposase, respectively  – to fragment DNA, while FAIRE-seq is a 
physical fragmentation method, in which DNA is treated with formaldehyde to 
cross-link chromatin. The differences between DNA fragmentation procedures used 
in each technique – i.e., DNase I and engineered Tn5 transposase have a tendency 
to cleave some DNA sequences more efficiently than others, and sonication could 
produce under and over sonicated chromatin depending on the sonication parame-
ters used – cause that each technique generates rather different accessibility profiles 
[138]. In accordance, these differences should be taken into consideration while 
performing the downstream bioinformatics processing of sequencing data. 
Chromatin accessibility peaks are generally different from peak signals generated 
with histone modification ChIP-seq experiments, which are in general broad 
sequence read peaks. Hence, peak callers designed for ChIP-seq need some fine-
tuning for processing chromatin accessibility data [138, 139]. Furthermore, 
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ChIP-seq data usually shows a higher signal-to-noise ratio compared to DNase-seq, 
making ChIP-seq peaks easier to detect [140]. Different peak callers have been 
developed to process accessibility data, including F-Seq [74] toolkit, which can be 
used for ChIP-seq and FAIRE-seq data [141], and ZINBA [142], which relies on a 
mixture regression approach for probabilistically identifying real and artifact peaks 
and can also handle ChIP-seq and FAIRE-seq data. Moreover, the Hotspot program 
[143] has been developed as part of the ENCODE project specifically for analyzing 
DNase-seq data, and follows a similar rationale to ChIP-seq sliding-window peak 
callers described above, using a probabilistic model to classify peaks by assessing 
the differences between the sample and a background distribution. MACS [73], 
which is commonly used for ChIP-seq data, and ChIPOTle [56], suited for process-
ing ChIP-on-chip data as described above, have also been used for DNase-seq [144] 
and FAIRE-seq [136], respectively. In general, most of these tools have also been 
applied for ATAC-seq data analysis, but there are some other tools specifically 
implemented for this novel technique, such as I-ATAC (https://www.jax.org/
research-and-faculty/tools/i-atac). This tool integrates multiple methods for quality 
check, preprocessing, and running sequential, multiple-parallel, and customized 
data analysis pipelines into a cross platform and open-source desktop application. 
Interestingly, the selection of the peak caller of use could play a key role in peak 
assignment output, as a comparison of the most common tools for processing acces-
sibility data has shown that there is little overlap among called peaks obtained for 
the same chromatin accessibility dataset [140].

25.5	 �Epigenomic Databases and Epigenome Mapping 
Initiatives

The great developments of high-throughput sequencing technologies have allowed 
the steady generation of great quantities of epigenomic data in different cell types/
lines and multiple organisms. This has been boosted by many large-scale epigenome 
mapping projects, such as the ENCODE project [145], the NIH Roadmap 
Epigenomics [146], the International Human Epigenome Consortium (http://ihec-
epigenomes.org/), and the HEROIC European project (http://cordis.europa.eu/proj-
ect/rcn/78439_en.html), among others. Other resources, such as the MethBase 
database (http://smithlabresearch.org/software/methbase/) [147], encompassing 
hundreds of methylomes from different organisms allow comparing the methylation 
profiles of genomics regions in different animal and plant genomes. There exist 
other more specialized epigenomic projects and databases encompassing informa-
tion of the brain. These neuroepigenomic resources include MethylomeDB data-
base (http://www.neuroepigenomics.org/methylomedb) [148] that includes 
genome-wide DNA methylation profiles of human and mouse brain and is inte-
grated with a genome browser which allows surfing through the genome and ana-
lyzes the methylation of specific loci, searches for specific methylation profiles, and 
compares methylation patterns between individual samples. The Brain Cloud 
(http://braincloud.jhmi.edu/) [149] compiles methylation data from human 
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postmortem dorsolateral prefrontal cortices from normal subjects across the life 
span, also integrating single-nucleotide polymorphism data. The great amount of 
data generated in these projects has prompted the development of a great variety of 
computational tools for the analysis of epigenetic data, some of which have been 
described in detail in previous sections of this chapter. Moreover, the wealth of data 
in these databases has enabled groundbreaking studies, such as one recent report 
[38] encompassing a thorough integrative study of different epigenetic phenom-
ena  – e.g., chromatin accessibility, DNA methylation, chromatin marks, gene 
expression – in different reference epigenomes. In this study, the authors profile 
cells from different tissues and organs in more than 100 adult and fetal epigenomes 
and were able to identify epigenetic differences arising during lineage specification 
and cellular differentiation, which are the modules of regulatory regions with coor-
dinated activity across cell types, and the role of regulatory regions in human dis-
ease associated with common traits and disorders [38]. This study shows that 
genomic regions vary greatly in their association with active marks, with approxi-
mately 5% of each epigenome marked by enhancer or promoter signatures, showing 
increased association with expressed genes and increased evolutionary conserva-
tion, while two-thirds of each reference epigenome are quiescent and enriched in 
gene-poor stably repressed regions [38]. Furthermore, the authors find that genetic 
variants associated with complex traits are highly enriched in epigenomic annota-
tions of trait-relevant tissues, and genome-wide association enrichments are signifi-
cantly strongest for enhancer-associated marks, consistent with their high 
tissue-specific nature [38]. However, promoter-associated and transcription-
associated marks were also enriched, implicating several gene-regulatory levels as 
underlying genetic variants associated with complex traits [38].

25.6	 �Epigenetic Differential Analysis and Integration 
of Epigenomic and Gene Expression Data

Despite the great wealth of epigenomic data, we still lack a systematic understand-
ing of how the epigenomic landscape regulates gene expression and which are the 
epigenetic signatures that control the most important regulatory circuitry in the tran-
scriptional level. Differential analysis of ChIP-seq genome-wide profiles obtained 
for different cellular phenotypes is a rather challenging problem, due to the signifi-
cant heterogeneity in peak calling between different measurements and the lack of 
overlap between peak assignments obtained with different peak callers [140]. The 
diffReps program [150] has been designed to detect differential sites from ChIP-seq 
data, with or without biological replicates, and implements a sliding-window 
approach to estimate the statistical significance of differential peaks based on a 
binomial distribution model across samples. The differential histone modification 
profiles generated with diffReps can be used to try to superimpose the epigenetic 
differential profile with gene expression data. The GeneOverlap R/Bioconductor 
tool implements different statistical models for estimating the significance of the 
overlap of histone modification and gene expression profiles. However, the great 
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complexity of the histone code, and the cross talk established between different 
histone marks to cooperatively regulate gene expression, makes it difficult to cap-
ture the regulatory epigenetic mechanisms just by superimposing histone modifica-
tion and gene expression data. More complex computational models for predicting 
gene expression from complex histone modification profiles have been proposed 
[151, 152]. In order to reproduce the quantitative relationship between gene expres-
sion levels and histone modifications, these approaches combine information from 
many different data tracks of repressive and activating chromatin modifications, 
which are processed with machine learning approaches and were able to explain a 
fairly high proportion of the gene expression profiles in different organisms [151, 
152]. In more complex expression datasets, such as brain tissues, similar approaches 
for combining histone modification data [153] have not been able to obtain a good 
correlation with the observed gene expression profiles, which could be related to the 
great complexity of gene regulation in these heterogeneous tissues, and the regula-
tory role of other histone marks not included in the study.

The prediction of epigenetic states has also been the focus of intense research. 
Several computational approaches have been devised for predicting promoter 
regions (extensively reviewed in [154]), prediction of CpG islands [155, 156], DNA 
methylation [157, 158], and nucleosome positioning [159, 160]. However, with the 
advent of next-generation sequencing (NGS), which is used in combination with 
techniques for profiling chromatin accessibility, histone modifications, and DNA 
methylation that have allowed the generation of huge quantities of genome-wide 
epigenetic data, the prediction of epigenetic states has lost relevance. Nevertheless, 
a different group of approaches has been developed for leveraging from genome 
annotation data at the epigenetic level for predicting the chromatin states – e.g., 
poised or strong enhancers, active promoters, and heterochromatin, among others – 
from histone modification data [161, 162]. ChromHMM [161] relies on a multivari-
ate hidden Markov model that represents the observed combination of chromatin 
marks as the product of independent Bernoulli random variables for segmenting the 
genome into regions with different chromatin states. Segway [162] can also input 
histone modification data, but also DNA methylation and chromatin accessibility 
data, and implements a Dynamic Bayesian Network model for hierarchical genome 
segmentation. Interestingly, ChromHMM and Segway can be used to process fairly 
complex datasets of experimental data and perform chromatin state assignments, 
which have provided key insights in transversal epigenomic studies in different cell 
types, tissues, or human populations [38, 163, 164].

25.7	 �Systems Biology Approaches and Reconstruction 
of Multilevel Regulatory Networks

The availability of highly detailed annotation of human and mouse genomes [38, 
145, 146] has paved the way for performing studies for integrating multilevel bio-
logical data, encompassing epigenetics, DNA sequence variation, gene expression, 
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and clinical data. The regulatory events triggering phenotypic transitions such as 
cellular differentiation, and the dysfunctions associated to disease onset and pro-
gression are usually mediated by multiple genes, which establish complex interac-
tion networks. Thus, in order to gain understanding of the regulatory mechanisms 
at the epigenetic and transcriptional levels involved in the regulation of these cel-
lular phenotypes, it is necessary to derive more comprehensive systems-level com-
putational models. For such large-scale molecular datasets, several network 
approaches have been developed to identify and dissect the underlying “interac-
tomes” for discovering key mechanisms and causal regulators in normal or patho-
logical biological systems [165]. Gene regulatory Boolean network models have 
been very useful for conducting systems-level modeling of complex high-through-
put biological data enabling the construction of complex interaction networks for 
studying disease mechanisms [166]. Disease network models have been essential 
for predicting disease-related genes based on the analysis of different topological 
characteristics, such as node connectivity [167, 168], gene-gene interaction ten-
dency in specific tissues [169], or network neighbors of disease-related genes [170, 
171]. A different group of approaches tries to model cellular phenotypes as attrac-
tors in the gene expression landscape, and phenotypic transitions are modeled by 
identifying nodes destabilizing these attractors [172–174], and disease perturba-
tions, such as chemical compounds or mutations, can cause a switch from a healthy 
to a disease attractor state [175–177]. Co-expression-based network inference 
approaches [178, 179] have also been used to build regulatory network models 
from HTS data. Weighted gene co-expression models (WGCNA) [180] – i.e., there 
exists a widely used and very efficient R/Bioconductor package to build WGCNA 
network models [181]  – which allow embodying important information of the 
underlying relationships and interactions among genes have been widely used to 
identify disease-causing genes in multigene human pathologies, such as autism 
[182–184] and Alzheimer’s disease [185, 186]. These WGCNA formalisms allow 
the generation of fairly complex network representations  – e.g., eigengene net-
works [187, 188], in which the nodes are composite network modules. WGCNA 
models have enabled the identification of an age-related co-methylation module 
present in multiple human tissues, including the blood and brain from the analysis 
of up to 2442 Illumina DNA methylation arrays [189]. Similarly, these approaches 
have been used to identify common methylation patterns correlated with age in 
identical twins [190], the identification of the upstream epigenetic control and the 
downstream cellular physiology associated with alcohol dependence and neuroad-
aptive changes in alcoholic brain [191] and the prediction of the co-methylation 
modules associated with the Huntington’s disease pathogenesis [192]. The devel-
opments of the abovementioned integrative and other multiscale network modeling 
approaches for trying to integrate complex and multidimensional biological data to 
infer regulatory relationships linking different regulatory levels  – e.g., DNA 
sequence variations, epigenetic, transcriptional, and metabolic – will be key for 
gaining a deeper understanding of disease onset and progression, or other impor-
tant biological processes, such as development.
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25.8	 �The Advent of the Single-Cell Era in Neuroepigenetics: 
Challenges for Analyzing Single-Cell Epigenomic Data

The great technological advances in the methodologies for generating high-quality 
genome-wide epigenomic data have caused a revolution in the study of the epigen-
etic mechanisms regulating gene expression, stem cell differentiation, disease onset 
and progression, and other key biological phenomena. These developments have 
also contributed to the emergence of the field of “neuroepigenetics,” aimed at study-
ing the epigenetic regulatory mechanisms in cells from the central nervous system. 
It has been shown that in neurons, which live throughout most of the life span of an 
animal, epigenetic mechanisms play a key role in the regulation of the complex 
metabolic and gene expression these cells must go through upon synaptic input or 
interactions with other nervous system cells [193, 194]. One of the main problems 
for studying cells from the mammalian nervous systems is trying to disentangle the 
great cellular heterogeneity of bran tissues [195–197]. In this regard, most of the 
neuroepigenomic studies conducted so far have been performed with the traditional 
techniques for profiling chromatin accessibility, histone modifications, and DNA 
methylation described in this and other chapters of this book. These approaches 
require as input samples containing hundreds of thousands or millions of cells, 
encompassing highly heterogeneous cell populations. In recent years, different 
experimental techniques have been developed for studying heterogeneous cell pop-
ulations. Gene expression single-cell transcriptional profiling techniques first devel-
oped 20 years ago [198] have become a very popular technique conventionally used 
in most laboratories, thanks to great technological developments in cell capture and 
next-generation sequencing approaches. The application of single-cell gene tran-
scriptomics techniques has been central in the study of gene expression and func-
tional diversity in somatosensory neurons from the dorsal root ganglia [199, 200], 
in different cortical regions [197, 201, 202], and developing retina [203].

Different single-cell epigenomic approaches have been recently developed for 
high-throughput genome-wide mapping of DNA methylation, histone modifica-
tions, and chromatin accessibility. The single-cell reduced-representation bisulfite 
sequencing (scRRBS) technique [204] is highly sensitive and can detect the meth-
ylation status of up to 1.5 million CpG sites within the genome of an individual cell. 
This technique is very efficient for profiling promoter regions, though it has poor 
coverage in enhancer regions. Bisulfite single-cell sequencing approaches enable 
genome-wide profiling of single cells or very small cell populations, although with 
a rather low sequencing coverage [205, 206]. Histone modification single-cell pro-
filing can be measured with different barcoding approaches, taking advantage of 
techniques for indexing regions bearing the posttranslational modification in indi-
vidual cells with specific sequence tags, and then performing ChIP-seq measure-
ment after pooling cells from different wells  – i.e., the heterogeneous 
population – which reduces the problem associated to input sample requirement of 
ChIP-seq [207, 208]. A different technique has been developed (the nano-ChIP-seq 
protocol) [209], which combines a high-sensitivity small-scale ChIP assay tailored 
for HTS libraries from scarce amounts of ChIP DNA.  Recently, the single-tube 
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DNA amplification method (LinDA) has been conceived, enabling ChIP-seq mea-
surements of picogram DNA amounts obtained from a few thousand cells [210]. 
Chromatin accessibility single-cell profiling can be performed with a modification 
of the ATAC-seq approach, based on combinatorial indexing for barcoding popula-
tions of nuclei in different wells, and then performing chromatin accessibility after 
pooling [211]. There exists another methodology available for single-cell chromatin 
accessibility profiling, based on a programmable microfluidics platform for captur-
ing and analyzing cells in specific microfluidic chambers [212]. These methodolo-
gies are still under development for improving single-cell isolation [203, 213] and 
single-molecule sequencing techniques [214, 215], to try to increase the reliability 
of the measurements and sequencing coverage. The application of these approaches 
to study central nervous system samples will be essential for obtaining a clearer 
picture of the epigenetic regulatory mechanisms in neurons from different brain 
regions and how the heterogeneity at the epigenetic level defines different circuitries 
at the transcriptional regulatory level in central nervous system cells. However, the 
computational analysis of single-cell epigenomic data poses many computational 
challenges that will be the focus of intense research in the next years to match the 
great developments of experimental techniques. Currently, the computational tools 
and approaches used for processing single-cell epigenomic data are essentially 
those developed for bulk measurements, which have been thoroughly discussed in 
this chapter. Nevertheless, it is crucial to develop computational methods that are 
tailored specifically for processing single-cell data for tackling the problems associ-
ated with normalization and cell-type identification and for dissecting variability 
levels across cells [216]. It is expected that such methods will be developed in the 
next few years, leading to new discoveries in areas ranging from the physiology of 
tissues to systems biology [216].
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