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19Epigenetics in Parkinson’s Disease

Maria Angeliki S. Pavlou and Tiago Fleming Outeiro

Abstract
Parkinson’s disease (PD) is a highly complex neurodegenerative disorder with a 
multifactorial origin. Although several cellular mechanisms and genes have been 
implicated in the onset and progression of the disease, the precise molecular 
underpinnings of the disease remain unclear. In this context, epigenetic modula-
tion of gene expression by environmental factors is emerging as an important 
mechanism in PD and in other neurodegenerative disorders. Thus, epigenetic 
mechanisms, such as DNA methylation, histone modifications and altered 
microRNA expression, have been under intense investigation due to their possi-
ble involvement in PD. Epigenetic modulation is responsible for inducing dif-
ferential gene expression, a phenomenon which is essential throughout life in 
order to regulate multiple cellular responses such as development, cellular fate 
commitment and adaptation to the environment. Disturbances of a balanced gene 
expression can, therefore, have detrimental effects. Environmental factors can 
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challenge the establishment and maintenance of epigenetic modifications and 
could thereby fill the gap in our further understanding of origin and/or progres-
sion of neurodegenerative diseases. In this chapter, we focus on the role of epi-
genetics in PD.
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Abbreviations

3′ UTR	 3′ untranslated region
5-hmC	 5-hydroxymethylcytosine
5-mC	 5-methylcytosine is formed
Ago	 Argonaute
aSyn	 Alpha-synuclein protein
DLB	 dementia with Lewy bodies
DNMT1	 DNA methyltransferase 1
DNMT3a	 DNA methyltransferase 3a
DNMT3b	 DNA methyltransferase 3b
DNMTs	 DNA methyltransferases
FGF20	 Fibroblast growth factor 20
HAT	 Histone acetyltransferase
HDACis	 Histone deacetylase inhibitors
HDACs	 Histone deacetylases
Hsp70	 Heat sock protein 70
LB	 Lewy bodies
LDID	 Levodopa-induced dyskinesia
l-DOPA	 Levodopa
LN	 Lewy neurites
MBDs	 methyl-CpG-binding domain proteins
mDNMT	 Mitochondrial DNMT
miRNAs	 microRNAs
MPP+	 1-methyl-4-phenylpyridinium
MPTP	 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NACP-Rep1	 polymorphic microsatellite repeat region
Nurr1	 Nuclear receptor-related 1 protein
PBMCs	 Peripheral blood mononuclear cells
PD	 Parkinson’s disease
PKC δ	 Protein kinase C δ
SAH	 S-adenosylhomocysteine
SAM	 S-adenosyl methionine
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SN	 substantia nigra pars compacta
SNCA	 alpha-synuclein gene
SNPs	 Single nucleotide polymorphisms
TSA	 Trichostatin
VPA	 Valproic acid
VSP35	 vacuolar protein sorting 35

19.1	 �Introduction

The inability of the brain to replenish certain cell types, upon their death, is associ-
ated with the development of specific conditions, known as neurodegenerative dis-
orders. In Parkinson’s disease (PD), one of those conditions that usually manifests 
after 60 years of age, the demise of dopaminergic neurons from the substantia nigra, 
explains the typical motor symptoms of the disease. Due to the increase in life 
expectancy, the number of individuals affected by PD has also drastically increased, 
resulting in extensive socioeconomic challenges. In the USA alone, it has been esti-
mated that the annual costs of PD rise up to $23 billion [1]. Several therapeutic 
options are presently available to treat some of the symptoms associated with 
PD. However, there is currently no cure or preventive strategy. The majority of PD 
cases is sporadic, with no known cause, and is thought to occur due to the interplay 
between susceptibility genes and the environment, in ways that are poorly 
understood.

The term epigenetics refers to alterations in gene expression, usually reversible, 
which can be inherited but are not engraved in the DNA sequence. These modifica-
tions can be implemented via methylation of the DNA, histone modifications or 
microRNAs (miRNAs). Chemical pollutants, nutrition, temperature changes and 
other environmental stresses can influence gene expression via changes in epigen-
etic modifications. Although no solid relationship has been yet identified, epigenetic 
deregulation is thought to play an important and poorly understood role in the aetio-
pathogenesis of various neurodegenerative disorders, including PD.

19.2	 �Parkinson’s Disease

19.2.1	 �Pathology and Clinical Features

PD, named after Dr. James Parkinson who first documented it in 1817, constitutes 
the second most prevalent neurodegenerative disorder today. With a prevalence of 
1–2% over the age of 65 [2, 3] and of 4–5% over the age of 85 [4], it is estimated 
that this progressive disorder affects approximately 6.3 million individuals world-
wide, with the number expected to increase to 8.3 million by 2030 [5].

The typical neuropathological hallmarks of PD are the loss of dopaminergic 
neurons from the substantia nigra pars compacta (SN) and the accumulation of 
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intracellular protein inclusions termed Lewy bodies (LBs), mainly composed of 
alpha-synuclein (aSyn) [6, 7]. Dopaminergic neurons extend their fibres from the 
SN towards the striatum, where they release dopamine, the neurotransmitter 
responsible for the learning and execution of motor functions [8, 9]. Due to 
decreased levels of dopamine, PD patients present characteristic motor dysfunc-
tions such as bradykinesia, muscle rigidity, resting tremor and postural instability 
[10, 11]. Nonmotor symptoms, including anxiety, depression, dementia, sleep dis-
turbances, constipation, hyposmia and anosmia, are also apparent and limit the 
quality of life of patients even further [8, 12]. Motor features remain the principal 
criteria for the clinical diagnosis of PD, although some nonmotor impairments are 
now valued as predictive markers for the disorder since they tend to appear prior to 
the onset of motor symptoms [13, 14]. Indeed, according to the Braak staging 
hypothesis, Lewy body pathology is quite dispersed not only throughout the brain 
but also in other tissues, such as the gut. According to this hypothesis, the progres-
sion of PD is classified into six stages. Stages 1–2 are linked with the presymptom-
atic phase where Lewy bodies appear in the enteric and peripheral autonomic 
nervous system and also spread from the olfactory bulb and vagus nerve to the 
lower brainstem. The symptomatic period starts on stage 3, when the midbrain, 
including the SN, starts to be affected. Finally, pathological changes involve the 
mesocortex in stage 4 and the neocortex in stages 5 and 6 [15]. Although this stag-
ing system has been confirmed by other groups and applies for the majority of the 
cases, deviations from this model can be observed, raising questions about the 
overall validity of the hypothesis [16, 17].

19.2.2	 �Genetic Forms of PD

Familial forms of PD account for only about 10–15% of all the cases [18]. However, 
it is possible that additional cases might be associated with yet unidentified genes, 
as additional genetic studies are conducted [19]. Thus, the list of genes implicated 
in the onset of PD (PARK genes) is expanding. The PARK gene family currently 
comprises 20 genes (Table  19.1) which are responsible for autosomal recessive, 
dominant or X-linked modes of inheritance. Moreover, PD-related genes can pres-
ent point mutations, duplications or triplications and account for both early- or late-
onset forms PD [20, 21]. Interestingly, over 500 DNA variants have been described 
in only five of the PD-associated genes [22].

A mutation in gene encoding for alpha-synuclein (SNCA) was the first to be 
associated with familial PD. Presently, six point mutations leading to amino acid 
substitutions have been linked with autosomal dominant forms of PD. In addition, 
duplications and triplications of the SNCA locus have also been associated with 
autosomal dominant forms of PD [23–25]. Although SNCA is an extensively stud-
ied gene, the precise function of alpha-synuclein (aSyn) and how it causes disease 
remain elusive. aSyn is typically described as a presynaptic protein participating in 
the regulation of the synaptic vesicle pool and in neurotransmitter release. However, 
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Table 19.1  Genes associated with familial forms of PD

Locus Gene Gene product
Inheritance/
PD onset

Chromosomal 
locus References

PARK1/PARK4 SNCA Alpha-
synuclein 
(aSyn)

AD/EO 4q21.3-q22 [149]

PARK2 PARKIN Parkin RBR E3 
ubiquitin 
protein ligase

AR/EO 6q25.2-q27 [150, 151]

PARK3 Unknown Unknown AD 2p13 [152]

PARK5 UCHL1 Ubiquitin 
C-terminal 
hydrolase L1

AD 4p13 [153, 154]

PARK6 PINK1 PTEN induced 
putative kinase 
1

AR/EO 1p36.12 [155]

PARK7 DJ-1 DJ-1 AR/EO 1p36.23 [156–158]

PARK8 LRRK2 Leucine-rich 
repeat kinase 2 
(LRRK2)

AD/EO and 
LO cases

12q12 [159–161]

PARK9 ATP13A2 ATPase type 
13A2 
(ATP13A2)

AR/EO 1p36 [162–164]

PARK10 Unknown AAOPD Susceptibility 1p32 [165, 166]

PARK11 Unknown GIGYF2 
(GRB10 
interacting GYF 
protein 2)

AR/EO 2q36-q37 [167–169]

PARK12 Unknown Unknown Susceptibility Xq21-q25 [166, 
168–170]

PARK13 HTRA2 HtrA serine 
peptidase 2

AD 2p13.1 [171, 172]

PARK14 PLA2G6 Phospholipase 
A2 group VI

AR/LO 22q13.1 [173–175]

PARK15 FBXO7 F-box protein 7 
(FBXO7)

AR/EO 22q12.3 [176, 177]

PARK16 Unknown Unknown Susceptibility 1q32 [178, 179]

PARK17 VPS35 VPS35 retromer 
complex 
component

AD/LO 16q12 [32, 180]

PARK18 EIF4G1 Eukaryotic 
translation 
initiation factor 
4 gamma 1

AD/LO 3q27.1 [181–183]

PARK19 DNAJC6 Auxilin AR/EO 1p31.3 [184, 185]

PARK20 SYNJ1 Synaptojanin-1 AR/EO 21q22.11 [186, 187]

AD autosomal dominant, AR autosomal recessive, EO early onset, LO late onset
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other studies reported aSyn binds mitochondria and is present in the interconnection 
of mitochondrial membranes and ER or in the nucleus [26–29].

LRRK2 mutations are the most common cause of autosomal dominant PD [30]. 
Some LRRK2 mutations are more prevalent in certain ethnic groups [22]. The 
majority of patients carrying LRRK2 mutations present the classical pathological 
features of PD, including the presence of LBs, but the age of onset of the symptoms 
can vary appearing either earlier or later than idiopathic forms of the disease [30].

The VPS35 gene codes for the vacuolar protein sorting 35 (VPS35). VPS35 is one 
of the central components of the retromer cargo-recognition complex which is 
involved in the trafficking and recycling of synaptic vesicles and proteins [30]. The 
p.D620N mutation was recognised as a novel cause of autosomal dominant, late-onset 
PD [31, 32], displaying a dominant negative protein sorting phenotype [33, 34].

The lysosomal enzyme β-glucocerebrosidase, encoded by GBA, plays an impor-
tant role in glycolipid metabolism [35]. Mutations in this gene are known to cause 
Gaucher disease, one of a growing list of lysosomal storage disorders. However, 
GBA mutations have been described to increase the risk of developing PD and are 
quite common in PD patients [36–39].

On the other hand, mutations in PARK2, PINK1 and PARK7 can cause autosomal 
recessive forms of early-onset PD. All three genes share identical clinical pheno-
types, but LB pathology appears to be more variable [35]. PARK3, PARK10 and 
PARK12 loci have been implicated in PD, but the genes have not yet been identified. 
Thus, further analyses will be necessary in order to elucidate the role these loci play 
in PD pathogenesis [40].

19.2.3	 �Sporadic Forms of PD

Most PD cases have no known cause, suggesting environmental and lifestyle factors 
play important and poorly understood roles in the disease. Although these factors are 
indeed valid and important, it is now estimated that genetics may explain up to 60% 
of PD cases, underscoring the complexity of the disorder [12]. Toxins, such as methyl-
phenyl-tetrahydropyridine (MPTP) [41], 6-hydroxydopamine [42], the herbicide 
paraquat [43] and the pesticide rotenone [44], have been shown to cause loss of dopa-
minergic cells in the substantia nigra. In addition, exposure to heavy metals or electro-
magnetic radiation, head trauma and viral infections are also known risk factors in PD 
[12, 45]. On the contrary, caffeine [46], uric acid levels [47], nicotine [48] and antago-
nists of the A2A receptor [49] have been suggested to act as neuroprotectors.

19.3	 �Epigenetics in PD

PD, as other neurodegenerative diseases, is a complex disorder occurring from the 
interplay between genetic, environmental, nutritional and other factors, together 
with ageing. As epigenetics may be altered in response to, at least, some of these 
factors, it is becoming increasingly accepted; it may also play an important role in 
the aetiology and pathogenesis of PD.
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19.3.1	 �The Role of DNA Methylation

DNA methylation involves the covalent addition of a methyl group from S-adenosyl 
methionine (SAM) to the 5′ position of cytosines. In this way, 5-methylcytosine is 
formed (5-mC), with the concomitant conversion of SAM to S-adenosylhomocysteine 
(SAH) [50–52]. Methylation is a dynamic process that is apparent in multiple 
genomic sites, although it is mainly described to occur in repeats of CG dinucleo-
tides [53]. In the human genome, these dinucleotides cluster in areas known as CpG 
islands which are associated with promoter regions, at least for about 60% of human 
genes [54]. Functionally, DNA methylation is associated with transcriptional inhibi-
tion. This can be executed either directly, by hindering the association of the DNA 
machinery with chromatin, or indirectly, with the recruitment of methyl-CpG-
binding domain proteins (MBDs) [55, 56]. MBDs, in turn, attract histone-modify-
ing and chromatin-remodelling complexes to the methylated sites. DNA 
methyltransferases (DNMTs) are the enzymes responsible for mediating DNA 
methylation. In mammals, DNMT1 is able to maintain DNA methylation following 
replication, while DNMT3a and DNMT3b exert de novo methylation [50].

Genome-wide DNA methylation analysis in blood and brain samples of healthy 
individuals and PD patients revealed a significant dysregulation of CpG island 
methylation in the group of patients. Many genes were found to be either hypo- or 
hypermethylated, including PD risk genes [57]. Another study identified 20 genes 
that were differentially methylated in blood samples obtained from PD patients in 
comparison to controls [58].

The observation that the SNCA promoter is hypermethylated in patients with 
alcoholism [59] or anorexia [60] suggested that epigenetics, perhaps through meta-
bolic alterations, may also play a role in PD. Indeed, it was described that SNCA 
expression was upregulated upon methylation-mediated inhibition of SNCA intron 
1 and that the SN, putamen and cortex of PD patients exhibited a significant hypo-
methylation pattern compared to healthy controls (Fig. 19.1) [61]. Another study 
was not able to detect methylation differences in the anterior cingulate or putamen 
of PD patients when examined a CpG region of the promoter of SNCA. However, 
substantial methylation reduction was apparent in the SN of these patients [62]. A 
reduction in the nuclear levels of DNMT1 was reported in postmortem brain tissue 
from dementia with Lewy bodies (DLB) or PD patients, as well as in brains from 
transgenic mice overexpressing SNCA. This alteration in the subcellular localisation 
of DNMT1 resulted in a global hypomethylation, including CpG islands upstream 
of SNCA and other genes, while aSyn was identified as the sequester of DNMT1 
from the nucleus to the cytoplasm (Fig. 19.1) [63]. On the other hand, when the 
promoter and a CpG-rich region of SNCA intron 1 were analysed in patients with 
PD versus healthy individuals, hypermethylation at various positions in different 
brain regions was detected [64].

The methylation status of SNCA intron 1 was further investigated in blood sam-
ples [65], peripheral blood mononuclear cells (PBMCs) [66] or leukocytes of PD 
patients [67]. In agreement with results in brain tissue, these studies reported a sig-
nificant decrease in methylation of the SNCA promoter. Nevertheless, a correlation 
between SNCA mRNA levels and the methylation pattern of its promoter could not 
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be firmly established [65, 66]. Another study in leukocytes from PD patients and 
healthy individuals revealed no alterations in the levels of methylation in any of the 
investigated regions [68].

Additional genes, namely, PARK16, GPNMB and STX1B, have been found to 
present aberrant methylation in postmortem PD brain samples (Fig. 19.1) [69]. The 
methylation status of the TNF promoter was significantly diminished in the SN 
compared to the cortex of both PD patients and healthy individuals, suggesting that 
a possible overexpression of TNF may trigger inflammatory reactions compromis-
ing the vulnerability of the dopaminergic neurons [70]. Postmortem samples 
obtained from the cortex and putamen showed decreased CpG methylation and 

Fig. 19.1  Epigenetic modifications in dopaminergic neurons. Certain toxins enter the neuronal 
cells and cause histone modifications, thereby influencing the expression of several genes. In the 
nucleus, aSyn interacts with H1 forming a tight complex and also with H3 inhibiting its acetyla-
tion. In turn, histones trigger the aggregation of aSyn. Several PD-associated genes, such as 
PARK16, GPNMB and STX1B, show altered expression as a result of aberrant DNA methylation. 
The promoter of SNCA is usually found hypomethylated in PD, leading to increased levels of 
aSyn. aSyn is able to sequester DNMT1 from the cytoplasm in the nucleus resulting in a general 
reduction of the methylation pattern. Ac acetylation, de-Ac deacetylation, ↑ increase, ↓ decrease, 
┤ inhibition
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increased mRNA levels of the CYP2E1 gene in PD patients [71]. Interestingly, a 
single nucleotide polymorphism (SNP) in this gene has been associated with PD 
[72], and its protein product, cytochrome P450 2E1, is implicated in the production 
of toxic metabolites that influence degeneration of dopaminergic neurons [50]. 
Although mutations in PARK2 have been associated with autosomal recessive juve-
nile parkinsonism, abnormal methylation levels of PARK2 promoter have been 
described in acute lymphoblastic and in chronic myeloid leukaemia [73], but not in 
PD cases [74]. In a similar manner, increased methylation of the UCHL1 promoter 
was reported in diverse types of cancer [75, 76], while no significant alterations in 
CpG methylation was observed in the hippocampus and frontal cortex from PD 
brains [77]. Similar results were obtained for ATP13A2 gene. DNA methylation of 
the promoter revealed an association with the progression of Kufor-Rakeb syn-
drome, although no such link has been made for PD so far [78].

DNA methylation in mitochondria might also be a relevant phenomenon in the 
context of PD.  Recently, the mammalian mitochondrial DNMT (mtDNMT) was 
discovered [79]. Despite some controversy regarding CpG methylation in the 
genome of human mitochondria [80], some studies claim this can occur [81, 82]. 
Moreover, alterations in mitochondrial DNA methylation have been associated with 
cancer [83] and liver disease [84]. Finally, it was suggested that age-related changes 
in the DNA methylation of mitochondria may influence gene expression, alter mito-
chondrial metabolism and increase ROS production [85]. On the other hand, both 
PARK2 and PINK1 genes are essential for physiological mitochondrial function, 
and, when either of them is mutated, they can lead to mitochondrial impairment 
[12]. Considering the involvement of mitochondria in PD, further investigation will 
unravel possible implication of mitochondrial DNA methylation in PD 
pathogenesis.

19.3.2	 �Hydroxymethylation

Recently, the enzyme ten-eleven translocation1 (Tet1) was found to catalyse the 
oxidation of 5-mC to 5-hydroxymethylcytosine (5-hmC) [86]. Following studies 
have associated 5-hmC with euchromatin, indicating its relation with promoter 
regions and increased transcriptional levels [87, 88]. This intriguing, novel epigen-
etic modification is essentially unexplored in the context of neurodegeneration.

A detailed study revealed that 5-hmC levels increase in the mouse cerebellum in 
an age-dependent manner. In addition, an intragenic and proximal (to transcription 
start or termination sites regions) enrichment of 5-hmC was identified and associ-
ated with elevated gene expression. Gene ontology pathway analysis of the differ-
entially expressed genes pointed towards pathways which are associated with 
neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease and 
PD [89], but additional studies are necessary in order to establish whether this type 
of DNA alteration is relevant in neurodegeneration.
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19.3.3	 �Histone Modifications

The N-terminal tails of the histones are around 25–40 amino acid residues long and 
constitute a suitable region where chromatin-modifying enzymes can execute their 
function [90]. Histone modifications include methylation of lysine or arginine resi-
dues, acetylation, phosphorylation, ubiquitination, SUMOylation, ADP-
ribosylation, crotonylation, hydroxylation and proline isomerisation [52, 81]. 
Histone modifications have been described to play pivotal roles in the development, 
differentiation and maintenance of dopaminergic neurons [91]. However, little is 
known concerning alterations in the physiological pattern histone modifications and 
their implications in PD pathogenesis.

In a recent study, the use of isolated dopaminergic neurons from brain tissue 
from PD patients revealed increased acetylation levels of histone H2A, H3 and H4 
compared to age-matched control individuals. Furthermore, the levels of various 
histone deacetylases (HDACs) are reduced in 1-methyl-4-phenylpyridinium 
(MPP+)-treated cells and in MPTP-treated mouse brains and also in midbrain sam-
ples from PD patients [92]. These findings highlighted the presence of histone mod-
ifications suggesting that chromatin remodelling may be highly implicated in the 
pathogenesis of PD. Exposure to additional toxins also induces alterations into his-
tones. For instance, when the pesticide dieldrin was administered in mice, elevated 
acetylation of histones H3 and H4 occurred in mesencephalic dopaminergic neu-
rons due to proteasomal dysfunction (Fig. 19.1). Subsequently, the cAMP response 
element-binding protein, a histone acetyltransferase (HAT), was found to accumu-
late in the cells [93]. Another neurotoxic agent, paraquat, induces acetylation of 
histone H3 in dopaminergic cells in vitro (Fig. 19.1) [94].

In murine and primate models of levodopa-induced dyskinesia (LDID), dopa-
mine depletion via MPTP administration was associated with a reduction in histone 
H3 trimethylation at Lys4 (Fig. 19.1). Chronic levodopa (or l-DOPA) therapy of 
these models was accompanied by deacetylation of striatal histone H4 at Lys5, 8, 12 
and 16 (Fig. 19.1). The presence of histone modifications is evident, suggesting they 
may contribute to the development and maintenance of LDID in PD [95]. LDID has 
been associated with abnormal dopamine D1 receptor transmission. Histone H3 
phosphoacetylation is blocked by D1 receptor inactivation, suggesting that inhibi-
tion of histone H3 acetylation and/or phosphorylation may be used for the preven-
tion or reversion of dyskinesia [96]. In a mouse model of PD, it was shown that 
administration of l-DOPA induced phosphorylation of histone H3 on Ser28  in 
regions marked by trimethylation of the adjacent Lys27 (Fig. 19.1). This phenom-
enon was specifically observed in neurons expressing the D1 receptor and corre-
lated with aberrant expression of genes that may be accountable for motor 
complications or dyskinesia [97].

Dopaminergic neurons of paraquat-treated mice displayed accumulation of aSyn 
in the nucleus, where it co-localises with acetylated histone H3. Further investiga-
tion revealed that aSyn binds directly to histone H1 and forms a tight 2:1 complex 
(Fig. 19.1). On the other hand, histone H1, together with the core histones, was able 
to boost the formation of aSyn fibrils (Fig. 19.1) [98]. Another study reported both 
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in vitro and in Drosophila that nuclear aSyn associated with histone H3 reduces its 
acetylation (Fig.  19.1) [99]. Similar results were also described in PC12 cells 
expressing monoamine oxidase B. aSyn co-localised with histone H3 and once 
more was able to decrease its acetylation [27]. Finally, overexpression of dHDAC6 in 
a Drosophila model of PD ectopically expressing SNCA promoted aSyn inclusion 
formation and reduced aSyn oligomerisation. On the other hand, depletion of 
dHDAC6 enhanced the detrimental effects of aSyn overexpression, including the 
loss of dopaminergic neurons and locomotor dysfunction [100].

In C. elegans overexpressing human wt or A53T SNCA, nine histone genes cod-
ing for linker H1 and two core histones, H2B and H4, were downregulated [101].

19.3.4	 �miRNAs in PD

miRNAs bind to the 3′ untranslated region (UTR) of mRNA targets and modulate 
protein translation [102]. Thus, given their pleiotropic effects in cell biology, miR-
NAs are also emerging as relevant contributors to neurodegeneration in PD. Recently, 
an overall downregulation of miRNAs was found in tissue samples isolated from the 
SN of PD patients when compared to samples from healthy individuals [103].

Transgenic mice lacking Dicer in their dopaminergic neurons display neuronal 
cell death in the SN [104], suggesting overall miRNA processing is detrimental for 
dopaminergic cell function. Interestingly, studies in PD patients revealed that miR-
133b, which is specifically expressed in midbrain dopaminergic neurons, is defi-
cient in midbrain tissue. miR-133b is involved in a negative feedback circuit that 
contains the paired-like homeodomain transcription factor Pitx3, having a regula-
tory role in the maturation and function of midbrain dopaminergic neurons [104]. 
miR-132 has also been linked to midbrain dopaminergic neuronal differentiation. In 
a rat model of PD, miR-132 was significantly increased, and, in turn, the levels of 
its target protein, nuclear receptor-related 1 protein (Nurr1), were reduced [105, 
106].

In a study using the MPTP-induced mouse model of PD, miR-124 was found to 
be downregulated in the SN of the mice, along with an increase in the levels of cal-
pain/CDK5 proteins [107]. Interestingly, activation of calpains has been associated 
with dopaminergic cell death in the MPTP-induced mouse model and in postmor-
tem nigral tissue from PD brains [108]. Another study reported a functional role of 
elevated miR-126 in SN dopaminergic neurons of PD patients through the inhibi-
tion of IGF-1/PI3K signalling pathway, contributing to neurotoxicity [109].

The levels of miR-1, miR-22* and miR-29 are reduced in blood samples of PD 
patients. Interestingly, the levels of miR-16-2*, miR-26a2* and miR30a enabled the 
distinction between treated from non-treated PD patients [110]. On the other hand, 
miR-1826/miR-450b-3p, miR-505 and miR-626 are upregulated in the plasma of 
PD patients and may be useful as PD biomarkers [111].

LRRK2 was found to influence the miRNA pathway, possibly by associating with 
Argonaute (Ago), in both human and Drosophila samples. Furthermore, in a 
Drosophila model of PD, it was observed that mutant LRRK2 suppresses the function 
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of let-7 and miR-184* which normally regulate the translation of E2F1/DP complex, 
involved in cell cycle and survival control (Fig. 19.2) [112]. Furthermore, frontal cor-
tex samples from PD patients contain high levels of LRRK2 and reduced levels of 
miR-205. It was then found that miR-205 is able to bind to the 3′ UTR of LRRK2 
mRNA and suppress its expression. Further in vitro studies included the introduction 
of miR-205 in neurons carrying the R1441G LRRK2 mutation, which prevented out-
growth defects [113]. These findings suggested the regulatory role of miR-205 on 
LRRK2 expression and, therefore, a possible role in PD pathogenesis (Fig. 19.2).

Fig. 19.2  The impact of miRNAs on TH+ neurons. miR-205 is able to suppress the expression of 
LRRK2 protein by binding to its 3′ UTR mRNA region. On the contrary, mutant LRRK2 inhibits 
let-7 and miR-184* which participate in cell survival. Overexpression of miR-494 reduces the 
levels of PARK7. Furthermore, several miRNAs bind to snca mRNA sequence and prevent its 
translation. On the other hand, the levels and aggregation of aSyn are indirectly increased due to 
increased FGF20 or decreased Hsp70 protein levels. Finally, mutant aSyn is thought to affect the 
production of certain miRNAs. *LRRK2 mutant LRRK2, *aSyn mutant aSyn, ↑ increase, ↓ 
decrease, ┤inhibition
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DJ-1, the product of PARK7, is thought to be an oxidative sensor that protects 
cells from oxidative stress. Decreased levels of DJ-1 have been detected in the SN 
of sporadic PD patients suggesting a connection with PD. miR-494 was found to 
bind to the 3′ UTR of PARK7 mRNA and, when overexpressed, was able to signifi-
cantly reduce DJ-1 protein levels in  vitro and in an MPTP mouse model, while 
concomitantly rendering the cells more susceptible to oxidative stress and leading 
to dopaminergic cell death (Fig. 19.2) [114].

A global miRNA expression profiling in C. elegans showed that three members 
of the let-7 family (cel-miR-241, 230 and 48) were deregulated in animals mutated 
for PARK2. Similarly, 12 differentially regulated miRNAs from the miR-64/miR-65 
and let-7 families were identified in animals overexpressing human A53T SNCA 
(Fig. 19.2) [115].

The levels of miR-34b and c were found significantly reduced in the amygdala, 
frontal cortex, cerebellum and SN of PD patients, accompanied by a decrease in the 
expression of PARK2 and PARK7. In addition, depletion of miR34-b and c in in vitro 
differentiated dopaminergic neurons caused an alteration of mitochondrial function 
and oxidative stress [116, 117]. In addition, both miRNAs appear to repress SNCA 
expression. Overexpression of miR-34b and c in SH-SY5Y cells resulted in a sub-
stantial reduction of aSyn protein levels via targeting the 3′ UTR of SNCA mRNA 
(Fig.  19.2), while inhibition, using anti-miRs, increased both the levels and the 
aggregation of the protein. Finally, a polymorphic variation in the 3′ UTR of human 
SNCA mRNA was associated with resistance to miR-34b binding and therefore to 
increased aSyn [118].

Two other abundant brain miRNAs, miR-7 and miR-153, bind to the 3′ UTR of 
SNCA mRNA and inhibit its translation (Fig.  19.2). More precisely, miR-7, a 
neuron-specific miRNA, was found to downregulate the expression of SNCA in 
HEK293T cells, protecting against oxidative stress. On the other hand, a specific 
miR-7 inhibitor caused a significant increase of aSyn protein levels in SH-SY5Y 
cells. Results obtained from MPTP-treated mice were in agreement with those 
obtained in the in vitro models, showing a substantial reduction of miR-7 levels 
and suggesting that elevated SNCA expression may be attributed to this downregu-
lation [119]. Furthermore, treatment of primary cortical neurons with MPP+ fol-
lowed by miR-7 overexpression resulted in neuronal protection from MPP+-induced 
toxicity and restored neuronal viability [120]. This protection from cell death was 
achieved via preservation of active mTOR signalling, possibly promoting aSyn 
clearance [120, 121].

miR-153 is another brain predominant miRNA that binds to the 3′ UTR of 
SNCA mRNA resulting in a significant decrease of its mRNA and protein levels 
[122]. The miR-153 binding site is predicted to be located within nucleotides 
459–465. A variation identified in one male PD patient (464 C > A) was never 
encountered in healthy individuals or in patients with familial PD that were 
involved in the study and was suggested to be a rare cause of PD [123]. 
Interestingly, it seems that miR-7 and miR-153 have a synergistic effect on 
reducing aSyn levels [122].
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In contrast, it was reported that SH-SY5Y cells treated with miR-106a* signifi-
cantly increased their aSyn protein levels [124]. Moreover, other miRNAs such as 
miR-301b, miR-26b, miR-373* and miR-21 which regulate the levels of chaperone-
mediated autophagy proteins were significantly increased in the SN of human PD 
brain tissues [124].

Administration of MPP+ or MPTP to cell or mouse models, respectively, resulted 
in a decline of miR-214 levels and in an increase in aSyn levels. In particular, a miR-
214 inhibitor caused a reduction in the amount of TH+ cells when administered 
in vivo. Thus, as a result, miR-214 may contribute to the upregulation of SNCA and, 
therefore, to the toxic effects of aSyn in dopaminergic neurons (Fig. 19.2) [125].

Alterations in synaptosomal proteins were investigated in early symptomatic 
A30P SNCA transgenic mice, indicating that several proteins related to mitochon-
drial function were differentially expressed. Moreover, miRNA expression profiling 
revealed that the levels of miR-10a, 10b, 212, 132 and 495 were altered in brainstem 
samples when compared those from wild-type control animals [126]. In a Drosophila 
A30P SNCA model, high-throughput sequencing of small RNAs revealed that five 
miRNAs were upregulated. Among them, miR-13b, miR-133 and miR-137 are 
enriched in the brain and highly conserved from Drosophila to humans. miR-137 
was shown to target the 3′ UTR mRNA of the dopamine D2 receptor. Therefore, it 
was suggested that mutant aSyn may be responsible for the dysregulation of miR-
NAs which are implicated in neuroactive-ligand receptor pathways (Fig. 19.2) [127].

Heat sock protein 70 (Hsp70) is capable of inhibiting cellular toxicity caused by 
aSyn via reduction of aSyn misfolding and aggregation [128–132]. Chemical block-
ade of Hsp70 in a cellular model (SH-SY5Y cells) overexpressing SNCA promotes 
aSyn aggregation. Interestingly, administration of miR-16-1 mimics those results 
given that miR-16-1 targets HSP70 mRNA and downregulates both its mRNA and 
protein levels (Fig. 19.2) [133]. Therefore, aSyn toxicity and the protective effects 
of Hsp70 are corroborated via this novel mechanism, opening new perspectives for 
intervention in PD.

A polymorphism (rs1989754) in the FGF20 gene was reported to be associated 
with increased risk of developing PD [134]. Another FGF20 polymorphism that 
was identified a few years later (rs12720208) was suggested to obstruct the bind-
ing of miR-433 to the FGF20 mRNA both in vitro and in vivo and, therefore, lead 
to increased FGF20 protein levels. Interestingly, elevated FGF20 protein levels 
have been linked to the subsequent increase of aSyn levels, observed both in 
SH-SY5Y cells and in human brain samples. In this way, elevated FGF20 levels 
may account for susceptibility towards developing PD through the increase of 
aSyn (Fig. 19.2) [135].

19.4	 �Epigenetic-Based Therapeutic Approaches for PD

HDAC inhibitors (HDACis) are commonly used as anticancer molecules. However, 
they have also emerged in the field of neurodegenerative disorders, in models of PD 
and AD, due to their effects on different members of the histone deacetylase family 
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of proteins [136–139]. Valproic acid (VPA) has been shown to protect against rote-
none [140], aSyn [140] and MPTP toxicity [141]. The responses triggered by VPA 
were mediated by decreasing the levels of pro-inflammatory factors and inducing 
microglia apoptosis [142, 143]. Finally, trichostatin A (TSA) has been described to 
increase the expression of HSP70, thereby having neuroprotective and anti-
inflammatory properties [144], and to induce microglia apoptosis accompanied by 
increased histone H3 acetylation [143]. Nevertheless, the positive effects of these 
compounds conceal certain drawbacks. For example, in one study, it was shown that 
hyperacetylation of histone H4 via the administration of sodium butyrate, an 
HDACi, induces the expression of the protein kinase C δ (PKCδ) in the striatum and 
SN of mice. This upregulation was responsible for increasing the sensitivity of the 
cells to oxidative stress, rendering the dopaminergic neurons more prone to cell 
death and potentially contributing to PD [145]. TSA was also found to induce neu-
ronal cell death and activate pro-apoptotic genes, likely contributing to PD patho-
genesis [146, 147]. In addition, it was described that TSA potentiated 
pro-inflammatory responses in microglial cells, a process that is associated with 
several degenerative conditions [148]. The balance between HAT and HDAC activi-
ties is vital for normal cellular function, and, although many studies are evaluating 
the therapeutic potential of HDACis in PD, it should also be noted that they may 
cause undesired side effects and responses not only in neurons but also in other cell 
types, due to putative effects in nonhistone protein targets. Thus, despite current 
hopes and potential, additional work is still necessary in order to improve the appli-
cability of these approaches.
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