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Preface

Drug design is a complex and resource-demanding process, hinged on the inherent
complexity of diseases, which arise from deregulated interactions between multiple
genes. The reductionist approach, which has served the pharma industry for decades,
has been producing declining R&D returns in recent years, leading not only to
ever-increasing costs, but also to reduced efficacy, thus affecting the quality of
healthcare.More than a decade ago, developing a new drug was associated with a cost
of $890 million. In 2016, the estimate is a staggering $2870 million. These costs are
driving the emergence of new technologies and methodologies which will eventually
shape a phenomenal paradigm shift in the research and development of drugs.

Most disease-associated genes have a small influence by themselves. However,
in the context of a molecular interaction network of cellular processes, these
individual influences are combined in such a way that the resulting influence
severely deregulates the network. In that regard, both the disease and the corre-
sponding treatment introduce perturbations within the biological network, which
should be assessed by means of a systems-level approach.

Pathway analysis is a thriving research area in systems biology, attempting to
unravel the systemic effects of disease and drug-induced perturbations. Pathway
analysis relies on the wealth of complex biological data produced by omics tech-
nologies. These technologies typically produce a list of differentially expressed
genes between a control and a disease state. The data, however, have been removed
from the biological context from which they were extracted. Pathway analysis
methods attempt to rectify this by using prior biological knowledge pertaining to
the structure and operation of biological pathways along with statistical, mathe-
matical, and computational methods.

Towards the direction of understanding what pathway analysis can offer to both
the experimentalist and the modeler, the reader is introduced in the first chapter to a
general methodology which outlines common workflows shared by several meth-
ods, such as preprocessing of the omics data, choosing a null hypothesis, as well as
gene- and pathway-level statistics. Furthermore, the evolution of pathway analysis
methods is documented, beginning from simple overrepresentation analysis and
leading to complex pathway-level, or even sub-pathway-level approaches. We
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continue in the second chapter with a comprehensive review covering pathway and
sub-pathway based approaches involved in various aspects of drug design and
discovery, an emerging area known as systems pharmacology. This chapter pro-
vides insights into how pathway analysis methods can be employed to elucidate
drug mechanism of action, identify novel drug targets, increase treatment efficacy
by identifying drugs or drug combinations, which modulate multiple targets, infer
novel therapeutic indications for existing drugs, and predict drug side effects.

Subsequently, in the third chapter, we present an overview of pathway analysis
methods developed to model the temporal aspects of drug- or disease-induced
perturbations and extract relevant dynamic themes. In the fourth and final chapter,
several state-of-the-art methods in pathway analysis are outlined, which address the
important problem of identifying differentially expressed pathways and
sub-pathways. We cover various aspects of the methodological arsenal of this area,
as well as the evolution of tools developed for differential expression analysis.

In conclusion, the present work offers the reader a guided walkthrough to one
of the most promising research areas in modern life sciences, enabling a deeper
understanding of involved concepts and methodologies via an interdisciplinary
view, focusing from well-established approaches to cutting-edge research.

Patras, Greece Anastasios Bezerianos
Houston, USA Andrei Dragomir
Patras, Greece Panos Balomenos
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Chapter 1
Introduction

Abstract This chapter presents an overview of the topics discussed throughout the
book. The use of network representations for describing biological processes from a
systems biology perspective is first highlighted. Subsequently, various types of
biological networks are scrutinized and a synopsis of pathway analysis methods is
provided. The evolution of pathway analysis approaches is then presented, and
various methodological aspects involved are introduced. The chapter concludes by
presenting several aspects related to one of the main application areas of pathway
analysis: systems pharmacology, an emerging interdisciplinary and translational
field at the confluence of systems biology and pharmacology. The relevance of a
pathway-level analysis framework in the drug design and discovery pipeline is also
discussed, especially for the identification of novel drug targets, drug repositioning,
as well as drug safety and side effect prediction.

Keywords Biological networks � Pathway analysis � Sub-pathways � Systems
biology � Systems pharmacology

Drug design is a complex, costly, and time-consuming process suffering from costs
incurred by the intrinsic complexity of diseases, including myriads of multilevel
interactions between a large number of gene-products. The traditional reductionist’s
approach, which entails the elucidation of disease mechanism and drug mode of
action through the study of few genes reached its zenith in the 1990s and has been
producing diminishing returns since the beginning of the 2000s. The most stag-
gering realization of that fact is that the cost of developing a new drug has sky-
rocketed from $1 billion to $2.8 billion in the past fifteen years (DiMasi et al. 2003,
2016).

Most disease-related genes have small effects with a combined significant impact
(Petretto et al. 2007). Since these genes operate from a complex multilevel network,
the relevance of any biomarker is entwined with the very network it is a part of
(Gustafsson et al. 2014). Moreover, the effect of a treatment is rarely localized since
it may be propagated throughout the biological network, thus changing the picture
of the organism in unforeseen ways (Hidalgo et al. 2009).

© The Author(s) 2017
A. Bezerianos et al., Computational Methods for Processing and Analysis
of Biological Pathways, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-53868-6_1
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Systems Biology is an emerging research field studying biological systems by
introducing systematically systemic perturbations, monitoring the system’s
response in multiple levels and consolidating the responses by means of mathe-
matical and statistical models. It transcends the limitations of the reductionist’s
approach and incorporates information ranging from the DNA up to populations.
A more detailed framework, according to (Ideker et al. 2001) is as follows:

(i) Creation of a model describing the system in sufficient detail by means of
available genetic and biochemical data. Such a model can explain the
system-wide interactions under observation, and at the same time anticipate
its responses, given specific new perturbations introduced to the system.

(ii) Introduction of systematic genetic, biochemical, or environmental perturba-
tions in the system, and monitoring of changes, such as differential expres-
sion of genes.

(iii) Update of the model to account for novel experimental results, in case it fails
to explain them and so on. Thus, the model drives the design of the exper-
iments, where new discoveries in turn drive the update of the model itself,
driving the next series of experiments.

Over the course of the past two decades, the cost of DNA-sequencing has
dropped significantly. This cost, at the time of the publication of the first draft of the
human genome in 2001 was in the vicinity of $95 million and is nowadays in the
vicinity of $1000 (Wetterstrand 2016). This evolution may eventually enable the
design of personalized drugs, targeted toward stratified groups of patients,
according to both genetic and environmental criteria, therefore addressing the low
productivity of the pharma industry in the most meaningful of ways.

1.1 Biological Networks

1.1.1 Properties

Biological networks are comprised of the genes encoding proteins that are respon-
sible for the structure and function of an organism, as well as a level of interactions
that regulate gene expression. Other micro-molecules and macro-molecules are also
part of those networks. Biological networks have a series of interesting properties,
whose elucidation promoted Systems Biology (Barabási and Réka 1999).

Biological networks are scale-free networks. In a scale-free network, the prob-
ability of a node’s degree follows the power-law distribution. It exhibits preferential
connectivity, since the probability that a new edge is added to the network is
proportional to the node’s degree. Thus, few nodes tend to have high degrees
(hubs), with the majority of the nodes exhibiting limited connectivity. The hubs are
rarely interconnected but are connected with nodes belonging in few interactions.
The mechanism that seems to drive this property is gene duplication (Barabási and

2 1 Introduction



Réka 1999). When a cell is divided, some gene may appear in two copies in the
descendant’s genome. In this way, a new node is added within the network of
gene/protein interactions. The new protein has the same structure as the original one
and therefore interacts with the same proteins, and all of its interaction partners gain
a new interaction from the duplicated gene. Thus, proteins sharing a large number
of interactions with other proteins tend to gain new connections more frequently
(Barabási and Réka 1999).

Biological networks exhibit modules and motifs. A module is characterized by
the existence of several interactions between its members, compared to the ones
with members outside the module. Within those modules there exist subgraphs
which are specific to the identity of the biological network. Those subgraphs which
appear more frequently in the biological network than in a randomized version with
the same number of nodes and degree distribution are called motifs (Milo et al.
2002).

Biological networks also exhibit the ultra small-world effect in addition to a
complex network’s small-world effect, where any node can be reached from another
node within few steps (Milgram 1967). In this case, scale-free networks have a
much smaller average path length (Cohen and Havlin 2003). This property depicts
the fact that small local perturbations have the potential of being transmitted
throughout the network very quickly.

1.1.2 Categories of Biological Networks

Protein Interaction Networks (PIN)

The nodes of a PIN represent proteins and the edges the interaction between two
proteins. The edges are undirected, since if protein A interacts with protein B, then
the opposite is also true. The edge can also represent a brief interaction which
modifies a protein. Such interactions represent the dynamic part of the network.
Example of such interactions include protein kinases, which add a phosphate group
on a target-protein, and karyopherins which transport molecules between the
cytoplasm and the nucleus (Meyers 2009).

Metabolic Networks (MN)

Metabolic networks are comprised of metabolic pathways, each being a sequence
of biochemical reactions within a cell, catalyzed by enzymes, with the product of
one reaction either being used in the cell or acting as a substrate to a successive
reaction. The nodes of the network represent the products and the edges the reac-
tions between them.

Gene Regulatory Networks (GRN)

The main mechanism of gene expression regulation entails the regulation of tran-
scription through proteins called transcription factors. A transcription factor is
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bound on specific DNA sequences, changing the concentration of RNA-polymerase
which is responsible for transcribing the DNA sequence to an RNA sequence.
A single transcription factor may regulate multiple genes and a single gene may be
regulated by several transcription factors. The nodes represent genes and tran-
scription factors, and the edges directed interactions from a transcription factor to a
gene whose expression is regulated.

Signaling Networks (SN)

A signaling network controls basic cellular processes and is comprised of signaling
pathways, each representing the flow of biological signal when a receptor of the
cellular membrane is activated. The nodes of the network represent genes and the
proteins they encode, which are part of the biological signal transduction through
chemical transformation they are involved in. One example of such transformations
is posttranslational modifications of proteins, where a functional group, such as
phosphate or methyl group, is added to the protein, resulting in the change of its
signaling function (phosphorylation, methylation). Another example is the forma-
tion of stable protein complexes (association) or the removal of a protein from such
a complex (dissociation). Each gene may be a part of several pathways, therefore
has the capacity to propagate the signal in multiple pathways. Each pathway usually
begins with the gene encoding a cellular membrane ligand and ends with the change
in the intracellular concentrations of signaling micro-molecules. Signaling networks
are the most complex of networks, since they represent the biological signal
transduction within the cell, taking into consideration both the type of interaction,
as well as their time frame (Meyers 2009).

1.2 Pathway Analysis

Pathway analysis is a family of Systems Biology methods used to extract knowl-
edge from the data produced by high-throughput sequencing technologies, by
creating a model which summarizes and describes the underlying biological pro-
cesses. These technologies typically produce a list of differentially expressed genes,
between a case of interest, for example disease or drug perturbations and a control.
Since this output is stripped from its biological context, pathway analysis tech-
niques utilize prior biological knowledge with statistical, mathematical, and com-
putational methods in order to derive a suitable model linking the data with the
complex biological processes which they describe. The input of a pathway analysis
method is the omics data produced by high-throughput technologies in omics
studies, such as: (i) genomics, the study of the structure and function of an
organism’s genome, (ii) proteomics, the study of the structure and function of the
proteins of an organism, (iii) transcriptomics, the study of RNA molecules tran-
scribed in a cell, and (iv) metabolomics, the study of the products of enzyme
biochemical reactions. Next, an indicative methodology in pathway analysis will be
outlined (Goeman and Bühlmann 2007).
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1.2.1 Methodology

Preprocessing

The first stage of the methodology is the preprocessing of the biological data which
have been produced by an omics study, as well as the data available from a source
of prior knowledge, such as a biological database. For the omics data, a usual
preprocessing includes: (i) normalization for all samples, so that expression values
from different experiments are comparable, (ii) removal or extrapolation of missing
values, (iii) conversion from manufacturer annotation to a more neutral annotation,
such as Entrez Id, (iv) removal of samples with no annotation matches (Hung et al.
2011). For the pathway data, the selection of one or more biological databases, such
as protein–protein interactions or signaling pathways databases, is made not only by
considering the relevance of each database with the aim of the method, but also the
degree in which the prior knowledge covers the genes/transcripts of the experiment.
No database fully covers the whole of an organism genome/transcriptome, and also,
different databases may offer conflicting information regarding interactions or
pathway structure.

Null Hypothesis Selection

The analysis phase of the methodology entails the identification of pathways which
are perturbed in response to a biological stimulus, such as a disease or a drug
perturbation. The perturbed pathways as a rule have to be statistically significant, in
the sense that the responses are not be found by chance. The statistical significance
is usually assessed using a P-value of less than 0.05, which is additionally corrected
for multiple hypothesis testing in order to obtain a Q-value. The usual choice for a
null hypothesis H0 is that the genes belonging in a pathway have no relation to the
observed phenotype (Ackermann and Korbinian 2009; Goeman and Bühlmann
2007). The correlation of the genes within the pathway (or any gene-set) with the
phenotype is compared with the correlation of those genes with random pheno-
types. The null hypothesis is that the genes within the pathway are not differentially
expressed (association null hypothesis). This hypothesis has a clear biological
meaning, with the P-value corresponding to the theoretical replication of the same
experimental procedure giving new phenotypes. A significant P-value shows that
the results are not random, while a significant Q-value shows that no or at least few
false positives have been introduced as a result of multiple hypothesis testing
(Ackermann and Korbinian 2009).

Gene-Level Statistic Selection

The next step is the identification of the differentially expressed genes between
treatment and control samples. Some simple and yet powerful statistics are t-sta-
tistics, fold-change, Pearson correlation coefficient, Kolmogorov–Smirnov test.
These statistics may also be transformed by considering absolute values, squared
values, binary transformation, P-values, Q-values, or posterior Bayesian probabil-
ities (Ackermann and Korbinian 2009; Khatri et al. 2012).
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Gene-Set Level Statistic Selection

After having selected a gene-level statistic, it is transformed to a gene-set level
statistic by considering the sum or the average of the transformed gene-level
statistics, Kolmogorov–Smirnov statistics, Wilcoxon rank sum, or false discovery
rate (FDR). The results produced by the gene-set level statistic will be evaluated as
to their statistical significance according to the selected null hypothesis. In the case
of the association null hypothesis, the phenotypes under observation are repeatedly
perturbed and a new statistic is calculated (Ackermann and Korbinian 2009; Khatri
et al. 2012).

1.2.2 Evolution of Pathway Analysis Methods

Pathway analysis methods can be categorized in four generations according to the
hypotheses employed and the direction of the analysis (García-Campos et al. 2015;
Khatri et al. 2012).

Overrepresentation Approach

The basic hypothesis in an overrepresentation analysis (ORA) is that a statistically
significant pathway contains more differentially expressed genes than the ones that
would appear by chance. Such methods tend to follow the general methodology
outlined earlier very closely. As the first evolution of pathway analysis approaches,
they had significant advantages compared to methods that do not utilize prior
biological knowledge. The omics data are placed in a biologically relevant context
which promotes the development of a model describing the changes in the complex
biological processes behind the differential expression and the perturbed pheno-
types. These methods are also simple and computationally inexpensive. However,
they do have several restrictions: (i) Due to the fact that the selection of differen-
tially expressed genes is performed based on a threshold, several potentially rele-
vant genes close to the threshold may not be included in the list. (ii) While the
pathways themselves have specific connections and direction, these methods view
them as gene sets. Thus, if the edges of the network were to be randomly shuffled,
the results of the method would be identical, which may compromise the signifi-
cance of the results. (iii) Gene-level statistics tend to treat all genes equally ignoring
how they interact with their neighbors. These restrictions paved the way for the next
generations of approaches.

Functional Class Scoring

The basic hypothesis in a functional class scoring analysis (FCS) is that the pathway
status is not only affected by significant changes in gene expression, but also by
smaller changes with a combined significant contribution. Such methods also follow
the general methodology outlined earlier, with the difference that the gene-set
statistic is actually a pathway-level statistic, thus it should take into consideration
not only information concerning the genes themselves, such as fold-change, but
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also the types of interactions they are parts of. One main benefit of such methods is
that by taking into consideration the interactions between genes, they can identify
combined changes in gene expression affecting the status of the pathway. This
generation of approaches, however, does not fully address the previous generation’s
restrictions. (i) While they do take into account interactions between genes, all genes
have the same contribution in the gene-level statistic, disregarding available prior
knowledge. (ii) They do not take the pathway topology itself into consideration,
but merely individual interactions. The third evolution, however, did address
these issues.

Pathway Topology Analysis

The basic hypothesis in a pathway topology analysis is that the interactions con-
tained in the pathway topology are important in studying the correlation of changes
that occur between the different parts of a pathway. Such methods also follow the
general methodology outlined earlier, however when calculating the gene-level
statistic, the whole of the pathway topology is taken into consideration. The main
benefit is that pathway topology provides information about the type of interaction
between its members, which allows the assignment of different weights on each
gene according to its changes and contribution to the pathway itself. The main
restriction is that connections between the pathways themselves are not taken into
account. They analyze each pathway independently ignoring interactions and
overlaps between distinct pathways. If for example some of the differentially
expressed genes in a pathway belong to another pathway as well, that pathway may
be falsely identified to be correlated with the observed phenotype (Barabási and
Réka 1999).

Sub-pathway Analysis

The basic hypothesis in a sub-pathway analysis is that specific biological processes
can be better explained not by the perturbations in pathways, but rather specific
sub-pathways within each pathway, which may be shared between them. These
sub-pathways may exhibit the same role in different pathways (Chen et al. 2011).
These approaches tend not to accurately be described by the general methodology.
A defining part of each method is how it defines a sub-pathway, based on the kind
of biological process it focuses on.

Sub-pathways identify regions of interest within pathways which are perturbed
as a result of a disease or a drug treatment. These approaches represent the pinnacle
of pathway analysis methods: earlier generation approaches zoomed out of the gene
level to encompass as much a systemic information as possible. Sub-pathway-level
approaches zoom in, close enough to the gene-level so as to offer more robust and
explanatory methodologies, but high enough to utilize information previously
inaccessible to traditional approaches.

1.2 Pathway Analysis 7



1.3 Systems Pharmacology

Systems pharmacology is a highly interdisciplinary and translational field at the
confluence of systems biology and pharmacology, and one of the main application
areas for pathway analysis methods. It combines experimental and advanced
computational approaches, with the overarching goal of providing a comprehensive
characterization of drug-induced perturbations and their links to human phenotypes
(Berger and Iyengar 2009; Zhao and Iyengar 2012; Jenkins and Ma’ayan 2013). Its
recent popularity is rooted in the availability of high-throughput molecular
sequencing and screening technologies and the widespread access to the resulting
wealth of data. Pharmacologically oriented systems biology involves
high-throughput omics technologies, including next-generation sequencing, tran-
scriptomics, proteomics, and metabolomics to pinpoint factors implicated in dif-
ferential drug response across multiple scales of biological organization, ranging
from molecular to cellular, tissue, and organism level. Drug action and system’s
response to it are embedded in the molecular interactions between the drug and its
targets, which are further interacting with, and regulating, other cellular compo-
nents. Under these circumstances, pathway analysis and modeling methods, offer
not only the framework for integrating these heterogeneous data, but also a scaf-
folding for rendering them amenable to further investigations which can uncover
properties of systems’ components and relationships between them.

Pathway analysis approaches in systems pharmacology can be categorized into
three broad groups based on their application areas.

Identification of Novel Drug Targets

Approaches under this category aim at finding new putative targets for drugs by
identifying the relevant features of an optimal target. This is achieved by a com-
prehensive characterization of drugs’ mechanism of action through: (i) investigating
the pathways perturbed by treatment, (ii) defining the characteristics of the inter-
action network surrounding the drug target, (iii) as well as determining the prox-
imity within the network to pathways affected by disease. This extensive
understanding of drugs mechanism of action allows also the design of drugs, or
drug combinations, able to act on multiple targets and pathways, which is a more
efficient approach in targeting complex diseases, and the goal of an emerging
research area known as polypharmacology.

Drug Repositioning

Pathway-based methods in this category use the mechanistic knowledge about drug
targets and aim to retrieve associations to phenotypes distinct from the original drug
indication. This is achieved by monitoring the biological pathways perturbed in
response to drug and those affected by disease. The identification of common
pathways or sub-pathways usually imply potential for repositioning.

8 1 Introduction



Drug Safety and Side Effect Prediction

The contribution of pathway analysis in this direction is towards modeling the
off-target (i.e., not originally intended as target) perturbation of drugs and their
downstream effect. Off targets are widely accepted as the main source for drug side
effects and toxicity. Thus, the possibility of predicting off-target interactions and the
pathways or sub-pathways responsible for the propagation of the resulting pertur-
bations, hold the promise of efficient treatment and reduced costs.
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Chapter 2
Networks and Pathways in Systems
Pharmacology

Abstract This chapter presents an extensive overview of aspects involved in the
thriving field of systems pharmacology. The three main directions along which
network- and pathway-based analysis methods can contribute in systems pharma-
cology are spotlighted. Current approaches for the characterization of drugs mech-
anism of action, including the elucidation of mechanisms through which disease
phenotypes dysregulate biological processes are first discussed. Subsequently, the
latest research work done in systems pharmacology and polypharmacology toward
the identification of novel drug targets, as well as in optimizing drug combinations
for more efficient therapies, is surveyed. Within this context, the benefits of inte-
grating evidence from multiple biological scales are examined, and the most popular
databases used to store various biological data are provided. Drug repositioning is
another direction along which pathway analysis is bound to bring significant con-
tributions. An overview of drug repositioning approaches based on molecular and
phenotypic profiles is presented. Subsequently, the main aspects involved in systems
pharmacology applications for in silico drug side effect modeling and prediction are
reviewed. Finally, current challenges and future considerations for pathway analysis
and systems pharmacology are discussed.

Keywords Pathway analysis � Sub-pathways � Systems pharmacology � Drug
mechanism of action � Polypharmacology �Drug repositioning �Drug targets �Drug
safety � Drug side effect modeling � Heterogeneous data integration � Databases

2.1 Introduction

In the context of continuously surging drug development and healthcare costs, with
the cost of developing a new drug being recently estimated at $2.8 billion, a more
than 145% increase within the past decade only (DiMasi et al. 2016), and with
global annual spending on prescription medication forecasted to reach $1.8 trillion,
it becomes increasingly clear that the conventional reductionist one drug, one
target, one disease paradigm which has been traditionally driving pharmacology

© The Author(s) 2017
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needs radical rethinking. Even with the significant raise in R&D expenditure by big
pharma companies, the mean time between synthesis to approval surpasses
120 months, while the number of newly approved molecular compounds annually
is *20–30, not significantly different from what it was half a century ago (DiMasi
et al. 2016; Csermely et al. 2013). Systems pharmacology brings the promise of
revolutionizing the drug discovery process, while at the same time catalyzing the
translation of pharmacogenomics applications to clinical environment, which has
been lagging behind despite the recent wave of groundbreaking research on
genomics implications in disease.

In this context, methods for modeling and analysis of molecular interaction
networks, which have recently found extensive application in systems biology, are
able to provide a theoretical platform for systems pharmacology. Studies on gene
regulatory networks, protein–protein interaction networks, metabolic networks and
other types of molecular interaction networks, provided significant insight into
cellular organization and behavior, and shed light on specific biological processes,
as well as disease processes and pathophysiology (Rual et al. 2005; Jeong et al.
2000; Ideker et al. 2002; Maraziotis et al. 2006, 2007; Bezerianos and Maraziotis
2008; Glaab et al. 2010). Consequently, based on this new network-based para-
digm, new areas of translational research have emerged, and new terms have been
coined, such as network physiology, network medicine, and network pharmacology
(Barabasi et al. 2011; Hopkins 2008; Bashan et al. 2012).

Analysis of molecular interaction networks in systems pharmacology holds the
promise of contributing along three main directions (Fig. 2.1):

Fig. 2.1 Overview of network-based analysis in systems pharmacology [adapted from Arell and
Terzic (2010)]
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(i) Allowing for the identification of new putative drug targets relevant to
specific diseases, through a better characterization of what makes an optimal
target. In this context, pathway-based analysis allows a more mechanistic
characterization of drugs mechanism of action, including the characterization
of response to treatment, challenging the traditional way drug action was
viewed: act on a specific target and observe the modulating effects down-
stream of that target. Current view is that a drug hits several targets (in-
cluding off-targets) co-existing in a complex interacting network which is
perturbed by disease, and the therapeutic effect of the drug aims to
re-establish homeostasis (Berger and Iyengar 2009; Xie et al. 2009; Arell and
Terzic 2010; Woo et al. 2015). Often times such approaches combine
pathway and network analyses with pharmacokinetic and pharmacodynamic
models to incorporate data from multiple biological scales, striving to build
advanced quantitative and predictive models of therapeutic efficacy. As a
corollary to achieving (i) follows the improved ability to predict effective
drug combinations and the possibility to investigate mechanisms underlying
drug resistance (Boran and Iyengar 2010; Zhao et al. 2013; Reddy and Zhang
2013; Lazar et al. 2014; Hwang et al. 2016).

(ii) Drug repositioning or drug repurposing is another direction in which sys-
tems pharmacology is making significant impact. Motivated by the success
stories of several drugs with different initial indications, such as sildenafil
(initially developed to treat hypertension and angina pectoris, eventually
used to treat erectile dysfunction after clinical trial observations), or mono-
clonal antibody bevacizumab (originally developed to treat colon cancer and
non-small cell lung cancer, currently used in treatment of macular degen-
eration disease), drug repositioning significantly shortens the path for
approval of normal drugs and reduces the R&D expenditure (Van Eichborn
et al. 2011; Wu et al. 2013; Pan et al. 2014; Li et al. 2016). Almost 20% of
new drugs introduced to market in 2013 were actually new indications for
existing drugs (Li et al. 2016). Originally based on serendipitous clinical
observations, drug repositioning is picking up significant interest recently
due to the increased understanding of the underlying molecular processes,
drugs mechanisms of action, as well as the availability of advanced com-
putational models for network and pathway-based analysis.

(iii) Another direction in which significant research efforts in systems pharma-
cology are focusing is that of drug safety and prediction of drug toxicity and
side effects. Drug safety is a major source of drug attrition and of vital interest
for pharmaceutical companies in their efforts to reduce drug development
cost, while increasing efficiency (Hutchinson and Kirk 2011; Waring et al.
2015). Recent high profile failures during clinical trials or even for marketed
drugs underline the fact that even efficacious drugs may cause severe side
effects with dangerous consequences. Some examples include the cases of
rosiglitazone, an antidiabetic drug which was later found to induce signifi-
cant risk for myocardial infarction, rofecoxib, a pain relief drug recalled from
the market after increased risk of stroke was reported, and the BIA-10-2474
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(a molecule developed for a range of diseases) clinical trial death cases in
2016 (Graham et al. 2005; Nissen and Wolski 2007; Esserink 2016). It is
therefore of paramount importance that molecular mechanisms of drug
toxicity are comprehensively evaluated and used for hypothesis generation
and testing, having as goal the development of in silico models for prediction
of side effects. Systems pharmacology provides the framework for aug-
menting traditional pharmacokinetic and pharmacodynamics models while
studying most common scenarios of drug toxicity from a pathway-based
perspective: (a) off-target perturbations generating side effects unrelated to
on-target effects, (b) side effects caused by pathways downstream of the
intended on-target and (c) unrelated pathways generating side effects due to
cross-talk with pathways downstream of intended target (Boran and Iyengar
2010; Wallach et al. 2010; Kuang et al. 2014; Lorberbaum et al. 2015; Cao
et al. 2015; Trame et al. 2016; Schotland et al. 2016).

A concept with significant overlap to systems pharmacology, in both that it
integrates systems biology with drug discovery and in its application areas, is
polypharmacology. Polypharmacology includes studying the modulation of multi-
ple targets by single drugs, as well as modulation of different targets by multiple
drugs, primarily focusing on therapeutic interventions in complex diseases with the
goal of identifying less toxic and more effective approaches (Boran and Iyengar
2010; Reddy and Zhang 2013; Anighoro et al. 2014). Another discipline that
naturally converges to the more inclusive field of systems pharmacology is phar-
macogenomics. Pharmacogenomics is defined by its search for variation in the
human genome that explains inter-individual drug response variability (Antman
et al. 2012). Currently in its incipient stage, with few genotype-drug response
associations identified and finding their way into clinical practice by means of
biomarkers present on drug labeling (FDA: Table of Pharmacogenomic Biomarkers
in Drug Labeling 2016), translation of pharmacogenomic associations into clinical
practice is still slowed by inconsistent findings and below par predictive power.
Since these limitations are largely due to the complex interactions between
drug-specific molecular response and environmental factors, systems pharmacology
holds the promise to facilitate pharmacogenomics in unraveling the mechanisms
behind the drug response variability. Rather than just identify mutations associated
to diseases (e.g., genome-wide association studies), or perform statistical correlation
type analysis between genetic signatures and patient phenotype, network- and
pathway-based approaches of systems pharmacology allow integration of additional
information for a better understanding of the bases of inter-individual variation, and
in conjunction with pharmacogenomics, eventually lead toward the overarching
goal of precision medicine (Turner et al. 2015).

The rest of this chapter is structured as follows: Sect. 2.2 describes current
approaches in network and pathway-based characterization of drugs mechanism of
action, Sect. 2.3 presents latest research work done in systems pharmacology and
polypharmacology toward the identification of new drug targets, Sect. 2.4 provides
an overview of systems pharmacology approaches in drug repositioning, Sect. 2.5
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presents systems pharmacology applications for in silico drug side effect modeling
and prediction. Final section presents current challenges and future considerations
for pathway analysis and systems pharmacology.

2.2 Network- and Pathway/Sub-pathway-Based
Characterization of Drugs Mechanism of Action

Initial efforts deviating from the traditional one drug-one target-one disease para-
digm, and the related search for highly selective ligands that dominated the past
decades, were triggered by the recognition that pharmacological compounds
modulate the activity of targets in complex networks of deregulations underlying
disease phenotypes (Gardner et al. 2003; Ambesi-Impiombato and Di Bernardo
2005; Hopkins 2008; Turner et al. 2015). These observations and the ensuing
endeavor for investigating the compounds mechanisms of action (MoA) were only
possible with the advent of high throughput technologies which started generating
wreaths of data and with the concomitant rise of the new field of systems biology
(Ideker et al. 2001).

The elucidation of mechanisms by which drug compounds affect the deregulated
interactions in disease phenotypes is bound to become an essential part of the
modern drug discovery process. With this comes an increased need for computa-
tional methods to mine large datasets and assist in providing initial hypotheses for
further in vitro and in vivo validation studies. About a decade ago, data resources
originating from genome-wide transcriptional profiles and containing drug response
phenotypes, such as the Connectivity Map (CMap—which contains more than 7000
gene expression profiles obtained in response to treatment with 1309 drug and
drug-like small molecules) became available, followed in recent years by similar
databases, such as the Library of Integrated Network-based Cellular Signatures
project (LINCS) (Lamb et al. 2006; Wang et al. 2016). The use of gene expression
data (transcriptional mRNA profiles, initially obtained from microarray experi-
ments, more recently from RNAseq experiments) in investigating drugs’ MoA has
become norm, as this type of data allows genome-wide investigation of drug
response’ correlation with disease phenotype. Early work successfully characterized
compounds perturbation mechanisms by searching for commonalities in the phe-
notypic responses based on the simple hypothesis that, if two drugs induce similar
transcriptional responses they potentially share a common MoA and a similar
therapeutic application, even if they act on different cellular target (Kibble et al.
2016). This idea was adapted from early investigations in genomic data analysis in
which it was observed that genes with similar expression profiles are more likely to
be involved in common biological processes. Transcriptional response profiles were
initially compared using various methods similar to the Gene Set Enrichment
Analysis (GSEA), based on the Kolmogorov–Smirnov statistic (Subramanian et al.
2005). Briefly, query signature profiles’ similarity to the reference expression
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profiles in the CMap database is assessed. Query profiles are usually sets of genes
differentially expressed between disease and normal conditions, or sets of up-
and/or down-regulated genes. In parallel, genes on the reference CMap arrays (each
one corresponding to experiments in which cells are perturbed using a specific
drug) are rank-ordered according to their differential expression relative to control.
Subsequently, the query signature is compared to every rank-ordered gene list and it
is determined whether up-regulated genes in the query tend to be located near the
top of the list and down-regulated genes are found toward the bottom of the
reference ranked list, or vice versa. The former case denotes a ‘positive connec-
tivity’ and the latter a ‘negative connectivity’ between the query and the respective
perturbation instance (array containing the cells gene expressions in response to the
drug treatment). Connectivity scores are then computed and used to rank all
instances in the database according to their correlation to the query signature. This
approach was used by Lamb et al. (2006) to elucidate the MoA of uncharacterized
drug compounds, such as gedunin. The mechanism through which gedunin is
capable of abrogating the expression of androgen receptor (AR) activation in
prostate cancer was determined by finding high connectivity scores of a gedunin
signature with multiple instances of three heat shock protein 90 inhibitors (HSP90):
geldanamycin, 17-allylamino-geldanamycin, and 17-dimethylamino-geldanamycin
(Lamb et al. 2006). It was therefore inferred that gedunin might impinge upon the
HSP90 pathway, hypothesis which was subsequently validated experimentally.
This hypothesis would not have been warranted by solely studying compounds
structures, as gedunin is structurally dissimilar to known HSP90 inhibitors.

Various other approaches based on ranked lists of differentially expressed genes,
have been used, such as the MANTRA method (Iorio et al. 2010), which adopts a
rank-aggregation procedure to dilute cell-line-specific effects in transcription, as
well as experimental batch effects, or different drug concentrations in different
treatment instances. Iorio et al. (2010) defined pairwise distances between com-
pounds using ‘enrichment scores’ based on the distribution of optimal gene sig-
natures of each compound (extracted as top and bottom 250 genes in their
corresponding ranked lists) within the ranked gene list of the other compound of the
pair and vice versa. These distances were used to build a drug network in which
nodes correspond to compounds and connecting edges reflect the estimated dis-
tances between the compound pairs. This network was subsequently mined via
network clustering to identify communities (or modules) of closely interconnected
compounds. The retrieved drug modules were found to be highly enriched with
common biological pathways and characterized by similar MoAs. The authors have
then proceeded to predict MoA for anticancer drugs with profiles not present in the
reference CMap database, by estimating the distance of their transcriptional profiles
to the drug network modules. Following this framework, PHA-690509,
PHA-793887, and PHA-848125 were correctly classified as CDK inhibitors, dis-
tinct from the other kinase inhibitors in the CMap database, and were also predicted
to have highly similar MoA to Topoisomerase inhibitors. The original method in
(Iorio et al. 2010) was recently extended to filter out spurious effects of compounds’
nonspecific secondary effects on transcriptional profiles. To this goal, they use an

16 2 Networks and Pathways in Systems Pharmacology



iterative supervised approach to refine the original drug network module of a
compound of interest while deriving a transcriptional signature representative of the
primary MoA (Iorio et al. 2015).

Some studies have argued that methods based solely on differentially expressed
sets of genes (i.e., transcriptional profiles) may miss essential knowledge on reg-
ulatory influence among genes and their products. Consequently, methods such as
the mode-of-action by network identification (MNI), which incorporates differential
expression of genes with regulatory information encoded in gene networks struc-
tures, have been proposed (Xing and Gardner 2006). In MNI systems of linear
differential equations are used initially to build the gene network model and the
subsequent inference of network parameters is done based on transcriptional pro-
files. Once the canonical gene network is created, it is used to filter test tran-
scriptional profiles from drug treatment experiments in order to distinguish genes
that are mediators of treatment response from the other genes which exhibit
expression changes. This is achieved by searching for genes with changes in their
transcriptional profiles that are not in accordance with the canonical gene network,
under the assumption that such genes are perturbed by the drug treatment.
Significance of the perturbation on these putative molecular targets is quantified
using a z-score scheme. MNI was utilized to identify molecular targets of antifungal
compounds based on genome-wide transcriptional profiles in yeast.

Recently, it was proposed that data from additional sources, such as signaling
and metabolic pathway databases, protein structure databases, compound structure
and drug target databases, as well as DNA sequence or functional non-coding RNA,
may be incorporated in the analysis. This integrative approach has the potential to
enrich the computational model, by making it more biologically plausible, and
enhance its predictive power (see Fig. 2.1). Table 2.1 presents some of the most
commonly used databases containing data and annotations involved in MoA
identification and generally in drug discovery. Within this context, Iskar et al.
(2013) used bi-clustering to identify drug-induced transcriptional modules from
human and rat transcriptional profiles databases [CMap and DrugMatrix (Ganter
et al. 2005)]. The modules conserved across organisms were checked for functional
coherence at protein level using information from the STRING database
(Szklarczyk et al. 2014) and then connected into a module network. The module
network was extensively characterized by annotation with relevant pathways and
functional information from KEGG (Kanehisa et al. 2015), BioCarta (Nishimura
2001) and the Gene Ontology (Gene Ontology Consortium 2013) databases, as well
as drug structure, target, and side effect information from STITCH and SIDER
databases (Szklarczyk et al. 2015; Kuhn et al. 2015). The integrative model thus
defined allowed the authors to discover novel MoAs for six drugs, four with
cell-line-specific mechanism and two with mechanisms conserved in all modules,
using module-based statistical tests and overrepresentation analysis. Specifically,
zaprinast, was suggested to be a novel modulator of the PPARc receptor in the PC3
cell line, the main target of antidiabetic drugs, a hypothesis subsequently validated
with target binding assays experiments. Similarly, nitrendipine was found to be a
modulator of estrogen receptor in MCF7 cells, hexetidine and (+)-chelidonine were
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found and experimentally confirmed to have adrenergic activity. Additionally, the
same study identified novel functions for 10 previously poorly characterized genes
as modulators of cholesterol homeostasis, based on their strong connections within
the transcriptional modules enriched for cholesterol biosynthesis pathways.

Using an approach that attempts to both capture regulatory information encoded
in the interaction network and integrate various levels of information (transcrip-
tional, signaling, and protein-level interactions), Woo et al. (2015), extend the cell
type-specific approach to a tissue-specific one. To this goal they build
lymphoma-specific regulatory networks based on transcriptional profiles on in vivo
and in vitro drug perturbations. Their approach incorporated translational level
information (protein–protein interaction data) and protein–DNA interaction data to
create the contextualized regulatory network. MoAs are characterized by modeling
and quantifying compounds’ dysregulation of network neighborhoods using a
probabilistic framework based on Gaussian kernel smoothing. The approach allows
the authors to mechanistically elucidate MoAs, while accounting for differential
expression of associated nodes (genes or proteins) from a network-based perspec-
tive, rather than a purely statistical one. Their study highlighted key differences in
topoisomerase (TOP) inhibitor compounds doxorubicin, camptothecin, and etopo-
sidine, which all have previously known significant common footprint. The iden-
tified specific effectors were validated experimentally, confirming the approach’s
high specificity. The same method was used to identify novel compound effectors
and modulators for vincristine (a microtubule formation inhibitor in mitotic spin-
dle), mitomycin C, and altretamine (antineoplastic drugs).

A relatively recent trend in pathway analysis, as highlighted in the previous
chapters, is that of sub-pathway-based approaches. Investigating sub-pathways may
be more relevant in interpreting the biological processes, since it is known that,
frequently, only some regions of pathways are dysregulated by disease, or involved
in drug related perturbations. Within this context, Chen et al. (2011) have devised a
method to identify sub-pathways involved in dexamethasone (DEX) response in
human prostate cancer cell lines. Their approach relied on parsing sub-pathways
from the KEGG Pathway database in an exhaustive manner. Sub-pathways were
defined as individual paths from start points to end points in a pathway map. Such
an approach is biologically relevant, as pathway maps in KEGG database are linear
sequences connecting biologically meaningful start nodes (which are commonly
membrane receptors or their ligands) to end points which are commonly tran-
scription factors or their targets. The resulting sub-pathways were overlaid with
transcriptional profile data of a subset of CMap (instances of DEX treated cells). In
order to identify sub-pathways significant for DEX-response, a two-stage approach
was followed, by defining aggregate distances between sub-pathway states pre- and
post-treatment in terms of their contained genes expression levels, and subsequently
identifying through statistical analysis key subsets of genes most perturbed by drug,
and therefore deemed top contributors to the sub-pathway state differentiation.
Based on this, authors were able to assert that the decrease of VEGFR and EGFR
stabilization in order to suppress angiogenesis is a hallmark of DEX-response.
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Pritchard et al. (2013) proposed an innovative analysis pipeline based on
supervised and unsupervised machine learning methods with the goal of achieving
both statistical and biological generalization (predictive accuracy), and at the same
time ensure the ability of their framework to recognize novel MoAs for drugs. To
this goal they define the drug MoAs in terms of subnetworks consisting of drug
nodes and edges representing weighted connections between nodes. The weighted
connections correspond to distances in the molecular signature space. Initial sub-
network membership is based on biochemical and genetic evidence encompassing
three different types of data: mRNA, chemical interaction and RNAi and each
subnetwork corresponds to a drug MoA. The training set corresponds to subnet-
works of known drug MoAs. Given a test set of uncharacterized drugs, predictions
are made based on a k-nearest neighbors method, and putative MoAs are obtained
based on sets of representative features corresponding to subnetworks in the
training set. A prediction may interpolate within an existing subnetwork or
extrapolate to form a new expanded subnetwork. Detection of new MoAs is war-
ranted when a too large expansion of subnetworks is needed. By using a consensus
approach the method identifies new clusters within the training set drugs, based on
their molecular features. Subsequently, unsupervised learning (hierarchical clus-
tering) is utilized to identify optimal topological thresholds for the connecting edges
within the newly derived subnetworks. The procedure enables the detection of more
than mere combinations of existing subnetwork motifs, thus permitting the exten-
sion to MoAs underlying entirely distinct biology. Using this subnetwork-based
signature, authors confirmed MoA subnetworks for HSP90 and EGFR inhibitors
suggested in previous studies. Additionally, they were able to successfully confirm
and expand MoA classes including erastin (a Bax/Bak independent death inducing
compound), mitochondrial disruptors azide and valinomycin and predict mitox-
antrone as a topoisomerase II poison.

A more recent approach which exploits relationships shared between drugs
within a network context is presented in (Napolitano et al. 2016). Namely, the
method extends the GSEA framework to define enrichment scores for pathways
across sets of drugs. It eventually produces ranked lists of drugs highlighting the
potential for dysregulation induced in specific pathways by specific sets of drugs.
The method, termed drug-set enrichment analysis (DSEA) incorporates pathway
information from various related databases to essentially produce a pathway-based
connectivity map. This enabled the authors to formulate hypotheses on the MoAs
shared by drugs. Thus, DSEA was utilized to identify shared pathways by sets of
drugs in five distinct pharmacological classes with known MoA and results were
validated by means of gold standard sets of target genes for each class retrieved
from molecular databases. Additionally, the method was able to infer a putative
MoA for a set of drugs with mild corrective activity in cystic fibrosis, a disorder for
which no therapeutic treatment is currently available. The approach has the
potential for aiding in the characterization of novel drugs with unknown MoA by
simply incorporating related transcriptional profiles into the pipeline.
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2.3 Identification of New Drug Targets
and Polypharmacology Applications

Systems pharmacology approaches for inferring compound MoA have evolved in
the past decade from methods based purely on ranked lists of genes and their
transcriptional response to treatment, to gradually incorporate elaborate network
and pathway context, as well as various other sources of biological information.
The rising interest in understanding compound MoA was accompanied by a
simultaneous strive for identifying novel therapeutic targets based on network
analysis methods, within the greater context of optimizing the drug discovery
process. Computational methods based on network analysis can be used to model
the systemic milieu in which putative therapeutic targets are located and conse-
quently identify targets which increase therapeutic efficacy and reduce adverse
effects. In order to achieve this goal, the complex relationships between the
chemical and genomic factors influencing the interaction between drugs and their
targets must be appropriately accounted for.

From this perspective, the concept of similarity among various biological and
nonbiological entities (such as compound chemical structure, protein sequence,
phenotypic profiles, etc.) is paramount. Similarity is at the base of two important
hypotheses in modern drug discovery, in the sense that chemically and pharma-
cologically similar drugs are targeting similar target proteins (Chen et al. 2012), and
that molecularly and clinically related drugs and diseases are likely to share similar
phenotypes (Vogt et al. 2014). Additionally, in the context of systems pharma-
cology, multifaceted similarity metrics can be used to facilitate the integration of
heterogeneous data. As in the case of approaches used in MoA identification,
networks built for the identification of novel targets have edges representing pro-
tein–protein interactions and transcriptional regulation but may also encode drug–
target or drug–drug interactions. Commonly, edges are defined based on therapeutic
or chemical similarities between two nodes, similarities between proteins sharing
associations with diseases, or similarities of diseases based on the shared number of
genes/proteins (Zhao and Iyengar 2012). This wide range of possible definitions for
network edges, and their underlying similarity metrics, enable networks to model
multiple interaction scales, transcending from atomic and molecular level to the
phenotype level of drug–target interactions.

2.3.1 Target Characterization and Identification Using
Network Properties of Drug Targets

Since an important part in the process of identification of novel drug targets is the
understanding of how signalflow is achievedwithinmolecular pathways, a significant
share of research work in this area has been dedicated to studying network
topology-based relationships and identification of target-related motifs. Additionally,
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concepts such as network paths are important for establishing relations between nodes
and network topologies, and formulate biologically relevant constraints in modeling
drug perturbation (e.g., start nodes on a path must be receptors, intermediate nodes be
specific types of intracellular proteins and end nodes must be transcriptional factors).
Such methods rely on interaction networks built from protein–protein data on which
drug-related data is overlaid, or on bipartite or multipartite networks used to model
drug–target and drug–drug interactions (Yildirim et al. 2007; Yamanishi et al. 2008;
Li et al. 2015). Early work focused on formulating network topology criteria which
define existing drug targets and, based on these criteria, elaborate methods that would
allow the identification of novel targets from the network (Yildirim et al. 2007;
Ma’ayan et al. 2007; Yamanishi et al. 2008; Hwang et al. 2008; Nacher and Schwarz
2008; Berger and Iyengar 2009). Yildirim et al. (2007) used a bipartite network based
on two projections: in the first, nodes denote drugs which have connecting edges if
they share a common target, while in the second projection nodes denote protein
targets which are connected if they share a common drug. The analyses of these
networks revealed that drug targets tend to have a higher degree (number of con-
necting edges) than other nodes, and therefore are implicated in more cellular inter-
actions. Additionally, they observed that most new drugs are associated with
previously targeted network neighborhoods. Ma’ayan et al. (2007) used a bipartite
network connecting drugs and drug targets, overlaid on protein–protein interaction
data to show that drug target proteins are primarily located in the cellular membrane.
Another important observation derived from the topology-based studies is that net-
work centrality or node degree measures should not be the sole factors for the
detection of new target proteins. Although such measures indicate essentiality of
respective protein nodes, perturbation induced by drug treatment on the respective
protein targets could induce significant undesired effects on the downstream cellular
processes. Hwang et al. (2008) instead proposed targeting proteins which are bridging
nodes with less regulatory effects on pathways (fewer interacting connections), but
located in network positions where their disruptions would result in information flow
prevention.

More recently, Mitsopoulos et al. (2015) identified sets of topological and
community properties characterizing druggability of target protein nodes and
neighborhoods and highlighted differences between cancer and non-cancer drugs.
To this goal they used protein–protein interaction data enriched with drug-target
information and built sets of predictors based on the network topology descriptors.
Machine learning methods such as random forests, gradient boosted machines, and
generalized linear models were then utilized to computationally validate their drug–
target interaction predictions. In Li et al. (2015) authors define a computational
framework based on the guilt by association principle and network topology fea-
tures, which allows them to identify a large number of potential drug targets, among
which some are associated with diseases such as the Torg-Winchester syndrome
and rhabdomyosarcoma. Under the guilt by association assumption, a target protein
and a drug are likely to interact if the majority of the protein’s neighbors (which
share direct interactions with the target protein) in the network can interact with the
drug. The authors use a predictive model based on the random forest algorithm and
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feature sets consisting from node and edge weights in a bipartite network model
(containing protein–protein, drug–target and drug–drug interactions).

2.3.2 Identification of Drug Targets Based on Integrative
Network Approaches

The task of identifying drug targets from genome-wide data can be helped by the
integration of additional data such as drug chemical structure, target protein
sequences, known drug–target interactions, or information about drugs’ side effects.
As in the case of MoA characterization, the incorporation of such complementary
data can help in adding more biologically plausible context to the models, reduce
bias induced by incomplete information and enhance the search space for the
computational algorithms deriving the predictive models.

Campillos et al. (2008) proposed a method incorporating information on drugs’
side effects from drug package inserts into a drug–target network in order to define
a phenotype-based similarity metric. The side effect similarity metric was combined
with a 2D chemical similarity metric based on the Tanimoto coefficient into a
probabilistic framework under which to infer the probability of two drugs inter-
acting with the same target. The method was used to derive new targets for existing
drugs, and the authors validated using in vitro assays 13 drug–target interactions
predicted by their method. However, the main limitation of such an approach was
that it could only be used on marketed drugs for which side effect information was
available.

Based on the same experimentally validated assumption that similar drugs
interact with similar target proteins, Chen et al. (2012) integrated a composed drug–
drug similarity metric based on drug chemical structure similarity and targets
known to be shared by pairs of drugs, a target–target similarity metric based on
protein sequence similarity, and a known drug–target interaction network. The
authors then implemented a random walk with restart on the resulting bipartite
drug–target network to predict potential drug–target interactions. Thus, a target can
be predicted even if the investigated drug has no known targets, based on similar
drugs and their known targets. The random walk was implemented using transition
matrices from target network to drug network and inter-transition matrices indi-
cating the probability of walks from drug to drug (or target to target). Based on this,
a probability of finding the walker at node i at step t + 1 based on the position at
node j at step t can be determined iteratively. The approach was used to predict drug
target interactions for four classes of datasets (enzymes, ion channels, G protein
coupled receptors and nuclear receptors). Results were validated using gold stan-
dard datasets from public databases.

Cheng et al. (2012) combined three supervised inference models to predict drug–
target interactions. Namely, the network-based inference (NBI) relying on drug–
target bipartite network topological similarity was used in conjunction with a
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drug based similarity inference (DBSI), which relies on 2D chemical similarity
between drugs and drug–target interaction information, and a target-based similarity
inference (TBSI), relying on target sequence similarity and drug–target interaction
information, to predict associations between drug–target pairs. DBSI and TBSI
incorporated information from the chemical and genomics space, respectively,
while NBI was based solely on network topology features. The authors highlighted
the performance of NBI inference, superior to the other inference methods. The
predicted targets were validated using in vitro binding assays. The approach indi-
cated polypharmacological effects on five drugs (montelukast, diclofenac, simvas-
tatin, ketoconazole, and itraconazole) and suggested repositioning potential of these
drugs, which was further validated experimentally.

An interesting approach has been recently proposed by Isik et al. (2015), which
investigated the transcriptome perturbations in conjunction with functional inter-
action network information to reveal effects induced by drugs binding to their
targets. They derive a new measure for target prioritization, termed local radiality,
which is able to identify more diverse targets, with fewer neighbors, and conse-
quently, possibly fewer side effects. They validate the results based on ROC
analysis using test datasets from other approaches.

A large number of other network-based and machine learning-based methods
have been developed recently, most of them following broadly the same paradigm,
as shown in Fig. 2.2: enrich existing networks of known drug–target interactions
with information from chemical and/or genomics spaces and learn various

Fig. 2.2 Schematic of target identification approaches in systems pharmacology
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supervised or semi-supervised models in order to predict novel interactions. For
example Yamanishi et al. (2008) used a kernel regression method to learn chemical
and genomic space models and demonstrate correlation with pharmacological
space. Yuan et al. (2016) used a similarity approach based on ensemble learning
methods to incorporate chemical and genomic space similarity as components into
ensembles of learning to rank, while Yamanishi et al. (2014) created a web based
engine (DINIES) using supervised learning and relying on similarity matrix kernels
(learned from drug, side effects and protein domains) to predict interactions on test
sets. Another recently developed web-based tool is TarPred (Liu et al. 2015), which
besides predicting targets is also able to provide disease indications and predict side
effects.

2.3.3 Network-Based Polypharmacology

It is often the case that methods developed for predicting new drug target inter-
actions naturally yield combinations of potential targets (often protein complexes or
whole sub-pathways), which naturally classifies them as polypharmacology
approaches. Polypharmacology accounts for the important and increasingly
accepted concepts that (i) complex diseases tend to be associated with multiple
target proteins, and (ii) drugs commonly work by targeting several off-targets,
besides the primary target (Xie et al. 2012). Accounting for the polypharmacology
properties of drugs has the potential of increasing drug efficacy and overcoming
drug resistance and toxicity, thus, the approaches capable of developing multiple
target drugs, as well as research in drug combination based on network approaches
have received increased attention recently.

An example is the method developed by Yang et al. (2008), which developed a
computational framework for inferring multiple targets and suggest optimal com-
binations of target intervention. Their method, named multiple target optimal
intervention (MTOI), searches systematically for effective points of intervention in
a disease-based network to restore it to a desired normal state. MTOI relies on a
procedure for perturbing the disease network and optimize it toward the desired
state based on a Monte Carlo simulated annealing optimization algorithm (MCSA).
The disease network is defined as a collection of concentrations of proteins and/or
metabolites, or other relevant temporal-based information. Such a network is usu-
ally obtained from experimental data on patients or cells in abnormal/disease
condition. The desired network is defined as the physiological steady state network.
The information and related perturbations are modeled using differential equations
and MCSA. The authors applied it to an inflammation based network, the arachi-
donic acid metabolic network, and derived a combinatorial intervention based on
anti-inflammatory drugs.

Other network based polypharmacology studies include that of Cheng et al.
(2012b), which extended their previous method (Cheng et al. 2012a) and proposed
two different weighted network-based inference methods using four similarity
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metrics for predicting multiple chemical–protein interaction. Under this framework
they investigated the polypharmacology of five approved drugs: imatinib, dasatinib,
sertindole, olanzapine, and ziprasidone. Zhao et al. (2013) used a composite net-
work built from protein–protein interactions and gene regulatory databases onto
which Gene Ontology and side effect information was overlaid. Drug–drug pairs,
for which the addition of a pair member was reported to result in reduced side
effects of the other drug, were exhaustively searched for. Random walk was then
used to determine interaction subnetworks between drug pairs, in order to identify
nodes that would be preferentially affected by specific interactome perturbations.
Following this approach the authors were able to predict drugs which combined
with rosiglitazone (an efficacious antidiabetic drug associated with increased
myocardial infarction), would mitigate its myocardial infarction risk. Additionally,
they predicted that the mitigating effect of exenatide in conjunction with rosigli-
tazone could occur through clotting regulation. Additional polypharmacology-
related approaches are presented extensively in review studies (Reddy and Zhang
2013; Medina-Franco et al. 2013).

It must be noted at this point that usually there are significant overlapping areas
between approaches attempting drug–target interaction prediction,
polypharmacology-related methods and methods having as goal repositioning
strategies for existing drugs. It is often the case that, due to the limited available
resources on drugs, target-identification methods are restricted to predict alternate
targets for drugs with already known targets, which is essentially a drug reposi-
tioning approach. This is the case with methods developed in Campillos et al.
(2008) and Cheng et al. (2012a) described above. The same stands for studies
investigating drugs MoA, which commonly have as byproduct multiple
genes/proteins, often representing entire sub-pathways identified as target of a
specific drug (Iskar et al. 2013; Chen et al. 2011), which could be seen as
polypharmacology studies. In turn, the search for polypharmacological features
naturally leads to new uses for combinations of known drugs, thus providing
support in drug repositioning (Chen et al. 2015).

2.4 Network-Based Drug Repositioning

Drug repositioning research has gained significant momentum in recent years due to
the pressing needs to reduce costs of developed drugs while increasing efficacy, but
also due to large-scale funding programs launched by governmental organizations,
such as the National Center for Advancing Translational Sciences and FDA in US,
and the Medical Research Council in UK (Li et al. 2016). Drug repositioning is
inherently linked to a better understanding of the molecular context underlying
specific phenotypes and of the mechanisms of action of drugs, which are additional
reasons for drug repositioning approaches to be flourishing with the advent of
systems pharmacology.
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A ubiquitous feature in network-based drug repositioning is the presence of a
disease-related component, since finding associations between drugs and protein
targets in a disease context, is the modus operandi in such studies (Wu et al. 2013).
Therefore, three level drug–target–disease networks are a common occurrence in
modern drug repositioning research. Effective network-based approaches typically
aim at accurately modeling the cause-effect paradigm which is dominating the
current view on disease etiology and drug mechanisms of action: disease originates
from abnormalities of one or more (usually genetic) factors and the observed
phenotypes are the effect of disease development. Similarly, drug action originates
from the drug–target binding and the terminal effect of the drug intake are the drug
indications and side effects, which can be seen as drug phenotypes. Along these
cause-effect paths, molecular activities induced by drugs and diseases may be
observed using high throughput transcriptional and proteomic data, which can be
viewed as snapshots of the disease development stages or of drug activity, and
consequently be used to model drug–disease associations (Li et al. 2016). From this
perspective drug repositioning studies can be categorized as being molecular profile
based or phenotype profile based.

2.4.1 Drug Repositioning Based on Molecular Profiles

Generally, drug repositioning approaches based on molecular profiles of drugs
and/or diseases rely on the so-called reversed signature hypothesis: if the molecular
profile of a drug is opposite to that of the disease, then the drug has the potential to
be used in treating that disease (Wu et al. 2013; Li et al. 2016). Work in this area
typically follows the now standard procedure in systems pharmacology: first con-
struct a background interaction network from protein–protein interaction databases,
pathway databases, protein–DNA interaction databases, and/or other interaction
resource available. Then contextualize the initial network, for example by adding
weights to the edges leveraging gene expression data from sources such as CMap,
LINCS, or GEO, or enriched with data from various other sources (GO, KEGG,
etc.). Subsequently, various computational models and algorithms can be used to
extract parts of the contextualized networks (response subnetworks or
sub-pathways) which maximize the biological relevance related to disease–drug
associations (Fig. 2.3).

Following such an approach, Jin et al. (2012) created their interaction network
from signaling pathways in PID and BioCarta databases, onto which they overlaid
transcriptional data from CMap and subsequently searched for network motifs
(sub-pathways) involved in response to cancer drug treatment. These sub-pathways
are connecting the disease genes (retrieved from OMIM) to known signaling pro-
teins. They used Bayesian factor regression to uncover such driver sub-pathways
bridging drug targets to the disease response signatures. The driver sub-pathways
and the drug’s effects on them were found simultaneously. The effect of drugs on
each sub-pathway was quantified and summarized into drug–disease signature
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profiles. Then, ranked repositioning profiles for each of the drugs were created and
repositioning potential derived accordingly, using support vector regression.
Several high ranking drugs from their analysis were suggested for repositioning in
cancer therapy based on the ability to enforce retinoblastoma-dependent repression
of important E2F-dependent cell-cycle genes (Jin et al. 2012). Additionally, their
method was able to accurately predict responses to more than 90% of the FDA
approved drugs and 75% of experimental drugs.

In another study, Gottlieb et al. (2011) utilized multiple heterogeneous sources
of evidence which were integrated into a protein–protein interaction network: drug
targets, drug side effects, protein sequence and GO annotations, expression profiles
and disease phenotype data. They defined several profile-based similarity measures
for drugs and diseases: chemical structure based, protein and genetic sequence
based, phenotype based, side effect based, network topology based and GO
annotation based. The similarities measures were subsequently combined into
association scores and used as features for a logistic regression classifier to identify
novel drug indications.

Lee et al. (2012) constructed a tripartite drug–protein–disease network based on
a large integrative database incorporating drug targets, disease-associated proteins,
protein interaction, and pathway data. To explore drug–disease associations within
the network they used an in-house algorithm called shared neighborhood scoring.
This algorithm allowed them to predict drug–disease pairs based on the guilt by
association principle that unlinked pairs which share significant numbers of
neighbors with strong relationships between them could be confidently linked. They

Fig. 2.3 Typical drug repositioning workflow
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used this approach to suggest as repositioning candidate for lung cancer treatment
the high blood pressure drug benzthiazide.

Zhao and Li (2012) also used a drug–protein–disease network and developed a
Bayesian partition method to retrieve drug–protein–disease modules which were
closely connected. The authors started from a comprehensive protein–protein
interaction network assembled by integrating data from several databases.
Subsequently, information from disease–genes relations from OMIM and drug–
target interactions from DrugBank were mapped onto the protein–protein interac-
tion network. Then, gene–drug paths were computed to reflect the network distance
between a gene and each drug’s targets. Similarly, gene–disease closeness was
estimated to reflect the network distance between a gene and each disease-related
genes. Based on these network distances drug-gene-disease modules were identified
using a Bayesian partition method. The approach was used to infer drug–disease
associations, and suggest new drug applications for anti-asthma drug pranlukast
(repositioned for treating cancer metastasis) and cardiovascular stress-testing agent
arbutamine (repositioned for treatment of obesity).

Based on the same strategy of searching for closely connected modules (whose
members are more likely to be functionally related) within drug–protein–disease
networks, Daminelli et al. (2012) implemented a method that searches the network
for bi-cliques motifs. In their case bi-cliques are subnetworks in which every drug is
linked to every target and disease. They initially built large bipartite networks from
various public databases in which drugs, targets, and diseases are linked by drug–
target associations and drug-disease associations. Subsequently, network analysis
based on power graphs was employed to search for incomplete cliques in the
network. Bi-cliques connected by common drugs are thus identified from the
bipartite network. Consequently, resulting incomplete bi-cliques’ completion is
used to predict novel links from drugs to targets and diseases, respectively, thus
allowing the authors to simultaneously suggest reposition for drugs and predict a
drug’s off-targets. The approach allowed the authors to suggest and computationally
validate repositioning for nine cardiovascular drugs for treating parasitic diseases.

Other approaches on drug repositioning based on molecular profiles are those of
Iorio et al. (2010) who, as presented in Sect. 2.2, built a drug–drug network in
which drug nodes were linked based on similarity measures derived from ranked
gene lists. Their work, developed primarily for MoA discovery, suggested that
fasudil, a vasodilator used in stroke, would be effective in treatment of autophagy,
which is a major process in cancer. Another work based on molecular profiles and
which links MoA to drug repositioning is that of Iskar et al. (2013), also described
in Sect. 2.2 above, which identified conserved drug-induced modules from tran-
scriptional profile data and enriched the modules with information from various
other databases. Module membership was then used to induce novel indications for
existing drugs, predictions which were further validated experimentally.
Vasodilator vinburnine, topical antifungal sulconazole, and cardiac stimulant
mephentermine were all suggested as candidates as cell-cycle inhibitors in anti-
cancer therapy.
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In a very recent work Guney et al. (2016), propose an innovative approach
which transcends the drug repositioning area, having possible applications also in
drug MoA elucidation as well as drug-target identification areas. The authors
introduce the concept of drug–disease proximity based on shortest paths between
target and disease associated genes within the interactome. They argue that prox-
imity to disease small neighborhoods is a good proxy for describing therapeutic
effect and improve the accuracy of drug repositioning predictions. Following this
approach they explain why HIV drug plerixafor is repurposed for non-Hodgkin’
lymphoma and provide potential repositioning candidates for rare diseases.

A recent trend is the use of noncoding RNAs, such as miRNA, as therapeutic
agents due to their regulation of cellular processes implicated in disease. As a
consequence, drug repositioning strategies considering miRNAs are also attracting
significant interest. Liu et al. (2014), devised an approach for identifying reposi-
tioning candidates for cystic fibrosis based on miRNA-transcription factors feed
forward loops. The loops are essentially motifs in a regulatory network with con-
nectivity patterns occurring more frequently than in control networks, and therefore
could be seen as response subnetworks. Using GEO expression data, gene-miRNA
relationship data, protein interaction, and drug-miRNA interaction data as well as
disease-related gene data from public databases, they built regulatory networks
which were searched for feed forward loops implicated in cystic fibrosis. They
found 48 drugs showing ability to perturb the expression of miRNAs which are part
of loops implicated in cystic fibrosis, and which were suggested for repositioning.
Similarly, Jiang et al. (2012) have developed a method that searches for modules in
a drug-miRNA human cancer network built from CMap data, miRNA target gene
databases and enriched with GO annotations. Using hypergeometric tests on the
retrieved modules they suggested that 2-deoxy-D-glucose (2DOG) is a candidate
for treating thyroid cancers.

2.4.2 Drug Repositioning Based on Phenotypic Profiles

Drug repositioning approaches based on phenotypic profiles typically rely on the
principle that, if a drug shares similar side effect profile with a set of drugs pre-
scribed to treat a specific disease, then the respective drug can be considered as a
candidate for treating that disease (Wu et al. 2013). Since drug side effects are
usually generated when drugs bind to off-targets (known or unknown), and hence
perturb metabolic or signaling pathways, it is expected that the side effect profile of
drugs may reveal relevant unknown information pertaining their MoA, and hence
assist in repositioning.

One of the first works following this principle was that of Campillos et al. (2008)
which, as already described in Sect. 2.3.2 used a side effect similarity profile
incorporated into a drug–target network to infer probability of two drugs sharing the
same target. Based on this, authors identified phenotypic associations between
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nootropic drug donepezil and antidepressant venlafaxine and suggested a new
market use for donepexil in treating depression.

In another work, Yang and Agarwal (2011) used a disease–side effect network
by combining drug-disease associations with drug–side effect associations from
PharmGKB and SIDER databases, respectively. Subsequently, they used Naïve
Bayes predictors trained on relations between side effect and disease for predicting
new indications for drugs. Following this approach they predicted that drugs
associated with increased immune response, such as ticlopidine and ACE inhibitors
are potential candidates for treating stroke. Ye et al. (2014) used a side effect-based
similarity measure to connect drugs into a drug–drug network and searched for
subnetwork neighborhoods enriched with drugs having a specific therapeutic
indication. They used the guilt by association approach to assign a new indication to
drugs present in the same subnetwork. They suggested a number of candidate drugs
for repositioning, among which the analgesic drug tramadol and Parkinson’s drug
tolcapone in treating depression.

One of the problems related to guilt by association approaches is that they often
enforce restrictions on the search space by only considering most similar drug,
discarding possible useful information embedded in the whole dataset. Bisgin et al.
(2014) used the assumption that all phenotypes in the phenome (both drug indi-
cations and side effect) are interconnected with a probabilistic distribution and used
a probabilistic generative model for their analysis. They used a Bayesian based
model, the Latent Dirichlet Allocation (LDA) to uncover links between drugs and
phenotypes, which are actually novel indications. Links are encoded into condi-
tional probabilities. Although their method does not explicitly make use of bio-
logical networks, the LDA model they chose can be represented as a tripartite
network constructing paths from drugs to phenotypes via connections across latent
variables. They suggested new treatment options for all 908 drugs in their study,
among which some were confirmed by literature validation, e.g., influenza A drug
amantadine’s use for treating epilepsy.

Finally, we must note the development in the recent years of several web servers
and open-source packages for the specific goal of drug repositioning, which inte-
grate resources covering both molecular profile and phenotype-based approaches.
With some variations, they all rely on the integration of heterogeneous data sources
to build the interactome network, and incorporate some of the previously published
similarity measures. Among the most popular are the PROMISCUOUS (Van
Eichborn et al. 2011), DRAR-CPI (Luo et al. 2011), DMAP (Huang et al. 2015) and
ksRepo (Brown et al. 2016). PROMISCUOUS integrates relations between drugs,
targets, and side effects and uses drug structural similarity and side effect similarity
measures. It allows users to search by single drug ID queries or perform
network-based exploration given a set of drugs and targets. DRAR-CPI only uses
chemical structure in the chemical-protein interactome to predict network based
drug–drug associations and produce lists of drugs which share similar interaction
profiles and side effect information with the query drug. DMAP combines both
chemical-protein interactome, protein–protein interactions, transcriptional profiles,
and phenotype data (disease indications) to build a directional weighted interactome
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network. They use already published gene similarity (Iorio et al. 2010) and drug
similarity measures to derive a guilt by association model based on the
Kolmogorov–Smirnov enrichment (Lamb et al. 2006) to predict novel indications
for drugs. ksRepo is a recent open-source software package implemented in R
which proposes a generalized methodology enabling integration of transcriptional
profiles from various platforms (including RNA-seq). Their method is based on
disease transcriptional profiles and gene–drug interactions (available from any user
desired source). They implement a variant of the Kolmogorov–Smirnov enrichment
to compare single instances (disease transcriptional profile) with multiple drug–
gene interaction lists and then derive scores which reflect disease–drug associations
based on the transcriptional profiles.

2.5 Network-Based Side Effect Modeling and Prediction

Drug side effects are among the most important factors to be considered in drug
design. Recent studies estimated side effects to be the major reason for drug dis-
continuation in first phase clinical trials and second most common cause of drug
attrition overall (Hornberg et al. 2014). Therefore, computational approaches for in
silico prediction of side effects are highly relevant, and currently under consider-
ation by the pharmaceutical industry in their effort to complement the high
throughput in vitro screening of newly developed drugs (Bowes et al. 2012).

Side effects are the result of promiscuous binding behavior of the majority of
drugs, which in addition to their primary targets can interact with different affinities
with many off-targets (Paolini et al. 2006). This way they potentially perturb many
signaling and metabolic pathways eliciting both therapeutic effects and unwanted
physiological responses. These signaling and metabolic pathways are often partially
overlapping, thus producing synergistic or canceling consequences. Currently, there
are several important observations and hypotheses which guide research in this
area: different drugs can share similar side effect profiles as a result of sharing
similar toxicological pathways or networks, which is an extension of the obser-
vation that the result of drug on-target and off-target binding behavior is a per-
turbation that is relayed downstream to partially overlapping (cross-talking)
pathways (Bai and Abernethy 2013). This is related also to the principle which
states that if a drug shares similar side effect profile with a set of drugs prescribed to
treat a specific disease, then the respective drug can be considered as a candidate for
treating that disease (Wu et al. 2013). The recent observation that network neigh-
borhood of drug targets is a major determinant of side effect similarity profiles of
drugs comes as a corollary to the previously enounced principles (Browers et al.
2011). Consequently, the development of in silico methods for side effect prediction
is significantly benefiting from the increased interest in the area of drug–target
prediction.

The computational approaches based on network analysis aiming at predicting
drug side effects and modeling their generation mechanisms can be broadly
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categorized as being chemical-based and pathway-based. Both types of approaches
heavily use the two important concepts in network modeling: that of network
neighborhood (which define areas of the network with inter-related and coherent
functional properties), and that of similarity (which is defined on various chemical,
genomic or ontology features to reflect proximity between network nodes or
neighborhoods).

2.5.1 Approaches Based on Chemical Structure

Chemical-based approaches generally attempt to relate chemical structure of drugs
to their side effects, based on the basic observation that similar ligands interact with
similar proteins. Thus, based on the backbone consisting of drug chemical structure,
protein structure and information on drug–target interactions and incomplete drug–
side effect association, models can be built to predict novel drug–side effect asso-
ciations. Some examples include the work of Schreiber et al. (2009) which
developed a method integrating various sources on chemical substructures and
information on side effects to find large-scale structure–side effect associations. In
their network they linked side effects based on correlations between drug chemical
features. Their aim was not a mechanistic understanding of side effect causes but
rather drawing a global picture of how different types of side effects may be linked,
with the goal of defining possible filters for screening drug compound candidates.
Similarly, Pauwels et al. (2011) used sparse canonical correlation analysis (SCCA)
to predict side effects and associate them with correlated ensembles formed by
chemical substructures. Yamanishi et al. (2010) proposed a unified framework,
based on the integration of chemical, genomic, and pharmacological data (and the
related similarity measures) with the topology of drug–target interaction networks.
Within the framework of supervised bipartite network inference, using a regression
approach, they were able to predict the side effect profiles of candidate drug
compounds, as well as interpret drug–target interactions. In a subsequent study,
they suggested several extensions to the kernel regression model for multiple
responses in order to optimally integrate the heterogeneous data sources (Yamanishi
et al. 2012). Based on this approach they were able to predict rare side effects for
molecules in DrugBank with no available information in SIDER, such as ovarian
cyst, breast tenderness, and melisma for synthetic progestational hormone drug
lovonorgestrel, which were further validated based on literature.

Mizutani et al. (2012) used the co-occurrence of drugs in protein-binding profiles
and side effect profiles to extract correlated sets of drug targets and side effects,
using SCCA. They used a drug–target interaction network and enrichment analysis,
using KEGG and GO data, to show that the retrieved correlated sets were signifi-
cantly enriched in the same biological pathways, despite having different molecular
functions. A biologically relevant interpretation of their results suggests that
extracted side effects can be seen as possible phenotypic outcomes of drugs tar-
geting proteins that appear in the same correlated set (i.e., having similar
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structures), thus reinforcing the principle mentioned in the previous paragraphs
which states that target neighborhood is a predetermining factor for side effects
similarity. Their side effect predictions include tremor, constipation, and dry mouth
for antihistaminic drug cinnarizine, all of which were confirmed by literature of
FDA reports.

Atias and Sharan (2011) combined the SCCA with a diffusion model based on
side effect similarity networks. Their approach uses SCCA to project correlated
structure-side effect data into a lower dimensional space. This projection is then
used to predict side effects. Subsequently, using a query drug and a diffusion model
on side effect similarity networks they obtain ranked list of side effects. Their
validation scheme was based on a large-scale blind test based on 448 drugs from the
Hazardous Substances Data Bank. The approach was able to predict correct side
effects in the top 5 ranked predictions for >56% of the drugs in the database.

Lounkine et al. (2012) first used a chemical structure similarity metric, named
the similarity ensemble approach (SEA), to predict targets among a set of proteins
and subsequently develop a guilt by association metric that links the new targets to
the side effects of the related drugs, virtually creating a drug–target–side effect
network. For predicting drug target–side effect association they used an enrichment
score based on co-occurrence of pairs that were more common than expected by
chance, coupled with a statistically significant threshold. Based on this approach,
authors predicted epigastralgia as side effect associated with chlorotrianisene, a
synthetic non-steroidal estrogen. Interestingly, the off-target protein for this drug,
predicted by authors, COX1, bears no sequence or structural similarity with the
drug’s primary target (the estrogen nuclear hormone receptor) but cross-activity
between the targets is suggested by ligand similarity.

In a recent study, Wang et al. (2016) depart from the target-based approach that
currently dominates the drug side effect prediction field. Their approach aims at
avoiding the bias induced in the analysis by the incomplete knowledge on drug
targets by combining chemical structure information with transcriptional profiles
from LINCS database. They use feature sets created from signature transcriptional
profiles for each drug instance, cell morphological profiles, drug chemical structure,
and enrichment analysis to train a machine learning classifier based on extra trees.
The most predictive classifiers are then used to shed light on the mechanisms of side
effects.

Interesting insights into the factors contributing to drug side effect resulted from
the approach presented in Wang et al. (2013), where authors use a structurally
resolved interaction network to systematically examine relationships between drug
associated side effects and drug targets. They use a generalized linear regression
model and show that it is the number of essential targets (proteins which are critical
for cellular survival), and not the total number of targets, that determines the side
effects of drugs. Additionally, they highlight several key network topology char-
acteristics of drug targets that are highly correlated with increased side effects
profiles. They noted that high node degree (number of interactions for a target) and
betweenness (the number of shortest paths between other proteins in the network
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passing through the target protein), as well as highly shared interaction profiles are
more likely to result in an increase in the number of side effects.

2.5.2 Approaches Based on Pathways/Sub-pathways

Pathway-based approaches relate drug side effects to perturbed biological pathways
or sub-pathways which contain drug target proteins. Consequently, they train
models on the molecular interaction networks built from various data sources (such
as drug–target interactions, gene/protein–disease—drug–side effect connections, or
drug–drug interactions) in order to predict side effects for unknown drug–side effect
associations based on underlying network motifs. The models thus derived are able
to provide mechanistic insights into the side effect generation process.

Lee et al. (2011) used an enrichment score to define drug-biological process
associations based on CMap transcriptional profiles and GO ontologies and sub-
sequently built multilevel biological process–drug–side effect network to discover
relationships between biological processes and side effects, using drug information
as a bridge. For this purpose they employed a co-occurrence-based scoring
accounting for how many drugs shared the same side effect in a specific biological
process. Bauer-Mehren et al. (2012) use a two-step framework for biological
annotation of side effects with relevant pathways. They search for drug–target and
target–side effect associations and then compare these associations to derive drug–
side effect links. In a subsequent step they substantiate the found associations using
pathway information from Reactome database.

Li et al. (2012) used a bipartite drug-metabolic sub-pathway network build after
identifying sets of drug-induced differentially expressed genes from CMap and
pathway enrichment analysis. By analyzing drug–sub-pathway associations they
uncovered that drugs share similar indications and side effect if they are associated to
same sub-pathways. Additionally, an increase in the number of sub-pathways shared
by drugs correlates with increased numbers of common side effects. Overall, their
study confirms the idea that important therapeutic and side effect related mechanisms
are relayed through sub-pathways, which are smaller regions of pathways, and may
be overlooked by whole pathway-based methods. In a related study highlighting the
importance of subnetwork-based approaches, Zhao et al. (2013), proposed an
approach for identifying drug combinations to mitigate side effects. To this goal they
used a human interactome network built from protein–protein interaction databases
and then searched for subnetworks enriched with sets of related GO biological
processes annotations. Interactions between drug pairs based on their targets were
searched using a random walk method and correlated with information on their side
effects. As mentioned in Sect. 2.3.3, following this approach they were able to
predict the mitigating effect of exenatide on rosiglitazone’s myocardial infarction
side effect and explain that this could occur through a clotting regulation mechanism.
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Another subnetwork-based approach was followed by Lorberbaum et al. (2015)
which also used an initial interactome network created from protein–protein inter-
actions. Their initial network was pruned based on data from several sources and
biological levels, such as to highlight subnetwork modules with mechanistic con-
nections to phenotypes. Their subnetworks were enriched in putative side effect
mechanistic pathways and, subsequently, drugs were assigned to subnetworks where
their targets were present. Then, subnetworks were used as features in a random
forest-based classifier trained to predict whether a given drug will cause side effects.

A number of other approaches combine pathway-based analysis with informa-
tion related to chemical structure of drugs and their target proteins for a holistic
view on mechanisms generating side effects. Examples include the works in
(Wallach et al. 2010; Fan et al. 2012), which use pathway information and in silico
virtual docking to identify off-targets of drugs and link them to biological pathways.
In (Liu et al. 2012), authors integrate information on drug chemical structure with
pathway information and phenotypic characteristics of drugs including indications
and side effect. They used a machine learning-based approach to build and evaluate
the side effect prediction model. Similarly, Kuang et al. (2014) used a number of
structural features of drugs integrated with network topology features of the drug–
side effect association networks (constructed using correlation based methods) to
build classifiers able to predict side effects.

Recently, Cao et al. (2015) integrated multiple data sources such as chemical
structure, sequence, transcriptional profiles, ontology and pathways and defined
multiple similarity measures based on these data types. Additionally, network
topology-based similarity measures were defined, including nearest neighbor and
path-based measures, using a drug–side effect network. Classification features were
constructed from these similarity measures based on collaborative filtering, and a
multiple evidence fusion algorithm was used for creating a multiscale predictor for
side effects.

As in the case of the other application areas of systems pharmacology, a number
of web servers were created for enabling the prediction of drug’s side effects. The
most popular among these are: IntSide (Juan-Blanco et al. 2015), which is a hybrid
approach incorporating both structural and pathway information to provide mech-
anistic insights into drug–side effect associations. Dr. Prodis is a structure-based
tool which implements several structure-pocket and structure–structure comparison
procedures. Besides predicting drug side effects, it produces also drug–target
interaction predictions, as well as associations between drugs and diseases
(Zhou et al. 2015).

2.6 Current Challenges and Future Considerations

Despite the great promise, systems pharmacology approaches face a number of
challenges while scaling from pre-clinical setting into clinical applications. A major
hurdle is the bias caused by incomplete knowledge. For example, network-based
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models tend to bias to the targets with more known associated drugs, and even if
current studies, such as the one in Wang et al. (2016) attempt to balance their
models by incorporating sources of evidence from different biological levels, such
as chemical structure, lack of adequate high resolution structural data for targets
may induce further problems. However, recent progress in both experimental and
computational methods in the area of structural genomics holds the promise to
significantly improve the structural coverage. Another limitation of almost all
network-based approaches, especially those relying on searching paths across the
network is that they cannot provide predictions (e.g., for drug–target pairs) when
missing information hampers the identification of reachable paths in the network.
Network-based methods need to adequately address these aspects in the future.

Another important issue is that of the amounts of data at multiple scales needed
to build accurate predictive models in the context complex disease heterogeneity.
And whether the incorporation of such specialized data will still produce models
with decent generalization performance, given for example an individual with
unobserved new mutation. Current approaches treat insufficiently the problem of
inter-subject genetic variability, which is a crucial step toward the goal of precision
medicine. Among the other challenges worth mentioning are the lack of structured
gold standard, especially in the applications related to drug repositioning and side
effect prediction. Ideally, in silico experimental results should be integrated into the
drug design validation pipeline and tested in binding experiments, cellular assays or
animal models for not only providing filters for initial candidate lists, but also
retrieving false positives that could be further used to refine the algorithms. While
in the case of drug-target prediction and MoA characterization, the results provided
by predictive models can be easily tested experimentally, for drug repositioning and
side effect prediction it is often the case that genomic responses in animal models
vary significantly when compared to human models. Therefore, additional care
must be taken for thorough training and testing of the predictive models. From this
perspective, the availability of extensive secondary use data from patients electronic
health records, presents researchers valuable resources for performing ‘retrospec-
tive’ experiments on human subjects in clinical settings (Lorberbaum et al. 2016).

Another aspect is that, despite the increased predictive power generated by the
incorporation of multiscale heterogeneous data into the network and statistical
models, there still is the question of how relevant it is to discover new knowledge
from static statistical models, under conditions that are constantly changing. Under
drug treatment, a disease state is not static, but evolves through successive states
while responding to the drug-induced perturbations. When sufficient data are col-
lected to successfully build a model describing one disease state, the disease may
already be in a different state from the one used to build the model. In such a
dynamic situation, a data-driven model is essentially retrospective and not
prospective (Xie et al. 2014). Presently, very few methods that offer dynamic
resolution are used in systems pharmacology. One such approach is that of (Bansal
et al. 2006) where an algorithm called Time Series Network Analysis (TSNI) was
proposed to infer targets of antibiotic norfloxacin based on time series transcrip-
tional profiles experimental data. As more time course experimental data is bound
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to be produced, dynamic methods such as CHRONOS (Vrahatis et al. 2016a),
described in Chap. 3 could become prevalent. CHRONOS can be easily tailored to
provide a framework for studying sub-pathways activated by drugs, or other ther-
apeutic molecules, at specific drug treatment stages. Additionally, such an approach
could be adapted to identify sub-pathways perturbed during disease progression and
optimal time points for drug treatment could be inferred.

The evolution of network and pathway-based approaches used in systems
pharmacology has followed a journey starting with methods based on overrepre-
sentation, or enrichment analysis, which use statistical tests to find sets of genes in a
particular pathway among the (usually differentially expressed) genes under study
(Khatri et al. 2012). A second generation of approaches uses gene-level statistics
(e.g., identifying individual differentially expressed genes) and then aggregating the
gene-level statistics of all genes in a pathway into a pathway-level statistic or score,
such as the Kolmogorov–Smirnov statistic (Lamb et al. 2006; Iorio et al. 2010,
2015). The third generation of methods are topology based, thus allowing the
incorporation of information from various sources, beyond simple lists of genes
(Pan et al. 2014; Wallach et al. 2010; Fan et al. 2012). We believe the trend in
recent publications, which consider small regions of pathways (sub-pathways) with
specific topological features and which are activated by perturbations cause by
disease or drug treatment, is likely to follow and further expand. The development
of robust sub-pathway-based approaches able to provide useful insights into time-
and condition-specific activated sub-pathways (CHRONOS), and assist in identi-
fying disease perturbed sub-pathways [DEsubs (Vrahatis et al. 2016b), described in
Chap. 4] is therefore of utmost importance for future studies in systems
pharmacology.
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Chapter 3
Time-Varying Methods for Pathway
and Sub-pathway Analysis

Abstract This chapter presents in detail aspects related to pathway-based analysis
of time-varying biological processes. Biological processes are inherently dynamical
events involving genes and their products interacting within specific conditions.
Genes are modulated by systemic perturbations (e.g., genetic modifications or drug
treatments). Thus, monitoring the systemic response at multiple levels, in con-
junction with the temporal evolution, is crucial to understanding and modeling the
underlying biological phenomena in a comprehensive manner. The increasing need
for developing biological network and pathway analysis methods capable of pro-
viding fine temporal resolution is highlighted, in the context of decreasing costs of
high-throughput technologies which is expected to trigger a significant raise in time
course omics experimental data availability. Several important challenges involved
in this type of analysis are discussed, such as the conversion of pathway databases
information into graphs (or networks) in order to allow easier interpretation of
information and subsequent computational modeling, the contextualization of the
transformed pathway graphs using transcriptional data, the use of search methods
for the identification within graphs of paths highlighting the time dependent por-
tions of pathways, as well as the use of various network-based statistics or inter-
acting edge level metrics.

Keywords Pathway analysis � Linear sub-pathways � Nonlinear sub-pathways �
Dynamic analysis � Time varying sub-pathways � Pathway scoring

3.1 Introduction

Pathway-based approaches were initially developed considering whole pathway
features, either by means of enrichment analysis of univariate, gene level, statistics,
or of global, multivariate statistics defined on the entire list of genes within the
pathway. While initial results provided useful insights and aided the translation of
high-throughput expression data into biologically relevant knowledge, it has been
unanimously accepted that such approaches suffer from a number of shortcomings,
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ranging from sensitivity and noise in the data to loss of information contained in the
order of interactions between pathway genes, as well as disregard to the correlations
and overlap between pathways (Subramanian et al. 2005; Tarca et al. 2009; Chen
et al. 2011). As mentioned in the previous chapters, a recent trend in pathway
analysis is that of sub-pathway-based approaches. Investigating sub-pathways is
more relevant in interpreting the biological processes, since it is known that, fre-
quently, only some regions of pathways are dysregulated by disease, or involved in
drug-related perturbations, and sometimes in a transient manner. Pathways stored in
biological databases are collections of specific modules (or sub-pathways), each of
which are responsible for performing certain biological functions. These
sub-pathways may be shared among several pathways with the goal of performing
the biological role they are responsible for. Therefore, analysis considering whole
pathway features is bound to overlook and miss important aspects relevant to
phenotype response, whereas sub-pathway-based approaches provide the finer
resolution needed to represent relevant biological processes more accurately (Chen
et al. 2011).

The shifted focus toward sub-pathway-based approaches in recent years resulted
in a series of methods which all share the search for targeted, context-specific,
pathway portions, relevant to disease modeling, and drug targeting, namely
Subpathway-GM (Li et al. 2013), TEAK (Judeh et al. 2013), DEAP (Haynes et al.
2013), clipper (Martini et al. 2013), and many others (Chen et al. 2011; Jacob et al.
2012; Li et al. 2012, 2015; Nam et al. 2014; Sebastian-Leon et al. 2014). The
Subpathway-GM method is a representative example, in that it identifies key
metabolic sub-pathways based on integrated information from genes and metabo-
lites, taking into account their topological position within pathways and considering
cascade regions within the pathways. This is achieved by searching for similarities
of specific nodes within the pathway structure, termed signature nodes, and sub-
sequently searching for shortest paths between them (Li et al. 2013). Another
relevant method is the topology enrichment analysis framework (TEAK) (Judeh
et al. 2013), which extracts linear and nonlinear sub-pathways, and scores them
using the Bayesian Information Criterion to fit a context-specific Gaussian Bayesian
network (for condition specific sub-pathways), or the Kullback–Leibler divergence
(for differential sub-pathways between case and control conditions). Linear
sub-pathways are extracted by exhaustively searching for root to leaf linear paths
within a pathway, while nonlinear ones are found using an adaptation of the Clique
Percolation Method (CPM), which allows gene nodes to participate in multiple
sub-pathways and does not permit the existence of single cut nodes or cut-links
within retrieved sub-pathways. DEAP (Differential Expression Analysis for
Pathways—Haynes et al. 2013) exhaustively searches for paths within the pathway
graphs and uses each gene node’s differential expression to calculate maximum
absolute running sum score along catalytic and inhibitory edges. In doing so, DEAP
assumes that differential patterns of expression of paths within pathways are bio-
logically meaningful. Clipper (Martini et al. 2013) follows a slightly different
approach, in that it searches for paths of smaller parts (cliques) of pathways (instead
of paths along gene nodes) that are relevant for signal transduction. This is achieved
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in a two-step approach, which first decomposes the pathway graph into a junction
tree to reconstruct the most relevant signal path. In this initial step, the algorithm
selects significant pathways according to statistical tests on the means and con-
centration matrices of the graphs, using information from pathway topologies. In
the second step, signal paths are identified within these pathways, based on their
significant association with a specific phenotype.

An important aspect, which is not considered by the aforementioned
sub-pathway approaches, is that biological processes are inherently dynamical
events involving genes and their products interacting within specific conditions.
Genes are modulated by systemic perturbations (e.g., genetic modifications or drug
treatments). Thus, monitoring the systemic response at multiple levels, in con-
junction with the temporal evolution, is crucial to understanding and modeling the
underlying biological phenomena in a comprehensive manner. Therefore, there is
an increasing need for developing biological network and pathway analysis
methods capable of providing fine temporal resolution. The decreasing cost of
high-throughput technologies is triggering an increase in time course omics
experimental data availability, which opens new perspectives for pathway analysis.
At the same time, this results in significant challenges, in terms of extending
existing methods and developing novel approaches able to incorporate dynamic
features of the processes under study. An additional challenge is posed by the surge
in computational resources needed to accommodate this type of analyses.

Recently, a number of methods have been proposed to identify pathways and
sub-pathways with significant time-dependent profiles. TimeClip (Martini et al.
2014) adapts the earlier clipper approach (Martini et al. 2013) to identify the most
time-dependent portions of pathways. To this end, it combines principal component
analysis (PCA), regression, and graph decomposition in a two-step approach: in the
first step the entire pathway is searched for temporal variation by initially
decomposing the data using PCA and then fitting a trend model (polynomial of
degree 2) on the first principal component, whose coefficients capture existing
temporal behaviors. If a certain pathway is identified as time dependent through this
procedure, the algorithm decomposes it into a junction tree, having cliques as
nodes, highlighting the most time-dependent portions of the pathway.

TRAP (Jo et al. 2014) proposes an approach which merges time series extensions
of two classical pathway analysis approaches: over representation analysis (ORA—
Goeman and Buhlmann 2007) and SPIA (Tarca et al. 2009). TRAP first finds sig-
nificant pathways at each individual time point, using classical ORA (based on
hypergeometric tests to identify time point specificDEGs) and SPIA (to estimate node
specific perturbation factors), in order to derive a list of DEGs and of significantly
perturbed pathways. In the second step, the perturbation factors found by SPIA are
adapted so as to reflect the influence of upstream genes at previous time points on
downstream genes at current time points. The time-dependent perturbation factors are
then used as an aggregated measure to reflect the cascading effect of the perturbation
throughout the entire pathway and thus provide a pathway level statistic.

TimeTP (Jo et al. 2016) narrows the focus to perturbed sub-pathways by
leveraging cross-correlations between the gene expressions of nodes and uses a
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variation of the influence maximization algorithm, adapted from social network
analysis, to evaluate the perturbation influence of certain nodes within the path-
ways. Their approach models the direction of perturbation propagation and the
propagation delay using cross-correlation of genes’ differential expression vectors.
Then, paths are searched along edges which induce the shortest possible pertur-
bation delay. Subsequently, transcription factors regulating the identified perturbed
sub-pathways are considered as the seed nodes that maximize the spread of
perturbation.

A recently developed method, the time-vaRying enriCHment integrOmics
Sub-pathway aNalysis tOol—CHRONOS (Vrahatis et al. 2016), addresses the
challenges posed by the identification of time-dependent sub-pathways from a
slightly different perspective. CHRONOS models the interactions between pathway
nodes based on the Markov property, meaning sub-pathway activity at time point
t is depended solely on the state at time t − 1, and on the assumption that different
portions of pathways are active at different time points. In doing so, CHRONOS
defines two scoring schemes which are aimed at capturing time-dependent changes
in expression level of genes. The two measures are then unified into a single score
which can be used to characterize interaction, or perturbation, trends within path-
ways. Linear and nonlinear sub-pathways (k-cliques) are exhaustively searched
within the pathway graph and ranked according to the score described above.
Inter-pathway dependency is then accounted for by defining sub-pathway-based
topology metrics which inform on the position of sub-pathways within the entire
pathway graph. Additionally, CHRONOS searches for potential miRNA regulators
of sub-pathways, by estimating the enrichment of miRNA targets within the
identified sub-pathways using the cumulative hypergeometric distribution.

The majority of currently existing time dependent pathway and sub-pathway
analysis methods rely on a succession of steps such as (i) conversion of pathway
databases information into graphs (or networks) which allow to easier interpret
information representation and subsequent computational modeling (described in
Sect. 3.2), (ii) contextualization of the transformed pathway graphs using expres-
sion data, (iii) search within graphs for paths which highlight the time-dependent
portions of pathways (Sect. 3.3), a step which is commonly accompanied by
(iv) the use of various node or interacting edge level metrics or measures
(Sect. 3.4).

3.2 Conversion of Pathway Databases to Graphs

A critical step in pathway analysis methods, and especially for approaches which
consider pathway topology information, is the creation of a background graph
containing a comprehensive representation of information stored in curated bio-
logical repositories, such as KEGG, PathwayCommons, ConsensusPathDB, or
PANTHER. This step is used by all pathway analysis methods and it is therefore
common that time-dependent methods adopt the existing conversion methodology
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developed for static approaches. The most common repository currently used is the
KEGG database, which is the most comprehensive database of metabolic and
non-metabolic pathways. Pathway information in KEGG is represented using the
KEGG Markup Language (KGML), which is an exchange format originally created
for enabling automatic drawing of KEGG pathways. KGML provides an easily
interpretable format for computational analysis and modeling of gene/protein net-
works and chemical networks. The KGML files for metabolic pathway maps
contain two types of graph object patterns, boxes (enzymes and metabolites), and
circles (chemical compounds). Enzymes are linked by ‘relations’ and chemical
compounds are linked by ‘reactions’ (Fig. 3.1). Non-metabolic pathway maps in
KGML contain information on how protein nodes are linked by ‘relations’
(Kanehisa et al. 2015). There are four main relation types, the (i) protein–protein
relation (type = ‘PPrel’), the (ii) gene expressions relation (type = ‘GErel’), the
(iii) protein-compound relation (type = ‘PCrel’) and, (iv) links to other maps
(type = ‘maplink’). From these elements many subtypes arise. The only relation
type among enzymes is the enzyme–enzyme relations (type = ‘ECrel’). Metabolites
are mainly participating in chemical reactions with sub-element substrates and
products. Detailed information on data types used by KGML is provided in http://
www.genome.jp/kegg/xml/docs/.

A common first step is to convert KEGG pathways to graphs in the form of
directed gene–gene networks based on information in KGML files, without com-
promising the structural topology of the pathway. The KEGG pathway entry ele-
ments representing genes (type = ‘gene’) may in some cases correspond to single or
multiple gene products containing most likely gene families, or genes with similar
biochemical function. Similarly, group entries (type = ‘group’) usually denote
multiple gene products, commonly representing protein complexes. This case is
modeled in pathway graphs in the following manner: the corresponding entries are
expanded into separate nodes by rewiring the incoming and outgoing links of the
entry (Fig. 3.2). The approach is implemented in the Bioconductor package

Fig. 3.1 Examples of metabolic and non-metabolic pathway entries in KEGG. a An entry from
insulin signaling pathway (hsa04910), a non-metabolic pathway, as depicted in a KGML file,
between genes with Entrez Ids ‘5570’ and ‘3643’, respectively. Relation type ‘PPrel’ indicates a
protein–protein interaction between proteins and subtype ‘inhibition’ indicates the inhibition of
node ‘entry2’ from ‘entry1,’ and at the same time the posttranslational modification taking place
(dephosphorylation). b An entry from tryptophan metabolism pathway (hsa00380), a metabolic
pathway, denoting a reaction with substrate ‘C00078’ and product ‘C02700’
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graphite and in the online tool Graphite Web (Sales et al. 2012, 2013), and is the
approach used by methods such as CHRONOS and Subpathway-GM. A slightly
different approach is followed in timeClip, where protein complexes are expanded
into cliques, such that all individual proteins are connected to each other). This is
done in order to assist in subsequent steps, as timeClip is a method which searches
for paths formed of cliques, as subsequently described in Sect. 3.3. A different
approach, which consider protein complex entries as single nodes by unifying the
corresponding gene products for downstream analysis is considered by TEAK.

The chemical compounds (type = ‘compound’) are usually omitted when rep-
resenting KEGG pathways into graphs and the pathway structure is preserved by
connecting the nodes in cases a compound acts as a bridge in-between gene nodes
(Fig. 3.2). This is done because compounds are not usually assessable using
high-throughput technologies. However, in order to follow the biological model
adequately, the compound-mediated interactions between two nodes are preserved
if the bridging compound has the same cellular localization with both interacting
nodes, i.e., bridges two successive reactions. (Sales et al. 2013).

Entry elements representing KEGG orthologs (type = ‘ortholog’) and maps
(type = ‘map’ are usually ignored since generally each organism and pathway is
analyzed separately (Fig. 3.2). It must be noted at this point that approaches based
on the metabolic pathways, such as Subpathway-GM and TEAK take into con-
sideration the type (type = ‘compound’) and use them for defining the metabolites
as nodes in the graph.

Fig. 3.2 Conversions performed during the construction of a pathway network. Single circles
denote genes/gene products, overlapping circles multiple nodes, squares chemical compounds and
rhombuses denote links to other pathways. a Edges created in a reversible reaction in metabolic
pathways. If the reaction is irreversible, only the first two are created. b Conversion of the
interaction between two groups of nodes to interactions between interconnected single nodes.
c Conversion interaction between a multiple node and a single node to interactions between
noninterconnected single nodes. d Removal of chemical compound, preserving the network
connectivity. e Conversion of a pathway to a network of single nodes corresponding to genes/gene
products, after performing conversions a, b, c, d
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The edges (or interactions) between nodes in the pathway graphs are defined by
taking into consideration the directionality and the type of operation for each
relation. In a KEGG pathway map, a relation with type = ‘inhibition’ between
‘entry1’ and ‘entry2’ encodes an interaction which denotes that ‘entry1’ inhibits
‘entry2’ (Fig. 3.1). However, in some cases, relation types have ambiguous inter-
pretation, both in terms of directionality and in their operation. For example, the
relation type = ‘binding/association’ has no specific directionality and it is com-
monly supposed that this relation is bidirectional. A relation of type
‘activation/inhibition’ has ambiguous operation. Therefore, existing approaches,
such as CHRONOS, Subpathway-GM and TEAK use a categorization with three
kinds of relations (activation, inhibition, unknown). Activation/expression is
translated as enhancement of gene regulation, inhibition/repression as suppression
of expression and unknown is used to denote interactions with unclear molecular
context. Also, a fourth type of relation, indicated as ‘no-interaction’, can be pro-
vided as option to the user, in case there is interest to focus only on specific
interaction types, by setting all the irrelevant interaction types as ‘no-interaction.’
The translation scheme used by CHRONOS and TEAK is based on (Wrzodek et al.
2013). An indicative example showing a general pathway conversion to gene–gene
network is shown in Fig. 3.2.

In approaches which are based on metabolic pathways the main difference is that
the edges are mainly constructed from chemical reactions (type = ‘reaction’), which
involve enzymes (gene products) or compounds (i.e substrates and products). For each
interaction, the substrate, the product, and the reaction type (reversible or irreversible)
are examined.More specifically, for an enzyme e and a reactionwith substrate id = ‘s,’
product id = ‘p,’ and type = ‘irreversible,’ edges (s, e) and (e, p) are created. In
reversible reactions, edges (e, s) and (p, e) are created additionally (Fig. 3.2). For
enzyme e and reaction with substrate id = ‘s,’ product id = ‘p,’ and type = ‘re-
versible,’ edges (s, e), (e, p), (e, s), and (p, e) are created. The directionality in the two
reaction types is also user defined. Reactions and relations in metabolic pathways are
considered to have ambiguous operation (Büchel et al. 2013;Cicek et al. 2014) and can
be defined as ‘unknown’ relation type.

The KGML format, the most common format due to its use by KEGG, has
significant drawbacks, in that it was initially designed for visualization purposes
and therefore often omits important details, resulting in ambiguities in the stored
information (Wrzodek et al. 2013). Other pathway databases, such as Pathway
Commons, ConsensusPathDB, WikiPathways, PANTHER, or Reactome offer
support for exporting data into BioPAX (a RDF/OWL-based standard language)
and/or SBML (a representation format based on XML), which are the main stan-
dardization efforts for the representation of biological pathway information. Several
tools have been implemented to provide adequate translations between KEGL and
SBML or BioPAX, such as the KEGGTranslator (Wrzodek et al. 2013),
KEGGconverter (Moutselos et al. 2009), or Sybil (Gelius-Dietrich et al. 2013).
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3.3 Time-Varying Pathway and Sub-pathway Extraction

Once pathway information located in pathway databases is converted to a format
suitable for subsequent network-based analysis, the next step is to search for por-
tions of pathways that are most time dependent. This is particularly relevant for
studies which aim to investigate systemic modulations induced by perturbations,
such as drug treatment, genetic modifications, or disease progression. Most com-
monly, prior to this step, or in some cases concomitant with the analysis,
high-throughput molecular information (usually gene expression data from
microarray or RNA-seq), is overlaid to the pathway topology.

Two types of approaches are followed normally: extraction of linear or nonlinear
sub-pathways. The former are comprised of genes in linear cascades (paths), an
approach followed by CHRONOS, TimeTP, and, to some extent, TRAP. The latter
consists of extracting highly connected gene communities (cliques), an approach
followed by timeClip. Some methods, such as CHRONOS, are able to identify both
types of sub-pathways, or propose a hybrid approach, such as timeClip, which finds
linear paths of time dependent cliques.

3.3.1 Linear Sub-pathway Extraction

If G is a pathway graph, start and end nodes are defined as follows: Sn are nodes
with zero in-degree (no incoming connecting edges) and Dm nodes with zero
out-degree (no outgoing connecting edges), where 0 � n � N and
0 � m � M. A sub-pathway is then defined as a path starting from start-node Sn
and terminating at end-node Dm. The search for paths between pairs (Sn, Dm) can
yield one or more sub-pathways, since multiple sub-pathways may share a start
and/or an end node (as shown in Fig. 3.3). Thus, by traversing G between each start
and end node, a set S of sub-pathways will be extracted. If no end node is visited
within a specific number of steps, the algorithm backtracks and searches another
possible path which may lead to an end node.

Fig. 3.3 Extraction of linear sub-pathways. a A pathway network with two start nodes and two
end nodes. Single circles denote a gene/gene product, while overlapping squares denote multiple
gene/gene products per node. b Three possible linear sub-pathways extracted from the pathway
network, where some nodes correspond to multiple genes/gene products. c Expansion of the
second sub-pathway to four sub-pathways where all nodes correspond to a single gene/gene
product
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However, the number of sub-pathways in KEGG pathway graphs may reach the
order of billions, increasing the time complexity of both the extraction process and
meta-processing analysis. A common approach for avoiding the unwanted increase
in complexity is to employ the following steps: (i) exploit the default grouping of
genes in KEGG pathway maps—a typical KEGG pathway graph contains inter-
actions between nodes corresponding to groups of genes, which are frequently
large. Thus sub-pathway extraction happens in two phases. Initially, a set Sc of
compact sub-pathways is extracted from G, whose nodes also consist of groups of
genes (examples shown in Figs. 3.3, 3.4). Subsequently, each compact
sub-pathway is further expanded to a set S of sub-pathways, each consisting of

Fig. 3.4 a Insulin signaling pathway from KEGG, with a compact linear sub-pathway of length
10 highlighted. Several sub-pathway member contain more than one members. For instance, the
fifth member, Ras, corresponds to HRAS, KRAS, and NRAS. b The equivalent pathway graph for
the insulin signaling pathway
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single genes per node (example shown in Fig. 3.3). (ii) Some restrictions are
imposed in order to prevent the extraction of extremely long sub-pathways.
Extracted sub-pathways may be arbitrarily long, which generally does not reflect
the biological reality. Thus, expanding long compact sub-pathways with oversized
group nodes may result in an exponential increase in the number of extracted
sub-pathways, which in turn induces bias on any statistical meta-processing used to
attribute biological significance to the retrieved sub-pathways. To this regard,
published methods examine multiple sub-pathway ranges varying from a handful of
genes to the border of experimental practicality, and compare their statistics over
several organisms. Subsequently, thresholds on the number of connecting edges are
imposed, such that minimal loss of information occurs. For example, in
CHRONOS, the authors perform sub-pathway statistics for the three most common
organisms: Homo sapiens,Mus musculus, and Rattus norvegicus. They observe that
the vast majority of the organism’s genes are present in extracted sub-pathways
ranging from three to ten genes; this range is sufficient to tackle the inherent
complexity of pathways without loss of valuable information. Other similar steps to
reduce the search complexity for sub-pathways are implemented also by TimeTP
(which imposes a shortest possible delay on their interacting genes cross-correlation
measure) and TRAP (which introduce a fixed time lag factor on their perturbation
factor measure), as described below in Sect. 3.4.

3.3.2 Nonlinear Sub-pathway Extraction

The identification of nonlinear sub-pathways in the form of cliques is highly relevant
for network-based analysis in molecular biology. Cliques are maximally connected
functional modules whose members are functionally related and have been shown to
be highly co-expressed (Matsunaga et al. 2009). Nonlinear sub-pathways are gen-
erally extracted by using the k-clique algorithm on pathway graphs which have been
converted to an undirected graph (Fig. 3.5). The k-clique algorithm can be summa-
rized as follows: Let D be the adjacency matrix of G and D(i, j) be the shortest path
from node i to node j. Johnson’s algorithm is used to fillD; letN = max(D(i, j) for all i,

Fig. 3.5 Nonlinear sub-pathways. a 3-clique. b 4-clique. c 5-clique. The distance between any
two nodes is no greater than 3, 4 or 5 respectively
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j; (2) each edge is a 1-clique by itself; (3) for k = 2,…, N, try to expand each (k−1)-
clique to k-clique: (3.1) consider a (k−1)-clique the current k-clique KC; (3.2) repeat
the following: if for all nodes j in KC, D(v, j) � k, add node v to KC; (3.3) eliminate
duplicates; (4) the whole graph is a N-clique.

In CHRONOS, the optimal sub-pathway length range in nonlinear cascades is
obtained based on the same restrictions described in Sect. 3.3.1. The authors sug-
gest that sub-pathways with length up to ten members cover more than 70% of each
organism pathway map, and that the entire pathway maps are fully covered by
sub-pathways with length up to 20 members. However, for such lengths dozens of
interactions arise and thus, in CHRONOS the sub-pathway length is limited to 10
genes, when searching for cliques. The default setting for parameter k is set to 2 but
users have the possibility to adjust it.

In timeClip, Martini et al., follow a procedure previously implemented in clipper
(Martini et al. 2013; Massa et al. 2010) by which, the search for cliques within
pathways is preceded by the moralization and triangulation of the pathway graph.
Moralization inserts an undirected edge between two nodes that have a child in
common and then removes directions on the edges, and triangulation inserts edges
in the moralized graph, so that all cycles of size � 4 have chords (chords being
defined as edges connecting two nonadjacent nodes of a cycle). This procedure is
done in timeClip in order to assist the search for junction trees (paths of cliques)
within the pathway graph.

3.4 Temporal Dynamics Scoring Schemes

3.4.1 Approach Followed in CHRONOS

The identification of time-varying portions of pathways relies on various node or
interacting edge level metrics or measures, which are usually based on gene
expression and/or pathway topology information. For example, the core component
of CHRONOS is formed by two scoring schemes, which manage to encapsulate the
fold changes in the expression of interacting genes and the temporal aspects
describing connecting edge dynamics, as well as the flow of information imposed
by the pathway topology.

In the context of pathway networks, the change in the expression level of genes
is estimated at the level of edges connecting interacting genes by considering the
fold change activity (relative to a control condition). To accomplish this,
CHRONOS utilizes the fold change interactivity (FCI) score (Eq. 3.1), which is
based on two multivariate logistic functions. This enables the identification of pairs
of nodes with high absolute fold change values and with high positive or negative
correlation (Kim et al. 2011). The fold activity score of an interaction e at time t for
two connected gene nodes i, j is defined as:
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where f ti and f tj are the log2-fold change values of nodes i and j, respectively. K and
c are the parameters controlling the shape of the multivariate logistic distribution,
and T is a shifting parameter.

Furthermore, in CHRONOS, a model rooted in Markov processes is employed
for analyzing the temporal dynamics among interacting gene nodes, based on their
expression changes, which is able to capture the time-varying aspects of interac-
tions (Jethava et al. 2011). To accomplish this, the time-varying interactivity
(TVI) score is defined, which arises from a probabilistic generative model.

Briefly, for a pathway graph G with V nodes (genes) and E interacting edges
½G ¼ ðV ; EÞ�; xtv is the fold change expression level for gene v 2 V at time t and wt

e
is the interaction strength of e 2 E at time t. Weight w can take values in the range
w = {−2; −1; 0; 1; 2} and represents the interaction strength. Higher values of
w correspond to increasing degrees of positive correlation of the interacting genes
along the respective edge. The probability of the fold change expression levels for
genes i and j at time t, conditioned on the interaction strength wt

e, can therefore be
estimated as:
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where Z ~wtð Þ is the normalization constant. The edge weights are assumed to evolve
according to the Markov property, and thus the probability of transition from state
~wt�1 at time t − 1 to state ~wt at time t can be estimated as:
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Based on the above equations, a general score taking into consideration the
temporal dynamics underlying each interaction e 2 E at each time t can be defined
as: TVIte ¼ maxwQ ð~wt�1;~wtÞ. Interactions e with scores TVIte ¼ �2; 0; 2f g indi-
cate that the fold changes of the corresponding genes between times t − 1 and t,
exhibit a strong negative correlation, are uncorrelated and have a strong positive
correlation, respectively. Similarly, interactions having scores TVIte ¼ �1; 1f g
indicate weak negative and weak positive correlations, respectively.
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The two scoring schemes defined above are subsequently merged into a unified
score, termed the interactivity score (IS), after taking into account the KEGG
pathway information on the type of relation of the interaction under consideration
(activation or inhibition). Specifically, two consecutive criteria must be satisfied
before unifying the FCI and TVI scores. First, the two scores must agree in terms of
sign. Second, once the first criterion is fulfilled, the sign of the KEGG type of
relation [(+) for ‘activation’ and (−) for ‘inhibition’] must agree with the sign of the
two scores. If above described criteria are met, the two scores are multiplied by two
weighting factors and then added [e.g. IF FCI > 0 AND TVI > 0 AND relation
type = ‘+’ THEN IS is calculated based on Eq. (3.4) below]; otherwise, if one of
the two criteria are not met, then IS is set to zero (e.g., IF FCI < 0 AND TVI > 0
THEN IS = 0, IF FCI < 0 AND TVI < 0 AND relation type = ‘+’ THEN IS = 0).
In case interactions with KEGG relation type ‘unknown’ are encountered, the other
criteria are not checked since the relation type cannot be unambiguously deter-
mined. For interaction e at time t, IS is calculated as:

ISte ¼ a � TVIte
�� ��þ b � FCIte

�� �� ð3:4Þ

where a and b are weighting parameters indicating the degree of contribution of
TVI and FCI score, respectively. These criteria promote interactions among nodes
which simultaneously change in terms of expression at each time point and whose
variations are in accordance with the constraints imposed by the topology.

Subsequently, at pathway level, the IS can be used to evaluate whole
sub-pathways and rank them accordingly. Thus, a sub-pathway score (subscore) is
calculated as the summand of all IS scores within the sub-pathway and normalized
by the total number of interactions in the sub-pathway. For a sub-pathway with
N gene members and N − 1 interactions at time t, subscore is computed as:

subscoreðtÞ ¼
PN�1

e¼1 ISte
N � 1

ð3:5Þ

where ISte is the interactivity score of interaction e at time t. This approach allows
CHRONOS to identify context- and time-specific sub-pathways, whose genes
exhibit correlated expression changes in specific time points and which are in
accordance with the flow of information imposed by the sub-pathway topology.

Furthermore, a sub-pathway’s enrichment in any user-defined set of ‘interesting
genes’ (e.g., list of differentially expressed genes (DEGs), list of disease-related
genes, list of drug target genes, etc.) can be examined, via the cumulative hyper-
geometric distribution. Specifically, the statistical significance is calculated based
on Eq. (3.6) where S is the user-defined gene set, D the number of interesting genes
in the user defined set, l the total number of genes in the sub-pathway and d the
number of interesting genes found in the sub-pathway under study.
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The obtained P-values are subsequently corrected for multiple testing resulting
in FDR corrected q-values. In CHRONOS sub-pathways with subscore >0.4 in at
least one time point and q-value <0.05 (in case a set of ‘interesting genes’ is
provided) are considered enriched. The subscore threshold is determined by setting
a FDR of 1% cutoff on the results derived from 100 permutations; in each per-
mutation a small fraction of sub-pathway interaction scores changed and
sub-pathway scores were recomputed (Allantaz et al. 2012).

CHRONOS is also able to identify miRNA regulators of sub-pathways though a
simple procedure which blends with the rest of the methodology. Briefly, a
micronome layer is constructed above each sub-pathway (Fig. 3.6), based on
available miRNA databases, such as miRecords and TarBase, by searching for
miRNAs known to target each sub-pathways gene members. A miRNA is con-
sidered as a potential regulator of a sub-pathway if its gene targets are significantly
enriched in the relevant sub-pathway members, based on the hypergeometric test
(Eq. 3.6).

Additionally, at pathway level, CHRONOS provides information about the
overall connectivity of the sub-pathway gene members with respect to the complete
pathway network. Specifically, the sub-pathway degree (subDEG) and betweenness
centrality (subBC) measures are defined in order to capture the local and global
structural aspects of sub-pathway interconnections. Furthermore, the subPathness
measure is defined to examine the functional aspects of pathway topologies. When
zooming out from sub-pathways to the organism map, it is preferable to view
pathways as modules, defined not only through structural measures, but also based
on biological criteria which characterize the mechanisms between pathways. Under
this notion, subPathness quantifies the degree to which a sub-pathway serves as a

Fig. 3.6 The micronome layer over a sub-pathway. Genes are depicted as green circle, while
microRNAs as red rounded rectangles. Each gene may be regulated by more than one microRNA,
while one microRNA may regulate more than one genes. a A linear sub-pathway regulated by
three microRNAs. b A nonlinear sub-pathway regulated by two microRNAs
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bridge between different pathways of an organism (Dimitrakopoulou et al. 2014;
Kovacs et al. 2010). The Pathness of a gene/node i in P pathway maps is:

Pathness ðiÞ ¼
XP
a¼1

XP
b¼1; b6¼a

T ða; b; iÞ; ð3:7Þ

where T(a, b, i) is the area-overlap between pathway graphs a and b including node
i. Generalizing at the level of sub-pathways, the mean Pathness of all genes/nodes
that belong to the same sub-pathway can define a new measure termed
subPathness:

subPathness ðiÞ ¼ 1
N
�
XN
j¼1

Pathness ðjÞ; ð3:8Þ

where N is the number of genes/nodes belonging to sub-pathway i.

3.4.2 Other Approaches

In TimeTP, the initial pathway network consists of gene nodes to which time
vectors ~v are assigned, representing the digitized expression values of genes in a
differential form, namely 1 (over-expressed), −1 (under-expressed) and 0 otherwise.
For example, if the expression of a gene is measured at T time points and has
control and treatment conditions, values −1, 1 or 0 will be assigned to each time
point with respect to the differential expression (with respect to control) digitized
vector ~v of length T. If the data are generated in a single condition, the digitized
expression vector~v contains, at each time point, a value computed as the difference
relative to the first time point, or as the difference in expression values of con-
secutive time points) resulting in a vector of length T − 1 (Jo et al. 2016).

For each pathway, TimeTP identifies the time-varying sub-pathway by searching
for valid edges among the edges in the original pathway graph. The edges which are
time dependent are determined by examining the relationship between differential
expression vectors of their connected nodes. A two-step criterion is followed: first,
every edge of the time-varying sub-pathway is required to propagate the differential
expression pattern along the direction indicated in the original KEGG information.
Let there be an edge N1 ! N2 from a node N1 to a node N2, with differential
expression vectors ~v1 and ~v2, respectively. Cross-correlation can then be used to
estimate the direction of propagation and the amount of delayed time points for the
pair of expression vectors~v1 and~v2:
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~v1 �~v2ð ÞðnÞ ¼
X1
t¼�1

~v1ðtÞ~v2ðtþ nÞ; ð3:9Þ

where~v ðtÞ ¼ 0 for t � 0 or t > T. Cross-correlation is maximized where the two
vectors overlap most, depending on the lag parameter n (delay of n time points).
Through this simple measure TimeTP is able to find the shortest possible delay
n between two differential expression vectors~v1 and~v2:

d ~v1;~v2ð Þ ¼ argmaxn ð~v1 �~v2Þ ðnÞ ð3:10Þ

When the value d ~v1;~v2ð Þ of a directed edge N1 ! N2 is negative, the direction
of the expression propagation contradicts the original direction indicated by KEGG
and, thus, the edge is considered as invalid and excluded from the analyzed
sub-pathway.

In a second step, additional edges with a long positive delay are filtered out, by
imposing a threshold for delay, so that the expression propagation in the
sub-pathway is bounded within a user-defined time period. Time-varying
sub-pathways with one edge are disregarded. The significance of the retrieved
time-dependent sub-pathways is estimated by the permutation test. The null
hypothesis is that sub-pathways determined by TimeTP are randomly generated
and, to test the hypothesis, differential expression vectors for all gene are randomly
reassigned and sub-pathways are sampled according to the same procedure
described above. Since the ratio of DEGs is not abnormally high, resampled
sub-pathways determined following the permutation procedure are most likely to
have a significantly shorter path length. Cross-correlation values of edges contained
within a certain sub-pathway are likely to be smaller, and therefore, a sum of the
cross-correlation of every node pair in the sampled sub-pathway can be chosen as
pathway-level statistic.

Time Series RNA-seq Analysis Package (TRAP) extends two classical static
pathway analysis algorithms, ORA and SPIA, for the analysis of time series
RNA-seq data (Jo et al. 2014). TRAP adapts the perturbation factor (PF) measure
described in SPIA to account for temporal dynamics of expression data. Originally,
PF is defined by its authors as a gene-level statistic which describes the potential of
a gene to relay a perturbation signal along a pathway (Tarca et al. 2009). PF is
estimated as a sum of a gene’s measured change in expression and a linear function
of the perturbation factors of all genes in the pathway directly upstream from the
scrutinized gene. In TRAP, authors define the log fold change of expression values
measured with RNA-seq experiments as DEtðgÞ ¼ log YtðgÞ =XðgÞð Þ where t de-
notes time points. The major difference between original SPIA and time-series
SPIA described by TRAP is in the formula of estimating PF. Due to its static nature,
the original SPIA assumes that all downstream genes are affected by the upstream
genes at the same time point. In TRAP, however, downstream genes both at the
current time point and at the next time point are affected by upstream genes, in a
Markov-like process, as defined in Eq. 3.11 below. A time-lag factor a is used to
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adjust the effect of previous and current upstream gene. PF(g) and DEtðgÞ are
subsequently defined as the summation of the respective measure over all available
time points to derive overall measures of time-variance for individual genes g, as
shown in Eq. 3.12:

PFtðgÞ ¼ DEtðgÞþ
X
gu2US

b � a
PFt�1 guð Þ
NDS guð Þ þ ð1� aÞ PFt guð Þ

NDS guð Þ
� �

ð3:11Þ

PF ðgÞ ¼
XT
t¼1

PFtðgÞ and DE ðgÞ ¼
XT
t¼1

DEtðgÞ; ð3:12Þ

where gu are the upstream genes of g, b is a parameter indicating the type of
interaction (1 for activation, −1 for inhibition), NDS is the number of downstream
genes of g, and US is the set of all upstream genes of g. Generally, one can assume
the time-lag factor a is 1, which imposes the restriction that the PF of downstream
genes are affected only by the previous time points.

Through this simple extension of SPIA, TRAP can estimate the time-dependent
perturbation effect and capture the flow of interactions. Additionally, the net per-
turbation accumulation at the level of each gene, Acc, can be computed as the
difference between the perturbation factor PF of a gene and its observed expression
change, as below:

Acc ðgÞ ¼ PF ðgÞ � DE ðgÞ ð3:13Þ

Subsequently, the total net accumulated perturbation for all genes i in a
sub-pathway or pathway can then be computed as:

tA ¼
X
i

Acc ðgiÞ ð3:14Þ

Sub-pathway significance can be estimated with the help of two independent
probability values PNDE and PPERT. PNDE = P(X � NDE|H0), captures the signif-
icance of the given pathway (or sub-pathway) Pi as estimated by an
over-representation analysis (based on the hypergeometric test) of the number of
differentially expressed genes (NDE) observed on the pathway. The null hypothesis
states that the genes that appear as differentially expressed on a given pathway
(sub-pathway) are completely random. The second probability PPERT describes the
probability of observing a total accumulated perturbation TA for the whole pathway
(sub-pathway), greater than tA just by chance: PPERT = P(TA � tA|H0).

In timeClip, authors also adapt a static pathway analysis method, clipper
(Martini et al. 2013), to account for time-varying portions of pathways. To achieve
this, they follow a two-step procedure which employs PCA and regression first at
pathway level, to reduce dimensionality, and subsequently at sub-pathway level
(Martini et al. 2014). In the first step, the first principal component (PC) found by
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applying the PCA along the temporal dimension of the gene expression data matrix,
is explored for temporal variation. The pathways which are identified as
time-dependent are decomposed in the second step, into a junction tree which
highlights the portion mostly dependent on time.

Briefly, if Xn�t is the gene expression matrix with genes on the rows and time
points t on the columns, let XP

p�t be the submatrix of genes belonging to pathway P,

which consists of p genes. Then, PCA is applied to the transpose of XP, and ZP
p�t is

the resulting scores matrix while LPp�t is the resulting loadings matrix. The resulting

PCs are stored in vectors ZP
1 ; . . .; Z

P
p . The first PCs, which capture the largest

proportion of variance in the data, also summarize most of the temporal variation of
the genes in pathway P, and are referred to as ZP

i ðtÞ. Then, time series PCs ZP
i ðtÞ

can be decomposed as Z(t) = p(t) + 2(t), where p(t) is a deterministic function,
called ‘trend,’ and 2(t) is the realization of a stationary stochastic process with
mean zero. It is assumed that 2(t) follows a continuous time Gaussian autore-
gressive process of order 1.

A reasonable choice for fitting through regression the trend component is a
polynomial of degree 2 in t, resulting in:

p ðtÞ ¼ b0 þ b1tþ b2t
2; ð3:15Þ

with b1 capturing existing temporal behaviors of ZP
i ðtÞ and b2 correcting for

potential nonlinearities. The significance of pathways is expressed by means of the
P-value of the test of nullity of b1 (obtained by a t-test adjusted for multiple
hypotheses testing using the Bonferroni correction).

In the second step, pathways identified as time dependent in step 1 are then
moralized, triangulated and decomposed into a junction tree following the proce-
dure proposed by clipper (Martini et al. 2013). Junction tree algorithm is then used
for constructing hyper-trees having cliques as nodes and satisfying the running
intersection property, meaning, for any cliques C1 and C2 in the tree, every clique
on the path connecting C1 and C2 contains C1 \ C2 (Martini et al. 2014).

For each clique k of pathway P, noted as CP
k (with k = 1,…, K), and composed

by a subset of genes in P; cPk , the sub-matrix Xp
ck of X contains the expressions of

genes of the clique CP
k . Subsequently, for each clique k of P the same procedure

described in step 1 is followed: transformation by PCA and then a linear model
fitting with polynomial trend and autoregressive process of order 1 on the first PCs.
The individual P-Value of clique k; pCP

k
is given by the p of the b1 resulting from

the polynomial regression. Finally, the most significant time-dependent sub-paths
along the junction trees within a pathway P, are identified as in (Martini et al.
2013). Briefly, a path is a defined as a chain of consecutive cliques exhibiting
significant time dependence (with pCP

k
� 0:05) with gaps at most of size one. The

relevance of each sub-path j = 1,…, J, is computed based on the weights of each
clique i along the sub-path. First, a measure Sij is defined as:
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Sij ¼
Xi

k¼1

dkj; with i ¼ 1; . . .; Lj; ð3:16Þ

where

dkj ¼ �log pC j
k

� �
; if pC j

k � 0:05
log 1� pC j

k

� �
if pC j

k [ 0:05

(
ð3:17Þ

Then, the overall relevance of sub-pathway j is defined as the normalized
maximum of Sij, which can also be used to compare sub-pathways of different
lengths:

SRj ¼ maxiðSRijÞ
Lj

ð3:18Þ

Thus, for each time-dependent pathway, timeClip returns a list of relevant paths,
ranked according to their relevance.

3.5 Synthetic and Biological Data Analysis Results

Typically, the accuracy of time-varying pathway and sub-pathway analysis methods
is tested using both synthetically created and real biological datasets. Statistical
significance of the retrieved time-dependent sub-pathways is assessed using per-
mutation tests, usually by randomly reassigning gene expression values to the genes
in the dataset followed by resampling of sub-pathways, as described in Sects. 3.4.1
and 3.4.2. Various statistical tests, most commonly the hypergeometric test fol-
lowed by correction for multiple testing, can also be performed to test for enrich-
ment of biologically relevant information within the retrieved sub-pathways.
Results can be easily visualized using various graph-based tools available for
pathway analysis methods (e.g., identified active sub-pathways can be highlighted
within KEGG maps), as well as tools able to highlight temporal dynamics, such as
wheel of time plots, or circular diagrams.

Synthetic pathway networks and synthetic expression data can be generated
following a simple procedure: random graphs are created as biological pathway
networks by using two closely related graph models, the Erdős–Renyi and Edgar
Gilbert. Synthetic gene expression values for each time point can then be generated,
such that genes follow a time-dependent up/down regulation, or have no change
over time with respect to a control state (log2-fold change difference 1, −1 and 0,
respectively). In addition, the up/down regulated gene expression profiles can be
categorized according to the time extent of their regulation.
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An important feature that sub-pathway analysis methods must exhibit, in order to
highlight the relevance of their results, is the node coverage, i.e., their ability to
exploit the maximum number of nodes present in pathway maps. CHRONOS,
TEAK, and Subpathway-GM share a similar approach for converting
KEGG KGML pathway files into biologically concise gene–gene networks, as
described in Sect. 3.2. The authors of CHRONOS examine the node coverage of
the extracted sub-pathways in both real and synthetic networks based on the human
KEGG pathway maps and Erdos–Renyi and Edgar Gilbert model graphs, respec-
tively, and show that CHRONOS outperforms the other two approaches in both real
and synthetic networks with statistical significance (two-sided Wilcoxon signed
rank test, P < 0.01).

A more difficult task is the evaluation of methods performance in capturing
time-varying ‘themes.’ This is most commonly done using the synthetic datasets, as
in their case the experimenter holds the ground truth information on time-dependent
regulation. A comparison approach followed in CHRONOS is to apply all methods
on a number of independent synthetic network models and for the top-ranking
sub-pathways to be considered for further analysis. To overcome inconsistencies
imposed by the different sub-pathway topologies identified by each method, the
performance was assessed in terms of precision, recall, and F1-score, based solely
on the unique nodes included in the top-ranking sub-pathways. The up-/
down-regulated and nonregulated genes included in final results can be defined as
TP and FPs, respectively. Up-/down-regulated genes belonging to the corre-
sponding perturbed pathways which were not included in the final sub-pathways
can be considered as FNs.

When investigating the IFN-g mRNA and miRNA data (Nazarov et al. 2013)
using CHRONOS, a significant re-ranking of sub-pathways was observed during
time evolution. The experimental data are two real time series mRNA and miRNA
datasets obtained from experiments performed after stimulation of human A375
melanoma cell line with IFN-g (data collected at 0, 3, 12, 24, 48, and 72 h). In more
detail, fourth time step corresponding to the experiment performed at 48 h is
identified as the peak of activity in the timeline of (miRNA-mediated)
non-metabolic sub-pathway frequency distribution. This observation is in agree-
ment with the findings of the original experimental study, which reported no sig-
nificant alteration of the mRNA levels after 48 h (Nazarov et al. 2013).
Furthermore, when evaluating the sub-pathways retrieved by CHRONOS in terms
of the structural and functional measures described in Sect. 3.4 (subDEG, subBC,
and subPathness), at the 48 h time point the majority of enriched sub-pathways
acquired high scores indicating that at this time point a large number of
sub-pathways turn into hubs and bridges, which in turn results in fast scattering and
propagation of the signal to multiple signaling pathways.

The advantages of using temporal dynamic methods are pinpointed when
investigating experimental data which exhibits high time-dependent variability of
the pathway functional properties. In such cases crucial biological processes may be
neglected or washed out across the whole time period by classic static pathway
analysis methods. Generally, time-varying pathway analysis methods have the
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explanatory power to offer focused serial temporal snapshots of the mechanisms
perturbed under specific conditions with resolution of up to single time points. Such
methods offer holistic views of the dynamics of molecules participating in multiple
sub-pathways and in many cases multiple pathways.
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Chapter 4
Identification of Differentially Expressed
Pathways and Sub-pathways

Abstract This chapter provides a survey of pathway and sub-pathway-based dif-
ferential expression analysis. Differential expression analysis, the comparison of
genes’ expression across various conditions, has become the primary tool for
finding biomarkers, drug targets, and understanding the molecular mechanisms of
disease. Within this context, a recent trend is that of developing pathway
topology-based methods, which integrate the benefits of gene set-based analysis
and augment them with prior information on the underlying gene interactions from
pathway databases. It is discussed how approaches based exclusively on gene set
analysis ignore the position of genes within pathways and therefore may miss
relevant information regarding the differential activation of pathways in certain
conditions. In turn, pathway-based methods better account for cases when a path-
way may be activated by the significant expression of a single gene (such as a
cellular membrane receptor), which may, in turn, significantly perturb downstream
genes. Additionally, pathway-based methods are able to model cases in which the
differential expression of several downstream genes may not have the same effect
on the whole pathway if the upstream receptor gene is not activated. The chapter
briefly presents gene set-based methods, and subsequently overviews various
aspects related to topology-based pathway analysis methods: conversion of path-
way database information to graphs, the use of gene and pathway-level statistics
highlighting differential expression, and the evaluation of statistical significance of
differentially expressed sub-pathways. Finally, a tool for the identification of dif-
ferentially expressed sub-pathways is presented as case study.

Keywords Pathway analysis � Sub-pathways � Differentially expressed genes �
Differential expression analysis � Differentially expressed pathways �
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Pathway topology � Pathway scoring
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4.1 Introduction

Differential expression analysis, the comparison of genes’ expression across various
conditions, has become the primary tool for finding biomarkers, drug targets, and
understanding the molecular mechanisms of disease. As highlighted in Chap. 1, the
first approaches in differential expression analysis typically relied on simple
gene-centric approaches, where statistical tests and/or correlation analysis were
used to select candidate genes exhibiting differential expression between treatment
and control samples. Subsequently, various approaches based on gene sets were
introduced, to alleviate the obvious loss of biological context characterizing the
aforementioned approaches. Gene set analysis methods consider sets of genes
simultaneously when performing differential expression analysis, thus accounting
for the complex association relationships among genes, especially in the context of
achieving biological function. The advantages of gene set analysis are that it allows
researchers to characterize groups of genes functioning within the same pathways
and, consequently, it eases the identification of active pathways enriched with sets
of genes differentially expressed between various conditions.

A recent trend in differential expression analysis is that of developing pathway
topology-based methods, which integrate the benefits of gene set-based analysis,
and augmenting them with existing information on gene interactions from pathway
databases. Approaches based exclusively on gene set analysis ignore the position of
genes within pathways and therefore may miss relevant information regarding the
differential activation of pathways in certain conditions. As an example, a pathway
may be activated by the significant expression of a single gene (e.g., cellular
membrane receptor), which may, in turn, significantly perturb downstream genes,
whereas solely the differential expression of several downstream genes may not
have the same effect on the whole pathway if the upstream receptor gene is not
activated (Tarca et al. 2009). Section 4.2 of this chapter briefly describes gene
set-based methods, and subsequently, Sects. 4.3–4.6 present in detail various
aspects related to topology-based methods.

4.2 Approaches Based on Gene Sets

As already discussed in the Chap. 1, methods for gene set analysis can be cate-
gorized as Over-Representation Analysis (ORA) and Functional Class Scoring
(FCS) (Khatri et al. 2012). Briefly, methods based on the ORA approach calculate
pathway significance by estimating the probability of observing a number of dif-
ferentially expressed genes in a given pathway by chance alone, using the hyper-
geometric and chi-square statistical tests. The genes differential expression is
commonly assessed using a threshold on fold change of expression. One of the
most popular early ORA-based methods is the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (Dennis et al. 2003), which

70 4 Identification of Differentially Expressed Pathways …

http://dx.doi.org/10.1007/978-3-319-53868-6_1
http://dx.doi.org/10.1007/978-3-319-53868-6_1


provides an extensive set of data mining and visualization tools. FCS methods
overcome the need for using arbitrary expression thresholds to determine differ-
ential expression, on which ORA methods are based. Instead they produce ranked
lists of genes resulting from correlation with phenotype and statistical tests for
differential expression. One of the first and most prominent among FCS methods is
the Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005). GSEA first
ranks all background genes according to their (differential) expression, commonly
correlated with phenotype distinction, and then computes an enrichment score for a
certain gene set under study. This is done based on the distribution of the gene set
toward the top or bottom of the whole ranked genes list. The enrichment score is
estimated by walking down the ranked gene list and incrementing the running sum
score whenever a gene present in the gene set in encountered and decrementing it
otherwise. The maximum value of the running sum is chosen as final score of the
gene set:

ESðSÞ ¼ maxi PhitðS; iÞ � PmissðS; iÞj j; ð4:1Þ

where

PhitðS; iÞ ¼
X

gj 2 S
j� i

rj
�� ��p
NR

; PmissðS; iÞ ¼
X

gj 62 S
j� i

1
ðN � NHÞ;

with rj being the correlation of the expression profile of gene j with a phenotype or
profile of interest, S is the gene set under scrutiny with NH genes out of the total
N genes in the experiment. Parameter p is used for weighting the genes (usually
p = 1, when genes are weighted based on their correlations), while Phit and Pmiss

denote the fraction of genes in S present or absent, respectively, in the ranked list up
to position i.

The main difference between the ORA and FCS methods is that, while ORA
relies on the selection of a subset of differentially expressed genes based on
expression threshold criteria, subsequently checked for enrichment within various
pathways, FCS considers the entire set of measured genes and computes first a
gene-level statistic based on differential expression of individual genes. Then, FCS
methods aggregate the gene-level statistic into a pathway-level one, which may be
multivariate (and thus account for inter-dependencies among genes) or univariate.
Finally, FCS methods assess the statistical significance of the pathway-level
statistic, based on one of two types of null hypotheses: competitive (in which gene
labels for each gene set—pathway—are permuted and then genes in the pathway
are compared with genes that are not in the pathway), and self-contained (in which
class labels of samples—conditions—are permuted and then the set of genes within
the pathway is compared with itself) (Khatri et al. 2012).

However, ignoring the complex gene interactions structure within pathways
diminishes the relevance of analysis, obscuring the presence of important biological
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signals. Gene set-based approaches, such as ORA and FCS methods, consider only
the number of genes contained in the pathways when performing the differential
expression analysis, disregarding valuable information of pathway structure present
in curated databases. Therefore, as long as the set of genes under study is the same,
ORA and FCS methods will produce the same results, even if the underlying
structure of gene interactions is totally different (Khatri et al. 2012).

4.3 Approaches Based on Pathway Topology

The majority of topology-based methods developed for detecting differentially
expressed pathways (or sub-pathways) follows a sequence of steps that is partially
overlapping with those employed by time-varying methods described in Chap. 3:
(i) conversion of pathway databases information into graphs (networks) which
allow subsequent computational modeling (described in Sect. 4.4), (ii) contextual-
ization of the transformed pathway graphs using expression data, or metabolites
profiling data, in the case of methods working with metabolic networks, (iii) search
within graphs for paths or network motifs corresponding to portions of pathways
which are activated by treatment or disease, step which is commonly accompanied
by (iv) the use of various gene or interaction-level measures or statistics which are
usually further aggregated into pathway-level measures, and (v) testing the statis-
tical significance of the pathway-level measure (all described in Sect. 4.5).

One of the first pathway-based differential expression analysis method is SPIA
(Tarca et al. 2009). SPIA combines aspects of the two types of gene set-based
approaches (ORA and FCS) into an approach which incorporates prior knowledge
with pathway topology. It does so by assessing the perturbations caused on a
pathway by the changes in gene expression across the whole of the pathway. It
considers both the over-representation of differentially expressed genes among the
pathway genes and the perturbations propagated across the pathway topology. To
achieve this, it relies on two independent probability measures PNDE and PPERT.

Probability PNDE is defined as the probability that at least NDE differentially
expressed genes are present on a pathway:

PNDE ¼ PðX�NdejH0Þ; ð4:2Þ

where H0 is the null hypothesis employed by the model, stating that the genes
present in a pathway appear purely by chance and that the phenotype has no
correlation with them. Probability PNDE follows the hypergeometric distribution:

PðX ¼ iÞ ¼
m
i

� �
n

k � i

� �
mþ n
k

� � ; x 2 0; . . .; k; ð4:3Þ
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where m is the number of genes within the pathway, n is the number of genes not
present within the pathway, and k is the number of differentially expressed genes.

Probability PPERT assesses the extent of the perturbation on a pathway and is
quantified through a gene perturbation factor:

PFðgiÞ ¼ DEðgiÞþ
Xn
j¼1

bij �
PFðgjÞ
NdsðgjÞ: ð4:4Þ

The first term represents the fold change of gene gi, while the second represents
the sum of perturbation factors of its upstream genes, normalized by the number of
its downstream genes. Coefficients bij quantify the interaction strength between
genes gi and gj, with positive values denoting activating and negative values
denoting inhibitory relations between the two genes. The sum of all equations
describing the perturbation for all genes can be summarized as follows:

PF ¼ DEþB � PF;

B ¼
b11

Ndsðg1Þ . . . b1n
NdsðgnÞ

..

. . .
. ..

.

bn1
Ndsðg1Þ . . . bnn

NdsðgnÞ

2
664

3
775;

DE ¼
DEðg1Þ

..

.

DEðgnÞ

2
64

3
75; PF ¼

PFðg1Þ
..
.

PFðgnÞ

2
64

3
75 ð4:5Þ

The net accumulation of perturbations for each gene can be denoted as the
difference between the perturbation factor and the fold change:

AccðgiÞ ¼ PFðgiÞ � DEðgiÞ ð4:6Þ

PPERT then shows the probability that a perturbation TA is more significant than
the sum of the net accumulation of perturbations for all genes on the pathway, and
is calculated by checking whether tA ¼Pi AccðgiÞ appears as a result of the
phenotype or purely by chance:

PPERT ¼ P TA �
X
i

AccðgiÞjH0

 !
ð4:7Þ

To this end, TA is computed for a number of random scenarios, where in each
one, NDE (Pi) genes are selected from the pathway Pi randomly and are considered
as differentially expressed. In estimating PPERT (Tarca et al. 2009) use a bootstrap
approach based on random permutations of differentially expressed genes ID labels.
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Probabilities PNDE and PPERT are ultimately merged into a single probability PG

used to rank pathways according to their relevance to the observed phenotype and
to check the hypothesis that the pathway is significantly perturbed due to a specific
phenotype:

PG ¼ ci � ci � lnðciÞ; ci ¼ PNDEðiÞ � PPERTðiÞ: ð4:8Þ

The time-varying TRAP method (Jo et al. 2014) described in Chap. 3 is based on
the approach followed by SPIA.

The Subpathway-GM method (Li et al. 2013) was devised to identify biologi-
cally significant metabolic sub-pathways by incorporating gene expression infor-
mation and metabolite measurements with pathway information. Initially, the
method matches ‘genes of interest’ and ‘metabolites of interest’ from a specific
study with the enzymes and metabolites corresponding to the nodes of a metabolic
pathway network, characterized as signature nodes. Next, it searches for similarities
in the distances of the signature nodes within the pathway topology, in order to
extract biologically significant sub-pathways. Namely, this procedures create
sub-pathways by allowing a certain number of nonsignature nodes on the paths
connecting signature nodes. The statistical significance of these sub-pathways is
then assessed using a hypergeometric test.

In Subpathway-GM, KEGG metabolic pathways are used as a source of prior
knowledge for constructing the background pathway graph. Each pathway is
converted to a directed graph according to the biochemical reactions described at
the corresponding KGML file, as presented in Sect. 3.2. The nodes of the resulting
network represent enzymes and metabolites. If a metabolite participates as a sub-
strate or a product in a reaction, an edge connects the node corresponding to the
metabolite and the node corresponding to the enzyme. In the case of an irreversible
reaction, the direction of the edge is from the substrate to the enzyme. If the reaction
is reversible, the edge is undirected.

For each network containing nodes of interest, the shortest path is calculated
between any two nodes. If this path has length less that n + 1, where n is the
maximum number of nodes allowed between two nodes of interest, then the nodes
are added to a node-set. Next, for each of those node-sets, the sub-network cor-
responding to the node-set is extracted from the original pathway network.
Sub-networks with more than s nodes are considered as sub-pathways. Parameter
s should be selected in a way to portray that smaller sub-networks cannot corre-
spond to biological processes. The statistical significance of the sub-pathways is
assessed using a hypergeometric test:

P ¼ 1�
Xrg þ rm�1

x¼0

tg þ tm
x

� �
mg þmm � tg � tm

ng þ nm � x

� �
mg þmm

ng þ nm

� � ; ð4:9Þ
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where mg is the number of background genes, tg the number of the sub-pathway
genes, ng the number of genes of interest and rg the number of gene of interest
within the sub-pathway. Symbols mm, tm, nm, rm correspond to the same quantities
for the metabolites.

The TEAK method (Judeh et al. 2013) was developed to detect sub-pathways
activated by underlying biological processes. Initially, the method constructs a
directed network for each KEGG pathway, and subsequently, based on gene
expression data, it extracts linear and nonlinear sub-pathways from each network.
Identified sub-pathways are then scored using the Bayesian Information Criterion
(BIC) for context-specific studies and the Kullback-Leibler (KL) divergence for
case-control studies.

In order to extract a linear sub-pathway, the method accesses the network
through root nodes and traverses the network, marking successively each node as
visited, until it reaches a node without any outgoing edges (leaf node). The start
node, the intermediate nodes and the end node correspond to a sub-pathway. Next,
it backtracks on that sub-pathway, marking the nodes as not visited, until it finds the
first node offering an alternate path to reach an end node. The original start node,
the originally visited nodes, the newly visited nodes, and the end node correspond
to a second sub-pathway. This process is repeated until all sub-pathways connecting
the start node to all possible end node are extracted, and for all start-nodes of the
network.

In order to extract a nonlinear sub-pathway, TEAK identifies communities of
cliques focusing on one important feature: the extracted cliques are directed
feed-forward loops of size three (Palla et al. 2005). Additionally, their method
allows for gene nodes to participate in multiple sub-pathways and due to the choice
of feed-forward loops, no sub-pathway contains nodes, or links, whose removal
would separate the sub-pathway.

If the experimental data are context-specific, the method fits a Bayesian network
for each sub-pathway and utilizes the Bayesian information criterion to score it:

scoreBIC ¼ logPðDjĥÞ � 0:5dlogN; ð4:10Þ

where D denotes the gene expression data, N the number of data samples, d the
number of parameters used to represent a linear Gaussian node, and ĥ the
approximation of the maximum likelihood estimate of the parameters. A node
G connected to m upstream nodes Gj=1…m is linear Gaussian if

PðGjG1; . . .;GmÞ ¼ N b0 þ b1G1 þ � � � þ bmGm; r
2� �
; ð4:11Þ

where b0,…,bm denote the regression coefficients and r2 the variance. Each node is
scored separately and the sub-pathway score is the normalized sum of the gene
member scores.

If the experimental data are case-control, the method adjusts a Bayesian network
for each of the case and control data, transforms them to an equivalent Gaussian
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form and calculates the Kullback-Leibler divergence between the two networks
q and p:

KLðq k pÞ ¼ 1
2
log

Rp

�� ��
Rq

�� �� þ 1
2
Tr R�1

p Rq

� �
þ 1

2
lq � lp
� �T

R�1
p lq � lp
� �� h

2
;

ð4:12Þ

where l is the vector of medians, R the covariance matrix, |R| it’s determinant, Tr
the trace of a matrix, and h the number of nodes in each network.

The DEAP method (Haynes et al. 2013) can be used to identify the most dif-
ferentially expressed linear sub-pathway (path) in a biological pathway through a
relatively simple recursive procedure. The method maps the gene expression data
on a pathway network which it accepts as input. Next, it calculates the differential
expression of the linear sub-pathway by adding the gene expression value of a
successive node which is connected with an edge corresponding to an ‘activation’
event, and subtracting the gene expression value of a successive node which is
connected with an edge corresponding to an ‘inhibition’ event. The sub-pathway is
recursively constructed and scored by starting from its last edge:

scoreN ¼ BN ; scorei ¼ Bi þ Ti�1;i � scorei�1; i ¼ N � 1; . . .; 1; ð4:13Þ

where Ti�1;i 2 f�1; 1g depending on whether the edge connecting node i − 1 and
i corresponds to an inhibition, or activation event, respectively. The method per-
forms the previous steps for every edge of the network and eventually returns the
maximum absolute score, as well as the sub-pathway which achieves it.

In order to test the significance of the retrieved sub-pathway, the null hypothesis
on its expression is tested using a random rotation sampling approach, in which the
original data (genes) is repeatedly multiplied by a rotation matrix, until a null
distribution is generated. The rotation procedure handles correlation structure
within gene sets by conditioning the rotations on the covariance matrix. This is
achieved by performing first an orthogonal projection of the original data on the
residual space from a linear model, then rotate, and subsequently transform the
rotated data back (Dorum et al. 2009).

Thus, to approximate a null distribution of the test statistics, n rotations of the
data are performed. For each rotation sample, the DEAP score, scorei, is computed.
The P-value is calculated as a proportion of simulated scores that are greater or
equal than the score score* of the extracted sub-pathway:

p ¼ #ðscorei � score�Þ
n

ð4:14Þ

The random rotation procedure has the advantage of producing reasonable
results without the need for large number of samples, as in the case of permutation
tests.
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The Clipper method (Martini et al. 2013) employs a different approach in order
to identify sub-pathways which exhibit significant correlations with a given phe-
notype. The two-step approach first reconstructs a pathway network utilizing a
junction tree structure consisting of cliques (Cowell 1998). Next, it extracts linear
sub-pathways between the root and a leaf of each junction tree, scores them, and
assesses their statistical significance. Several pathway databases are used as sources
of prior knowledge, namely Biocarta (Nishimura 2001), KEGG (Kanehisa et al.
2015), NCI/Nature Pathway Interaction Database (Schaefer et al. 2009), and
Reactome (Joshi-Tope et al. 2005). The pathways of each database are converted to
a gene interaction network for each pathway using the approach of graphite (Sales
et al. 2012), and described in Sect. 3.2.

Each directed pathway network, which may be either acyclic or cyclic, is con-
verted to an equivalent undirected acyclic graph by utilizing the junction tree
structure as follows from (Cowell 1998): first, a single undirected edge is added to
the network, connecting any two nodes sharing a downstream node (moralization),
creating an undirected moral graph G. The term moralization is used since any two
parents are eventually connected if they share a child. Next, additional edges are
added to G, such that all cycles of length � 4 have chords, i.e., edges connecting
nonneighboring nodes of a cycle. This process is known as triangulation. Finally,
all cliques of the resulting graph are identified and a junction tree is constructed.
Any clique which lies on the path connecting two cliques C1 and C2, contains the
nodes of the node-set C1 \ C2.

Thus, each node of the junction tree corresponds to a clique. Each clique is
assigned a weight w which is equal to the P-value of the homoscedasticity test. To
this end, the Breusch-Godfrey test (Breusch 1978; Godfrey 1978) is used with two
Gaussian models as input, one for the ‘case’ samples and a second for the ‘control’
expression data corresponding to the genes in clique C:

MiðCÞ ¼ Y �NP li;Rið Þ;Ki ¼ R�1
i 2 Sþ ðCÞ	 


; i ¼ 1; 2; ð4:15Þ

where P is the number of genes, Ki is the inverse of the covariance matrix for the
Gaussian model, and S+(C) the set of positive definite matrices with null elements
corresponding to the missing edges of clique C. The P-Value denotes the statistical
significance of the clique across experimental conditions, with P < 0.05 denoting
significant cliques.

Subsequently, all possible sub-pathways starting from the root of a junction tree
and ending at a leaf are extracted. Each sub-pathway is a cascade of statistically
significant cliques which may contain no more than one nonsignificant clique. Let
j be the sub-pathway, Lj the sub-pathway length, wkj the weight of the kth clique in
sub-pathway j, and m the position of the clique with maximum score within the
sub-pathway. The biological significance of the sub-pathway is assessed using the
following scoring scheme, which is similar to the approach followed by timeClip
(Martini et al. 2014) and described in Sect. 3.4. Namely
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SRj ¼ maxi
Xi
k¼1

dkj

 !
� m
Lj
; i ¼ 1; . . .; Lj; ð4:16Þ

dkj ¼ � logðwkjÞ;wkj � 0:05
logð1� wkjÞ;wkj [ 0:05

�
: ð4:17Þ

For each pathway, the sub-pathway with a maximal SR is selected as its rep-
resentative. Finally, sub-pathways exhibiting significant overlaps between them are
removed.

Another recent method, which was developed to work for a small sample
dataset, is the Pathway and Transcriptome information (PATHOME) (Nam et al.
2014). In contrast with other methods, such as SPIA and Clipper, PATHOME does
not rely on a permutation based approach and/or a large number of samples to
obtain a null distribution for the statistical test. In a first step, PATHOME
decomposes the pathways into linear sub-pathways (paths) from leaf nodes to root
nodes which comply a predefined association rule, and subsequently uses simple
statistical tests to evaluate the significance of differential expression patterns along
the path in terms of consecutive nodes’ correlations.

Briefly, based on prior knowledge on pathway structure extracted from KEGG, a
depth-first search (DFS) algorithm is used to exhaustively decompose pathway
maps into a large number of linear sub-pathways. A reduced set of candidate
sub-pathways is created based on an association rule between the regulation
information of interacting genes and their expression correlation, in terms of the
sign of the Pearson product-moment correlation coefficients. Namely, KEGG
interactions of type ‘activation’ must be confirmed by positive correlation between
the expression values of their corresponding genes in the experimental data.
Similarly, in case of interactions type ‘inhibition’, the expression correlation
between the respective genes is assumed to be negative, in order for the
sub-pathway containing the respective interaction to be considered valid. The
procedure is followed separately for each experimental group. A sub-pathway is
expanded upstream, starting from the leaf node, by successively adding interactions
satisfying the association rule, and stops progressing when the rule ceases to be
satisfied. Each sub-pathway is then compared between the k experimental groups
(usually k = 2, for data from treatment and control experiments) and if its length in
each of the group is greater than three, it is kept for subsequent statistical signifi-
cance analysis. The length of a sub-pathway in the kth group can be expressed as

lk ¼ argminm �
Xm
i¼1

I sgn rki;iþ 1 � ei;iþ 1

� �
¼ 1

� �
þ
Xm
i¼1

R sgn rki;iþ 1 � ei;iþ 1

� �� �( )
þ 1 ð4:18Þ

with: RðxÞ ¼ 0; if x 2 1f g
1; otherwise

�
;
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where p is the number of genes in the sub-pathway, ei,i+1 is the edge between
adjacent genes i, and i + 1, rki;iþ i, is the corresponding correlation coefficient
between the two genes, sgn(•) is the sign function, and I (•) is the indicator function.
The left term ensures the association rule is satisfied, and allows lk to progress
upstream, while R(•) prevents extension of the sub-pathway when the association
rule is not met.

In the test step, sub-pathways are represented as sets of consecutive correlation

coefficients rki;iþ i. Fisher transformation is then applied to rki;iþ i

��� ��� in order to

improve their normality approximation:

cki;iþ 1 ¼
1
2
ln
1þ rki;iþ i

��� ���
1� rki;iþ i

��� ��� 2 ½0;1Þ: ð4:19Þ

In cases of sub-pathways of different length in the k conditions, the minimum
common length is set to be compared. If lk represents the mean of cki;iþ 1, for
k = {1,2}, the significance under the null hypothesis is tested: H0: l

1 = l2. This is
equivalent to suggesting as alternative hypothesis that the global means of
sub-pathway expression correlations are different. The authors of (Nam et al. 2014)
use a z-test statistic to measure significance, adjusted for multiple comparisons with
FDR = 0.05.

4.4 Conversion of Pathway Databases Information
to Graphs

All topology-based differential pathway analysis methods have as initial step the
creation of a background pathway graph or network, providing prior structural
knowledge on the interactions among genes. Only minor differences occur in the
way pathway information is merged into networks and in terms of repositories used
as sources for the data. Conversion of pathway data from KGML and other formats,
such as SBML or BioPax is performed as described in Sect. 3.2.

KEGG is the primary source of pathway information for the majority of methods
described above, as well as DEsubs [(Vrahatis et al. 2016b) described in Sect. 4.6].
Exceptions are DEAP, which uses pathway data from the PANTHER database, and
Clipper, which besides KEGG, uses also data from Reactome. Some methods use
only subsets of KEGG, such as Subpathway-GM (which only uses metabolic
pathways) and SPIA (which only uses human signaling pathway). Additionally, the
majority of methods create individual graphs for each pathway, the exception being
DEsubs, which creates whole organism networks by merging pathways from each
organism.
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4.5 Gene and Pathway-Level Statistics of Differential
Expression

The topology-based methods employed in the analysis of differentially expressed
pathways can generally be categorized in two groups: (i) those which make use of
experimental data (gene expression, differential metabolite profiles, etc.) embedded
within the process of uncovering differentially expressed portions of pathways, and
(ii) those which make use of experimental data only in the statistical evaluation of
the retrieved sub-pathways.

4.5.1 Methods Using Experimental Data for Sub-pathway
Identification

Experimental data are utilized by the majority of topology-based methods in the
form of gene expression from microarray experiments (either case-control of
context-specific) or, more recently, from RNA-seq experiments, and/or metabo-
lomics experiments. Among the methods in this category, two different types of
approaches can be found in current publications: those which use proper expression
values in the methodology followed to extract paths (e.g., Subpathway-GM and
Clipper) and those using a derived measure (correlation of expression values of two
interconnected genes—used in PATHOME).

As described in Sect. 4.3, Subpathway-GM searches for paths across pathway
maps containing specific nodes (signature nodes), which are identified as nodes
corresponding to differential metabolites and genes found in experimental data.
Gaps of as much as two nonsignature nodes are allowed along the paths and a
minimum length of 5 nodes is imposed for retrieved paths. Through this procedure
the authors ensure the search space extends to incorporate biologically relevant
portions of pathways, while, at the same time, constrain the complexity of their
search. Statistical significance of the retrieved sub-pathways is assessed by means
of an enrichment analysis of user-defined sets of interesting genes, based on the
hypergeometric test, as defined by Eq. (4.9).

The approach followed by Clipper broadly resembles the procedure described
above, in the sense that in this case paths along differential nodes (cliques) of the
junction tree are searched for, with gaps of at most one nondifferential clique being
allowed. The difference is in the fact that a statistical significance test is performed
here at the level of nodes (cliques) and, thus, embedded into the pathway search
procedure. For each clique, its significance in differentiating between two condi-
tions (e.g., treatment and control) is assessed by means of a homoscedasticity test
which employs as a null hypothesis the equality in the means of expression values
of the tested clique in the two experimental conditions. The resulting P-Value of the
test is used as weight for the respective clique in a sub-pathway-level measure
summing up the relevance of the respective sub-pathway (see Eqs. 4.16 and 4.17).
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PATHOME follows a different approach, in that is uses correlation coefficients
between expression values of successive interconnected nodes (based on pathway
structure information). The expression correlation measure is embedded into the
sub-pathway search procedure and is used as a condition in terminating the search.
Specifically, as described in Eq. 4.18, an association rule is defined based on the
sign of the correlation coefficient and the information on the edge type derived from
KEGG. When the search reaches an interconnected-edge for which the association
rule is not satisfied, sub-pathway expansion is terminated. Statistical significance of
retrieved sub-pathways is assessed by using sets of Fisher transformed correlation
coefficients, corresponding to edges in a sub-pathway, and comparing their means
between two experimental conditions under the null hypothesis of having equal
means.

4.5.2 Methods Using Experimental Data for Evaluating
the Statistical Significance of Sub-pathways

SPIA defines a gene-level measure, termed perturbation factor (PF—see Eq. 4.4),
which is subsequently aggregated into a pathway-level measure of accumulated
perturbation (tA). Although PF is defined based on differential expression values
and incorporates pathway topology information by including expression of
upstream genes and the number of downstream genes, it is ultimately used only for
the statistical tests assessing the significance of the differential expression of
pathways. As described in Sect. 4.3, two independent statistical tests PNDE and
PPERT are merged into a global probability value (Eq. 4.8) employed to rank
pathways and test whether a pathway is perturbed as a result of the condition under
study.

In TEAK, two different pathway-level measures (BIC and KL) are used for
statistical testing and scoring differentially activated sub-pathways. For
context-specific data, retrieved linear and nonlinear sub-pathways are fit with a
Gaussian Bayesian network, described by conditional probability distributions, as
shown in Eq. 4.11. Subsequently, the BIC (Eq. 4.10) is used to score the
sub-pathways. This way, both topological and experimental information are used to
capture aspects reflecting differentially expressed sub-pathways. For case-control
data two different Bayesian networks are fitted, one for each experimental condi-
tion. Subsequently, the KL divergence for multivariate Gaussians is used as sta-
tistical measure of differential expression (Eq. 4.12).

DEAP defines a much simpler measure for scoring sub-pathways. As described
in Eq. 4.13, the sub-pathway level score is constituted by the absolute expression
value summated along the nodes within the sub-pathways, considering the signs
corresponding to the type of interaction between successive gene nodes. To assess
the statistical significance of the retrieved sub-pathways, simulated sub-pathways
are created based on a random rotation sampling of gene label identifiers within a
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pathway, and the null hypothesis of obtaining equally high or higher scores by
chance is tested (Eq. 4.14).

4.6 DEsubs: A Flexible Tool for Identification
of Differentially Expressed Sub-pathways

To further illustrate the various aspects entailed by the analysis of differentially
expressed sub-pathways, this section describes a recent tool which incorporates a
wide range of features related to this type of differential analysis. DEsubs is a
publicly available tool, part of the Bioconductor project (http://bioconductor.org/
packages/DEsubs/). Its use is to extract perturbed sub-pathways by utilizing gene
expression data from RNA-seq experiments, which are enriched in topological
and/or functional features.

The tool works on RNA-seq expression paired case-control data and utilizes an
organism-level pathway network based on KEGG signaling pathway processing
described in CHRONOS (Vrahatis et al. 2016a). By constructing organism-level
pathway networks, the method sets itself apart from the other topology-based
methods described Sect. 4.5, which mostly rely on separate pathway networks
constructed from individual KEGG pathway maps. This strategy allows DEsubs to
account for overlaps between pathways, a field of study which has attracted sig-
nificant interest recently (Tegge et al. 2016).

Subsequently, the RNA-seq data are mapped onto the pathway network and two
separate approaches are used to extract nodes and interaction edges of interest. First,
sets of statistically significant differentially expressed genes (DEGs) are identified
based on a user selected tool, which can be chosen from a list of the most common
differential expression analysis tools: edgeR (Robinson et al. 2010), DESeq (Anders
and Huber 2010), EBSEq (Leng et al. 2013), limma (Smyth 2004), SAMR (Li and
Tibshirani 2013), NBPSeq (Di et al. 2011), and TSPM (Auer and Doerge 2011).
Each of the tools described above will return a list of statistically significant DEGs,
together with their FDR adjusted-values (Q-values), corrected for multiple testing.
Alternatively, the user has the option to import a custom ranked list of genes
accompanied by their Q-values to proceed with analysis.

Based on the list of DEGs, the nodes V of the original pathway network G = (V,
E) are pruned using the Q-value threshold (commonly 0.05):

Q� valueðiÞ\Qthreshold; i 2 V ð4:20Þ

Subsequently, the interacting edges between the genes selected following the
node rule in Eq. 4.20 are also pruned based on an association rule based on prior
biological knowledge on interaction type from KEGG and the expression profiles of
interacting genes. This edge rule is similar to the one employed by PATHOME and
described in Sect. 4.3:
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corðVi;VjÞ � regðVi;VjÞ[Cthreshold;Vi;Vj 2 V ð4:21Þ

If genes Vi and Vj are related with an edge annotated with a KEGG interaction
type activation the reg is set to 1, if their interaction type is inhibitory, it is set to −1.
The correlation between the expression profiles of the two genes Vi and Vj is
calculated using a correlation measure selected by the user between the Pearson,
Spearman, or Kendall correlations. In contrast with PATHOME, DEsubs imposes a
minimum threshold Cthreshold (commonly Cthreshold = 0.6) on the correlation coef-
ficient values, in order to ensure highly relevant co-expression patterns are retained
within the network.

In the next step, sub-pathway extraction is performed based on five main cate-
gories: (i) components, (ii) communities, (iii) streams, (iv) neighborhoods,
(v) cascades. Each of these sub-pathway types is able to highlight different topo-
logical and biological aspect within the network.

There are several types of components that can be searched: regular cliques (in
which every two distinct nodes are adjacent), maximal clique (clique with the
largest possible number of edges), or k-cores (a maximal sub-pathway in which
every node has a degree of at least k). The community category extracts groups of
highly interacting genes, based on six different approaches: random walk (finds
community structures which minimize the expected description length of a random
walker trajectory), walktraps (finds densely connected structures via random
walks), modular (finds communities via a modularity measure and a hierarchical
approach), leading eigenvector (finds densely connected communities based on the
leading nonnegative eigenvector of the modularity matrix), betweenness (detects
community structures using edge betweenness), and greedy (detects community
structure using greedy optimization of modularity). Stream, neighborhood, and
cascade type of sub-pathways are extracted starting from a gene of interest
(GOI) node and are able to highlight perturbations paths underlying differentially
expressed sub-pathways. Additionally, these types of sub-pathways can be searched
either downstream (forward) or upstream (backward) from a certain gene of
interest. The component category extracts strongly connected groups of genes
(cliques) highlighting dense local areas within the network. These genes may share
a common functional property, as mentioned in Sect. 3.3.1.

Candidate GOIs are genes exhibiting specific topological or functional roles
within the network. Toward this end, a number of topological measures has been
employed from the igraph package (Csardi and Nepusz 2006), capturing both local
and global properties of the network: (i) Degree is a local measure which captures
the number of direct interactions of a gene. (ii) Betweenness is a global measure
which captures the number of shortest paths across the network, passing through a
gene. (iii) Closeness is a global measure which is equal to the inverse of the sum of
distances from all other genes on the network. (iv) Eccentricity is a global measure
which captures the shortest path distance from a gene to the most remote down-
stream gene. Finally, two additional global measures are employed, namely
(v) Kleinberg hub-centrality score and (vi) Google’s page rank. Candidate GOIs
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also include start-nodes, namely genes with no incoming interactions. Alternatively,
GOIs can be genes with specific functional roles. Toward this end, a number of
gene sets are available to accommodate the analysis: (i) KEGG pathway genes,
(ii) biological processes, (iii) cellular components and (iv) molecular functions from
Gene-Ontology, disease related genes from (v) OMIM and (vi) GAD, drug targets
from (vii) DrugBank, microRNA targets from miRecords, and (viii) transcription
factors from Transfac and Jaspar (Barneh et al. 2015; Chen et.al 2013; Li et al.
2011).

Sub-pathways retrieved using the afforementioned methodology can subse-
quently be further tested for enrichment in certain annotation terms, based on the
cumulative hypergeometric distribution, in a manner similar with the one followed
by Subpathway-GM:

P ¼ 1�
Xd
x¼0

D
x

� �
G� D
l� x

� �
G
l

� � ; ð4:23Þ

where G is the number of genes in the user-defined input list, l is the number of
those genes included in the sub-pathway, D is the number of genes annotated with a
specific term, and d is the total number of genes contained in the sub-pathway.

Fig. 4.1 a Bar plots illustrating lowest Q-value. b Heat-map showing genes with highest
topological measures. c Heat-map showing genes with highest functional measures (output of
DEsubs R-package)
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Finally, DEsubs enables the visualization of results at different levels: from gene,
to sub-pathway and organism. An example of gene-level visualization option is
displayed in Fig. 4.1, where the fifteen top genes in terms of Q-values, and top
genes with highest topological and functional measures are presented. Figure 4.2a
displays an example of sub-pathway level visualization, a graph type display of the
sub-pathway and the corresponding interactions between contained genes, with
nodes and edge color coding for the Q-values and correlation coefficient, respec-
tively. Figure 4.2b presents a circular diagram displaying gene-transcription factor
associations within a sub-pathway and Fig. 4.2c shows an example of
organism-level visualization providing a global view on KEGG pathway term
enrichment over a set of sub-pathways extracted using DEsubs.
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