
Chapter 2
Networks and Pathways in Systems
Pharmacology

Abstract This chapter presents an extensive overview of aspects involved in the
thriving field of systems pharmacology. The three main directions along which
network- and pathway-based analysis methods can contribute in systems pharma-
cology are spotlighted. Current approaches for the characterization of drugs mech-
anism of action, including the elucidation of mechanisms through which disease
phenotypes dysregulate biological processes are first discussed. Subsequently, the
latest research work done in systems pharmacology and polypharmacology toward
the identification of novel drug targets, as well as in optimizing drug combinations
for more efficient therapies, is surveyed. Within this context, the benefits of inte-
grating evidence from multiple biological scales are examined, and the most popular
databases used to store various biological data are provided. Drug repositioning is
another direction along which pathway analysis is bound to bring significant con-
tributions. An overview of drug repositioning approaches based on molecular and
phenotypic profiles is presented. Subsequently, the main aspects involved in systems
pharmacology applications for in silico drug side effect modeling and prediction are
reviewed. Finally, current challenges and future considerations for pathway analysis
and systems pharmacology are discussed.

Keywords Pathway analysis � Sub-pathways � Systems pharmacology � Drug
mechanism of action � Polypharmacology �Drug repositioning �Drug targets �Drug
safety � Drug side effect modeling � Heterogeneous data integration � Databases

2.1 Introduction

In the context of continuously surging drug development and healthcare costs, with
the cost of developing a new drug being recently estimated at $2.8 billion, a more
than 145% increase within the past decade only (DiMasi et al. 2016), and with
global annual spending on prescription medication forecasted to reach $1.8 trillion,
it becomes increasingly clear that the conventional reductionist one drug, one
target, one disease paradigm which has been traditionally driving pharmacology
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needs radical rethinking. Even with the significant raise in R&D expenditure by big
pharma companies, the mean time between synthesis to approval surpasses
120 months, while the number of newly approved molecular compounds annually
is *20–30, not significantly different from what it was half a century ago (DiMasi
et al. 2016; Csermely et al. 2013). Systems pharmacology brings the promise of
revolutionizing the drug discovery process, while at the same time catalyzing the
translation of pharmacogenomics applications to clinical environment, which has
been lagging behind despite the recent wave of groundbreaking research on
genomics implications in disease.

In this context, methods for modeling and analysis of molecular interaction
networks, which have recently found extensive application in systems biology, are
able to provide a theoretical platform for systems pharmacology. Studies on gene
regulatory networks, protein–protein interaction networks, metabolic networks and
other types of molecular interaction networks, provided significant insight into
cellular organization and behavior, and shed light on specific biological processes,
as well as disease processes and pathophysiology (Rual et al. 2005; Jeong et al.
2000; Ideker et al. 2002; Maraziotis et al. 2006, 2007; Bezerianos and Maraziotis
2008; Glaab et al. 2010). Consequently, based on this new network-based para-
digm, new areas of translational research have emerged, and new terms have been
coined, such as network physiology, network medicine, and network pharmacology
(Barabasi et al. 2011; Hopkins 2008; Bashan et al. 2012).

Analysis of molecular interaction networks in systems pharmacology holds the
promise of contributing along three main directions (Fig. 2.1):

Fig. 2.1 Overview of network-based analysis in systems pharmacology [adapted from Arell and
Terzic (2010)]
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(i) Allowing for the identification of new putative drug targets relevant to
specific diseases, through a better characterization of what makes an optimal
target. In this context, pathway-based analysis allows a more mechanistic
characterization of drugs mechanism of action, including the characterization
of response to treatment, challenging the traditional way drug action was
viewed: act on a specific target and observe the modulating effects down-
stream of that target. Current view is that a drug hits several targets (in-
cluding off-targets) co-existing in a complex interacting network which is
perturbed by disease, and the therapeutic effect of the drug aims to
re-establish homeostasis (Berger and Iyengar 2009; Xie et al. 2009; Arell and
Terzic 2010; Woo et al. 2015). Often times such approaches combine
pathway and network analyses with pharmacokinetic and pharmacodynamic
models to incorporate data from multiple biological scales, striving to build
advanced quantitative and predictive models of therapeutic efficacy. As a
corollary to achieving (i) follows the improved ability to predict effective
drug combinations and the possibility to investigate mechanisms underlying
drug resistance (Boran and Iyengar 2010; Zhao et al. 2013; Reddy and Zhang
2013; Lazar et al. 2014; Hwang et al. 2016).

(ii) Drug repositioning or drug repurposing is another direction in which sys-
tems pharmacology is making significant impact. Motivated by the success
stories of several drugs with different initial indications, such as sildenafil
(initially developed to treat hypertension and angina pectoris, eventually
used to treat erectile dysfunction after clinical trial observations), or mono-
clonal antibody bevacizumab (originally developed to treat colon cancer and
non-small cell lung cancer, currently used in treatment of macular degen-
eration disease), drug repositioning significantly shortens the path for
approval of normal drugs and reduces the R&D expenditure (Van Eichborn
et al. 2011; Wu et al. 2013; Pan et al. 2014; Li et al. 2016). Almost 20% of
new drugs introduced to market in 2013 were actually new indications for
existing drugs (Li et al. 2016). Originally based on serendipitous clinical
observations, drug repositioning is picking up significant interest recently
due to the increased understanding of the underlying molecular processes,
drugs mechanisms of action, as well as the availability of advanced com-
putational models for network and pathway-based analysis.

(iii) Another direction in which significant research efforts in systems pharma-
cology are focusing is that of drug safety and prediction of drug toxicity and
side effects. Drug safety is a major source of drug attrition and of vital interest
for pharmaceutical companies in their efforts to reduce drug development
cost, while increasing efficiency (Hutchinson and Kirk 2011; Waring et al.
2015). Recent high profile failures during clinical trials or even for marketed
drugs underline the fact that even efficacious drugs may cause severe side
effects with dangerous consequences. Some examples include the cases of
rosiglitazone, an antidiabetic drug which was later found to induce signifi-
cant risk for myocardial infarction, rofecoxib, a pain relief drug recalled from
the market after increased risk of stroke was reported, and the BIA-10-2474
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(a molecule developed for a range of diseases) clinical trial death cases in
2016 (Graham et al. 2005; Nissen and Wolski 2007; Esserink 2016). It is
therefore of paramount importance that molecular mechanisms of drug
toxicity are comprehensively evaluated and used for hypothesis generation
and testing, having as goal the development of in silico models for prediction
of side effects. Systems pharmacology provides the framework for aug-
menting traditional pharmacokinetic and pharmacodynamics models while
studying most common scenarios of drug toxicity from a pathway-based
perspective: (a) off-target perturbations generating side effects unrelated to
on-target effects, (b) side effects caused by pathways downstream of the
intended on-target and (c) unrelated pathways generating side effects due to
cross-talk with pathways downstream of intended target (Boran and Iyengar
2010; Wallach et al. 2010; Kuang et al. 2014; Lorberbaum et al. 2015; Cao
et al. 2015; Trame et al. 2016; Schotland et al. 2016).

A concept with significant overlap to systems pharmacology, in both that it
integrates systems biology with drug discovery and in its application areas, is
polypharmacology. Polypharmacology includes studying the modulation of multi-
ple targets by single drugs, as well as modulation of different targets by multiple
drugs, primarily focusing on therapeutic interventions in complex diseases with the
goal of identifying less toxic and more effective approaches (Boran and Iyengar
2010; Reddy and Zhang 2013; Anighoro et al. 2014). Another discipline that
naturally converges to the more inclusive field of systems pharmacology is phar-
macogenomics. Pharmacogenomics is defined by its search for variation in the
human genome that explains inter-individual drug response variability (Antman
et al. 2012). Currently in its incipient stage, with few genotype-drug response
associations identified and finding their way into clinical practice by means of
biomarkers present on drug labeling (FDA: Table of Pharmacogenomic Biomarkers
in Drug Labeling 2016), translation of pharmacogenomic associations into clinical
practice is still slowed by inconsistent findings and below par predictive power.
Since these limitations are largely due to the complex interactions between
drug-specific molecular response and environmental factors, systems pharmacology
holds the promise to facilitate pharmacogenomics in unraveling the mechanisms
behind the drug response variability. Rather than just identify mutations associated
to diseases (e.g., genome-wide association studies), or perform statistical correlation
type analysis between genetic signatures and patient phenotype, network- and
pathway-based approaches of systems pharmacology allow integration of additional
information for a better understanding of the bases of inter-individual variation, and
in conjunction with pharmacogenomics, eventually lead toward the overarching
goal of precision medicine (Turner et al. 2015).

The rest of this chapter is structured as follows: Sect. 2.2 describes current
approaches in network and pathway-based characterization of drugs mechanism of
action, Sect. 2.3 presents latest research work done in systems pharmacology and
polypharmacology toward the identification of new drug targets, Sect. 2.4 provides
an overview of systems pharmacology approaches in drug repositioning, Sect. 2.5
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presents systems pharmacology applications for in silico drug side effect modeling
and prediction. Final section presents current challenges and future considerations
for pathway analysis and systems pharmacology.

2.2 Network- and Pathway/Sub-pathway-Based
Characterization of Drugs Mechanism of Action

Initial efforts deviating from the traditional one drug-one target-one disease para-
digm, and the related search for highly selective ligands that dominated the past
decades, were triggered by the recognition that pharmacological compounds
modulate the activity of targets in complex networks of deregulations underlying
disease phenotypes (Gardner et al. 2003; Ambesi-Impiombato and Di Bernardo
2005; Hopkins 2008; Turner et al. 2015). These observations and the ensuing
endeavor for investigating the compounds mechanisms of action (MoA) were only
possible with the advent of high throughput technologies which started generating
wreaths of data and with the concomitant rise of the new field of systems biology
(Ideker et al. 2001).

The elucidation of mechanisms by which drug compounds affect the deregulated
interactions in disease phenotypes is bound to become an essential part of the
modern drug discovery process. With this comes an increased need for computa-
tional methods to mine large datasets and assist in providing initial hypotheses for
further in vitro and in vivo validation studies. About a decade ago, data resources
originating from genome-wide transcriptional profiles and containing drug response
phenotypes, such as the Connectivity Map (CMap—which contains more than 7000
gene expression profiles obtained in response to treatment with 1309 drug and
drug-like small molecules) became available, followed in recent years by similar
databases, such as the Library of Integrated Network-based Cellular Signatures
project (LINCS) (Lamb et al. 2006; Wang et al. 2016). The use of gene expression
data (transcriptional mRNA profiles, initially obtained from microarray experi-
ments, more recently from RNAseq experiments) in investigating drugs’ MoA has
become norm, as this type of data allows genome-wide investigation of drug
response’ correlation with disease phenotype. Early work successfully characterized
compounds perturbation mechanisms by searching for commonalities in the phe-
notypic responses based on the simple hypothesis that, if two drugs induce similar
transcriptional responses they potentially share a common MoA and a similar
therapeutic application, even if they act on different cellular target (Kibble et al.
2016). This idea was adapted from early investigations in genomic data analysis in
which it was observed that genes with similar expression profiles are more likely to
be involved in common biological processes. Transcriptional response profiles were
initially compared using various methods similar to the Gene Set Enrichment
Analysis (GSEA), based on the Kolmogorov–Smirnov statistic (Subramanian et al.
2005). Briefly, query signature profiles’ similarity to the reference expression
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profiles in the CMap database is assessed. Query profiles are usually sets of genes
differentially expressed between disease and normal conditions, or sets of up-
and/or down-regulated genes. In parallel, genes on the reference CMap arrays (each
one corresponding to experiments in which cells are perturbed using a specific
drug) are rank-ordered according to their differential expression relative to control.
Subsequently, the query signature is compared to every rank-ordered gene list and it
is determined whether up-regulated genes in the query tend to be located near the
top of the list and down-regulated genes are found toward the bottom of the
reference ranked list, or vice versa. The former case denotes a ‘positive connec-
tivity’ and the latter a ‘negative connectivity’ between the query and the respective
perturbation instance (array containing the cells gene expressions in response to the
drug treatment). Connectivity scores are then computed and used to rank all
instances in the database according to their correlation to the query signature. This
approach was used by Lamb et al. (2006) to elucidate the MoA of uncharacterized
drug compounds, such as gedunin. The mechanism through which gedunin is
capable of abrogating the expression of androgen receptor (AR) activation in
prostate cancer was determined by finding high connectivity scores of a gedunin
signature with multiple instances of three heat shock protein 90 inhibitors (HSP90):
geldanamycin, 17-allylamino-geldanamycin, and 17-dimethylamino-geldanamycin
(Lamb et al. 2006). It was therefore inferred that gedunin might impinge upon the
HSP90 pathway, hypothesis which was subsequently validated experimentally.
This hypothesis would not have been warranted by solely studying compounds
structures, as gedunin is structurally dissimilar to known HSP90 inhibitors.

Various other approaches based on ranked lists of differentially expressed genes,
have been used, such as the MANTRA method (Iorio et al. 2010), which adopts a
rank-aggregation procedure to dilute cell-line-specific effects in transcription, as
well as experimental batch effects, or different drug concentrations in different
treatment instances. Iorio et al. (2010) defined pairwise distances between com-
pounds using ‘enrichment scores’ based on the distribution of optimal gene sig-
natures of each compound (extracted as top and bottom 250 genes in their
corresponding ranked lists) within the ranked gene list of the other compound of the
pair and vice versa. These distances were used to build a drug network in which
nodes correspond to compounds and connecting edges reflect the estimated dis-
tances between the compound pairs. This network was subsequently mined via
network clustering to identify communities (or modules) of closely interconnected
compounds. The retrieved drug modules were found to be highly enriched with
common biological pathways and characterized by similar MoAs. The authors have
then proceeded to predict MoA for anticancer drugs with profiles not present in the
reference CMap database, by estimating the distance of their transcriptional profiles
to the drug network modules. Following this framework, PHA-690509,
PHA-793887, and PHA-848125 were correctly classified as CDK inhibitors, dis-
tinct from the other kinase inhibitors in the CMap database, and were also predicted
to have highly similar MoA to Topoisomerase inhibitors. The original method in
(Iorio et al. 2010) was recently extended to filter out spurious effects of compounds’
nonspecific secondary effects on transcriptional profiles. To this goal, they use an
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iterative supervised approach to refine the original drug network module of a
compound of interest while deriving a transcriptional signature representative of the
primary MoA (Iorio et al. 2015).

Some studies have argued that methods based solely on differentially expressed
sets of genes (i.e., transcriptional profiles) may miss essential knowledge on reg-
ulatory influence among genes and their products. Consequently, methods such as
the mode-of-action by network identification (MNI), which incorporates differential
expression of genes with regulatory information encoded in gene networks struc-
tures, have been proposed (Xing and Gardner 2006). In MNI systems of linear
differential equations are used initially to build the gene network model and the
subsequent inference of network parameters is done based on transcriptional pro-
files. Once the canonical gene network is created, it is used to filter test tran-
scriptional profiles from drug treatment experiments in order to distinguish genes
that are mediators of treatment response from the other genes which exhibit
expression changes. This is achieved by searching for genes with changes in their
transcriptional profiles that are not in accordance with the canonical gene network,
under the assumption that such genes are perturbed by the drug treatment.
Significance of the perturbation on these putative molecular targets is quantified
using a z-score scheme. MNI was utilized to identify molecular targets of antifungal
compounds based on genome-wide transcriptional profiles in yeast.

Recently, it was proposed that data from additional sources, such as signaling
and metabolic pathway databases, protein structure databases, compound structure
and drug target databases, as well as DNA sequence or functional non-coding RNA,
may be incorporated in the analysis. This integrative approach has the potential to
enrich the computational model, by making it more biologically plausible, and
enhance its predictive power (see Fig. 2.1). Table 2.1 presents some of the most
commonly used databases containing data and annotations involved in MoA
identification and generally in drug discovery. Within this context, Iskar et al.
(2013) used bi-clustering to identify drug-induced transcriptional modules from
human and rat transcriptional profiles databases [CMap and DrugMatrix (Ganter
et al. 2005)]. The modules conserved across organisms were checked for functional
coherence at protein level using information from the STRING database
(Szklarczyk et al. 2014) and then connected into a module network. The module
network was extensively characterized by annotation with relevant pathways and
functional information from KEGG (Kanehisa et al. 2015), BioCarta (Nishimura
2001) and the Gene Ontology (Gene Ontology Consortium 2013) databases, as well
as drug structure, target, and side effect information from STITCH and SIDER
databases (Szklarczyk et al. 2015; Kuhn et al. 2015). The integrative model thus
defined allowed the authors to discover novel MoAs for six drugs, four with
cell-line-specific mechanism and two with mechanisms conserved in all modules,
using module-based statistical tests and overrepresentation analysis. Specifically,
zaprinast, was suggested to be a novel modulator of the PPARc receptor in the PC3
cell line, the main target of antidiabetic drugs, a hypothesis subsequently validated
with target binding assays experiments. Similarly, nitrendipine was found to be a
modulator of estrogen receptor in MCF7 cells, hexetidine and (+)-chelidonine were
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found and experimentally confirmed to have adrenergic activity. Additionally, the
same study identified novel functions for 10 previously poorly characterized genes
as modulators of cholesterol homeostasis, based on their strong connections within
the transcriptional modules enriched for cholesterol biosynthesis pathways.

Using an approach that attempts to both capture regulatory information encoded
in the interaction network and integrate various levels of information (transcrip-
tional, signaling, and protein-level interactions), Woo et al. (2015), extend the cell
type-specific approach to a tissue-specific one. To this goal they build
lymphoma-specific regulatory networks based on transcriptional profiles on in vivo
and in vitro drug perturbations. Their approach incorporated translational level
information (protein–protein interaction data) and protein–DNA interaction data to
create the contextualized regulatory network. MoAs are characterized by modeling
and quantifying compounds’ dysregulation of network neighborhoods using a
probabilistic framework based on Gaussian kernel smoothing. The approach allows
the authors to mechanistically elucidate MoAs, while accounting for differential
expression of associated nodes (genes or proteins) from a network-based perspec-
tive, rather than a purely statistical one. Their study highlighted key differences in
topoisomerase (TOP) inhibitor compounds doxorubicin, camptothecin, and etopo-
sidine, which all have previously known significant common footprint. The iden-
tified specific effectors were validated experimentally, confirming the approach’s
high specificity. The same method was used to identify novel compound effectors
and modulators for vincristine (a microtubule formation inhibitor in mitotic spin-
dle), mitomycin C, and altretamine (antineoplastic drugs).

A relatively recent trend in pathway analysis, as highlighted in the previous
chapters, is that of sub-pathway-based approaches. Investigating sub-pathways may
be more relevant in interpreting the biological processes, since it is known that,
frequently, only some regions of pathways are dysregulated by disease, or involved
in drug related perturbations. Within this context, Chen et al. (2011) have devised a
method to identify sub-pathways involved in dexamethasone (DEX) response in
human prostate cancer cell lines. Their approach relied on parsing sub-pathways
from the KEGG Pathway database in an exhaustive manner. Sub-pathways were
defined as individual paths from start points to end points in a pathway map. Such
an approach is biologically relevant, as pathway maps in KEGG database are linear
sequences connecting biologically meaningful start nodes (which are commonly
membrane receptors or their ligands) to end points which are commonly tran-
scription factors or their targets. The resulting sub-pathways were overlaid with
transcriptional profile data of a subset of CMap (instances of DEX treated cells). In
order to identify sub-pathways significant for DEX-response, a two-stage approach
was followed, by defining aggregate distances between sub-pathway states pre- and
post-treatment in terms of their contained genes expression levels, and subsequently
identifying through statistical analysis key subsets of genes most perturbed by drug,
and therefore deemed top contributors to the sub-pathway state differentiation.
Based on this, authors were able to assert that the decrease of VEGFR and EGFR
stabilization in order to suppress angiogenesis is a hallmark of DEX-response.
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Pritchard et al. (2013) proposed an innovative analysis pipeline based on
supervised and unsupervised machine learning methods with the goal of achieving
both statistical and biological generalization (predictive accuracy), and at the same
time ensure the ability of their framework to recognize novel MoAs for drugs. To
this goal they define the drug MoAs in terms of subnetworks consisting of drug
nodes and edges representing weighted connections between nodes. The weighted
connections correspond to distances in the molecular signature space. Initial sub-
network membership is based on biochemical and genetic evidence encompassing
three different types of data: mRNA, chemical interaction and RNAi and each
subnetwork corresponds to a drug MoA. The training set corresponds to subnet-
works of known drug MoAs. Given a test set of uncharacterized drugs, predictions
are made based on a k-nearest neighbors method, and putative MoAs are obtained
based on sets of representative features corresponding to subnetworks in the
training set. A prediction may interpolate within an existing subnetwork or
extrapolate to form a new expanded subnetwork. Detection of new MoAs is war-
ranted when a too large expansion of subnetworks is needed. By using a consensus
approach the method identifies new clusters within the training set drugs, based on
their molecular features. Subsequently, unsupervised learning (hierarchical clus-
tering) is utilized to identify optimal topological thresholds for the connecting edges
within the newly derived subnetworks. The procedure enables the detection of more
than mere combinations of existing subnetwork motifs, thus permitting the exten-
sion to MoAs underlying entirely distinct biology. Using this subnetwork-based
signature, authors confirmed MoA subnetworks for HSP90 and EGFR inhibitors
suggested in previous studies. Additionally, they were able to successfully confirm
and expand MoA classes including erastin (a Bax/Bak independent death inducing
compound), mitochondrial disruptors azide and valinomycin and predict mitox-
antrone as a topoisomerase II poison.

A more recent approach which exploits relationships shared between drugs
within a network context is presented in (Napolitano et al. 2016). Namely, the
method extends the GSEA framework to define enrichment scores for pathways
across sets of drugs. It eventually produces ranked lists of drugs highlighting the
potential for dysregulation induced in specific pathways by specific sets of drugs.
The method, termed drug-set enrichment analysis (DSEA) incorporates pathway
information from various related databases to essentially produce a pathway-based
connectivity map. This enabled the authors to formulate hypotheses on the MoAs
shared by drugs. Thus, DSEA was utilized to identify shared pathways by sets of
drugs in five distinct pharmacological classes with known MoA and results were
validated by means of gold standard sets of target genes for each class retrieved
from molecular databases. Additionally, the method was able to infer a putative
MoA for a set of drugs with mild corrective activity in cystic fibrosis, a disorder for
which no therapeutic treatment is currently available. The approach has the
potential for aiding in the characterization of novel drugs with unknown MoA by
simply incorporating related transcriptional profiles into the pipeline.
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2.3 Identification of New Drug Targets
and Polypharmacology Applications

Systems pharmacology approaches for inferring compound MoA have evolved in
the past decade from methods based purely on ranked lists of genes and their
transcriptional response to treatment, to gradually incorporate elaborate network
and pathway context, as well as various other sources of biological information.
The rising interest in understanding compound MoA was accompanied by a
simultaneous strive for identifying novel therapeutic targets based on network
analysis methods, within the greater context of optimizing the drug discovery
process. Computational methods based on network analysis can be used to model
the systemic milieu in which putative therapeutic targets are located and conse-
quently identify targets which increase therapeutic efficacy and reduce adverse
effects. In order to achieve this goal, the complex relationships between the
chemical and genomic factors influencing the interaction between drugs and their
targets must be appropriately accounted for.

From this perspective, the concept of similarity among various biological and
nonbiological entities (such as compound chemical structure, protein sequence,
phenotypic profiles, etc.) is paramount. Similarity is at the base of two important
hypotheses in modern drug discovery, in the sense that chemically and pharma-
cologically similar drugs are targeting similar target proteins (Chen et al. 2012), and
that molecularly and clinically related drugs and diseases are likely to share similar
phenotypes (Vogt et al. 2014). Additionally, in the context of systems pharma-
cology, multifaceted similarity metrics can be used to facilitate the integration of
heterogeneous data. As in the case of approaches used in MoA identification,
networks built for the identification of novel targets have edges representing pro-
tein–protein interactions and transcriptional regulation but may also encode drug–
target or drug–drug interactions. Commonly, edges are defined based on therapeutic
or chemical similarities between two nodes, similarities between proteins sharing
associations with diseases, or similarities of diseases based on the shared number of
genes/proteins (Zhao and Iyengar 2012). This wide range of possible definitions for
network edges, and their underlying similarity metrics, enable networks to model
multiple interaction scales, transcending from atomic and molecular level to the
phenotype level of drug–target interactions.

2.3.1 Target Characterization and Identification Using
Network Properties of Drug Targets

Since an important part in the process of identification of novel drug targets is the
understanding of how signalflow is achievedwithinmolecular pathways, a significant
share of research work in this area has been dedicated to studying network
topology-based relationships and identification of target-related motifs. Additionally,
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concepts such as network paths are important for establishing relations between nodes
and network topologies, and formulate biologically relevant constraints in modeling
drug perturbation (e.g., start nodes on a path must be receptors, intermediate nodes be
specific types of intracellular proteins and end nodes must be transcriptional factors).
Such methods rely on interaction networks built from protein–protein data on which
drug-related data is overlaid, or on bipartite or multipartite networks used to model
drug–target and drug–drug interactions (Yildirim et al. 2007; Yamanishi et al. 2008;
Li et al. 2015). Early work focused on formulating network topology criteria which
define existing drug targets and, based on these criteria, elaborate methods that would
allow the identification of novel targets from the network (Yildirim et al. 2007;
Ma’ayan et al. 2007; Yamanishi et al. 2008; Hwang et al. 2008; Nacher and Schwarz
2008; Berger and Iyengar 2009). Yildirim et al. (2007) used a bipartite network based
on two projections: in the first, nodes denote drugs which have connecting edges if
they share a common target, while in the second projection nodes denote protein
targets which are connected if they share a common drug. The analyses of these
networks revealed that drug targets tend to have a higher degree (number of con-
necting edges) than other nodes, and therefore are implicated in more cellular inter-
actions. Additionally, they observed that most new drugs are associated with
previously targeted network neighborhoods. Ma’ayan et al. (2007) used a bipartite
network connecting drugs and drug targets, overlaid on protein–protein interaction
data to show that drug target proteins are primarily located in the cellular membrane.
Another important observation derived from the topology-based studies is that net-
work centrality or node degree measures should not be the sole factors for the
detection of new target proteins. Although such measures indicate essentiality of
respective protein nodes, perturbation induced by drug treatment on the respective
protein targets could induce significant undesired effects on the downstream cellular
processes. Hwang et al. (2008) instead proposed targeting proteins which are bridging
nodes with less regulatory effects on pathways (fewer interacting connections), but
located in network positions where their disruptions would result in information flow
prevention.

More recently, Mitsopoulos et al. (2015) identified sets of topological and
community properties characterizing druggability of target protein nodes and
neighborhoods and highlighted differences between cancer and non-cancer drugs.
To this goal they used protein–protein interaction data enriched with drug-target
information and built sets of predictors based on the network topology descriptors.
Machine learning methods such as random forests, gradient boosted machines, and
generalized linear models were then utilized to computationally validate their drug–
target interaction predictions. In Li et al. (2015) authors define a computational
framework based on the guilt by association principle and network topology fea-
tures, which allows them to identify a large number of potential drug targets, among
which some are associated with diseases such as the Torg-Winchester syndrome
and rhabdomyosarcoma. Under the guilt by association assumption, a target protein
and a drug are likely to interact if the majority of the protein’s neighbors (which
share direct interactions with the target protein) in the network can interact with the
drug. The authors use a predictive model based on the random forest algorithm and
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feature sets consisting from node and edge weights in a bipartite network model
(containing protein–protein, drug–target and drug–drug interactions).

2.3.2 Identification of Drug Targets Based on Integrative
Network Approaches

The task of identifying drug targets from genome-wide data can be helped by the
integration of additional data such as drug chemical structure, target protein
sequences, known drug–target interactions, or information about drugs’ side effects.
As in the case of MoA characterization, the incorporation of such complementary
data can help in adding more biologically plausible context to the models, reduce
bias induced by incomplete information and enhance the search space for the
computational algorithms deriving the predictive models.

Campillos et al. (2008) proposed a method incorporating information on drugs’
side effects from drug package inserts into a drug–target network in order to define
a phenotype-based similarity metric. The side effect similarity metric was combined
with a 2D chemical similarity metric based on the Tanimoto coefficient into a
probabilistic framework under which to infer the probability of two drugs inter-
acting with the same target. The method was used to derive new targets for existing
drugs, and the authors validated using in vitro assays 13 drug–target interactions
predicted by their method. However, the main limitation of such an approach was
that it could only be used on marketed drugs for which side effect information was
available.

Based on the same experimentally validated assumption that similar drugs
interact with similar target proteins, Chen et al. (2012) integrated a composed drug–
drug similarity metric based on drug chemical structure similarity and targets
known to be shared by pairs of drugs, a target–target similarity metric based on
protein sequence similarity, and a known drug–target interaction network. The
authors then implemented a random walk with restart on the resulting bipartite
drug–target network to predict potential drug–target interactions. Thus, a target can
be predicted even if the investigated drug has no known targets, based on similar
drugs and their known targets. The random walk was implemented using transition
matrices from target network to drug network and inter-transition matrices indi-
cating the probability of walks from drug to drug (or target to target). Based on this,
a probability of finding the walker at node i at step t + 1 based on the position at
node j at step t can be determined iteratively. The approach was used to predict drug
target interactions for four classes of datasets (enzymes, ion channels, G protein
coupled receptors and nuclear receptors). Results were validated using gold stan-
dard datasets from public databases.

Cheng et al. (2012) combined three supervised inference models to predict drug–
target interactions. Namely, the network-based inference (NBI) relying on drug–
target bipartite network topological similarity was used in conjunction with a
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drug based similarity inference (DBSI), which relies on 2D chemical similarity
between drugs and drug–target interaction information, and a target-based similarity
inference (TBSI), relying on target sequence similarity and drug–target interaction
information, to predict associations between drug–target pairs. DBSI and TBSI
incorporated information from the chemical and genomics space, respectively,
while NBI was based solely on network topology features. The authors highlighted
the performance of NBI inference, superior to the other inference methods. The
predicted targets were validated using in vitro binding assays. The approach indi-
cated polypharmacological effects on five drugs (montelukast, diclofenac, simvas-
tatin, ketoconazole, and itraconazole) and suggested repositioning potential of these
drugs, which was further validated experimentally.

An interesting approach has been recently proposed by Isik et al. (2015), which
investigated the transcriptome perturbations in conjunction with functional inter-
action network information to reveal effects induced by drugs binding to their
targets. They derive a new measure for target prioritization, termed local radiality,
which is able to identify more diverse targets, with fewer neighbors, and conse-
quently, possibly fewer side effects. They validate the results based on ROC
analysis using test datasets from other approaches.

A large number of other network-based and machine learning-based methods
have been developed recently, most of them following broadly the same paradigm,
as shown in Fig. 2.2: enrich existing networks of known drug–target interactions
with information from chemical and/or genomics spaces and learn various

Fig. 2.2 Schematic of target identification approaches in systems pharmacology
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supervised or semi-supervised models in order to predict novel interactions. For
example Yamanishi et al. (2008) used a kernel regression method to learn chemical
and genomic space models and demonstrate correlation with pharmacological
space. Yuan et al. (2016) used a similarity approach based on ensemble learning
methods to incorporate chemical and genomic space similarity as components into
ensembles of learning to rank, while Yamanishi et al. (2014) created a web based
engine (DINIES) using supervised learning and relying on similarity matrix kernels
(learned from drug, side effects and protein domains) to predict interactions on test
sets. Another recently developed web-based tool is TarPred (Liu et al. 2015), which
besides predicting targets is also able to provide disease indications and predict side
effects.

2.3.3 Network-Based Polypharmacology

It is often the case that methods developed for predicting new drug target inter-
actions naturally yield combinations of potential targets (often protein complexes or
whole sub-pathways), which naturally classifies them as polypharmacology
approaches. Polypharmacology accounts for the important and increasingly
accepted concepts that (i) complex diseases tend to be associated with multiple
target proteins, and (ii) drugs commonly work by targeting several off-targets,
besides the primary target (Xie et al. 2012). Accounting for the polypharmacology
properties of drugs has the potential of increasing drug efficacy and overcoming
drug resistance and toxicity, thus, the approaches capable of developing multiple
target drugs, as well as research in drug combination based on network approaches
have received increased attention recently.

An example is the method developed by Yang et al. (2008), which developed a
computational framework for inferring multiple targets and suggest optimal com-
binations of target intervention. Their method, named multiple target optimal
intervention (MTOI), searches systematically for effective points of intervention in
a disease-based network to restore it to a desired normal state. MTOI relies on a
procedure for perturbing the disease network and optimize it toward the desired
state based on a Monte Carlo simulated annealing optimization algorithm (MCSA).
The disease network is defined as a collection of concentrations of proteins and/or
metabolites, or other relevant temporal-based information. Such a network is usu-
ally obtained from experimental data on patients or cells in abnormal/disease
condition. The desired network is defined as the physiological steady state network.
The information and related perturbations are modeled using differential equations
and MCSA. The authors applied it to an inflammation based network, the arachi-
donic acid metabolic network, and derived a combinatorial intervention based on
anti-inflammatory drugs.

Other network based polypharmacology studies include that of Cheng et al.
(2012b), which extended their previous method (Cheng et al. 2012a) and proposed
two different weighted network-based inference methods using four similarity
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metrics for predicting multiple chemical–protein interaction. Under this framework
they investigated the polypharmacology of five approved drugs: imatinib, dasatinib,
sertindole, olanzapine, and ziprasidone. Zhao et al. (2013) used a composite net-
work built from protein–protein interactions and gene regulatory databases onto
which Gene Ontology and side effect information was overlaid. Drug–drug pairs,
for which the addition of a pair member was reported to result in reduced side
effects of the other drug, were exhaustively searched for. Random walk was then
used to determine interaction subnetworks between drug pairs, in order to identify
nodes that would be preferentially affected by specific interactome perturbations.
Following this approach the authors were able to predict drugs which combined
with rosiglitazone (an efficacious antidiabetic drug associated with increased
myocardial infarction), would mitigate its myocardial infarction risk. Additionally,
they predicted that the mitigating effect of exenatide in conjunction with rosigli-
tazone could occur through clotting regulation. Additional polypharmacology-
related approaches are presented extensively in review studies (Reddy and Zhang
2013; Medina-Franco et al. 2013).

It must be noted at this point that usually there are significant overlapping areas
between approaches attempting drug–target interaction prediction,
polypharmacology-related methods and methods having as goal repositioning
strategies for existing drugs. It is often the case that, due to the limited available
resources on drugs, target-identification methods are restricted to predict alternate
targets for drugs with already known targets, which is essentially a drug reposi-
tioning approach. This is the case with methods developed in Campillos et al.
(2008) and Cheng et al. (2012a) described above. The same stands for studies
investigating drugs MoA, which commonly have as byproduct multiple
genes/proteins, often representing entire sub-pathways identified as target of a
specific drug (Iskar et al. 2013; Chen et al. 2011), which could be seen as
polypharmacology studies. In turn, the search for polypharmacological features
naturally leads to new uses for combinations of known drugs, thus providing
support in drug repositioning (Chen et al. 2015).

2.4 Network-Based Drug Repositioning

Drug repositioning research has gained significant momentum in recent years due to
the pressing needs to reduce costs of developed drugs while increasing efficacy, but
also due to large-scale funding programs launched by governmental organizations,
such as the National Center for Advancing Translational Sciences and FDA in US,
and the Medical Research Council in UK (Li et al. 2016). Drug repositioning is
inherently linked to a better understanding of the molecular context underlying
specific phenotypes and of the mechanisms of action of drugs, which are additional
reasons for drug repositioning approaches to be flourishing with the advent of
systems pharmacology.
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A ubiquitous feature in network-based drug repositioning is the presence of a
disease-related component, since finding associations between drugs and protein
targets in a disease context, is the modus operandi in such studies (Wu et al. 2013).
Therefore, three level drug–target–disease networks are a common occurrence in
modern drug repositioning research. Effective network-based approaches typically
aim at accurately modeling the cause-effect paradigm which is dominating the
current view on disease etiology and drug mechanisms of action: disease originates
from abnormalities of one or more (usually genetic) factors and the observed
phenotypes are the effect of disease development. Similarly, drug action originates
from the drug–target binding and the terminal effect of the drug intake are the drug
indications and side effects, which can be seen as drug phenotypes. Along these
cause-effect paths, molecular activities induced by drugs and diseases may be
observed using high throughput transcriptional and proteomic data, which can be
viewed as snapshots of the disease development stages or of drug activity, and
consequently be used to model drug–disease associations (Li et al. 2016). From this
perspective drug repositioning studies can be categorized as being molecular profile
based or phenotype profile based.

2.4.1 Drug Repositioning Based on Molecular Profiles

Generally, drug repositioning approaches based on molecular profiles of drugs
and/or diseases rely on the so-called reversed signature hypothesis: if the molecular
profile of a drug is opposite to that of the disease, then the drug has the potential to
be used in treating that disease (Wu et al. 2013; Li et al. 2016). Work in this area
typically follows the now standard procedure in systems pharmacology: first con-
struct a background interaction network from protein–protein interaction databases,
pathway databases, protein–DNA interaction databases, and/or other interaction
resource available. Then contextualize the initial network, for example by adding
weights to the edges leveraging gene expression data from sources such as CMap,
LINCS, or GEO, or enriched with data from various other sources (GO, KEGG,
etc.). Subsequently, various computational models and algorithms can be used to
extract parts of the contextualized networks (response subnetworks or
sub-pathways) which maximize the biological relevance related to disease–drug
associations (Fig. 2.3).

Following such an approach, Jin et al. (2012) created their interaction network
from signaling pathways in PID and BioCarta databases, onto which they overlaid
transcriptional data from CMap and subsequently searched for network motifs
(sub-pathways) involved in response to cancer drug treatment. These sub-pathways
are connecting the disease genes (retrieved from OMIM) to known signaling pro-
teins. They used Bayesian factor regression to uncover such driver sub-pathways
bridging drug targets to the disease response signatures. The driver sub-pathways
and the drug’s effects on them were found simultaneously. The effect of drugs on
each sub-pathway was quantified and summarized into drug–disease signature
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profiles. Then, ranked repositioning profiles for each of the drugs were created and
repositioning potential derived accordingly, using support vector regression.
Several high ranking drugs from their analysis were suggested for repositioning in
cancer therapy based on the ability to enforce retinoblastoma-dependent repression
of important E2F-dependent cell-cycle genes (Jin et al. 2012). Additionally, their
method was able to accurately predict responses to more than 90% of the FDA
approved drugs and 75% of experimental drugs.

In another study, Gottlieb et al. (2011) utilized multiple heterogeneous sources
of evidence which were integrated into a protein–protein interaction network: drug
targets, drug side effects, protein sequence and GO annotations, expression profiles
and disease phenotype data. They defined several profile-based similarity measures
for drugs and diseases: chemical structure based, protein and genetic sequence
based, phenotype based, side effect based, network topology based and GO
annotation based. The similarities measures were subsequently combined into
association scores and used as features for a logistic regression classifier to identify
novel drug indications.

Lee et al. (2012) constructed a tripartite drug–protein–disease network based on
a large integrative database incorporating drug targets, disease-associated proteins,
protein interaction, and pathway data. To explore drug–disease associations within
the network they used an in-house algorithm called shared neighborhood scoring.
This algorithm allowed them to predict drug–disease pairs based on the guilt by
association principle that unlinked pairs which share significant numbers of
neighbors with strong relationships between them could be confidently linked. They

Fig. 2.3 Typical drug repositioning workflow
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used this approach to suggest as repositioning candidate for lung cancer treatment
the high blood pressure drug benzthiazide.

Zhao and Li (2012) also used a drug–protein–disease network and developed a
Bayesian partition method to retrieve drug–protein–disease modules which were
closely connected. The authors started from a comprehensive protein–protein
interaction network assembled by integrating data from several databases.
Subsequently, information from disease–genes relations from OMIM and drug–
target interactions from DrugBank were mapped onto the protein–protein interac-
tion network. Then, gene–drug paths were computed to reflect the network distance
between a gene and each drug’s targets. Similarly, gene–disease closeness was
estimated to reflect the network distance between a gene and each disease-related
genes. Based on these network distances drug-gene-disease modules were identified
using a Bayesian partition method. The approach was used to infer drug–disease
associations, and suggest new drug applications for anti-asthma drug pranlukast
(repositioned for treating cancer metastasis) and cardiovascular stress-testing agent
arbutamine (repositioned for treatment of obesity).

Based on the same strategy of searching for closely connected modules (whose
members are more likely to be functionally related) within drug–protein–disease
networks, Daminelli et al. (2012) implemented a method that searches the network
for bi-cliques motifs. In their case bi-cliques are subnetworks in which every drug is
linked to every target and disease. They initially built large bipartite networks from
various public databases in which drugs, targets, and diseases are linked by drug–
target associations and drug-disease associations. Subsequently, network analysis
based on power graphs was employed to search for incomplete cliques in the
network. Bi-cliques connected by common drugs are thus identified from the
bipartite network. Consequently, resulting incomplete bi-cliques’ completion is
used to predict novel links from drugs to targets and diseases, respectively, thus
allowing the authors to simultaneously suggest reposition for drugs and predict a
drug’s off-targets. The approach allowed the authors to suggest and computationally
validate repositioning for nine cardiovascular drugs for treating parasitic diseases.

Other approaches on drug repositioning based on molecular profiles are those of
Iorio et al. (2010) who, as presented in Sect. 2.2, built a drug–drug network in
which drug nodes were linked based on similarity measures derived from ranked
gene lists. Their work, developed primarily for MoA discovery, suggested that
fasudil, a vasodilator used in stroke, would be effective in treatment of autophagy,
which is a major process in cancer. Another work based on molecular profiles and
which links MoA to drug repositioning is that of Iskar et al. (2013), also described
in Sect. 2.2 above, which identified conserved drug-induced modules from tran-
scriptional profile data and enriched the modules with information from various
other databases. Module membership was then used to induce novel indications for
existing drugs, predictions which were further validated experimentally.
Vasodilator vinburnine, topical antifungal sulconazole, and cardiac stimulant
mephentermine were all suggested as candidates as cell-cycle inhibitors in anti-
cancer therapy.
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In a very recent work Guney et al. (2016), propose an innovative approach
which transcends the drug repositioning area, having possible applications also in
drug MoA elucidation as well as drug-target identification areas. The authors
introduce the concept of drug–disease proximity based on shortest paths between
target and disease associated genes within the interactome. They argue that prox-
imity to disease small neighborhoods is a good proxy for describing therapeutic
effect and improve the accuracy of drug repositioning predictions. Following this
approach they explain why HIV drug plerixafor is repurposed for non-Hodgkin’
lymphoma and provide potential repositioning candidates for rare diseases.

A recent trend is the use of noncoding RNAs, such as miRNA, as therapeutic
agents due to their regulation of cellular processes implicated in disease. As a
consequence, drug repositioning strategies considering miRNAs are also attracting
significant interest. Liu et al. (2014), devised an approach for identifying reposi-
tioning candidates for cystic fibrosis based on miRNA-transcription factors feed
forward loops. The loops are essentially motifs in a regulatory network with con-
nectivity patterns occurring more frequently than in control networks, and therefore
could be seen as response subnetworks. Using GEO expression data, gene-miRNA
relationship data, protein interaction, and drug-miRNA interaction data as well as
disease-related gene data from public databases, they built regulatory networks
which were searched for feed forward loops implicated in cystic fibrosis. They
found 48 drugs showing ability to perturb the expression of miRNAs which are part
of loops implicated in cystic fibrosis, and which were suggested for repositioning.
Similarly, Jiang et al. (2012) have developed a method that searches for modules in
a drug-miRNA human cancer network built from CMap data, miRNA target gene
databases and enriched with GO annotations. Using hypergeometric tests on the
retrieved modules they suggested that 2-deoxy-D-glucose (2DOG) is a candidate
for treating thyroid cancers.

2.4.2 Drug Repositioning Based on Phenotypic Profiles

Drug repositioning approaches based on phenotypic profiles typically rely on the
principle that, if a drug shares similar side effect profile with a set of drugs pre-
scribed to treat a specific disease, then the respective drug can be considered as a
candidate for treating that disease (Wu et al. 2013). Since drug side effects are
usually generated when drugs bind to off-targets (known or unknown), and hence
perturb metabolic or signaling pathways, it is expected that the side effect profile of
drugs may reveal relevant unknown information pertaining their MoA, and hence
assist in repositioning.

One of the first works following this principle was that of Campillos et al. (2008)
which, as already described in Sect. 2.3.2 used a side effect similarity profile
incorporated into a drug–target network to infer probability of two drugs sharing the
same target. Based on this, authors identified phenotypic associations between
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nootropic drug donepezil and antidepressant venlafaxine and suggested a new
market use for donepexil in treating depression.

In another work, Yang and Agarwal (2011) used a disease–side effect network
by combining drug-disease associations with drug–side effect associations from
PharmGKB and SIDER databases, respectively. Subsequently, they used Naïve
Bayes predictors trained on relations between side effect and disease for predicting
new indications for drugs. Following this approach they predicted that drugs
associated with increased immune response, such as ticlopidine and ACE inhibitors
are potential candidates for treating stroke. Ye et al. (2014) used a side effect-based
similarity measure to connect drugs into a drug–drug network and searched for
subnetwork neighborhoods enriched with drugs having a specific therapeutic
indication. They used the guilt by association approach to assign a new indication to
drugs present in the same subnetwork. They suggested a number of candidate drugs
for repositioning, among which the analgesic drug tramadol and Parkinson’s drug
tolcapone in treating depression.

One of the problems related to guilt by association approaches is that they often
enforce restrictions on the search space by only considering most similar drug,
discarding possible useful information embedded in the whole dataset. Bisgin et al.
(2014) used the assumption that all phenotypes in the phenome (both drug indi-
cations and side effect) are interconnected with a probabilistic distribution and used
a probabilistic generative model for their analysis. They used a Bayesian based
model, the Latent Dirichlet Allocation (LDA) to uncover links between drugs and
phenotypes, which are actually novel indications. Links are encoded into condi-
tional probabilities. Although their method does not explicitly make use of bio-
logical networks, the LDA model they chose can be represented as a tripartite
network constructing paths from drugs to phenotypes via connections across latent
variables. They suggested new treatment options for all 908 drugs in their study,
among which some were confirmed by literature validation, e.g., influenza A drug
amantadine’s use for treating epilepsy.

Finally, we must note the development in the recent years of several web servers
and open-source packages for the specific goal of drug repositioning, which inte-
grate resources covering both molecular profile and phenotype-based approaches.
With some variations, they all rely on the integration of heterogeneous data sources
to build the interactome network, and incorporate some of the previously published
similarity measures. Among the most popular are the PROMISCUOUS (Van
Eichborn et al. 2011), DRAR-CPI (Luo et al. 2011), DMAP (Huang et al. 2015) and
ksRepo (Brown et al. 2016). PROMISCUOUS integrates relations between drugs,
targets, and side effects and uses drug structural similarity and side effect similarity
measures. It allows users to search by single drug ID queries or perform
network-based exploration given a set of drugs and targets. DRAR-CPI only uses
chemical structure in the chemical-protein interactome to predict network based
drug–drug associations and produce lists of drugs which share similar interaction
profiles and side effect information with the query drug. DMAP combines both
chemical-protein interactome, protein–protein interactions, transcriptional profiles,
and phenotype data (disease indications) to build a directional weighted interactome
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network. They use already published gene similarity (Iorio et al. 2010) and drug
similarity measures to derive a guilt by association model based on the
Kolmogorov–Smirnov enrichment (Lamb et al. 2006) to predict novel indications
for drugs. ksRepo is a recent open-source software package implemented in R
which proposes a generalized methodology enabling integration of transcriptional
profiles from various platforms (including RNA-seq). Their method is based on
disease transcriptional profiles and gene–drug interactions (available from any user
desired source). They implement a variant of the Kolmogorov–Smirnov enrichment
to compare single instances (disease transcriptional profile) with multiple drug–
gene interaction lists and then derive scores which reflect disease–drug associations
based on the transcriptional profiles.

2.5 Network-Based Side Effect Modeling and Prediction

Drug side effects are among the most important factors to be considered in drug
design. Recent studies estimated side effects to be the major reason for drug dis-
continuation in first phase clinical trials and second most common cause of drug
attrition overall (Hornberg et al. 2014). Therefore, computational approaches for in
silico prediction of side effects are highly relevant, and currently under consider-
ation by the pharmaceutical industry in their effort to complement the high
throughput in vitro screening of newly developed drugs (Bowes et al. 2012).

Side effects are the result of promiscuous binding behavior of the majority of
drugs, which in addition to their primary targets can interact with different affinities
with many off-targets (Paolini et al. 2006). This way they potentially perturb many
signaling and metabolic pathways eliciting both therapeutic effects and unwanted
physiological responses. These signaling and metabolic pathways are often partially
overlapping, thus producing synergistic or canceling consequences. Currently, there
are several important observations and hypotheses which guide research in this
area: different drugs can share similar side effect profiles as a result of sharing
similar toxicological pathways or networks, which is an extension of the obser-
vation that the result of drug on-target and off-target binding behavior is a per-
turbation that is relayed downstream to partially overlapping (cross-talking)
pathways (Bai and Abernethy 2013). This is related also to the principle which
states that if a drug shares similar side effect profile with a set of drugs prescribed to
treat a specific disease, then the respective drug can be considered as a candidate for
treating that disease (Wu et al. 2013). The recent observation that network neigh-
borhood of drug targets is a major determinant of side effect similarity profiles of
drugs comes as a corollary to the previously enounced principles (Browers et al.
2011). Consequently, the development of in silico methods for side effect prediction
is significantly benefiting from the increased interest in the area of drug–target
prediction.

The computational approaches based on network analysis aiming at predicting
drug side effects and modeling their generation mechanisms can be broadly
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categorized as being chemical-based and pathway-based. Both types of approaches
heavily use the two important concepts in network modeling: that of network
neighborhood (which define areas of the network with inter-related and coherent
functional properties), and that of similarity (which is defined on various chemical,
genomic or ontology features to reflect proximity between network nodes or
neighborhoods).

2.5.1 Approaches Based on Chemical Structure

Chemical-based approaches generally attempt to relate chemical structure of drugs
to their side effects, based on the basic observation that similar ligands interact with
similar proteins. Thus, based on the backbone consisting of drug chemical structure,
protein structure and information on drug–target interactions and incomplete drug–
side effect association, models can be built to predict novel drug–side effect asso-
ciations. Some examples include the work of Schreiber et al. (2009) which
developed a method integrating various sources on chemical substructures and
information on side effects to find large-scale structure–side effect associations. In
their network they linked side effects based on correlations between drug chemical
features. Their aim was not a mechanistic understanding of side effect causes but
rather drawing a global picture of how different types of side effects may be linked,
with the goal of defining possible filters for screening drug compound candidates.
Similarly, Pauwels et al. (2011) used sparse canonical correlation analysis (SCCA)
to predict side effects and associate them with correlated ensembles formed by
chemical substructures. Yamanishi et al. (2010) proposed a unified framework,
based on the integration of chemical, genomic, and pharmacological data (and the
related similarity measures) with the topology of drug–target interaction networks.
Within the framework of supervised bipartite network inference, using a regression
approach, they were able to predict the side effect profiles of candidate drug
compounds, as well as interpret drug–target interactions. In a subsequent study,
they suggested several extensions to the kernel regression model for multiple
responses in order to optimally integrate the heterogeneous data sources (Yamanishi
et al. 2012). Based on this approach they were able to predict rare side effects for
molecules in DrugBank with no available information in SIDER, such as ovarian
cyst, breast tenderness, and melisma for synthetic progestational hormone drug
lovonorgestrel, which were further validated based on literature.

Mizutani et al. (2012) used the co-occurrence of drugs in protein-binding profiles
and side effect profiles to extract correlated sets of drug targets and side effects,
using SCCA. They used a drug–target interaction network and enrichment analysis,
using KEGG and GO data, to show that the retrieved correlated sets were signifi-
cantly enriched in the same biological pathways, despite having different molecular
functions. A biologically relevant interpretation of their results suggests that
extracted side effects can be seen as possible phenotypic outcomes of drugs tar-
geting proteins that appear in the same correlated set (i.e., having similar
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structures), thus reinforcing the principle mentioned in the previous paragraphs
which states that target neighborhood is a predetermining factor for side effects
similarity. Their side effect predictions include tremor, constipation, and dry mouth
for antihistaminic drug cinnarizine, all of which were confirmed by literature of
FDA reports.

Atias and Sharan (2011) combined the SCCA with a diffusion model based on
side effect similarity networks. Their approach uses SCCA to project correlated
structure-side effect data into a lower dimensional space. This projection is then
used to predict side effects. Subsequently, using a query drug and a diffusion model
on side effect similarity networks they obtain ranked list of side effects. Their
validation scheme was based on a large-scale blind test based on 448 drugs from the
Hazardous Substances Data Bank. The approach was able to predict correct side
effects in the top 5 ranked predictions for >56% of the drugs in the database.

Lounkine et al. (2012) first used a chemical structure similarity metric, named
the similarity ensemble approach (SEA), to predict targets among a set of proteins
and subsequently develop a guilt by association metric that links the new targets to
the side effects of the related drugs, virtually creating a drug–target–side effect
network. For predicting drug target–side effect association they used an enrichment
score based on co-occurrence of pairs that were more common than expected by
chance, coupled with a statistically significant threshold. Based on this approach,
authors predicted epigastralgia as side effect associated with chlorotrianisene, a
synthetic non-steroidal estrogen. Interestingly, the off-target protein for this drug,
predicted by authors, COX1, bears no sequence or structural similarity with the
drug’s primary target (the estrogen nuclear hormone receptor) but cross-activity
between the targets is suggested by ligand similarity.

In a recent study, Wang et al. (2016) depart from the target-based approach that
currently dominates the drug side effect prediction field. Their approach aims at
avoiding the bias induced in the analysis by the incomplete knowledge on drug
targets by combining chemical structure information with transcriptional profiles
from LINCS database. They use feature sets created from signature transcriptional
profiles for each drug instance, cell morphological profiles, drug chemical structure,
and enrichment analysis to train a machine learning classifier based on extra trees.
The most predictive classifiers are then used to shed light on the mechanisms of side
effects.

Interesting insights into the factors contributing to drug side effect resulted from
the approach presented in Wang et al. (2013), where authors use a structurally
resolved interaction network to systematically examine relationships between drug
associated side effects and drug targets. They use a generalized linear regression
model and show that it is the number of essential targets (proteins which are critical
for cellular survival), and not the total number of targets, that determines the side
effects of drugs. Additionally, they highlight several key network topology char-
acteristics of drug targets that are highly correlated with increased side effects
profiles. They noted that high node degree (number of interactions for a target) and
betweenness (the number of shortest paths between other proteins in the network
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passing through the target protein), as well as highly shared interaction profiles are
more likely to result in an increase in the number of side effects.

2.5.2 Approaches Based on Pathways/Sub-pathways

Pathway-based approaches relate drug side effects to perturbed biological pathways
or sub-pathways which contain drug target proteins. Consequently, they train
models on the molecular interaction networks built from various data sources (such
as drug–target interactions, gene/protein–disease—drug–side effect connections, or
drug–drug interactions) in order to predict side effects for unknown drug–side effect
associations based on underlying network motifs. The models thus derived are able
to provide mechanistic insights into the side effect generation process.

Lee et al. (2011) used an enrichment score to define drug-biological process
associations based on CMap transcriptional profiles and GO ontologies and sub-
sequently built multilevel biological process–drug–side effect network to discover
relationships between biological processes and side effects, using drug information
as a bridge. For this purpose they employed a co-occurrence-based scoring
accounting for how many drugs shared the same side effect in a specific biological
process. Bauer-Mehren et al. (2012) use a two-step framework for biological
annotation of side effects with relevant pathways. They search for drug–target and
target–side effect associations and then compare these associations to derive drug–
side effect links. In a subsequent step they substantiate the found associations using
pathway information from Reactome database.

Li et al. (2012) used a bipartite drug-metabolic sub-pathway network build after
identifying sets of drug-induced differentially expressed genes from CMap and
pathway enrichment analysis. By analyzing drug–sub-pathway associations they
uncovered that drugs share similar indications and side effect if they are associated to
same sub-pathways. Additionally, an increase in the number of sub-pathways shared
by drugs correlates with increased numbers of common side effects. Overall, their
study confirms the idea that important therapeutic and side effect related mechanisms
are relayed through sub-pathways, which are smaller regions of pathways, and may
be overlooked by whole pathway-based methods. In a related study highlighting the
importance of subnetwork-based approaches, Zhao et al. (2013), proposed an
approach for identifying drug combinations to mitigate side effects. To this goal they
used a human interactome network built from protein–protein interaction databases
and then searched for subnetworks enriched with sets of related GO biological
processes annotations. Interactions between drug pairs based on their targets were
searched using a random walk method and correlated with information on their side
effects. As mentioned in Sect. 2.3.3, following this approach they were able to
predict the mitigating effect of exenatide on rosiglitazone’s myocardial infarction
side effect and explain that this could occur through a clotting regulation mechanism.
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Another subnetwork-based approach was followed by Lorberbaum et al. (2015)
which also used an initial interactome network created from protein–protein inter-
actions. Their initial network was pruned based on data from several sources and
biological levels, such as to highlight subnetwork modules with mechanistic con-
nections to phenotypes. Their subnetworks were enriched in putative side effect
mechanistic pathways and, subsequently, drugs were assigned to subnetworks where
their targets were present. Then, subnetworks were used as features in a random
forest-based classifier trained to predict whether a given drug will cause side effects.

A number of other approaches combine pathway-based analysis with informa-
tion related to chemical structure of drugs and their target proteins for a holistic
view on mechanisms generating side effects. Examples include the works in
(Wallach et al. 2010; Fan et al. 2012), which use pathway information and in silico
virtual docking to identify off-targets of drugs and link them to biological pathways.
In (Liu et al. 2012), authors integrate information on drug chemical structure with
pathway information and phenotypic characteristics of drugs including indications
and side effect. They used a machine learning-based approach to build and evaluate
the side effect prediction model. Similarly, Kuang et al. (2014) used a number of
structural features of drugs integrated with network topology features of the drug–
side effect association networks (constructed using correlation based methods) to
build classifiers able to predict side effects.

Recently, Cao et al. (2015) integrated multiple data sources such as chemical
structure, sequence, transcriptional profiles, ontology and pathways and defined
multiple similarity measures based on these data types. Additionally, network
topology-based similarity measures were defined, including nearest neighbor and
path-based measures, using a drug–side effect network. Classification features were
constructed from these similarity measures based on collaborative filtering, and a
multiple evidence fusion algorithm was used for creating a multiscale predictor for
side effects.

As in the case of the other application areas of systems pharmacology, a number
of web servers were created for enabling the prediction of drug’s side effects. The
most popular among these are: IntSide (Juan-Blanco et al. 2015), which is a hybrid
approach incorporating both structural and pathway information to provide mech-
anistic insights into drug–side effect associations. Dr. Prodis is a structure-based
tool which implements several structure-pocket and structure–structure comparison
procedures. Besides predicting drug side effects, it produces also drug–target
interaction predictions, as well as associations between drugs and diseases
(Zhou et al. 2015).

2.6 Current Challenges and Future Considerations

Despite the great promise, systems pharmacology approaches face a number of
challenges while scaling from pre-clinical setting into clinical applications. A major
hurdle is the bias caused by incomplete knowledge. For example, network-based
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models tend to bias to the targets with more known associated drugs, and even if
current studies, such as the one in Wang et al. (2016) attempt to balance their
models by incorporating sources of evidence from different biological levels, such
as chemical structure, lack of adequate high resolution structural data for targets
may induce further problems. However, recent progress in both experimental and
computational methods in the area of structural genomics holds the promise to
significantly improve the structural coverage. Another limitation of almost all
network-based approaches, especially those relying on searching paths across the
network is that they cannot provide predictions (e.g., for drug–target pairs) when
missing information hampers the identification of reachable paths in the network.
Network-based methods need to adequately address these aspects in the future.

Another important issue is that of the amounts of data at multiple scales needed
to build accurate predictive models in the context complex disease heterogeneity.
And whether the incorporation of such specialized data will still produce models
with decent generalization performance, given for example an individual with
unobserved new mutation. Current approaches treat insufficiently the problem of
inter-subject genetic variability, which is a crucial step toward the goal of precision
medicine. Among the other challenges worth mentioning are the lack of structured
gold standard, especially in the applications related to drug repositioning and side
effect prediction. Ideally, in silico experimental results should be integrated into the
drug design validation pipeline and tested in binding experiments, cellular assays or
animal models for not only providing filters for initial candidate lists, but also
retrieving false positives that could be further used to refine the algorithms. While
in the case of drug-target prediction and MoA characterization, the results provided
by predictive models can be easily tested experimentally, for drug repositioning and
side effect prediction it is often the case that genomic responses in animal models
vary significantly when compared to human models. Therefore, additional care
must be taken for thorough training and testing of the predictive models. From this
perspective, the availability of extensive secondary use data from patients electronic
health records, presents researchers valuable resources for performing ‘retrospec-
tive’ experiments on human subjects in clinical settings (Lorberbaum et al. 2016).

Another aspect is that, despite the increased predictive power generated by the
incorporation of multiscale heterogeneous data into the network and statistical
models, there still is the question of how relevant it is to discover new knowledge
from static statistical models, under conditions that are constantly changing. Under
drug treatment, a disease state is not static, but evolves through successive states
while responding to the drug-induced perturbations. When sufficient data are col-
lected to successfully build a model describing one disease state, the disease may
already be in a different state from the one used to build the model. In such a
dynamic situation, a data-driven model is essentially retrospective and not
prospective (Xie et al. 2014). Presently, very few methods that offer dynamic
resolution are used in systems pharmacology. One such approach is that of (Bansal
et al. 2006) where an algorithm called Time Series Network Analysis (TSNI) was
proposed to infer targets of antibiotic norfloxacin based on time series transcrip-
tional profiles experimental data. As more time course experimental data is bound
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to be produced, dynamic methods such as CHRONOS (Vrahatis et al. 2016a),
described in Chap. 3 could become prevalent. CHRONOS can be easily tailored to
provide a framework for studying sub-pathways activated by drugs, or other ther-
apeutic molecules, at specific drug treatment stages. Additionally, such an approach
could be adapted to identify sub-pathways perturbed during disease progression and
optimal time points for drug treatment could be inferred.

The evolution of network and pathway-based approaches used in systems
pharmacology has followed a journey starting with methods based on overrepre-
sentation, or enrichment analysis, which use statistical tests to find sets of genes in a
particular pathway among the (usually differentially expressed) genes under study
(Khatri et al. 2012). A second generation of approaches uses gene-level statistics
(e.g., identifying individual differentially expressed genes) and then aggregating the
gene-level statistics of all genes in a pathway into a pathway-level statistic or score,
such as the Kolmogorov–Smirnov statistic (Lamb et al. 2006; Iorio et al. 2010,
2015). The third generation of methods are topology based, thus allowing the
incorporation of information from various sources, beyond simple lists of genes
(Pan et al. 2014; Wallach et al. 2010; Fan et al. 2012). We believe the trend in
recent publications, which consider small regions of pathways (sub-pathways) with
specific topological features and which are activated by perturbations cause by
disease or drug treatment, is likely to follow and further expand. The development
of robust sub-pathway-based approaches able to provide useful insights into time-
and condition-specific activated sub-pathways (CHRONOS), and assist in identi-
fying disease perturbed sub-pathways [DEsubs (Vrahatis et al. 2016b), described in
Chap. 4] is therefore of utmost importance for future studies in systems
pharmacology.
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