
Chapter 16
Sample Size Calculation

Eileen M. Stock and Kousick Biswas

Introduction

Every clinical trial should be planned in advanced. This plan should include the
study’s objectives, primary and secondary endpoints, data collection, inclusion and
exclusion criteria, required sample size with scientific justification, statistical
methodology, and an approach to handle missing data [1]. A sample size calcula-
tion is used to determine the minimum number of participants needed in a clinical
trial in order to be able to answer the research question under investigation. During
the planning phase of a clinical trial, sample size estimation should be one of the
very first and key components to consider in the design of a study. Knowing the
anticipated sample size allows investigators to determine whether a study is feasible
and to develop an appropriate budget and identify needed resources to carry out the
study. The calculation of sample size with a sufficient level of significance and
power is essential to the success of a trial.

Requirements for Sample Size Calculation

The estimation of sample size involves the consideration of multiple components,
including the study’s objective and primary hypothesis, type of endpoint to be
analyzed, expected treatment effect and variability, treatment allocation ratio if it is
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desirable to have more randomized to one group than another, anticipated recruit-
ment rate, and the estimated number of dropouts. Other parameters influencing
sample size calculation include types of error (I and II) and power [1, 2].

Types of Error and Power

Consider the multisite randomized clinical trial comparing operative and nonop-
erative treatment using accelerated functional rehabilitation for acute Achilles
tendon ruptures [3]. For the primary outcome of rerupture, the null hypothesis,
denoted H0, would be that there exists no difference between the two population
proportions of rerupture. That is, there is no difference in the rate of rerupture
between those with acute Achilles tendon rupture undergoing surgical repair and
those treated nonoperatively. The alternative hypothesis (for a two-sided test;
typically denoted Ha) is that there is a difference in the rate of rerupture. A Type I
error, commonly referred to as significance level and denoted as a, is defined as the
probability of erroneously rejecting the null hypothesis when it is in fact true. In this
example, a Type I error would be concluding a difference in the rate of rerupture
between treatment procedures that is unlikely to actually exist, i.e., a false positive.
A Type II error, denoted as b, is the probability of failing to reject a false null
hypothesis. That is, erroneously missing an actual difference in rerupture rates
between treatment procedures, a false negative. Power (equal to 1 − b) is the
probability of rejecting the null hypothesis when it is false and should be rejected
(Table 16.1) [1, 2].

Study’s Primary Hypothesis

The primary purpose of a clinical trial, written as a scientific hypothesis, guides the
design of the trial. Traditionally, a two-arm parallel-group design is employed to
look for a difference between treatments (two-sided). Two-sided p-values provide
the probability that the results are compatible with the null hypothesis (H0 true).

Table 16.1 Summary of type I and II errors

True state

Statistical decision H0 true
(No treatment benefit)
Should fail to reject H0

H0 false
(Treatment benefit)
Should reject H0

Fail to reject H0

(No treatment benefit)
Correct decision Type II error (b)

Reject H0

(Treatment benefit)
Type I error (a) Correct decision, power (1 − b)
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When the p-value is small (say, p-value ˂0.05), the null hypothesis is rejected
(reject H0) and there is evidence to support a difference in treatment effects. The
direction of the test statistic establishes whether the new treatment is superior or
inferior to the control treatment. In some instances, there is no interest in rejecting a
null hypothesis in both directions (i.e., there is no interest in an inferiority results)
and a superiority trial may be preferred to examine whether a new treatment is
superior (better) than the established alternative (one-sided) [4].

While the traditional approach is intended to determine whether there is a dif-
ference between the experimental treatment and control, this may not be the rele-
vant approach when the control is known to be effective and it is hoped that the
experimental treatment can be shown to be as effective. In this instance, it is usually
the case, that the experimental treatment may offer other advantages to the control
treatment, such as convenience or tolerability, if it can be shown to be as effective to
the control. Equivalence trials are designed to establish that the new procedure
cannot be worse nor better than the conventional procedure if the null hypothesis is
rejected. It requires that the two treatment approaches be identical within some
acceptable range, d (normally ±20%) [5]. Lastly, for a non-inferiority trial, the aim
is to show that the new treatment is as good as or better (no worse) than the
established treatment [4]. Each of the mentioned designs will be selected according
to the study’s primary hypothesis and rely on prior information about the effects of
the new procedure on a specific endpoint [1].

Study Design Considerations

Various study designs, such as a parallel-group, crossover, factorial, or cluster, may
be employed to address a study’s objectives and ensure the required sample size is
achieved. Each design will vary in their approach for sample size calculation. In the
case of rare events, the need for a multisite trial is higher.

Study Endpoint Expected Response

A study’s endpoint, whether continuous, dichotomous, or time-to-event, will
govern the type of model and sample size calculation. In the case of multiple
comparisons, an adjustment to the significance level may be necessary. For a
continuous endpoint, information on the expected central tendency (mean score)
and variability (standard deviation) of the new procedure and its comparator are
needed to more precisely estimate the sample size. The greater the variation within
groups or the smaller the expected difference between groups, the larger the sample
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size will need to be in order to produce the same result. For a dichotomous variable,
the proportion of participants achieving success in each group is needed. Most
importantly, the expected treatment effect, as compared to its comparator, should be
clinically meaningful [1].

Participant Retention Rates and Treatment Allocation

While sample size calculations determine the required number of participants for
specific analyses, other aspects of recruitment should also be considered such as
screen-failures, dropouts, and patients who are lost to follow-up. A trial should
enroll more subjects to account for potential dropouts and those lost to follow-up.
Attrition rates can vary tremendously, where � 5% is of little concern but � 20%
poses serious threats to the validity of the trial [6]. Most RCTs (60–89%) published
in leading journals have missing endpoint data, with complete case analysis the
most frequently used strategy for handling this missing data [7, 8]. For many of
these trials (18%), dropout rates exceeded 20% [8, 9]. For this reason, the number
of enrollments, in trials where the primary outcome measure is continuous or
binary, can be determined using an adjustment to the sample size and estimated
dropout rate in the formula, Enrollment = Sample Size/(1 − dropout rate) [1]. For
time-to-event, or survival data, the adjustment for dropout rate is more involved. In
some instances, interim analyses may be requested to monitor treatment effects and
ensure enrollment follows a specific trajectory [10, 11].

If one treatment arm is anticipated to have a greater dropout rate than its com-
parator, an unequal treatment allocation may be employed to ensure a balanced
distribution at the end of the trial. Additionally, varied allocation and enrollment
can occur in cases where it is unethical to assign an equal number of patients to
each arm (e.g., placebo or sham treatment) [1]. Thus, sample size is adjusted in
these scenarios. Note that departures form 1:1 randomization will increase the
sample size requirement.

Conventional Guidelines

In sample size calculations, the level of significance (a) for a study is typically
assumed to be 0.05 (or 5%) [12]. However, 1% or less may be used for larger
samples and 10% for smaller samples. Also, the minimum power for which sample
size is calculated is 80%. Larger power may be used to estimate sample size in order
to provide a more conservative estimate in case treatment effects or recruitment are
less than anticipated.
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Calculation of Sample Size

There are many approaches to sample size estimation, with some of the more
common calculations involving the comparison of two means, proportions, or a
time-to-event measure and testing for a difference between groups. The next few
sections describe these in more detail.

Comparing Two Means

The formula for calculating sample size comparing the mean of two treatment arms is

n1 ¼ jn2; n2 ¼ 1þ 1
j

� �
za=2 þ zb
� �2

d2

" #
¼ 1þ 1

j

� �
za=2 þ zb
� �2

r21 þ r22
� �

2 �l1 � �l2ð Þ2
" #

;

where za=2 is the critical value of the standard normal distribution at a/2 (e.g., 1.96
for a 95% confidence interval with Type I error a = 0.05), zb is the critical value of
the standard normal distribution at b (e.g., 0.84 for 80% power and Type II error
b = 20%), j is the matching ratio, li is the population mean of the endpoint in
group i, r2i is the population variance of the endpoint in group i, and d is Cohen’s
effect size [13]. For studies with 1:1 randomization, j ¼ 1:

Comparing Two Proportions

The formula for calculating sample size comparing two proportions is

n1 ¼ jn2; n2 ¼ p1 1� p1ð Þ
j

þ p2 1� p2ð Þ
� �

za=2 þ zb
p1 � p2

� �2

;

where pi is the population proportion of group i, and p1 � p2 is the effect size or
difference desired to be detected [13].

Comparing Time-to-Event

The formula for calculating sample size for a time-to-event analysis (Cox propor-
tional hazards model) is
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n ¼ 1
p1p2pA

za=2 þ zb
ln hð Þ � ln h0ð Þ

� �2

;

where pi is the proportion with the event in group i, pA is the overall event rate, h is
the hazard rate, h0 is the hypothesized hazard rate under the null hypothesis, and
ln hð Þ � ln h0ð Þ the regression coefficient (treatment indication) [13, 14]. Note that
sample size formulae accounting for the length of the recruitment and follow-up
periods, and drop-outs, are more sophisticated.

Available Software

Statistical software packages with tools for sample size and power analysis cal-
culations include SAS (SAS Institute, Inc.; Cary, NC), G*Power (Faul, Erdfelder,
Lang, & Buchner, 2007), PASS (NCSS, LLC.; Kaysville, Utah), R (The R
Foundation for Statistical Computing; Auckland, New Zealand), Mplus (Muthén &
Muthén; Los Angeles, CA), and PS available online at Vanderbilt University
(Dupont & Plummer, 1990) [15]. Several of these packages are available at no cost.

Common Pitfalls Related to and Affecting Sample Size

Sample size calculations pose several challenges, including obtaining an accurate
estimate of treatment effects, selecting an appropriate power and significance level,
and even selecting the correct formula to be used [16]. As a result, sample size
underestimation or overestimation may occur.

Sample Size Underestimation

Sample size underestimation refers to a sample size for a trial that was calculated to
be less than that required [16]. This results in lower power than is needed and may
lead to misleading results such as the determination of no treatment effect
(p-value > a) when one really existed. The treatment effect was not statistically
significant even though it was clinically significant. That is, recruiting too few
participants can lead to inconclusive results because of the low likelihood of finding
a clinically relevant difference statistically significant.

Revisiting the Achilles Tendon Rupture trial, small sample size was a limitation
of the study (72 participants per each arm), and therefore was underpowered to
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definitively make a conclusion about rerupture rates [3]. A meta-analysis had shown
rerupture rates to be approximately 2.8% following operative repair and 11.7% for
nonoperative treatment [17]. ConsequentlyH, the Rupture trial underestimated the
sample size required. Instead, rates of 2.8% and 4.2% for operative and nonoper-
ative treatment, respectively, were observed. The former would require a sample
size of 104 participants in each group using a one-sided 2-sample independent
proportions test, assuming a significance level of a = 0.05. The latter would require
2148 participants per arm (Fig. 16.1). Although the actual power for comparing
rerupture rates was 12% (Fig. 16.2), with a Type II error of 88%, this study was the
largest to date of its kind and findings would provide clinical insight and pilot data
should a larger trial be pursued.

Fig. 16.1 Sample size estimation for comparing rerupture rates, varying rates in the nonoperative
group [created through the use of: PASS 14 Power Analysis and Sample Size Software (2015).
NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/pass]

Fig. 16.2 Power analysis for observed difference in rerupture rates [created through the use of: R
(The R Foundation for Statistical Computing; Auckland, New Zealand)]
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Sample Size Overestimation

On the contrary, a sample size selected to be much larger than was required
describes sample size overestimation [16]. Studies that are too large are also
problematic for at least two reasons. This scenario may be evident from an
exceptionally strong statistical significance (very small p-value), which raises eth-
ical concerns if more subjects were exposed to an inferior treatment than were
required or resources wasted. Additionally, for larger sample sizes, smaller differ-
ences can be detected and be statistically significant even when the difference is not
clinically meaningful. In trial design, each assumption may be made too conser-
vatively, to avoid the risk of failure, and the analysis of the study’s primary
objective becomes overpowered as a result.

Selecting a Clinically Meaningful Difference

Determining the clinically meaningful difference for which a study is powered to
detect is generally the most difficult task of the sample size calculation process.
A very thorough literature search should be conducted to obtain any available data
on the potential effect of the proposed new treatment. This may include published
abstracts, results of phase II trials or pilot studies, and subgroup analyses from a
previously conducted trial. If enough publications are available, meta-analysis
techniques can be used to obtain an estimate of the potential treatment effect.

Often data are limited to help inform the potential treatment effect estimate. In
those cases, an investigator might look to other published studies in this area to
determine the magnitude of effect that was used when that study was designed.
Often, FDA has determined the degree of treatment effect needed to establish
efficacy and their guidelines may be useful as a resource. Additionally, a panel of
experts in the area of investigation can be convened to develop a consensus estimate
of treatment effect.

Available Databases

There are multiple databases available for use in obtaining estimates for sample size
calculations. In 1994, the VA established a VA National Surgical Quality
Improvement Program (NSQIP) in which all medical centers performing major
surgery participated [18]. The database contains 135 variables collected preopera-
tively and up to 30 days postoperatively. Data is categorized as demographic,
surgical profile, preoperative, intraoperative, or postoperative. Each hospital sub-
mits an average of 1,600 major operations per year into the database [19]. While the
aim of NSQIP was initially quality improvement in surgical care through periodic
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reports and assessments of performance, VA investigators can also query the
database for scientific research purposes and to obtain estimates of event rates for a
power analysis such as mortality, cardiac and noncardiac complications, postop-
erative pneumonia, intubations, pulmonary embolism and venous thrombosis, renal
dysfunction, and infections. Similarly, the American College of Surgeons National
Surgical Quality Improvement Program (ACS NSQIP) can be used for sample size
estimation as in the comparison of postoperative complication rates for regional
versus general anesthesia among surgical patients with chronic obstructive pul-
monary disease [20, 21]. Other useful available databases include the Society of
Thoracic Surgeons (STS) National Database including separate databases for adult
cardiac, general thoracic, and congenital heart surgery [22], and the Centers for
Disease Control (CDC) Cancer Registry [23].
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