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Abstract. In parallel computing load balancing is an essential compo-
nent of any efficient and scalable simulation code. Static data decom-
position methods have proven to work well for symmetric workloads.
But, in today’s multiphysics simulations, with asymmetric workloads,
this imbalance prevents good scalability on future generation of parallel
architectures. We present our work on developing a general dynamic load
balancing framework for multiphysics simulations on hierarchical Carte-
sian meshes. Using a weighted dual graph based workload estimation
and constrained multilevel graph partitioning, the required runtime for
industrial applications could be reduced by 40% of the runtime, running
on the K computer.
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1 Introduction

Load balancing is an essential component in today’s large scale multiphysics
simulations. With an ever increasing amount of parallelism in modern computer
architecture, it is essential to remove even the slightest workload imbalance. As
it could severely impact application’s scalability. Traditionally, load balancing is
seen as a static problem, closely related to the fundamental problem of parallel
computing, namely data decomposition. Data is often decomposed either offline
by a preprocessor or online in the initial steps of a simulation. This decomposi-
tion is typically performed with respect to the underlying discretization of the
computational domain, with the aim of evenly distributing the cells, for exam-
ple tetrahedra or hexahedra in unstructured meshes, or blocks in the case of
Cartesian block structured meshes.

However, such a decomposition assumes that the workload for each cell is uni-
form. For certain problems this is true, but for a large class of problems it is not,
for example, reactive flows, where the cost of computing the chemical reactions
is different depending on the species concentration in a cell. Another example is
when immersed boundary methods are employed. There, the cost of computing
one cell will be different depending on whether the cell is cut by a surface or not,
and also whether the geometry is stationary or moving through the domain.
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In this paper we present our work on developing a generic dynamic load
balancing technique for the Building Cube Method (BCM) [5], suitable for large-
scale multiphysics problems. Our method is based on the load balancing frame-
work used in DOLFIN HPC [3], a framework for automated scientific computing.
The rest of this paper is organized as follows. In Sect. 2, we present the theory
for static load balancing and discuss its limitations. Section 3 extends this the-
ory to dynamic load balancing, with the introduction of workload modeling and
re-partitioning schemes. In Sect. 4 we evaluate the performance. We present a
discussion of the predictivity of the load balancing framework in Sect. 5 and,
lastly, give conclusions and outline future work in Sect. 6.

2 Static Load Balancing

In parallel computing, the idea of data decomposition or static load balancing
is simple, namely divide the workload evenly across all the workers. This can be
formulated as a partitioning problem.

Given a set of cells C from a domain T , the partitioning problem for p workers
can be expressed as, find p subsets {T i}pi=1 such that:

T = ∪p
i=1T i and T i ∩ T j = ∅ , i �= j (1)

with the constraint that the workload:

W (T i) = |{C ∈ T | C ∈ T i}|

should be approximately equal for all subsets.
Solving Eq. 1 can be done in several ways. The least expensive, geometric

methods, such as space filling curves [1] only depend on the geometry of the
domain. These methods are fast, but do not take into account the topology,
hence the data dependencies between different cells in the domain are not opti-
mized. For Cartesian meshes such as BCM, neglecting the consideration of data
dependencies is less severe. All the cells have the same amount of neighbors, and
if the decomposition method tries to assign cells which are close to each other to
one worker (in the geometrical sense), data dependencies will automatically be
approximately balanced. However, if woarkload is not uniform across cells, or if
data dependencies between the cells are assymetric, we have to resort to graph
methods in order to solve Eq. 1.

Graph methods do not solve Eq. 1 directly, instead the following k-way par-
titioning problem is considered: Given an undirected graph G = (V,E) with
nodes V and edges E, split V into k subsets {Qj}kj=1 with the constraint that
the number of nodes in each subset should be roughly equal, and the number of
edges cut should be minimized. If we model the computational work by V and
the data dependencies in the domain by E, we see that this method will balance
both the computational work and the dependencies. Furthermore, if we instead
consider a weighted graph G and add the constraint that the sum of all weights
should be roughly equal in all subsets Qj , the method can then, by allowing
multiple weights in the graph, handle a non uniform workload.



Dynamic Load Balancing for Large-Scale Multiphysics Simulations 15

3 Dynamic Load Balancing

In order to perform dynamic load balancing, two components are needed: First,
a way to evaluate the workload, and second, a way to decompose the data with
the constraint to even out the workload. Using the graph based methods from
Sect. 2 we can compute new constrained partitions of our computational domain.
But the challenge is to be able to evaluate the current and future workloads, and
decide if load balancing is needed.

Fig. 1. Example of the dual graph of a BCM mesh.

3.1 Workload Modeling

We model the workload by a weighted dual graph of the underlying Building
Cube mesh (see Fig. 1). Let G = (V,E) be the dual graph of the mesh, with nodes
V (one for each cube) and edges E (connecting two nodes if their respective cubes
share a common face), q be one of the partitions, and let wi be the computational
work (weights) assigned to the graph. The workload of partition q ∈ T is then
defined as:

W (q) =
∑

wi∈wq

wi

Let Wavg be the average workload and Wmax be the maximum, then the graph
is considered imbalanced if:

Wmax/Wavg > κ (2)

where κ is the threshold value determined depending on the current problem
and/or machine characteristics.

To model a simulation’s workload, we finally have to assign appropriate val-
ues to the graph’s weights wi. In order to have a fine-grained control over the
workload, we let each node have j weights w

vj

i , representing the computational
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work for the given node, and each edge k weights wek
i , representing the commu-

nication cost (data dependencies between graph nodes). The total weight for a
given graph node is then given by

wi =
∑

j

w
vj

i +
∑

k

wek
i

For a typical simulation, we always assign the number of grid points in each
cube to wv1

i and the size of the halo (number of grid points to exchange) to wek
i

for each of the graph edges connecting to node Vi. One or several more weights
are later added to the graph node to model the additional computational cost
of chemical reactions or immersed bodies. Additional weights can also be added
to the edges, but we limit the present study to model only the halo exchange
cost. The graph is finally partitioned by a graph partitioner, with the weights
as an additional balancing constraint. Thus, new load-balanced partitions are
obtained, as illustrated in Fig. 2.

(a) Unbalanced (Z-ordering). (b) Balanced wrt. geometry.

Fig. 2. Load balancing wrt. immersed geometry and fluid cells, colored by MPI rank.

3.2 Intelligent Remapping

For transient problems where the computational cost changes rapidly, it might
not be feasible to load balance as soon as the workload changes. Therefore, the
framework tries to minimize the data flow in two different ways. First, it uses
the threshold value κ to filter out small workload fluctuations. Second, if load
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balancing is necessary, the algorithm tries to minimize data movement as much
as possible.

Given a set of new partitions T ′ from an already partitioned domain T , if the
new partitions are assigned such that a minimal amount of data has to be moved
from T to form T ′, we have achieved our goal of minimizing data movement.
This can be solved using a method referred to as intelligent remapping.

Given an imbalanced workload. New partitions T ′ are computed using a
constrained graph method. The result is then placed in a matrix S, where each
entry Sij is the number of graph vertices in a partition T i which would be placed
in the new partition T ′j . The goal is to keep as much data local as possible, hence
the maximum row entry in S is kept local. This can be achieved by transforming
S into a bipartite graph (Fig. 3), with edges eij weighted with Sij , and solving
the maximally weighted bipartite graph problem (MWBG) [6].
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Fig. 3. Example of a weighted bipartite graph and its corresponding matrix S.

Solving this problem is known to be expensive with a cost of O(V 2 log(V ) +
V E), where V and E refer to nodes and edges in the bipartite graph. In [6] it
was shown that the bipartite graph problem can be solved in time O(E) using a
heuristic algorithm based on sorting the matrix S and using a greedy algorithm
to reassign the partitions. But in the worst case E ∼ P 2, where P is the number
of processes used to run the simulation, this linear heuristic also quickly becomes
too expensive to solve. In [4] we decreased complexity of the heuristic algorithm
to O(P ) using parallel binary radix sort.

The heuristic algorithm assigns the largest (unassigned) partition from a
sorted list generated from the similarity matrix S (row-wise). In [6], S was gath-
ered onto single core and sorted in serial using a binary radix sort. Since the
matrix is of size P x P, where P is the number of cores, sorting quickly becomes
a bootlneck at scale. Therefore, in [4] the heuristic was modified to perform the
sorting in parallel using byte sorting parallel radix sort.

When we combine graph-based data decomposition methods, workload mod-
eling using a weighted dual graph and intelligent remapping, we arrive at the
general dynamic load balancing framework, as expressed in Algorithm 1.
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Algorithm 1. Dynamic load balancing framework.
for each partition q ∈ T do

W (q) =
∑

wi∈wq

(∑
j w

vj
i +

∑
k wek

i

)

wi

end
Wmax ←− ComputeGlobalMax(W )
Wavg ←− ComputeGlobalAverage(W )
if Wmax/Wavg > κ then

T ′ ←− ComputeNewPartitions(T )
S ←− ConstructMatrix(T ′)
G ←− SolveMWBG(T ′)
T ←− RedistributeData(G)

end

4 Performance Evaluation

The load balancing framework presented in this paper has been implemented in
the multiphysics framework Cube, developed at RIKEN AICS. Cube is based
on the Building Cube Method and uses different kinds of immersed boundary
methods to represent complex geometries. The framework is written in Fortran
2003, and uses a light-weight object-oriented approach for extensibility. The
framework uses a hybrid MPI + OpenMP parallelization, in which each rank is
assigned a set of cubes and thread parallelization is performed on per cube level
basis, with two-dimensional slices in the z-direction of each cube. For scalabil-
ity Cube uses parallel I/O in the form of MPI-I/O, and ParMETIS for graph
partitoning.

To evaluate the performance of the load balancer, we used Cube to solve
two different incompressible flow problems on the K computer and compared
the total execution time for performing a fixed number of time steps for both
an unbalanced (no load balancing) and a balanced case (using load balancing)
on various numbers of cores. For both problems we used the QUICK scheme for
the convective terms and an unsteady multigrid solver for the pressure. Time
integration was performed using a second-order Crank–Nicolson method.

4.1 Immersed Boundary Method

A distributed Lagrange multiplier immersed boundary method [2,7] in Cube
was used to represent the complex geometries (Fig. 4) in the numerical exper-
iments. A Lagrangian-Eulerian approach is used in the implementation of the
immersed boundary method because Lagrangian description is a very accurate
method of representing complex, mobile immersed bodies (IB). In this app-
roach, an Eulerian description is used to solve the equations governing the fluid
motion, whereas a Material or Lagrangian description is used to represent the
immersed body. The immersed body is discretized in to a discrete set of Mate-
rial or Lagrangian points. The interaction between the fluid and the immesrsed
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(a) Nose landing gear geometry. (b) Full car model.

Fig. 4. Geometries used to evaluated the performance of the load balancing framework.

body is enabled through interpolation operators such as the smoothed Dirac
delta function, inverse distance interpolation, or trilinear interpolation. In this
work we use the smoothed Dirac delta function for the interpolation between
Lagrangian-Eulerian domains.

A spatial decomposition approach is employed to discretize the combined
Lagrangian-Eulerian system, wherein the Lagrangian domain is discretized on
the basis of the Eulerian domain decomposition. For a given rank, this ensures
data locality between Lagrangian and Eulerian domains, avoiding MPI commu-
nication for Lagrangian-Eulerian interpolation.

4.2 IB Workload Modeling

In the load balancer, the weights were assigned as described in Sect. 3.1, with
the additional immersed boundary cost added to wv2

i , modeled as γ · nparticles,
where nparticles is the number of Lagrangian particles. The choice of the parame-
ter γ is not trivial and it depends on the relative number of Lagrangian-Eulerian
interpolation operations for a given purely Eulerian stencil operation. The inter-
polation between Lagrangian and Eulerian meshes involves ∼2n3 operations for
a given Lagrangian particle. Here, n depends on the type discrete delta function,
e.g., for a 3-point delta function n = 4. n3 could be a good candidate for the
cost parameter γ. But, Lagrangian-Eulerian interpolation is required only once
every time step, whereas purely Eulerian stencil operations depend on iterative
processes such as solution of the Poisson equation. If Np−iter is the number of
Poisson solver iterations in one time step, then one could choose γ = n3/Np−iter.
Therefore, γ would depend on the type of discrete delta function and the type
of Poisson solver, but for most cases n3/Np−iter ∼ O(1). Thus, we choose γ in
the range of 1–4 for immersed body applications. It is to be noted that γ is
application dependent, and a informed choice has to be made for its value.
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4.3 Load Balancing Threshold κ

For the present analysis, a load imbalance threshold, κ = 1.05, is chosen, i.e. the
load balance is triggered if there is an imbalance of 5% or more. In the two appli-
cations we consider, flow around a vehicle and nose landing gear, the immersed
geometries are stationary, so load balancing is triggerd only once during the
simualtion. Thus, κ only determines when load balancing and data redistribu-
tion is triggered; it has no influence on how the balanced or unbalanced cases
perform, consequently it does not affect the overall runtime of the simulation. In
more dynamic cases, such as applicaitons with rapidly moving IBs, the simula-
tion runtime will be affected by the choice of κ. A small value of κ will frequently
trigger data redistribution. Which will increase the overall simulation runtime.
Thus, for dynamic applications, a parameteric study of the effect of κ would be
necessary in order to choose an optimal value of κ.

4.4 Nose Landing Gear

The first problem is based on the nose landing gear (Fig. 4a) case from AIAA’s
BANC series of benchmark problems. Our setup uses a mesh consisting of 48255
cubes, subdivided into 16 cells in each axial direction, and the landing gear
consists of 0.5M surface triangles.

In Fig. 5a we present the time required to perform one timestep for the unbal-
anced case and for the balanced case when γ is set to 3 and 4, respectively. From
the results we can observe that using the load balancer results in approximately
60% resuction in the unbalanced runtime. As the number of cores increases,
the gains of load balancing diminishes. This is most likely due to the fact that
when using a relative small model, such as the landing gear, and few cubes in
the mesh, the initial data decomposition will (for large core counts) will result
in more partitions around to the geometry and indirectly balance the workload
automatically. A value of γ = 1 resulted in a runtime that was approximaltely
equal to the unbalanced case. This indicates that values of 3 and 4 for γ are
reasonable choices for load balancing nose landing gear type geometries. The
lack of Lagrangian communication cost in the model could also affect the result.
Figure 5a shows the relative runtime of both load balanced cases normalized by
the unbalanced runtime.

4.5 Full Car Model

As a second example we simulate the flow past a full car model (Fig. 4b). The
numerical methods used for this problem are exactly the same as for the landing
gear benchmark. We use a mesh consisting of 38306 cubes with 163 cells per
cube and a car model consisting of 12.5 M surface triangles.
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(a) Runtime per time-step.
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(b) Runtime per time-step normalized by the runtime of
the unbalanced case.

Fig. 5. Runtime per time-step and relative runtime for the nose landing gear.

The runtime per timestep presented in Fig. 6a shows the results of the bal-
anced case with γ = 3 & γ = 4 and the unbalanced case. The trends for the
runtime in all the cases are similar to those of the nose landing gear case. We
can see that for all the tested core counts the runtime is improved except for the
16384 core case. In the best case, which is 256 cores, the runtime of the balanced
case reduced to 40% of the unbalanced case. The relative runtime is also plotted
in Fig. 6a.
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Fig. 6. Runtime per time-step and relative runtime for the full car model.

5 Discussion

A key aspect of dynamic load balancing techniques is the prospect of load bal-
ancing not just current workloads, but future workloads as well. The evaluation
of future workloads and ability of the load balancer to address such workloads
depends of the type of applications. The applications considered in our work have
static workload. The evaluation of future workloads is relevant to dynamic appli-
cations. For some dynamic applications it may be possible to evaluate, predict
and address a future imbalance. Examples of such applications are simulations
with moving geometries, simulations of spray dynamics, and others. When the
velocity of an immersed geometry is known, the future location of the geometry
and its workload can be evaluated in advance and addressed when necessary. In
applications of spray dynamics, the rate of new spray particle injection and the
average trajectory of the bulk particles can be used to predict the future work-
load and balance it accordingly. If these dynamic applications are coupled with
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adaptive mesh refinement (AMR), the ability to predict the future workload will
be all the more useful. When AMR is in use, the overall workload of the system
changes with time. In cases where the workload increases due to creation of new
mesh cells, the ability to predict the future workload can reduce the cost of data
redistribution. When the location of new mesh cells is known, the future work-
load can be evaluated in advance and the data redistribution can be carried out
before the creation of cells to reduce the data redistribution cost. Conversely,
when location of mesh cells to be destroyed, resulting in workload reduction, is
known, the data redistribution can be deferred until after the cell destruction to
reduce the redistribution cost [6].

6 Summary and Future Work

In this work we have investigated the feasibility of using dynamic load balanc-
ing techniques to improve the performance of multiphysics simulation using the
Building Cube Method. Our results show that the runtime could be reduced by
almost a factor of two fifth when using the load balancer. In the current study
we have limited ourselves to flow problems, but we want to stress that the load
balancing framework is generic and could be applied to any type of workload,
as demonstrated when we incorporated the cost of Lagrangian particles in the
workload modeling. Future work includes fine tuning of the workload model-
ing, especially focusing on the computational and communcation cost of, e.g.,
chemical reactions and Lagrangian particles.
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