
Edoardo Di Napoli
Marc-André Hermanns
Hristo Iliev
Andreas Lintermann
Alexander Peyser (Eds.)

 123

LN
CS

 1
01

64

First JARA-HPC Symposium, JHPCS 2016
Aachen, Germany, October 4–5, 2016
Revised Selected Papers

High-Performance
Scientific Computing

Lecture Notes in Computer Science 10164

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Edoardo Di Napoli • Marc-André Hermanns
Hristo Iliev • Andreas Lintermann
Alexander Peyser (Eds.)

High-Performance
Scientific Computing
First JARA-HPC Symposium, JHPCS 2016
Aachen, Germany, October 4–5, 2016
Revised Selected Papers

123

Editors
Edoardo Di Napoli
Forschungszentrum Jülich
Jülich
Germany

Marc-André Hermanns
Forschungszentrum Jülich
Jülich
Germany

Hristo Iliev
RWTH Aachen University
Aachen
Germany

Andreas Lintermann
RWTH Aachen University
Aachen
Germany

Alexander Peyser
Forschungszentrum Jülich
Jülich
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-53861-7 ISBN 978-3-319-53862-4 (eBook)
DOI 10.1007/978-3-319-53862-4

Library of Congress Control Number: 2017932438

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Current high-performance computing (HPC) systems consist of complex configurations
with a massive number of components that are very likely heterogeneous and typically
have a limited amount of memory per component. These hardware and software
configurations can change dynamically owing to fault recovery or power saving pro-
cedures. To make efficient use of such systems, complex software components require
programming layers structured in deep hierarchies. Additionally, applications
increasingly use HPC systems for data analytics and complex workflows. Therefore,
the successful development of software for scientific computations requires collabo-
ration between domain scientists on one hand and computer science/HPC experts on
the other.

JARA-HPC is the high-performance computing section of JARA, the Jülich Aachen
Research Alliance. This alliance represents a cooperative venture between RWTH
Aachen University and Forschungszentrum Jülich. This cooperative relationship goes
beyond the mere juxtaposition of university and non-university research and teaching
and represents a pioneering model in Germany. Scientists from JARA-HPC combine
in-depth knowledge of massively parallel computing architectures with expertise in
specific research fields. Within JARA-HPC, distinct research teams embodied by sim-
ulation laboratories (SimLabs) provide support to communities in diverse computational
science disciplines. At the same time, HPC experts in cross-sectional groups provide
support to the SimLabs in the form of services needed by a broader spectrum of sci-
entific communities, such as performance optimization for software codes and visual-
ization of simulation data.

Since its establishment, JARA-HPC has proven that close interdisciplinary mixing
of domain-specific knowledge and HPC expertise is a concept that is key for success in
scientific software. This success has been substantiated by the in-depth collaborations
which have reaped synergies from a diverse knowledge base during the development of
complex scientific codes. JARA-HPC established the JARA-HPC Symposium
(JHPCS) to pass on its collected experience and complement it with the experience
developed by other HPC development teams. In the long term, the aim of the JHPCS is
to motivate broader discussion on various aspects of HPC application development
among experts at an international scale. Participants in the symposium are given the
opportunity for a profound exchange with colleagues from different research fields
utilizing HPC systems in their scientific work.

This volume contains the papers presented at the First JHPCS held during October
3–4, 2016 in Aachen, Germany. The JHPCS Program Committee received a total of
26 submissions. Each submission was reviewed by at least two Program Committee
members as well as additional external reviewers in a single-blind peer review. Owing
to the above-average quality of the submissions, the Program Committee decided to
accept 21 papers on diverse topics, such as coupling methods and strategies in com-
putational fluid dynamics (CFD), performance portability and applications in HPC,

as well as provenance tracking for large-scale simulations. The symposium program
included a keynote talk by Viktor Eijkhout from the Texas Advanced Computing
Center (TACC) on “Parallel Programming for the 21st Century.” Furthermore, it fea-
tured a half-day workshop that focused on CFD-related aeroacoustic research with a
mix of invited talks and paper submissions. Overall, the program reflected the antici-
pated broad spectrum of topics and brought together several communities active in
HPC software development.

December 2016 Edoardo Di Napoli
Marc-André Hermanns

Hristo Iliev
Andreas Lintermann

Alexander Peyser

VI Preface

Organization

Program Committee

Edoardo Di Napoli Forschungszentrum Jülich, Germany
Bernd Hentschel RWTH Aachen University, Germany
Marc-André Hermanns Forschungszentrum Jülich, Germany
Hristo Iliev RWTH Aachen University, Germany
Andreas Lintermann RWTH Aachen University, Germany
Bernd Mohr Forschungszentrum Jülich, Germany
Boris Orth Forschungszentrum Jülich, Germany
Alexander Peyser Forschungszentrum Jülich, Germany
Herwig Zilken Forschungszentrum Jülich, Germany

Additional Reviewers

Baumeister, Paul
Diaz-Piers, Sandra
Fabregat-Traver, Diego
Foysi, Holger
Hemchandra, Santosh
Meinke, Matthias
Meysonnat, Pascal
Nanavati, Sachin
Peyser, Alexander

Plotnikov, Dimitri
Roidl, Benedikt
Schlimpert, Stephan
Shende, Sameer
Thust, Kay
Trensch, Guido
Winkelmann, Jan
Wortmann, Daniel
Wylie, Brian

Invited Talk
(Abstract)

Parallel Programming for the 21st Century

Victor Eijkhout

Texas Advanced Computing Center, Austin, TX, USA

Abstract. The dominant parallel programming systems, MPI and OpenMP, are
now 20 years old. Computer architectures have become considerably more
complicated in this time, and these systems have undergone refinements
accordingly, making them ever more complicated to use. Maybe it is time to
take a step back and reconsider the nature of parallel programming: is all this
complexity necessary at the user level? Our parallel programming systems have
a design that is inspired by underlying hardware mechanisms, which introduces
considerations in the parallel program that are extraneous to the algorithm being
implemented. This raises the question what the minimal specification is of an
algorithm that allows for efficient parallel execution. Past experience has shown
that a parallelizing compiler is not the right approach. A more interesting
approach, writing a sequential program in terms of distributed objects, was tried
in High Performance Fortran and failed there.

We argue that this ‘sequential semantics’ approach can work, if the pro-
grammer expresses the algorithm in terms of the right abstractions. We motivate
and define these abstractions and show how the IMP (Integrative Model for
Parallelism) system implements them, giving essentially the performance
behaviour of a hand-written code. To the programmer, a Finite Element program
in IMP has the complexity of a sequential code, without any parallel commu-
nication explicitly specified. We show results obtained so far, and future
directions of research.

Contents

Efficient HPC-Optimized Multi-Physics Coupling Strategies in CFD

Partitioned High Performance Code Coupling Applied to CFD 3
Florent Duchaine, Sandrine Berger, Gabriel Staffelbach,
and Laurent Gicquel

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 13
Niclas Jansson, Rahul Bale, Keiji Onishi, and Makoto Tsubokura

On the Significance of Exposure Time in Computational
Blood Damage Estimation . 24

Lutz Pauli and Marek Behr

A Partitioned Methodology for Conjugate Heat Transfer
on Dynamic Structures. 37

Miguel Zavala-Aké, Daniel Mira, Mariano Vázquez,
and Guillaume Houzeaux

Farfield Noise Prediction Using Large-Scale
Lattice-Boltzmann Simulations . 48

Benjamin Duda and Ehab Fares

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 58
Johan Hoffman, Johan Jansson, Niyazi Cem Degirmenci,
Jeannette Hiromi Spühler, Rodrigo Vilela De Abreu,
Niclas Jansson, and Aurélien Larcher

The Direct-Hybrid Method for Computational Aeroacoustics
on HPC Systems. 70

Michael Schlottke-Lakemper, Hans Yu, Sven Berger,
Andreas Lintermann, Matthias Meinke, and Wolfgang Schröder

A Novel Approach for Efficient Storage and Retrieval of Tabulated
Chemistry in Reactive Flow Simulations . 82

Sebastian Popp, Steffen Weise, and Christian Hasse

Multi-scale Coupling for Predictive Injector Simulations 96
Mathis Bode, Marco Davidovic, and Heinz Pitsch

http://dx.doi.org/10.1007/978-3-319-53862-4_1
http://dx.doi.org/10.1007/978-3-319-53862-4_2
http://dx.doi.org/10.1007/978-3-319-53862-4_3
http://dx.doi.org/10.1007/978-3-319-53862-4_3
http://dx.doi.org/10.1007/978-3-319-53862-4_4
http://dx.doi.org/10.1007/978-3-319-53862-4_4
http://dx.doi.org/10.1007/978-3-319-53862-4_5
http://dx.doi.org/10.1007/978-3-319-53862-4_5
http://dx.doi.org/10.1007/978-3-319-53862-4_6
http://dx.doi.org/10.1007/978-3-319-53862-4_7
http://dx.doi.org/10.1007/978-3-319-53862-4_7
http://dx.doi.org/10.1007/978-3-319-53862-4_8
http://dx.doi.org/10.1007/978-3-319-53862-4_8
http://dx.doi.org/10.1007/978-3-319-53862-4_9

Domain-Specific Applications and High-Performance Computing

Ab Initio Description of Optoelectronic Properties at Defective Interfaces
in Solar Cells . 111

Philippe Czaja, Massimo Celino, Simone Giusepponi, Michele Gusso,
and Urs Aeberhard

Scale Bridging Simulations of Large Elastic Deformations
and Bainitic Transformations . 125

Marc Weikamp, Claas Hüter, Mingxuan Lin, Ulrich Prahl,
Diego Schicchi, Martin Hunkel, and Robert Spatschek

Ab Initio Modelling of Electrode Material Properties 139
Siaufung O. Dang, Marco Prill, Claas Hüter, Martin Finsterbusch,
and Robert Spatschek

Overlapping of Communication and Computation in nb3dfft
for 3D Fast Fourier Transformations . 151

Jens Henrik Göbbert, Hristo Iliev, Cedrick Ansorge, and Heinz Pitsch

Towards Simulating Data-Driven Brain Models at the Point Neuron Level
on Petascale Computers . 160

Till Schumann, Csaba Erő, Marc-Oliver Gewaltig,
and Fabien Jonathan Delalondre

Parallel Adaptive Integration in High-Performance Functional
Renormalization Group Computations . 170

Julian Lichtenstein, Jan Winkelmann, David Sánchez de la Peña,
Toni Vidović, and Edoardo Di Napoli

Performance Portability

Performance Optimization of Parallel Applications in Diverse On-Demand
Development Teams . 187

Hristo Iliev, Marc-André Hermanns, Jens Henrik Göbbert, René Halver,
Christian Terboven, Bernd Mohr, and Matthias S. Müller

Hybrid CPU-GPU Generation of the Hamiltonian and Overlap Matrices
in FLAPW Methods . 200

Diego Fabregat-Traver, Davor Davidović, Markus Höhnerbach,
and Edoardo Di Napoli

Visualizing Performance Data with Respect to the Simulated Geometry 212
Tom Vierjahn, Torsten W. Kuhlen, Matthias S. Müller,
and Bernd Hentschel

XIV Contents

http://dx.doi.org/10.1007/978-3-319-53862-4_10
http://dx.doi.org/10.1007/978-3-319-53862-4_10
http://dx.doi.org/10.1007/978-3-319-53862-4_11
http://dx.doi.org/10.1007/978-3-319-53862-4_11
http://dx.doi.org/10.1007/978-3-319-53862-4_12
http://dx.doi.org/10.1007/978-3-319-53862-4_13
http://dx.doi.org/10.1007/978-3-319-53862-4_13
http://dx.doi.org/10.1007/978-3-319-53862-4_14
http://dx.doi.org/10.1007/978-3-319-53862-4_14
http://dx.doi.org/10.1007/978-3-319-53862-4_15
http://dx.doi.org/10.1007/978-3-319-53862-4_15
http://dx.doi.org/10.1007/978-3-319-53862-4_16
http://dx.doi.org/10.1007/978-3-319-53862-4_16
http://dx.doi.org/10.1007/978-3-319-53862-4_17
http://dx.doi.org/10.1007/978-3-319-53862-4_17
http://dx.doi.org/10.1007/978-3-319-53862-4_18

Provenance Tracking

Framework for Sharing of Highly Resolved Turbulence Simulation Data 225
Bastian Tweddell, Jens Henrik Göbbert, Michael Gauding,
Benjamin Weyers, and Björn Hagemeier

UniProv: A Flexible Provenance Tracking System for UNICORE 233
André Giesler, Myriam Czekala, Björn Hagemeier,
and Richard Grunzke

A Collaborative Simulation-Analysis Workflow for Computational
Neuroscience Using HPC. 243

Johanna Senk, Alper Yegenoglu, Olivier Amblet, Yury Brukau,
Andrew Davison, David Roland Lester, Anna Lührs, Pietro Quaglio,
Vahid Rostami, Andrew Rowley, Bernd Schuller, Alan Barry Stokes,
Sacha Jennifer van Albada, Daniel Zielasko, Markus Diesmann,
Benjamin Weyers, Michael Denker, and Sonja Grün

Author Index . 257

Contents XV

http://dx.doi.org/10.1007/978-3-319-53862-4_19
http://dx.doi.org/10.1007/978-3-319-53862-4_20
http://dx.doi.org/10.1007/978-3-319-53862-4_21
http://dx.doi.org/10.1007/978-3-319-53862-4_21

Efficient HPC-Optimized Multi-Physics
Coupling Strategies in CFD

High-Performance Computing (HPC) enables the simulation of complex multi-physics
phenomena which appear in combustion and reactive flows, in fluid-structure inter-
action, and in aeroacoustics problems. High temporal and spatial resolutions necessitate
massive parallelization of the corresponding simulation software. Finding strategies to
efficiently couple methods to solve for the individual physics under the constraints of
process load-balance, minimization of communication, and maximization of compu-
tational efficiency, also with respect to recent hardware developments, is a challenging
task and an active field of research. In particular, regarding upcoming exascale systems,
the scalability of such coupled software solutions is key to code sustainability and code
applicability to solve even more complex multi-physics problems in the future. To
tackle such coupling problems, various strategies exist. While two-stage approaches
consecutively simulate different physics and realize a one-way coupling, directly
online-coupled methods allow for solving problems in parallel including mutual
dependencies. In general, the latter approach is more efficient and solves a global
coupled system of equations, a process-local multi-physics problem, or the individual
physics on dedicated processes. From these methods new challenges arise, such as how
to efficiently parallelize the solution method for the full set of the coupled equations or
how to efficiently implement communication between multi-physics domains or
between dedicated physic-specific processes.

The present topic covers contributions from the sessions “Efficient multi-physics
coupling strategies in CFD”, “Coupling methods for reactive flows and FSI”, and the
mini-workshops “CFD applications using HPC” and “Aeroacoustics coupling meth-
ods” of the JARA-HPC Symposium 2016 (JHPCS’16). All contributions discuss
methods to numerically solve multi-physics problems, involve discussions on coupling
strategies for large-scale and multi-scale applications, and/or focus on code scalability,
decomposition strategies, dynamic load-balancing, and the analysis of the corre-
sponding physical results.

Partitioned High Performance Code Coupling
Applied to CFD

Florent Duchaine(B), Sandrine Berger, Gabriel Staffelbach,
and Laurent Gicquel

Cerfacs, 42 Avenue Gaspard Coriolis, 31 057 Toulouse, France
florent.duchaine@cerfacs.fr

Abstract. Based on in situ observations obtained in the context of mul-
tiphysics and multicomponent simulations of the Computational Fluid
Dynamics community, parallel performances of code coupling is first dis-
cussed. Overloads due to coupling steps are then analyzed with a simple
toy model. Many parameters can impact the communication times, such as
the number of cores, the communication mode (synchronous or asynchro-
nous), the global size of the exchanged fields or the amount of data per core.
Results show that the respective partionning of the coupled codes as well as
core distributions on the machine have an important role in exchange times
and thus on the totalCPUhours needed by an application. For the synchro-
nous communications presented in this paper, twomain outcomes indepen-
dent from the coupler can be addressed by incorporating the knowledge of
the coupling in the preprocessing step of the solvers with constraint and co-
partitioning as well as process placement. Such conclusions can be directly
extended to other field of applications such as climat science where cou-
pling between ocean and atmosphere is of primary importance.

Keywords: Coupled CFD applications · Scalability · Co-partitioning ·
OpenPALM

1 Introduction

Today, the design of gas turbines requires to consider strong interactions between
different physics as well as the components of the engine. As a result, inte-
grated simulations involving multiphysics and multicomponents are performed
both at the research level as well as in industries. With the constant increase
of computing power, numerical simulations of the interactions between the com-
pressor, combustion chamber and turbine, as well as of the thermal interaction
between fluid flows and solids offer new design paths to diminish development
costs through important reductions of the number of experimental tests. In these
fields, the main idea is to jointly simulate the different parts of the coupled prob-
lems with a high level of fidelity limiting hypotheses on the boundary conditions:

– for the interactions between turbomachinery parts and combustor, inlet and
outlet models of the component interfaces can be avoided by resolving the full
system at once (Fig. 1(a)),

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 3–12, 2017.
DOI: 10.1007/978-3-319-53862-4 1

4 F. Duchaine et al.

– to determine mean heat loads on structures, many authors use Conjugate Heat
Transfer (CHT) where the fluid and solid equations are resolved simultane-
ously to predict the temperature and heat flux distributions in the system
(Fig. 1(b)).

Recent works have shown the ability of eddy resolving methods such as Large
Eddy Simulation (LES) to provide reliable results in the contexts of combustors
and turbomachinery [5,6,10,14]. Using an unsteady LES flow solver to resolve
such problems raises several complexities to address in the context of coupled
problems. Indeed, LES requires high mesh resolutions to accurately capture the
flow physics and is more CPU consuming than averaged methods to converge
spatial and temporal statistics. These specificities imply to use high performance
architectures to decrease the restitution times of the simulations.

Fig. 1. Example of an integrated combustor/turbine simulation [3] (a), view of fluid
and solid models of an industrial combustor Conjugate Heat Transfer simulation [4] (b).

There are two basic approaches to numerically solve coupled problems such
as CHT. The first one is a direct coupling approach where the different physics
are solved simultaneously in a large system of equations by a monolithic solver.
The second approach consists in solving each set of equations separately with
dedicated solvers that exchange interface conditions through a coupler. The last
solution adopted here has the advantage of using existing state-of-the-art codes
to solve fluid and solid equations. Nevertheless, it stresses the tool used to couple
the solvers in terms of parallel computing performances. Several communities
have investigated the use of code coupler in many different areas ranging from
climate studies to industrial applications. These communities are now faced to
the challenge of running the coupled applications with highly loaded codes on
massively parallel machines where the solvers exchange a large amount of data
at a high frequency.

This paper presents a feed-back on the use of coupling libraries on massively
parallel systems for multiphysics and multicomponent simulations with a LES
solver [7]. Based on observations monitored on real applications running on HPC

Partitioned High Performance Code Coupling Applied to CFD 5

systems, a toy model is constructed to identify paths of improvements on a simple
controlled code.

2 In Situ Observations

The OpenPALM software is used in this study [4]. It is a code coupler, i.e. a
library of functionalities that facilitate the scheduling of existing components
execution sequentially or concurrently as well as the exchange of data between
these components. This is achieved in part via a collection of primitives that
are called in the codes as well as with more complex mechanisms for application
scheduling. OpenPALM aims at implementing a general tool allowing to easily
integrate high performance computing applications in a flexible and evolutive
way proposing a solution to the balance among performance, software reuse, and
numerical accuracy. OpenPALM is mainly composed of three complementary
components, (1) the PALM1 library [2,11], (2) the CWIPI2 library [13] and (3)
the graphical interface PrePALM [2,11].

Code coupling is an appealing method to develop multiphysics and multi-
component applications. However if it is done incorrectly it can become a perfor-
mance pitfall and render useless the efforts invested to optimize each individual
code. There are at least two important aspects to take into account to manage
efficient code coupling in a HPC context (Fig. 2): (1) reducing the overhead of
data transfer between the solvers and (2) maintaining a global processor idle
time low, unless both codes have perfectly equal CPU per iteration times, the
fastest code will have to wait the others. Having a good load balancing is the key
to maintain a low idle time and thus reduce CPU waste. The first point requires
the most attention and a direct point to point communication between each
solver’s processors is proposed [8]. Also non matching grids being used, a par-
allel interpolation method is required. The algorithm consists of two parts: the
initialization or setup phase, i.e. where the communication routes and the inter-
polation coefficients are computed, and the run-time phase, or how inter-code
synchronization is actually executed. The first phase is done just once per cou-
pled simulation except if the geometries are mobile. Figure 3 presents the time
requested for the initialization and the run-time phases for a turbomachinery
application [9] performed on Titan3 until 132,000 cores. Globally, a decrease of
both times is observed as the number of cores involved in the coupling increases.
Interestingly, there are two order of magnitude difference between the two phases,
the initialization being the more time consuming. These times are affected by
the location algorithms, machine performance and characteristics as well as by
the way external communications between solvers are handled (communication
algorithm, interface partitioning).

Focusing on the communication time (run-time phase), Fig. 4 shows the
exchange time as a function of the ratio between the number of cores allocated to
the fluid and those allocated to the solid (in abscissa) as well as the total number
1 Projet d’Assimilation par Logiciel Multiméthodes.
2 Coupling With Interpolation Parallel Interface.
3 Titan: Oak Ridge National Laboratory. No. 1 system of Top500 in November 2012.

6 F. Duchaine et al.

Fig. 2. Time line corresponding to a coupled simulation including two codes.

Fig. 3. Time requested for the initialization (a) and the run-time (b) phases as a
function of the number of cores involved in the coupling process for a turbomachinery
application [9] performed on Titan.

of cores involved in the exchange (which increases with the bubbles size) in the
case of a CHT computation on Curie4 [4]. The total number of exchanging cores
(indicated by the bubble size) does not have a leading role in the variation of
the communication times. Instead Fig. 4 highlights that the more the ratio of
cores increases, the more communications are expensive. This points out that
important unbalance in the core distribution between the solvers which may be
requested to synchronize to avoid waiting as illustrated on Fig. 2 which can be
detrimental for exchange time optimization. Interestingly, two points (colored
in red in Fig. 4) exhibit very close core ratios with very different communica-
tions times. Neither this switching of ratio nor the corresponding total number
of cores can explain by themselves the differences in the communication time
between the two cases. Other underlying parameters are involved and next the
section intends to give elements in this direction with a controlled toy coupled
application.

4 Curie supercomputer, owned by GENCI and operated at the TGCC by CEA.

Partitioned High Performance Code Coupling Applied to CFD 7

Fig. 4. Evolution of the exchange time as a function of the ratio between the number
of cores allocated to the fluid and the number of cores allocated to the solid (abscissa)
and the total number of cores involved in the exchange (increasing with the bubbles
size). Data extracted from [4]. (Color figure online)

3 Toy Model

The toy model is composed of two identical codes. In the following, quantities
referring to the first and second executables are respectively indexed with the
subscripts 1 and 2. Each of these entities build a square including nptsi (with
i the index of the solver) points distributed on Ni cores where Ni is such that
Ni = m2, m ∈ N . As detailed on Fig. 5, the partitioning is homogeneous, i.e.
each square edge is cut in the same way (which justifies the need for a number of
cores such that Ni = m2). The codes perform 100 data exchange ping-pongs with
the OpenPALM coupler to provide statistically converged exchange times. Both
the initialization and the communication phases are recorded separately. Since
the initialization time mainly relies on localisation methods, the investigation
focus of this study is on communication times.

The results come from computations performed on a Cerfacs-based BULL
B510 Supercomputer. Each computational node includes two processors, itself
composed of eight cores. The Infiniband interconnection network offers a theoret-
ical 5 GB.s−1 bandwidth between nodes. The MPI latency is lower than 1µs. For
the present tests, MPI communications are performed thanks to the IntelMPI
library.

The influence of various parameters has been considered. This paper reports
cases for synchronous communications first with the same number of cores for
each executable and then with a different number of cores. The dependency of
exchange time to the global amount of data on the models as well as per core is
investigated by changing the number of points on the grid nptsi. The number of
cores is denoted Ni, and the total amount of data sent by a code (in bytes, B)
is denoted datatoti and the quantity of data per core is given by dataproci. No
placement effort is made and the MPI ranks are distributed among the available

8 F. Duchaine et al.

Fig. 5. Schematic of the inter-code communication toy.

cores in a linear way, i.e. the first application is assigned to the first N1 cores
and the second one to the following N2 cores.

The influence of the total amount of data on the grid is investigated by
increasing the number of nodes that composed the grids. Figure 6(a) shows the
evolution of the exchange time as a function of the total amount of data on
the grid for different values of core numbers N1 = N2. The curves display the
same behavior in logarithmic scale with as expected the exchange time greatly
increasing with the number of grid points. On the contrary, for a given number of
grid points, increasing of the number of cores on which data are distributed tends
to decrease the communication time. This can explain the differences observe
between the two red circles on Fig. 4 for which the case with the biggest number of
core has the lowest exchange time. Such behavior can be mathematically modeled
based on architecture parameters [1]. To explore the effect of the quantity of data
per core on communications, Fig. 6(b) shows the communication times arranged
here as a function of the data quantity per core. This different representation of
the same data highlights three groups of curves:

– N1 = N2 = 1 and 4
– N1 = N2 = 9
– N1 = N2 = 16, 25, 36 and 49.

These gatherings may be explained by the bandwidth variation between the vari-
ous levels of the supercomputer network. The bandwidth between two computing
cores of a given machine depends on their relative positioning on the network as
well as on the size of the exchanged message. Three cases can be distinguished
that depend on the computer communication networks used by the toy model:

– N1 = N2 = 1 and 4: the cores are distributed on the two processors of the same
node. Communications are thus achieved within the same node but on poten-
tially different processors. They are thus relatively fast but very dependent on
the exchanged message size.

Partitioned High Performance Code Coupling Applied to CFD 9

Fig. 6. Evolution of the exchange time as a function of the total amount of data on the
grids datatoti, for several values of the number of cores (a), Evolution of the exchange
time as a function of the data size per core dataproci, for several values of the number
of cores (b).

– N1 = N2 = 9: the cores are mainly placed on the same node, only three cores
are on a different node due to the use of one process for the coupler’s driver.
Even though most of the communications are intra-processor or intra-node,
some exchanges are made between cores from different nodes.

– N1 = N2 = 16, 25, 36 and 49, the cores are distributed on several nodes (3 to 7
nodes depending on the case). A large part of the communications (if not all)
is made between nodes. Most of the communications are thus made between
cores that are quite far from each other on the network resulting in slower
exchanges.

These analyses bring to the conclusion that the minimization of exchange times
between coupled components can be performed by process placement on the
parallel architecture. Such placement algorithm must take into account internal
exchanges in the parallel models to minimize the impact on the standalone model
performances.

In a real coupled application, the exchange interface between two codes is
rarely partitioned in the same way and/or distributed over the same number
of computing cores. To investigate this point, the toy is run for cases where
the number of allocated cores is different for each executable (N1 �= N2). These
tests are performed for every possible N1 and N2 value combinations. The global
tendencies remain the same for all cases. Therefore, for brevity, Fig. 7 presents
only the results for the cases where N1 = 16 and N2 = 16; 25; 36. For each
of them, the relative positions of the partitioning are indicated on the top of
the figure. Exchange times evolve within the same range as those presented for

10 F. Duchaine et al.

Fig. 7. Evolution of the exchange time as a function of the total amount of data on
the grid, for cases where the partitioning of the two executables is either identical, or
quite coincident, or totally non-coincident.

the case N1 = N2 increasing as the total amount of data increases. However,
it is worth noting that for every tested case, given a fixed number of cores N1,
every values of N2 different from N1 leads to communication times superior or
similar to the N1 = N2 case. Cases with partitionings of the two executable
grids that are either identical or quite coincident minimize the number of com-
munications between the two codes leading to lower communication times. A
smart partitioning of both domains with respect to each other could lead to
lower exchange times and hence better performance of the coupled simulations.
According to these observations, future work should focus on the development
of co-partitioning techniques able to decrease greatly the communications time
between solvers [12].

4 Conclusion

The CPU costs of a coupled simulation are determined both by the internal
computational time of each code as well as by the interconnection process and
the communication times between solvers. Core repartition between the coupled
model to insure a good load balancing is rather trivial. Studying the effect of the
data exchange time is much more complex and is examined here via a toy model.

Partitioned High Performance Code Coupling Applied to CFD 11

Many parameters can impact the communication times, such as the number of
cores, the communication mode (synchronous or asynchronous), the global size
of the exchanged fields or the amount of data per core. For the synchronous
communications presented in this paper, two main outcomes independent from
the coupler can be addressed by incorporating the knowledge of the coupling in
the preprocessing step of the solvers with constraint and co-partitioning as well
as process placement. Moreover, tests on asynchronous communications show an
important improvement of the scalability of the coupler indicating development
paths for the future. Finally, many order of magnitude higher than the commu-
nication time, the time requested by the interconnection process also depends on
several parameters such as core distribution between the coupled components.
Nevertheless, the real gain to decrease its CPU cost relies on interconnection
algorithms and thus on further development in coupling libraries rather than on
the global management of the coupling environment.

References

1. Berger, S.: Implementation of a coupled computational chain to the combustion
chamber’s heat transfer. Ph.D. thesis, Institut National Polytechnique de Toulouse,
June 2016

2. Buis, S., Piacentini, A., Déclat, D.: Palm: a computational framework for assem-
bling high-performance computing applications. Concurr. Comput. Pract. Exp.
18(2), 231–245 (2006)

3. Duchaine, F., Dombard, J., Gicquel, L., Koupper, C.: Integrated large-eddy sim-
ulation of combustion chamber/turbone interactiàons. In: 51st 3AF International
Conference on Applied Aerodynamics, Strasbourg, France, 4–6 April 2016 (2016)

4. Duchaine, F., Jauré, S., Poitou, D., Quémerais, E., Staffelbach, G., Morel, T., Gic-
quel, L.: Analysis of high performance conjugate heat transfer with the openpalm
coupler. J. Comput. Sci. Discov. 8, 015003 (2015)

5. Duchaine, F., Maheu, N., Moureau, V., Balarac, G., Moreau, S.: Large eddy simu-
lation and conjugate heat transfer around a low-mach turbine blade. J. Turbomach.
136(5), 051015 (2013)

6. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous
flames in gas turbine combustion chambers. Prog. Energy Comb. Sci. 38(6), 782–
817 (2012)

7. Gicquel, L., Gourdain, N., Boussuge, J.F., Deniau, H., Staffelbach, G., Wolf, P.,
Poinsot, T.: High performance parallel computing of flows in complex geometries.
C. R. Mécanique 339(2–3), 104–124 (2011)

8. Jauré, S., Duchaine, F., Staffelbach, G., Gicquel, L.: Massively parallel conjugate
heat transfer solver based on large eddy simulation and application to an aeronau-
tical combustion chamber. Comput. Sci. Disc 6(1), 015008 (2013)

9. de Laborderie, J., Duchaine, F., Vermorel, O., Gicquel, L.: Application of an overset
grid method to the large eddy simulation of a high-speed multistage axial com-
pressor. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and
Exposition. No. GT2016-56344, Seoul, Korea, 13–17 June 2016 (2016)

10. Gourdain, N., Sicot, F., Duchaine, F., Gicquel, L.: Large eddy simulation of flows
in industrial compressors: a path from 2015 to 2035. Philos. Trans. A 372(2022),
20130323 (2014)

12 F. Duchaine et al.

11. Piacentini, A., Morel, T., Thévenin, A., Duchaine, F.: O-palm: an open source
dynamic parallel coupler. In: Proceedings of the IV International Conference
on Computational Methods for Coupled Problems in Science and Engineering-
Coupled Problems (2011)

12. Predari, M., Esnard, A.: Coupling-aware graph partitioning algorithms: Prelimi-
nary study. In: IEEE International Conference on High Performance Computing,
Goa India, December 2014

13. Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P.,
Troyes, J., Tessé, L., Chaineray, G., Dargaud, J., Quémerais, E., Vuillot, F.: Cfd
platforms and coupling - cedre software. Onera J. Aerosp. Lab (2) (2011)

14. Tucker, P., Eastwood, S., Klostermeier, C., Xia, H., Ray, P., Tyacke, J., Dawes,
W.: Hybrid les approach for practical turbomachinery flows - part 2: further appli-
cations. J. Turbomach. 134(2), 021024 (2012)

Dynamic Load Balancing for Large-Scale
Multiphysics Simulations

Niclas Jansson1(B), Rahul Bale1(B), Keiji Onishi1, and Makoto Tsubokura1,2

1 RIKEN Advanced Institute for Computational Science, Kobe, Japan
{leifniclas.jansson,rahul.bale}@riken.jp

2 Department of Computational Science, Graduate School of System Informatics,
Kobe University, Kobe, Japan

Abstract. In parallel computing load balancing is an essential compo-
nent of any efficient and scalable simulation code. Static data decom-
position methods have proven to work well for symmetric workloads.
But, in today’s multiphysics simulations, with asymmetric workloads,
this imbalance prevents good scalability on future generation of parallel
architectures. We present our work on developing a general dynamic load
balancing framework for multiphysics simulations on hierarchical Carte-
sian meshes. Using a weighted dual graph based workload estimation
and constrained multilevel graph partitioning, the required runtime for
industrial applications could be reduced by 40% of the runtime, running
on the K computer.

Keywords: HPC · Load balancing · Multiphysics · BCM

1 Introduction

Load balancing is an essential component in today’s large scale multiphysics
simulations. With an ever increasing amount of parallelism in modern computer
architecture, it is essential to remove even the slightest workload imbalance. As
it could severely impact application’s scalability. Traditionally, load balancing is
seen as a static problem, closely related to the fundamental problem of parallel
computing, namely data decomposition. Data is often decomposed either offline
by a preprocessor or online in the initial steps of a simulation. This decomposi-
tion is typically performed with respect to the underlying discretization of the
computational domain, with the aim of evenly distributing the cells, for exam-
ple tetrahedra or hexahedra in unstructured meshes, or blocks in the case of
Cartesian block structured meshes.

However, such a decomposition assumes that the workload for each cell is uni-
form. For certain problems this is true, but for a large class of problems it is not,
for example, reactive flows, where the cost of computing the chemical reactions
is different depending on the species concentration in a cell. Another example is
when immersed boundary methods are employed. There, the cost of computing
one cell will be different depending on whether the cell is cut by a surface or not,
and also whether the geometry is stationary or moving through the domain.
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 13–23, 2017.
DOI: 10.1007/978-3-319-53862-4 2

14 N. Jansson et al.

In this paper we present our work on developing a generic dynamic load
balancing technique for the Building Cube Method (BCM) [5], suitable for large-
scale multiphysics problems. Our method is based on the load balancing frame-
work used in DOLFIN HPC [3], a framework for automated scientific computing.
The rest of this paper is organized as follows. In Sect. 2, we present the theory
for static load balancing and discuss its limitations. Section 3 extends this the-
ory to dynamic load balancing, with the introduction of workload modeling and
re-partitioning schemes. In Sect. 4 we evaluate the performance. We present a
discussion of the predictivity of the load balancing framework in Sect. 5 and,
lastly, give conclusions and outline future work in Sect. 6.

2 Static Load Balancing

In parallel computing, the idea of data decomposition or static load balancing
is simple, namely divide the workload evenly across all the workers. This can be
formulated as a partitioning problem.

Given a set of cells C from a domain T , the partitioning problem for p workers
can be expressed as, find p subsets {T i}pi=1 such that:

T = ∪p
i=1T i and T i ∩ T j = ∅ , i �= j (1)

with the constraint that the workload:

W (T i) = |{C ∈ T | C ∈ T i}|
should be approximately equal for all subsets.

Solving Eq. 1 can be done in several ways. The least expensive, geometric
methods, such as space filling curves [1] only depend on the geometry of the
domain. These methods are fast, but do not take into account the topology,
hence the data dependencies between different cells in the domain are not opti-
mized. For Cartesian meshes such as BCM, neglecting the consideration of data
dependencies is less severe. All the cells have the same amount of neighbors, and
if the decomposition method tries to assign cells which are close to each other to
one worker (in the geometrical sense), data dependencies will automatically be
approximately balanced. However, if woarkload is not uniform across cells, or if
data dependencies between the cells are assymetric, we have to resort to graph
methods in order to solve Eq. 1.

Graph methods do not solve Eq. 1 directly, instead the following k-way par-
titioning problem is considered: Given an undirected graph G = (V,E) with
nodes V and edges E, split V into k subsets {Qj}kj=1 with the constraint that
the number of nodes in each subset should be roughly equal, and the number of
edges cut should be minimized. If we model the computational work by V and
the data dependencies in the domain by E, we see that this method will balance
both the computational work and the dependencies. Furthermore, if we instead
consider a weighted graph G and add the constraint that the sum of all weights
should be roughly equal in all subsets Qj , the method can then, by allowing
multiple weights in the graph, handle a non uniform workload.

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 15

3 Dynamic Load Balancing

In order to perform dynamic load balancing, two components are needed: First,
a way to evaluate the workload, and second, a way to decompose the data with
the constraint to even out the workload. Using the graph based methods from
Sect. 2 we can compute new constrained partitions of our computational domain.
But the challenge is to be able to evaluate the current and future workloads, and
decide if load balancing is needed.

Fig. 1. Example of the dual graph of a BCM mesh.

3.1 Workload Modeling

We model the workload by a weighted dual graph of the underlying Building
Cube mesh (see Fig. 1). Let G = (V,E) be the dual graph of the mesh, with nodes
V (one for each cube) and edges E (connecting two nodes if their respective cubes
share a common face), q be one of the partitions, and let wi be the computational
work (weights) assigned to the graph. The workload of partition q ∈ T is then
defined as:

W (q) =
∑

wi∈wq

wi

Let Wavg be the average workload and Wmax be the maximum, then the graph
is considered imbalanced if:

Wmax/Wavg > κ (2)

where κ is the threshold value determined depending on the current problem
and/or machine characteristics.

To model a simulation’s workload, we finally have to assign appropriate val-
ues to the graph’s weights wi. In order to have a fine-grained control over the
workload, we let each node have j weights w

vj

i , representing the computational

16 N. Jansson et al.

work for the given node, and each edge k weights wek
i , representing the commu-

nication cost (data dependencies between graph nodes). The total weight for a
given graph node is then given by

wi =
∑

j

w
vj

i +
∑

k

wek
i

For a typical simulation, we always assign the number of grid points in each
cube to wv1

i and the size of the halo (number of grid points to exchange) to wek
i

for each of the graph edges connecting to node Vi. One or several more weights
are later added to the graph node to model the additional computational cost
of chemical reactions or immersed bodies. Additional weights can also be added
to the edges, but we limit the present study to model only the halo exchange
cost. The graph is finally partitioned by a graph partitioner, with the weights
as an additional balancing constraint. Thus, new load-balanced partitions are
obtained, as illustrated in Fig. 2.

(a) Unbalanced (Z-ordering). (b) Balanced wrt. geometry.

Fig. 2. Load balancing wrt. immersed geometry and fluid cells, colored by MPI rank.

3.2 Intelligent Remapping

For transient problems where the computational cost changes rapidly, it might
not be feasible to load balance as soon as the workload changes. Therefore, the
framework tries to minimize the data flow in two different ways. First, it uses
the threshold value κ to filter out small workload fluctuations. Second, if load

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 17

balancing is necessary, the algorithm tries to minimize data movement as much
as possible.

Given a set of new partitions T ′ from an already partitioned domain T , if the
new partitions are assigned such that a minimal amount of data has to be moved
from T to form T ′, we have achieved our goal of minimizing data movement.
This can be solved using a method referred to as intelligent remapping.

Given an imbalanced workload. New partitions T ′ are computed using a
constrained graph method. The result is then placed in a matrix S, where each
entry Sij is the number of graph vertices in a partition T i which would be placed
in the new partition T ′j . The goal is to keep as much data local as possible, hence
the maximum row entry in S is kept local. This can be achieved by transforming
S into a bipartite graph (Fig. 3), with edges eij weighted with Sij , and solving
the maximally weighted bipartite graph problem (MWBG) [6].

P0
10

5

P0

P1
5

12

P1

P2
5

2
P2

P3
8

P3

S =

⎛
⎜⎜⎝

10 0 5 0
12 0 5 0
0 0 5 2
0 0 0 8

⎞
⎟⎟⎠

Fig. 3. Example of a weighted bipartite graph and its corresponding matrix S.

Solving this problem is known to be expensive with a cost of O(V 2 log(V) +
V E), where V and E refer to nodes and edges in the bipartite graph. In [6] it
was shown that the bipartite graph problem can be solved in time O(E) using a
heuristic algorithm based on sorting the matrix S and using a greedy algorithm
to reassign the partitions. But in the worst case E ∼ P 2, where P is the number
of processes used to run the simulation, this linear heuristic also quickly becomes
too expensive to solve. In [4] we decreased complexity of the heuristic algorithm
to O(P) using parallel binary radix sort.

The heuristic algorithm assigns the largest (unassigned) partition from a
sorted list generated from the similarity matrix S (row-wise). In [6], S was gath-
ered onto single core and sorted in serial using a binary radix sort. Since the
matrix is of size P x P, where P is the number of cores, sorting quickly becomes
a bootlneck at scale. Therefore, in [4] the heuristic was modified to perform the
sorting in parallel using byte sorting parallel radix sort.

When we combine graph-based data decomposition methods, workload mod-
eling using a weighted dual graph and intelligent remapping, we arrive at the
general dynamic load balancing framework, as expressed in Algorithm 1.

18 N. Jansson et al.

Algorithm 1. Dynamic load balancing framework.
for each partition q ∈ T do

W (q) =
∑

wi∈wq

(∑
j w

vj
i +

∑
k wek

i

)

wi

end
Wmax ←− ComputeGlobalMax(W)
Wavg ←− ComputeGlobalAverage(W)
if Wmax/Wavg > κ then

T ′ ←− ComputeNewPartitions(T)
S ←− ConstructMatrix(T ′)
G ←− SolveMWBG(T ′)
T ←− RedistributeData(G)

end

4 Performance Evaluation

The load balancing framework presented in this paper has been implemented in
the multiphysics framework Cube, developed at RIKEN AICS. Cube is based
on the Building Cube Method and uses different kinds of immersed boundary
methods to represent complex geometries. The framework is written in Fortran
2003, and uses a light-weight object-oriented approach for extensibility. The
framework uses a hybrid MPI + OpenMP parallelization, in which each rank is
assigned a set of cubes and thread parallelization is performed on per cube level
basis, with two-dimensional slices in the z-direction of each cube. For scalabil-
ity Cube uses parallel I/O in the form of MPI-I/O, and ParMETIS for graph
partitoning.

To evaluate the performance of the load balancer, we used Cube to solve
two different incompressible flow problems on the K computer and compared
the total execution time for performing a fixed number of time steps for both
an unbalanced (no load balancing) and a balanced case (using load balancing)
on various numbers of cores. For both problems we used the QUICK scheme for
the convective terms and an unsteady multigrid solver for the pressure. Time
integration was performed using a second-order Crank–Nicolson method.

4.1 Immersed Boundary Method

A distributed Lagrange multiplier immersed boundary method [2,7] in Cube
was used to represent the complex geometries (Fig. 4) in the numerical exper-
iments. A Lagrangian-Eulerian approach is used in the implementation of the
immersed boundary method because Lagrangian description is a very accurate
method of representing complex, mobile immersed bodies (IB). In this app-
roach, an Eulerian description is used to solve the equations governing the fluid
motion, whereas a Material or Lagrangian description is used to represent the
immersed body. The immersed body is discretized in to a discrete set of Mate-
rial or Lagrangian points. The interaction between the fluid and the immesrsed

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 19

(a) Nose landing gear geometry. (b) Full car model.

Fig. 4. Geometries used to evaluated the performance of the load balancing framework.

body is enabled through interpolation operators such as the smoothed Dirac
delta function, inverse distance interpolation, or trilinear interpolation. In this
work we use the smoothed Dirac delta function for the interpolation between
Lagrangian-Eulerian domains.

A spatial decomposition approach is employed to discretize the combined
Lagrangian-Eulerian system, wherein the Lagrangian domain is discretized on
the basis of the Eulerian domain decomposition. For a given rank, this ensures
data locality between Lagrangian and Eulerian domains, avoiding MPI commu-
nication for Lagrangian-Eulerian interpolation.

4.2 IB Workload Modeling

In the load balancer, the weights were assigned as described in Sect. 3.1, with
the additional immersed boundary cost added to wv2

i , modeled as γ · nparticles,
where nparticles is the number of Lagrangian particles. The choice of the parame-
ter γ is not trivial and it depends on the relative number of Lagrangian-Eulerian
interpolation operations for a given purely Eulerian stencil operation. The inter-
polation between Lagrangian and Eulerian meshes involves ∼2n3 operations for
a given Lagrangian particle. Here, n depends on the type discrete delta function,
e.g., for a 3-point delta function n = 4. n3 could be a good candidate for the
cost parameter γ. But, Lagrangian-Eulerian interpolation is required only once
every time step, whereas purely Eulerian stencil operations depend on iterative
processes such as solution of the Poisson equation. If Np−iter is the number of
Poisson solver iterations in one time step, then one could choose γ = n3/Np−iter.
Therefore, γ would depend on the type of discrete delta function and the type
of Poisson solver, but for most cases n3/Np−iter ∼ O(1). Thus, we choose γ in
the range of 1–4 for immersed body applications. It is to be noted that γ is
application dependent, and a informed choice has to be made for its value.

20 N. Jansson et al.

4.3 Load Balancing Threshold κ

For the present analysis, a load imbalance threshold, κ = 1.05, is chosen, i.e. the
load balance is triggered if there is an imbalance of 5% or more. In the two appli-
cations we consider, flow around a vehicle and nose landing gear, the immersed
geometries are stationary, so load balancing is triggerd only once during the
simualtion. Thus, κ only determines when load balancing and data redistribu-
tion is triggered; it has no influence on how the balanced or unbalanced cases
perform, consequently it does not affect the overall runtime of the simulation. In
more dynamic cases, such as applicaitons with rapidly moving IBs, the simula-
tion runtime will be affected by the choice of κ. A small value of κ will frequently
trigger data redistribution. Which will increase the overall simulation runtime.
Thus, for dynamic applications, a parameteric study of the effect of κ would be
necessary in order to choose an optimal value of κ.

4.4 Nose Landing Gear

The first problem is based on the nose landing gear (Fig. 4a) case from AIAA’s
BANC series of benchmark problems. Our setup uses a mesh consisting of 48255
cubes, subdivided into 16 cells in each axial direction, and the landing gear
consists of 0.5M surface triangles.

In Fig. 5a we present the time required to perform one timestep for the unbal-
anced case and for the balanced case when γ is set to 3 and 4, respectively. From
the results we can observe that using the load balancer results in approximately
60% resuction in the unbalanced runtime. As the number of cores increases,
the gains of load balancing diminishes. This is most likely due to the fact that
when using a relative small model, such as the landing gear, and few cubes in
the mesh, the initial data decomposition will (for large core counts) will result
in more partitions around to the geometry and indirectly balance the workload
automatically. A value of γ = 1 resulted in a runtime that was approximaltely
equal to the unbalanced case. This indicates that values of 3 and 4 for γ are
reasonable choices for load balancing nose landing gear type geometries. The
lack of Lagrangian communication cost in the model could also affect the result.
Figure 5a shows the relative runtime of both load balanced cases normalized by
the unbalanced runtime.

4.5 Full Car Model

As a second example we simulate the flow past a full car model (Fig. 4b). The
numerical methods used for this problem are exactly the same as for the landing
gear benchmark. We use a mesh consisting of 38306 cubes with 163 cells per
cube and a car model consisting of 12.5 M surface triangles.

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 21

0.1

1

10

100

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

ru
n
ti

m
e

p
er

ti
m

e-
st

ep
(s

ec
.)

cores

base
γ = 3
γ = 4

(a) Runtime per time-step.

0

0.5

1

1.5

2

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

re
l.

ru
n
ti

m
e

p
er

ti
m

e-
st

ep

cores

base
γ = 3
γ = 4

(b) Runtime per time-step normalized by the runtime of
the unbalanced case.

Fig. 5. Runtime per time-step and relative runtime for the nose landing gear.

The runtime per timestep presented in Fig. 6a shows the results of the bal-
anced case with γ = 3 & γ = 4 and the unbalanced case. The trends for the
runtime in all the cases are similar to those of the nose landing gear case. We
can see that for all the tested core counts the runtime is improved except for the
16384 core case. In the best case, which is 256 cores, the runtime of the balanced
case reduced to 40% of the unbalanced case. The relative runtime is also plotted
in Fig. 6a.

22 N. Jansson et al.

0.1

1

10

100

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

ru
n
ti

m
e

p
er

ti
m

e-
st

ep
(s

ec
.)

cores

base
γ = 3
γ = 4

(a) Runtime per time-step.

0

0.5

1

1.5

2

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

re
l.

ru
n
ti

m
e

p
er

ti
m

e-
st

ep

cores

base
γ = 3
γ = 4

(b) Normalized runtime per time-step.

Fig. 6. Runtime per time-step and relative runtime for the full car model.

5 Discussion

A key aspect of dynamic load balancing techniques is the prospect of load bal-
ancing not just current workloads, but future workloads as well. The evaluation
of future workloads and ability of the load balancer to address such workloads
depends of the type of applications. The applications considered in our work have
static workload. The evaluation of future workloads is relevant to dynamic appli-
cations. For some dynamic applications it may be possible to evaluate, predict
and address a future imbalance. Examples of such applications are simulations
with moving geometries, simulations of spray dynamics, and others. When the
velocity of an immersed geometry is known, the future location of the geometry
and its workload can be evaluated in advance and addressed when necessary. In
applications of spray dynamics, the rate of new spray particle injection and the
average trajectory of the bulk particles can be used to predict the future work-
load and balance it accordingly. If these dynamic applications are coupled with

Dynamic Load Balancing for Large-Scale Multiphysics Simulations 23

adaptive mesh refinement (AMR), the ability to predict the future workload will
be all the more useful. When AMR is in use, the overall workload of the system
changes with time. In cases where the workload increases due to creation of new
mesh cells, the ability to predict the future workload can reduce the cost of data
redistribution. When the location of new mesh cells is known, the future work-
load can be evaluated in advance and the data redistribution can be carried out
before the creation of cells to reduce the data redistribution cost. Conversely,
when location of mesh cells to be destroyed, resulting in workload reduction, is
known, the data redistribution can be deferred until after the cell destruction to
reduce the redistribution cost [6].

6 Summary and Future Work

In this work we have investigated the feasibility of using dynamic load balanc-
ing techniques to improve the performance of multiphysics simulation using the
Building Cube Method. Our results show that the runtime could be reduced by
almost a factor of two fifth when using the load balancer. In the current study
we have limited ourselves to flow problems, but we want to stress that the load
balancing framework is generic and could be applied to any type of workload,
as demonstrated when we incorporated the cost of Lagrangian particles in the
workload modeling. Future work includes fine tuning of the workload model-
ing, especially focusing on the computational and communcation cost of, e.g.,
chemical reactions and Lagrangian particles.

Acknowledgments. This work was supported through the computing resources pro-
vided on the K computer by RIKEN Advanced Institute for Computational Science.

References

1. Bader, M.: Space-Filling Curves. Texts in Computational Science and Engineering,
vol. 9. Springer, Heidelberg (2013)

2. Bhalla, A.P.S., Bale, R., Griffith, B.E., Patankar, N.A.: A unified mathematical
framework and an adaptive numerical method for fluid-structure interaction with
rigid, deforming, and elastic bodies. J. Comput. Phys. 250, 446–476 (2013)

3. Jansson, N.: High performance adaptive finite element methods: with applications
in aerodynamics. Ph.D. thesis, KTH Royal Institute of Technology (2013)

4. Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive
finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci.
Comput. 34(1), C24–C41 (2012)

5. Nakahashi, K.: Building-cube method for flow problems with broadband character-
istic length. In: Armfield, S.W., Morgan, P., Srinivas, K. (eds.) Computational Fluid
Dynamics 2002, pp. 77–81. Springer, Heidelberg (2003)

6. Oliker, L.: PLUM parallel load balancing for unstructured adaptive meshes. Tech-
nical report RIACS-TR-98-01, RIACS, NASA Ames Research Center (1998)

7. Shirgaonkar, A.A., MacIver, M.A., Patankar, N.A.: A new mathematical formulation
and fast algorithm for fully resolved simulation of self-propulsion. J. Comput. Phys.
228(7), 2366–2390 (2009)

On the Significance of Exposure Time
in Computational Blood Damage Estimation

Lutz Pauli(B) and Marek Behr

Chair for Computational Analysis of Technical Systems (CATS),
RWTH Aachen University, 52056 Aachen, Germany

pauli@cats.rwth-aachen.de

Abstract. The reliability of common stress-based power law models for
hemolysis estimations in blood pumps is still not satisfying. Stress-based
models are based on an instantaneous shear stress measure. Therefore,
such models implicitly assume that red blood cells deform immediately
due to the action of forces. In contrast, a strain-based model considers
the entire deformation history of the cells. By applying a viscoelastic
tensor equation for the stress computation, the effect of exposure time is
represented as a biophysical phenomenon. Comparisons of stress-based
and strain-based hemolysis models in a centrifugal blood pump show very
significant differences. Stress peaks with short exposure time contribute
to the overall hemolysis in the stress-based model, whereas regions with
increased shear and long exposure time are responsible for damage in the
strain-based model.

Keywords: Computational hemodynamics · Hemolysis modeling ·
Ventricular assist device · Finite element method · Blood damage

1 Introduction

Computational fluid dynamics (CFD) has become a very prominent development
tool for the virtual design of various devices exposed to flow. For the design
of blood-handling medical devices, the acceptance of CFD is, however, not as
broad as in the traditional engineering disciplines. The complex micro-macro
interaction of blood, as the flowing medium, can be identified as the main reason
for the limited acceptance. Therefore, specialized numerical tools are necessary,
which are not yet sufficiently implemented in available commercial CFD software.

The development of reliable blood damage models is a key issue for the vir-
tual design of ventricular assist devices (VADs). The mechanical hemolysis in
VADs is an example for a microscale effect that can only be measured on the
macroscale. Therefore, hemolysis is usually modeled as a bulk phenomenon and
based on a simple power law, depending on scalar shear-stress and exposure
time. In the commonly used stress-based model, the scalar shear stress depends
solely on the precomputed flow field according to the Navier-Stokes equations.
The stress-based model is only able to account for macroscale phenomena and
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 24–36, 2017.
DOI: 10.1007/978-3-319-53862-4 3

Computational Blood Damage Estimation 25

therefore, it implicitly assumes that red blood cells (RBCs) deform instanta-
neously. A different approach is a simulation by means of a strain-based model.
Here, the viscoelastic deformation of RBCs is computed by a tensorial evolution
equation. The tensor results are used to estimate a distortion of RBCs in the
flow field. With the distortion, an effective shear stress can be computed, which
is acting on the RBC itself. As a consequence, microscale effects are considered
in the simulation, even though the overall result is on the macroscale.

In the present study, the stress-based and the strain-based models are intro-
duced in Eulerian frame. Both formulations are discussed and classified according
to other modeling approaches existing in the literature. The differences of the
stress-based and strain-based models are evaluated in a CFD simulation of a
centrifugal blood pump.

2 Methods

Accurate and reliable modeling of hemolysis in large scale flow situations like
in blood pumps is an open research issue. On the one hand, the microscale
effects leading to mechanical hemolysis are, up to now, not fully understood
and on the other hand, models that resolve the microscale behavior of single
RBCs in complex flows would be computationally too expensive. Therefore, a
compromise between accuracy and computational efficiency has to be considered
already in the modeling. In the following, we present two approaches to model
hemolysis as a macroscale phenomenon. In both cases, blood flow is modeled
with the Navier-Stokes equations, using the mass and momentum balance for
an isothermal, incompressible liquid. Blood itself is assumed to be a Newtonian
liquid with constant viscosity.

Stress-Based Hemolysis. Motivated by the early findings by Blackshear
et al. [5], Giersiepen et al. [16] have been the first to relate shear stress and
exposure time to the index of hemolysis by using a simple power law of the form

IH = AHb σαHb
s tβHb . (1)

The three parameters in Eq. (1) were fitted to the experimental data by
Wurzinger et al. [29]. Due to the secondary blood damage effects in Wurzinger’s
experiments, Giersiepen’s parameters are known to overestimate hemolysis.
Therefore, there exist several other regressions of the parameters in Eq. (1).
Within this thesis, we will only use the proposed parameter set by Zhang
et al. [30], which is the most recent regression and covers a wide range of shear
stress and exposure times.

The power law is a one-dimensional model equation. In order to apply the
model to three-dimensional flow problems, the scalar shear stress σs is derived
from the instantaneous stress tensor σ of the Navier-Stokes equations [6]. The
scalar shear stress becomes

σs = μGf = μ
√

2E : E, (2)

26 L. Pauli and M. Behr

where E = 1
2

(∇u + ∇u�)
is the rate-of-strain tensor.

To integrate the power law in time and space, we use the Eulerian approach.
In the Eulerian approach, a convection-diffusion-reaction equation is used to
compute a linearized free plasma hemoglobin ratio fHb as a field variable in the
flow domain. The governing equation reads

∂fHb

∂t
+ u · ∇fHb − ∇ · (νHb∇fHb) − rΔHb = 0, (3)

where νHb = 6 × 10−7cm2/s is the self diffusion coefficient for hemoglobin [26].
Following Farinas et al. [11,12], the reaction or source term can be expressed by

ra
ΔHb

= (AHb σαHb
s)1/βHb (without saturation effect), or (4)

rb
ΔHb

= (AHb σαHb
s)1/βHb (1 − fHb) (with saturation effect). (5)

Thus, the reaction term is the power law (Eq. (1)) linearized in time, so that the
index of hemolysis can be computed by IH = fβHb

Hb or by

IH out =

∫
Γ
(u · n)fβHb

Hb (x) dΓ∫
Γ
u · ndΓ

(6)

for a velocity-weighted spatial averaging at an outflow boundary.
A major limitation of the stress-based hemolysis modeling is the fact that

the model implicitly assumes an instantaneous deformation of RBCs, which in
reality show very complex viscoelastic deformation under shear flow.

Strain-Based Hemolysis. An alternative to the stress-based model is the
strain-based hemolysis model by Arora et al. [2], which has been introduced in
2004. They used the model for hemolysis estimations in the GYRO centrifugal
blood pump and found good agreement with experimental data [1,3]. In contrast
to Arora, who used a Lagrangian approach, we will apply the hemolysis model
to the Eulerian approach.

The basic idea of the model is that instead of an instantaneous shear rate
Gf (compare Eq. (2)) an effective shear rate Geff is computed, based on the
deformation (or straining) of an RBC. In flows with high shear rates, RBCs
are known to behave similar to droplets [8,14,27]. Both RBCs and droplets
have ellipsoidal shape with their long axis aligned parallel to the flow direction
and both have the ability to relax to their original form, once the stress is
released [10,13]. This analogy is used in the modeling of the RBC deformation.
Maffettone and Minale [20] published a partial differential equation to represent
droplets in viscous flow with the aid of a symmetric and positive-definite shape
tensor S (also called morphology tensor). The droplet model has been extended
by Arora et al. in order to account for the motion of the RBC membrane. The
following equation is obtained for the shape tensor S [23]:

Computational Blood Damage Estimation 27

∂S
∂t

+ u · ∇S

= − f1 [S − g(S)I] (relaxation)
+ f2 [ES + SE] (elongation)
+ f3 [WS − SW] (rotation)

(7)

The tensors E and W are the rate-of-strain and vorticity tensors, respec-
tively. The function g(S) = 3IIIS/IIS ensures that Eq. (7) preserves the volume
of the droplet, where IIS and IIIS are tensor invariants of S. The three mecha-
nism (relaxation, elongation and rotation) of the droplet model are illustrated
in Fig. 1(a). Mechanical properties of an RBC are introduced to Eq. (7) by the
three parameters f1, f2 and f3, based on experimental findings in the litera-
ture. As shown in Reference [2], the parameter f1 behaves like the inverse of the
relaxation time. The relaxation time of the RBC membrane is approximately
200 ms [7,17] and thus,

f1 = 5.0s−1. (8)

The parameter f2 is matched with the surface area of a hemolyzing RBC.
Rand [25] and Blackshear and Blackshear [4] found 6% increase in surface area
before membrane rupture occurs and Leverett et al. [19] found a critical shear
stress of σcrit

s = 150 Pa (which corresponds to a shear rate of Gcrit
f ≈ 42000s−1

if a viscosity μ = 3.6 × 10−3 Pa s is assumed) for such catastrophic hemolysis.
As an RBC has 40% excess surface area with respect to a droplet of the same
volume, the modeled ellipsoidal droplet should stretch to 1.4 × 1.06 times its
original surface area at catastrophic hemolysis [2]. The two conditions (critical
shear rate and critical surface area) can be used with a convergent series for the
area of a general ellipsoidal droplet by Keller and Skalak [18] to obtain an opti-
mization problem for the parameter f2. The finally computed parameter reads
(see also References [24] for details)

f2 = 4.2998 × 10−4. (9)

Due to oscillatory eigenvalues of the shape tensor S at transient shear flows,
Arora et al. [2] restricted f3 = f2.

In order to use Eq. (7) for hemolysis approximations, the computed shape
tensor is coupled to the power law, or more precisely to the reaction term of
Eq. (3). The distortion of the ellipsoidal droplet can be computed with the fol-
lowing formula [9]:

D ≡ L − B

L + B
, (10)

with lengths of the longest and smallest semi-axes of the droplet, L and B
(compare Fig. 1(b)). Both values can be evaluated by the largest and smallest
eigenvalue of tensor S, respectively. In case of steady, simple shear flow, the
strain-based model should estimate the same amount of hemolysis as the stress-
based model if the exposure time is long enough. In such a situation, shape
tensor S and its eigenvalues can be computed analytically, so that the distortion
D is expressed by [24]

28 L. Pauli and M. Behr

Fig. 1. (a) A droplet deformation model in analogy to an RBC. The droplet can be
elongated due to straining (1). Without tension, the droplet relaxes to a spherical
shape (2). Vortices are able to rotate the droplet (3) (adopted and modified from
Reference [24]). (b) Distortion of a droplet is computed by the longest and smallest
semi-axes, L and B.

D =

√
f2
1 + f2

2 G2
f − f1

f2Gf
. (11)

Equation (11) can be rearranged to define an effective shear rate Geff , that is,

Geff =
2f1D

(1 − D2) f2
. (12)

The effective shear rate Geff can be used in any situation, including transient
and inhomogeneous flows; but in contrast to the instantaneous shear rate Gf ,
it is able to express the straining that is acting on the RBC itself. By using
Geff for the definition of the scalar shear stress σs, the coupling to Eq. (3) is
accomplished. Therefore,

σs = μGeff =
2μf1D

(1 − D2) f2
(13)

if the strain-based model is used.
All the above equations are implemented in an in-house CFD code, which is

based on stabilized space-time finite element methods. The code is fully paral-
lelized using MPI and OpenMP and runs on several state-of-the-art supercom-
puters. Scalability has been shown for more then 6 × 104 MPI tasks on a Blue
Gene/Q (JUQUEEN).

3 Results

In this section, we compare the stress-based and the strain-based hemolysis mod-
eling in a centrifugal blood pump. The geometry of the pump is based on a
benchmark blood pump by the FDA. The blood pump is used to assess the state
of the art in CFD-based blood damage estimation. As the FDA study on the
benchmark blood pump is still in progress, we will use a slightly modified pump

Computational Blood Damage Estimation 29

geometry in our comparison, shown in Fig. 2. The pump is characterized by a
long inlet tube, which is curved at the beginning. The shape of the impeller is
characterized by four straight blades and a shaft at the center. The outlet is
designed as a small throat connected to the upper part of the chamber. The
throat is attached to a diffuser, which in turn is connected to a straight tube
with constant diameter. Exact dimensions with technical drawings of the pump
are provided in the documentation by the FDA [28]. In this study, the impeller
and the pump chamber are reduced by approximately 10%, compared to the
original pump. The inflow and outflow tubes are not changed.

Fig. 2. Geometry of a modified benchmark blood pump. Compared to the original
pump provided by the FDA, impeller and pump chamber are reduced by 10%.

3.1 Blood Flow Simulations

We simulate blood flow in the pump for two hydraulic parameter sets: 2.5 L/min,
2777 rpm and 6 L/min, 3888 rpm. Blood density and dynamic viscosity are cho-
sen as ρ = 1054kg/m3 and μ = 3.5 × 10−3 Pa s, assuming a Newtonian material
model. The volume mesh consists of approximately 4.1×106 mainly unstructured
tetrahedral elements and 1.5 × 106 space-time nodes. For the boundary layer, a
structured, tetrahedral mesh with twelve layers is used next to the housing and the
impeller. The rotation of the impeller is treated by the MRF method [22]. There-
fore, it is sufficient to choose an unstructured triangular surface mesh as the inter-
face. For the inflow boundary of the pump, we apply a constant parabolic velocity
profile. The velocity magnitude is determined by the given flow rate. At the out-
flow, a Neumann boundary condition with p = 0 is assumed. No-slip boundary
conditions are applied at the walls and at the rotating impeller. We use transient
computations with a time step size Δt1 = 5 × 10−4s for the first operating condi-
tion and Δt2 = 5×10−5s for the second operating condition. For both conditions,
we apply the σ-model [21] (LES turbulence model) with κ = 1.5.

30 L. Pauli and M. Behr

We perform the flow simulations for 350 and 750 time-steps, respectively.
Afterwards, time-averaged flow solutions are generated using the last 50 time-
steps for the first operating condition and the last 100 time-steps for the second
operating condition.

3.2 Hemolysis Simulations

The hemolysis predictions are based on the time-averaged flow solutions of the
blood pump. For the stress-based modeling approach, only Eq. (3) needs to be
solved to obtain the concentration of the free plasma hemoglobin ratio. For the
strain-based modeling approach, first the shape tensor S needs to be computed
by using Eq. (7). Afterwards, the free plasma hemoglobin ratio can be com-
puted. Therefore, the stress-based model relies on the instantaneous shear rate
Gf (Eq. (2)), whereas the strain-based model relies on the effective shear rate Geff

(Eq. (12)). In the results section, we will first compare the shear rate distribution
and afterwards, the concentration values for the two modeling approaches.

Simulation Conditions. The blood pump is discretized with the same mesh
as used for the blood flow simulations. The concentration for the stress-based
model is computed with a steady CDR equation, using the source term with
saturation effect (Eq. (5)) and the parameter correlation by Zhang et al.

The computation of the shape tensor S, for the strain-based model, is very
challenging for this complex application. We run a transient simulation in order
to reach the steady-state deformation of the RBCs for the given flow field. For
the first operating condition, we choose a time step size of Δt1 = 1 × 10−4s. For
the second operating condition, the time step size is reduced to Δt2 = 5×10−5s.
The computation of the free plasma hemoglobin ratio is based on similar settings
as used for the stress-based model. Only the power law parameters are exchanged
with optimized parameters as given in Reference [15].

Results for the Shear Rate Distribution. For the shape tensor computa-
tion, we run 620 time steps for the first operating condition and 900 time steps
for the second operating condition, in order to reach a steady-state deformation
in the entire flow domain. With the shape tensor solution, a distortion D and
an effective shear rate Geff is computed by using Eqs. (10) and (12).

The effective shear rate Geff shows a completely different distribution than
the instantaneous shear rate Gf . A comparison of the two different shear rates
on the impeller surface is shown in Fig. 3 for both operating conditions. The
instantaneous shear rate Gf has very high peaks at the edges of the impeller
blades, whereas the effective shear rate Geff shows increased values in a wide
ring around the inflow tube. Overall, the magnitude of the effective shear is
much lower than the instantaneous shear.

A similar behavior is visible at the bottom of the outer housing, as shown in
Fig. 4 for the second operating condition. The instantaneous shear rate Gf has a
very high peak at the fillet between the throat and the housing rim, which is also

Computational Blood Damage Estimation 31

Fig. 3. Shear rate distribution at the impeller of a centrifugal blood pump. Comparison
of the instantaneous shear rate Gf and the effective shear rate Geff .

the highest shear value in the entire domain. In the distribution of the effective
shear rate Geff such a peak is not observed. Increased values of Geff are again
much more dispersed and appear in the gaps between impeller and the housing,
the outer rim and next to the jet in the outflow tube. The highest values of Geff

occur at the upper housing wall above the impeller blades (not visible in Fig. 4).
The magnitudes of the effective shear rate Geff are again much lower than for
the instantaneous shear rate Gf .

Based on the shear rate distribution, the free plasma hemoglobin ratio is
computed for the stress-based and the strain-based model.

Results for the Hemoglobin Concentration. As the stress-based and the
strain-based models both rely on the same velocity field, the overall distribution
of the free plasma hemoglobin ratio is similar between the two models. However,
the magnitude is very different. For the stress-based model, the concentrations
are more than an order of magnitude higher, compared to the strain-based model.

32 L. Pauli and M. Behr

Fig. 4. Shear rate distribution at the bottom of a centrifugal blood pump. Comparison
of the instantaneous shear rate Gf and the effective shear rate Geff .

A different behavior between the two models is also observed for the two
different operating conditions. Figure 5 shows the index of hemolysis IH at a
centered cross section (z = 0.7 cm) in the pump. For the stress-based model,
the concentration values are increasing if flow rate and impeller speed increase.
For the strain-based model, the concentration values remain at an almost con-
stant level between the two operating conditions. This behavior is also visible
in the predicted total hemolysis generation of the pump. For the stress-based
model 0.202% and 0.364% are predicted for the first and second operating con-
dition, respectively. For the strain-based model, 0.080% and 0.082% are obtained,
respectively.

Figure 5 also reveals some high concentration regions at the inner tips of the
impeller blades. These regions are observed for both operating conditions.

4 Discussion

The comparison of stress-based and strain-based models shows major differences
in the estimated critical shear rates. The stress-based model predicts localized
high shear peaks at the impeller tips and at the fillet between the outflow and
the rim. However, the exposure time is very short if the impeller is passing by
an RBC or if an RBC approaches the fillet. As the strain-based model tries
to predict the viscoelastic (time dependent) deformation of the RBCs on their
way through the pump, these localized high shear peaks are not visible. Stresses
have to act for a certain amount of time in order to be able to significantly
deform the RBCs in the flow. Therefore, high shear areas for the strain-based
model are more dispersed and located at different positions compared to the
stress-based model. For example, the inner ring of the impeller is identified as
a critical region. The highest shear rates for the strain-based model appear at
the upper wall of the pump chamber above the impeller blades. Increased shear
rates are also visible at the bottom of the pump and next to the outflow jet.

Computational Blood Damage Estimation 33

Fig. 5. Index of hemolysis at a centered cross section in a centrifugal blood pump.
Comparison of the stress-based and the strain-based models for different operating
conditions.

In order to reduce hemolysis, critical shear rates are usually the most impor-
tant indicator for shape optimizations of the pump geometry. Computation of
the free plasma hemoglobin ratio is mainly used to predict the total hemolytic
performance, which can be compared to in vitro measurements with blood. How-
ever, if the free plasma hemoglobin ratio is computed with an Eulerian approach,
a side benefit is the fact that recirculation and stagnation areas can be identified
very easily. Of course, this information is already contained in the flow solution,
but a visualization would require several postprocessing steps. For example, the
high concentration areas next to the inner tips of the impeller, shown in Fig. 5,
indicate a poor transition of blood flow from the inlet tube to the pump cham-
ber. This observation is supported by the increased effective shear rate Geff at
the inner impeller surface, shown in Fig. 3.

Stress-based and strain-based models also predict very different hemolytic
performance. These differences can be mainly explained with the effect of expo-
sure or residence time. The average residence time of RBCs in a blood pump can

34 L. Pauli and M. Behr

be estimated with the ratio of pump volume to flow rate. The pump has a vol-
ume of 56.64cm3, which leads to an average residence time of 1.38 s for the first
operating condition and 0.57 s for the second operating condition. The stress-
based model is not able to sufficiently account for the effect of residence time.
Thus, the increased shear rates, due to the increased impeller speed, cause higher
hemolysis for the second operating condition. For the strain-based model, the
combination of increased instantaneous shear and reduced residence time leads
to almost constant hemolysis levels between the two operating conditions.

So far, our hemolysis estimations could not be validated with blood experi-
ments. On the one hand, we are waiting for the final results of the FDA study [28].
On the other hand, we focus on internal projects, which are still in progress. Yet,
a validation with such blood experiments has limitations as well. Only the total
hemolytic performance can be compared with the experimental data. The total
hemolytic performance depends mainly on the power law and its parameters,
which in turn depend on the quality of the blood shearing experiments. To val-
idate the location of predicted critical shear rates, an experimental system for
spatially resolved hemolysis testing would be necessary.

5 Conclusion

A centrifugal pump geometry was used to study stress-based and strain-based
hemolysis modeling. It turned out that the two hemolysis models predict very
different critical shear rates for the cause of the damage. With the stress-based
model, very localized high shear peaks were estimated at positions where the
exposure time is low, for example, the tips of the impeller blades. The strain-
based model predicted increased shear-rates in the gaps between the impeller
and the housing and next to a jet in the outflow pipe, where the combination
of instantaneous shear and exposure time is high. It was shown that the total
hemolytic performance significantly differs for the two models and that the effect
of exposure or residence time is visible in this case as well.

Acknowledgments. We like to thank Jaewook Nam and Matteo Pasquali for their
contributions to previous implementations of the hemolysis models. In addition, we
gratefully acknowledge the support by the DFG program GSC 111 (AICES Graduate
School). Computing resources were provided by the RWTH Aachen University IT Cen-
ter and by the Forschungszentrum Jülich John von Neumann Institute for Computing
under the Jülich Aachen Research Alliance (JARA).

References

1. Arora, D., Behr, M., Coronado-Matutti, O., Pasquali, M.: Estimation of hemolysis
in centrifugal blood pumps using morphology tensor approach. In: Bathe, K. (ed.)
Proceedings of 3rd MIT Conference on Computational Fluid and Solid Dynamics,
pp. 578–582. Elsevier Ltd. (2005)

2. Arora, D., Behr, M., Pasquali, M.: A tensor-based measure for estimating blood
damage. Artif. Organs 28, 1002–1015 (2004). errata in Artificial Organs 36(5), 500
(2012)

Computational Blood Damage Estimation 35

3. Arora, D., Behr, M., Pasquali, M.: Hemolysis estimation in a centrifugal blood
pump using a tensor-based measure. Artif. Organs 30(7), 539–547 (2006)

4. Blackshear, P., Blackshear, G.: Mechanical hemolysis. In: Skalak, R., Chien, S.
(eds.) Handbook of Bioengineering, p. 15.1–15.19. McGraw-Hill, New York (1987)

5. Blackshear, P., Dorman, F., Steinbach, J.: Some mechanical effects that influence
hemolysis. ASAIO J. 11(1), 112–117 (1965)

6. Bludszuweit, C.: Three-dimensional numerical prediction of stress loading of blood
particles in a centrifugal pump. Artif. Organs 19(7), 590–596 (1995)

7. Bronkhorst, P., Streekstra, G., Grimbergen, J., Nijhof, E., Sixma, J., Brakenhoff,
G.: A new method to study shape recovery of red blood cells using multiple optical
trapping. Biophys. J. 69(5), 1666–1673 (1995)

8. Chien, S.: Shear dependence of effective cell volume as a determinant of blood
viscosity. Science 168(3934), 977–979 (1970)

9. Chien, S.: Red cell deformability and its relevance to blood flow. Annu. Rev. Phys-
iol. 49, 177–192 (1987)

10. Evans, E., LaCelle, P.: Intrinsic material properties of the erythrocyte membrane
indicated by mechanical analysis of deformation. Blood 45, 29–43 (1975)

11. Farinas, M., Garon, A.: Fast three-dimensional numerical hemolysis approximation.
Artif. Organs 28(11), 1016–1025 (2004)

12. Farinas, M., Garon, A., Lacasse, D., N’dri, D.: Asymptotically consistent numerical
approximation of hemolysis. J. Biomed. Eng. 128, 688–696 (2006)

13. Fischer, T.M.: Shape memory of human red blood cells. Biophys. J. 86, 3304–3313
(2004)

14. Fischer, T., Stohr-Lissen, M., Schmid-Schönbein, H.: The red cell as a fluid droplet:
tank tread-like motion of the human erythrocyte membrane in shear flow. Science
202(4370), 894–896 (1978)

15. Gesenhues, L., Pauli, L., Behr, M.: Strain-based blood damage estimation for com-
putational design of ventricular assist devices. Int. J. Artif. Organs 39(4), 166–170
(2016)

16. Giersiepen, M., Wurzinger, L., Opitz, R., Reul, H.: Estimation of shear stress-
related blood damage in heart valve prostheses - in vitro comparison of 25 aortic
valves. Int. J. Artif. Organs 13(5), 300–306 (1990)

17. Hénon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear
modulus of the human erythrocyte membrane using optical tweezers. Biophys. J.
76(2), 1145–1151 (1999)

18. Keller, S., Skalak, R.: Motion of a tank-treading ellipsoidal particle in a shear flow.
J. Fluid Mech. 120, 27–47 (1982)

19. Leverett, L., Hellums, J., Alfrey, C., Lynch, E.: Red blood cell damage by shear
stress. Biophys. J. 12, 257–273 (1972)

20. Maffettone, P., Minale, M.: Equation of change for ellipsoidal drops in viscous flow.
J. Non-Newton. Fluid Mech. 78, 227–241 (1998)

21. Nicoud, F., Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to
build a subgrid-scale model for large eddy simulations. Phys. Fluids (1994-present)
23(085106), 1–12 (2011)

22. Pauli, L., Both, J., Behr, M.: Stabilized finite element method for flows with mul-
tiple reference frames. Int. J. Numer. Meth. Fluids 78, 657–669 (2015)

23. Pauli, L., Nam, J., Pasquali, M., Behr, M.: Transient stress-based and strain-based
hemolysis estimation in a simplified blood pump. Int. J. Numer. Meth. Biomed.
Eng. 29(10), 1148–1160 (2013)

24. Probst, M.: Robust Shape Optimization for Incompressible Flow of Shear-Thinning
Fluids. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2013)

36 L. Pauli and M. Behr

25. Rand, R.: Mechanical properties of the red cell membrane: II. viscoelastic break-
down of the membrane. Biophys. J. 4(4), 303–316 (1964)

26. Riveros-Moreno, V., Wittenberg, J.: The self-diffusion coefficients of myoglobin
and hemoglobin in concentrated solutions. J. Biol. Chem. 247(3), 895–901 (1972)

27. Schmid-Schönbein, H., Wells, R.: Fluid drop-like transition of erythrocytes under
shear. Science 165(3890), 288–291 (1969)

28. Stewart, S., Hariharan, P.: Computational round robin #2 (model blood pump),
October 2013. https://fdacfd.nci.nih.gov/interlab study 2 blood pump

29. Wurzinger, L., Opitz, R., Eckstein, H.: Mechanical blood trauma: an overview.
Angeiologie 38, 81–97 (1986)

30. Zhang, T., Taskin, M., Fang, H., Pampori, A., Jarvik, R., Griffith, B., Wu, Z.:
Study of flow-induced hemolysis using novel couette-type blood-shearing devices.
Artif. Organs 35(12), 1180–1186 (2011)

https://fdacfd.nci.nih.gov/interlab_study_2_blood_pump

A Partitioned Methodology for Conjugate Heat
Transfer on Dynamic Structures

Miguel Zavala-Aké(B), Daniel Mira, Mariano Vázquez,
and Guillaume Houzeaux

Barcelona Supercomputing Center (BSC), Barcelona, Spain
miguel.zavala@bsc.es

Abstract. A partitioned coupling approach for conjugate heat transfer
applications is presented. The coupling scheme is based on the extension
of the parallel algebraic domain composition method already validated in
fluid-structure interactions problems for thermal coupling. The method
alters the original Dirichlet-Neumann approach enforcing the boundary
conditions over the subdomains through matrix operations. The algo-
rithm is tested on two benchmark cases with conjugate heat transfer:
flow over a heated cylinder and flow over a flat-plate. The results indicate
good agreement with previous research and encourages its application for
large-scale problems.

Keywords: Parallel coupling · Multiphysics · Conjugate heat transfer

1 Introduction

How a fluid interacts with its environment is interesting on a great variety of
applications. The cooling of a turbine blade or the mechanical vibrations of a gas
turbine engine are examples where different physics interact through a common
interface. The interactions must be modelled taking into account appropriate
numerical methods for every component. The coupling could be attempted by
using different approaches for every physical zone, or even with simulation codes
written in different languages or used at different architectures. Furthermore,
the physics of the system could define the numerical method to be used, for
instance, while the heat transfer in a solid is a diffusive processes, a fluid is
usually dominated by convection, which could lead to differences of orders of
magnitude between the temporal scales, i.e. the temporal perturbations in the
fluid are almost negligible in the solid. Numerically, it means that the fluid might
require several time steps to generate a change in the solid. The interaction
between two transient fluids is almost instantaneous so that the temporal scales
are practically equal.

The main goal of this study is to introduce and validate the parallel algebraic
domain composition method (DCM) [1], previously used on fluid-structure inter-
actions, against benchmarks examples of conjugate heat transfer. The main idea
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 37–47, 2017.
DOI: 10.1007/978-3-319-53862-4 4

38 M. Zavala-Aké et al.

in the domain composition method is to modify the original Dirichlet-Neumann
approach enforcing the boundary conditions over the subdomains through matrix
operations. In the case of fluid-structure interaction problems, rather than com-
puting the total force exerted by a fluid along boundary integrating the pressure
and viscous stresses, the force is obtained as an algebraic force given by the
residual of the momentum equation [2].

This paper is focused on describing a method to address conjugate heat
transfer problems which can be used to resolve dynamic structures. The work
starts describing the mathematical details related to solving the coupling inter-
face, Sect. 2. Section 3, deals with the numerical approach used to solve the
coupling, while the Sect. 4 describes briefly the results achieved using the pro-
posed coupling method. Furthermore, a parallel performance analysis of the
coupling implementation is also considered. Finally, Sect. 5 discusses conclusions
and directions of future work.

2 Mathematical Modelling

This section deals with the mathematical details related to the coupling of a
low-Mach approximation of the Navier-Stokes equations with a heat conduction
solver.

2.1 Governing Equations

The governing equations describing the flow field correspond to the low Mach
number equations given by the zeroth-order Navier-Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu
∂t

+ ∇ · (ρuu) + ∇p = ∇ · τ (1)

∂ρE

∂t
+ ∇ · (ρHu) = ∇ · (−q)

where t, ρ, u, p are the time, density, velocity field, pressure, respectively. The
total energy E and the enthalpy H are given by

E = e =
1

γ − 1
T (2)

H = E +
p

ρ
= ρcpT (3)

Moreover, τ indicates the sum of the molecular and Reynolds stress tensor com-
ponents. According to the Boussinesq approximation, one has:

τ = μ(∇u + (∇u)T) − 2
3
μ∇ · uI (4)

A Partitioned Methodology for Conjugate Heat Transfer 39

The heat flux vector components, q, are given by the Fourier law

q = −κ∇T (5)

The transport properties are expressed in terms of the molecular viscosity μ and
the conductivity κ with the Sutherland law

μ = C1
T 3/2

T + C2

κ = C3
T 3/2

T + C4
(6)

where C1 − C4 are constants for a given gas. For air at moderate tem-
peratures, C1 = 1.458 × 10−6kg/(msK1/2), C2 = 110.4K, C3 = 2.495 ×
10−3(kgm)/(s3K3/2), C4 = 194K. Finally, the system is closed by the equa-
tion of state, which relates the pressure p with the temperature T through a
pressure and temperature of reference p0 and T0 respectively

p = (p0/T0)T (7)

2.2 Conjugate Heat Transfer

The term conjugate heat transfer (CHT) is generally used when the physical
systems of heat transfer (convection and diffusion) are considered interacting
with each other. It requires the continuity between the energy equation of the
fluid and the heat conduction equation, given as

∂T

∂t
+ ∇ · (−α∇T) = Q (8)

where αf = κf/(ρfcp) and Q are the thermal diffusivity of the material and
the external heat source, respectively. The CHT approach imposes the heat flux
from the fluid into the solid domain throughout Neumann boundary conditions,
while the solid imposes a surface temperature onto the fluid domain through
Dirichlet boundary conditions

TS = TF

κS
∂TS

∂n
= κF

∂TF

∂n
(9)

3 Numerical Methodology

This section briefly describes the numerical details related to the finite element
and coupling approaches, Sects. 3.1 and 3.2, respectively. The coupling approach
section introduces the main concepts involved in the solution of partitioned sub-
domains: the domain composition method, the residual flux and some details
related to the coupling tool.

40 M. Zavala-Aké et al.

3.1 Finite Element Method

The governing equations are solved using the Finite Element method with the
Variational Multiscale Stabilization (VMS) approach [3] and with a second order
Crank-Nicholson scheme for the time integration. The discretization of the low
Mach number equations, Eq. (1), yields a coupled algebraic system

(
Ann Ant

Atn Att

) (
Un

Ut

)
=

(
bn

bt

)
(10)

which is converged through a Gauss-Seidel method at each linearization step
within a time loop. The diagonal submatrix Ann is related to the discretization of
continuity and momentum (fluid motion), while the submatrix Att is associated
to the energy equation. The off-diagonal submatrices Ant and Atn take into
account the coupling between the terms of the fluid motion and the energy
equation. The vectors [Un Ut]T and [bn bt]T represent the unknowns and right-
hand side terms of the individual subsystems, respectively. The momentum and
continuity equations are solved independently, applying the iterative Orthomin
solver for the pressure-Schur complement [4].

3.2 Coupling Approach

The multi-physics coupling approach is based on the parallel algebraic domain
composition method [1]. This methodology has been validated in fluid rigid body
interaction [2] and fluid structure interaction (FSI) problems [5]. Furthermore,
this coupling approach has also been applied to reproduce experimental results
of a bladeless wind-driven generator prototype [6].

Domain Composition Method. In the classical Dirichlet-Neumann coupling
scheme [7,8], the total physical domain is divided in small regions, each of them
characterized by a specific type of physics, see Fig. 1. Each of this disjoint sub-
domain can be solved by itself using suitable boundary conditions. Through
two different strategies, we can reconstruct the solution of the whole domain
at each time step from the solution of each subdomain. In the Jacobi (parallel)
strategy both domains could be solved at the same time while in the Gauss-
Seidel (sequential) strategy, the domains are solved one after the other. In order
to achieve a suitable solution at each time step, a number of extra iterations
between the sudomains may be required.

In the Gauss-Seidel approach, the solution of the whole domain is obtained by
imposing suitable boundary conditions alternately to each subdomain. The most
common method to perform that is the iterative Dirichlet-Neumann algorithm. It
consists on imposing Dirichlet boundary conditions at the coupling boundary of
one subdomain and solving it. After that, the solution obtained at this coupling
boundary is employed to calculate the derivative associated to the Dirichlet
condition. This derivative is used to solve the subdomain with the Neumann
boundary condition.

A Partitioned Methodology for Conjugate Heat Transfer 41

The domain composition method (DCM) modifies the original Dirichlet-
Neumann approach enforcing the boundary conditions over the subdomains
through matrix operations [1]. The main idea of DCM is to use the residual
of the Dirichlet subdomain as an approach of the normal derivative on the cou-
pling boundary. Once calculated, the normal derivative (residual flux), it could
be used as an approach of the total flux going through the coupling boundary
on the Neumann subdomain. One of the characteristics of the total flux is that
it could be used directly to assemble the Neumann condition on the right hand
side of the equation system given by the Neumann subdomain. This procedure
ensures the continuity of the coupling variable and its associated flux on the
coupling interface.

Fig. 1. (a) The whole physical domain is divided on disjoint subdomains. (b) Iterative
Dirichlet-Neumann approach.

Residual Flux. Without loss of generality, it could be demonstrated that there
is a direct relation between the residual r = Au−b of the energy equation of the
the zeroth-order Navier-Stokes equations and the heat conduction equation with
the normal derivative on the boundary Γ . The demonstration is based on the
fact that the variational form of the continuity, momentum and energy equations
written in a conservative form:

∂U

∂t
+ ∇ · F = Q (11)

42 M. Zavala-Aké et al.

where F is a flux related to the conserved quantity U and Q represent a source
term, could be expressed as

∫

Γ

∂F

∂n
WdS

︸ ︷︷ ︸
r

=
∫

Ω

F · ∇WdΩ −
∫

Ω

∂U

∂t
WdΩ

︸ ︷︷ ︸
Au

−
∫

Ω

QWdΩ

︸ ︷︷ ︸
b

(12)

where W represent the test function which must vanish on the Dirichlet interface
Γ with the unity normal vector n [2,9]. From here, an approximation of the
normal derivative λ could be associated to the residual r when we replace the
exact solution of the conservative law in the right hand side of finite element
discretization of Eq. (12) [10]. The solution u is achieved after the assignment of
the boundary conditions into the matrix A and the source vector b. A complete
description of this method can be found in [1].

In the case of the energy equation, we associate the normal derivative λΓ to
the total heat flux going through the boundary Γ

λΓ =
∫

Γ

(−κ
∂T

∂n
)WdS (13)

As mentioned above, this approach of the total heat flux can be used to enforce
the Neumann boundary condition through Γ on the Neumann subdomain.

Coupling Tool. To transfer data between two meshes Ωi and Ωj interacting
through the boundary Γij (see Fig. 2), each partition in both meshes needs to
communicate data to each partition in the other mesh due to their geometric
overlap. The data is interpolated and set to the target mesh and the interpolated
data distributed to the partitions. With this data, the source code performs its
calculations.

The procedure described above, is carried out by the coupling tool named
Parallel and Locator Exchange Library++ (PLE++) based on the original PLE
tool from Yvan Fournier (Électricité de France). At the start, the PLE was used
to couple the CFD code Code Saturne with the Heat transfer code Syrthes and
several instances of the same code. In order to include more flexibility to the PLE

Fig. 2. Partition into two overlapping subdomains.

A Partitioned Methodology for Conjugate Heat Transfer 43

library, a C++ environmental library was developed to extend the capability of
PLE to an easy communication between application codes written in C/C++,
Fortran or Python.

4 Numerical Results

This section briefly describes the results achieved using the coupling methodol-
ogy introduced above. Furthermore, it includes the validation of two benchmark
cases and the analysis of the parallel performance of the proposed method.

4.1 Heated Cylinder

This test case corresponds to a heated cylinder placed in a fluid coupled to a
annular ring Fig. 3(a).

The problem was originally proposed under of assumption of a steady laminar
incompressible fluid flow with a Reynolds number of 40 constant fluid properties
and at Prandtl number of 0.71 [11]. The cylinder is situated at a distance of
Lu/D = 4.28 from the inlet and Ld/D = 10 from the outflow boundary while
the cross flow is set to H/D = 7.14. The internal and external diameters are
d = 5 × 10−3 and D = 7 × 10−3, respectively. The inlet temperature of the fluid
is fixed at 303 K while the internal tube surface temperature is fixed at 373 K.
The temperature at the interface between the fluid and the solid is considered
the coupled boundary and is resolved using a conjugate heat transfer approach.

The effect of the thermal conductivity ratio ks/kf on the local Nusselt num-
ber Nu and the non-dimensional fluid-solid surface temperature T ∗ is depicted
in Fig. 3(b). While the local Nusselt number is directly proportional to ks/kf at
θ = 0, the temperature difference between the forward (θ = 0) and backward

L

H

3

2

3

1

d D

4

2

4

6

N
u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5
0.6
0.7
0.8
0.9
1

θ[π]

T
∗

(a) (b)

Fig. 3. (a) Computational domain for the flow around a cylinder. (b) The local Nusselt
number and the reduced temperature at the interface for the isothermal case ks/kf = ∞
(circle), ks/kf = 10 (triangle), ks/kf = 5 (diamond), ks/kf = 1 (quad).

44 M. Zavala-Aké et al.

(θ = π) stagnation point is inversely proportional to ks/kf . A good agreement
between the presented results and those obtained from [11] is observed at all
locations.

4.2 Flat-Plate

Here, we present the validation results for the conjugate heat transfer benchmark
proposed in [8]. This benchmark constitutes a severe test case since it comprises
high velocities along with real material properties for the solid.

The test case corresponds to the cooling of a flat plate. The geometry is
depicted in the Fig. 4(a). At the inlet (region 0) the temperature is 273K with
a Prandlt number of Pr = 0.71. The initial velocity corresponds to Ma∞ = 0.8
and Reynolds of ReL = 9×105 (based on the vertical dimension L = 4.5 mm). At
the bottom, there are four succeeding regions. In region 1, symmetry boundary
conditions are applied, while in the next region, a constant wall temperature
of 300 K and no-slip conditions are specified so that the boundary layer can be
developed. The region 3 is the contact interface with the solid, while the rest of
the walls are assumed adiabatic. Finally, the domain is closed by a region with
symmetry boundary conditions. Once converged, the simulation can be validated
using the temperature evolution at two points in the coupling interface.

Figure 4(b) shows the temperature evolution at the beginning and the end
of the coupling interface. The fluid and solid meshes consist of 119529 and 9728
quadrilateral elements, ensuring sufficient resolution near the wall (y+ < 1). The
time step size is set to 5×10−2 s. The fixed-point iteration is set to 1×10−5, being
necessary less than 10 iterations for the first three time steps. The rest of the
simulation only uses one fixed point iteration per time step. A good agreement
with the reference data is observed for the entire time history of the two interface
points.

0

1 2 3 4

0 0.2 0.4 0.6 0.8 1
870

880

890

900

t [s]

T
[K

]

x=100

x=300

(a) (b)

Fig. 4. (a) Computational domain for flat plate. (b) Temperature evolution at the
beginning and the end of the coupling interface.

A Partitioned Methodology for Conjugate Heat Transfer 45

4.3 Parallel Efficiency

In order to apply the CHT approach described in Sect. 3.2 to large-scale prob-
lems, two factors must be taken into account: (1) the performance of the com-
putations for each individual subdomain and (2) the performance associated to
the coupling scheme. This section addresses the parallel implementation of the
coupling scheme for the CHT approach. In particular, it is limited to show the
availability of the subdomains to achieve a good performance, and also to show
the possible limitations of the coupling performance.

In general, a reduction in parallel performance when computing single physics
usually leads to a full breakdown of the performance of the coupling scheme,
despite the algorithm can be very efficient. Because of that, the analysis of the
parallel performance of the code without coupling is the first step to be veri-
fied. Figure 5(a) shows the strong-scaling curve performed on the supercomputer
Vesta at the Argonne National Laboratory. The curve shows an excellent perfor-
mance of the code up to 16384 MPI processes on the modelling of the expansion
of a turbulent jet on a confined geometry. The speedup achieved for this prob-
lem was around 91% with 16384 MPI processes. As the solid subdomain uses
the same numerical framework as the fluid, the focus can now be restricted to
the features of the coupling scheme.

The parallel implementation of the coupling scheme as described in the
Sect. 3.2 is now considered. In particular, the analysis performed corresponds
to the CHT approach of the flat-plate experiment presented above. The cou-
pling execution consisted of 64 MPI processes divided between the fluid and
solid subdomains (60 and 4, respectively), while the number of time steps per-
formed were limited to six. It is important to note that both the number of
cores used to simulate the coupling and the mesh size of the solid subdomain
were arbitrary selected to highlight the parallel details of the coupling.

211 212 213 214
1

2

4

8

MPI processes

Sp
ee

du
p

Ideal
412.8 × 106 @ Argonne

)b()a(

Fig. 5. (a) Strong-scaling curve for the fluid subdomain (without coupling) and (b)
Trace of coupling case (flat-plate experiment).

46 M. Zavala-Aké et al.

Figure 5(b) shows the parallel execution of the flat-plate case unfolds over
time (the trace) obtained by the parallel performance tool HPCToolkit [12].
The figure shows the time line of each MPI process with colours in the vertical
direction showing different computing stages. In the case of the fluid, the first
stage (LM) represents the solution of the low Mach equations, while the sec-
ond stage (Cf) corresponds to the coupling. At the same time, there are also
two stages in the solid case, the coupling (Cs) and the solution of the energy
equation (Es).

In the sequential strategy (Sect. 3.2) the domains are solved one after the
other, which can be clearly seen on the trace. Each time step sequence starts
with the solution of the low Mach equations in the fluid subdomain (LM), while
the solid subdomain is waiting for the solution (Cs). Once the solution of the
fluid subdomain is achieved, the solid subdomain performs its own solution (Es).
It should be noted that between the solution stages LM and Es no overheads
due to the exchange of information were introduced into the algorithm. This
approach requires that both subdomains wait during the calculation stage of the
other subdomain introducing a limitation in the maximum performance that can
be achieved when the number of MPI processes are not selected appropriately.
This is the topic of our current investigation.

5 Conclusions and Future Work

A partitioned coupling approach based on the parallel algebraic domain com-
position method (DCM) has been validated for conjugate heat transfer appli-
cations. The method is based on computing the total heat flux through matrix
operations, specifically through the residual flux of the energy equation and use
it as Neumann boundary condition. As the partitioned Dirichlet-Neumann app-
roach, the DCM ensures the continuity of the coupling variable and its associated
flux on the coupling interface. In order to validate this proposed approach two
benchmark cases were considered. The first case corresponds to a heated cylin-
der placed in a steady laminar incompressible fluid flow coupled to an annular
ring. The second case considers the cooling of a flat plate with an inlet velocity
corresponding to Mach number 0.8 and Reynolds number 9 × 105. The results
indicate good correlation with the reference data for both cases and encourages
the extension to larger problems. Regarding the parallel implementation of the
coupling scheme, it shows no overheads due to the exchange of information.
Nevertheless, because of the features of the coupling scheme, limitations exist in
the maximum performance that can be achieved. These limitations are currently
being investigated. The ongoing work considers the use of this methodology in
the solution of problems taking into account the thermal effect on fluid-structure
interactions.

A Partitioned Methodology for Conjugate Heat Transfer 47

References

1. Houzeaux, G., Cajas, J.C., Eguzkitza, B., Vázquez, M.: Parallel implementation
of domain composition methods (2015)

2. Samaniego, C., Houzeaux, G., Samaniego, E., Vázquez, M.: Parallel embedded
boundary methods for fluid and rigid-body interaction. Comput. Methods Appl.
Mech. Eng. 290, 387–419 (2015)

3. Houzeaux, G., Principe, J.: A variational subgrid scale model for transient incom-
pressible flows. Int. J. Comput. Fluid Dyn. 22(3), 135–152 (2008)

4. Houzeaux, G., Aubry, R., Vázquez, M.: Extension of fractional step techniques
for incompressible flows: The preconditioned orthomin (1) for the pressure schur
complement. Comput. Fluids 44(1), 297–313 (2011)

5. Uekermann, B., Cajas, J.C., Gatzhammer, B., Houzeaux, G., Mehl, M., Vázquez,
M.: Towards partitioned fluid-structure interaction on massively parallel systems.
In: Proceedings of WCCM XI/ECCM V/ECFD VI, Barcelona (2014)

6. Cajas, J.C., Houzeaux, G., Yáñez, D.J., Mier-Torrecilla, M..: Shape project vortex
bladeless: parallel multi-code coupling for fluid-structure interaction in wind energy
generation (2016)

7. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with
dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

8. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure
interaction method for thermal coupling. Comput. Vis. Sci. 13(7), 331–340 (2010)

9. Kuzmin, D.: A guide to numerical methods for transport equations. University
Erlangen-Nuremberg (2010)

10. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and The-
ory, vol. 34. Springer, Heidelberg (2005)

11. Vessakosol, P., Charoensuk, J.: Numerical analysis of heat transfer and flow field
around cross-flow heat exchanger tube with fouling. Appl. Therm. Eng. 30(10),
1170–1178 (2010)

12. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCTOOLKIT: Tools for performance analysis of optimized
parallel programs. Concurrency Comput. Pract. Experience 22(6), 685–701 (2010)

Farfield Noise Prediction Using Large-Scale
Lattice-Boltzmann Simulations

Benjamin Duda1(✉) and Ehab Fares2

1 Exa GmbH, Landshuter Allee 8, 80637 Munich, Germany
bduda@exa.com

2 Exa GmbH, Curiestraße 4, 70563 Stuttgart, Germany

Abstract. In order to predict farfield noise created by the flow over complex
geometries, high-fidelity flow simulations based on the Lattice-Boltzmann solver
PowerFLOW are used in conjunction with the acoustic analogy solver
PowerACOUSTICS. Since the flow needs to be spatially and temporally well
resolved, the simulations are usually carried on a large number of computational
cores for adequate turnaround times. This paper provides the background on the
two-step methodology and gives an overview on aero-acoustics computations in
aerospace, ranging from an isolated airframe component to the entire aircraft
system.

Keywords: Lattice-Boltzmann methods · Large-Scale CFD · Farfield
aeroacoustics

1 Introduction

Accurate farfield noise predictions in the aerospace industry are becoming more and
more important due to the continuous growth in air travel, which has led to an increase
in community noise exposure around airports and thus to stricter airport regulations. The
difficulty of numerically capturing noise generation and the propagation of sound to the
farfield leads to a multi-scale problem. Turbulent scales and noise generating mecha‐
nisms are usually orders of magnitudes smaller than the distance between noise source
and observer, which rules out the direct numerical propagation. The approach followed
here consists in the coupling of a high-fidelity flow solver, which can spatially and
temporally resolve pressure fluctuations of the flow field generated by very small turbu‐
lent scales, with a farfield solver that relies on an acoustic analogy. This approach is
schematically shown in Fig. 1.

© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 48–57, 2017.
DOI: 10.1007/978-3-319-53862-4_5

Fig. 1. Coupling of high-fidelity flow simulation in the near field with acoustic post-processing
tool for farfield sound propagation

2 Numerical Method

In a first step, the flow around the body is simulated with PowerFLOW, which is a
compressible flow solver based on the three dimensional 19 state (D3Q19) Lattice-
Boltzmann model (LBM) [1–4]. LBM is a computational fluid dynamics (CFD) tech‐
nology, which has been developed and gained popularity over the last decades due to
the advent of high performance computing. It has been extensively validated for a wide
variety of applications and the reader is referred to these publications for more infor‐
mation [5–8].

In contrast to more traditional methods like those based on the Navier-Stokes equa‐
tions, LBM uses a simpler and more general physics formulation at a microscopic level.
Nonetheless, the macroscopic behavior of the Navier-Stokes equations are recovered
from the LBM equation via the Chapman-Enskog expansion [4, 8]. Characteristics of
the numerical scheme include low dissipation and dispersion properties. LBM being an
inherently unsteady simulation, the results are thus similar to a Direct Numerical Simu‐
lation (DNS). Since DNS of high Reynolds number flows usually encountered for aero‐
space applications require unattainable computational resources, a turbulence modelling
strategy is adopted which relies on modelling the effect of turbulence where possible,
e.g. attached boundary layers, and resolving turbulence where necessary, e.g. free shear
layers, flow separations and wakes. This approach is called Lattice-Boltzmann Very
Large Eddy Simulation (LB-VLES) and is used throughout this work [3].

Geometrical details of real applications tend to influence broad-band noise charac‐
teristics. Therefore, the actual geometry should be represented numerically as accurately
as possible. Since this LB method is solved on Cartesian meshes with a cut-cell approach
and an accurate surface representation, complex geometry handling is ensured. Variable
refinement regions can be defined to allow for local mesh refinement of the volume mesh
size by successive factors of two.

Throughout the simulation, unsteady pressure data is sampled on the geometry or
on porous permeable surfaces inside the fluid. In a second step, an acoustic analogy
approach based on the Ffowcs Williams and Hawkings (FWH) formulation is used to
evaluate the perceived noise at a farfield location based on the near field pressure data

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann 49

recorded during the simulation [9]. The employed FWH formulation is based on the
retarded-time formulation 1A by Farassat [10], which is extended to account for uniform
mean flow convection effects to simulate the noise generated and measured in an ideal
infinite wind tunnel. In terms of computational costs, the farfield noise propagation is
usually orders of magnitudes less expensive than the fluid simulation. For an acceptable
turnaround time for large datasets however, parallel FWH computations are necessary.

Another key advantage of the Lattice-Boltzmann Method is the high efficiency of
computations on modern compute clusters with hundreds or thousands of interconnected
nodes and tens of computational cores per node. This is due to the predominantly local
nature of computational operations which dramatically reduces the core-to-core and
node-to-node communications requirements compared to traditional RANS methods.
Simulations were performed recently up to 16000 cores on a large Linux cluster with
Infiniband interconnect. Parallel scalability of PowerFLOW is documented in Fig. 2
demonstrating the high efficiency of the simulations of real industrial cases for simula‐
tions on as many as 16,000 of cores.

Fig. 2. Average parallel scalability for large industrial case

3 Simulations

In this section two aerospace related cases will be discussed: an isolated simplified nose
landing gear in model-scale and an installed high fidelity main landing gear in full-scale
installed on an aircraft in landing configuration.

3.1 Isolated Nose Landing Gear

Firstly, LBM-VLES results of the unsteady flow about the ONERA–The French Aero‐
space Lab/Airbus SAS LAGOON landing gear are shown. The simulations were part
of an aeroacoustic benchmark and are discussed in detail in refs [11, 12]. The geometry
consists of a simplified two-wheel landing gear, including a segmented cylindrical leg,
a cylindrical axle, and two rims with inboard annular cavities and a closed outboard face
with mounting tires. It is shown in Fig. 3. The flow simulation was conducted for a Mach
number of 0.23 and a Reynolds number of 1.541∙106 based on the wheel diameter.

50 B. Duda and E. Fares

Fig. 3. Isolated landing gear tested in wind tunnel [11].

Figure 4 gives a snapshot of the resolved turbulent structures by iso-surfaces of λ2
with the flow coming from the top right. Flow separation occurs at the rims and down‐
stream of the strut and the wheels. A variety of small and large scale structures are
resolved in the near field of the landing gear. Due to the mesh coarsening in downstream
direction the structures start dissipating. The simulation has been run for a physical time
of 0.8s but only the second half of the run has been used for obtaining time statistics and
farfield acoustics.

Fig. 4. Resolved turbulent structures in the wake of the landing gear.

The top part of Fig. 5 shows comparisons between the PIV in-plane time averaged
streamwise velocity component in the wake of the gear and the predicted value. Regions
affected by the presence of the shadow of the laser sheet due to the wheel have no value
in the database and are therefore blanked in the figures. A fairly good quantitative
agreement between prediction and measurements can be observed. The bottom part of
Fig. 5 shows comparisons between the LDV in-plane standard deviation of the stream‐
wise velocity components in the wake of the gear and the predicted ones. The numerical
results have been obtained by adding the square root of 2/3 k to the standard deviations
computed using the resolved LBM fluctuation field. This allows one to take into account
the effect of the unresolved (modeled) scales of motion in the computation of the
standard deviation, by considering the modeled fluctuations to be isotropic.

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann 51

Fig. 5. Mean (top) and std. deviation (bottom) of streamwise velocity component. Comparison
between simulation (left) and experiment (right) [12].

The FWH computation is carried out by integrating the unsteady pressure field on
the gear surface which was sampled at a frequency of 100 kHz for 0.4s. This yields a
file size of already about 325 GB for the isolated landing gear, which needs to be
processed. Figure 6 shows a good comparison between the numerically and experimen‐
tally obtained noise spectrum for an overhead microphone. The discrepancies for low
frequencies can be attributed to the experimental setup in the wind tunnel, which was
not replicated in the simulation.

52 B. Duda and E. Fares

Fig. 6. Farfield noise results from 200 Hz to 5000 Hz for an overhead microphone. Comparison
between simulation and experiment [12].

3.2 Full-Scale Aircraft in Landing Configuration

Secondly, LBM-VLES results are shown for the flow around a full-scale Gulfstream
aircraft approaching an airport. The computations were conducted in the scope of
NASA’s Environmentally Responsible Aviation (ERA) project and the complete study
can be found in refs. [13–15]. The simulations shown here correspond to a landing
configuration with main gear and flaps deployed. The Mach number was 0.2 and the
Reynolds number 10.5∙106 based on the mean aerodynamic chord. The simulation with
a fine resolution consisted of 8.4 billion volume elements and was carried out on 12,000
cores.

Figure 7 shows again the wide variety of resolved turbulent flow structures, high‐
lighting the unsteady flow around the landing gear, the flap side edges and brackets
connecting wing and flap. It is crucial that the turbulence modelling approach in LB-
VLES is capable of resolving turbulent fluctuations in areas of detached flow because
only the time accurate prediction of these features will allow a correct farfield noise
assessment.

Fig. 7. Resolved turbulent structures at the flap and main landing gear [13].

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann 53

The pressure dilatation field displayed in Fig. 8 allows identifying noise sources. The
flap side edge vortices and the main landing gear (including the gear cavity) are the most
dominating ones but additional noise is generated by the flow around the flap brackets.
Also for this case, the FWH computation is carried out by integrating the unsteady
pressure field but this time on the entire surface of the aircraft. Depending on the desired
frequency range, the input files can easily reach 10 TB in size. An efficient handling and
a fast parallel computation of the farfield pressure signal is thus indispensable for large,
full-scale applications.

Fig. 8. Pressure field showing flap tips and main landing gears as dominant noise sources [13].

In order to quantify the strength of the noise sources in various frequencies a beam‐
forming calculation is carried out in time domain. Farfield pressure signals are computed
for an array of hundreds of microphones and correlating the microphone data then allows
pinpointing the sources. Figure 9 shows the beamforming maps for frequencies of
879 Hz and 1270 Hz. The images on the left are results from a flight test using the same
microphone array and the images on the right are simulation results. The contours have
been normalized so that the peak level in each map is zero. Very good agreement is
achieved and both the flap side edges and the main landing gear are confirmed to be
dominant noise sources. The discrepancies, especially near the center of the aircraft, can
be attributed to the fact that the simulation only had flow-through nacelles whereas the
real aircraft was flown with engines close to idle but still generating noise.

Figure 10 shows a comparison between the numerically and experimentally obtained
sound pressure level spectra in one third octave bands for the flyover microphone. Three
simulations were conducted with two different grid resolutions and two different flap
brackets geometry. The original flap brackets geometry contained a variety of small
geometrical details. These holes and gaps, which are probably closed on the real aircraft,
generated additional noise, which explains the discrepancies seen for high frequencies.
Closing these features leads to a much better agreement with flight test data, cf. [14].
Generally, a very good agreement in the mid frequency range can be observed with
larger deviations in the low frequency range. This can be attributed to the noise generated
by the main landing gear cavity and to sources not captured in the simulation such as
the almost idly running engines.

54 B. Duda and E. Fares

Fig. 9. Beamforming contour maps of sound pressure levels comparing flight test (left) with
simulation (right) for a frequency of 879 Hz (top) and 1270 Hz (bottom) [13].

Fig. 10. Farfield noise results for a flyover microphone. Comparison between simulation and
flight test [13].

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann 55

Finally, maximum ground noise maps have been calculated for the approaching
aircraft by FWH. Since the goal of the ERA project was to reduce community noise,
noise reduction concepts have been evaluated numerically, cf. [15]. On the one hand, a
porous flap treatment (APM) and a flexible side edge link (FLEXSEL) have been applied
to mitigate flap noise. On the other hand, several fairings have been applied to the landing
gear to mitigate noise originating from this component. The performance of these
concepts can be quantified by calculating the maximum perceived noise level on the
ground during landing through farfield noise propagation. Figure 11 shows the noise
affected areas for a prescribed approach path and the decrease of these areas for the
respective noise reduction technologies. For a single microphone, a noise reduction of
about 1.6 dBD can be achieved.

Fig. 11. Ground map of maximum perceived noise during landing for standard aircraft and for
aircraft equipped with noise reduction concepts [15].

4 Conclusion

Results of a two-step methodology, i.e. high fidelity LBM flow simulations for sound
generation followed by noise propagation through acoustic analogy, are presented for a
model-scale isolated landing gear and a full-scale aircraft in landing configuration. Good
agreement between simulation and experiments is achieved. The quality of the numerical
results can be attributed to the accuracy and efficiency of both the underlying flow solver,
which allows the high temporal and spatial resolution of turbulent structures in detached
flow regions, and the acoustic analogy approach, which allows handling of very large

56 B. Duda and E. Fares

data. In order to address even larger scale industrial applications, efficient parallelization
remains an important aspect not only for the flow simulation itself, but also for the
volume mesh generation as well as for near and farfield post-processing.

References

1. Chen, H.: Volumetric formulation of the lattice-boltzmann method for fluid dynamics: basic
concept. Phys. Rev. E 58(3), 3955–3963 (1998)

2. Chen, H., Texeira, C., Molvig, K.: Realization of fluid boundary condition via discrete
boltzmann dynamics. Int. J. Mod. Phys. C 09, 1281–1292 (1998)

3. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended boltzmann
kinetic equation for turbulent flows. Science 301, 633–636 (2003)

4. Chen, H., Chen, S., Matthaeus, W.: Recovery of the navier-stokes equations using a lattice-
gas boltzmann method. Phys. Rev. A 45(8), 5339–5342 (1992)

5. Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started
cylinder by lattice boltzmann method. J. Fluid Mech. 519, 273–300 (2004)

6. Fares, E., Jelic, S., Kuthada, T., Schroeck, D.: Lattice boltzmann thermal flow simulation and
measurements of a modified SAE model with heated plug. In: Proceedings of FEDSM
2006-98467 (2006)

7. Fares, E.: Unsteady flow simulation of the ahmed reference body using a lattice boltzmann
approach. J. Comput. Fluids 35, 940–950 (2006)

8. Qian, Y., d’Humieres, D., Lallemand, P.: Lattice BGK models for the navier-stokes equation.
Europhys. Lett. 17, 479–484 (1992)

9. Williams, J.E.F., Hawkings, D.L.: Sound generated by turbulence and surfaces in arbitrary
motion. Philos. Trans. R. Soc. 264(1151), 321–342 (1969)

10. Farassat, F., Succi, G.P.: The prediction of helicopter discrete frequency noise. Vertica 7(4),
309–320 (1983)

11. Airbus SAS: LAGOON Simplified (2-Wheel) Nose Landing Gear Configuration #1 -
Experimental Database. TR-R12, Toulouse, France, April 2011

12. Casalino, D., Ribeiro, A., Fares, E., Noelting, S.: Lattice-boltzmann aeroacoustic analysis of
the LAGOON landing-gear configuration. AIAA J. 52(6), 1232–1248 (2014)

13. Khorrami, M., Fares, E.: Simulation-based airframe noise prediction of a full-scale, full
aircraft. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–2706 (2016)

14. Fares, E., Duda, B., Khorrami, M.: Airframe noise prediction of a full aircraft in model and
full scale using a lattice boltzmann. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–
2707 (2016)

15. Khorrami, M., Duda, B., Hazir, A., Fares, E.: Computational evaluation of airframe noise
reduction concepts at full scale. In: Aeroacoustics Conference, Lyon, France, AIAA 2016–
2711 (2016)

Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann 57

FEniCS-HPC: Coupled Multiphysics
in Computational Fluid Dynamics

Johan Hoffman1,2(B), Johan Jansson1,2, Niyazi Cem Degirmenci1,
Jeannette Hiromi Spühler1, Rodrigo Vilela De Abreu1, Niclas Jansson1,

and Aurélien Larcher3

1 Department of Computational Science and Technology,
KTH Royal Institute of Technology, Stockholm, Sweden
{jhoffman,jjan,ncde,spuhler,rvda,njansson}@kth.se

2 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
3 Norwegian University of Science and Technology, Trondheim, Norway

aurelien.larcher@math.ntnu.no

Abstract. We present a framework for coupled multiphysics in com-
putational fluid dynamics, targeting massively parallel systems. Our
strategy is based on general problem formulations in the form of par-
tial differential equations and the finite element method, which open
for automation, and optimization of a set of fundamental algorithms.
We describe these algorithms, including finite element matrix assembly,
adaptive mesh refinement and mesh smoothing; and multiphysics cou-
pling methodologies such as unified continuum fluid-structure interaction
(FSI), and aeroacoustics by coupled acoustic analogies. The framework
is implemented as FEniCS open source software components, optimized
for massively parallel computing. Examples of applications are presented,
including simulation of aeroacoustic noise generated by an airplane land-
ing gear, simulation of the blood flow in the human heart, and simulation
of the human voice organ.

Keywords: FEniCS · Unicorn · Eunison · High-performance
computing · Multiphysics · Computational fluid dynamics · Adaptive
finite element method

1 Introduction

Computational fluid dynamics (CFD) is becoming a standard tool in many areas
of science and engineering, and finds new applications every day. Increasingly,
it is now also possible to study complex systems where different physics models
interact, so called multiphysics. Multiphysics CFD poses a number of challenges
with respect to numerical approximation, in particular in the context of high
performance computing (HPC).

CFD is based on the computation of numerical approximations of the Navier-
Stokes equations, possibly including a turbulence model when direct numerical
simulation (DNS) is not feasible due to the high computational cost of resolving
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 58–69, 2017.
DOI: 10.1007/978-3-319-53862-4 6

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 59

all turbulent scales in the simulation. The price of turbulence modelling, e.g.
RANS or LES, is the introduction of model parameters that may need tuning to
a particular problem, which requires calibration data that is not always available.

In recent years, CFD approaches have been developed for finite element
approximation with turbulence models based on the residual of the Navier-Stokes
equations, without any physics based turbulence models, see e.g. [3,10]. Together
with goal-oriented mesh adaption and slip boundary conditions we refer to this
approach as direct finite element simulation (DFS), which has proven to be a
highly efficient method for turbulent flow simulation without model parameters
that need tuning [8].

In this paper we present the FEniCS-HPC framework for multiphysics CFD
simulations. We emphasise high Reynolds number flow, including turbulence,
where we present examples ranging from classical engineering to clinical medi-
cine. The framework is based on DFS, a monolithic coupling strategy for fluid-
structure interaction with implicit contact models [1,9], and computational
aeroacoustics (CAA) by solving the CFD and the acoustic wave propagation
on the same mesh with the same time step. The framework builds on the gen-
erality of the FEniCS open source software, with a number of key components
optimized for massively parallel computing.

2 The FEniCS-HPC Framework

FEniCS-HPC is a high-level problem solving environment for automated solution
of partial differential equations (PDEs) by the finite element method. To manage
the complexity of multiphysics problems FEniCS-HPC takes the weak form of a
PDE as input in a near-mathematical notation and automatically generates low-
level source code, abstracting away implementation details and HPC concepts
from domain scientists.

Besides the code generation part, a key component of FEniCS is the Object-
Oriented finite element library DOLFIN [17], from which we have developed a
high performance branch DOLFIN-HPC [12], optimized for distributed memory
architectures. DOLFIN handles mesh representation and assembly of weak forms
but relies on external libraries for solving the linear systems. Our high perfor-
mance branch extends DOLFIN with a fully distributed mesh, parallel adaptive
mesh refinement, and predictive dynamic load balancing capabilities [14].

The parallelization strategy within DOLFIN-HPC is based on an element
wise distribution, given from the dual graph of the underlying computational
mesh. To minimize data dependencies during finite element assembly, whole
elements is assigned to each processing elements (PE), and the overlap between
PEs are represented as ghosted entities. Thus, assembling the stiffness matrix in
every time-step can be performed in a straightforward way. Each PE computes
the local stiffness matrix of its elements, and add them to the global matrix. For
the linear solvers, a row-wise distribution of matrices is assumed, which directly
maps to our element wise distribution.

60 J. Hoffman et al.

1

10

100

102 103 104 105

ru
n
ti

m
e

(s
ec

o
n
d
s)

PEs

Total solver

0.01

0.1

1

102 103 104 105

ru
n
ti

m
e

(s
ec

o
n
d
s)

PEs

Sparse matrix assembly

Total
ideal

PETSc
JANPACK

Fig. 1. Strong scalability test on a Cray XC40 for a full incompressible Navier-Stokes
solver (left) and sparse matrix assembly in DOLFIN-HPC (right), using two different
linear algebra backends and programming models, PETSc (MPI based) and JANPACK
(PGAS based).

DOLFIN-HPC is written in C++, and is parallelized using either flat MPI
or hybrid MPI + PGAS [13]. The framework has proven to scale well on a wide
range of architectures, even for very latency sensitive kernels with the addition
of the hybrid parallelization (Fig. 1).

3 Mathematical Model and Numerical Methods

3.1 Conservation Equations

We apply the conservation equations for an incompressible continuum to model
our applications presented in this paper. Let Ω be a three-dimensional domain
in R

3 with boundary Γ over a time interval I = [0, t̂]. We seek a velocity u(x, t) :
Ω × [0, t̂] → R

3, a pressure p(x, t) : Ω × [0, t̂] → R and a phase function θ(x, t) :
Ω × [0, t̂] → R such that

ρ(∂tu + (u · ∇)u) + ∇ · τ = g in Q,
∇ · u = 0 in Q,

∂tθ + (u · ∇)θ = 0 in Q,

û(·, 0) = û0 in Ω,

(3.1)

with τ(u, p) the stress tensor, û ≡ (u, p) and Q = Ω × I.

3.2 Fluid-Structure Interaction

With the aim of establishing a framework that allows for a general formulation
and implementation of different models while applying adaptive error control
for realistic 3D applications in continuum mechanics, a so-called unified con-
tinuum model for fluid-structure interaction problems was developed [9]. The
problem is described by the fundamental conservation laws for a unified contin-
uum (Eq. 3.1), where the Cauchy stress τ is kept general, allowing for different

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 61

constitutive laws in different parts of the continuum. The phase function θ is
defined to mark the solid (θ = 0) and fluid (θ = 1) domain respectively and is
used to choose constitutive law,

τ = τD − pI, (1)
τD = θτf + (1 − θ)τs, (2)
τf = 2μf ε(u), (3)

Dtτs = 2μsε(u) + ∇uτs + τs∇uT . (4)

The subscript indicates whether the variable is defined in the solid or in the
fluid part. A convection equation for θ is formulated, however in this setting
we track the fluid-structure interface with the mesh, and the phase convection
equation becomes trivial and can be eliminated. The kinematic constraint on
the velocity uS = uf at the fluid-structure interface is fulfilled by the continuity
of the velocity field for the whole domain, and a weak version of the continuity
constraint on the normal stresses τs · n = τf · n can be shown to be implicitly
enforced by using an integration by parts argument.

3.3 Finite Element Approximation for the Pure Fluid Case

Our computational approach is a standard Galerkin finite element discretization
with least squares stabilization using adjoint based adaptive algorithms and
residual based implicit turbulence modeling. Here we give the formulation for
the pure fluid case where the phase function θ = 1. For the full method for the
general FSI case we refer to [1,9].

Let 0 = t0 < t1 · · · < tN = t̂ be a sequence of discrete time steps, with
associated time intervals In = (tn−1, tn] and space-time slabs Sn := Ω × In

over which we define space-time finite element spaces based on a spatial finite
element space Wn and spatial mesh Tn [11].

In a cG(1)cG(1) method [6,7] we seek an approximate solution Û = (U,P)
which is continuous piecewise linear in space and time. This time-stepping for-
mulation is equivalent to the implicit Crank-Nicolson method in time.

With Wn a standard finite element space of continuous piecewise linear func-
tions, and Wn

0 the functions in Wn which are zero on the boundary Γ , the
cG(1)cG(1) method for constant density incompressible flow with homogeneous
Dirichlet boundary conditions for the velocity takes the form: for n = 1, ..., N ,
find (Un, Pn) ≡ (U(tn), P (tn)) with Un ∈ V n

0 ≡ [Wn
0]3 and Pn ∈ Wn, such that

((Un − Un−1)k−1
n + (Ūn · ∇)Ūn, v) + (2νε(Ūn), ε(v)) − (Pn,∇ · v) + (∇ · Ūn, q)

+ SDn
δ (Ūn, Pn; v, q) = (f, v) , ∀v̂ = (v, q) ∈ V n

0 × Wn, (5)

where Ūn = 1/2(Un + Un−1) is piecewise constant in time over In, with the
stabilizing term

SDn
δ (Ūn, Pn; v, q) ≡ (δ1(Ūn · ∇Ūn + ∇Pn − f), Ūn · ∇v + ∇q) +

(δ2∇ · Ūn,∇ · v),

62 J. Hoffman et al.

where
(v, w) =

∑

K∈Tn

∫

K

v · w dx,

(ε(v), ε(w)) =
3∑

i,j=1

(εij(v), εij(w)),

with the stabilization parameters

δ1 = κ1(k−2
n + |Un−1|2h−2

n)−1/2

δ2 = κ2|Un−1|hn

where κ1 and κ2 are positive constants of unit size. For turbulent flow we choose
a time step size

kn ∼ min
x∈Ω

(hn/|Un−1|).

We note that the least squares stabilization omits the time derivative in the
residual, which is a consequence of the test functions being piecewise constant in
time [7]. We apply the Arbitrary Lagrangian-Eulerian formulation of (5) when
deforming the mesh.

3.4 Turbulent Flow

To simulate turbulent flow we rely on a Direct Finite Element Simulation (DFS)
methodology with residual based turbulence modeling. DFS is based directly
on the Navier-Stokes equations without any physics based explicit turbulence
model, which provides a mathematical foundation for the method and opens for
quantitative a posteriori error estimation, and efficient goal-oriented adaptive
algorithms [7,8,10].

3.5 Contact Model

Our approach to model contact is derived from the idea to simulate the fluid-
structure interaction as a unified continuum.

We model contact implicitly by switching fluid cells to solid cells when con-
tact is detected based on a distance criterion. The distance between solid surfaces
is computed by using an Eikonal equation. Since both the contact and the dis-
tance are modeled by partial differential equations, they can be solved in our
automated software framework.

3.6 Mesh Smoothing Algorithms

When deforming the mesh, it is important to keep the quality of the cells in the
mesh. Our numerical solvers can apply two smoothing algorithms.

The linear smoother solves a linear elasticity equation for the mesh velocity.
It is a fast and simple method to enhance the quality of a mesh where the

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 63

vertices are diffusively relocated over the domain. However, since no information
about the quality of the cells in the mesh is included in the equation, there is
no guarantee that the mesh quality is improved.

In the nonlinear smoother, the deformation of the mesh is formulated as
a time-dependent nonlinear elasticity equation. The stiffness of the model is
weighted by the quality of the cell element. By advancing the partial differential
equation in time and approaching a stationary solution, the quality of the mesh
is enhanced towards its goal of optimal shape.

4 Multiphysics in Computational Fluid Dynamics

To illustrate the capabilities of the FEniCS-HPC framework we present three
CFD multiphysics examples, from classical engineering to clinical medicine.

4.1 Heart Biomechanics

The purpose of our research is to establish a simple and robust framework for
modeling and simulation of the blood flow in the heart. We aim for a simulation
model that is patient-specific, and both easy to modify and flexible to extend.
In [18], we focus on the aspect of fluid mechanics of the blood flow in the left
ventricle (LV) of the heart. The motion of the endocardial wall is extracted
from images using medical imaging techniques and we apply the incompressible
Navier-Stokes equations to simulate the hemodynamics within the chamber. We
set time-dependent boundary conditions to model the opening and closing of the
mitral and aortic valves. The goal is to ultimately apply this simulation model in
a clinical setting, for which we have established a semi-automated pathway from
ultrasound measurements to patient-specific flow simulations of the LV [16]. The
robustness, validation, and the clinical feasibility of the model is currently under
development.

To enhance the LV model, prototypes are being developed of both a natural
and a mechanical aortic valve, embedded in the left ventricle and the aorta.
The fluid-structure interaction is formulated as a unified continuum problem as
described in (Sect. 3.2). A stabilized local ALE space-time finite element dis-
cretization is used for the unified continuum with the mesh moved according
to the solid deformation and with mesh smoothing in the fluid part of the
domain [9].

A CAD model of an idealized natural aortic root is developed based on a
small set of parameters, proposed by [19]. Even though the material properties
of the valve leaflets have no anatomical foundation yet, the opening and closing
characteristics as observed in e.g. [15] can be identified.

64 J. Hoffman et al.

Fig. 2. Vortex generation in the left ventricle during diastole (left), and the velocity
field around an embedded mechanical (middle) and a natural (right) aortic valve during
systole.

Our model of a bileaflet mechanical heart valve is reduced to the leaflets
only, and is embedded in an idealized aorta. Contrary to the natural valve, we
simulate the fluid-structure interaction of the leaflets and the hemodynamics of
the left ventricle conjointly.

Figure 2 depictes the vortex generation during diastole, and the velocity field
around the embedded mechanical and natural aortic valves during systole.

4.2 Human Phonation

The goal of the EUNISON project [2] is to develop a simulation model of the
human voice from first principles, including vocal folds and vocal tract. The
fluid-structure-contact-acoustics model is solved in a realistic geometry, where a
constant inflow velocity is given upstream of the vocal folds to drive the model,
simulating the airflow from the lungs, which causes the vocal folds (VF) to start
to self-oscillate which leads to phonation.

To resolve the VF contact zone and the glottal jet well enough to initiate
the self-oscillation a mesh with ca. 500 k mesh points is necessary, with most of
the mesh points in these zones. The fine mesh limits the timestep, here ca. 10 k
timesteps are needed per oscillation cycle, requiring ca. 6 h of computation time
with 640 cores on the Beskow supercomputer at KTH. Adaptive time-stepping
is used which allows significantly larger timesteps when the glottis is closed and
there is no high velocity jet, but the average timestep is still small.

In Fig. 3 a detailed visualization of the contact region is given showing the
characteristic “glottal wave” contact pattern throughout the oscillation cycle.
A qualitative match to 8 schematic steps of the glottal wave can be made with
clearly identifiable divergent and convergent angles of the folds, and contact
starting in the upstream part of the vocal folds and traveling downstream, giving
high confidence in the validity of the FSI model.

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 65

1 5

2 6

3 7

4 8

1 5

2 6

3 7

4 8

Fig. 3. FEniCS-HPC parallel simulation of realistic human vocal folds with turbulent
fluid-structure interaction and contact demonstrating the characteristic “glottal wave”
contact pattern in the oscillatory cycle in human phonation. Slice through the center of
the vocal folds (left), and a clip through the solid phase together with volume rendering
of the magnitude of the velocity (right). The contact model functions by switching the
phase function from fluid to solid determined by a geometric predicate computed by
solving an Eikonal equation.

4.3 Aeroacoustics

This is an ongoing work and the first results were presented at the 4th AIAA
Workshop on Benchmark Problems for Airframe Noise Computations (BANC-
IV), in June 2016. For the workshop, the aeroacoustic sound generated by a
scaled model of a nose landing gear of a Gulfstream commercial jet was com-
puted, and comparisons were performed with wind tunnel measurements [20].

In airframe noise computations, the standard practice is a hybrid approach
where the Ffowcs Williams-Hawkings (FWH) integral equation [5] is solved to
compute the noise in the far-field, and compressible LES is used to compute the
source terms for the integral formulation. One uncertainty with this approach is
to define the surfaces at which the LES sources should be integrated. Here, there
are two choices: “solid surfaces”, which are the physical boundaries of the object
being studied, or “permeable surfaces”, which are arbitrary, virtual surfaces
surrounding the object of interest, away from its boundaries. The problem with
the former approach is that no quadrupole sources (fluctuations of stress in
the turbulent wake) are taken into account; permeable surfaces were therefore
created to remedy this problem by including quadrupole sources in the solution
of the FWH equation. However, there is no precise way of choosing permeable
surfaces and the choice could vary dramatically depending on the application.

Here, we propose an alternative hybrid approach where the incompressible
NSE are used together with a space-time discretization of Lighthill’s equation,

66 J. Hoffman et al.

Fig. 4. Snapshot of adjoint velocity (upper left), and adjoint density (lower left), and
cells marked for refinement in the adaptive algorithm in red (right). (Color figure
online)

as seen previously in [4]. The advantage is that there is no need for choosing
between permeable or solid surfaces, since all source terms are included in the
space discretization of Lighthill’s wave equation. The novelty of this work is that
adaptive mesh refinement based on a posteriori error estimation is used for both

Fig. 5. Microphone locations in the UFAFF wind tunnel.

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 67

NSE and Lighthill’s wave equation (Fig. 4), and that the equations are solved
together for each time step in FEniCS-HPC, avoiding expensive I/O operations
and the need of a software communication interface. Moreover, there is no need
for using interpolation schemes nor filtering since both the flow and the acoustic
problems are solved on the same, fixed mesh.

The present simulations were run on 4,096 cores on the supercomputer
Beskow at PDC Center for High Performance Computing for 4 days, and the
mesh used for sampling of results had 12 million vertices (66 million cells).

Sound pressure levels were measured at 20 different locations in the Uni-
versity of Florida Aeroacoustic Flow Facility (UFAFF), Fig. 5. A selection of 6
representative microphones are compared with measured values in Fig. 6. The
signals compare well, especially in the frequency range of 800–2000 Hz for the
flyover microphones, and 1000–9000 Hz for the sideline ones. The sideline micro-
phones show, in general, better agreement, which may be a consequence of lack
of resolution in the mesh, causing dispersion of waves as they travel a longer dis-
tance (flyover microphones are ca. 1 m further away from the gear than sideline
ones).

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Flyover, mic#4

exp
sim

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Flyover, mic#5

exp
sim

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Flyover, mic#6

exp
sim

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Sideline, mic#4

exp
sim

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Sideline, mic#5

exp
sim

freq [Hz]
10 3 10 4

S
P

L
[d

B
]

60

70

80

90

100
Sideline, mic#6

exp
sim

Fig. 6. Far field Sound Pressure Level (SPL) for selected microphones.

Acknowledgments. This research has been supported by the European Research
Council, the EU-FET grant EUNISON 308874, the Swedish Research Council, the
Swedish Foundation for Strategic Research, the Swedish Energy Agency, the Basque
Excellence Research Center (BERC 2014-2017) program by the Basque Government,
the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa
accreditation SEV-2013-0323 and the Project of the Spanish Ministry of Economy
and Competitiveness with reference MTM2013-40824. We acknowledge the Swedish
National Infrastructure for Computing (SNIC) at PDC – Center for High-Performance

68 J. Hoffman et al.

Computing for awarding us access to the supercomputer resources Beskow. Initial vol-
ume meshes have been generated with ANSA from Beta-CAE Systems S. A., who
generously provided an academic license for this project.

References

1. Deliverable d2.4 incompressible flow model for fluid-structure-acoustic coupling.
EUNISON FP7 FET project documentation

2. Eunison - extensive unified-domain simulation of the human voice, eu-fet project.
http://eunison.eu

3. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational
multiscale residual-based turbulence modeling for large eddy simulation of incom-
pressible flows. Comput. Meth. Appl. Mech. Eng. 197(1), 173–201 (2007)

4. Escobar, M.: Finite element simulation of flow-induced noise using lighthills
acoustic analogy. Ph.D. thesis, Universität Erlangen-Nürnberg (2007)

5. Williams, J.E.F., Hawkings, D.: Sound generation by turbulence and surfaces in
arbitrary motions. Phil. Trans. Roy. Soc. A264, 321–342 (1969)

6. Hansbo, P.: A crank-nicolson type space-time finite element method for computing
on moving meshes. J. Comput. Phys. 159, 274–289 (2000)

7. Hoffman, J., Jansson, J., de Abreu, R.V.: Adaptive modeling of turbulent flow with
residual based turbulent kinetic energy dissipation. Comput. Meth. Appl. Mech.
Eng. 200(37–40), 2758–2767 (2011)

8. Hoffman, J., Jansson, J., Jansson, N., De Abreu, R.V.: Towards a parameter-free
method for high reynolds number turbulent flow simulation based on adaptive finite
element approximation. Comput. Meth. Appl. Mech. Eng. 288, 60–74 (2015)

9. Hoffman, J., Jansson, J., Stöckli, M.: Unified continuum modeling of fluid-structure
interaction. Math. Mod. Meth. Appl. S. 21(3), 491–513 (2011)

10. Hoffman, J., Johnson, C.: A new approach to computational turbulence modeling.
Comput. Meth. Appl. Mech. Eng. 195(23), 2865–2880 (2006)

11. Hoffman, J., Johnson, C.: Computational Turbulent Incompressible Flow. Applied
Mathematics: Body and Soul, vol. 4. Springer, Heidelberg (2007)

12. Jansson, N.: High performance adaptive finite element methods: with applications
in aerodynamics. Ph.D. thesis, KTH Royal Institute of Technology (2013)

13. Jansson, N.: Optimizing sparse matrix assembly in finite element solvers with one-
sided communication. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR
2012. LNCS, vol. 7851, pp. 128–139. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38718-0 15

14. Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive
finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci.
Comput. 34(1), C24–C41 (2012)

15. Labrosse, M.R., Lobo, K., Beller, C.J.: Structural analysis of the natural aor-
tic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech.
43(10), 1916–1922 (2010)

16. Larsson, D., Spuhler, J.H., Nordenfur, T., Hoffman, J., Colarieti-Tosti, M. Gao, H.,
Larsson, M.: Patient-specific flow simulation of the left ventricle from 4d echocar-
diography - feasibility and robustness evaluation. In: 2015 IEEE International
Ultrasonics Symposium (2015)

17. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans.
Math. Softw. 37(2), 1–28 (2010)

http://eunison.eu
http://dx.doi.org/10.1007/978-3-642-38718-0_15
http://dx.doi.org/10.1007/978-3-642-38718-0_15

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics 69

18. Spühler, J.H., Jansson, J., Jansson, N., Hoffman, J.: A finite element framework
for high performance computer simulation of blood flow in the left ventricle of the
human heart. Technical report 34, KTH, Computational Science and Technology
(CST) (2015)

19. Thubrikar, M.: The Aortic Valve. CRC Press, Boca Raton (1990)
20. Zawodny, N., Liu, F., Yardibi, T., Cattafesta, L., Khorrami, M., Neuhart, D., Van

de Ven, T.: A comparative study of a 1/4-scale gulfstream g550 aircraft nose gear
model. In: Proceedings of 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA
Aeroacoustics Conference) (2009)

The Direct-Hybrid Method for Computational
Aeroacoustics on HPC Systems

Michael Schlottke-Lakemper1,2(B), Hans Yu1,2, Sven Berger2,
Andreas Lintermann1,2, Matthias Meinke2, and Wolfgang Schröder1,2

1 JARA-HPC, RWTH Aachen University,
Kopernikusstraße 6, 52074 Aachen, Germany

2 Institute of Aerodynamics, RWTH Aachen University,
Wüllnerstraße 5a, 52062 Aachen, Germany

m.schlottke-lakemper@aia.rwth-aachen.de

Abstract. Classic hybrid methods for computational aeroacoustics use
different solvers and methods to predict the flow field and the acoustic
pressure field in two separate steps, which involves data exchange via
disk I/O between the solvers. This limits the efficiency of the approach,
as parallel I/O usually does not scale well to large numbers of cores. In
this work, a highly scalable direct-hybrid scheme is presented, in which
both the flow and the acoustics simulations run simultaneously. That
is, all data between the two solvers is transferred in-memory, avoiding
the restrictions of the I/O subsystem. Results for the simulation of a
pair of co-rotating vortices show that the method is able to correctly
predict the acoustic pressure field and that it is suitable for highly parallel
simulations.

Keywords: Direct-hybrid method · Computational aeroacoustics ·
Hierarchical Cartesian grid · In-memory coupling · Parallel efficiency ·
Discontinuous Galerkin method

1 Introduction

In hybrid computational aeroacoustics (CAA) simulations, the flow solution and
the aeroacoustic pressure fields are obtained with two independent methods,
which allows the use of optimized algorithms and grids specifically adapted to
the respective physical system [9,10,18]. After the flow field is obtained with,
e.g., a large-eddy simulation (LES), noise-generating source terms are extracted
and used in a second step, where only the propagation of acoustic waves is
simulated. As the LES and the CAA simulation are executed consecutively, the
relevant source term information needs to be stored persistently on disk between
the two steps. Modern supercomputers allow to run simulations on hundreds of
thousands of cores with a high efficiency. However, the I/O bandwidth of such
systems does not scale in the same manner as the computational power [35] and
thus the overall parallel efficiency of the classic hybrid approach is limited by
the large volume of data that has to be exchanged.
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 70–81, 2017.
DOI: 10.1007/978-3-319-53862-4 7

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 71

The restrictions of the I/O subsystem can be avoided by running both
the LES and the CAA simulation concurrently. This way the two solvers can
exchange all necessary data directly in memory. The partitioned approach, in
which two separate solvers are coupled and executed simultaneously, has already
been used successfully, e.g., for the simulation of fluid-structure interaction (FSI)
problems [3,8,16,17,36]. However, in this ansatz the differences in grid topology
or memory structure between the LES and the CAA solver create an additional
overhead and make it difficult to obtain a load-balanced domain decomposition.
This problem is further exacerbated by the large amount of source term data
that needs to be exchanged in hybrid LES-CAA simulations at each time step,
which is significantly increased in comparison to surface-coupled multiphysics
problems such as FSI.

To avoid the need to exchange source term data using costly I/O operations or
transfers via the Message Passing Interface (MPI), a direct-hybrid method com-
bining large-eddy simulation with computational aeroacoustics for large-scale
aeroacoustics simulations has been proposed in [34], which scales efficiently to
thousands of cores. In this scheme, both solvers are executed simultaneously on
a joint hierarchical Cartesian grid, allowing to exchange all data in memory.
A similar strategy for hybrid CAA has been used by Kornhaas et al. [22,23],
where the linearized Euler equations are solved on different levels of a hierarchi-
cal multigrid solver. However, their approach is limited to uniformly coarsened
CAA grids and the same numerical method is employed for the CFD and the
CAA simulation. While in [34] intermediate results were shown for the direct-
hybrid method that still involved disk I/O, here, the direct-hybrid method is
used for the first time to simulate a pair of co-rotating vortices with in-memory
data transfers. Furthermore, scaling experiments are conducted to show how the
direct-hybrid approach performs in comparison to classic hybrid methods.

The direct-hybrid method is described in Sect. 2. After the governing equa-
tions are introduced in Sect. 3, the discretizations schemes for the LES and CAA
are described in Sect. 4. In Sect. 5, the direct-hybrid scheme is used for the simu-
lation of a pair of co-rotating vortices and the parallel efficiency of the proposed
method is evaluated. Finally, conclusions are drawn in Sect. 6.

2 The Direct-Hybrid Method

In contrast to classic hybrid LES-CAA schemes, in the direct-hybrid method the
LES and the CAA simulations run simultaneously and are both performed on
a joint hierarchical Cartesian mesh within a single simulation framework [34].
This grid topology simplifies the spatial coupling of the two solvers, since its
hierarchical structure allows to efficiently transfer source term information from
the LES to the CAA simulation. As both solvers are executed concurrently, data
can be exchanged directly in memory.

The cells of the shared Cartesian grid are organized in a so-called octree
structure, with parent-child relationships between different levels and neighbor
relationships within a level. The grid generation process follows the method

72 M. Schlottke-Lakemper et al.

described in [27] and starts with a single cubic cell which encloses the whole
computational domain. This zero-level cell is then refined uniformly until the
desired refinement level is reached. Individual regions of the mesh can be further
refined to meet resolution requirements, e.g., in areas with small-scale physical
features such as wall-bounded shear layers or to accurately resolve boundaries.
The coupling between the flow and the acoustics simulations is performed at
each time step. To be aligned in time, the same time step size is used in both
solvers. Then, the source term data is transferred from the LES to the acoustic
grid. Since both simulations typically operate on different levels of the same
grid, identification of corresponding cells is necessary, which is possible by tra-
versing the octree constituting the hierarchical Cartesian mesh. The source term
information is then exchanged by interpolating the data from the LES mesh to
the CAA mesh. In this paper, however, the area, in which source information is
exchanged, is refined to the same level for both solvers. This means that there
is a one-to-one mapping between LES and CAA cells, making the interpolation
operations trivial.

During grid generation, the zero-level cell is homogeneously refined to a min-
imum level lα and all coarser cells or cells outside the computational domain
are discarded. These cells at level lα become the roots of their subtrees (Fig. 1)
and are further subdivided until the demanded refinement level is reached. To
obtain a load-balanced domain decomposition, a Hilbert space-filling curve [33]
is used to map the grid at level lα to the interval [0, 1], i.e., grid partitioning
occurs on a coarser level than computation. Each cell at level lα is assigned
a load that depends on the cumulative computational weight of all cells in its
respective subtree. Load balancing is achieved by taking into account these load
values when distributing the cells among the processes. For each lα cell, the
entire subtree is placed on the same rank. This means that no additional inter-
rank communication for the exchange of data between LES and CAA cells is
necessary. All information is available in local memory, even if the cells are at
different refinement levels. By consecutively placing lα cells and their subtrees on
the MPI ranks according to their position on the Hilbert curve, spatial locality
is ensured, reducing the overall communication cost.

Cells of the subtrees are assigned different computational weights wLES and
wCAA, depending on whether they are used by the LES solver, by the CAA solver,
or by both. These weights are based on the computational cost per cell and time
step and are determined a priori. The weights also need to take into account,
e.g., whether acoustic source terms are calculated and the chosen approximation
order of the numerical method (see Sect. 4). Figure 1, where a quadtree is used
to simplify the representation, shows an example with two subtrees. The left
subtree has 9 pure LES cells, 10 pure CAA cells, and 9 cells used for both LES
and CAA. Thus, the cumulative load of the entire subtree is 18wLES + 19wCAA.
Similarly, the right subtree has a load value of 16wLES + 16wCAA.

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 73

Fig. 1. Domain decomposition of a hybrid quadtree grid with LES cells (), CAA cells
(), and cells used for both LES and CAA ().

3 Governing Equations

Two sets of governing equations are used in hybrid methods for CAA. The first
set models the physics of the underlying flow field, while the second set describes
only the sound propagation. In this paper, the Navier-Stokes equations are used
for the LES, which are given in, e.g., [12,34,37]. For the sound propagation, the
acoustic perturbation equations (APE) [5] are solved and are used to predict the
acoustic field for flow-induced noise. Derived from the linearized conservation
equations, they are modified to retain only acoustic modes without generating
vorticity or entropy modes. After neglecting all viscous, non-linear and entropy-
related contributions, the APE-4 system can be written as [5]

∂u′

∂t
+ ∇ (ū · u′) + ∇

(
p′

ρ̄

)
= qm, (1)

∂p′

∂t
+ c̄2∇ ·

(
ρ̄u′ + ū

p′

c̄2

)
= 0. (2)

The source term qm is the linearized Lamb vector

qm = −(ω × u)′ ≈ −(ω′ × ū + ω̄ × u′), (3)

where ω is the vorticity vector. The unknowns of the APE are perturbed quan-
tities, which are denoted by prime (·)′ and are defined by φ′ := φ − φ̄, where
the bar (̄·) indicates time-averaged quantities. The source term qm is calculated
using data from the flow simulation, i.e., the perturbed and mean vectors for
velocity and vorticity in (3) are based on hydrodynamic quantities.

4 Numerical Methods

For the LES, the unsteady Navier-Stokes equations for compressible flow are
discretized by a strictly conservative finite-volume method. State variables on

74 M. Schlottke-Lakemper et al.

the cell surfaces are computed with a monotonic upstream-centered scheme for
conservation laws (MUSCL) [26]. For the convective fluxes, a low-dissipation
version of the advection upstream splitting method [28] is used, which was first
proposed in [29]. The gradients at the cell centers are obtained by a weighted
least-squares method and the viscous fluxes are approximated by a central dif-
ference scheme. Turbulence effects are modeled implicitly with a monotone inte-
grated LES (MILES) approach [2]. For time integration, a stability-optimized
five-stage Runge-Kutta method is used. Overall, the method is second-order
accurate in space and time. It has been extensively validated and used for var-
ious flow problems [11–14,37], where also a more detailed description can be
found.

To solve the acoustic perturbation equations, a discontinuous Galerkin spec-
tral element method (DGSEM) is used. The DGSEM was proposed by Kopriva
et al. [21] and has been used extensively in [6,7,15,34]. It was developed for
quadrilateral/hexahedral mesh elements and is thus well-suited for the use on
hierarchical Cartesian grids. The scheme yields a semi-discrete formulation for
the time derivative of the solution, which is integrated by a five-stage fourth-
order Runge-Kutta method [4]. More details on the use of the DGSEM to dis-
cretize the APE are given in [34]. To support non-conforming meshes, which
for hierarchical Cartesian grids arise from local cell refinement, a mortar ele-
ment method is employed. Kopriva [19] describes a general framework for the
mortar method, which is later extended to discontinuous Galerkin spectral ele-
ment methods in [20]. It expands the DGSEM formulation to non-conforming
meshes by introducing an intermediate interface between non-conforming ele-
ments, called mortar, on which conformity is restored.

5 Results

The direct-hybrid method is used to predict the sound generated by a pair
of co-rotating vortices in a quiescent medium in 2D. Two point vortices, each
with circulation Γ , are separated by a distance of 2r0, as illustrated in Fig. 2.
According to potential flow theory, the vortices reciprocally induce a tangen-
tial velocity of uθ = Γ/(4πr0), which results in corotation of the vortices with
the rotational Mach number Mr = Γ/(4πr0c0) on a circle with radius r0. The
angular frequency of the spinning vortex configuration is ω = Γ/(4πr20), corre-
sponding to a rotation period of Tr = 8π2r20/Γ . The initial conditions for the
LES solver are based on analytical solutions [25]. To avoid the singularity at
the center of the vortices, the vortex-core model proposed by Scully [38] is used.
The density is assumed constant and set to the stagnation value ρ = ρ0, while
the hydrodynamic pressure is determined by the steady Bernoulli’s equation.
For the remaining parameters, the same values are used as in [1]: the rota-
tional Mach number is Mr = 1

9 , the core radius is rc/r0 = 2
9 , and the Reynolds

number Re = Γ/ν is 1.14 · 105. In the CAA solver, all perturbed quantities
are initially set to zero. The LES solver uses a computational domain of size
(x/r0, y/r0) ∈ [−60, 60] × [−60, 60]. Around the origin, a circular area with

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 75

Fig. 2. Flow setup for two co-rotating vortices.

r/r0 = 5 is refined to a cell length of Δ/r0 = 7.32 · 10−3. The grid resolution is
consecutively reduced to Δ/r0 = 5.86 · 10−2 for r/r0 > 20, resulting in a total
of 7.5 million LES cells. In the area of overlap with the LES domain, the CAA
solver uses the same resolution as the LES solver. That is, the solvers use the
same cells of the shared quadtree representation, which avoids the need to inter-
polate source term data from one grid to the other. The square CAA domain
with a side length of 270r0 encloses the LES domain and further reduces the
grid resolution to Δ/r0 = 1.17 · 10−1 for r/r0 > 85, with a total of 13.6 million
CAA cells. A polynomial degree of N = 1 is used for the discontinuous Galerkin
approximation of the acoustic perturbation equations.

Before predicting the acoustic pressure field, mean values for the hydrody-
namic velocities and vorticity are determined (see also Sect. 3). They are obtained
by a pure LES simulation setup. The acoustic field generated by a pair of co-
rotating vortices is that of an acoustic quadrupole [32]. Due to rotation sym-
metry, the acoustic frequency is twice the rotation frequency of the vortices,
resulting in an acoustic period of Tac0/r0 = 28.3. Figure 3 shows the acoustic
pressure contours for the direct-hybrid simulation at t = 7Ta. The double spiral
pattern associated with a rotating quadrupole source is clearly recognizable.

In Fig. 4(a), the solution obtained with the direct-hybrid method for the
spinning vortex simulation is compared to the reference solution from [25]. The
results are normalized by the largest amplitude since the use of the vortex-
core model reduces the energy introduced by the source terms into the acoustic
system in comparison to the analytical flow field. The results of the direct-hybrid
simulation closely match the exact solution, confirming the validity of the overall
scheme. Figure 4(b) further shows a strong scaling experiment from 192 to 3, 072
cores and one MPI rank per core on the Cray XC 40 system at HLRS Stuttgart.
The Cray XC 40 “Hazel Hen” system consists of 7, 712 dual-socket nodes, each
equipped with two Intel Haswell E5-2680v3 12-core processors at 2.5 GHz and
128 GiB of main memory. In the figure, the parallel efficiency of the direct-
hybrid method is compared to a classic hybrid method, where source term data

76 M. Schlottke-Lakemper et al.

Fig. 3. Pressure contours at t = 7Ta.

is exchanged at each time step, i.e., without interpolation in time. The results
show that with 75% efficiency on 3,072 cores the direct-hybrid method scales
very well, especially given the low number of cells that remain on each core, and
that it outperforms the classic hybrid approach, whose scalability is limited by
the available parallel I/O bandwidth.

In practice, classic hybrid methods are usually employed in combination with
a time interpolation scheme. That is, during the CAA simulation, a source term
file is read every nCAA steps and the source term information is interpolated
to the intermediate time steps. This approach is motivated by the fact that
for explicit time integration schemes, the maximum stable time step size as
determined by the grid resolution and the wave propagation speed is typically
smaller than what is required to resolve the smallest acoustic wave lengths.
Similarly, during the LES simulation, source term data is stored to disk every
nLES time steps. Higher values of n decrease the influence of I/O operations
on the numerical efficiency and n → ∞ represents a case without any I/O
operations at all. Typical values for n are in the range of 5 to 100, e.g., nLES = 8
and nCAA = 10 for the CAA analysis of turbulent jets [18] or nLES = 100 and
nCAA = 60 for combustion noise prediction [30]. While the scaling results for
the classic hybrid scheme in Fig. 4(b) correspond to nLES = nCAA = 1, the
influence of higher values of n on the scalability is further analyzed individually
for the LES part (Fig. 5(a)) and for the CAA part (Fig. 5(b)). Compared to the
LES part of a classic hybrid simulation in Fig. 5(a), the direct-hybrid method
scales better up to nLES ≈ 100. Due to the small size of the scaling problem, the
pure flow solution experiences super-scalar speedup due to caching effects, which
can be seen for nLES = ∞. When looking at the speedup results for the CAA

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 77

Fig. 4. Results obtained by the direct-hybrid method for the spinning vortex
simulation.

component in Fig. 5(b), the direct-hybrid method exhibits superior scalability
compared to a classic hybrid simulation even beyond nCAA = 100. To conclude,
the parallel efficiency of the direct-hybrid approach surpasses the classic hybrid
method for n < 100, which is well within the typical value range for large-scale
aeroacoustics simulations.

While the moderate size of the spinning vortex setup restricts the maximum
number of cores, which can be used efficiently, to 3,072, other scaling experiments
have been conducted with the LES and the CAA solvers individually. In [31],
a three-dimensional FV-LES simulation with one billion cells was scaled from
5,472 to 91,872 cores with 86% efficiency. Similarly, two DG-CAA setups with
different polynomial degrees N = 3 and N = 7 were scaled to 93,600 cores with
98% efficiency on the same system and to 458,752 cores with 80% efficiency on the
IBM Blue Gene/Q system at Jülich Supercomputing Centre (JSC), respectively

Fig. 5. Parallel efficiency in comparison to classic hybrid scheme with different I/O
frequencies.

78 M. Schlottke-Lakemper et al.

(Fig. 6). The IBM Blue Gene/Q “JUQUEEN” system consists of 28,672 nodes,
each equipped with an IBM PowerPC A2 16-core processor at 1.6 GHz and 16
GiB of main memory. In each setup, a three-dimensional computational domain
was discretized by one billion degrees of freedom and was used to simulate a
generic wave propagation problem. After scaling to the entire JUQUEEN, the
DG-CAA solver was also inducted into the High-Q Club of the JSC1.

Fig. 6. Strong scaling results for a three-dimensional DG-CAA simulation with one
billion degrees of freedom on a Cray XC 40 (left) and an IBM Blue Gene/Q [39]
(right).

6 Conclusions

Hybrid LES-CAA methods have been successfully used to predict the acoustic
pressure field for a multitude of problems. It was demonstrated that for massively
parallel simulations, the data exchange between the LES and the CAA solvers
via files becomes a major bottleneck and limits the scalability of the approach.
In this paper, a new direct-hybrid method for large-scale aeroacoustics simula-
tions is described. Both the LES and the CAA solvers use the same hierarchical
Cartesian grid, simplifying the efficient data exchange between the two meth-
ods. A pair of co-rotating vortices is simulated in two dimensions to validate the
novel approach. The numerical results for the pressure field are evaluated and
closely match the analytical solution. Furthermore, it is shown that the direct-
hybrid method scales well from 192 to 3,072 MPI ranks, achieving more than
70% efficiency. Additionally, scaling experiments for the DG-CAA method were
conducted and demonstrated good scalability to 93,600 cores and 458,752 cores
with 98% and 80% efficiency, respectively.

Overall, the proposed method has shown to be a good candidate for efficient,
highly parallel CAA simulations. As a next step, spatial and temporal interpo-
lation schemes need to be examined to lessen the restriction on the resolution
requirements in time. In addition, the effects of the interpolation schemes on
achieving a load-balanced domain decomposition are to be investigated.
1 http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ZFS/ node.html.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/ZFS/_node.html

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 79

Acknowledgments. The authors would like to thank Ansgar Niemöller and Vitali
Pauz for their helpful contributions. Furthermore, the authors gratefully acknowl-
edge the allocation of supercomputing time as well as the technical support by the
High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart,
Germany. They also gratefully acknowledge the computing time granted on the super-
computer JURECA [24] and the Gauss Centre for Supercomputing (GCS) for providing
computing time for a GCS Large-Scale Project on the GCS share of the supercomputer
JUQUEEN [39] at the Jülich Supercomputing Centre (JSC) of the Forschungszentrum
Jülich, Germany.

References

1. Bogey, C., Bailly, C., Juvé, D.: Computation of flow noise using source terms in
linearized Euler’s equations. AIAA J. 40(2), 235–243 (2002)

2. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy
simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)

3. Bungartz, H.J., Benk, J., Gatzhammer, B., Mehl, M., Neckel, T.: Partitioned
simulation of fluid-structure interaction on cartesian grids. In: Bungartz, H.J.,
Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II. LNCSE, vol. 73,
pp. 255–284. Springer Science + Business Media, Heidelberg (2010). doi:10.1007/
978-3-642-14206-2 10

4. Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes.
NASA Report TM 109112, NASA Langley Research Center (1994)

5. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decompo-
sition via source filtering. J. Comput. Phys. 188, 365–398 (2003)

6. Fechter, S., Munz, C.D.: A discontinuous Galerkin-based sharp-interface method
to simulate three-dimensional compressible two-phase flow. Int. J. Numer. Meth.
Fluids 78(7), 413–435 (2015)

7. Flad, D., Frank, H., Beck, A.D., Munz, C.D.: A discontinuous galerkin spectral
element method for the direct numerical simulation of aeroacoustics. In: AIAA
Paper 2014–2740 (2014)

8. Gatzhammer, B., Mehl, M., Neckel, T.: A coupling environment for partitioned
multiphysics simulations applied to fluid-structure interaction scenarios. Procedia
Comput. Sci. 1(1), 681–689 (2010)

9. Geiser, G., Schlimpert, S., Schröder, W.: Thermoacoustical noise induced by lam-
inar flame annihilation at varying flame thicknesses. In: AIAA Paper 2012–2093
(2012)

10. Gröschel, E., Schröder, W., Renze, P., Meinke, M., Comte, P.: Noise prediction
for a turbulent jet using different hybrid methods. Comput. Fluids 37(4), 414–426
(2008)

11. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking
multiple interacting interfaces in embedded boundary methods. Comput. Fluids
102, 182–202 (2014)

12. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid for-
mulation for Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125
(2008)

13. Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained
reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)

http://dx.doi.org/10.1007/978-3-642-14206-2_10
http://dx.doi.org/10.1007/978-3-642-14206-2_10

80 M. Schlottke-Lakemper et al.

14. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-
cell method for compressible viscous flows on adaptive grids. Comput. Meth. Appl.
Mech. Eng. 200, 1038–1052 (2011)

15. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz,
C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput.
Fluids 61, 86–93 (2012)

16. Jaure, S., Duchaine, F., Staffelbach, G., Gicquel, L.Y.M.: Massively parallel con-
jugate heat transfer methods relying on large eddy simulation applied to an aero-
nautical combustor. Comput. Sci. Discov. 6(1) (2013)

17. Joppich, W., Kürschner, M.: MpCCI - a tool for the simulation of coupled appli-
cations. Concurr. Comput. 18(2), 183–192 (2005)

18. Koh, S.R., Schröder, W., Meinke, M.: Turbulence and heat excited noise sources
in single and coaxial jets. J. Sound Vibr. 329, 786–803 (2010)

19. Kopriva, D.A.: A conservative staggered-grid chebyshev multidomain method for
compressible flows. II. A semi-structured method. J. Comput. Phys. 128(2), 475–
488 (1996)

20. Kopriva, D.A., Woodruff, S.L., Hussaini, M.: Computation of electromagnetic
scattering with a non-conforming discontinuous spectral element method. Int. J.
Numer. Meth. Eng. 53, 105–222 (2002)

21. Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approx-
imation of Maxwell’s Equations. In: Cockburn, B., Kariadakis, G., Shu, C.W.
(eds.) Proceedings of the International Symposium on Discontinuous Galerkin
Methods. LNCSE, vol. 11, pp. 355–361. Springer, Heidelberg (2000). doi:10.1007/
978-3-642-59721-3 33

22. Kornhaas, M., Schäfer, M., Sternel, D.C.: Efficient numerical simulation of aeroa-
coustics for low Mach number flows interacting with structures. Comput. Mech.
55(6), 1143–1154 (2015)

23. Kornhaas, M., Sternel, D.C., Schäfer, M.: Efficiency investigation of a parallel hier-
archical grid based aeroacoustic code for low Mach numbers and complex geome-
tries. In: Pereira, J.C.F., Sequeira, A. (eds.) V European Conference on Compu-
tational Fluid Dynamics, ECCOMAS CFD 2010. Lisbon, Portugal (2010)

24. Krause, D., Thörnig, P.: JURECA: general-purpose supercomputer at Jülich super-
computing centre. J. Large Scale Res. Facil. 2 (2016). Article No: A62

25. Lee, D.J., Koo, S.O.: Numerical study of sound generation due to a spinning vortex
pair. AIAA J. 33(1), 20–26 (1995)

26. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-
order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

27. Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder,
W.: Massively parallel grid generation on HPC systems. Comput. Meth. Appl.
Mech. Eng. 277, 131–153 (2014)

28. Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1),
23–39 (1993)

29. Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and
sixth-order methods for large-eddy simulations. Comput. Fluids 31, 695–718 (2002)

30. Pausch, K., Schlimpert, S., Koh, S.R., Grimmen, J.H., Schröder, W.: The effect
of flame thickening on the acoustic emission in turbulent combustion. In: AIAA
Paper 2016–2745 (2016)

31. Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simu-
lation of tip-leakage flow. Phys. Fluids 27(7), 075–106 (2015)

32. Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36(1), 177 (1964)

http://dx.doi.org/10.1007/978-3-642-59721-3_33
http://dx.doi.org/10.1007/978-3-642-59721-3_33

The Direct-Hybrid Method for Comput. Aeroacoustics on HPC Systems 81

33. Sagan, H.: Space-Filling Curves, 1st edn. Universitext - Springer, New York (1994)
34. Schlottke, M., Cheng, H.J., Lintermann, A., Meinke, M., Schröder, W.: A direct-

hybrid method for computational aeroacoustics. In: AIAA Paper 2015–3133 (2015)
35. Schlottke-Lakemper, M., Klemp, F., Cheng, H.-J., Lintermann, A., Meinke, M.,

Schröder, W.: CFD/CAA simulations on HPC systems. In: Resch, M.M., Bez, W.,
Focht, E., Patel, N., Kobayashi, H. (eds.) Sustained Simulation Performance 2016,
pp. 139–157. Springer, Cham (2016). doi:10.1007/978-3-319-46735-1 12

36. Schlüter, J., Wu, X., van der Weide, E., Hahn, S., Alonso, J., Pitsch, H.: Multi-code
simulations: a generalized coupling approach. In: AIAA Paper 2005–4997 (2005)

37. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving
boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

38. Scully, M.: Computation of helicopter rotor wake geometry and its influence on
rotor harmonic airloads. Technical report ARSL TR 178–1, Massachusetts Institute
of Technology, Cambridge, MA (1975)

39. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q supercomputer sys-
tem at the Jülich supercomputing centre. J. Large Scale Res. Facil. 1 (2015).
Article No: A1

http://dx.doi.org/10.1007/978-3-319-46735-1_12

A Novel Approach for Efficient Storage
and Retrieval of Tabulated Chemistry

in Reactive Flow Simulations

Sebastian Popp(B), Steffen Weise, and Christian Hasse

Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany
sebastian.popp@iec.tu-freiberg.de

Abstract. Turbulent combustion is a typical example of a multi-scale
problem, coupling different ranges of time and length scales of the flow
field and the chemical reactions. Due to scale separation and the avail-
ability of suitable coupling procedures, tabulated chemistry approaches
have emerged as an effective method for describing turbulence-chemistry
interaction (TCI). However, different flame configurations, complex fuels
and multiphase flows, among other things, increase both the number of
tabulated variables and the dimension of the database, and thus the over-
all size. With larger database sizes, the requirements for computing time
and memory management have become a crucial issue for CFD appli-
cations. In the present study, the novel flatkernel approach for efficient
memory management at reduced computational cost is developed. This
new software-library-based approach uses polynomial fitting to represent
the database. The resulting functions are generated as source code and
compiled in a shared library, taking advantage of automatic compiler
optimization. Since the shared library is also memory managed by the
operating system, the flatkernel approach leads to reduced memory and
computing time requirements in the coupled CFD application. The app-
roach developed is applied for scale-resolving Large Eddy Simulations
(LES), coupled with the flamelet-progress variable approach (LES-FPV)
for combustion modeling of a reactive jet in a cross flow configuration.
The evaluation of the simulations is focused on a comparison between
the novel method and an existing approach, with respect to memory and
computing time requirements.

Keywords: Memory management · Tabulated chemistry · Flamelet ·
CFD · Polynomial

1 Introduction

Reactive flow simulations of practically relevant systems are a classical multi-
scale problem in the field of Computational Fluid Dynamics (CFD). Since tur-
bulence plays a significant role in these flow configurations, the coupling to
molecular mixing and chemical reactions has to be accounted for. In principle,
Direct Numerical Simulations (DNS) could be used to resolve the whole range of
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 82–95, 2017.
DOI: 10.1007/978-3-319-53862-4 8

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 83

time and length scales. However, this is computationally expensive when using
detailed reaction mechanisms, since a partial differential equation (PDE) has to
be solved for each species involved and the number of species increases strongly
along with the fuel complexity. Thus, instead of fully resolving the flow and mix-
ing field, scale-resolving Large Eddy Simulations (LES) have become the de-facto
standard for academic research. Furthermore, Reynolds-Averaged Navier-Stokes
(RANS) approaches are still widely used in applied and industrial research. Both
approaches require a suitable model for turbulence-chemistry interaction (TCI),
since the chemistry is strongly coupled to molecular mixing, which is not or not
fully resolved in RANS and LES, respectively.

The most prominent regime in combustion is the flamelet regime, where the
chemistry is fast and reactions take place in thin layers. Many technical appli-
cations such as engines and gas turbines fall into this regime. Thus, a number
of flamelet-based tabulation strategies such as flamelet-progress variable (FPV),
flamelet-generated manifolds (FGM) and flame prolongation of ILDM (FPI) have
been developed and applied [1,5,10]. A recent overview of flamelet-based meth-
ods (among others) is given in [2].

These tabulated chemistry approaches are efficient methods which allow for
the application of detailed reaction mechanisms at reduced computational cost in
combustion simulations. Using tabulated chemistry basically means that instead
of computing the thermo-chemical state ϕ based on the full set of reactive PDEs,
ϕ is retrieved from a database, in the following referred to as flamelet look-up
table (FLUT), using suitable quantities for parametrization (ψ). For turbulent
combustion, these parameters are at least the mixture fraction Z, describing the
local mixture of fuel and oxidizer and the progress variable YC , characterizing the
conversion from fresh to burnt gases, i.e. the reaction progress. Thus, the thermo-
chemical state can be parameterized as ϕ = ϕFLUT(Z, YC). Based on the par-
ticular application the FLUT is built using different canonical one-dimensional
flame calculations. An overview of applied database generation strategies for
premixed, non-premixed and multi-regime combustion is given in [2]. Addition-
ally, existing approaches for the coupling of LES and tabulated chemistry are
described in the aforementioned publication.

In the present study the LES-FPV approach [9] is used and the corresponding
coupling procedure between tabulated chemistry and the CFD solver is shown in
Fig. 1. Based on the solution of one-dimensional flame configurations, the FLUT
is generated using the flamelet look-up table generator (FLUG) and parameter-
ized by a suitable number of quantities ψ. During the coupled CFD calculation,
the set of quantities ψ is directly computed, for instance using transport or
algebraic equations. The FLUT access is handled by a generic interface, called
flameletConfig [11], using an n-dimensional interpolation scheme to retrieve the
corresponding solutions from the FLUT.

Depending on the number of quantities used for parametrization and the
number of stored solutions, the size of a FLUT can range from several hun-
dred MB to several GB. This can exceed the available RAM in parallel simula-
tions, taking into account the memory requirements of the CFD solver and the

84 S. Popp et al.

FLUT

Fig. 1. Retrieving pre-tabulated solutions (ϕ) during a CFD simulation, using the FPV
approach. The FLUT generation is done using the Flamelet Look-up Table Generator
(FLUG), while the look-up and interpolation procedure is handled by a generic interface
called “flameletConfig” [11].

operating system, since each process requires its own copy of the FLUT in the
RAM. Thus, an efficient memory management is crucial for HPC applications.
Recently, this issue has been addressed in the review papers by Fiorina et al.
[2] and van Oijen et al. [8], emphasizing the need for efficient memory handling.
In previous studies, the authors proposed such methods for combustion mod-
eling based on tabulated chemistry. A Memory Abstraction Layer (MAL) has
been developed that handles requested FLUT entries efficiently by splitting the
database file into several smaller blocks [12]. It keeps the total memory usage
at a minimum by using thin allocation methods and compression to minimize
file system operations. This method has also been extended to share memory
between parallel simulation processes (PMAL). In a more recent investigation a
Memory Map (MMAP) technique was applied for reactive flow simulations [11].
The contents of a FLUT are loaded into the virtual address space (VAS) of each
parallel process using a function provided by the operating system, which also
manages the memory. This mapped memory can be accessed efficiently by mul-
tiple processes. The functionality of the MMAP is identical to the PMAL imple-
mentation. Applying both approaches in turbulent and laminar flames revealed
similar memory requirements, with PMAL allowing for fine grained adaptation
to the underlying binary database. However, a significant speedup of the data-
base look-up could be observed with MMAP.

While the previously mentioned methods are based on n-dimensional interpo-
lation to access requested FLUT entries, this study presents a novel approach for
efficient memory management at reduced computational cost. Section 2 summa-
rizes the flatkernel approach and in Sect. 3 it is applied to a practically relevant
benchmark case for hydrogen combustion in gas turbines, using scale-resolving
LES. Additionally, the new approach is compared to the previous memory man-
agement implementations.

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 85

2 Flatkernel Approach

The previously employed data access scheme for the aforementioned MAL and
MMAP approach is an n-dimensional multi-component recursive interpolation.
Therefore, the database contains all data and locality information, while the
algorithm, which is built into the software, does not contain any data. While this
method is numerically stable, it requires a large amount of data to be transferred.
The n-dimensional database is linearized in memory to allow for an efficient
description, which is a common method when dealing with multi-dimensional
data. However, this reduces the efficiency of the algorithm, since the data is not
optimally aligned in memory. The importance of both issues increases when the
database has a high dimensionality.

The flatkernel approach aims to minimize data movement by reducing the
amount of data that has to be transferred and by optimizing the way that the
required data is placed in memory. The approach makes use of the imbalance
between the computational speed of a CPU and the bandwidth of the memory
system, by favoring computation over memory transfer. The data information
is moved into the algorithm by generating a set of polynomial functions that
contain every information required to execute the algorithm. These functions
are then generated in source code, so that they can be optimized in terms of
execution speed by the compiler. They are stored in a shared library which is
automatically memory managed by the operating system. The locality infor-
mation, that describes which function is to be executed, is stored in a reduced
database.

2.1 Flatkernel Generation

The flatkernel generation is based on a FLUT database, storing the data of the
thermo-chemical state on an n-dimensional orthogonal grid. The dimensionality
of this grid is based on the number parameters ψ and the resolution of the
grid depends on the number of points used for discretization of each parameter.
During the flatkernel generation an interval grid is constructed, creating central
points from the original FLUT grid, as shown for a one-dimensional example
in Fig. 2. Every component field, such as the temperature, of a FLUT database
is then fitted using a polynomial expression as illustrated in Fig. 2. Each fit is
evaluated using a blend of absolute and relative tolerances. This error criterion
is given in Eq. 1, where ϕ′

i is the original value of a FLUT component i and ϕi

is the value from the polynomial evaluation. Thus, the accuracy of the flatkernel
method, compared to the original FLUT, depends on the fitting tolerances.

|ϕi − ϕ′
i| ≤ absTol + relTol · |ϕ′

i| (1)

The fitted function is only valid for a certain region described by a point-set
on the overall interval grid. Ideally this region is as large as possible, to reduce the
number of functions that have to be generated and compiled later on. A region
is grown incrementally in every dimension as long as the error criterion is met.

86 S. Popp et al.

Fig. 2. FLUT points are fitted to polynomial expressions, which are valid on a range
described by the associated point-sets.

The combination of a function and point-set is called a kernel. The locality
information, which contains the function number that has to be evaluated when
accessing a given part of the database, is stored on the interval grid. Switch-
ing to an interval grid reduces the addressing effort in the flatkernel approach
to a nearest-neighbor algorithm. Addressing is reduced by transferring only one
data point from the binary database, while regular interpolation requires 2d data
points (d - number of dimensions) to be transferred. An example of this type of
locality information is shown for the temperature component in Fig. 3, based on
a FLUT parameterized by the mixture fraction (Z) and the normalized progress
variable (C). Every block represents a region on the interval grid where one func-
tion is valid, described by the corresponding function number. The dimensions
of the interval grid are based on the discretization of the FLUT.

After the fitting procedure, kernels for all individual components are merged
into larger sum-kernels, which contain the functions to calculate all components
in one function call. They are valid on a sum-kernel point-set constructed from

Fig. 3. Example of the locality information for the temperature. Domain dimensions
(N number of points) are defined by the discretization of the FLUT, parametrized by
Z and C. Each block represents a region on the interval grid where one function is
valid.

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 87

Fig. 4. Flatkernel process: after fitting, each kernel is valid for a certain set of points
(P1, P2, etc.) but only for one component, i.e. one quantity of the thermo-chemical state
ϕ. These kernels (K1, K2, etc.) for individual components are then merged into sum-
kernels (SK1, SK2, etc.), which are valid for the whole thermo-chemical state. These
sum-kernels are compiled in a shared library “libflatKernelLoader.so”. The associated
locality information is stored in the “flatKernelLoader.bin”.

the locality information of each component. This merging process takes all combi-
nations of component function numbers and generates new unique sum-function
numbers. These sum-function numbers are stored in the database “flatKernel-
Loader.bin” to be used as the locality information. The process of building the
point-sets and the sum-kernels is illustrated in Fig. 4. Sum-functions are then
generated as source code and compiled into a shared library called “libflatKer-
nelLoader.so”. The source code is structured to allow for automatic compiler
optimization resulting in generated binary code that uses vector extensions
(AVX) and Fused Multiply Add (FMA). The efficiency of the flatkernel gen-
eration process and thus the amount of generated sum-functions depends on
the original structure of the FLUT data, including both the number and the
individual profiles of the components.

2.2 Flatkernel Access

A request is made by passing the look-up coordinates ψ to the handling library.
The “flatKernelLoader.bin” is opened and the appropriate sum-function num-
ber is retrieved. The corresponding sum-function from “libflatKernelLoader.so”
is now called with the original request coordinates. All polynomial expressions
which calculate all individual components are evaluated and the results are writ-
ten to a pointer location which is provided by the calling application.

88 S. Popp et al.

3 Reactive Hydrogen Jet in a Turbulent
Vitiated Cross Flow

In this section, the proposed flatkernel method is applied to a jet in a cross
flow (JICF) configuration for turbulent non-premixed combustion. The JICF
configuration is primarily found in combustion systems, where rapid mixing is
required, e.g. aircraft and stationary gas turbines. Recently, this fuel injection
method has started to be used in micro gas turbines for hydrogen combustion
[4]. In the following, the case is described and a detailed comparison and analysis
of the novel flatkernel approach and the previously developed MMAP approach
is performed, based on highly resolved LES-FPV computations of the JICF.

3.1 Case Description

The setup of the investigated JICF is mainly based on the configuration pro-
posed in [6], with minor changes concerning the cross flow composition. Since
dimensionless quantities, e.g. the momentum ratio and Reynolds numbers of the
jet and cross flow, are kept identical for direct comparability, the boundary con-
ditions differ slightly from [6]. An overview of the jet and cross flow properties are
shown in Table 1. The setup of the case is shown in Fig. 5. A transverse laminar
hydrogen/helium jet, with a jet diameter djet = 1.37mm, enters the compu-
tational domain and develops typical vortical structures due to the interaction
with a turbulent cross flow. The turbulent cross flow (Re = 9480) consists of
hot reaction products from a lean hydrogen/air flame, with an equivalence ratio
of φ = 0.45. The overall computational domain is 35 mm × 35 mm × 30 mm
in streamwise, transverse and spanwise directions, respectively. To generate the
turbulent inflow boundary conditions of the cross flow, an incompressible channel
flow LES is performed. Instantaneous velocity distributions are stored for each
time step and provided as instationary boundary conditions in the reactive JICF
simulations, using the same constant time step for both LES. This approach was
previously used to generate boundary data for turbulent jet flames [3,10].

As mentioned before, an LES-FPV approach is used for combustion mod-
eling. Therefore, the flow field is described by the Favre-filtered Navier-Stokes
equations. The sub-filter turbulence is modeled by applying the eddy viscosity
hypothesis, and the eddy viscosity μt is evaluated using the Sigma model [7].

Table 1. Properties of the jet and cross flow with the corresponding dimensionless
quantities: Reynolds number (Re), momentum ratio (J) and density ratio (S).

Composition (Xi) T [K] ubulk [m/s] Re J S

Jet
70% H2

30% He
400 345 2420

9 0.37
Cross flow

Products of an H2/air
flame (φ = 0.45)

1519 70 9480

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 89

Fig. 5. Setup of the JICF computations, with an iso-surface of the Q-criterion for
vortex visualization. The domain size shown here is reduced to allow for an improved
view of the jet region.

For combustion modeling, additional transport equations are solved for the
Favre-filtered mixture fraction (Z̃) and Favre-filtered progress variable (ỸC).
To account for the unresolved turbulence chemistry interaction, the sub-filter
distribution of the mixture fraction is described by a presumed β-shaped fil-
tered density function (FDF) depending on the mixture fraction. Through this
procedure the dimensionality of the FLUT is increased by one additional para-
meter, the sub-filter mixture fraction variance (Z̃ ′′2). Within the applied LES-
FPV approach, the Favre-filtered mixture fraction variance is computed using an
algebraic equation, based on scale similarity [9]. To consider the effects of differ-
ential diffusion on hydrogen combustion, the mixture-averaged approach is used
for diffusion modeling during the FLUT and flatkernel generation, respectively.
The final FLUT for the LES-FPV computations is parameterized by the Favre-
filtered quantities mixture fraction (Z̃), normalized progress variable1 (C̃) and
mixture fraction variance (Z̃ ′′2) with a discretization of 281, 68 and 21 points,
respectively. For this analysis, the minimum number of 10 required solution
quantities for an LES-FPV calculation are tabulated, including the temperature,
enthalpy, thermodynamic and transport properties such as density, specific heat
capacity, viscosity and thermal diffusivity, as well as quantities for the transport
equation of the progress variable, e.g. the source term and the Lewis number of
the progress variable. The flatkernel constructed from the FLUT, applying the
absolute and relative tolerances with absRel = 1 · 10−6 and relTol = 1 · 10−3,
includes 374,636 sum-kernels representing all the tabulated quantities.

1 C̃ =
˜YC−˜YC,min

˜YC,max−˜YC,min
, while the minimum and maximum values of the progress variable

are also tabulated.

90 S. Popp et al.

Table 2. Hardware and software specification of a cluster node used for the LES-FPV
computations of the JICF.

Hardware

CPU 2x Xeon E5-2680v2 (Ivy Bridge-EP)

RAM 128GB

Interconnect Infiniband FDR 4x

Interconnect Gigabit ethernet

Software

Operating system Debian 7.0

Kernel 3.2.0

MPI OpenMPI 1.8.7

Compiler gcc-4.7.2

OpenFOAM R© 2.1.x

For the following analyses, simulations of the JICF are conducted for two
different mesh resolutions, 2.2 million cells and 25.2 million cells, respectively.
Therefore, a coupled LES-FPV solver based on OpenFOAM R© 2.1 is used, apply-
ing second-order discretization in time and space. The simulations were run on
identical cluster nodes, described in Table 2, using 2 nodes (40 cores) for the
case with 2.2 million cells and 6 nodes (120 cores) for the simulations with 25.2
million cells.

3.2 Results and Discussion

In the following, the results are presented from the LES-FPV computations
applying the novel flatkernel approach and the interpolation-based approaches
with and without memory management [11]. At first, the memory and compute
time requirements of both approaches are investigated. Finally, the physical solu-
tions of both applied look-up strategies are compared.

Memory Profiling. For the memory profiling the kernel memory mapping
information provided by the operating system (/proc/<pid>/smaps) is eval-
uated. Figure 6(a) shows the memory usage for three simulations on the 25.2
million cell mesh, using the interpolation-based look-up strategy with memory
management (MMAP) and without it (NOMM) and the flatkernel method (FK).
For every process in the parallel CFD application, one instance of the FLUT has
to be loaded if no memory management technique is applied, see detailed dis-
cussion in [11]. This results in high memory usage for the NOMM case, which
is used as a reference of 100%. Applying the MMAP approach, the memory
requirements are significantly reduced to only 2% of the previously required
memory. Also the novel flatkernel method reduces the required memory to 16%.
Although this reduction is not as efficient as the MMAP method, it is a significant

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 91

improvement compared to no memory management. Basically, the achievable
memory reduction of the flatkernel method depends on the number of functions
generated during the fitting and merging process. A reduced number of sum-
functions would result in reduced memory usage and thus the memory reduction
depends on the particular problem and is related to the data of the underlying
FLUT.

Fig. 6. (a) Comparison of memory usage for the simulations with 25.2 million cells using
the interpolation-based approach with memory management (MMAP) and without it
(NOMM) and the flatkernel method (FK). (b) Memory scaling from the computations
using the 2.2 million cell mesh to the 25.2 million cell mesh. The dashed lines represent
linear scaling behavior.

In Fig. 6(b) the averaged memory usage is shown with respect to the cores
used for the simulations on the coarse and refined computational grids. In the
case of no memory management (NOMM), the memory consumption scales lin-
early with the number of used cores, since one instance of the FLUT is loaded per
core. For the flatkernel and MMAP methods, the memory used remains under
the line of linear scaling, indicating a good scalability of the proposed method
for highly parallel simulations.

Timing Analysis. Another aspect of the different look-up strategies, is the
required access time to retrieve the data from the FLUT and flatkernel, respec-
tively. The specific time consumption, for every single process, is evaluated by
using a standard system time (gettimeofday()). The measured time includes
the required time for the processes to get the parameters for each cell, perform
the interpolation (NOMM,MMAP) or evaluate the sum-kernel (FK), and update
the cell values for each solution. Figure 7(a) shows the required access time of the
simulations with 25.2 million cells for the three previously investigated methods.
For both interpolation-based methods, with and without memory management,
the timing is almost identical. Instead, when the flatkernel method is applied,

92 S. Popp et al.

Fig. 7. (a) Comparison of access time for the simulations with 25.2 million cells using
the interpolation-based approach with memory management (MMAP) and without it
(NOMM) and the flatkernel method (FK). (b) Access time scaling from the compu-
tations using the 2.2 million cell mesh to the 25.2 million cell mesh. The dashed lines
represent linear scaling behavior.

the access time is reduced by a factor of 2.5. The scaling of the averaged access
time per request is shown in Fig. 7(b) with respect to the number of requests per
time step, for the simulations on the coarse and fine mesh. Due to the number
of used compute nodes, the number of requests per time step increases from
simulations on the coarse grid to the simulations on the refined grid. However,
the access time per request remains almost constant, again indicating the good
scalability of the flatkernel method.

Physical Solutions of the JICF Computations. Finally, the physical solu-
tions of the interpolation-based approach and the flatkernel method are com-
pared. Figure 8 shows instantaneous solutions of the temperature field from sim-
ulations of the refined mesh (25.2 million cells) applying the flatkernel (a) and
MMAP (b) methods. A qualitative comparison of the two temperature distrib-
utions shows no differences between the results from the two look-up strategies.

For a more detailed comparison, temperature and mixture fraction profiles
are evaluated on two lines, one near the jet inlet (I) and the other further down-
stream (II). These profiles are shown in Fig. 9 for both locations. While the
solution for the temperature is directly retrieved from the look-up, the mix-
ture fraction is computed during the LES-FPV computations, using a transport
equation but still depends on tabulated properties, e.g. the density. The flatk-
ernel method and the FLUT interpolation yield nearly identical profiles for the
temperature and the mixture fraction at both locations. Minor differences in
the temperature could be observed at the windward side of the jet in Fig. 9(a).
Furthermore, the mixture fraction profile at the leeward side of the jet is slightly
shifted in the downstream direction. These minor differences occur, since the
flatkernel method is not completely lossless. During the flatkernel generation,

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 93

Fig. 8. Instantaneous temperature distribution on plane through the center of the jet
in downstream direction, from simulations using the flatkernel method (a) and the
interpolation-based approach with MMAP (b).

Fig. 9. Temperature and mixture fraction profiles near the jet inlet (a) and further
downstream (b) from the simulations using the flatkernel method and the interpolation-
based approach with MMAP.

distinct fitting tolerances are applied for the fitting procedure of each compo-
nent of the FLUT. However, the overall agreement between the physical solutions
from the flatkernel method and from the FLUT look-up is very good.

4 Summary

The present study introduced a novel approach for data storage and retrieval
in large chemistry databases, applied in reactive flow simulations. Compared
to previously applied interpolation-based look-up strategies using n-dimensional
interpolation schemes, the interpolation was substituted by an efficient function-
based approach. The novel flatkernel approach combines the data and algorithm
by representing the discrete database using set polynomial expressions, which
are generated in source code and evaluated during the coupled CFD simulation.

94 S. Popp et al.

Thus, this method reduces the overall data movement during the look-up and
favors computations over memory transfer. In the context of HPC for reactive
flow simulations, the size of high-dimensional databases can easily exceed the
available memory per core. The flatkernel approach provides a method to over-
come this issue by reducing the memory requirements at reduced computational
cost. The application of this method was shown for coupled LES-FPV compu-
tations of a jet in a cross flow configuration and compared to interpolation-
based look-up strategies with and without a previously developed memory man-
agement system. The memory footprint was significantly reduced compared
to the interpolation-based approach without memory management. However,
the required memory was slightly higher compared to the interpolation-based
method, which applies the MMAP approach for the memory management. Nev-
ertheless, the access time to retrieve the data was significantly reduced by apply-
ing the flatkernel method. Finally, a comparison of the physical solutions showed
very good overall agreement between the look-up strategies.

Acknowledgments. Financial support is kindly acknowledged from the Federal Min-
istry of Education and Research of Germany in the framework of Virtuhcon (project
number 03Z2FN11), from the Federal Ministry of Food and Agriculture of Germany
in the project “BiOtto - Bildung von Rußpartikeln und katalytische Filterregeneration
bei der motorischen Nutzung von Ottokraftstoffen aus Biomasse” (project number
22041111) and from the Federal Ministry of Economic Affairs and Energy of Germany
in the project “Wasserstoffkleingasturbine als neuartiges Antriebskonzept: Numerische
Simulation der der Verbrennung” (project number 03ET7026B).

References

1. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.:
A filtered tabulated chemistry model for LES of premixed combustion. Combust.
Flame 157(3), 465–475 (2010)

2. Fiorina, B., Veynante, D., Candel, S.: Modeling combustion chemistry in large
eddy simulation of turbulent flames. Flow Turbul. Combust. 94(1), 3–42 (2015)

3. Hunger, F., Zulkifli, M.F., Williams, B.A.O., Beyrau, F., Hasse, C.: A combined
experimental and numerical study of laminar and turbulent non-piloted oxy-fuel
jet flames using a direct comparison of the rayleigh signal. Flow Turbul. Combust.
97, 231–262 (2016)

4. Jeschke, P., Penkner, A.: A novel gas generator concept for jet engines using a
rotating combustion chamber. ASME J. Turbomach. 137(7), 071010-1–071010-8
(2015)

5. Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion
using a thickened flame approach coupled with FGM tabulated chemistry. Com-
bust. Flame 158(9), 1750–1767 (2011)

6. Lyra, S., Wilde, B., Kolla, H., Seitzman, J.M., Lieuwen, T.C., Chen, J.H.: Struc-
ture of hydrogen-rich transverse jets in a vitiated turbulent flow. Combust. Flame
162(4), 1234–1248 (2015)

7. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build
a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry 95

8. van Oijen, J., Donini, A., Bastiaans, R., ten Thije Boonkkamp, J., de Goey, L.:
State-of-the-art in premixed combustion modeling using flamelet generated mani-
folds. Prog. Energy Combust. Sci. 57, 30–74 (2016)

9. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of
non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

10. Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J.H., Fuest, F.,
Hasse, C.: LES flamelet-progress variable modeling and measurements of a turbu-
lent partially-premixed dimethyl ether jet flame. Combust. Flame 162(8), 3016–
3029 (2015)

11. Weise, S., Hasse, C.: Reducing the memory footprint in large eddy simulations of
reactive flows. Parallel Comput. 49, 50–65 (2015)

12. Weise, S., Messig, D., Meyer, B., Hasse, C.: An abstraction layer for efficient mem-
ory management of tabulated chemistry and flamelet solutions. Combust. Theory
Model. 17(3), 411–430 (2013)

Multi-scale Coupling for Predictive
Injector Simulations

Mathis Bode(B), Marco Davidovic, and Heinz Pitsch

Institute for Combustion Technology, RWTH Aachen University,
Templergraben 64, 52062 Aachen, Germany

m.bode@itv.rwth-aachen.de

Abstract. Predictive simulations of full fuel injection systems for e.g.
diesel engines could be very important for reducing emissions of current
engines but are still rare. Beside the numerical issues arising from discon-
tinuities across the liquid-gas-interface, different scales relevant for the
nozzle internal flow, primary breakup in the vicinity of the nozzle, and
secondary breakup and evaporation further downstream make efficient
simulation of the full injection system challenging. This paper introduces
a multi-scale coupling approach for overcoming this issue leading to effi-
cient and predictive injector simulations. After a brief description of the
numerical methods used in this study, the coupling among nozzle inter-
nal flow, primary breakup, and secondary breakup with evaporation is
introduced and analyzed with respect to computing efficiency and phys-
ical accuracy. Finally, the simulation framework is applied to the “Spray
A” case of the Engine Combustion Network.

Keywords: Large-Eddy Simulation · Direct Numerical Simulation ·
Multi-scale coupling · High-Performance Computing · Multiphase flows

1 Introduction

Conventional internal combustion engines burning non-renewable fossil fuels in
liquid form provide a large fraction of today’s transportation energy. Since alter-
native technologies such as electric mobility are not able to substitute conven-
tional engine technology within the next decades, conventional engines need to
be improved in order to deal with stricter emission regulations and the finiteness
of fossil fuels. Especially in diesel engines, the combustion and consequently the
pollutant formation is highly influenced by the fuel injection typically composed
of nozzle internal flow, primary breakup in the vicinity of the nozzle orifice, sec-
ondary breakup further downstream, and evaporation. However, details of the
fuel injection process are still not completely understood due to its complex-
ity and the difficulties of performing experiments characterizing the atomization
process outside of the nozzle [1].

The performance of a particular injector design depends on a cascade of
physical processes, originating from the nozzle internal flow driven by the injector

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 96–108, 2017.
DOI: 10.1007/978-3-319-53862-4 9

Multi-scale Coupling for Predictive Injector Simulations 97

geometry and operating conditions, potential cavitation, turbulence, and the
mixing of the coherent liquid stream with the gaseous ambient environment
during the atomization process outside of the injector orifice [2]. The transfer
occurring between liquid and gas has to be governed by an interface topology
[4]. It is well known that the primary breakup, the first phase of the atomization
process, is especially critical for the overall diesel engine performance in terms of
emission and pollutant formation [3]. In this regard, the objective of an injector
design could be to maximize the interface surface density in order to ensure
homogeneous mixing, small droplets, and fast evaporation within the engine.
However, how design parameters influence surface density and ultimately drop
size distribution is not clear, and predictive models do not exist.

The importance of this topic is emphasized by the work of the Engine Com-
bustion Network (ECN) [5], which is an open forum for international collabora-
tion among experimental and computational researchers in engine combustion
and was founded in 2011. The first target case specified by the ECN was the
“Spray A” case, which corresponds to the conditions in a single hole diesel injec-
tor. Although the ECN has made significant progress on the experimental side,
highly-resolved full simulations of the nozzle internal flow and the atomization
process are still rare and often lack either sufficient temporal or spatial reso-
lution. Beside the numerical problems of such simulations descending from the
discontinuities at the interface, the large range of scales within a simulation
is a major issue avoiding the realization of simulations governing both nozzle
internal flow and atomization process on currently available High-Performance
Computing (HPC) systems.

The typical way to deal with the computational limitations is to focus only on
the secondary breakup assuming already formed droplets as result of the primary
breakup process. This approach neglects the impact of the injector geometry and
instead tunes the breakup model parameters in a way that simulation results
match the experimental data. Since, moreover, the cone angle must be known
from measurements and the initial droplet size distribution has to be guessed
empirically, this approach is not predictive and therefore only useful to a limited
extent for fundamental spray research.

This article presents an alternative approach of simulating complete injectors
by coupling three different simulation types addressing different scales: Simulta-
neously, a Large-Eddy Simulation (LES) of the nozzle internal flow and a Direct
Numerical Simulation (DNS) of the primary breakup are performed and coupled
for studying the processes inside and close to the nozzle. Droplet information
in the vicinity of the nozzle is collected and used for initializing a Lagrange-
Particle based LES of the secondary breakup with evaporation. This results in a
complete and consistent data set for the full injector. Corresponding challenges
with respect to the coupling and the simultaneous execution of the simulations
on HPC systems will be discussed and the simulation framework with respect
to experimental results of the “Spray A” case validated. Load-balancing issues
occurring from the underlying numerical methods such as the level set approach
are not in the scope of this paper and will not be discussed.

98 M. Bode et al.

The remainder of this article is organized as follows. The general numerical
methods and models employed with respect to injector simulations in the uti-
lized code framework are described in the next section. Then, the application
setup and coupling approach are presented and analyzed with respect to compu-
tational efficiency and physical accuracy. Afterwards, the introduced approach
is applied to the “Spray A” case and results are discussed. The paper finishes
with conclusions.

2 Numerical Framework

The low-Mach flow solver arts of the in-house code framework CIAO was used for
all simulations within this work. Arts solves the Navier-Stokes equations in the
low-Mach limit along with multi-physics effects and employs a Crank-Nicolson
type time advancement along with a predictor-corrector update scheme. It is a
structured, arbitrary order, finite difference code [6–9], which enables the cou-
pling of multiple domains and their simultaneous computation in general. The
momentum equations are discretized by central difference resulting in low numer-
ical dissipation. All scalars are discretized by WENO5 schemes ensuring bounded
solutions. Spatial and temporal staggering of flow variables are used in order to
increase the accuracy of stencils. For LES, a dynamic Smagorinsky model is
used as subfilter stress model [10] employing weighted averaging backward in
time along Lagrangian trajectories of fluid particles [11].

In order to enable interface resolving simulations in the vicinity of injector ori-
fices, a second-order monotonicity preserving Lagrange-Remap solver in combi-
nation with centered discretization [12] is used within CIAO’s general flow-solver.
This hybrid approach addresses numerical stability issues often encountered in
flows with very high density and momentum ratios. In particular, consistency
between density and momentum is maintained even at sharp interfaces when
the hybrid discretization is applied to the convective transport term and the
pressure-projection. The numerical framework features low artificial dissipation,
which is essential for computing turbulent flow structures with a wide range of
scales. For highly accurate time integration of the interfacial flow with respect to
mass conservation, geometric accuracy, and surface tension effects, a 3D unsplit
forward/backward Volume-of-Fluid (VOF) method coupled to a Level Set (LS)
method (3DU-CLSVOF) [13] is used.

For simulating the secondary breakup as well as the evaporation of droplets
further downstream of the nozzle, a Lagrangian Particle Tracking (LPT) formu-
lation is available for modeling the liquid phase. It applies a standard Kelvin-
Helmholtz/Rayleigh-Taylor model [14] for the secondary breakup, while the
evaporation model of Miller et al. [15] is used for describing the transition of
liquid droplets to the gas phase.

The code framework uses the message passing interface (MPI) standard. The
scaling potential of the code has been recently demonstrated in a range of large-
scale DNS studies [16,17].

Multi-scale Coupling for Predictive Injector Simulations 99

3 Application Setup and Coupling

3.1 “Spray A” Case

The “Spray A” case of the ECN is chosen as demonstration case for introduc-
ing the coupling approach, which is the scope of this paper. It will be briefly
described within this subsection to introduce the different scales occurring dur-
ing the injection process and the performed simulations.

Details of the “Spray A” flow conditions are given in Table 1. Using
Bernoulli’s formula at these conditions, setting the ambient gas velocity to 0 m

s in
the simulation, and applying the velocity coefficient defined as ratio between real
and theoretical velocity, the steady nozzle bulk exit velocity can be estimated as
614 m

s . This already indicates the wide range of occurring length scales knowing
that the resulting droplets are of the order of 1µm. In order to efficiently handle
this wide range of scales, the simulation is cut into three domains as sketched
in Fig. 1: Within the left domain, the nozzle internal flow is computed as LES
(NIF-LES) resolving the exact nozzle geometry with constant velocity bound-
ary condition at the inlet. Beside resolving the geometry driven flow features,
the resolution in this area must be sufficient to give the right amount of Tur-
bulent Kinetic Energy (TKE) at the nozzle exit since turbulence is known to
strongly impact the primary breakup in the vicinity of the nozzle. Figure 2(a)
shows that the TKE at the nozzle exit converges at a mesh resolution of 5µm.
Therefore, a non-uniform mesh with a maximum resolution of 5µm is chosen
for the NIF-LES. Next to the nozzle internal flow domain follows the primary
breakup domain. These are coupled via the Coupling Interface Nozzle Internal
Flow/Primary Breakup (CINP). Within the primary breakup domain, a pri-
mary breakup DNS (PB-DNS) with interface tracking is performed. A uniform
mesh with a resolution of 1µm is chosen as result of a mesh sensitivity study
with respect to the resulting total Surface Density (SD) plotted in Fig. 2(b).
Finally, a LES using a LPT method (LPT-LES) for representing liquid particles
is employed in the third simulation domain. The resolution of the uniform mesh is
chosen as 0.25 mm. As can be seen in Fig. 2(c) the Penetration Length (PL) was
found to be underpredicted due to an overprediction of the drag force on indi-
vidual particles for coarser grids. The interface between PB-DNS and LPT-LES
is denoted as Coupling Interface Primary Breakup/Secondary Breakup (CIPS).
Due to CFL number restrictions, the grid resolutions of the individual simula-
tions imply also different time step sizes. More precisely, it was found that the
time step size of the NIF-LES is ten times larger than that of the PB-DNS, while
that of the LPT-LES is about 500 times larger than that of the PB-DNS.

Considering the required resolutions within each domain, a complete data
set for the “Spray A” case can be computed by coupling a NIF-LES with about
900M grid cells, a PB-DNS with about 900M grid cells, and a LPT-LES with
about 12M grid cells. This results in computational cost for NIF-LES, PB-DNS,
and LPT-LES of 5M core-h, 8M core-h, and 0.05M core-h, respectively, on Intel
Sandy Bridge cores. Due to the big simulation size of the NIF-LES and the
PB-DNS, these simulations are run simultaneously in order to avoid the storage

100 M. Bode et al.

Table 1. Details of the “Spray A” flow conditions [18–20]

Outlet diameter 0.09 mm

Nozzle length 1.03 mm

Velocity coefficient 0.96

Fuel n-dodecane

Fuel temperature at nozzle 363K

Fuel injection pressure 150MPa

Fuel density 703.82 kg
m3

Fuel dynamic viscosity 6.09 × 10−4 kg/ms

Ambient gas temperature 900K

Ambient gas pressure 6MPa

Ambient gas dynamic viscosity 3.81 × 10−5 kg/ms

Ambient gas velocity Near-quiescent

Surface tension 0.09 kg
s2

Fig. 1. Resulting simulation domains for “Spray A” case

of large amount of data at the CINP. This is especially important, if the coupling
is performed by enforcing a boundary conditions not only at a boundary face but
in a boundary volume for capturing complex flow features. Due to the smaller
amount of coupling information and overall smaller simulation size, the LPT-
LES is run separately using stored droplet information. Details about the CINP
and the CIPS are given within the next two subsections.

3.2 Coupling Interface Between Nozzle Internal Flow
and Primary Breakup

In this subsection, details of the CINP are described, which enables the simul-
taneous realization of the NIF-LES and the PB-DNS. A sketch of the work load

Multi-scale Coupling for Predictive Injector Simulations 101

Fig. 2. For each simulation type, the minimum mesh resolution is determined by
employing a mesh convergence study with respect to a target quantity. TKE at the noz-
zle exit, total SD, and PL after 15µs are used for NIF-LES, PB-DNS, and LPT-LES,
respectively.

102 M. Bode et al.

per compute core for a coupled LIF-LES/PB-DNS simulation is illustrated in
Fig. 3. Each core in the coupled simulation contains one part of the flow domain
of each simulation type. Thus, compared to the individual simulations, the flow
domain per core per simulation is halved. Having in mind that typical flow
solvers scale well as long as each core contains enough active flow cells, halving
the domain sizes is acceptable from a performance point of view as long as the
resulting domains become not too small. I.e. the available memory per core must
be large enough that halving the flow domain per simulation per core does not
affect the single core scaling behavior. Distributing the flow domains of both
simulations equally to all cores enables the coupled simulation to advance both
flow domains with a different time step size without methodically idling cores.

Fig. 3. Sketch of the core work load distribution for a coupled NIF-LES/PB-DNS
simulation. Outer rectangles indicate cores, while inner rectangles indicate memory
domains corresponding to a particular flow domain. Bold rectangles denote cores partly
containing the coupling boundary. These cores are denoted with ‘bproc’. Domains
belonging to the nozzle internal flow simulation are denoted with ‘1{a, b, ...}’, while
those of the primary breakup simulation are denoted with ‘2{a, b, ...}’. In the shown
example, the coupled simulation requires two additional cores.

Additionally, it was found that the high-order spatial interpolation schemes
used for coupling both simulations with respect to their velocity fields require
about 15% additional computing time. Since only few cores contain parts of the
coupling domain, many cores are idle during the interpolation resulting in poor
scaling behavior. Therefore, the domain size of the cores containing coupled cells
was halved in order to hide the additional interpolation cost. More precisely, the
interpolation is done on these cores while the others still advance the flow solver
due to their larger domain sizes. As indicated in Fig. 3 that doubles the number
of cores containing coupled cells and adds some additional cores to the overall
simulation. However, since the number of cores at the CINP is small, the extra
cores were found to be negligible in terms of code scaling.

Running both simulations with their respective maximum time step size
tmax is desirable in terms of computational performance, however, consistency
of both simulations is not longer guaranteed. Particularly, the local amount of
TKE transferred from the NIF-LES to the PB-DNS is critical because it mainly
impacts the local Reynolds number, which is the breakup dominating parameter

Multi-scale Coupling for Predictive Injector Simulations 103

close to the nozzle orifice. Since the coupling velocity for time steps, which were
not explicitly solved for in the NIF-LES, is typically interpolated linearly, no
subtime fluctuations occur, which leads to slower droplet formation during the
primary breakup. Figure 4 shows the resulting droplet size distribution for differ-
ent time step coupling approaches. The distribution denoted with “DNS” results
from a coupled simulation run with the same time step size for NIF-LES and
PB-DNS. This ensures consistency between both simulations and can be seen as
the correct result. However, the computational cost increases for the NIF-LES
of the order of

Δtmax
NIF−LES

Δtmax
PB−DNS

− 1 (1)

compared to a coupled simulation run with maximum time step size for each sim-
ulation. The resulting droplet size distribution of such an maximum time step
simulation is denoted with “LES” in Fig. 4. A shift in the droplet size distribu-
tion to larger droplets is obvious. To overcome this issue, subtime perturbation
is introduced at the CINP, which adds local perturbation to the interpolated
velocities based on the average TKE. The droplet size distribution result of such
a simulation with maximum time steps and subtime perturbation is denoted as
“Perturbated LES” in Fig. 4 and gives the same result as the “DNS” case by
adding negligible computational cost.

Fig. 4. Droplet size distribution 1mm downstream from the nozzle orifice for different
time step coupling approaches

3.3 Coupling Interface Between Primary Breakup
and Secondary Breakup

In contrast to the CINP, which works with the simulation runtime data stored
in the memory, the CIPS uses HDD-stored droplet information. The droplet
information is recorded time resolved in a rectangular flow domain about 22D
away from the nozzle exit in the PB-DNS. Regardless of the actual shape

104 M. Bode et al.

of the droplets or ligaments in the PB-DNS, all particles are transferred to the
LPT-LES as spheres preserving only the correct volume. In order to validate the
coupling location, the Sauter Mean Diameter (SMD) was compared to experi-
mental data obtained by Alan Kastengreen, Argonne National Laboratory, that
have been presented on the last ECN workshop [21]. The resulting relative errors
at several downstream locations and for different coupling locations are shown in
Fig. 5. While the error for coupling after 22D is even smaller than the measure-
ment uncertainties, coupling at 15D lead to wrong results. This indicates that
at 15D a liquid core still exists, which dominates the spray statistics and cannot
be described by disperse Lagrangian particles. Interface resolved methods are
still necessary.

Fig. 5. Relative error of the SMD with respect to experimental data for different cou-
pling locations

4 Results and Discussion

After introducing the multi-scale coupling within the last section, this chapter
shows selected simulation results with respect to the “Spray A” case. It briefly
demonstrates how the new multi-scale coupling can be used to generate a com-
plete predictive data set with reasonable computational cost.

Figure 5 already showed that using the right location for the CIPS, experi-
mental results with respect to the SMD are matched with the code framework
without particular tuning of initial conditions or model parameters. More pre-
cisely, it has been seen that the SMD computed only with the coupled NIF-
LES/PB-DNS simulations at 1 mm matches the experimental data very well,
while the completely coupled results of the LPT-LES further downstream are
still in good agreement with the measurements. These results can be further
analyzed by looking at e.g. the PL over time or the droplet size distribution
at different downstream locations. Both are plotted in Fig. 6. Remarkably, the
peak of the droplet size distributions does not shift to smaller droplet diameters

Multi-scale Coupling for Predictive Injector Simulations 105

Fig. 6. Liquid penetration and droplet size distribution results for the “Spray A” case

but only increases its amplitude, which means that equilibrium between sec-
ondary breakup and evaporation is already reached.

As pointed out in the introduction, fast and constant evaporation of the
droplets is often beneficial for a homogeneous combustion process. In order to
improve that, the information of the coupled NIF-LES/PB-DNS simulation such
as the resulting velocity profile at the nozzle exit, which is plotted in Fig. 7, or
the resulting interface during the primary breakup shown in Fig. 8 can be ana-
lyzed with respect to its impact on the spray characteristics further downstream.
Since the multi-scale approach presented in the work leads to data sets resolv-
ing all relevant processes, it is highly usable for model development and spray
improvement.

106 M. Bode et al.

Fig. 7. Resulting velocity profile of the “Spray A” case at the nozzle exit

Fig. 8. Resulting interface of the “Spray A” case during primary breakup

5 Conclusions

This work presented a multi-scale coupling approach for predictive spray simu-
lations. It was shown how the introduction of two different coupling interfaces
can significantly reduce the required amount of computation cost for resolving
all relevant scales during the fuel injection process. In order to show the com-
pleteness of the resulting data sets, the multi-scale coupling was applied to the
“Spray A” case specified by the ECN and various results representing different
scales were discussed.

Acknowledgment. The authors gratefully acknowledge funding by Honda R&D and
the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the
Excellence Initiative of the German federal and state governments to promote sci-
ence and research at German universities. Also the authors gratefully acknowledge
computing time granted for the project JHPC18 by the JARA-HPC Vergabegremium
and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN [22]

Multi-scale Coupling for Predictive Injector Simulations 107

at Forschungszentrum Jülich and under grant 2013092005 of the Partnership for
Advanced Computing in Europe (PRACE). Experimental data for validation has
been provided by Alan Kastengren, Argonne National Laboratory, and are gratefully
acknowledged, too.

References

1. Lasheras, J.C., Hopfinger, E.J.: Liquid jet instability and atomization in a coaxial
gas stream. Annu. Rev. Fluid Mech. 32, 275–308 (2000)

2. Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 498, 73–111
(2004)

3. Shinjo, J., Umemura, A.: Detailed simulation of primary atomization mechanisms
in diesel jet sprays (isolated identification of liquid jet tip effects). Proc. Combust.
Inst. 33, 2089–2097 (2011)

4. Gorokhovski, M., Herrmann, M.: Modeling primary atomization. Ann. Rev. 40,
343–366 (2008)

5. Engine Combustion Network. http://www.sandia.gov/ecn
6. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative

finite difference scheme for variable density low Mach number turbulent flows. J.
Comput. Phys. 227, 7125–7159 (2008)

7. Desjardins, O., Moureau, V., Pitsch, H.: An accurate conservative level set/ghost
fluid method for simulating turbulent atomization. J. Comput. Phys. 227, 8395–
8416 (2008)

8. Desjardins, O., Pitsch, H.: Detailed numerical investigation of turbulent atomiza-
tion of liquid jets. Atomization Sprays 20, 311–336 (2010)

9. Bode, M., Falkenstein, T., Pitsch, H., Kimijima, T., Taniguchi, H., Arima, T.:
Numerical study of the impact of cavitation on the spray processes during gaso-
line direct injection. In: ICLASS 2015, 13th Triennial International Conference on
Liquid Atomization and Spray Systems, Tainan, Taiwan (2015)

10. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid scale eddy
viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

11. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale
model of turbulence. J. Fluid Mech. 319, 353–385 (1996)

12. Le Chenadec, V., Pitsch, H.: A monotonicity preserving conservative sharp inter-
face flow solver for high density ratio two-phase flows. J. Comput. Phys. 249,
185–203 (2013)

13. Le Chenadec, V., Pitsch, H.: A 3D unsplit forward/backward volume-of-fluid app-
roach and coupling with a level set method. J. Comput. Phys. 233, 10–33 (2013)

14. Patterson, M.A., Reitz, R.D.: Modeling the effects of fuel spray characteristics on
diesel engine combustion and emissions. SAE Trans. 107, 27–43 (1998)

15. Miller, R.S., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium
evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiph.
Flow 24, 1025–1055 (1998)

16. Bode, M., Falkenstein, T., Le Chenadec, V., Pitsch, H., Arima, T., Taniguchi, H.:
A new Euler/Lagrange approach for multiphase simulations of a multi-hole GDI
injector. SAE Paper 2015–01-0949 (2015)

17. Bode, M., Deshmukh, A., Kirsch, V., Reddemann, M.A., Kneer, R., Pitsch, H.:
Direct numerical simulations of novel biofuels for predicting spray characteristics.
In: ICLASS 2015, 13th Triennial International Conference on Liquid Atomization
and Spray Systems, Tainan, Taiwan (2015)

http://www.sandia.gov/ecn

108 M. Bode et al.

18. Saddix, C.R., Zhang, J., Schefer, R.W., Doom, J., Oefelein, J.C., Kook, S., Pickett,
L.M.: Understanding and prepredict soot generation in turbulent non-premixed jet
flames. Report in Sandia National Laboratories (2010)

19. Kastengren, A.L., Tilocco, F.Z., Powell, C.F., Manin, J., Pickett, L.M., Payri, R.,
Bazyn, T.: Engine Combustion Network (ECN): measurements of nozzle geometry
and hydraulic behalvior. Atomization Sprays 22, 1011–1052 (2012)

20. National Institute of Standards and Technology. http://www.nist.gov/
21. Engine Combustion Network Workshop 4 (2015). http://www.sandia.gov/ecn/

workshop/ECN4/ECN4.php
22. Jülich Supercomputing Centre: JUQUEEN: IBM Blue Gene/Q Supercomputer

system at the Jülich supercomputing centre. J. Large-Scale Res. Facil. 1, A1 (2015).
http://dx.doi.org/10.17815/jlsrf-1-18

http://www.nist.gov/
http://www.sandia.gov/ecn/workshop/ECN4/ECN4.php
http://www.sandia.gov/ecn/workshop/ECN4/ECN4.php
http://dx.doi.org/10.17815/jlsrf-1-18

Domain-Specific Applications
and High-Performance Computing

In the last decade, the computational science and engineering community has witnessed
an increasing interest in collaborations between High-Performance Computing
(HPC) experts and computational scientists working in diverse application-specific
domains. At the base of such a trend there are two simple observations. First and
foremost, scientific computing is recognized as the de facto third pillar of scientific
investigation, alongside theory and experiment. Secondly, the advent of computing
architectures in and beyond the Petaflop range has made evident the need for expertise
in parallel and high-performance computing; such expertize is fundamental in order to
be able to exploit the potential of current and future computing platforms. In fact, it is
in the best interest of the scientific community to maximize the use of computational
resources in simulating physical systems. The realization that scientific computing and
HPC should go hand in hand is driving the necessity for a coordinated effort to close
the gap between experts in numerical algorithms and computer science, and scientists
working in applied disciplines. Researchers from both sides are compelled to closely
interact and capitalize on their respective expertise.

The papers presented in this section provide a typical example of the advantages an
interdisciplinary approach to HPC can deliver to scientific computing. As an added
value, the contributed papers represent a broad sample of distinct domain-specific
applications. The wide breath of the domains illustrates quite effectively how HPC can
positively affect diverse fields within the realm of scientific computing. Despite the fact
that each topic is based on a number of heterogeneous algorithms, they all require to
effectively incorporate techniques and best practices borrowed from methods devel-
oped within applied mathematics and computer science. Among the represented sub-
jects, the reader can find topics ranging from ab initio methods, to computational
mechanics, and neuroscience.

Ab Initio Description of Optoelectronic
Properties at Defective Interfaces in Solar Cells

Philippe Czaja1(B), Massimo Celino2, Simone Giusepponi2, Michele Gusso3,
and Urs Aeberhard1

1 IEK-5 Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
p.czaja@fz-juelich.de

2 ENEA, C.R. Casaccia, 00123 Rome, Italy
3 ENEA, C.R. Brindisi, 72100 Brindisi, Italy

Abstract. In order to optimize the optoelectronic properties of novel
solar cell architectures, such as the amorphous-crystalline interface in
silicon heterojunction devices, we calculate and analyze the local micro-
scopic structure at this interface and in bulk a-Si:H, in particular with
respect to the impact of material inhomogeneities. The microscopic infor-
mation is used to extract macroscopic material properties, and to iden-
tify localized defect states, which govern the recombination properties
encoded in quantities such as capture cross sections used in the Shockley-
Read-Hall theory. To this end, atomic configurations for a-Si:H and a-
Si:H/c-Si interfaces are generated using molecular dynamics. Density
functional theory calculations are then applied to these configurations
in order to obtain the electronic wave functions. These are analyzed and
characterized with respect to their localization and their contribution
to the (local) density of states. GW calculations are performed for the
a-Si:H configuration in order to obtain a quasi-particle corrected absorp-
tion spectrum. The results suggest that the quasi-particle corrections can
be approximated through a scissors shift of the Kohn-Sham energies.

Keywords: Amorphous silicon · Molecular dynamics · Electronic struc-
ture · Optical properties

1 Introduction

The silicon hetero-junction (SHJ) technology holds the current efficiency record
of 26.33% for silicon-based single junction solar cells [20] and shows great poten-
tial to become a future industrial standard for high-efficiency crystalline silicon
(c-Si) cells.

One of the key elements of this technology is the passivation of interface
defects by thin layers of hydrogenated amorphous silicon (a-Si:H), and the phys-
ical processes at the so-formed c-Si/a-Si:H interface largely influence the macro-
scopic characteristics of the cell. In particular the cell performance depends crit-
ically on the optimization of transport and the minimization of recombination

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 111–124, 2017.
DOI: 10.1007/978-3-319-53862-4 10

112 P. Czaja et al.

across the interface, which requires a profound understanding of the underly-
ing mechanisms. Special regard has to be given to the role of localized tail and
defect states in a-Si:H and at the interface, which behave substantially different
from bulk states and thus prohibit a treatment in terms of bulk semiconductor
physics. An accurate and physically meaningful description of the local micro-
scopic structure is therefore an essential step in understanding and predicting
the macroscopic device characteristics, which gave rise to a growing interest in
ab initio approaches [8,17,26].

In our investigation presented here, we use ab initio molecular dynamics to
generate atomic configurations of defective a-Si:H and c-Si/a-Si:H interfaces, and
subsequently perform electronic structure calculations to obtain and characterize
the electronic states. The electronic structure at the interface is analyzed with
respect to the existence of localized defect states which have an impact on the
device performance due to their role as recombination centers in non-radiative
recombination [33]. The density of these defect states is an important parame-
ter in the Shockley-Read-Hall model for calculating capture cross sections, and
should therefore attain realistic values in the generated structures. The states of
the bulk a-Si:H are further used for calculating the absorption coefficient from
ab initio, which is a first step towards linking the global device characteristics to
the local microstructure in a comprehensive multi-scale simulation approach [1].
As the optical properties of any materials depend crucially on their band gap
this quantity is of essential importance for obtaining physically relevant results.
Unfortunately the independent-particle approximation, which is at the heart of
standard first-principles methods, is unable to correctly predict its value [28],
which is why so-called quasi-particle corrections [16] need to be applied. The
exact calculation of these corrections is however computationally expensive, a
heuristic approach – termed scissors shift (SS) [10] –, where the electron energies
are simply shifted to fit the experimental band gap, is therefore often favored.
Since a distinct experimental value of the band gap of a-Si:H does however not
exist, a set of shifting parameters can only be determined from a quasi-particle
calculation. In this paper we present the results of such a calculation for an
a-Si:H configuration.

2 Method

2.1 Atomic Structure Calculations

The ab initio PWscf (Plane-Wave Self-Consistent Field) code of the Quan-
tum ESPRESSO suite is used [9,31] to perform Born-Oppenheimer Molecu-
lar Dynamics (BOMD) simulations of the a-Si:H and the a-Si:H/c-Si interface.
PWscf performs many different kinds of self-consistent calculations of electronic
structure properties within Density-Functional Theory (DFT) [14,22], using a
plane-wave (PW) basis set and pseudopotentials (PP). We use the Si and H ultra-
soft pseudopotentials with Perdew-Burke-Ernzerhof (PBE) [29] approximant
GGA exchange-correlation potential, available in the Quantum ESPRESSO
library [31]. To mimic infinitely extended systems, a supercell approach with
periodic boundary conditions (PBC) is used.

Optoelectronic Properties at Interfaces from Ab Initio 113

To generate an a-Si:H system, a random starting configuration is produced
with a percentage of H atoms of about 11%, which is the nominal concentra-
tion set in experimental materials optimized for PV performance [18]. Initially,
a small system of 64 Si + 8 H atoms in a cubic supercell with size L= 11.06
Å (the volume is chosen to fix the density to the experimental value of 2.214
g/cm3 [21]) is used to perform calculations with a wide range of quench rates.
This is due to the fact that the resulting amorphous configuration is largely
dependent on the quench rate used to produce the amorphous structure from
the melt configuration. Experimental results indicate that the amorphous phase
contains a very low number of defects and that the majority of Si atoms have
coordination four. To this end we select a small amorphous configuration (Fig. 1)
that minimizes both the total value of defects and the deviation from the four-
fold coordination of the Si atoms. Then, this configuration, is used as starting
configuration for a BOMD simulation on the electronic ground state at constant
volume and constant temperature for 6.5 ps, controlling the ionic temperature
(T = 300 K) by using an Andersen thermostat [2].

Fig. 1. Snapshot of the a-Si:H in the simulation box. Hydrogen atoms and bonds with
Silicon atoms are blue, Silicon atoms and their bonds are yellow. (Color figure online)

The final configuration is then used to produce a large system by replicating
it in all directions. The resulting large system is thus composed of 512 Si +
64 H atoms and has a size of L = 22.12 Å. Due to the high computational
costs required by PWscf, BOMD simulations on this large system are performed
with the Quickstep code of the CP2K suite [4]. CP2K is a quantum chemistry
and solid state physics software package that can perform atomistic simulations
with different modelling methods (such as DFT) using a mixed Gaussian and
plane wave approach. Norm conserving Goedecker-Tetter-Hutter pseudopoten-
tials with PBE exchange-correlation and an optimized TZV2P gaussian basis
set are used [11,12,23]. Self consistency at each MD step is achieved using the
orbital transformation method [34]. An annealing process from T = 300 K up to
T = 600 K, and then back to T = 300 K for 60 ps was then used to thermalize
the whole atomic configuration, and minimize the defects at the internal inter-
faces. After the annealing, a simulation run at T = 300 K was performed for
about 20 ps.

114 P. Czaja et al.

The a-Si:H/c-Si interface is built by putting nearby two free surfaces obtained
cutting both the crystalline silicon and the hydrogenated amorphous silicon. The
relaxed p(2 × 1) symmetric reconstruction of the Si(001) surface constitutes the
c-Si side of the interface. It is formed by 192 Si atoms: 12 layers of silicon each of
them with 16 atoms. The a-Si:H side of the system is generated using a simulated-
annealing quench-from-the-melt simulation protocol and is composed of 128 Si
atoms and 16 H atoms. A void region of about 10 Å is added to suppress the
interaction between the external surfaces due to PBC. This distance was checked
by convergence tests. The total length of the system is Lz =38.70 Å, while in the
x and y direction the system has Lx = Ly = 15.48 Å. Total energy calculations
of the system at different distances between c-Si and a-Si:H, were performed to
find the interface configuration corresponding to the lowest total energy. The
configurations were built moving rigidly by hand the a-Si:H part and keeping
fixed the c-Si one.

The interface shown in Fig. 2(a), is used as starting configuration for MD
simulation on the electronic ground state at constant volume and constant tem-
perature (NVT). The ionic temperature is fixed at T = 300 K and is controlled

Fig. 2. Snapshots of the a-Si:H/c-Si interface in the simulation box. The structure is
infinitely extended in both x and y directions. A void region is considered to suppress
the interaction between the external surfaces due to periodic boundary conditions. Free
surfaces and a-Si:H/c-Si interface are perpendicular to the y axis. Hydrogen atoms are
blue, silicon atoms are dark yellow in the c-Si part and light yellow in the a-Si:H part.
(a) Initial configuration. (b) Configuration at 35 ps of the MD simulation. The Si atoms
near the interface have moved to form bonds between the c-Si and the a-Si:H layer.
(Color figure online)

Optoelectronic Properties at Interfaces from Ab Initio 115

using an Andersen thermostat [2]. The first four layers of c-Si atoms on the left
are kept fixed to impose a bulk like behavior to the crystalline silicon part of the
system. The MD simulation is performed for more than 35 ps, the initial part
of the simulation (20 ps) was used to thermalize the system and reach a stable
configuration. Figure 2(b) displays the configuration of the a-Si:H/c-Si interface
at 35 ps.

2.2 Electronic Structure Calculations

We use density functional theory (DFT) [14,22] with periodic boundary condi-
tions to self-consistently calculate the electronic structure of the a-Si:H and the
interface configurations described above. The interface configuration is enclosed
in a super cell that includes an additional vacuum layer to avoid self-interaction.
All calculations are done with the PW-PP code Quantum ESPRESSO [9,31]
using the PBE-GGA exchange-correlation functional [29]. For the c-Si/a-Si:H
interface a k-point grid of size 4 × 4 × 1 and a plane-wave cut-off of 28 Ry is
used, for the a-Si:H a 4× 4× 4 (72 atom configuration) and a 2× 2× 2 grid (576
atom configuration) respectively, together with a cut-off energy of 52 Ry.

Subsequent to the electronic structure calculation the wave functions and
electronic density of states (DOS) of the c-Si/a-Si:H interface are analyzed to
obtain information about its local microscopic properties, which are relevant for
the mesoscopic dynamics and macroscopic device characteristics. In particular
the wave function localization is analyzed qualitatively and quantitatively to
allow for the distinction of localized states and the identification of their origins.
In combination with the local DOS the contribution of dangling bonds and
interfaces to the important mid-gap states can be determined.

As a quantitative measure for the localization of the wave function ψ we use
the spread S, which is calculated as the square root of the variance of |ψ|2 with
respect to the super cell:

Sz =
√

12
(
〈z2〉 − 〈z〉2

)
=

√
12 ·

√√√√√
∫

Ω

dr |ψ(r)|2z2 −
⎛

⎝
∫

Ω

dr |ψ(r)|2z
⎞

⎠
2

,

where we assume that ψ is normalized. It can be easily seen that a maximally
localized ψ (i.e., a delta function) gives Sz = 0, whereas a wave function that
is maximally delocalized over the super cell (i.e., a plane wave) will result in
Sz = L, where L is the length of the super cell. This explains the factor

√
12 in the

definition. The integration volume Ω is naturally chosen such that the boundaries
lie inside the vacuum layer where ψ ≈ 0, such that shifting the integration
volume does not affect S. This also provides an unambiguous definition of the
wave function center

〈z〉 =
∫

Ω

dr |ψ(r)|2z,

116 P. Czaja et al.

which can be interpreted as the position where the wave function is local-
ized. This definition allows us to identify localized states (i.e., states with small
spread), and to locate them both in real and in energy space.

In order to relate the electronic properties of the interface to the atomic
structure, and in particular investigate the effect of structural defects, we use
the electron localization function (ELF) [3], which enables us to determine the
coordination of each atom, and to identify dangling bonds and weakly bond
atoms. For that purpose the ELF is computed along the axes between neighbor-
ing atoms, where it shows a characteristic behavior for covalent bonds [32]. This
is performed with the Quantum ESPRESSO package.

2.3 Optical Calculations

The calculation of the absorption coefficient for the 72-atom a-Si:H configuration
is carried out within the random phase approximation (RPA) [6] as implemented
in the BerkeleyGW code [5], using the non-interacting Kohn-Sham states on a
2 × 2 × 2 k-point grid. The same code is used for calculating the quasi-particle
(QP) corrections to the Kohn-Sham energies with the GW formalism [13]. In
order to reduce the computational costs we perform a single-shot G0W0 cal-
culation together with the plasmon-pole approximation [15,25,27]. This has the
advantage of requiring the dielectric tensor ε(ω) only in the static limit ω → 0, as
opposed to a full-frequency calculation, while offering similar accuracy for many
semiconductors, including c-Si [24]. The band gap is converged with respect to
the cut-off energy Eε

cut used in the calculation of ε, for which we find a value of
10 Ry, and with respect to the number of unoccupied bands N ε

bands and NΣ
bands

included in the calculation of ε and of the self energy Σ. We find that a large
number of roughly 3000 bands is needed to reach convergence of both quantities
(Fig. 3). The absorption coefficient is recalculated with the corrected energies
EQP , and compared to calculations where scissors shifts with different sets of
parameters are used. These parameters are obtained by applying a linear fit
EQP

v/c = av/c · Ev/c + bv/c, where Ev/c are the uncorrected energies, both to the
valence and the conduction band. The absorption calculation for the 576-atom
configuration is carried out on a 2×2×2 k-point grid as well, using uncorrected
and scissors shift energies.

3 Results

3.1 A-Si:H

Figure 4 shows the quasi-particle corrected electron energies as obtained from the
GW calculation for the 72-atom a-Si:H structure described above. The results
show that the effect of the corrections consists mainly in a spreading of valence
and conduction band by approximately 0.26 eV. This suggests that the costly
GW calculation can be substituted by a simple scissors shift in further calcu-
lations of a-Si:H structures. The choice of the right set of parameters depends

Optoelectronic Properties at Interfaces from Ab Initio 117

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1000 2000 3000 4000 5000 6000
er

ro
r

[m
eV

]

Nbands

ε
Σ

Fig. 3. Convergence of band gap with respect to the number of bands included in the
calculation of ε and Σ respectively.

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2 0 2 4 6

Eg = 0.29 eV

Eg
QP = 0.56 eV

E
Q

P
 [e

V
]

E [eV]

Fig. 4. Quasi-particle corrected vs. uncorrected electron energies. Eg refers here to the
energy difference between the lowest unoccupied and the highest occupied state.

on the energy range of interest. By applying a linear fit in the energy range
from −1 to 1 eV we obtain av = 1.088, bv = −1.097 eV, ac = 1.146, and
bc = −1.228 eV.

Figure 5 shows the imaginary part of the dielectric function and the absorp-
tion coefficient calculated within the independent-particle approximation, that
is, with the uncorrected Kohn-Sham energies, the GW approximation, and the
scissors-shift approximation. The GW correction modifies the absorption spec-
trum only in terms of a shift and a slight stretch. This correction can be very
well approximated by a scissors shift with the parameters given above, which
reproduce almost exactly the GW absorption spectrum.

Using the scissors shift approximation enables us to calculate a quasi-particle-
corrected absorption spectrum also for the 576-atom structure, which is shown
in Fig. 6. Comparison of the spectra for the two different configurations shows
an increase of the optical band gap in the larger structure, along with a decrease
of the sup-gap absorption peaks. Even though this represents an improvement,
the band gap is still small compared to the experimental value of 1.7 eV, which
suggests that one might have to go to even larger structures in order to eliminate

118 P. Czaja et al.

0

5

10

15

20

25

30

35

 0 1 2 3 4 5

ε 2

E [eV]

IP
SS

GW

103

104

105

106

107

 0 1 2 3 4 5

α
[1

/c
m

]

E [eV]

IP
SS

GW

Fig. 5. Imaginary part of dielectric function (left) and absorption coefficient (right) for
the 72-atom configuration, calculated with uncorrected states (IP), and with quasipar-
ticle corrected states in GW and scissors shift (SS) approximation.

0

5

10

15

20

25

30

35

 0 1 2 3 4 5

ε 2

E [eV]

IP
SS

103

104

105

106

107

 0 1 2 3 4 5

α
[1

/c
m

]

E [eV]

IP
SS

Fig. 6. Imaginary part of dielectric function (left) and absorption coefficient (right) for
the 576-atom configuration, calculated with uncorrected states (IP), and with quasi-
particle corrected states in scissors shift (SS) approximation.

finite-size effects that artificially reduce the band gap, like the overestimation of
the defect density and interactions with periodic images.

3.2 C-Si/a-Si:H Interface

In Fig. 7 the spread in z-direction (i.e., in growth direction) Sz is shown as a
function of the wave function energy together with the total DOS around the
Fermi energy for the above described interface configuration. The figure shows
that there is a dense distribution of strongly localized states inside the c-Si band
gap, which can be clearly distinguished from the more extended tail and bulk
states.

The origin of these states can be investigated further by looking at the local
DOS and the wave function centers as shown in Fig. 8. In the top subfigure,
the layer-resolved DOS is displayed as a function of the z-coordinate, which is
obtained by integrating the local DOS over layers parallel to the interface. The
figure shows that near the interface, which is marked by the dotted line, the band
gap starts filling up with states, and completely vanishes in the a-Si:H region.
That these mid-gap states are indeed localized can be seen in the bottom figure,
where Sz is plotted as a function of the energy and the z-component of the center
of the wave functions. Each dot marks the energy and the position of one wave

Optoelectronic Properties at Interfaces from Ab Initio 119

 0

 50

 100

 150

 200

 250

−3 −2 −1 0 1 2 3
 10

 15

 20

 25

 30

 35

D
O

S
 [1

/e
V

]

S
pr

ea
d

S
z

[Å
]

E [eV]

Spread
DOS

Fig. 7. DOS and wave function spread (in direction perpendicular to the interface) in
the energy region around the Fermi energy at 0 eV.

−3

−2

−1

 0

 1

 2

 3

E
 [e

V
]

 0

 5

 10

 15

 20

 25

 30

D
O

S
 [1

/e
V

]

0 5 10 15 20 25

z [Å]

−3

−2

−1

 0

 1

 2

 3

E
 [e

V
]

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30
S

pr
ea

d
S

z
[Å

]

Fig. 8. Top: Local DOS integrated over layers parallel to the interface as a function
of the z-coordinate. Bottom: Wave function spread in z-direction. Each dot marks the
energy and the position of the center of one wave function, whereas the color represents
its spread. The dotted line shows the approximate position of the interface.

function, that is, where along the z-direction it is centered. The color of each dot
represents the spread of the wave function. This representation indicates that
the contribution to the mid-gap states comes mainly from localized states in the
a-Si:H layer, whereas the interface region hardly contributes at all.

120 P. Czaja et al.

The emergence of localized states in the a-Si:H region can be better under-
stood in terms of the atomic structure. For that purpose all the bonds are ana-
lyzed by means of the ELF in order to identify dangling and weak bonds. This is
shown exemplarily in Fig. 9 for a three-fold bond Si atom. By investigating the
ELF between this atom and its nearest neighbors one can clearly distinguish one
H bond, two Si bonds, and one dangling Si bond. Applying this analysis to all
atoms yields a coordination map as shown in Fig. 10. This reveals that there is
a large number of low-coordinated atoms in the a-Si:H layer whereas the atoms
at the interface itself (represented by a dotted line) are mostly four-fold coor-
dinated. While supporting the conclusions from the localization analysis, this
result also indicates that the quality of the amorphous layer is rather poor. In
fact the defect density is of the order of 1022/ cm3, and thus four orders of mag-
nitude higher than the defect density measured experimentally for thin a-Si:H
films [7], which explains the high DOS inside the band gap.

Fig. 9. Left: 3-fold bond atom at the a-Si:H/c-Si interface (purple) and its three bond-
ing partners (magenta). Right: ELF between the atom shown on the left and its four
nearest neighbors. The orange curve represents a bond with an H atom, the blue and
purple curve represent Si-Si bonds, and the green curve represents a dangling bond.
(Color figure online)

 0 5 10 15 20 25

z [Å]

 0

 2

 4

 6

 8

 10

 12

 14

y
[Å

]

 0

 1

 2

 3

 4

C
oo

rd
in

at
io

n

Fig. 10. Coordination numbers for all atoms in the a-Si:H/c-Si configuration.

Optoelectronic Properties at Interfaces from Ab Initio 121

4 Computational Costs

Table 1 lists the computational costs of typical sets of calculations with converged
parameters for all three structures considered in this paper. As self-consistent
field (scf) calculations with DFT scale with O(N2 log N) in the number of atoms,
the computational costs increase by two orders of magnitude when going from 72
to 576 atoms. This is however only the theoretical scaling behavior and does not
yet take into account I/O and communication costs, as well as the non-ideal scal-
ing with respect to the number of cores. These effects become visible especially
in the non-self consistent (nscf) calculation of unoccupied bands, where larger
matrices have to be handled. Altogether the numbers indicate that the current
limit for performing DFT calculations with conventional plane-wave approaches
on reasonable time-scales is of the order of a few thousand atoms.

Regarding GW, a full calculation for the small structure requires about 2400
core-h, making it obvious that GW calculations for the larger systems are cur-
rently out of range. The most costly part here is the DFT calculation of a large
number of unoccupied bands, which are needed exclusively in the GW calcula-
tions and not for any other of the calculations we performed. In addition it has
to be pointed out once again that the numbers given here refer to an already
converged calculation. The convergence process itself is computationally much
more challenging, which is due to the fact that three interdependent parameters
have to be converged simultaneously, resulting in a total cost of about 80000
core-h.

For the large a-Si:H and the interface configuration the vast majority of
the computational time is spent on the BOMD simulations which is due to
the fact that the electronic ground state is computed at every time step by
an scf calculation. The high computational demand for the interface generation

Table 1. Computational costs for typical sets of calculations for all three structures
investigated within this work. MD and DFT calculations were done using Quantum
ESPRESSO, except for the 576-atom system, where CP2K was used. GW and absorp-
tion calculations were done using BerkeleyGW. For the MD calculations also the sim-
ulation time is provided in brackets.

Calculation Computational costs [core-h]

a-Si:H (72) a-Si:H (576) a-Si:H/c-Si

MD 2300 190000 220000

(6.5 ps) (80.0 ps) (35.0 ps)

DFT scf 20 1940 200

nscf 15 5450 750

GW unoccupied bands 1800

ε 380

Σ 180

Absorption 1 320

122 P. Czaja et al.

motivated the use of the CP2K Quickstep code for the large a-Si:H system,
which allowed us to reduce the computational cost by using a mixed Gaussian
and plane wave approach.

5 Conclusions

We presented an ab initio description of the atomic and electronic properties of
the a-Si:H/c-Si interface, which is at the heart of the technologically relevant
silicon-heterojunction solar cells. We introduced and applied different methods
for analyzing the electronic structure, in particular with respect to the role of
defects and localized states, which have an influence on the cell performance via
non-radiative recombination.

Furthermore, we generated configurations of a-Si:H and calculated the elec-
tronic structure, including GW corrections. As a first step towards the extraction
of macroscopic material properties from the local microscopic structure for use
in multiscale models of solar cells, we calculated the absorption spectrum of an
a-Si:H structure. As an important result we found that the expensive GW cor-
rections can be replaced by a linear approximation, which makes calculations for
larger – and, thus, physically more representative – configurations possible.

Acknowledgments. This project has received funding from the European Commis-
sion Horizon 2020 research and innovation program under grant agreement No. 676629.
The authors gratefully acknowledge the computing time granted on the supercom-
puter JURECA [19] at Jülich Supercomputing Centre (JSC) and on the supercomputer
CRESCO [30] on the ENEA-GRID infrastructure.

References

1. Aeberhard, U., Czaja, P., Ermes, M., Pieters, B., Chistiakova, G., Bittkau, K.,
Richter, A., Ding, K., Giusepponi, S., Celino, M.: Towards a multi-scale approach
to the simulation of silicon hetero-junction solar cells. J. Green Eng. 5(4), 11–32
(2016)

2. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or tem-
perature. J. Chem. Phys. 72(4), 2384–2393 (1980)

3. Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic
and molecular systems. J. Chem. Phys. 92(9), 5397–5403 (1990)

4. CP2K. http://www.cp2k.org/
5. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.:

BerkeleyGW: a massively parallel computer package for the calculation of the qua-
siparticle and optical properties of materials and nanostructures. Comput. Phys.
Commun. 183(6), 1269–1289 (2012)

6. Ehrenreich, H.: The Optical Properties of Solids. Academic, New York (1965)
7. Favre, M., Curtins, H., Shah, A.: Study of surface/interface and bulk defect density

in a-Si: H by means of photothermal de ection spectroscopy and photoconductivity.
J. Non-Cryst. Solids 97, 731–734 (1987)

http://www.cp2k.org/

Optoelectronic Properties at Interfaces from Ab Initio 123

8. George, B.M., Behrends, J., Schnegg, A., Schulze, T.F., Fehr, M., Korte, L., Rech,
B., Lips, K., Rohrmüller, M., Rauls, E., Schmidt, W.G., Gerstmann, U.: Atomic
structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett.
110, 136803 (2013)

9. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli,
S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A.,
Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S.,
Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen,
A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a
modular and open-source software project for quantum simulations of materials.
J. Phys.: Condens. Matter 21(39), 395502 (2009)

10. Godby, R.W., Schlüter, M., Sham, L.J.: Self-energy operators and exchange-
correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988)

11. Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopoten-
tials. Phys. Rev. B 54, 1703–1710 (1996)

12. Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space
Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)

13. Hedin, L.: New method for calculating the one-particle Green’s function with appli-
cation to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

14. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–
B871 (1964)

15. Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insula-
tors: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)

16. Hybertsen, M.S., Louie, S.G.: First-principles theory of quasiparticles: calculation
of Band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421
(1985)

17. Jarolimek, K., de Groot, R.A., de Wijs, G.A., Zeman, M.: First-principles study
of hydrogenated amorphous silicon. Phys. Rev. B 79, 155206 (2009)

18. Johlin, E., Wagner, L.K., Buonassisi, T., Grossman, J.C.: Origins of structural hole
traps in hydrogenated amorphous silicon. Phys. Rev. Lett. 110, 146805 (2013)

19. Jülich Supercomputing Centre: JURECA: general-purpose supercomputer at
Jülich supercomputing centre. J. Large-Scale Res. Facil. 2, A62 (2016)

20. Kaneka Corporation. http://www.kaneka.co.jp/kaneka-e/images/topics/
1473811995/1473811995 101.pdf

21. Khomyakov, P.A., Andreoni, W., Afify, N.D., Curioni, A.: Large-scale simulations
of α-Si: H: the origin of midgap states revisited. Phys. Rev. Lett. 107, 255502
(2011)

22. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138 (1965)

23. Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-
correlation functionals. Theoret. Chem. Acc. 114(1), 145–152 (2005)

24. Larson, P., Dvorak, M., Wu, Z.: Role of the plasmon-pole model in the GW approx-
imation. Phys. Rev. B 88, 125205 (2013)

25. Lundqvist, B.I.: Single-particle spectrum of the degenerate electron gas. Physik
der Kondensierten Materie 6(3), 193–205 (1967)

26. Nolan, M., Legesse, M., Fagas, G.: Surface orientation effects in crystalline-
amorphous silicon interfaces. Phys. Chem. Chem. Phys. 14, 15173 (2012)

27. Overhauser, A.W.: Simplified theory of electron correlations in metals. Phys. Rev.
B 3, 1888–1898 (1971)

http://www.kaneka.co.jp/kaneka-e/images/topics/1473811995/1473811995_101.pdf
http://www.kaneka.co.jp/kaneka-e/images/topics/1473811995/1473811995_101.pdf

124 P. Czaja et al.

28. Perdew, J.P.: Density functional theory and the band gap problem. Int. J. Quantum
Chem. 28(S19), 497–523 (1985)

29. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

30. Ponti, G., Palombi, F., Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone,
F., Bertini, R., Bracco, G., Caporicci, M., Calosso, B., Chinnici, M., Colavin-
cenzo, A., Cucurullo, A., Dangelo, P., Rosa, M.D., Michele, P.D., Funel, A., Furini,
G., Giammattei, D., Giusepponi, S., Guadagni, R., Guarnieri, G., Italiano, A.,
Magagnino, S., Mariano, A., Mencuccini, G., Mercuri, C., Migliori, S., Ornelli,
P., Pecoraro, S., Perozziello, A., Pierattini, S., Podda, S., Poggi, F., Quintiliani,
A., Rocchi, A., Sció, C., Simoni, F., Vita, A.: The role of medium size facili-
ties in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in
the ENEAGRID infrastructure. In: 2014 International Conference on High Perfor-
mance Computing Simulation (HPCS), pp. 1030–1033 (2014)

31. QuantumESPRESSO. http://www.quantum-espresso.org
32. Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G.:

Electron localization in solid-state structures of the elements: the diamond struc-
ture. Angew. Chem. Int. Ed. Engl. 31(2), 187–188 (1992)

33. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons.
Phys. Rev. 87, 835–842 (1952)

34. VandeVondele, J., Hutter, J.: An efficient orbital transformation method for elec-
tronic structure calculations. J. Chem. Phys. 118(10), 4365–4369 (2003)

http://www.quantum-espresso.org

Scale Bridging Simulations of Large Elastic
Deformations and Bainitic Transformations

Marc Weikamp1(B), Claas Hüter1, Mingxuan Lin2, Ulrich Prahl2,
Diego Schicchi3, Martin Hunkel3, and Robert Spatschek1,4(B)

1 Institute for Energy and Climate Research,
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

{m.weikamp,r.spatschek}@fz-juelich.de
2 Department of Ferrous Metallurgy,

RWTH Aachen University, 52056 Aachen, Germany
3 IWT Stiftung Institut für Werkstofftechnik, 28359 Bremen, Germany

4 JARA-ENERGY, 52056 Aachen, Germany

Abstract. The multiscale process of bainitic microstructure formation
is still insufficiently understood from a theoretical and simulation per-
spective. Production processes of press hardened bainitic steels lead to
large deformations, and as a particular aspect we investigate the role of
large elastic strains, starting from ab initio methods, bridging them to
phase field crystal continuum approaches and connecting the results to
macroscopic deformation laws. Our investigations show that the phase
field crystal model covers large deformations in the nonlinear elastic
regime very well. Concerning the microstructure evolution we use a multi
phase field model including carbon diffusion, carbide formation and elas-
tic effects. For all the covered aspects we use efficient numerical schemes,
which are implemented on GPUs using CUDA.

Keywords: Multi phase field · Bainite transformation · Phase field crys-
tal · ab initio Calculations · Nonlinear elasticity · GPU implementation

1 Introduction

The process of press hardening, also known as hot stamping, has become an
important tool for the production of high strength steels. Its main application is
in the automotive industry, where the demand for high crash safety and simul-
taneously reduced weight of the automotive parts increases steadily [1]. Major
parts of car manufacturing are already produced by press hardening, e.g. A- and
B-pillars, bumpers and roof rails.

The manufacturing process of steel parts can be summarised as a sequence
of heating, forming, and cooling. This leads to desired shapes while the steel is
simultaneously strengthened, as a result of microstructural transformations. Hot
stamping manufacturing usually involves synchronous forming and quenching,
i.e. cooling, of the heated blanks. This fabrication method can be altered by vari-
ous techniques, for example cold pre-forming or partial press hardening. The for-
mer means shaping at lower temperatures while a necessary calibration is done
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 125–138, 2017.
DOI: 10.1007/978-3-319-53862-4 11

126 M. Weikamp et al.

in later steps after heating the sample. Partial press hardening uses different
temperature zones during forming, influencing the microstructure transforma-
tion locally. The differences in the resulting material properties are significant.
Hence the prediction and modeling of the emerging microstructures is important
for the design of new steels. From a modeling perspective, the microstructure
formation during steel production is very demanding, as multiple scales and hier-
archies of structures appear. Therefore, an adequate treatment requires a chain
of simulation tools and large scale modeling, which calls for high performance
computing and parallelisation strategies.

As large deformations play a significant role during the industrial process of
steel manufacturing, we investigate the nonlinear elastic behaviour of materials
with the phase field crystal method. Using density functional theory calculations
as well as continuum mechanics, we bridge this model to different scales. Con-
sidering different strain tensors, we come up with a compact description of the
nonlinear elastic behaviour in three dimensions using a Eulerian strain tensor.
Taking into account the results of DFT calculations we also show, that the phase
field crystal model correctly predicts the nonlinear elastic behaviour of various
bcc materials.

Bainite is a particular phase in carbon steels, which consists of ferrite, austen-
ite and carbides [2]. This non-equilibrium phase can be obtained by interrupted
cooling plus isothermal holding above the martensite temperature. Fast cooling
retains the non-equilibrium structure of bainite and leads to very appealing prop-
erties of the steel [3]. The formation of bainite starts with pre-strained austenite.
At lower temperatures, the bainite is forming, while it is still under stress due to
the applied load during the press hardening process. These stresses significantly
affect the transformation and it is therefore important to understand their role.
Additionally, the transformation of bainite during press hardening is influenced
by carbon and its diffusion. The question whether the process of bainite forma-
tion is dominated by diffusion or displacive transformations is still an ongoing
debate [4].

In the present work, bainite formation is simulated by a multi phase field
model. The model is implemented as a C++ code in a GPU environment, using
the advantages of parallel computing. The carbon diffusion is included via a
Cahn-Hilliard formalism, which features a decomposition process, leading to
the formation of carbides. Additionally, the role of elasticity is examined by
the introduction of the (hydrostatic) eigenstrain of bainite during the transfor-
mation. Furthermore, we investigate the near-tip segregation at a crack under
tension. Analytical results for the equilibrium concentration near the crack tip
are compared to finite element simulations and show good agreement.

2 Nonlinear Elasticity in Phase Field Crystal Models
and Comparison to ab initio Simulations

In order to understand and develop new materials, it is mandatory to identify
their elastic response. A full parametrisation describing this response becomes

Scale Bridging Simulations of Elasticity and Bainite 127

challenging for large deformations and can lead to the appearance of many para-
meters. To reduce this complexity we use the phase field crystal (PFC) model and
derived amplitude equations, which naturally contains an intrinsic description
of nonlinear elasticity [5]. The predictions of these models, which are validated
through ab initio calculations, allow a drastic reduction of the complexity of non-
linear deformations by suggesting a proper representation using Eulerian strain
tensors.

2.1 Modeling Approach

The investigation of nonlinear elasticity benefits from a multiscale approach
using three different models in combination. On the lowest scale is the electronic
structure density functional theory, giving the highest accuracy while suffering
from expensive calculations. The phase field crystal model is a mesoscale model,
which still features atomic resolution. It is implemented as a GPU code, similar
to the phase field model, which is discussed later. The macroscale is described
by continuum mechanics with different strain tensors.

On the mechanical level one starts with a deformation field, which describes
the deformation of a point relative to its initial position X to a point at the
current position x. This defines both the referential (“Lagrangian”) displacement
field ur = ur(X) and the current (“Eulerian”) displacement field uc = uc(x).
Both descriptions are valid and physically correct but depending on the physical
interest and ansatz, a different frame of reference may be more suited than the
other. This allows to define different strain tensors, starting with the Green
strain tensor

εkl =
1
2

(
∂ur

k

∂Xl
+

∂ur
l

∂Xk

)
+

1
2

∂ur
m

∂Xk

∂ur
m

∂Xl
, (1)

which formulates the deformation in the referential or Lagrangian frame of ref-
erence. The next one is the Almansi strain tensor

ekl =
1
2

(
∂uc

k

∂xl
+

∂uc
l

∂xk

)
− 1

2
∂uc

m

∂xk

∂uc
m

∂xl
, (2)

describing the elastic response in the current or Eulerian frame of reference. The
last tensor is another Eulerian strain measure called Clayton’s D tensor,

ēkl =
1
2

(
∂uc

k

∂xl
+

∂uc
l

∂xk

)
− 1

2
∂uc

k

∂xm

∂uc
l

∂xm
. (3)

These tensors all agree up to the level of linear elasticity and are only dis-
tinguishable in the nonlinear elastic case. In the following we call this nonlinear
behaviour geometric nonlinearity in order to classify, that the elastic strain is no
longer linear in displacements. Additionally, we define the term physical nonlin-
earity, covering effects that lead to an elastic energy, which is no longer quadratic
in the (nonlinear) strain.

128 M. Weikamp et al.

The phase field crystal model uses a conserved order parameter Ψ to describe
the atom density. It is not spatially constant but has a periodic profile in a
crystalline phase. The energy functional is defined as

F =
∫

V

dr
{

Ψ
[(

q20 + ∇2
)2 − ε

] Ψ

2
+

Ψ4

4

}
, (4)

with the system’s volume V , a dimensionless temperature ε and the wave number
q0, which depends on the lattice spacing of the crystalline structure. In the
following we set q0 = 1.

The electronic structure density functional theory results have been
performed with the Vienna ab initio simulation package (VASP) [6,7]. The
calculations have been done at T = 0 K and magnetic contributions are not
considered [5].

2.2 One-Dimensional Nonlinear Elasticity

The phase field crystal analysis is illustrated here for one dimension. To describe
the atom density in the phase field crystal model, we use the one-mode approx-
imation Ψ(x) = A cos(qx) + Ψ̄ , with an average density Ψ̄ . This approximation
leads to the free energy density of the system when averaged over a = 2π/q,
which is the “unit cell”:

f =
Ψ̄2

2

(
−ε + 1 +

3A2

2
+

Ψ̄2

2

)
+

A2

4

[
−ε + (1 − q2)2 +

3A2

8

]
. (5)

The energy is minimised, when q = 1, as long as the amplitude A is kept
constant. We can identify the Eulerian displacement field as u(x) = (1 − q)x
from Eq. (5), which gives a Eulerian strain exx = ēxx = 1

2

(
1 − q2

)
. In the one-

dimensional case, the strain tensors (2) and (3) coincide. Subsequently, we can
write the elastic energy density as fel ∼ ē2xx, indicating, that only a geometrical
nonlinearity is present. Allowing the system to reduce its energy with respect to
the amplitude, ∂f(A, q, ε, Ψ̄)/∂A = 0, gives an additional degree of freedom and
introduces the physical nonlinearity (at finite temperatures). In the linear elastic
regime, near q = 1, the amplitude is unaffected by the strain of the system but
appears at larger strains as melting precursor. The results of the one-dimensional
analysis are plotted in the left panel of Fig. 1. The nonlinear behaviour of the
system’s free energy is clearly visible. Under compression the elastic energy rises
faster compared to the case of tension, as one would expect physically.

2.3 Three-Dimensional Nonlinear Elasticity for bcc Materials

Following the one-dimensional case, we can write the free energy density of the
phase field crystal system in three dimensions. The one-mode approximation
then leads to a lengthy expression; its derivation is omitted for brevity, but can
be found in [5]. As a result, one can express the elastic energy density as a

Scale Bridging Simulations of Elasticity and Bainite 129

 0

 0.0002

 0.0004

 0.0006

 0.92 0.96 1 1.04 1.08

f(a
)-f

(a
0)

a/a0

geometrical nonlin.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

f e
l

a/a0

geo. nonlin.
geo.+phys. nonlin.

Fig. 1. Left: Elastic energy per unit cell as a function of the lattice constant normalised
by its equilibrium value a0 for the 1D case. Parameters are Ψ̄ = 0, ε = 0.6. Right: Elastic
energy per unit cell of a 3D bcc system as a function of the lattice constant normalised
by its equilibrium value a0. Parameters are Ψ̄ = −0.18, ε = 0.1.

function of the strain in a compact form. The result reads for low temperatures
(i.e. constant amplitude A = A0)

fel = 4Δ̄|A0|2, (6)

with

Δ̄ = ē2xx + ē2yy + ē2zz + 2(ē2xy + ē2yz + ē2xz) + ēxxēyy + ēyy ēzz + ēxxēzz. (7)

All amplitudes have the same magnitude in this calculation, which is strictly
only valid for an isotropic deformation ēij = ēδij . Significant is the fact that only
Clayton’s D tensor, presented in Eq. (3), is able to express the elastic energy in
such a compact form through Δ̄. The right panel of Fig. 1 shows the elastic energy
density plotted versus the lattice constant. Similar to the one-dimensional case
we can recognise the (geometrical) nonlinearity, leading to a difference between
compression and tension.

2.4 Comparison with ab initio Simulations
and Continuum Modeling

The Birch-Murnaghan equation E = EBM (V) is an energy-volume relation often
used to fit ab initio data [8]. It is defined for isotropic deformations and reads

EBM = E0 +
9V0K

16

⎧
⎨

⎩

[(
V0

V

) 2
3

− 1

]3

K ′ +

[(
V0

V

) 2
3

− 1

]2 [
6 − 4

(
V0

V

) 2
3
]⎫
⎬

⎭ .

V0 is the equilibrium volume, V the actual volume, K the zero pressure bulk
modulus and K ′ the derivative of the bulk modulus with respect to the pressure
evaluated at zero pressure. The Birch-Murnaghan equation can be expressed
through a Eulerian strain. The differences of the Almansi tensor and the
Clayton’s D tensor vanish, as we only discuss isotropic deformations here. This
gives exx = eyy = ezz = (a2 − a2

0)/2a2. With V = a3 and V0 = a3
0 we get the

compact form

EBM(exx) =
9
2
KV0e

2
xx [1 + (4 − K ′)exx] . (8)

130 M. Weikamp et al.

This equation indicates, that a parabolic strain dependence is obtained, if the
bulk modulus derivative K ′ is equal to four. If we take the free energy density
of the phase field crystal model in three dimensions, Eq. (6), one arrives at

fPFC(exx) =
9
2
Ke2xx, (9)

with the identification K = 16|A0|2/3. A comparison of the last two equations
shows, that the phase field crystal model predicts a perfect parabola, therefore
implying for bcc materials K ′ = 4. We investigate this further using ab initio
simulations of multiple non-magnetic bcc materials at T = 0. The elastic energy
as a function of the lattice constant is plotted in the left panel of Fig. 2. If these
results are plotted as function of the Eulerian strain, the elastic energies collapse
on a Master curve, E = 9/2V0e

2
xx, see right panel of Fig. 2. This result shows,

that for many bcc materials the bulk modulus derivative is indeed K ′ = 4. Such
a behaviour of the elastic energy is automatically predicted by the phase field
crystal model, and can further conveniently be used for large scale modeling.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 2.5 3 3.5 4 4.5 5 5.5 6

E e
l/a

to
m

 (e
V)

a (Å)

Mo
Ta
V
W
Li

Na
Ka
Rb

Fe (fm)
Fe (nm)

 0

 0.005

 0.01

 0.015

-0.1 -0.05 0 0.05 0.1

E e
l/(

9K
V 0

/2
)

exx

Mo
Ta
V
W
Li

Na
Ka
Rb

Fe (fm)
Fe (nm)

Fig. 2. Left: ab initio results of various bcc materials at T = 0 plotted as function
of the lattice constant. Right: Elastic energy as a function of the Eulerian strain. All
curves fall on one Master curve, see Eq. (9) [5].

3 Phase Field Model of Bainite Formation

Phase field models are a powerful method to describe the formation of
microstructures, especially in coupled systems. Using a non conserved order
parameter, the tracking of fronts is not necessary, and the transformation of
different phases is promoted by chemical and mechanical driving forces. Bainite
formation is such a problem. The capturing of diffusion of carbon, precipita-
tion of carbides and the kinetics of phase propagation are significant in order to
understand the problem in its full scope. Furthermore, a displacive transforma-
tion of austenite to bainitic ferrite in the low temperature regime is considered.
This leads to the formation of lower bainite where carbides form between plates
of bainite. As elasticity plays a major role in the formation kinetics of bainite,

Scale Bridging Simulations of Elasticity and Bainite 131

a mechanical solver including the (hydrostatic) eigenstrain of the bainitic phase
is implemented. The simulation software has been developed using a finite dif-
ference scheme in a GPU framework for three dimensional systems.

3.1 Multi Phase Field Modeling

The multi phase field model is based on [9] and originally formulated in [10], cov-
ering the austenite, the bainitic ferrite and the carbide phase. From an energy
description of interfacial and gradient energy densities, one arrives at the varia-
tional evolution equation of the different phases,

φ̇i =
N∑

j=1,j �=i

μij

[
σij

(
(
φj∇2φi − φi∇2φj

)− 36
η2
ij

φiφj (φj − φi)

)
− 6ΔGij

ηij
φiφj

]
, (10)

with the interface mobility μij , the interface energy σij , the interface thickness
ηij and the change of Gibbs energy as driving force ΔGij . Additionally, the sym-
metry of the phases implies μij = μji, σij = σji, ηij = ηji, and ΔGij = −ΔGji.
The parameters are taken from [9]. The three phases, which are considered in
this model, are φ1 - bainitic ferrite, φ2 - austenite and φ3 - carbide.

In order to simulate the carbide precipitation, we need to consider the carbon
diffusion in the steel. Here we use a Cahn-Hilliard model featuring spinodal
decomposition [9],

J = −φ1D∇η, (11)
η = −b∇2c + d · f ′(c), (12)

f(c) = (XLL − c)2(XUL − c)2. (13)

The flux J depends on the chemical potential η, the diffusion coefficient D and
the phase field order parameter φ1, which leads to diffusion only in the bainitic
region. This is reasonable, as we are mainly interested in carbide precipitation
for lower bainite. Evolution of the concentration is covered by ċ = −∇J =
φ1D∇2η + ∇φ1D∇η. Phase separation is driven by a double well potential f(c)
in the expression for the chemical potential. Thus, the concentration of carbon
is either accumulating up to a value XUL, which is the upper limit of carbon
concentration in this model, or the carbon diffuses such that a lower limit XLL

is reached. The value XLL is the maximum carbon concentration that bainitic
ferrite can contain. If the upper limit of XUL is reached, carbide formation
is possible. This is expressed through the phase field mobility μ13, which is a
function of the carbon concentration, reading

μ13 = μ0
13 ·

⎧
⎨

⎩

0 if c < XUL − β,
1 if c > XUL,
1
2 + 1

2 sin(π
β c + π

2 − π
β XUL) else.

(14)

The parameter β controls the continuous transition of μ13, if nonzero.
Furthermore, a mobility anisotropy is added in order to achieve sheave like

structures. For this, the phase field mobility μ12 is modified depending on the
orientation of the transformation front [9].

132 M. Weikamp et al.

In order to get a complete picture of the transformation kinetics, especially if
one considers the manufacturing process involving pressing, elastic effects have
to be incorporated. The first step is the consideration of the bainitic eigenstrain
in isotropic approximation. The linear elastic energy densities for bainite and
austenite then read

fel
γ =

1
2
λε2ii + με2ik for austenite, (15)

fel
αB =

1
2
λ

(
εii − ε0ii

)2
+ μ

(
εik − ε0ik

)2
for bainitic ferrite, (16)

with the Lamé pararmeter λ, the shear modulus μ, the strain tensor εik and
the eigenstrain ε0ik = δikχφ1. χ is Vegard’s coefficient and controls the strength
of the eigenstrain, with the limit χ = 0, for which the elastic contributions are
absent. Equations (15) and (16) contribute to the total free energy and have to
be considered in the phase field evolution equations.

3.2 Results

We first discuss results without elastic effects, hence χ = 0. The carbon is initially
distributed randomly, similarly for the order parameter φ3 of the carbide phase.
The simulation starts with a small nucleus of bainite on the left side. The grid
spacing is defined as dx = 0.0234 µm. Figures 3 and 4 show the results for an
initial average carbon concentration of 2.0 wt.%. The bainite nucleus is clearly
visible on the left side and grows in a finger like structure in the x-y plane of
the simulation box. The results are obtained via a grid of size 128 × 128 × 8
to ensure a quasi two dimensional system, which saves simulation time. In the
bainitic region, carbon diffusion is taking place, showing a decomposition process.
This is prohibited in the austenite region. If a sufficiently high concentration of
carbon is reached, the formation of carbides is enabled according to Eq. (14).
These carbides form in a shape similar to the carbon distribution and spherical
structures become visible. This result can be influenced by increasing the initial
carbon concentration. Then the circles grow in size and eventually touch, forming
lamellar structures.

Further results are presented in Fig. 5, where the hydrostatic eigenstrain of
the bainitic phase is taken into account. Note that the results here are produced
using a plane strain setup, uz = 0, εzz = εxz = εyz = 0. The comparison
between χ = 0.01 and χ = 0, the nonelastic case, shows, that the bainite phase
is forming at a slower rate and the shape of the sheave like structure is changing
as well. These results indicate, that the role of elasticity has a major impact
on the formation of bainite. Further investigations are planned to examine the
role of elasticity. We expect the appearance of transformation plasticity, which
describes length changes of the system due to transformations under stress.

4 Near-Tip Segregation at a Mode I Crack

Crack formation and the resulting physical consequences are a very important
topic in material science. Catastrophic failure often arise due to crack nucleation

Scale Bridging Simulations of Elasticity and Bainite 133

Bainitic ferrite

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0000.dat" u 1:2:3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0005.dat" u 1:2:3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0009.dat" u 1:2:3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Austenite

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0000.dat" u 1:2:4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0005.dat" u 1:2:4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0009.dat" u 1:2:4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 3. Phase field results showing the bainite and austenite phase fractions for an
initial carbon concentration of 2.0 wt.% at 0, 5000 and 10000 steps with timestep
dt = 0.5 · 10−3 s, without elasticity.

Carbide

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0000.dat" u 1:2:(1-($3+$4))

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0005.dat" u 1:2:(1-($3+$4))

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0009.dat" u 1:2:(1-($3+$4))

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Carbon concentration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_conc_fields.0000.dat"

 1.92

 1.94

 1.96

 1.98

 2

 2.02

 2.04

 2.06

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_conc_fields.0005.dat"

 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.5
 6
 6.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_conc_fields.0009.dat"

 0

 1

 2

 3

 4

 5

 6

 7

Fig. 4. Phase field results showing the carbide phase fraction and carbon concentration
for an initial carbon concentration of 2.0 wt.% at 0, 5000 and 10000 steps with timestep
dt = 0.5 · 10−3 s, without elasticity.

134 M. Weikamp et al.

 0

0.5

 1

1.5

 2

2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0009.dat" u 1:2:3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

"3D_fields/3D_fields.0009.dat" u 1:2:3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 5. Phase field results for the bainite phase fraction, for an initial carbon concen-
tration of 2.0 wt.% after 10000 steps. In the left panel without elastic effects, χ = 0,
in the right panel with hydrostatic eigenstrain, χ = 0.01.

and propagation. The modeling and investigation of cracks is therefore an impor-
tant topic and is here also used to benchmark analytical results. Near a crack, tip
impurities like carbon can segregate through the interaction with the inhomo-
geneous stress state, and this effect is discussed here. Starting point is Vegard’s
law, which expresses the widening of the lattice due to interstitial or substitu-
tional atoms, reading ε0ij = χ · c · δij , if expressed through an eigenstrain. In this
case χ is Vegard’s coefficient and c the local concentration. The chemical part of
the problem has to be linked to a mechanical model, here linear elasticity. Using
several simplifications, we can express the relevant total free energy of the sys-
tem, consisting of the elastic and chemical contribution, in the low concentration
regime as

F =
[
μ

(
εij − ε0ij

)2
+

1
2
λ

(
εkk − ε0kk

)2
]

· Ω + kBT · c ln(c). (17)

The parameter Ω is an atomic volume and kB is the Boltzmann constant. Simul-
taneously, the elastic problem with the eigenstrain similar to Eq. (15) has to
be solved. Analytical calculations regarding the different stresses in the two-
dimensional system then lead to an equilibrium expression of the concentration.
It depends on the distance r and the angle θ relative to the crack tip position,

c = c0 exp
[
Ωχ(1 + ν)2KI cos (θ/2)

(2πr)1/2kBT

]
, (18)

with the stress intensity factor KI , the Poisson ratio ν and the distance r from
the sharp crack tip. The angle θ is measured between the x-axis, where the crack
is located, and the current position in the system; c0 is related to the average
concentration in the system. We note that this result is not exact and only valid
in a near-tip regime, where the segregation is still weak, such that the problem
can be treated in first order perturbation theory.

In order to verify this analytical result we performed finite element simula-
tions, using the basic model sketched above. The results are presented in Fig. 6,

Scale Bridging Simulations of Elasticity and Bainite 135

showing very good agreement for the concentration behaviour at various points
in the simulation box in regions of low concentration increase.

Fig. 6. Left: Comparison of analytical and simulation results of the concentration for
the segregation near a mode I crack. Right: Sketch of the crack model with points at
which simulation results and analytical outcomes are compared.

5 GPU Implementation

GPGPU implementations for solving partial differential equations with explicit
integration schemes on regular grids are very useful, as they offer a significant
acceleration of a code at low costs especially when consumer graphics cards are
used. One main advantage in our specific case is, that the porting from the serial
CPU code to the GPU implementation is rather straightforward, and even with-
out major optimization efforts a significant speedup can be reached on a single
GPU. Practically, the implementation of the phase field model does not take sig-
nificantly more time than for a corresponding serial CPU code. For our purposes
we use CUDA (Compute Unified Device Architecture) for Nvidia graphics cards,
which is based on a C++ like language [11]. The key point is that the simula-
tions have to be designed such that they run entirely on the GPU, which avoids
slow data transfer to and from the CPU. Still, in most cases, only a relatively
low fraction of the theoretical peak performance is reached, as further accel-
eration would require significant efforts. Nevertheless, it is usually the time to
develop suitable physical models for materials science applications, which limits
the entire process. For this reason, the numerical acceleration helps significantly
to accelerate the model development through a reduction of the runtime from
several days to a few hours. For the phase field crystal and amplitude equations
simulations, which we used for the analysis of large deformations, semi-implicit
pseudospectral methods are used, which benefit from the efficient fast Fourier
transformations in CUDA; we have reported a significant speedup in comparison
to a serial CPU code, see [13] for details. For phase field simulations with several
coupled evolution equations we usually use operator splitting techniques and
finite difference forward Euler schemes on regular lattices. An entire integration

136 M. Weikamp et al.

step in time is subdivided into different kernels, to ensure synchronization of
the parallel executions and to avoid race conditions. For example, the integra-
tion of one field (e.g. the phase field) is completed before a concentration field
is updated and the boundary conditions for the fields are invoked. The entire
computational domain is divided into (up to three-dimensional) blocks of equal
size. Each block consists of threads, such that in each spatial direction the num-
ber of grid points equals the product of the block and thread dimensions, using
one thread per physical grid point (see Fig. 7). An optimization of the execution
speed by adjusting the block and thread size in each spatial direction is done,
which typically has significant influence on the overall performance [12]. Notice
that the choice is usually different for the different spatial directions, which is
related to the memory alignment of the fields in the global memory. For the
time integration it is advantageous to copy a stencil of required field values to
the registers of the multiprocessors for accelerated access. Altogether, this allows
to keep the fields entirely on the GPU. Only occasionally, for additional eval-
uations and intermediate storage, the fields are copied to the computer’s main
memory. For many applications this requires only a negligible fraction of the
entire simulation time. Finally, the entire computational domain is surrounded
by a halo, where the boundary conditions are applied in a separate CUDA ker-
nel. The width of this halo depends on the order of the underlying differential
equations.

Fig. 7. Sketch of the implementation geometry and program flow of the bainite phase
field model using CUDA, shown here in two dimensions. The information is stored
on a regular lattice, where the elastic displacements are shifted by half a lattice unit
with respect to concentrations and phase fields (staggered grid). The entire system is
divided into blocks, at the outer layers boundary conditions are applied.

Scale Bridging Simulations of Elasticity and Bainite 137

6 Conclusions

In the first section we presented a phase field crystal model using amplitude
equations in combination with mechanical effects. Different strain tensors are
presented and the proper choice leads to a reduction of the complex description
of nonlinear elasticity. Our findings show, that the Eulerian description is best
suited to describe the nonlinearity in the phase field crystal model. Addition-
ally, only Clayton’s D tensor is able to express the elastic energy in a three
dimensional case of bcc properly. Comparison to the Birch-Murnaghan equation
predicts, that the bulk modulus derivative K ′ is equal to four for bcc materi-
als. Ab initio calculations confirm this prediction. The phase field crystal app-
roach achieves this result intrinsically. Hence, the investigations indicate, that
the phase field crystal model is an excellent technique to describe nonlinear elas-
ticity from a modelling standpoint. Such a description of nonlinear elasticity can
then subsequently be used for large scale microstructure evaluations under large
strains, e.g. bainitic press hardening.

The second part of this paper is devoted to a phase field model, which
describes the displacive transformation of austenite to bainite. During this forma-
tion carbon diffusion is important and therefore taken into account. This results
in the formation of carbides, a third phase contained in the multi phase field
model. Shape and amount of carbides are strongly connected to the average
carbon concentration. An increase of the amount of carbon leads to a transi-
tion from localized carbides to lamellar structures. Additionally, the influence of
the eigenstrain of the bainitic transformation is taken into account. The results
show, that the formation of the bainite is obstructed by elastic effects. Finally,
we benchmarked our analytical results of near-tip segregation of a mode I crack.
The results show very good agreement with an analytical approximation.

The models are implemented in a GPU framework using CUDA. Finite dif-
ferences are used for the phase field model as a numerical approach, and a
staggered grid is used for the calculation of elasticity. It turns out that for phase
field applications like the example demonstrated here, the use of graphics cards
for code acceleration is highly useful. Even without major efforts a significant
acceleration of the code can be reached, without seriously increasing the com-
plexity of the code. This is particularly useful not only for data production, but
also for the stage of model development, as the cycles for simulations and model
adjustments are drastically shortened.

Acknowledgements. This work has been supported by the Deutsche Forschungsge-
meinschaft via the priority program SPP 1713.

References

1. Karbasian, H., Tekkaya, A.E.: A review on hot stamping. J. Mater. Proc. Technol.
210(15), 2103–2118 (2010)

2. Bhadeshia, H.K.D.H.: Bainite in Steels, 2nd edn. Institute of Materials, London
(2001)

138 M. Weikamp et al.

3. Naderi, M.: Hot stamping of ultra-high strength steels. Ph.D. thesis, RWTH
Aachen (2007)

4. Fielding, L.: The bainite controversy. Mater. Sci. Technol. 29(4), 383–399 (2013)
5. Hüter, C., Friák, M., Weikamp, M., Neugebauer, J., Goldenfeld, N., Svendsen,

B., Spatschek, R.: Nonlinear elastic effects in phase field crystal and amplitude
equations: comparison to ab initio simulations of bcc metals and graphene. Phys.
Rev. B 93(21), 214105 (2016)

6. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev.
B 47(1), 558–561 (1993)

7. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

8. Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809–824 (1947)
9. Düsing, M., Mahnken, R.: Simulation of lower bainitic transformation with the

phase-field method considering carbide formation. Comput. Mater. Sci. 111, 91–
100 (2016)

10. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci.
Eng. 17(7), 073001 (2009)

11. Nvidia CUDA Programming Guide Ver. 7.0, 21 June 2016. http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html

12. Monas, A.: Modeling of phase change materials for nonvolatile data storage using
GPU simulations. Master’s thesis, Ruhr-Universität (2012)

13. Hüter, C., Nguyen, C.-D., Spatschek, R., Neugebauer, J.: Scale bridging between
atomistic and mesoscale modelling: applications of amplitude equation descrip-
tions. Model. Simul. Mater. Sci. Eng. 22, 034001 (2014)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Ab Initio Modelling of Electrode
Material Properties

Siaufung O. Dang1,2(B), Marco Prill1, Claas Hüter1(B),
Martin Finsterbusch1, and Robert Spatschek1,3

1 Institute for Energy and Climate Research,
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

{s.dang,c.hueter}@fz-juelich.de
2 Batterielabor und Methodenentwicklung,

Brunel GmbH im Auftrag der Deutsche ACCUMOTIVE GmbH & Co. KG,
73230 Kirchheim unter Treck, Germany

3 JARA-ENERGY, 52056 Aachen, Germany

Abstract. We discuss elastic and thermodynamic aspects of LiCoO2 in
the context of fracture propagation and hot spot formation. Approach-
ing the problem via ab initio modelling, we can access the delithiated
states which is difficult experimentally. Application of density functional
theory in the quasi-harmonic approximation provides good agreement
in the range of experimentally available data for isobaric heat capaci-
ties, suggesting to complement thermodynamic databases required for
the modelling of heat flows. The results for the mechanical characteris-
tics suggest a brittle-to-ductile transition with varying lithium contents
and crack orientations perpendicular to the basal plane, as indicated by
the obtained elastic tensors experimentally.

Keywords: Battery · Cathode · Phonon calculations · Elastic constants

1 Introduction

Advanced lithium-ion batteries have established as preferred energy storage
system for many mobile devices, though still critical aspects of mechanical
and electrochemical loading pose challenging physical questions. Longer life-
time (cyclability), improved energy density and kinetics of the employed battery
materials are still of major interest. In the majority of commercial batteries only
about 50% of the theoretical capacity is used, since phase transformations of
the lithium transition metal oxides upon further discharge lead to irreversible
capacity losses and ultimately to the destruction of the battery module. Another
aspect that merits further improvement is the inherent safety of the material. In
this respect knowing the heat capacities of the material is of importance for the
accurate evaluation of the thermal behaviour in order to properly design ther-
mal management systems. Poor design increases the risk of thermal runaway, a
process triggered at the onset of a certain temperature due to improper battery

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 139–150, 2017.
DOI: 10.1007/978-3-319-53862-4 12

140 S.O. Dang et al.

operation or inhomogeneity during cell fabrication, with the onset temperature
of thermal runaway depending on the electrolyte composition. Because obtaining
thermodynamic properties for delithiated compounds presents a major obstacle
for caloric measurements over wide temperature ranges, we use a computational
approach by means of atomistic modelling. This enables us to explore the ther-
modynamic properties of cathode materials in the delithiated states, which from
a practical point of view represent higher states of charge that are most suscep-
tible to failure by thermal runaway.

Apart from thermodynamic properties, also mechanical properties of lithium
ion-based systems are of high importance. The cyclability of the material depends
on its ability to maintain its structural integrity. Many lithium ion-based batter-
ies exhibit volume changes accompanying lithium concentration changes in the
host material. Graphite as very common negative electrode for these systems
shows a volume increase of 10% upon lithium intercalation between the carbon
atom sheets [4]. While silicon can store an order of magnitude more lithium
ions, the associated volume expansion reaches up to 300% [1]. Apart from the
volume expansion due to intercalation, also phase transitions can cause diffusion-
induced stresses. The resulting detrimental effects in the electrode materials
lead to battery capacity loss and eventually to power fade. However, there has
been substantial progress toward the prediction of diffusion induced stresses and
the increase of mechanical durability of lithium-ion-based batteries [2,3,5,8,15].
For the important class of LiCoO2 based batteries, several investigations have
focused on structural and morphological changes in heavily cycled materials and
indicate fracture of the active material particles due to the stresses induced by
the volume changes associated with lithium ion intake and removal. It was stated
by Huggins et al. that the critical size of the LiCoO2 particles is a function of
fracture toughness, elastic modulus and strain. For a better understanding of the
fracturing mechanism and the evaluation of the critical particle size we believe
that detailed knowledge about the elastic properties of LixCoO2 in dependence
of lithium content will help to elucidate this aspect.

On the other hand, there is ongoing research into alternative anode materi-
als. In theory, lithium-metal alloys can exhibit a much higher volumetric energy
density compared to the established graphite anode as implemented in all state-
of-the art lithium-ion batteries. While commercially available graphite anodes
can host 1 lithium ion per 6 carbon atoms (LiC6), metals like germanium, tin,
silicon and lead can host more than 4 lithium atoms per metal atom form-
ing Li22M5 [17]. Silicon-containing alloys have been investigated due to their
favorable voltage profile and their reversible capacity [21]. The magnesium-
silicon system gets reinforced attention as potential material system for anodes
in lithium-ion-batteries. Within the ternary lithium-magnesium-silicon system
many of the thermodynamically stable phases have been identified for tempera-
tures from room temperature to liquidus temperature and provide a solid basis
for further directed investigations [11]. Mg2Si was discovered to be actually a
solid solution with the formula LixMg2Si [9,16,17,19]. Extended investigations
into silicon based compounds may prove fruitful in the near future.

Ab Initio Modelling of Electrode Material Properties 141

2 Methods

We employ the ab initio code VASP (Vienna ab initio simulation package) [12] to
obtain properties at the atomic scale in conjunction with the code phonopy [27]
to deal with dynamic properties based on the temperature dependent collective
atomic motions (phonons).

VASP is a density-functional theory (DFT) code and as such approximates
the solution of the many-body Schroedinger equation of the considered sys-
tem. The free energy of the system is described depending as a function of the
electron density instead of the external potential. This corresponds to a type
of Legendre transformation, and the resulting functional is termed Hohenberg-
Kohn free energy. The numerical implementation of DFT requires the explicit
construction of the Hohenberg-Kohn free energy functional, typically split into
three contributions, the noninteracting kinetic energy, the electrostatic energy
and the exchange-correlation energy. While the electrostatic term could be eas-
ily expressed explicitly, the other terms are much more complex. The method
of choice here is the orbital method developed by Kohn and Sham, which uses
the one-particle Schroedinger equation with effective potential to describe the
kinetic term, (

− �
2

2m
∇2 + υeff

)
ψi = εiψi, (1)

such that n =
∑N

i=1 |ψi|2 holds for the electronic density n. The effective poten-
tial υeff then satisfies

υeff = υ − eφ + υxc, (2)

where υ is the external potential, φ = −e
∫

dr′n(r′)/|r − r′| the electrostatic
potential and υxc the exchange correlation potential. The used Kohn Sham
orbitals thus approximate the electron density, though they do not coincide with
the electron wave functions.

Technically, the physical properties are calculated by iteratively optimizing
the electron density distribution of a structure within the so-called self-consistent
field method to attain the ground state geometry. Therefore, υeff determines the
electronic density n in Eq. 1, and vice versa in Eq. 2. The number of electrons
and the external potential are given, the chemical potential is set to zero. In com-
bination with an explicit approximation of the exchange correlation energy Exc

and the resulting exchange correlation potential υxc = δExc/δn, the equations
listed here allow for the calculation of the electron density n and the ground
state energy for a system of N interacting particles.

Efficiency and accuracy are achieved through the employment of the imple-
mented pseudopotentials based on the projector augmented wave (PAW)
method. Nevertheless, such calculations on the atomistic scale are computa-
tionally very demanding since some of the calculation algorithms scale with N3

where N is the number of atoms in the cell.
Phonopy [27] is a post-processing tool written to read specific data from the

output of the ab initio code in order to calculate dynamical (phonon) prop-
erties. Its framework includes functions for fitting the equation of state and

142 S.O. Dang et al.

calculation routines for deriving results in the quasi-harmonic approximation.
The actual computationally demanding part are the ab initio calculations for
obtaining atomic response forces for the derivation of the phonon properties.
The calculation of these forces based on the finite difference method requires the
fully relaxed crystal structure as input to generate supercells with symmetry-
distinct atomic displacements. The force constants are computed by calculating
the atomic response forces and computing the ratio between the force differences
and the absolute displacements,

k =
∂2Epot(R)

∂u2
∼= −F (R + �u) − F (R)

�u
. (3)

In the harmonic oscillator model the force constants relate to the phonon fre-
quencies in the following way:

ω2 =
k

m
⇔ f =

1
2π

√
k

m
. (4)

Therefore, this provides the means to obtain the phonon spectrum. It enables the
computation of the depending phonon properties based on the harmonic phonon
free energy. We calculate phonon properties in the quasi-harmonic approxima-
tion. For further details on this method we refer the reader to the work of Shang
et al. [26].

For the elastic description of the system, we used the method of Le Page
and Saxe to calculate the elastic tensors. With this method the elastic tensor is
determined by performing six finite distortions of the lattice and deriving the
elastic constants from the stress-strain relationship [14].

3 Results

The phonon dispersion curve along the high symmetry points in the Brillouin
zone Γ , T and LD corresponding to the 3a (Li), 3b (Co) and 6c (O) sites, is
shown exemplarily for LiCoO2 in Fig. 1. The absence of imaginary frequencies
indicates a stable and well converged crystal structure geometry and its respec-
tive thermodynamic stability. The total phonon density of states of LiCoO2 is
in good agreement with that calculated by Du et al. [6]. Bulk modulus and
thermal expansion coefficients from 0 to 600 K are obtained from the fits to
the third-order Birch-Murnaghan equation of state within the quasi-harmonic
approximation and are shown exemplary for LiCoO2 in Fig. 2. Reference data
on these physical properties with respect to the LiCoO2 compound are scarce.
From our survey we could find that our calculated bulk modulus of 139.8 GPa
at 0K and 134 GPa at 300 K compares well to calculations by Wang et al. [28]
obtained for 0 K and to experimental data with values of 142.9 GPa and 149
GPa, respectively. A compilation of data including our own calculations is pre-
sented in Table 1. Based on the data about LiCoO2 it can be confirmed that

Ab Initio Modelling of Electrode Material Properties 143

Fig. 1. Phonon dispersion curve of LiCoO2 along the high symmetry points Γ , T and
LD. No imaginary frequencies in the whole spectrum evidence that the structure is
well converged (phonopy presents imaginary frequencies as negative frequencies).

Table 1. Parameters obtained from the fit of the third-order Birch-Murnaghan equa-
tion of state to the energy-volume data given for LiCoO2. Comparison is given with
respect to the data by Wang et al. [28] for LiCoO2.

Method V0/Å
3

B0/GPa B′
0

LDA 30.471 168.5 4.67

GGA 32.946 142.9 4.51

Experimental 32.16 149.2 4.13

GGA (this work) 33.17 140.2 4.48

there is a reasonable agreement. The small differences in our results when com-
pared to Wang et al. may be attributed to the fact that they employed a lower
energy cutoff of 500 eV as opposed to 520 eV in our case.

For the LixCoO2 compounds the obtained phonon densities of states and
the isobaric heat capacities are compiled in Fig. 3. The decrease of the heat
capacity with decreasing lithium content is physically plausible due to the
reduced mass. As can be seen from the heat capacity curves the overall trend
is modelled correctly although there is some deviation of the calculated results
from the experimental data by Ménétrier et al. [18] and Jankovsky et al. [10].

144 S.O. Dang et al.

Fig. 2. Bulk modulus and thermal expansion coefficient of LiCoO2 as a function of
temperature as derived from the fit to the third-order Birch-Murnaghan equation of
state in the framework of the quasi-harmonic approximation.

The deviation between the calculated and the experimental heat capacity at
T = 298K amounts to ≈ 6.8%. This may be attributed to the fact that the
phonon calculations are based on a single-crystal model whereas the experimen-
tal data is obtained for a polycrystalline sample, which lowers the compounds
density relative to the calculated model structure due to grain boundaries. A
further source of error may be linked to the calculated force constants based on

Ab Initio Modelling of Electrode Material Properties 145

the employed projector-augmented wave potential and might be worth reinves-
tigating with other alternative PAW potentials.

Concerning the elastic properties of LixCoO2, the computed single crystal
elastic constants of the three stoichiometries as obtained from VASP as well as
the elastic aggregate properties (polycrystalline) bulk modulus B, shear modulus
G and their respective ratios B/G derived on the basis of the formulae as outlined
by Hector et al. [7] are compiled in Table 2. The Youngs moduli YH and Poisson
ratios ν are estimated as

YH =
9BG

3B + G
, (5)

ν =
3B − 2G

6B + 2G
,

which means we use the isotropic elasticity approximation. Since for scales above
one micron the electrode particles are typically polycrystalline already, this prag-
matically motivated simplification is legitimate here. The elastic stability condi-
tions for the hexagonal symmetry as taken from Mouhat and Coudert [20] are
fulfilled for all calculated structures:

{
C11 > ‖C12‖; 2C2

13 < C33(C11 + C12)
C44 > 0;C66 > 0

}

According to the stability conditions, negative eigenvalues such as in
Li0.5CoO2 do not imply physical implausibility. On the contrary, it simply sug-
gests elongation upon compressive stress for specific deformational modes. We
included the only reference of elastic properties for LiCoO2 that we are aware
of in Table 1, which are based on DFT calculations with a hybrid functional
approach by Qi et al. [24]. It should be noted that their calculated elastic tensor
for LiCoO2 possesses the wrong symmetry most likely due to a misprint. In a
hexagonal cell the elastic constants are only isotropic within the basal plane so
that solely C55 = C66. However, their tensor satisfies C44 = C55 = C66. Fur-
ther comparison reveals that the tensor by Qi et al. generally displays larger
elastic constants, e.g., their C11/C22 and their C33 values are larger by 26%
and 12% respectively. This can be attributed to the employment of a hybrid
functional instead of the GGA-PBE functional used in this work. The C55/C66

values corresponding to the shearing parallel to the oxygen layers show an even
more significant deviation (37% lower). These results are to be expected, since
the GGA-PBE functional is known to underestimate elastic properties [13,22].
As a result, the derived elastic aggregate properties like bulk and shear modu-
lus (G, B) are lower as well (12% and 21% respectively). The ratio of bulk to
shear modulus can be evaluated according to Pughs criterion [23], which pos-
tulates ductile materials for B/G > 1.75 and brittle materials for B/G < 1.75.
In this respect, the analysis suggests brittle behavior for stoichiometries of x >
0.67 and therefore implies that integrity loss of the compound is more likely to
occur during cycling at higher lithiated states due to brittle crack propagation.
In addition, we employed a universal elastic anisotropy index AU for arbitrary

146 S.O. Dang et al.

Fig. 3. The phonon density of states and derived heat capacities at constant pressure
for LiCoO2, Li0.67CoO2 and Li0.5CoO2 compared to available literature data.

Ab Initio Modelling of Electrode Material Properties 147

Table 2. Elastic properties of LiCoO2, Li0.67CoO2 and Li0.5CoO2 computed with
GGA-PBE exchange correlation functionals showing elastic tensor components Cij ,
bulk modulus B, shear modulus G, B/G ratio, Young’s modulus YH , Poisson ratio ν
and anisotropy index AU . The indices V,R,H correspond to the different approaches of
the Voigt-Reuss-Hill homogenisation scheme.

Structure Cij B[GPa] G[GPa]
BH
GH

YH ν AU

LiCoO2
1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

422 106 62 0 0 0

106 422 163 0 0 0

62 65.4 239 0 0 0

0 0 0 68.1 0 0

0 0 0 0 68.1 0

0 0 0 0 0 68.1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

BV : 171

BH : 163

BR : 156

GV : 115

GH : 107

GR : 98.6

1.5 264 0.32 -

LiCoO2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

334.2 100.7 65.4 0 −7.1 0

100.7 334.2 65.4 0 7.1 0

65.4 65.4 213.7 0 0 0

0 0 0 116.8 0 −7.1

−7.1 7.1 0 0 49.5 0

0 0 0 −7.1 0 49.5

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

BV : 149.5

BH : 145

BR : 140.5

GV : 104

GH : 88.4

GR : 72.8

1.64 220.4 0.25 2.2

Li0.67CoO2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

312.6 95.2 35.8 4.7 −6.7 −2.8

95.2 329.2 35.4 9.6 7.8 0.8

35.8 35.4 126.2 −0.4 −8.7 15.0

4.7 9.6 −0.4 115.7 −1.8 −5.2

−6.7 7.8 −8.7 −1.8 17.3 0.3

−2.8 0.8 15.0 −5.2 0.3 17.0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

BV : 122.3

BH : 104.7

BR : 87.0

GV : 79.6

GH : 55.0

GR : 30.3

1.90 140.4 0.28 8.5

Li0.5CoO2

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

270.2 97.9 51.7 8.1 −6.4 50.7

97.9 288.0 36.4 7.3 −30.6 13.3

51.7 36.4 77.2 −13.2 7.5 −13.0

8.1 7.3 −13.2 90.1 18.7 −9.6

−6.4 −30.6 7.5 18.7 19.0 −10.8

50.7 13.3 −13.0 −9.6 −10.9 31.6

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

BV : 111.9

BH : 88.2

BR : 64.5

GV : 58.1

GH : 36.7

GR : 15.3

2.40 96.7 0.32 14.7

1 from Qi et al. [24]

crystal symmetry as proposed by Ranganathan et al. [25]:

AU = 5
GV

GR
+

BV

BR
− 6 ≥ 0, (6)

which accounts for both shear and bulk moduli to quantify the single-crystal
anisotropy. For locally isotropic single crystals AU = 0 since GV = GR and
BV = BR. As observable from Table 2, the anisotropy increases by a factor of
6.7 in the course of delithiation from LiCoO2 to Li0.5CoO2. This observation
is supported by the much higher values of C11, C22 and C44 relative to the
other elastic constants indicating brittle properties specifically along the direc-
tion perpendicular to the oxygen layers. Fractures due to cycling-induced stress
may therefore particularly originate from shear stress arising in the a-b-plane
(basal plane) and normal stress parallel to the basal plane leading to cleavage
perpendicular to the layers as illustrated in Fig. 4.

148 S.O. Dang et al.

Fig. 4. Illustration of brittle fracture occurring perpendicular to the layers of LixCoO2

based on the evaluated elastic tensors.

4 Summary and conclusions

In this paper we derived key properties for lithium ion battery electrode mate-
rials from first principles. The calculated isobaric heat capacities are in good
agreement with available experimental data and therefore demonstrate that the
quasi-harmonic approximation is a robust method to yield data particularly for
delithiated LiCoO2, which is difficult to obtain via an experimental approach.
The obtained data for the delithiated stoichiometries could be used to enhance
models in computational fluid dynamics simulations for a more accurate evalua-
tion of the heat distribution in cells in pursuit of the identification of hot spots.
The comparison of the elastic properties of LiCoO2 to available literature data
yields discrepancies, which can be attributed to the employed GGA exchange-
correlation functional in this work. In this respect, the bulk and the shear moduli
of LiCoO2 obtained are calculated to be 12% and 21% lower than the reference,
respectively. Qualitatively, the evaluation of the bulk to shear modulus ratio
(B/G) suggests brittle behavior for stoichiometries with 0.67 < x < 1 and duc-
tile behavior when 0.5 < x < 0.67. In this context the elastic tensors indicate
that brittle fracture and crack propagation may occur specifically perpendicular
to the basal plane in the direction of which the compound is much less ductile
than parallel to the basal plane, as indicated experimentally.

Acknowledgements. This work is supported by the BMBF project Meet Hi-EnD II.

References

1. Beaulieu, L., Beattie, S., Hatchard, T., Dahn, J.: The electrochemical reaction of
lithium with tin studied by in situ AFM. J. Electrochem. Soc. 150(4), A419–A424
(2003)

2. Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion elec-
trode particle under potentiostatic and galvanostatic operation. J. Power Sources
190(2), 453–460 (2009)

Ab Initio Modelling of Electrode Material Properties 149

3. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion
materials. J. Solid State Electrochem. 10(5), 293–319 (2006)

4. Dahn, J.: Phase diagram of Li x C 6. Phys. Rev. B 44(17), 9170 (1991)
5. Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress

in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010)
6. Du, T., Xu, B., Wu, M., Liu, G., Ouyang, C.: Insight into the vibrational and

thermodynamic properties of layered lithium transition-metal oxides LiMO2 (M=
Co, Ni, Mn): a first-principles study. J. Phys. Chem. C 120(11), 5876–5882 (2016)

7. Hector, L., Herbst, J., Capehart, T.: Electronic structure calculations for LaNi 5
and LaNi 5 H 7: energetics and elastic properties. J. Alloy Compd. 353(1), 74–85
(2003)

8. Huggins, R., Nix, W.: Decrepitation model for capacity loss during cycling of alloys
in rechargeable electrochemical systems. Ionics 6(1–2), 57–63 (2000)

9. Imai, Y., Watanabe, A.: Energetics of compounds related to Mg 2 Si as an anode
material for lithium-ion batteries using first principle calculations. J. Alloy Compd.
509(30), 7877–7880 (2011)

10. Jankovsky, O., Kovarik, J., Leitner, J., Rzicka, K., Sedmidubsky, D.: Thermody-
namic properties of stoichiometric lithium cobaltite LiCoO 2. Thermochim. Acta
634, 26–30 (2016)

11. Kevorkov, D., Schmid-Fetzer, R., Zhang, F.: Phase equilibria and thermodynamics
of the Mg-Si-Li system and remodeling of the Mg-Si system. J. Phase Equilibr.
Diffus. 25(2), 140–151 (2004)

12. Kresse, G., Furthmüller, J.: Software VASP, vienna (1999). Phys. Rev. B 54(11),
169 (1996)

13. Kurth, S., Perdew, J.P., Blaha, P.: Molecular and solid-state tests of density
functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quant. Chem.
75(4–5), 889–909 (1999)

14. Le Page, Y., Saxe, P.: Symmetry-general least-squares extraction of elastic coeffi-
cients from ab initio total energy calculations. Phys. Rev. B 63(17), 174103 (2001)

15. Li, Y., Cheng, Y.T.: Studies of metal hydride electrodes using an electrochemical
quartz crystal microbalance. J. Electrochem. Soc. 143(1), 120–124 (1996)

16. Liu, H., Hu, C., Wu, S.: Ab initio study on the lithiation mechanism of Mg 2 Si
electrode. In: 2011 International Conference on Materials for Renewable Energy &
Environment (ICMREE), vol. 1, pp. 683–685. IEEE (2011)

17. Ma, D., Cao, Z., Hu, A.: Si-based anode materials for Li-ion batteries: a mini
review. Nano-Micro Lett. 6(4), 347–358 (2014)

18. Menetrier, M., Carlier, D., Blangero, M., Delmas, C.: On really stoichiometric
LiCoO2. Electrochem. Solid-State Lett. 11(11), A179–A182 (2008)

19. Moriga, T., Watanabe, K., Tsuji, D., Massaki, S., Nakabayashi, I.: Reaction mech-
anism of metal silicide Mg 2 Si for Li insertion. J. Solid State Chem. 153(2),
386–390 (2000)

20. Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in
various crystal systems. Phys. Rev. B 90(22), 224104 (2014)

21. Park, C.M., Kim, J.H., Kim, H., Sohn, H.J.: Li-alloy based anode materials for Li
secondary batteries. Chem. Soc. Rev. 39(8), 3115–3141 (2010)

22. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Con-
stantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for
exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

23. Pugh, S.: XCII. relations between the elastic moduli and the plastic properties
of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367),
823–843 (1954)

150 S.O. Dang et al.

24. Qi, Y., Hector, L.G., James, C., Kim, K.J.: Lithium concentration dependent elas-
tic properties of battery electrode materials from first principles calculations. J.
Electrochem. Soc. 161(11), F3010–F3018 (2014)

25. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index.
Phys. Rev. Lett. 101(5), 055504 (2008)

26. Shang, S.L., Hector, L.G., Shi, S., Qi, Y., Wang, Y., Liu, Z.K.: Lattice dynam-
ics, thermodynamics and elastic properties of monoclinic Li 2 CO 3 from density
functional theory. Acta Materialia 60(13), 5204–5216 (2012)

27. Togo, A., Tanaka, I.: First principles phonon calculations in materials science. Scr.
Mater. 108, 1–5 (2015)

28. Wang, X., Loa, I., Kunc, K., Syassen, K., Amboage, M.: Effect of pressure on the
structural properties and Raman modes of LiCoO 2. Phys. Rev. B 72(22), 224102
(2005)

Overlapping of Communication
and Computation in nb3dfft for 3D

Fast Fourier Transformations

Jens Henrik Göbbert1(B), Hristo Iliev2,3, Cedrick Ansorge4, and Heinz Pitsch5

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
j.goebbert@fz-juelich.de

2 JARA-HPC, 52074 Aachen, Germany
3 IT Center, RWTH Aachen University, Aachen, Germany

4 Institut für Geophysik und Meteorologie, University of Cologne, Cologne, Germany
5 Institut für Technische Verbrennung, RWTH Aachen University, Aachen, Germany

Abstract. For efficiency and accuracy of Direct Numerical Simulations
(DNS) of turbulent flows pseudo-spectral methods can be employed,
where the governing equations are solved partly in Fourier space. The
inhouse-developed 3d-FFT library nb3dfft is optimized to the special
needs of pseudo-spectral DNS, particularly for the scientific code psOpen,
used by the Institute for Combustion Technology at RWTH Aachen
University. In this paper we discuss the method of overlapping com-
munication and computation of multiple FFTs at the same time.

Keywords: 3D-FFT · Overlapping communication and computation ·
Turbulence · Pseudo-spectral · Numerical simulation · HPC

1 Introduction

Highly optimized libraries for 3D Fast Fourier Transformations (3d-FFT) are
needed for pseudo-spectral Direct Numerical Simulation (DNS) codes.

Several platform-independent parallel 3d-FFT libraries, capable of 1d and
2d domain decomposition, are available as open-source software for single and
double precision data, e.g. P3DFFT [8] and 2DECOMP&FFT [5], which are developed
to run on large supercomputers. But, taking the specific properties of the entire
DNS algorithm into account, a new 3d-FFT library was developed for even more
optimized performance and scaling.

This 3d-FFT library for pseudo-spectral DNS called nb3dfft [7] was devel-
oped to take advantage of two optimization techniques. Firstly, this library
reduces the data to be sent between the MPI processes significantly. This has
been discussed in detail in [2]. Secondly, it provides the ability to compute multi-
ple 3d-FFTs simultaneously. In the following this approach is discussed in detail.

The basic algorithm for massive-parallel 3d fast Fourier transformations is
very communication intensive and requires a global and time consuming redistri-
bution of the data between all MPI processes. But, while data are being sent and
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 151–159, 2017.
DOI: 10.1007/978-3-319-53862-4 13

152 J.H. Göbbert et al.

received over the network, the CPUs are often idle as they are waiting for data
to process. Therefore masking the communication can have a major impact on
the overall performance. The technique for multiple 3d-FFTs of nb3dfft signif-
icantly optimize the 3d-FFT algorithm for pseudo-spectral DNS by introducing
methods for overlapping computation and communication phases.

2 Pseudo-spectral Algorithm

Understanding turbulence remains a big challenge of major importance to both
science and engineering. Turbulence is a strongly nonlocal and nonlinear con-
tinuum field phenomenon and is governed by the Navier-Stokes equations. For
incompressible flows these can be written as follows:
continuity

∇ · v = 0, (1)

momentum
∂v

∂t
+ ω × v = −∇p0 + ν∇2v, (2)

where v, p0 and ν denote the velocity vector, the static pressure and the kine-
matic viscosity, respectively, and ω = ∇ × v is the vorticity vector.

DNS of turbulent flows can be solved by various iterative numerical methods,
but for simple geometries pseudo-spectral methods [1] lead to the most accurate
results compared to finite-difference and finite-volume methods.

A pseudo-spectral algorithm for decaying isotropic homogeneous turbulence
as an incompressible flow in a cubed (2π)3 domain with periodic boundaries
represents the use case for the need of highly optimized 3d-FFT. The iterative
algorithm works on a 3d computational domain of Nx × Ny × Nz grid points in
real space and Kx ×Ky ×Kz wave numbers in spectral space as a superposition
of plane waves.

The incompressible Navier-Stokes equations for momentum (Eq. 2) is Fourier
transformed to

∂v̂

∂t
= −(δij − kikj

k2)(ω̂ × v)j + νk2v̂, (3)

in spectral space by applying incompressibility and introducing p̂0 = ik
k2 · ω̂ × v

as the transformed Poisson equation and δij as the Kronecker delta.
The linear term νk2v̂ and the time integration is computed in spectral space,

but the nonlinear product (ω̂ × v)j is a highly computationally expensive con-
volution in spectral space and is better computed in real space. Therefore, while
stepping forward in time with each iteration, three backward in-place 3d-FFTs,
three backward and out-of-place 3d-FFTs and three forward and in-place 3d-
FFTs have to be computed as shown in the Algorithm1. Here ‘backward’ refers
to a transformation from spectral to real space in contrast to ‘forward’, while
‘in-place’ refers to overwriting the input values with the result in contrast to
‘out-of-place’.

Overlapping of Communication and Computation for 3d-FFT 153

Algorithm 1. Outline of the efficient algorithm of the pseudo-spectral algo-
rithm for iterating the velocity of homogeneous isotropic forced turbulence and
a passive scalar in a periodic domain. The required 13 3d-FFTs are computed by
two nb3dfft calls in blocks of seven and six 3d-FFTs and benefit from overlap-
ping communication and computation. It requires memory for 22 scalars values
(numbered by the lower index) per grid point and computes 13 3d-FFTs in each
iteration.
1: procedure iterate velocity (n → [n + 1]), passive scalar ([n − 1] → n)

2: input (velocity): ûn
1|2|3, Ĝ

n−1

4|5|6, f̂n−1
u

3: input (passive scalar): φ̂n−1
17 , Jn−1

19 , Ĵn−2
18 , ûn−1

16

4: for all wave numbers (κ) do: � compute vorticity
5: ω̂n

x,10 ← κzû
n
y,2 − κyûn

z,3

6: ω̂n
y,11 ← κxûn

z,3 − κzû
n
x,1

7: ω̂n
z,12 ← κyûn

x,1 − κxûn
y,2

8: ωn
10|11|12

F+3/2 filter←−−−−−−−− ω̂n
10|11|12 � 3x in-place backward 3d-FFT

9: un
7|8|9

F+3/2 filter←−−−−−−−− ûn
1|2|3 � 3x out-of-place backward 3d-FFT

10: Ĵn−1
19

F+3/2 filter←−−−−−−−− Jn−1
19 � 1x in-place forward 3d-FFT

11: for all wave numbers (κ) do: � advance passive scalar

12: φ̂n
17 ←− Fadv(φ̂

n−1
17 , Ĵn−1

19 , Ĵn−2
18 , ûn−1

16)

13: Ĵn−1
19

zero copy
� Ĵn−2

18 � swap memory
14: for all grid points (N) do: � compute Gn = ωn × un

15: Gn
x,13 ← un

y,8 · ωn
z,12 − un

z,9 · ωn
y,11

16: Gn
y,14 ← un

z,9 · ωn
x,10 − un

x,7 · ωn
z,12

17: Gn
z,15 ← un

x,7 · ωn
y,11 − un

y,8 · ωn
x,10

18: ∇̂φ
n

10|11|12 ← φ̂n
17 � 3x compute derivatives

19: Ĝ
n

13|14|15
F+3/2 filter←−−−−−−−− Gn

13|14|15 � 3x in-place forward 3d-FFT

20: ∇φn
20|21|22

F+3/2 filter←−−−−−−−− ∇̂φ
n

20|21|22 � 3x in-place backward 3d-FFT

21: Jn
19 ← un

7|8|9 · ∇φn
20|21|22 � compute convective term

22: Ĝ
n

13|14|15
zero copy

� Ĝ
n−1

4|5|6 � swap memory

23: ûn
16

zero copy
� ûn

2 � swap memory
24: f̂n

u ← F(f̂n−1
u) � compute forcing energy

25: for wave numbers (|κijk| < kf = 2
√

2) do: � add forcing energy

26: ûforce
1|2|3 ←− Fforce(û

n
1|16|3, f̂n

u)

27: for all wave numbers (κ) do: � advance velocity

28: ûstep1
1|2|3 ←− Fstep1(û

force
1|2|3, Ĝ

n

4|5|6, Ĝ
n−1

13|14|15)

29: for all wave numbers (κ) do: � apply projection tensor
30: ûn+1

1|2|3 ←− Fstep2(û
step1
1|2|3)

31: 〈ûn+1
1|2|3〉 = 0 � set mean velocity to zero

32: output (velocity): ûn+1
1|2|3, Ĝ

n

4|5|6, un
7|8|9, ûn

16

33: output (passive scalar): φ̂n
17, Jn

19, Ĵn−1
18

154 J.H. Göbbert et al.

3 Overlapping Communication and Computation

For a 3d-FFT library without the technique of overlapping computation and
communication the following can be said: While the communication phase is
active and data is exchanged between the MPI processes no calculations can
be performed outside the MPI library. Computation and communication do not
overlap. Therefore, the two communication phases require the fraction fcomm of
the time to compute a complete 3d-FFT while the three computation phases
occupy the fraction fcalc. Both sum up to fcalc + fcomm = 1. This situation
is sketched in Fig. 1a. Here six individual 3d-FFTs for different input data are
computed one after the other. The computation phases are shown in orange
and the communication phases in green. For each 3d-FFT all five phases are
sequentially executed.

As each phase depends on the previous one it is takes some extra effort and
compute time to overlap communication and computation for a single 3d-FFT
[9]. This can be avoided if multiple 3d-FFTs have to be computed at the same
time: here computation phases and communication phases of different 3d-FFTs
can overlap.

In 2012, MPI-3.0 introduced non-blocking collective MPI calls. This included
the all-to-all communication pattern as functions of the MPI IAlltoall() fam-
ily. But even though those functions return immediately after being called, the
data is not actually sent in the background for large message sizes because of
the way most MPI libraries are implemented. Without special hardware support
for communication offloading and MPI envelope matching, the library has to
actively participate in the data transfer and therefore the non-blocking collec-
tive is progressed entirely by a second MPI call like MPI Wait() or MPI Test(),
which has to be executed before the result is needed. The result is that, in com-
parison to the blocking collective MPI function MPI Alltoall(), the communi-
cation time shifts to MPI Wait() / MPI Test() and no overall speedup could be
measured for a 3d-FFT algorithm by simply switching from MPI Alltoall() to
MPI Ialltoall() combined with MPI Wait() / MPI Test(). Some MPI imple-
mentations try to overcome the aforementioned limitation by introducing asyn-
chronous progression threads. While providing true background data transfer,
this mechanism increases the message passing latency and is rarely enabled by
default. Wittmann et al. [10] suggest calling MPI repeatedly in a separate user
thread, which requires MPI thread support level of MPI THREAD MULTIPLE
and that is known to not work given certain combinations of MPI implementa-
tions and communication hardware, e.g. Open MPI and InfiniBand. A solution
that works in all cases and does not rely on the asynchronous progression or
MPI THREAD MULTIPLE is thus required.

nb3dfft has been developed to overcome this issue and follows an approach
based on two OpenMP threads per MPI process for the two different types of
computation and communication phases (Fig. 1b). The communication thread
executes all MPI function calls of the communication phases, while the compute
thread is responsible for the computation phases. If nested OpenMP is supported
multiple threads can be used to support the compute thread. This two-threaded

Overlapping of Communication and Computation for 3d-FFT 155

Fig. 1. Schematic re-organization of non-blocking 3d-FFT algorithm in nb3dfft for
overlapping computation and communication for the example of six 3d-FFTs. (a) shows
the standard implementation where the computation (orange) and the communication
(green) is called sequentially. (b) shows the algorithm used in nb3dfft which masks
any communication by the communication thread, which flips between sleeping and
working sequentially. In the optimal case the compute thread has not to wait at any
time for the communication to be finished. The index a-f refers to Fig. 2 in [2]. (Color
figure online)

approach utilizes modern CPUs in a convenient way and is particularly efficient
on systems, which have more logical than physical CPUs (this is the case for the
JUQUEEN [3] as well as for Intel architecture) as the communication thread is
sent to sleep for most of the time.

Dependencies between the different phases ensure, that they are executed at
any time in the right order. But these dependencies only exist between phases of
the same 3d-FFT. If multiple 3d-FFTs are requested to be computed nb3dfft
can overlap computation and communication phases of different 3d-FFTs as
shown in Fig. 1b. It efficiently re-organizes computation and communication to
utilize the network over significant parts of the process.

First the communication thread is started and loops through its event loop
waiting and sleeping until communication jobs are added to its job queue. The
first computation phase of all 3d-FFTs is then executed one after the other
by the compute thread. After each of these phases has finished a communi-
cation job is passed to the job queue of the communication thread instead of
calling MPI Alltoall() directly. Depending on a successfully finished commu-
nication job the compute thread executes the corresponding subsequent second
computation phases and passes again a communication job to the job queue of
the communication thread for each finished phase. Finally the last computation
phases are executed by the compute thread if the second communication job has
finished.

156 J.H. Göbbert et al.

If any communication job has not been completed when the computation
thread requests the data, the computation thread will continue with phases to
process for any other 3d-FFT and comes back later. Therefore, nb3dfft only
optimizes the dependencies between phases and not the order with which phases
of different 3d-FFTs are called. nb3dfft does not require that communication
jobs, which are added first to the job queue are completed first. This way it is
for example possible that the third computation phase of the first 3d-FFT is
computed, while the second computation phase of another 3d-FFT has not even
started yet. But in most cases first, second and third computation phases are
executed one after the other as the communication jobs of the different 3d-FFTs
are consuming the same wall clock time.

For each cycle of the event loop the communication thread checks for new
communication jobs in the job queue. The information passed with the communi-
cation job enables the communication thread to start the required non-blocking
collective MPI function MPI IAlltoall(). Then all active connections started
in a previous cycle are tested by MPI Test(). This function call passes compute
time to MPI library, which can process some more operations to proceed with
the data transfer. It does not necessarily mean that all data has been sent after
the first call to MPI Test(). If the test function returns with success, the sta-
tus of this communication job is set to finished. Depending on the MPI library
the number of simultaneous non-blocking collective operations is limited. For
JUQUEEN it is limited to a maximum of six. The communication thread will
therefore not process more than six communication jobs at the same time on
JUQUEEN.

Ideally, the time required for the computation phases is equal or larger than
the time for the communication phases. In a real-world setup this is rarely the
case. But the more 3d-FFTs are computed simultaneously by nb3dfft, the bet-
ter the communication can be masked. Hence, the algorithms order of 3d-FFT-
execution has been re-organized to optimally benefit from overlapping commu-
nication and computation with nb3dfft.

In the example of the Algorithm 1 nb3dfft has only to be called once for
seven 3d-FFTs and once for six 3d-FFTs. This means, that the algorithm has
only two synchronization points when using nb3dfft with overlapping commu-
nication and computation instead of 2 · 13 = 26 (2 synchronization points for 2
MPI Alltoall() per 3d-FFT, times 7 + 6 = 13 3d-FFTs).

4 Results

For highly parallel production runs nb3dfft is used in the DNS code psOpen on
the system JUQEEN. Hence performance and scaling results are measured for
this system here.

Comparing the optimized Algorithm1 with the same setup, but without over-
lapping communication & computation when calculating the 3d-FFTs, psOpen
shows a speedup of up to 29.63% (Table 1). Depending on the grid points per
core the result differs from 15.50% with 65 536 grid points per core to 29.63%

Overlapping of Communication and Computation for 3d-FFT 157

Table 1. Performance increase on JUQUEEN by overlapping communication & com-
putation in the simulation code psOpen using the Algorithm 1 with nb3dfft for different
domain sizes from 10243 up to 61443. Because of the memory requirement of psOpen

certain configurations could not be tested.

N3 10243 20483 40963 61443

16 384 cores 15.50 % 21.60 % - -

32 768 cores - 26.63 % 29.63 % -

65 536 cores - 17.70 % 19.78 % -

131 072 cores - 11.64 % 22.69 % 17.53 %

with 2 097 152 grid points per core. Larger message sizes on the same number of
cores show a larger speedup, except for the 61443 grid on 131 072 cores.

This speedup is on-top of the speedup achieved by optimizations by better
MPI mapping and data reduction using implicit filtering [2]. Figure 2b shows
the estimated compute time required for psOpen on JUQUEEN to simulate
homogeneous isotropic turbulence on a 61443 grid until statistical steady state
with 16 384 compute nodes (262 144 cores). Here, overlapping communication
&computation saves 13.4 million core-h of compute time.

Hiding the time for communication has great impact on the scaling of psOpen.
Strong scaling of psOpen for four grid sizes between 20483 and 81923 grid points
on 458 752 cores (1 835 008 compute threads) is shown in Fig. 2a on BlueGene/Q
(JUQUEEN). It can be seen that this hiding of time for communication is suc-
cessful almost up to 16 384 compute nodes for a 61443 grid, but not beyond.

Fig. 2. (a) Strong scaling of psOpen for four grid sizes between 20483 and 81923 grid
points on 458 752 cores (1 835 008 compute threads) on BlueGene/Q (JUQUEEN) Lin-
ear scaling is shown for reference. psOpen exhibits an almost linear speedup for up to
16 384 compute nodes for a 61443 grid. (b) Estimated compute time required for psOpen
on JUQUEEN to simulate homogeneous isotropic turbulence on a 61443 grid until sta-
tistical steady state with 16 384 compute nodes with 262 144 cores.

158 J.H. Göbbert et al.

5 Conclusion

Developing pseudo-spectral codes for DNS that scale on large systems are chal-
lenging. Especially the time consuming and communication intensive 3d-FFT
is difficult to optimize to a large number of cores because 3d-FFTs require
MPI alltoall() calls, which cannot be avoided.

With nb3dfft the 3d-FFTs can be optimized, as they are not thought as sin-
gle operations, but as part of the algorithm. Calling multiple 3d-FFT for different
fields at the same time allows overlapping of communication and computation
and results in a performance gain of � 20%. At the same time the message sizes
and the number of messages of the MPI alltoall() call is not changed. Addi-
tionally the number of synchronization points of an algorithm can dramatically
be lowered, as shown for algorithm 1 (from 26 to 2) This enables psOpen using
nb3dfft to scale to large number of cores on BlueGene/Q (JUQUEEN).

The technique and benefits of overlapping computation and communication
by nb3dfft are in general independent of the specific 3d-FFT algorithm. They
can be used for any algorithm with alternating computation and communication
phases. Hence, nb3dfft was adopted by the algorithm used for the DNS code
tlab2015 developed by Juan-Pedro Mellado and Cedrick Ansorge at the Max-
Planck Institut of Meterology in Hamburg for Intel x86 and IBM BlueGene/Q
architecture. This DNS code is based on compact schemes [4] to compute spatial
derivatives, which require the same kind of global transposes as known from
3d-FFT. It was possible to overlap computations of significant parts of the
numerical algorithm with communications required by the global transposes for
the compact scheme. A speedup by up to 40% (depending on the configuration)
was achieved on JUQUEEN.

Acknowledgments. The authors gratefully acknowledge the computing time granted
by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part
of the supercomputer JUQUEEN [3] at Forschungszentrum Jülich.

References

1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid
Dynamics. Springer, Heidelberg (1988). Technical report

2. Goebbert, J.H., Gauding, M., Ansorge, C., Hentschel, B., Kuhlen, T., Pitsch, H.:
Direct numerical simulation of fluid turbulence at extreme scale with psOpen. Adv.
Parallel Comput. 27, 777–785 (2016)

3. JUQUEEN: Jülich Blue Gene/Q (2012–2015). http://www.fz-juelich.de/ias/
juqueen. Accessed 01 Aug 2015

4. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Com-
put. Phys. 103(1), 16–42 (1992)

5. Li, N., Laizet, S.: 2DECOMP & FFT-A highly scalable 2D decomposition library
and FFT interface. In: 2010 Conference Cray User Group, pp. 1–13 (2010)

6. Mellado, J.P., Ansorge, C.: tlab - Tools to simulate and analyze different configura-
tions of 2D and 3D turbulent flows. https://github.com/turbulencia/tlab. Accessed
07 Dec 2015

http://www.fz-juelich.de/ias/juqueen
http://www.fz-juelich.de/ias/juqueen
https://github.com/turbulencia/tlab

Overlapping of Communication and Computation for 3d-FFT 159

7. nb3dfft: non-blocking 3d-fft library (2014–2016). https://gitlab.version.fz-juelich.
de/goebbert/nb3dfft. Accessed 30 Oct 2016

8. Pekurovsky, D.: P3DFFT: A framework for parallel computations of fourier trans-
forms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012)

9. Song, S., Hollingsworth, J.K.: Designing and auto-tuning parallel 3-D FFT for
computation-communication overlap. ACM SIGPLAN Not. 49(8), 181–192 (2014)

10. Wittmann, M., Hager, G., Zeiser, T., Wellein, G.: Asynchronous MPI for the
masses (2013). arXiv:1302.4280

https://gitlab.version.fz-juelich.de/goebbert/nb3dfft
https://gitlab.version.fz-juelich.de/goebbert/nb3dfft
http://arxiv.org/abs/1302.4280

Towards Simulating Data-Driven
Brain Models at the Point Neuron Level

on Petascale Computers

Till Schumann(B), Csaba Erő, Marc-Oliver Gewaltig,
and Fabien Jonathan Delalondre

BBP, Geneva, Switzerland
Till.Schumann@epfl.ch

Abstract. We present a solution to two important problems that arise
in the simulation of large data-driven neural networks: (a) efficient load-
ing of network descriptions and (b) efficient instantiation of the network
by executing the model specification. To address the first problem, we
present a general data-format PointBrainH5, to store the network infor-
mation along with the parallel-distributed RTC algorithm to efficiently
load and instantiate a network model. We test data-format and algorithm
on a data-driven simulation of the size of a full mouse brain on 4 racks of
a IBM Blue Gene/Q. The model comprised 75 million neurons with 664
billion synapses and occupied 15 TB on disk. Loading and instantiation
of the network on 4 racks of the BlueGene/Q took 30 min. We observe
good scaling for up to 16,384 nodes.

Keywords: Data-driven simulation · Parallel I/O · Spiking neural net-
work models · Supercomputer · Threading · MPI

1 Introduction

In recent years, considerable progress has been made in simulating large neu-
ronal networks, representing brain regions or entire brains, on super-computers.
In 2008, Ishikevich and Edelman published a model consisting of one million
neurons and almost half a billion connections, based on DT imaging data [8].
In 2009, Rajagopal Ananthanarayanan et al. published a model of the scale
of a cat cortex with 10 billion neurons and 100 trillion synapses [9]. In 2013,
Diesmann et al. were able to simulate a network, containing 1.73 billion nerve
cells connected by 10.4 trillion synapses on the K computer [4]. All these simu-
lations have in common that the network or brain model is described in prob-
abilistic terms: The properties of the neurons and their connections are defined
by a relatively small number of probability density functions, resulting in very
compact network descriptions that are negligible compared to the size of the net-
work when it is instantiated in the computer memory. Thus, from a computer
science perspective, the main challenges of simulating these networks lied in
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 160–169, 2017.
DOI: 10.1007/978-3-319-53862-4 14

Towards Simulating Data-Driven Brain Models 161

(i) efficiently instantiating the network model, based on its algorithmic defini-
tion and (ii) efficiently simulating the model on massively parallel computers. In
the course of the Human Brain Project, a new type of network model is arising
where many of the network properties are explicitly specified by anatomical and
electrophysiological data. These networks are sometimes called data-driven mod-
els or digital reconstructions. For these models it is no longer possible to describe
the network by a (relatively) small number of probability density functions. One
example is the digital reconstruction of a neocortical column, developed by the
Blue Brain Project [5]. This network has a comparatively small number of 31,000
neurons with 8 million connections. However due to the explicit specification of
neuronal morphologies and connectivity, the specification of the network reaches
the size of 27 GB on disk. We can therefore imagine that the explicit specification
of a network at the scale of a mouse brain will occupy substantial amount of
space on disk. If we consider a mouse brain with 75 million neurons and 10,000
connections per neuron, a fully specified network, that is a network where every
connection is explicitly defined, will occupy several TB of disk space. To simu-
late such a network on a supercomputer, we must (a) efficiently load the network
description from a distributed file-system and (b) efficiently instantiate the neu-
rons and their connections by executing the model specification. Here we present
results of our efforts to address these two steps. We present a new data-format,
based on HDF5 [11], to store the network information along with a parallel-
distributed algorithm to efficiently load and instantiate a network model. The
algorithm is implemented as an extension to the neural simulation tool NEST [1].

2 Contribution

In this paper, we describe an extension to the neural simulation tool NEST [14]
that allows to efficiently load and instantiate large-scale data-driven network
models such as the prototype model of a mouse brain. As concrete starting
point, we used a prototype model of a mouse brain [13] that is based on aggre-
gated data from the Allen Mouse Brain Atlas [2] and Blue Brain Project [5]. The
model consists of 75 million adaptive exponential integrate-and-fire neurons [6]
and their 3D positions with around 10,000 conductance based synapses per neu-
ron. Each synapse obeys the Tsodyks-Markram short-term dynamics [7] which
yields 5 parameters per synapse. We describe a novel file format to the store
an explicitly defined neural model network model of point neurons on disk and
an import module to load the model from file into the simulator. It enables to
exclude the model generation from NEST and generate therefore the model with
our own scripts. This is a major change to common simulations with NEST. The
flexibility to generate the model with our own scripts allow us to realize com-
plex generation algorithms. Thus, we are able to generate a mouse brain model
by combining data from the Allen Mouse Brain Atlas and Blue Brain Project
and simulate it with NEST. On the full scale, the model has around 75 million
neurons with 660 billion synapses. Because of the large amount of synapses, an
efficient data layout of the file format and optimal I/O are crucial. To overcome

162 T. Schumann et al.

Fig. 1. Illustration of the workflow of the generation of the mouse brain prototype
model. The workflow encapsulates the model generation from the simulator NEST.
The generation uses data from the Allen Mouse Brain Atlas (AMB) and the Blue
Brain Project (BBP). In between the generation and the simulator the neural network
is stored on disk in the presented PointBrainH5 format. The parts of the workflow,
which are presented in this paper have a grey background.

the limitation of markup languages, we store our model definition in the pre-
sented PointBrainH5 data format. The simulator NEST does not support the
import from PointBrainH5. Therefore, we extended NEST with an import mod-
ule to support it. We tested a first approach of our HDF5 import module at the
JUQUEEN Extreme Scaling Workshop 2016 [12].

3 Methods

We present a file format to store an explicitly defined neural network model of
point neurons on disk. We extend NEST with import modules to support the
presented data format. Therefore, we develop an algorithm to efficiently load
synaptic connectivity data from the data format and transpose it according to
the internal data structure of NEST. Combing it with an implementation of
the model generation, we get a workflow to run simulations of explicitly defined
brain-scale models with NEST (see Fig. 1).

3.1 PointBrainH5

We choose self-descriptive HDF5 [11] files as a container for the neural net-
work model. The entities of our neural network are neurons and synapses. Two
different file layouts are used to store both: The neuron file encapsulates all
neuron parameters. Each parameter has its dataset (C m, Delta T, ...). The
length of each dataset defines the number of neurons. The synapse file encapsu-
lates connection information and synapse parameters. The synapses are grouped
by pre-synaptic neurons. Therefore, all pre-synapic neuron ids (id) with refer-
ences to the syn dataset (syn n and syn ptr) are stored in the neuron dataset
(neuron). In the syn dataset, all related post-synaptic neuron IDs (target) and
the synapse parameters (delay, weight, U0, TauRec, TauFac) are stored (Fig. 2).

3.2 Implementation

We implement an extension in NEST that allows to efficiently load the Point-
BrainH5 data-format and instantiate the model in the data structure of NEST.

Towards Simulating Data-Driven Brain Models 163

Fig. 2. (a) The neurons are stored in one HDF5 file. Each dataset in the HDF5 file
represents one neuron parameter. H5RCreate supports the loading of parameters from
datasets with a floating point data type. An additional dataset with the data type
int can be used to tag and group neurons. The neuron groups can be accessed by the
SLI interface to interact with only parts of neurons. (b) The synapses are stored in a
different HDF5 file. Each HDF5 file has two datasets: neuron and syn. Each dataset
has its own compound data type: CELL TYPE and SYNAPSE TYPE. The synapse
import module permits differences of the SYNAPSE TYPE type: The float values
delay, weight, ... can be removed, replaced or extended by different float values.

Due to the splitting of the model in neuron and synapse information, we
implement the import modules H5RCreate for neurons and H5RTConnect for
synapses. The internal C++ API of NEST allows the creation and manipu-
lation of the neural network model. The API is mainly developed to work as
an interface between the internal structure and the user interface. Our imple-
mentation accesses the C++ functions directly to avoid overhead. Both import
modules load parts of the HDF5 files and store them in the NEST data structure.
H5RCreate loads only the neurons from PointBrainH5 per MPI rank, which are
needed on the MPI rank. NEST distributes all neurons based on a modulo func-
tion. Thus, we know in advance, which parts have to be loaded on which MPI
rank. For synapses, it is more complex: Because of memory optimizations, the
synapses are only stored on the post-synaptic MPI rank [4]. This means that the
synapse information is stored on the MPI rank where the post-synaptic neuron
is located. The data delivered by the model generation orders the synapses based
on the pre-synaptic neuron. Thus, a transformation of the synapse data is nec-
essary. Preprocessing of the input data should be avoided in order to maintain
its original PointBrainH5 format for future changes in the model generation.
Therefore, we transpose the data during the import with the RTC algorithm.

3.3 RTC Algorithm

The RTC algorithm transposes the synaptic connectivity information iteratively
(see Fig. 3). The algorithm reads synaptic connectivity from PointBrainH5 files

164 T. Schumann et al.

Fig. 3. Illustration of the RTC algorithm. RTC can be divided into five steps, which are
separated in two loops. Read reads a set of synapses from file into a buffer. Det. Node,
Sort and Alltoall transpose the synapses across the MPI ranks. Connect extracts the
synapses from the buffer and stores them into the NEST data structure. The steps Read,
Det. Node and Sort are called in the enqueue loop. Afterwards, the second dequeue
loop calls Alltoall and Connect. The red steps are executed on the master thread. The
blue steps are executed in OpenMP tasks on idle threads. The two rows represent the
parallel execution of the steps. The arrow between both Alltoall represent collective
communication between MPI ranks. Alltoall contains a collective MPI operations (all
other steps are executed independently by the MPI ranks). (Color figure online)

in parallel and transposes the read synapses across the MPI processes. There-
fore, it makes use of MPI and shared memory parallelism. We derived RTC
from the synapse import algorithm tested at the JUQUEEN Extreme Scaling
Workshop 2016 [12]. Our introduced enhancements are a better load balanc-
ing and a better utilizations of available OpenMP threads. RTC balances the
mount of data read per MPI rank. As in common systems, the available I/O
bandwidth is balanced between the MPI ranks, each MPI rank reads the same
amount of data. The system and the parallel file system take care of an equal
distribution of the bandwidth. In practice, the distribution of the bandwidth is
closer to a normal distribution. Thus, the wall-clock times of the read operations
differ between the MPI ranks, even though all MPI ranks read the same amount
of data. This means, the read operation produces imbalance, which results in
waiting times in subsequent collective operations. Therefore, a better load bal-
ancing is achieved by performing the read and the necessary collective operations
consecutively. Hence, the algorithm iterates twice over all synapses (Fig. 5a illus-
trates the synapses in memory). In a first loop, all synapses are read block-wise
from file and enqueued. Once each block of synapses is read, a parallel thread
assigns the target MPI rank to each synapse and sorts the synapses in the block
by target MPI rank. In a second loop, the synapses are transferred to the target
MPI ranks in a collective MPI Alltoall operation. From there, they are passed
to the connect function from the NEST internal C++ API and stored in the
NEST data structure function.

Towards Simulating Data-Driven Brain Models 165

4 Performance Results

The I/O performance of the model import and the memory footprint of the model
in NEST effect mainly the usability of brain-scale data-driven simulations. From
the model import, the synapse import plays the major role, as it has to load
10,000 more data than the neuron import module. Thus, we negligible the neu-
ron import module performance and present the I/O performance results from
our H5RTConnect implementation (RTC algorithm). Benchmarks on different
scales on JUQUEEN [3] should give detailed information about the reached per-
formance. The tested implementation is available on GitHub [15]. It is forked
from the NEST repository [16]. For the HDF5 interface, we used the HDF5
version 1.8.15, which is given as a module on JUQUEEN. As performance met-
rics, we use the I/O bandwidth and the connection frequency, which corresponds
to the pass-through of synapses per time interval. Both metrics are linear related.
Thus, both metrics are directly comparable. For benchmarks, we measured the
number of created synapses, the according bytes and the wall-clock time of differ-
ent parts of our implementation. From this we calculate the connection frequency
per second and the corresponding bandwidth [GB/s]. Figure 4b shows the metrics
for different runs over the number of used ranks. In Fig. 4b, Read corresponds to
bandwidth of the HDF5 read operation, Connect corresponds to the connection
frequency of the whole algorithm and Rearrange corresponds to the connection
frequency with the Connect step excluded. The bandwidth of Read matches
approximately the theoretical I/O performance of the system. Thus, the used
read operation utilizes the available bandwidth. By additionally rearranging the
synapses (Rearrange), the performance drops. Due to the collective operation
in the Alltoall step, we lose most of the performance. I/O read calls produce
imbalance, which result in waiting times during the first Alltoall step. Taking
additionally the Connect step into account, the resulted connection frequency
reaches around 10% of the I/O bandwidth. Figure 4a shows the performance in
comparison to our implementation, tested at the JUQUEEN Extreme Scaling
Workshop 2016. We reach better performance by having the collective after and
not in between the I/O read operations (see Fig. 3 and algorithm description in
[12]). By performing the sequential read operations consecutively, we have less
imbalance caught by the collective operations. Additionally, we want to know
how many racks of IBM Blue Gene/Q we need to simulate a mouse brain scale
model. We expect that the simulation is memory bound. We extend our imple-
mentation with a memory logger and run simulations on different scales. We
observe during the loading the memory usage of each compute node. Figure 5b
shows the observed values for a simulation on full Blue Brain IV [10]. The 4 racks
and 4 racks opt represent two different runs with different configurations. In
contrast to the 4 racks, 4 racks opt uses 4g kernel synapses [4] and reduced float-
ing point precision for the synapse parameters. The optimized synapse objects
reduce the memory footprint for each stored synapse. Thus, the 4 racks opt run
succeed to load the whole model into memory. However, the 4 racks run crashes
into the memory wall, before the whole model is loaded.

166 T. Schumann et al.

Fig. 4. (a) Performance comparison of the Workshop implementation and the RTC
algorithm on different scales on JUQUEEN. The theoretical line shows the approxi-
mate peak connection frequency, bounded by the I/O bandwidth of the system. The red
squares and the blue dots show the measured connection frequencies from benchmarks
of the RTC algorithm and the Workshop implementation, respectively. The Work-
shop implementation is the implementation of the algorithm, tested at JUQUEEN
Extreme Scaling Workshop 2016. The RTC algorithm is the implementation of the
presented algorithm (see Fig. 3). (b) Performance of the RTC algorithm in detail. The
performance of different parts of our implementation over the number of racks are
shown: Read, Rearrange and Connect. The parts contain following steps of the algo-
rithm description in Fig. 3. Read : Read ; Rearrange: Read, Det. Node, Sort and Alltoall ;
Connect : Read, Det. Node, Sort, Alltoall and Connect. As performance metrics band-
width (gigabyte per second) and connection frequency (giga connections per second)
are used. Both metrics are linear related. The relation is factored by the scales of the
vertical axis. (Color figure online)

5 Functionality

The presented NEST extension can load neural network models from Point-
BrainH5 into the simulator. PointBrainH5 supports any explicitly defined neural
network model of point neurons. We used the NEST extension to run first sim-
ulations of the prototype of the mouse brain model. Initial experiments gave
us insights of the model behavior. For further experiments, we wanted to per-
turb the parameter of the synapses. To avoid regeneration of the whole model,
we integrated the possibility to adapt parameters during the import for both
neurons and synapses. Each neuron and synapse is defined by a set of para-
meters (p1, ..., pm). A manipulation kernel k can be used to operate on each
parameter set (p1, ..., pm) = k((x1, ..., xn)) before the parameters are stored
in the NEST data structure. We implemented basic functions: E.g. the mul-
tiplication kernel enables to strengthen all synapse weights with a factor S:
(p1, p2, ..., pm) = (x1, Sx2, ..., xn). New kernels can be implemented easily to
customize the model.

Towards Simulating Data-Driven Brain Models 167

Fig. 5. (a) Theoretical memory usage of RTC algorithm over iterations. First, Read
reads the synapse files and stores the data in a queue in a first loop. Afterwards, a
second loop dequeues the synapses and stores them in the NEST data structure using
Connect function of NEST. The enqueuing iterations fill up the buffer used by the
import module. During dequeuing the buffer is emptied and the synapses are passed
to the NEST data structure. (b) Used memory per node over iterations ratio (loading
progress) for importing mouse brain scale model in NEST. The solid, dotted and dashed
lines represent the mean, minimum and maximum used memory per node, respectively.
The 4 racks lines show the observed used memory from a standard configuration run
plotted over the loading progress. The 4 racks opt shows the same for an optimized
configuration. Both runs are executed on 4 racks of IBM Blue Gene/Q.

6 Summary

In this paper we presented a solution to two important problems that arise in
the simulation of large data-driven networks: First, we must (a) efficiently load
the network description from a distributed file-system and (b) we must effi-
ciently instantiate the neurons and their connections by executing the model
specification. To address the first problem, we presented the data-format Point-
BrainH5, based on HDF5, to store the network information along with the
parallel-distributed RTC algorithm to efficiently load and instantiate a network
model. PointBrainH5 enables to store an explicitly defined neural network model
of point neurons in HDF5 files on disk. Thus, we are able to run a data-driven
simulation of the size of a full mouse brain on 4 racks of IBM Blue Gene/Q
machines (see Fig. 5b). The data-format is currently very general. Further opti-
mizations will require a specialization of the format to the characteristics of
the particular computer and storage architecture. Having a general data-format
for explicit network definitions offers the additional advantage that the network
becomes available for off-line analysis and visualization (see Fig. 6), indepen-
dent of the computer system that is used for simulation. To load and instantiate

168 T. Schumann et al.

Fig. 6. Visualized spiking activity of the mouse brain model prototype. The figures
show active neurons in four different time steps (from top left to bottom right: 40 ms,
120 ms, 200 ms, 270 ms). Only active neurons are shown. The color represent the region
of each neuron given by the Allen Mouse Brain Atlas [2]. (Color figure online)

large-scale data-driven networks we devised the parallel-distributed RTC algo-
rithm and implemented it an extension to the neural simulation tool NEST.
We tested the algorithm on a prototype model of the whole mouse brain. This
model comprised 75 million neurons with 664 billion synapses. Using our data
format, the model description occupied 15 TB on disk. Using all 4 racks of the
BlueGene/Q it was possible to load and instantiate this network in 30 min. Our
benchmark simulations showed good scaling for up to 16384 nodes.

Acknowledgement. The authors of this paper would like to gratefully thank both the
HPC and the Visualization teams of the Blue Brain Project, for the many discussions
and feedback provided. This work has been funded by both the EPFL Blue Brain
Project (funded by the Swiss ETH board) and the European Union Seventh Framework
Program (FP7/20072013) under grant agreement no. 604102 (HBP).

References

1. Gewaltig, M.-O., Diesmann, M.: NEST (neural simulation tool). Scholarpedia 2(4),
1430 (2007)

2. Jones, A.R., Overly, C.C., Sunkin, S.M.: The Allen brain atlas: 5 years and beyond.
Nat. Rev. Neurosci. 10(11), 821–828 (2009)

3. Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/Q Supercomputer system at
the Jlich supercomputing centre. J. Large-Scale Res. Facil. JLSRF 1, 1 (2015)

4. Kunkel, S., et al.: Spiking network simulation code for petascale computers. Front.
Neuroinformatics 8, 78 (2014)

Towards Simulating Data-Driven Brain Models 169

5. Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez,
C.A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., et al.: Recon-
struction and simulation of neocortical microcircuitry. Cell 163(2), 456–492 (2015)

6. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effec-
tive description of neural activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

7. Fuhrmann, G., Segev, I., Markram, H., Tsodyks, M.: Coding of temporal informa-
tion by activity-dependent synapses. J. Neurophysiol. 87(1), 140–148 (2002)

8. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocorti-
cal systems. Proc. Natl. Acad. Sci. 105(9), 3593–3598 (2008)

9. Ananthanarayanan, R., et al.: The cat is out of the bag: cortical simulations with
109 neurons, 1013 synapses. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. IEEE (2009)

10. Blue Brain Project. Blue Brain 4 (2016). http://www.cscs.ch/computers/blue
brain 4/index.html

11. The HDF Group Hierarchical Data Format, version 5 (2016). http://www.
hdfgroup.org/HDF5

12. Schumann, T., Delalondre, F.: HDF5 import module for the spiking neuronal sim-
ulator NEST. In: JUQUEEN Extreme Scaling Workshop, no. FZJ-2016-01816, pp.
43–48 (2016)

13. Eroe, C., et al.: Estimation of neuron numbers and densities of the mouse brain
(in preparation)

14. Bos, H., et al.: NEST 2.10.0. Zenodo (2015). doi:10.5281/zenodo.44222
15. Schumann, T.: Nest-simulator, branch:h5kernel (2016). GitHub repository. https://

github.com/tillschumann/nest-simulator/tree/h5kernel
16. Bos, H., et al.: Nest-simulator, ref:4b0f360 (2016). GitHub repository. https://

github.com/nest/nest-simulator

http://www.cscs.ch/computers/blue_brain_4/index.html
http://www.cscs.ch/computers/blue_brain_4/index.html
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.5281/zenodo.44222
https://github.com/tillschumann/nest-simulator/tree/h5kernel
https://github.com/tillschumann/nest-simulator/tree/h5kernel
https://github.com/nest/nest-simulator
https://github.com/nest/nest-simulator

Parallel Adaptive Integration
in High-Performance Functional

Renormalization Group Computations

Julian Lichtenstein1(B), Jan Winkelmann2, David Sánchez de la Peña1,
Toni Vidović3, and Edoardo Di Napoli2,4,5

1 Institute for Theoretical Solid State Physics, RWTH Aachen University,
52074 Aachen, Germany

lichtenstein@physik.rwth-aachen.de
2 Aachen Institute for Advanced Study in Computational Engineering Science,

RWTH Aachen University,
52072 Aachen, Germany

3 Department of Mathematics, Faculty of Science, University of Zagreb,
10000 Zagreb, Croatia

4 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,
52425 Jülich, Germany

5 JARA–HPC, 52425 Jülich, Germany

Abstract. The conceptual framework provided by the functional Renor-
malization Group (fRG) has become a formidable tool to study corre-
lated electron systems on lattices which, in turn, provided great insights
to our understanding of complex many-body phenomena, such as high-
temperature superconductivity or topological states of matter. In this
work we present one of the latest realizations of fRG which makes use
of an adaptive numerical quadrature scheme specifically tailored to the
described fRG scheme. The final result is an increase in performance
thanks to improved parallelism and scalability.

Keywords: Adaptive quadrature · Functional renormalization group ·
Interacting fermions · Hybrid parallelization · Shared memory
parallelism

1 Introduction

In this paper we report on the algorithmic and performance improvements
resulting from the collaboration between High-Performance Computing (HPC)
experts and domain scientists in the specific field of functional Renormaliza-
tion Group (fRG). In particular, we focus on an adaptive implementation of a
two-dimensional numerical quadrature algorithm tailored to the evaluation of a
large number of integrals within a recently developed fRG method. The result
of such an effort is the Parallel Adaptive Integration in two Dimensions (PAID)
library. PAID requires approximately an order of magnitude fewer operations for
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 170–184, 2017.
DOI: 10.1007/978-3-319-53862-4 15

Adaptive Integration in HPC fRG 171

the computation of the numerical integrals and translates this reduction into a
substantial gain in parallel performance.

The Renormalization Group (RG) is a powerful method describing the behav-
ior of a physical system at different energy and length scales. RG techniques
allow smooth interpolation between well studied models at a given energy scale
and complicated emergent phenomena at lower energy scales. In what is known
as RG flow, physical quantities are computed iteratively with respect to vari-
ation of an auxiliary scale parameter by solving a system of coupled ordinary
integro-differential equations. In its application to interacting electrons on a lat-
tice at low temperatures, fRG methods are commonly used to detect transitions
of the metallic state towards some ordered state [1,2]. At the initial energy scale
of the flow, the physical system is in a well understood metallic state, where
weakly correlated electrons interact pairwise through Coulomb repulsion. Low-
ering the scale, a second order phase transition may take place at some critical
temperature, in which some form of order (e.g. magnetism or superconductivity)
spontaneously emerges.

fRG methods passed through many refinements over the years [3–6] in the
form of specific approximation schemes. While each of these schemes has its
strength, the improvement of their accuracy (e.g. on predictions for critical tem-
peratures) is still underway. In the current work, we illustrate the Truncated
Unity scheme (TUfRG) [7] and its parallel implementation. One of the compu-
tational advantages of this scheme stems from the insertion of truncated parti-
tions of unity in the flow equations. The resulting numerical integration becomes
less challenging at the expense of having extra operations to perform (so-called
inter-channel projections). At each step of the equations’ flow one ends up com-
puting multiple independent integrals parametrized by three indices, namely l,
m, and n. In the original TUfRG code all these integrals are distributed over
a large number of threads where each one is computed sequentially by a single
thread using the adaptive DCUHRE library [8]. Since computing such integrals
accounts for around 80% of the total computational time, they are the ideal
candidate for an HPC optimization.

While recent implementations have shown increased performance and scal-
ability through parallel quadrature schemes [9,10], we follow a different path
by tailoring the numerical quadrature to the needs of the TUfRG algorithm. In
PAID, the subset of all integrals corresponding to one value of l are collected in
a container and computed adaptively. All the integrals in the container become
tasks which are executed under just one parallel region over the shared memory
of a compute node. With this approach we intend to gain better control over
the global quadrature error and minimize load imbalance while increasing scal-
ability. Our results show that PAID scales as well as the trivial parallelization
using DCUHRE. In addition, PAID’s adaptivity over the indexes m and n of the
integrals consistently yields a speedup from 2× up to 4×. In Sect. 2 we give a
brief account of the method at the base of the TUfRG scheme. In the following
section we present the basic notion of adaptive integration and the algorithm
underlying the PAID library. In Sect. 4 we describe the parallel implementation
in more detail. We conclude with a section on numerical results and future work.

172 J. Lichtenstein et al.

2 The fRG Method and the Truncated Unity Approach

In this section we provide a short introduction to the mathematical framework
of the TUfRG scheme. This is by no means an exhaustive description and we
refer the reader to [7] for a detailed presentation. As several other fRG methods,
TUfRG focuses on interacting electrons on 2D lattice systems. These systems
exhibit strong correlations at low energy, which results in a rich diversity of
ordered ground states. At the mathematical level, the effective two-particle cou-
pling function V (k0,1,k1; k0,2,k2; k0,3,k3) contains essential information on the
properties of the electronic ground state. V depends on both three frequencies
(k0) and three momenta (k), while the fourth ones are fixed due to conservation
of energy and momentum respectively. In favor of a short notation, we sum up
the dependence on frequency and momentum of one particle into a combined
index k = (k0,k) and write V (k1, k2, k3).

The fRG calculation is based on the insertion of a control parameter Ω,
which is an artificial energy scale. It is used for tuning the system from an
easily solvable starting point to a system that includes the physically important
features. For a given value of the control parameter, the strong correlations at
energies below Ω are excluded from V . Starting from a high enough Ω results in
a well-defined initial value for V , which corresponds to an interaction between
two isolated charges. By decreasing Ω, we successively include correlation effects
into the effective two-particle coupling. From a mathematical point of view, the
calculation of V at lower energy scales can be seen as an initial value problem,
where the value of V at a high energy scale is the initial value. In order to obtain
the resulting two-particle coupling function at lower values of Ω, one needs to
integrate a first order ordinary differential equation extracted from a so-called
level-2 truncation of the fRG equation hierarchy [1] and from neglecting self-
energies. Such an equation can be written as

V̇ (k1, k2, k3) = Tpp(k1, k2, k3) + T cr
ph(k1, k2, k3) + T d

ph(k1, k2, k3) , (1)

where the dependence on Ω of all quantities is implicit and the dot above V
denotes the first derivative with respect to the artificial energy scale. The right-
hand side is divided in three main contributions: a particle-particle

Tpp = −
∫

dp [∂ΩG(p)G(k1 + k2 − p)] V (k1, k2, p)V (k1 + k2 − p, p, k3) , (2)

a crossed particle-hole

T cr
ph = −

∫
dp [∂ΩG(p)G(p + k3 − k1)] V (k1, p + k3 − k1, k3)V (p, k2, p + k3 − k1)

(3)
and three direct particle-hole terms summarized in T d

ph as

T d
ph =

∫
dp [∂ΩG(p)G(p + k2 − k3)] [2V (k1, p + k2 − k3, p)V (p, k2, k3)

− V (k1, p + k2 − k3, k1 + k2 − k3)V (p, k2, k3)
−V (k1, p + k2 − k3, p)V (p, k2, p + k2 − k3)]. (4)

Adaptive Integration in HPC fRG 173

All five summands that appear as integrands are quadratic in both V and the
function G(k) = θ(k)

ik0−ε(k) , which is the propagator of the system containing
non-interacting particles. The regulator function θ implements the exclusion of
correlation effects from the system at energies below Ω. In this paper we use
θ(k) = θ(k0) = k2

0
k2
0+Ω2 as regulator, which suppresses G for Ω much larger than

all relevant energy scales of the system. In the limit of Ω → 0 the structure of
G is recovered and we regain the physical system. The energy dispersion ε(k)—
which appears in the denominator of G—contains the energy spectrum of the
single-particle problem. Since in this paper we are dealing with a t-t′ Hubbard
model on a square lattice, the dispersion is

ε(k) = −2 t (cos(kx) + cos(ky)) − 4 t′ cos(kx) cos(ky) − μ (5)

where t and t′ describe the kinetics of the particles and μ is the chemical potential
controlling the total number of particles in the system.

The calculation of the two-particle coupling V using a direct implementation
of Eqs. (1)–(4) is numerically challenging. Even if the dependence on the external
frequencies k0,1, k0,2 and k0,3 is neglected—as we will do in the following—the
scaling of the number of differential equations with respect to the number of
momentum sampling points is cubic. Using frequency independent two-particle
couplings, the frequency integrals from Eqs. (2)–(4) involve just the Ω derivative
of a product of two fermionic propagators and can be performed analytically.
The result of this shows sharp structures as function of momentum at small
values of Ω (see Fig. 1). As mentioned above, at low energy scales the system
can get close to a phase transition, which is indicated by a strong increase of
specific components of V . Thus a product of two strongly peaked two-particle
couplings and sharp structured propagators constitutes the integrands of the
momentum integrals in Eqs. (2)–(4).

In order to change Eqs. (1)–(4) in the direction of a numerically easier treat-
ment, accompanied by the introduction of quantities with a more direct physical
interpretation, we perform modifications that can be classified in three steps1.
First, the initial part V (0) is separated from the two-particle coupling and the
rest is split into three single-channel coupling functions ΦP, ΦC and ΦD. Their
derivatives with respect to Ω are given by Tpp, T cr

ph and T d
ph respectively. This

is motivated by the fact that V develops strong dependencies on the external
momentum combinations appearing in Eqs. (2)–(4) respectively, denoted by l in
the following. In a second step, the remaining weak momentum dependencies of
each channel are expanded in a complete set of orthonormal functions {fn}—so-
called form-factors. Since we can only use a finite number of basis functions while
doing numerics, we restrict the basis to slowly oscillating functions to achieve a
good description of weak momentum dependencies of the channels. This latter
step can be interpreted as a sort of discretization with ΦP

l,k,k′ → Pm,n(l)—and

1 See Ref. [7] for a more detailed derivation and an example application of the scheme.

174 J. Lichtenstein et al.

equivalently for the C and D channels—where k and k′ are replaced by form-
factor indices m and n. As a consequence of implementing the first two steps in
Eqs. (1)–(4), the scaling of the number of coupled differential equations respect
to the number of momentum sampling points is reduced to a linear relation.
Moreover, the scaling respect to the number of form-factors is less important in
most cases, since a good description can be achieved even using a small number
of form-factors.

In a third and final step we change the form of the RHS of the resulting differ-
ential equations by inserting two partitions of unity of the form-factor basis set.
The fermionic propagators can then be separated from the two-particle coupling
terms and the differential Eq. (1) now takes the form of three separate equations

Ṗ(l) = VP (l) Ẋ pp
(l)VP (l) , (6)

Ċ(l) = −VC(l) Ẋ ph
(l)VC(l) , (7)

Ḋ(l) = 2VD(l) Ẋ ph
(l)VD(l) − VC(l) Ẋ ph

(l)VD(l) − VD(l) Ẋ ph
(l)VC(l) ,

(8)

where

X pp
m,n(l) =

∫
dp

[∫
dp0 G

(
p0,

l
2

+ p
)

G

(
−p0,

l
2

− p
)]

fm(p) fn(p) , (9)

X ph
m,n(l) =

∫
dp

[∫
dp0 G

(
p0,p +

l
2

)
G

(
p0,p − l

2

)]
fm(p) fn(p). (10)

VP , VC and VD are two-particle couplings with two momenta replaced by form-
factor indices, and can be computed from P , C, and D in the aforementioned
inter-channel projections. The inserted partitions of unity are also truncated
by ignoring strongly oscillating form-factors. Inner integrals from Eqs. (9) and
(10) can be treated analytically, while the calculation of the outer (momentum)
integrals requires a sophisticated numerical integration scheme. Due to the last
modification, we call the scheme described in Eqs. (6)–(10) Truncated Unity fRG
(TUfRG).

Numerically, this scheme is implemented in four steps organized in a loop
mimicking the flow of the ODE for decreasing values of Ω. Within the loop, the
most intensive part of the computation is given by the numerical integration. In
the current C++ implementation of TUfRG, the numerical integration is paral-
lelized using the MPI+OpenMP paradigm. Each MPI process receives a subset
of values of l indices while an OpenMP parallel for pragma encapsulates the
actual computation of the integrals for all m and n values. Each integral is then
assigned to a thread and computed sequentially using the DCUHRE library [8].

Adaptive Integration in HPC fRG 175

Fig. 1. The value of the integrand is plotted against the two-dimensional momentum
p for Ω = 1.0 (left plot) and Ω = 0.1 (right plot). In this example case the external
momentum l is set to (3.14, 0.78) and both form-factor indices label the lowest order
function, which is constant in momentum space.

Assemble interaction

P ,C,D → V P

∼ 20% CPU Time −→

Perform 2D integration

χ̇pp
m,n(l) ∀ m,n,l

∼ 80% CPU Time

↑ ↓
Iterate ODE for P , C, D

d
dΩ Pm,n(l)

< 1% CPU Time ←−

Matrix multiplication
∑

p,q V P
m,p(l) χ̇pp

p,q(l)V P
q,n(l)

< 1% CPU Time

Using example values of l, m and n, Fig. 1 shows the integrand from Eq. (9) at
a high and a low value of Ω. This example illustrates a general characteristic of
the integrands: While at high Ω values the variations in momentum space are
smooth, sharp edges and peaks emerge as the energy scale is lowered. This means
in terms of numerical integration that the density of sampling points in momen-
tum space should be chosen adaptively and separately for every integration. As
the data from Fig. 1 suggest, the adaptive routine used should furthermore be
able to refine the grid of sampling points using strongly local criteria in order to
reduce the inaccuracies caused by sharp structures and to save time when flat
regions are considered. In the next section we show how such a target is achieved
by Algorithm 2, and give an account of its parallel implementation.

3 Adaptive Integration A-La Clenshaw-Curtis

The main target of adaptive integration is to decrease the error in a consistent
and controlled fashion over relatively low-dimensional domains [11]. A possible
choice to increase accuracy is to increase the number of integration points for
a given integration method. Alternatively one can fix the number of integration
points and instead partition the integration domain. Numerical integration with

176 J. Lichtenstein et al.

the same number of integration points is then performed on each subdomain.
The latter method is known as adaptive integration. One of the most accu-
rate variations of such a method computes the error across the whole domain
[12, Chap. 6]. If some estimate for the global error is above a given threshold,
one iteratively subdivides and integrates the sub-domain with the largest local
error. Algorithm1 shows the typical structure of such an adaptive integration
scheme.

Algorithm 1. Adaptive integration on domain D with global error criterion
1: function adaptive(Integrand φ, Domain D, Target Error ε)
2: Compute integrals Q(φ,D, n1) and Q(φ,D, n2)
3: err[φ] = |Qn1

φ − Qn2
φ|

4: Store domain D and err[φ]
5: while err[φ] > ε do
6: Take the sub-domain Ds with largest error
7: Subdivide it into parts Ds1 , . . . ,Dsd

8: for a = 1 : d do
9: Compute Q(φ,Dsa , n1) and Q(φ,Dsa , n2)

10: errsa [φ] = |Qsa
n1

φ − Qsa
n2

φ|
11: Store domain Dsa and errsa [φ]
12: end for
13: err[φ] =

∑

s

errs[φ]

14: end while
15: return value =

∑

s

Q (φ,Ds, n2)

16: end function

In the current work we compute the numerical integrals (and also the estimate
for the error) using the Clenshaw-Curtis Quadrature (CCQ) formula2. Starting
with n1 integration points, we settle for a formula with n2 ≥ n1 as the more
accurate estimate [14]. With this choice the error estimate is equal to

err[φ] = |Qn1
φ − Qn2

φ|,

where with Qn φ = Q (φ,D, n) we indicate the computation of the integral
Φ =

∫
D φ over the domain D through numerical quadrature with n integration

points3. When n2 is proportional to n1, the advantage of the CCQ scheme—
compared to Gauss for instance—is the reuse of the n1 points as a subset of the
n2 points. In the rest of this work we set n1 = N and n2 = 2n1.

2 For a review of Clenshaw-Curtis and a comparison with Gauss quadrature rules we
refer to the excellent review [13].

3 We use the conventional notation indicating with the capital symbol the integral (Φ)
and with the corresponding small cap symbol (φ) its integrand.

Adaptive Integration in HPC fRG 177

The schematic description in Algorithm 1 should be applied to the computa-
tions of the integral on the RHS of the flow Eqs. (2)–(4). After discretizing and
projecting (using a truncated partition of unity), the RHS of such equations are
split in multiplications of two-particle couplings Vi (i = P,C,D) and suscepti-
bility factors X j (j = pp,ph), only the latter expressed in terms of integrals.
Despite the fact that now the integrals seem limited to the RHS of Eqs. (9)–(10),
the adaptive approach has to encompass the whole set of integrals labeled by
the indices m and n. Moreover, the original integrals included also the values
of the couplings Vi in the integrand, so these quantities play an active role in
the computation of the global error. Let us clarify this point by considering just
the particle-particle channel Eq. (2), and formally evaluating it using a generic
quadrature formula

QN τpp = −
N∑

�=1

w� [∂ΩG(p�)G(k1 + k2 − p�)] V (k1, k2, p�)V (k1+k2−p�, p�, k3) ,

(11)
where the w� are the weights associated with the quadrature points p�. After
some rearrangements and the introduction of the truncated partition of unity,
the RHS of this equation is transformed into

∑
p,q V P

m,p

(
QN χ̇pp

p,q

)
V P

q,n where
we made explicit the m and n indices and suppressed, for the moment, the
dependence on the l index. Despite the fact that now this quantity is the sum of
distinct quadratures QN χ̇pp

p,q, the global error should be thought as defined by
the original expression |QN τpp − Q2N τpp|, leading to the following expression

err[Ṗm,n] =

∣∣∣∣∣
∑

p,q

[
V P

m,p

(
QN χ̇pp

p,q

)
V P

q,n − V P
m,p

(
Q2N χ̇pp

p,q

)
V P

q,n

]
∣∣∣∣∣

≤ ∥∥V P
m,:

∥∥
∞

∥∥V P
:,n

∥∥
∞

∑

p,q

∣∣QN χ̇pp
p,q − Q2N χ̇pp

p,q

∣∣ ,

(12)

where x = Vm,: is the vector made by all column entries corresponding to the
mth row and ‖x‖∞ = maxj |xj |.

We can think of the entire numerical integration as the union of the quadra-
tures Qn χ̇pp

p,q on the same domain D for each value of the indices p and q. While
each adaptive quadrature labeled by p and q returns its own value, the absolute
error is computed globally over all indices (p, q). We further simplify the defini-
tion of the error by dropping the terms proportional to ‖V ‖∞. This last step may
seem arbitrary but it is in part justified by the fact that, in the actual computa-
tion, we are only interested in the error relative to the value of the function. In
order to maintain generality we define with φi,j,k = Viχ̇jVk and the associated
global relative error as

err[φi,j,k] =
∑

p,q

err[χ̇j
p,q].

178 J. Lichtenstein et al.

Algorithm 2. Parallel adaptive integration of TUfRG with global error
1: for all i, j, k, l do
2: function adaptive(Integrand φi,j,k, Domain D, Target Error ε)
3: done = false
4: while done
= true do
5: Take the domain Ds ⊆ D and indices (p, q) with largest error
6: Subdivide it into parts Ds1 , . . . ,Ds4

7: for a = 1 : 4 do
8: Compute Q(χj

p,q,Dsa , N) and Q(χj
p,q,Dsa , 2N)

9: errsa [χj
p,q] = |Qsa

N χj
p,q − Qsa

2N χj
p,q|

10: Store domain Dsa , indices (p, q) and errsa [χj
p,q]

11: end for
12: err[φi,j,k] =

∑

s,p,q

errs[χj
p,q]

13: if err[φi,j,k] < ε then done = true end if
14: end while
15: return (value)j

p,q =
∑

s

Q
(
χj

p,q,Ds, 2N
)

16: end function
17: end for

We kept the index l still implicit so as to avoid cluttering the notation, but
it is understood that all definitions above depend implicitly on it. With these
definitions in mind we end up with the adaptive quadrature scheme illustrated
in Algorithm 2.

4 Parallel Implementation

In this work, we describe a parallel implementation of the adaptive function
of Algorithm 2 over one computing node using OpenMP pragmas, and leave
the outer for loops—identified by indices i, j, k, and l—distributed over MPI
processes. Each elementary integration is encoded as a task, which can be imag-
ined as a struct type. Each task has the following members: an id field that
corresponds to distinct values of the p and q indices, a domain, the two values
val N and val 2N computed according to the CCQ method, and an estimate of
the error err.

The adaptive integration scheme requires the tasks with the largest error to
be scheduled first. Such an approach is not easily expressible with the OpenMP
task construct. Although OpenMP tasks have recently gained support for task
priorities, the allowed priority values are limited to non-negative scalars. As a
result PAID cannot make use of OpenMP tasks.

The container into which the tasks are placed is a heap data structure that
uses the err as the sorting key. A heap structure allows cheap en- and dequeuing
of tasks. The heap is initialized at the beginning of the program.

Adaptive Integration in HPC fRG 179

Listing 1. Initialization of the task queue container

1 err[φ] := 0.0

2 for all (p, q)

3 task.id := (p, q) and task.domain := D
4 task.val N := QN χ and task.val 2N := Q2N χ

5 task.err := |QN χ − Q2N χ|
6 container.push(task)

7 err[φ] += task.err

8 heapify(container, key = task.err)

The heap structure of the container guarantees that task extraction is done
in a way that refines regions with larger error estimates first, independent of
which pair of indices (p, q) they belong to. In a way this algorithm can be seen
as adaptive integration with starting regions defined by both D and (p, q). Due
to the adaptivity based on the global error, the OpenMP parallel block has to
enclose the domain D as well as the indices (p, q). As previously stated, PAID
cannot make use of OpenMP’s more advanced work sharing constructs. Instead,
Algorithm 2 parallelizes the main part of the routine from line 4 to 14 using just
the parallel directive (see line 4 of Listing 5). Access to the queue in lines 5 and
10 requires exclusive access in order to avoid race conditions. For queues that
are not thread-safe a mutex is required (critical directive). This may decrease
parallel performance as threads may need to wait for access to the queue. For this
reason we implement bulk extraction and insertion into a thread-local container:
Each thread can extract a MaxTask number of tasks, whose value is set by the
user. Care has to be taken in choosing MaxTask; Its optimal value is a trade-
off between maintaining acceptable levels of parallel performance and avoiding
unnecessary adaptive refinements.

Listing 2. Extract tasks with maximal error from the queue

1 #pragma omp critical {
2 for n = 1 : MaxTask

3 local container[n] = extract-max(container)

4 }

This results in a work sharing construct, as each task returned from the
heap is different. Tasks are processed by partitioning their domain once in each
dimension, which yields four new tasks. Before the new tasks can be inserted
into the heap an error estimate is required, which in turn requires evaluation of
the integrals.

Listing 3. Divide domains and evaluate new tasks

1 for n = 1 : MaxTask

2 evaltask[n, 1 : 4] := Divide local container[n].domain into 4 parts

3 for a = 1 : 4

4 evaltask[n, a].domain := part a of local container[n].domain

5 Compute evaltask[n, a].val N and evaltask[n, a].val 2N

6 Compute evaltask[n, a].err

180 J. Lichtenstein et al.

Eventually, the global error is updated within the mutex. Each thread then
inserts the new tasks, together with their relative sub-domain, and id in the
heap.

Listing 4. Update error and insert new tasks in the queue

1 #pragma omp critical {
2 for n = 1 : MaxTask

3 err[φ] −= local container[n].err

4 for a = 1 : 4

5 err[φ] += evaltask[n, a].err

6 insert(evaltask[n, a] ⇒ container)

7 }

The termination criterion need only be checked by a single thread at the end of
its block of refinements. This implies that the termination criterion is checked
not sooner than after MaxTask refinements. When the global error is lower than
the required threshold, all other threads are instructed to exit the while loop
via the done flag. The entire program, which includes all previous Listings, is
illustrated in Listing 5.

Listing 5. Full program

1 Program PAID(φ, D, ε)

2 done := false

3 Initialize the task queue container (Listing 1)

4 #pragma omp parallel {
5 while done �= true do

6 Extract tasks with max error from container (Listing 2)

7 Divide the domain and evaluate new tasks (Listing 3)

8 Update err[φ] and insert new tasks in the queue (Listing 4)

9 #pragma omp master {
10 if err[φ] < ε then done := true

11 }
12 }
13 forall distinct task.id = (p, q)

14 return (value)(p,q) :=
∑

task.domaintask.val 2N

5 Results and Conclusions

In order to illustrate the effectiveness of PAID within the TUfRG code, we
present a number of numerical tests, run on the JURECA computing clus-
ter located at the Jülich Supercomputing Centre. Each node of the cluster is
equipped with 2 Intel Xeon E5-2680 v3 Haswell CPUs. All tests were run with a
single MPI rank per compute node. Node level parallelism is exclusively due to
the shared memory parallelization of the adaptive quadrature implementation
described in Algorithm 2.

In the following we draw a comparison between the previous implementation
using DCUHRE and the newly developed implementation based on PAID. As
both adaptivity and parallel efficiency play an important role in terms of per-
formance, we conducted the comparative analysis in terms of these two aspects
separately, before we compare the runtimes.

Adaptive Integration in HPC fRG 181

Fig. 2. The number of function evaluations needed for calculating all integrals of a
fixed l value is plotted against Ω. We use a form-factor expansion that results in 45
independent integrals for each external momentum l, which is fixed to (1.57, 1.31) (left
plot) and (2.88, 0.26) (right plot) respectively. The results of both implementations—
the one using DCUHRE (red) and the one using PAID (blue)—are shown in the same
plot in favor of a direct comparison. In order to use the same number of evaluations
per subregion as in DCUHRE, we set the PAID parameter N to 4. Further we use
MaxTask = 10. (Color figure online)

Figure 2 shows that the number of function evaluations needed by PAID is
smaller than the one needed by DCUHRE at all values of the scale parameter,
especially at low scales where most of the computation time is used4. As a
smaller number of evaluations implies a more efficient partition of the integration
domain, this number can be seen as an inverse measure for the adaptivity of the
implementation provided by PAID, especially at low scales where the integrands
tend to blow up. The difference in adaptivity between the both schemes can be
understood as a consequence of the error estimation. DCUHRE computes the
errors of the integrals labeled by p and q in isolation so that each error fulfills the
same termination criterion independently. The PAID scheme treats all integrals
as one task which in practice prioritizes computation over the most difficult
partitions of the domain. As the major part of the computation time is used by
the low-Ω integration domains, a code that is more efficient in this region of the
parameter space pays off in terms of total runtime.

The second performance analysis addresses the parallel efficiency of PAID.
Figure 3 shows that the speedup is close to ideal for any thread number up to
245. Using SMT—up to 48 threads—still increases the speedup compared to the
one using 24, but the curves in Fig. 3 show a slower increase in performance. This
result suggests that the code is compute bound and can not profit highly from a
larger memory bandwidth per core. Although the shared memory parallelization
of the implementation of TUfRG using DCUHRE is much simpler—as described
in Sect. 2—, we find a speedup which is as high as the one we achieve using PAID.
We verified that the runtimes of the integrals for distinct p and q within a fixed

4 Notice that the fRG flow in the current setup starts at high Ω values and successively
reduces this scale during the flow.

5 The granularity of the affinity is set to ’compact,core,1’.

182 J. Lichtenstein et al.

Fig. 3. These plots show the speedup at Ω = 10−3 against the number of threads for
the implementation based on PAID. For thread numbers up to 24 each compute core
executes only a single thread. At 48 threads each compute core processes two threads
at a time using simultaneous multithreading. The l-values are chosen as in Fig. 2 and
there are 325 integrals to calculate per l. For this analysis we use the PAID parameters
that result in the best performance: N = 6 and MaxTask = 18.

Fig. 4. The computation time needed for calculating all integrals of a fixed l value
using 48 threads is plotted against Ω. We use a form-factor expansion that results
in 325 independent integrals for each l, which takes the same values as in Fig. 2. For
reasons of comparison we use N = 4 in PAID as in the analysis shown in Fig. 2. Further,
MaxTask is set to 7.

value of l do not vary much in serial execution. In such a case the parallelization
over the p and q values does not suffer from load imbalances and results in a
close to ideal speedup.

In a third set of tests—possibly the most relevant to a user of TUfRG—we
compared the runtimes that are needed by DCUHRE and PAID to perform all
the integrations within a fixed value of l. As illustrated in Fig. 4, PAID needs
less compute time than DCUHRE at all scales and is about 2–3 times faster at
low Ω values.

In conclusion the TUfRG code greatly benefits from the proposed adaptive
integration algorithm both in terms of load balancing and adaptivity. The result
is a good exploitation of the node-level parallelism at any stage of the flow

Adaptive Integration in HPC fRG 183

equation without the need of ad-hoc parameter choices. Comparing the new
integration scheme with the one provided by DCUHRE shows that the PAID
algorithm exhibits a higher level of adaptivity which in turn leads to shorter run-
times. In addition, the use of standard OpenMP pragmas ensures performance
portability over clusters other than JURECA with the potential for off-loading to
many-cores platforms with minimal effort. In the future, we envision to expand
the internal parallelism of PAID to distributed memory. Such an extension could
replace the currently used distribution of the l values over the MPI ranks and
would prevent load imbalances that limit the number of accessible nodes in the
current implementation.

Acknowledgements. Financial support from the Jülich Aachen Research Alliance–
High Performance Computing, and the Deutsche Forschungsgemeinschaft (DFG)
through grants GSC 111, RTG 1995 and SPP 1459 is gratefully acknowledged. We
are thankful to the Jülich Supercomputing Centre (JSC) for the computing time
made available to perform the numerical tests. Special thanks to JSC Guest Student
Programme which sponsored the research internship of one of the authors.

References

1. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V., Schönhammer, K.: Func-
tional renormalization group approach to correlated fermion systems. Rev. Mod.
Phys. 84, 299–352 (2012)

2. Platt, C., Hanke, W., Thomale, R.: Functional renormalization group for multi-
orbital fermi surface instabilities. Adv. Phys. 62(4–6), 453–562 (2013)

3. Zanchi, D., Schulz, H.J.: Weakly correlated electrons on a square lattice: a renor-
malization group theory. EPL (Europhysics Letters) 44(2), 235 (1998)

4. Salmhofer, M., Honerkamp, C.: Fermionic renormalization group flows: technique
and theory. Progress Theoret. Phys. 105(1), 1–35 (2001)

5. Husemann, C., Salmhofer, M.: Efficient parametrization of the vertex function, Ω
scheme, and the t, t

′
hubbard model at van hove filling. Phys. Rev. B 79, 195125

(2009)
6. Wang, W.S., Xiang, Y.Y., Wang, Q.H., Wang, F., Yang, F., Lee, D.H.: Functional

renormalization group and variational monte carlo studies of the electronic insta-
bilities in graphene near 1

4
doping. Phys. Rev. B 85, 035–414 (2012)

7. Lichtenstein, J., Sánchez de la Peña, D., Rohe, D., Di Napoli, E., Honerkamp, C.,
Maier, S.A.: High-performance functional renormalization group calculations for
interacting fermions. arXiv:1604.06296, April 2016

8. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: DCUHRE: an adaptive mul-
tidemensional integration routine for a vector of integrals. ACM Trans. Math.
Softw. 17(4), 452–456 (1991)

9. DApuzzo, M., Lapegna, M., Murli, A.: Practical aspects and experiences - Scala-
bility and load balancing in adaptive algorithms for multidimensional integration.
Parallel Comput. 23(8), 1199–1210 (1997)

10. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multidi-
mensional quadrature on distributed memory architectures. Euro-Par 1999 Parallel
Processing (1999)

11. Cools, R.: Advances in multidimensional integration. J. Comput. Appl. Math.
149(1), 1–12 (2002)

http://arxiv.org/abs/1604.06296

184 J. Lichtenstein et al.

12. Krommer, A.R., Ueberhuber, C.W. (eds.): Numerical Integration on Advanced
Computer Systems. LNCS, vol. 848. Springer, Heidelberg (1994)

13. Trefethen, L.N.: Is gauss quadrature better than clenshaw-curtis? SIAM Rev.
50(1), 67–87 (2008)

14. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature
routines. J. Comput. Appl. Math. 25(3), 327–340 (1989)

Performance Portability

It can be challenging to develop scientific simulations flexible enough to perform well
across the diverse set of modern HPC architectures. The spectrum of High-Performance
Computing (HPC) systems varies greatly from specialized massively-parallel RISC
architectures, such as IBM Blue Gene, through clusters of commodity hardware, to
heterogeneous combinations of traditional CPUs and accelerator devices such as
GPGPUs. The network and systems interconnects span a similarly wide spectrum.
Taking full advantage of a specific kind of HPC system requires intricate low-level
knowledge and specialized programming, which then results in software that does not
run efficiently on other kinds of HPC hardware. Therefore, the development of adaptive
algorithms and methods, which allow for the efficient porting of scientific simulations
across HPC systems while trying to maintain their performance characteristics, is of
paramount interest.

The papers presented in this section offer different views on the topic of achieving
performance portability that complement and complete each other. They cover a) novel
methods for visualization of performance data, which allow the quick identification and
filtering of relevant performance information, b) the re-engineering of existing parallel
codes and the integration into them of modern portable high-performance numeric
libraries, and c) experiences from filling the “gaps” in scientific and engineering soft-
ware development by bridging HPC expertise with domain science through on-demand
collaboration.

Performance Optimization of Parallel
Applications in Diverse On-Demand

Development Teams

Hristo Iliev1,2(B), Marc-André Hermanns3,4, Jens Henrik Göbbert4,
René Halver4, Christian Terboven1,2, Bernd Mohr3,4, and Matthias S. Müller1,2

1 JARA-HPC, 52074 Aachen, Germany
2 Chair for High Performance Computing, IT Center, RWTH Aachen University,

Seffenter Weg 23, 52074 Aachen, Germany
{iliev,terboven,mueller}@itc.rwth-aachen.de

3 JARA-HPC, 52425 Jülich, Germany
4 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,

52425 Jülich, Germany
{m.a.hermanns,j.goebbert,r.halver,b.mohr}@fz-juelich.de

Abstract. Current supercomputing platforms and scientific application
codes have grown rapidly in complexity over the past years. Multi-scale,
multi-domain simulations on one hand and deep hierarchies in large-scale
computing platforms on the other make it exceedingly harder to map the
former onto the latter and fully exploit the available computational power.
The complexity of the software and hardware components involved calls
for in-depth expertise that can only be met by diversity in the application
development teams. With its model of simulation labs and cross-sectional
groups, JARA-HPC enables such diverse teams to form on demand to
solve concrete development problems. This work showcases the effective-
ness of this model with two application case studies involving the JARA-
HPC cross-sectional group “Parallel Efficiency” and simulation labs and
domain-specific development teams. For one application, we show the
results of a completed optimization and the estimated financial impact of
the combined efforts. For the other application, we present results from an
ongoing engagement, where we show how an on-demand team investigates
the behavior of dynamic load balancing schemes for an MD particle sim-
ulation, leading to a better overall understanding of the application and
revealing targets for further investigation.

Keywords: Software development · Parallel efficiency · Performance
optimization · On-demand teams · Diversity

1 Introduction

In the past decade, concurrency in supercomputing platforms has risen exponen-
tially. With increasing transistor density resulting in new multi- and many-core
processor node architectures and large-scale networks, such as multi-dimensional
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 187–199, 2017.
DOI: 10.1007/978-3-319-53862-4 16

188 H. Iliev et al.

tori and variations of fat-tree architectures, users are faced with deep NUMA
hierarchies on the node and complex network topologies. Reasoning about appli-
cation performance in such environments becomes increasingly more difficult and
requires more and more expertise. Homogeneous development teams comprised
of scientists of the same domain easily reach the boundaries of their expertise.

Simulation codes have undergone a similar transformation in complexity.
The ever increasing computing power available to simulation scientists has led
to unprecedented detail with multi-scale, multi-domain simulations that expose a
complexity inaccessible to most developers outside that specific domain. Modifi-
cations to such complex codes can often only be performed by the core developers
of a specific simulation component.

From this status quo arises the need for scientific development teams with
a diverse knowledge base, in order to sustain scientific productivity and code
maintainability. However, such requirements are often not attainable by small to
mid-sized development teams, common to university research groups. Moreover,
not all expertise is needed all the time during the application life cycle. As such,
much of the available expertise is left untapped during the development process.
Furthermore, the synergism between domain and HPC experts is claimed to
be an often overlooked means to reducing the operating costs of institutions
providing computing services [1].

JARA-HPC addresses this problem by establishing two different types of
research groups: (1) domain-specific research groups (simulation labs) focused
on a specific domain, its approaches, and algorithms; and (2) cross-sectional
groups in fields of expertise needed by all of the simulation labs. Simulation labs
serve as beacons for a specific community, assisting research groups from their
respective fields at RWTH Aachen University and Forschungszentrum Jülich, i.e.,
smaller research groups can call on a simulation lab’s expertise and manpower
for a specific problem. Likewise, the cross-sectional groups assist simulation labs
and research groups in the area of their scientific field.

2 Mission Statement

The mission of the cross-sectional group “Parallel Efficiency” is the creation and
dissemination of methods and tools in the area of software engineering of mas-
sively parallel applications that enable the efficient use of HPC resources. One of
the core ideas is a synergistic exchange of knowledge between the cross-sectional
group and developers of scientific simulation software. The former brings in the
existing tools and expertise in parallel efficiency while the close collaboration
leads to concrete insights on how the tools are used, how existing functional-
ity can be improved, and which functionality is needed to investigate a specific
application scenario.

2.1 Related Activities

Activities similar in spirit to the JARA-HPC cross-sectional groups and simula-
tion labs also exist in scientific communities around the world. Major US national

Performance Optimization of Parallel Applications 189

labs implement so-called computational end stations, such as the Climate-science
Computational End Station (CCES) [15] or the Performance Evaluation and
Analysis Consortium (PEAC) End Station. In comparison to the cross-sectional
group, PEAC focuses more on the proliferation of scalable performance tool
support and is less directly engaged in explicit optimization efforts of other end
stations. However, end stations, such as CCES, have kept close ties to individ-
ual members of the PEAC group to drive the optimization of the community
codes on large-scale systems, as in the context of the G8 project ECS, targeting
climate simulations at exascale [3].

The Hessian Competence Center for High Performance Computing
(Hessisches Kompetenzzentrum für Hochleistungsrechnen, HKHLR) provides
specific performance optimization support for the users of their systems [11].
With acknowledging the need for specific in-depth knowledge of HPC environ-
ments and performance tools and establishing the respective expertise within
their HPC user support, they now serve as an available contact for HPC user
groups throughout the German federal state of Hesse.

While the cross-sectional group focuses on collaboration with other JARA-
HPC groups, performance optimization is needed not only within the scientific
community, but also within the commercial and industry sectors. This prompted
the creation of the EU Horizon 2020 center of excellence Performance Optimiza-
tion and Productivity (POP) [4], which targets performance analysis and opti-
mization of third-party application codes on a broader European scale. The main
goal of the center is the development of a unified set of performance metrics, a
collection of structured methods and workflows for performance analysis and
optimization, and a standard set of reports for presenting the results to the end
user. POP offers several levels of involvement ranging from performance audits
of the user code to proof-of-concept modifications that improve the performance
and scalability of the code. The cross-sectional group shares many of POP’s
goals and therefore actively collaborates with its members.

3 Case Study: psOpen

As a first example of a successful optimization work performed by a team assem-
bled on demand, we present the performance optimization of the simulation code
psOpen. The team in that case consisted of one performance analyst from the
cross-sectional group and one core developer of the target application; the dura-
tion of the collaboration was one month. The target was to improve the perfor-
mance of psOpen on the RWTH Compute Cluster, which consists of compute
nodes with two Intel Westmere processors each (12 cores per node) connected
via a non-blocking QDR InfiniBand network.

psOpen [7] is a parallel Navier-Stokes solver for the time evolution of incom-
pressible fluid flows with high Reynolds numbers that uses a pseudo-spectral
direct numerical simulation (DNS) method [9]. The software is developed by the
Institute for Technical Combustion (ITV) of RWTH Aachen University and is
currently a member of the High-Q Club of extremely scalable applications that

190 H. Iliev et al.

run on the IBM Blue Gene/Q system JUQEEN at the Jülich Supercomputing
Centre (JSC) of Forschungszentrum Jülich (Jülich, Germany).

Spectral methods [2] solve systems of differential equations in the inverse
space spanned by the eigenvectors of the differential operators. In such basis
the costly numerical differentiations reduce to point operations, which simplifies
the solution. Not all equations can be solved efficiently in inverse space alone
since any non-linear term containing field products transforms into an expensive
convolution in inverse space. A possible solution is to compute such products
in real space while the rest of the computations are performed in inverse space,
which gives rise to pseudo-spectral methods.

The point operations in psOpen are simple loops with independent itera-
tions and have been extensively tuned to make use of the available vectorization
capabilities of the system compiler. Therefore, the main optimization efforts
were focused on analyzing the forward and backward 3D Fourier transforms as
they take a significant amount of time in each step of the time-integration loop.
psOpen uses the open-source P3DFFT library [10], which implements the 3D
Fast Fourier Transform (3D-FFT) and is parallelized with the Message Passing
Interface (MPI). Both slab (1D) and pencil (2D) domain decompositions are
supported and in both cases the MPI all-to-all operations MPI ALLTOALL and
MPI ALLTOALLV are used to perform the global array transpose needed by the
3D-FFT algorithm. The pencil domain decomposition technique needs two all-
to-all operations, one before the FFT in the Y direction and one before the FFT
in the Z direction, while the slab decomposition needs a single all-to-all opera-
tion before the FFT in the Z direction, therefore the pencil decomposition might
seem more appealing from a performance point of view. As the typical simula-
tion domain is a cube of certain number of points N along each dimension, that
number determines the maximum scalability in terms of MPI ranks that can be
used: (1) up to N MPI ranks for the slab (1D) decomposition, or (2) up to N2

MPI ranks for the pencil (2D) decomposition.
The optimization task consisted of two parts, each involving specific knowl-

edge of the scientific problem and the implementation of MPI on the specific
hardware respectively. In the first part, knowledge about the use of the results
from the 3D-FFT was applied to reduce the amount of data processing and
exchange. Since the real space multiplication introduces spurious frequency com-
ponents (spectral aliasing), once the result has been forward Fourier transformed,
a dealiasing step is performed where a low-pass cut-off filter removes the upper
third of the spectrum in each spatial dimension. As a result, 70,4% of the trans-
formed data gets discarded. Since a 3D-FFT is a combination of three inde-
pendent 1D-FFTs in each dimension with a global transpose between each and
since the transform itself is linear, the filtering step can be interleaved with the
1D-FFTs, which can be expressed using right-associative operator notation as:

f ◦ F = fz ◦ Fz ◦ fy ◦ Fy ◦ fx ◦ Fx, (1)

where Fi and fi denote the 1D-FFT and the low-pass filter in direction i respec-
tively. Once part of the spectrum has been zeroed out, it is not necessary to

Performance Optimization of Parallel Applications 191

Fig. 1. Speed-up of with three different pencil (2D) domain decompositions relative
to the slab (1D) decomposition for a domain of size 10243. Results without (left) and
with integrated dealiasing (right) are shown.

carry the filtered data into the further steps. Consequently, the following 1D
Fourier transforms have less data to work on. This reduces both the number
of 1D Fourier transforms by 30% and the amount of data for the first global
transform by 33% and for the second global transform by 56% [8].

In the second part of the optimization task, the lock-step ring implementation
of MPI ALLTOALL and MPI ALLTOALLV in Open MPI 1.6.5 was studied in detail
and a model for the execution time of the global data transpose for each of the
two domain decompositions was derived. Given the same number of MPI ranks, it
can be shown that the number of message exchanges for the pencil decomposition
is substantially lower than for the slab decomposition, which reduces the total
latency. It also allows for optimized process mappings that take advantage of the
communication structure of the 3D-FFT algorithm to minimize the amount of
data sent over slower network links. One such mapping is a pencil decomposition
of size N ×M , where N equals the number of cores on each node of the cluster,
in which case one of the two all-to-all operations involves communication only
within groups of processes that reside on the same compute node. With the
integrated filtering procedure described above, the second all-to-all operation
involves less data and it is therefore beneficial to select a mapping which results in
inter-node communication during that operation only. No changes to the source
code of psOpen or the supporting libraries were made during this part of the
optimization project.

The performance of the modified version of the filtered 3D-FFT routine in
transformations per second when running on 56 compute nodes (672 MPI ranks
in total) is shown in Fig. 1. All values are normalized to the case of slab (1D)
decomposition with separate 3D-FFT and filtering steps. The figure also shows

192 H. Iliev et al.

Table 1. Total cost of ownership analysis for a domain size of 20483.

Setup 1D (672 × 1) separate dealiasing 2D (12 × 56) integrated dealiasing

Hardware costs 250,000 EUR

Electricity 0.14 EUR/kWh

Scenario 1

Fixed no. 3D-FFTs 1 · 108

3D-FFTs/kWh 152 277

Energy to solution 658 MWh 361 MWh

Energy cost 92,105 EUR 50,525 EUR

Personnel costs 0 EUR 10,000 EUR

Savings 31,580 EUR

Scenario 2

Fixed lifetime 5 years

3D-FFTs/hour 2273 4215

Energy used 657 MWh 666 MWh

Energy cost 91,980 EUR 93,206 EUR

3D-FFTs/EUR 291 523

Efficiency improvement +80%

that having process distribution that matches the topology of the computing
system (in that particular case, 12×56) becomes even more relevant for the case
with integrated dealiasing.

An important aspect of any kind of collaboration is justifying funding it,
therefore we quantified the financial impact of the optimization efforts by per-
forming a simplified total cost of ownership (TCO) analysis in two ideal sce-
narios, comparing the original unoptimized version and the optimized version,
including the best domain decomposition. To remove the dependency on the spe-
cific input data and the different physics models associated with it, the analysis
covers only the 3D-FFT kernel as it is the most time consuming part of the
simulation and is also reusable by other projects. In both scenarios we con-
sidered the acquisition cost for a part of the RWTH Compute Cluster used
exclusively by ITV, the cost of the electricity, and the personnel costs involved
in optimizing the application as summarized in Table 1. The personnel costs are
based on 2 person-months with scientific employees at the typical for doctoral
and postdoctoral researchers in Germany pay grade TV-L E13, which totals
to 10,000 EUR [6]. This is a simplified TCO analysis based on the method of
Wienke et al. [16].

First, a use case with 100 million 3D-FFTs was considered, which corresponds
to performing a fixed number of studies with a specified statistical significance
of the simulation results. A managed power distribution unit (PDU) was used
to measure the power use of the system while performing a fixed number of 3D-
FFTs, then the energy to solution value was obtained by a linear extrapolation.
Assuming that the price of electricity remains constant for the entire period,
performing the specified number of 3D-FFTs with the optimized version uses

Performance Optimization of Parallel Applications 193

Fig. 2. Different levels of load balancing available in MP2C. Without load balancing
the size of the simulation domain is constant across all processes, leading to imbalance
during particle interaction. Plain load balancing allows dimensions to be adjusted,
yet the borders remain on a single plain cutting through the entire simulation box.
Staggered load balancing allows further to shift individual borders, influencing the
number of neighbors a process can have during the simulation.

361 MWh of electrical power and costs 50,525 EUR compared to 658 MWh and
92,105 EUR for the unoptimized version. Subtracting the personnel costs from
the difference of the two values, one arrives at the cost savings of 31,580 EUR.
While the number was derived in a highly idealized scenario, it serves to show
that investing in performance optimization can have a significant overall financial
impact on certain scientific projects.

The second use case covers running simulations for the entire lifetime of the
cluster system. A value of 5 years was chosen as it is typical for many computing
centers. The unmodified version of the 3D-FFT kernel achieves 2,273 transforms
per hour for a total of 99.6 million transforms for the entire lifetime of the com-
pute cluster. The consumed electrical power will total to 657 MWh or 91,980
EUR. The TCO in that case will be 342 thousand EUR and the cost efficiency,
defined as the number of 3D-FFTs per EUR, will be 291 transforms/EUR. The
optimized version achieves 4,215 transforms per hour for a total of 184.6 mil-
lion transforms for the entire lifetime of the compute cluster. It uses slightly
more energy, 666 MWh, resulting in TCO of 353.2 thousand EUR, which also
includes the personnel costs. The cost efficiency of the optimized version is 523
transforms/EUR. Therefore, more research can be done during the lifetime of
the computer cluster with 80% better cost efficiency.

4 Case Study: MP2C

As a second example of successful engagements of the cross-sectional group and
a simulation lab, we present the ongoing investigation of the load balancing
mechanisms present in the Massively Parallel Multi-Particle Collision Dynamics
simulation code (MP2C) [14]. The team in this case consisted of one perfor-
mance analyst from the cross-sectional group and one core developer of the
simulation code.

MP2C is a particle based parallel solver in the field of mesoscopic hydrody-
namics. It combines Multi Particle Collision Dynamics (MPC) with Molecular

194 H. Iliev et al.

Fig. 3. Geometry of the staggered load-balance scheme: (1) the work of one Cartesian
plane is collected and the border between neighboring planes adjusted according to
the differences in work load between them; (2) the procedure is repeated for Cartesian
columns and (3) for individual cells. This leads to a staggered grid, as the columns
of neighboring planes are likely to be shifted against each other, as are the cells of
neighboring columns.

Dynamics (MD) to simulate solute systems, such as polymers embedded in a
fluid. The parallelization approach is based on a domain decomposition where
data is exchanged via the Message Passing Interface (MPI). For data intensive
applications, a highly-scalable parallel I/O library, SIONlib [5], developed at
Jülich Supercomputing Centre (JSC) is available. The code is developed by the
simulation laboratory Molecular Systems [13] at JSC and has successfully run at
extreme scale on the IBM Blue Gene/Q system JUQUEEN of Forschungszen-
trum Jülich [12], as well as on other architectures, e.g. CRAY XT4/XT5. The 3D
domain-decomposition relies on disjunct spatial sub-domains which are admin-
istered by individual processes. Due to the dynamic nature of the simulated sys-
tems, the particles are free to move between domains, which demands for data
exchange between the processors. While the fluid fills the simulation box almost
homogeneously, the embedded particle systems can cluster, which may create
load imbalances in the MD computations. To tame the performance degradation
due to load imbalance, MP2C implements different load-balancing strategies to
adapt to these dynamically changing work loads using (1) plain and (2) stag-
gered domain geometries. Figure 2 shows the decomposition of a part of the
simulation box, with no (Fig. 2a), plain (Fig. 2b), and staggered (Fig. 2c) load
balancing enabled. The former implements load balancing along a regular three-
dimensional Cartesian grid, while the latter hierarchically adjusts the load within
the cells as is shown in Fig. 3. This may lead to irregular neighborhood relation-
ships among processes, i.e., some processes having a larger neighborhood than
others.

Both of these load-balancing strategies have their own advantages and dis-
advantages, e.g. the adjustment of work is better for the staggered scheme, as
the cells can be fitted to clusters of work in a more optimal way than in the
plain scheme. This advantage comes at the price of a much more complex com-
munication scheme, as the number of neighbors for each cell can increase in a

Performance Optimization of Parallel Applications 195

Fig. 4. Total execution time in seconds—broken down in communication, computation
of the Lennard-Jones potential during particle interaction, and other computation—
for no, plain, and staggered load balancing. Plain load balancing is shown for both
direct and indirect communication. Any load balancing clearly outperforms no load
balancing, yet the plain load balancing strategies perform best overall.

non-predictable way, while for the plain scheme the number of neighbors is con-
served. The static number of neighbor processes allows for more sophisticated
communication algorithms to be used with the plain load-balancing scheme.
Instead of exchanging messages directly with every neighbor (direct communi-
cation), processes send data for all processes in one dimension to one process,
to have it distribute the relevant portions to the others on its behalf (indirect
communication).

To investigate the performance, we conducted pure particle simulations, i.e.
without inclusion of the solvent, on 4,096 processes on JUQUEEN, an IBM Blue
Gene/Q system at Forschungszentrum Jülich. The simulation was configured for
50,000 particles and 50,000 iterations. Furthermore, we investigated the simula-
tion using no load-balancing with indirect communication; plain load balancing
with either indirect and direct communication; and staggered load balancing
with direct communication.

Figure 4 shows that any load balancing strategy exceeds the simulation per-
formance without load balancing by far. Furthermore, the plain load-balancing
scheme, with either direct and indirect communication schemes, achieves better
results in terms of runtime than the staggered version, which is currently only
implemented using direct communication.

The goal of this specific collaboration between the cross-sectional group
Parallel Efficiency and the simulation laboratory Molecular Systems is to identify
the cause for this difference and to locate optimization targets in the staggered
load-balancing scheme, as previous measurements on static domains indicate the
superiority of the staggered over the plain load-balancing scheme due to its finer
adaption capabilities.

The initial working hypothesis assumed a rise in communication complex-
ity as the culprit for the increase in simulation time. Performance screening
confirmed the increase in communication complexity, as Figs. 5a and b show.

196 H. Iliev et al.

Fig. 5. Communication calls and transferred bytes in collective and point-to-point
communication for no, plain, and staggered load balance scheme. Plain load balancing is
shown for both direct and indirect communication. Indirect communication clearly cuts
down on the number of calls overall, yet, also the improved neighborhood decomposition
of the staggered scheme is able to reduce the number of calls.

However, comparing the available load balancing options, it becomes clear that
the additional overhead in communication calls is actually due to the requirement
to use direct communication for the staggered case, as enabling direct communi-
cation for the plain load balancing already increases the number of point-to-point
communication calls by a factor of 4. The staggered load balancing strategy is
able to reduce this to a factor of 2.7. Direct communication also seems to cut
down on the overall bytes transferred. Revisiting the time spent for communica-
tion in the investigated load-balancing schemes in Fig. 4 indicates that although
the communication itself seems to be more complex, the overall time spent in
point-to-point communication does not depend on the load-balancing scheme
itself, but on the use of direct versus indirect communication. Surprisingly even
for the MP2C developers, the time spent in computing the Lennard-Jones poten-
tial during particle interaction—a section void of any communication, but highly
dependent on the number of particles per process and in the neighborhood—
differs significantly between plain and staggered load balancing. This suggests
suboptimal load balance. In summary, the increase in communication complexity
is not introduced by the staggered load balancing itself, but by its requirement
of direct communication among the neighbor processes. The total amount of
increase in simulation time, however, is much more influenced by the particle
distribution, i.e., the quality of the load balancing.

To confirm the difference in adoption speed between the plain and staggered
load-balancing scheme, we conducted further measurements, to get iteration-
based information of the time spent in the particle interaction. To keep instru-
mentation overhead low, we configured the measurement to aggregate the
performance metrics of the individual call paths of the main loop—including the
computation of the Lennard-Jones potential—for every 100 iterations. Based on
those measurements, Fig. 6 confirms different adaption speeds for the plain and
the staggered load-balancing schemes. Moreover, the staggered load balancing
seems to adapt much worse after the collapse of the particle cloud around the
20,000-th iteration, where the slope of the curve of the staggered load balancing

Performance Optimization of Parallel Applications 197

Fig. 6. Computation time of the Lennard-Jones potential during particle interaction
for 500 iteration sets with 100 iterations each. Each iteration set value comprises the
aggregated values of the maximum time spent by a process across all processes in each
iteration. As load balancing is enabled each 10 iterations, each iteration set comprises
10 balancing steps.

flattens out much earlier than the plain load balancing. Also surprising and wor-
thy of further investigation is the fact that the staggered load balancing seems
to experience another increase of imbalance in the system around the 40,000-th
iteration.

The resulting working hypothesis for future investigations now assumes the
difference in mesh-adaption speed between the two load-balancing strategies to
play a significant role in the overall simulation performance of dynamic particle
systems. Future work will therefore focus on 1. developing adequate performance
metrics to investigate the particle distribution over time, 2. identify key compo-
nents in the load-balancing strategies that influence the adaption speed, and 3.
explore potential optimization targets for either load-balancing scheme.

5 Conclusion

Diverse development teams are needed to meet the challenges of the ever increas-
ing complexity of modern high-performance computing infrastructures and sim-
ulation codes. While maintaining such diverse teams over the full application life
cycle is often unfeasible, drawing from a set of existing domain-specific groups
to form such teams on demand for specific development tasks is feasible. In this
work, we have shown two examples of application optimization performed by
such teams. In one example, we have also shown through total-cost-of-ownership
analysis that funding such environments is economically justified, as their work
pays off and can greatly impact the overall code efficiency in terms of cost per

198 H. Iliev et al.

simulation. In the other example, we have shown that the combination of com-
plementing set of domain-specific knowledge increases the understanding of the
overall application, and can generate valuable insights into dynamic application
behavior at scale. We will continue our engagement of forming small develop-
ment teams on demand for very specific tasks in performance optimization of
scientific simulations. Contact between cross-sectional groups and simulation
labs may intensify and subside several times in the development cycle of an
application or its extensions.

Acknowledgments. This work has been partly funded by the Excellence Initiative
of the German federal and state governments. The authors gratefully acknowledge the
computing time granted by the JARA-HPC Vergabegremium and provided on the two
JARA-HPC Partition systems—the supercomputer JUQUEEN at Forschungszentrum
Jülich and the RWTH Compute Cluster at RWTH Aachen University.

References

1. Bischof, C., an Mey, D., Iwainsky, C.: Brainware for green HPC. Comput. Sci. Res.
Dev. 27(4), 227–233 (2012). http://dx.doi.org/10.1007/s00450-011-0198-5

2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods.
Springer, Heidelberg (2006)

3. Cappello, F., Wuebbles, D.: G8 ECS: Enabling climate simulation at extreme scale,
2012. In: G8 Exascale Projects Workshop, 12 November 2012

4. CoE Performance Optimisation and Productivity (2016). https://pop-coe.eu/
5. Freche, J., Frings, W., Sutmann, G.: High throughput parallel-I/O using SIONlib

for mesoscopic particle dynamics simulations on massively parallel computers. In:
Chapman, B., Desprez, F., Joubert, G.R., Lichnewsky, A., Peters, F.J., Priol, T.
(eds.) Parallel Computing: From Multicores and GPU’s to Petascale. Advances in
Parallel Computing, vol. 19, pp. 371–378. IOS Press, Amsterdam (2010)

6. German Science Foundation (DFG): Personalmittelsätze der DFG für das Jahr
2013 (2013)

7. Göbbert, J.H.: psOpen (2015). http://www.fz-juelich.de/ias/jsc/EN/Expertise/
High-Q-Club/psOpen/ node.html. Accessed 4 July 2016

8. Goebbert, J.H., Gauding, M., Ansorge, C., Hentschel, B., Kuhlen, T., Pitsch, H.:
Direct numerical simulation of fluid turbulence at extreme scale with psOpen. Adv.
Parallel Comput. 27, 777–785 (2016)

9. Orszag, S.A.: Analytical theories of turbulence. J. Fluid Mech. 41(2), 363–386
(1970)

10. Pekurovsky, D.: P3DFFT: A framework for parallel computations of Fourier trans-
forms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012)

11. Sitt, R., Feith, A., Sternel, D.C.: Parallel code analysis in HPC user support. In:
Knüpfer, A., Hilbrich, T., Niethammer, C., Gracia, J., Nagel, W.E., Resch, M.M.
(eds.) Tools for High Performance Computing 2015, pp. 127–133. Springer, Cham
(2016). http://dx.doi.org/10.1007/978-3-319-39589-0 10

12. Sutmann, G.: MP2C (2015). http://www.fz-juelich.de/ias/jsc/EN/Expertise/
High-Q-Club/MP2C/ node.html. Accessed 4 July 2016

13. Sutmann, G.: Simulation lab Molecular Systems (2015). http://www.fz-juelich.
de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slms/
node.html. Accessed 4 July 2016

http://dx.doi.org/10.1007/s00450-011-0198-5
https://pop-coe.eu/
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/psOpen/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/psOpen/_node.html
http://dx.doi.org/10.1007/978-3-319-39589-0_10
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/MP2C/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/MP2C/_node.html
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slms/_node.html
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slms/_node.html
http://www.fz-juelich.de/ias/jsc/EN/AboutUs/Organisation/ComputationalScience/Simlabs/slms/_node.html

Performance Optimization of Parallel Applications 199

14. Sutmann, G., Westphal, L., Bolten, M.: Particle based sim-
ulations of complex systems with MP2C: Hydrodynamics and
electrostatics. AIP Conf. Proc. 1281(1), 1768–1772 (2010).
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3498216

15. Washington, W.M., Drake, J., Buja, L., Anderson, D., Bader, D.C., Dickinson, R.,
Erickson, D., Gent, P., Ghan, S., Jones, P., Jacob, R.L.: The use of the Climate-
Science Computational End Station (CCES) development and grand challenge
team for the next IPCC assessment: An operational plan, December 2007

16. Wienke, S., an Mey, D., Müller, M.S.: Accelerators for technical computing: is it
worth the pain? A TCO perspective. In: Kunkel, J.M., Ludwig, T., Meuer, H.W.
(eds.) ISC 2013. LNCS, vol. 7905, pp. 330–342. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38750-0 25

http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.3498216
http://dx.doi.org/10.1007/978-3-642-38750-0_25
http://dx.doi.org/10.1007/978-3-642-38750-0_25

Hybrid CPU-GPU Generation
of the Hamiltonian and Overlap Matrices

in FLAPW Methods

Diego Fabregat-Traver1(B), Davor Davidović2, Markus Höhnerbach1,
and Edoardo Di Napoli1,3,4

1 AICES, RWTH Aachen, 52062 Aachen, Germany
{fabregat,hoehnerbach}@aices.rwth-aachen.de

2 RBI, 10040 Zagreb, Croatia
davor.davidovic@irb.hr

3 JARA-HPC, 52425 Jülich, Germany
4 Jülich Supercomputing Center, Forschungszentrum Jülich, 52425 Jülich, Germany

e.di.napoli@fz-juelich.de

Abstract. In this paper we focus on the integration of high-performance
numerical libraries in ab initio codes and the portability of performance
and scalability. The target of our work is FLEUR, a software for elec-
tronic structure calculations developed in the Forschungszentrum Jülich
over the course of two decades. The presented work follows up on a previ-
ous effort to modernize legacy code by re-engineering and rewriting it in
terms of highly optimized libraries. We illustrate how this initial effort to
get efficient and portable shared-memory code enables fast porting of the
code to emerging heterogeneous architectures. More specifically, we port
the code to nodes equipped with multiple GPUs. We divide our study in
two parts. First, we show considerable speedups attained by minor and
relatively straightforward code changes to off-load parts of the compu-
tation to the GPUs. Then, we identify further possible improvements to
achieve even higher performance and scalability. On a system consisting
of 16-cores and 2 GPUs, we observe speedups of up to 5× with respect to
our optimized shared-memory code, which in turn means between 7.5×
and 12.5× speedup with respect to the original FLEUR code.

Keywords: DFT · High-performance computing · Performance
portability · Heterogeneous architectures · FLAPW method · FLEUR

1 Introduction

Many legacy codes in scientific computing have grown over time with an eye on
functionality, but little emphasis on portable performance and scalability. Often,
these codes are a direct translation of mathematical formulae, and lack proper
engineering (i.e. modularity, code reuse, etc.). One such example is FLEUR, a
software for electronic structure calculations developed at the Jülich Research

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 200–211, 2017.
DOI: 10.1007/978-3-319-53862-4 17

Hybrid CPU-GPU Matrix Generation in FLAPW 201

Center during the last two decades [3]. In previous work by Di Napoli et al. [2],
the authors made the effort of reengineering a portion of FLEUR’s code base in
an attempt to demonstrate the value of writing the computational bottlenecks in
terms of kernels provided by standardized and highly-tuned libraries. There, they
show an increase in performance and anticipate its portability beyond multi-core
architectures. In this paper, we confirm that the reengineering process indeed
guarantees quick portability and high-performance on emerging heterogeneous
architectures, as in the case of multi-core CPUs equipped with one or more
coprocessors such as GPUs.

In times where massively-parallel heterogeneous architectures have become
the most common computing platform, legacy scientific code has to be modern-
ized. New software is often designed with portable efficiency and scalability in
mind, and some old code is undergoing major rewriting to adapt to the newest
architectures. However, there is still a lot of reluctance to undergo through the
rewriting process since it requires a vast initial effort and may incur in validation
issues. While it is understandable that domain scientists are hesitant to intro-
duce major changes into a code developed and tested in the course of many years,
legacy codes that do not go through this process are destined to be marginalized.

A critical insight in writing long-lasting scientific code is to have a modular
design where, at the bottom layers, the computational bottlenecks are writ-
ten in terms of kernels available from standardized and highly-tuned libraries.
Examples of such kernels are fast Fourier transforms, matrix products, and eigen-
solvers, provided by a number of commercial as well as academic libraries. The
most prominent example of standard and optimized scientific library is the Basic
Linear Algebra Subprograms (BLAS). This library has its roots in the early real-
ization of the necessity for portable performance. Today, BLAS kernels, which
include matrix products and linear systems, are the building blocks for a mul-
titude of libraries, so much that BLAS is the first library to be ported to and
optimized for every new architecture. Therefore, writing code on top of BLAS
and other standardized and broadly available libraries constitutes a first and
essential step in the modernization of scientific software.

In this paper we follow the same approach illustrated in [2], where the authors
made a major effort to address the computational bottlenecks of the FLEUR’s
code base: the generation of the so-called Hamiltonian and Overlap matrices. In
generating such matrices, the main goal of the original FLEUR code was the
minimization of memory usage. Furthermore there is no notion of abstraction
and encapsulation, and the different modules are tightly coupled. At this point,
low-level optimizations were unfeasible, and the authors opted for a clean slate
approach: starting from the mathematical formulation behind the code, they cast
it in terms of matrix operations supported by the BLAS and LAPACK libraries.
As presented in their results, despite lacking some mathematical insight that
reduced the amount of computation in the FLEUR code, HSDLA (the new
code) outperformed the original one with speedups between 1.5× and 2.5×.
Most importantly, the authors claim that HSDLA could be easily ported to
other architectures.

202 D. Fabregat-Traver et al.

In this paper, we continue their work, and illustrate how such an initial reengi-
neering effort enables a quick port to heterogeneous architectures consisting of
multi-core CPUs and one or more GPUs. More specifically, we quantify the min-
imal effort required in terms of additional code to attain substantial speedups.
When running on a system equipped with two GPUs, we observe speedups of
up to 5× with respect to HSDLA and about one order of magnitude with respect
to the corresponding FLEUR code. Moreover, we identify the additional work
required to attain close-to-optimal efficiency and scalability, and partially imple-
ment it to illustrate the idea. Finally, beyond the results specific to the case of
FLEUR, the main contribution of this paper is to demonstrate that, despite
the major initial effort, a reengineering of legacy codes is not only worth it but
imperative in order to obtain long-lasting portable performance and scalability.

This paper is organized as follows. Section 1.1 provides the background on
Density Functional Theory (DFT) and the math behind the computation to
generate the Hamiltonian and Overlap matrices. Section 2 gives an overview of
the optimized algorithm behind HSDLA for the generation of these matrices.
In Sect. 3 we discuss the porting of the code to heterogeneous architectures,
including a review of the available BLAS libraries for GPUs and a simple analy-
sis of the computation to decide which portions of the code to off-load to the
GPUs. Section 4 presents experimental results for 1, 2 and 4 GPUs, and points
at potential improvements to the hybrid code. Finally, Sect. 5 draws conclusion
and discusses future research directions.

1.1 DFT, FLAPW and the H and S Matrices

The FLEUR code is based on the widely accepted framework of Density Func-
tional Theory (DFT). In the last decade, Density Functional Theory (DFT) [6,7]
has become the “standard model” in Materials Science. Within the DFT frame-
work, it is possible to simulate the physical properties of complex quantum
mechanical systems made of few dozens up to few hundreds of atoms. The core
of the method relies on the simultaneous solution of a set of Schrödinger-like
equations. These equations are determined by a Hamiltonian operator Ĥ con-
taining an effective potential V0[n] that depends functionally on the one-particle
electron density n(r). In turn, the solutions of the equations ψi(r) determine the
one-particle electron density n(r) used in calculating the effective potential V0.

Ĥψi(r) =
(
− �

2

2m∇2 + V0(r)
)

ψi(r) = εiψi(r) ; ε1 ≤ ε2 ≤ . . .

n(r) =
∑N

i |ψi(r)|2
(1)

In practice, this set of equations, also known as Kohn-Sham (KS) [5], is
solved self-consistently; an initial guess for n0(r) is used to calculate the effective
potential V0 which, in turn, is inserted in Eq. (1) whose solutions, ψi(r), are used
to compute a new charge density n1(r). Convergence is checked by comparing the
new density to the starting one. When convergence is not reached, an opportune
mixing of the two densities is selected as a new guess, and the process is repeated.
This is properly called a Self-Consistent Field (SCF) iteration.

Hybrid CPU-GPU Matrix Generation in FLAPW 203

In principle, the theory only requires as input the quantum numbers and the
positions of the atoms that are part of the investigated system. In practice, there
is a plethora of DFT methods which depends on the discretization used to para-
meterize the KS equations. The discretization in the Full-potential Linearized
Augmented Plane Wave (FLAPW) method [4,10] is based on plane wave expan-
sion of ψk,ν(r), where the momentum vector k and the band index ν replace the
generic index i. The k-point wave function ψk,ν(r) =

∑
|G+k|≤Kmax

cGk,νϕG(k, r)
is expanded in terms of a basis set ϕG(k, r) indexed by the vectors G lying in
the lattice reciprocal to configuration space up to a chosen cut-off value Kmax.
In FLAPW, the physical (configuration) space of the simulation cell is divided
into spherical regions, called Muffin-Tin (MT) spheres, centered around atomic
nuclei, and interstitial areas between the MT spheres. The basis set ϕG(k, r)
takes a different expression depending on the region

ϕG(k, r) ∝
⎧
⎨

⎩

ei(k+G)r Interstitial∑

l,m

[
Aa,G

l,m (k)ua
l (r) + Ba,G

l,m (k)u̇a
l (r)

]
Yl,m(r̂a) ath Muffin Tin(2)

where the coefficients Aa,G
l,m (k) and Ba,G

l,m (k) are determined by imposing conti-
nuity of ϕG(k, r) and its derivative at the boundary of the MTs. Due to this
expansion the KS equations naturally translate to a set of generalized eigen-
value problems

∑
G′ [HG,G′(k) − λkνSG,G′(k)] cG

′
k,ν = 0 for the coefficients of

the expansion cG
′

k,ν where the Hamiltonian and Overlap matrices H and S are
given by multiple integrals and sums

{H(k), S(k)}G,G′ =
∑

a

∫∫
ϕ∗
G(k, r){Ĥ, I}ϕG′(k, r)dr. (3)

Since the set of basis functions in Eq. (2) is implicitly labeled by the values
the variable k takes in the Brillouin zone, there are multiple Hamiltonian and
Overlap matrices, one for each independent k-point.

Without loss of generality, we can abstract from the k-point index and recover
an explicit formulation of the HG,G′ and SG,G′ matrices by substituting Eq. (2)
in (3) and carrying out the multiple integration. The computation is particularly
complex within the MT regions where the initialization of the Hamiltonian and
Overlap matrices is by far the most computationally intensive task. By exploiting
the properties of the basis functions, the H and S matrices are directly expressed
as functions of the set of A and B coefficients.

(S)G′,G =
NA∑

a=1

∑

l,m

(
Aa,G′

l,m

)∗
Aa,G

l,m +
(
Ba,G′

l,m

)∗
Ba,G

l,m ‖u̇a
l ‖2 (4)

(H)G′,G =
NA∑

a=1

∑

L′,L

((
Aa,G′

L′

)∗
T

[AA]
L′,L;a Aa,G

L

)
+

((
Aa,G′

L′

)∗
T

[AB]
L′,L;a Ba,G

L

)

+
((

Ba,G′
L′

)∗
T

[BA]
L′,L;a Aa,G

L

)
+

((
Ba,G′

L′

)∗
T

[BB]
L′,L;a Ba,G

L

)
. (5)

204 D. Fabregat-Traver et al.

Notice that in Eq. (5) for convenience we have compacted the indexes l ,m into
L, and expressed the range of the index a over all the distinct atom types NA.
The new matrices T

[...]
L′,L;a ∈ C

NL×NL are dense and their computation involves
multiple integrals between the basis functions and the non-spherical part of the
potential V0 (See [2, Appendix A.2] for details). Due to the non-orthornormality
of the basis function set (2), the matrix S is non-diagonal, dense, and generically
positive definite with the exception of having few very small singular values. On
the opposite H is always non-definite and both matrices are either complex
Hermitian or real symmetric.

2 Algorithm

As a first step towards using the BLAS and LAPACK libraries, all the involved
objects in Eqs. (4) and (5) are expressed in matrix form, dropping indexes L, L′,
G, and G′. Assuming the coefficient objects A and B as well as the T matrices
as input, matrices H and S can be computed as follows:

H =
NA∑

a=1

AH
a T [AA]Aa︸ ︷︷ ︸

HAA

+AH
a T [AB]Ba + BH

a T [BA]Aa + BH
a T [BB]Ba︸ ︷︷ ︸

HAB+BA+BB

(6)

S =
NA∑

a=1

AH
a Aa + BH

a UH
a UaBa, (7)

where Aa and Ba ∈ C
NL×NG , T

[...]
a ∈ C

NL×NL , H and S ∈ C
NG×NG , and

U ∈ C
NL×NL is a diagonal matrix. Typical for the matrix sizes are NA ∼ O(100),

NG ∼ O(1000) to O(10000), and NL ∼ O(100).
Algorithm 1 illustrates the algorithm used to compute Eqs. (6) and (7) in

HSDLA. Two main insights drive the design of the algorithm. First, it exploits
symmetries to reduce the computational cost; then, it casts the computation
in terms of BLAS and LAPACK kernels. Furthermore, when possible, multi-
ple matrices are stacked together to allow for larger matrix products, which in
general results in higher performance.

The computation of H is split into two parts, HAB+BA+BB and HAA. The
computation of HAB+BA+BB corresponds to lines 4 through 10. The key idea
behind the calculation is to rewrite the expression as

NA∑

a=1

BH
a (T [BA]Aa) + (AH

a T [AB])Ba +
1
2
BH

a (T [BB]Ba) +
1
2
(BH

a T [BB])Ba,

noting that T [BA] is the Hermitian transpose of T [AB] and that T [BB] is itself
Hermitian. The operations in parentheses are computed one at a time for each
i. Then, the results are aggregated into single large matrices for a large product.

The computation of HAA corresponds to lines 17 through 29. The algorithm
first attempts a Cholesky factorization of T [AA] (CaCa = T [AA]), which requires

Hybrid CPU-GPU Matrix Generation in FLAPW 205

the matrix to be Hermitian positive definite (HPD). While, in theory, T [AA] is
HPD, in practice, due to numerical considerations, the factorization may fail.
Depending on the success or failure of each individual factorization, the results
of operations in lines 21 and 24 are stacked on different temporary operands to
then compute HAA in two steps (lines 28 and 29).

The computation of S (lines 13 through 15) is more straightforward. First,
the product AHA is computed as a single large product. Then B is updated
with the norms stored in U and a second large product BHB completes the
computation.

Algorithm 1 . Computation of the H and S matrices in HSDLA.
1. Create A, B
2. Backup Â = A, B̂ = B
3. // First part of H
4. for a := 1 → NA do
5. Za = T

[BA]
a Aa � (zgemm: 8N2

LNG Flops)

6. Za = Za + 1
2
T

[BB]
a Ba � (zhemm: 8N2

LNG Flops)
7. Stack Za to Z
8. Stack Ba to B
9. end for

10. H = ZHB + BHZ � (zher2k: 8NANLN2
G Flops)

11. Restore A = Â, B = B̂
12. // S
13. S = AHA � (zherk: 4NANLN2

G Flops)
14. B = UB � (scaling: 2NANLNG Flops)
15. S = S + BHB � (zherk: 4NANLN2

G Flops)
16. // Second part of H
17. for a := 1 → NA do
18. try:
19. Ca = Cholesky(T

[AA]
a) � (zpotrf: 4

3
N3

L Flops)
20. success:
21. Ya = CH

a Aa � (ztrmm: 4N2
LNG Flops)

22. Stack Ya to YHPD

23. failure:
24. Xa = T

[AA]
a Aa � (zhemm: 8N2

LNG Flops)
25. Stack Xa to X¬HPD

26. Stack Aa to A¬HPD

27. end for
28. H = H + AH

¬HPDX¬HPD � (zgemm: 8NA¬HPDNLN2
G Flops)

29. H = H + Y H
HPDYHPD � (zherk: 4NAHPDNLN2

G Flops)

3 Software Re-engineering and Performance Portability

In this section we set the focus on the porting of the multi-core implementation
of Algorithm 1 to heterogeneous architectures consisting of one multi-core node

206 D. Fabregat-Traver et al.

equipped with one or more GPUs. We perform a quick analysis of the computa-
tion to determine how to split the computation between CPU and GPU(s) with
minimal modifications to the code, and illustrate how with these minor modifi-
cations one can already benefit considerably from the combined computational
power of CPU and GPUs.

Given the characteristic values for NA, NL, and NG observed in our test
cases, at least 97% of the computation is performed by the operations in lines
10, 13, 15, 28 and 29. Thanks to the aggregation of many small matrix products
into single large ones, all these 5 operations are large enough to be efficiently
computed on the GPUs. Therefore, the first step is to off-load these computations
to the GPU making sure that relatively high efficiency is attained.

All five calls correspond to BLAS kernels; we thus look into available
BLAS implementations for GPUs. There exists a range of GPU libraries that
offer BLAS functionality, both academic and commercial, such as cuBLAS [1],
cuBLAS-XT, MAGMA [8], and BLASX [9]. The first two are commercial and
developed by NVIDIA, the other two are academic efforts. From the point of
view of programmability, the most convenient alternatives are cuBLAS-XT and
BLASX, since they require minor or no changes to the calls to BLAS routines
and take also care of the data transfers between CPU and GPU transparently.
While BLASX offers certain advantages from the programmability perspective
and claims higher performance and scalability (see [9]), we encountered some
problems in the integration and opted for using cuBLAS-XT for our initial study.

Since cuBLAS-XT does not abide to the BLAS standard interface, three
wrappers, of about 15 lines of code each, around the calls to zherk, zher2k and
zgemm are required to ensure the code works seamlessly in both CPU-only and
CPU-GPU(s) modes. An example for zgemm follows:

void gpu_zgemm_(char *transa, char *transb, int *m, int *n, int *k,
std::complex<double> *alpha, std::complex<double> *A, int *lda,
std::complex<double> *B, int *ldb,
std::complex<double> *beta, std::complex<double> *C, int *ldc)

{
cublasOperation_t cu_transa = transa[0] == ’N’ ? CUBLAS_OP_N :

transa[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasOperation_t cu_transb = transb[0] == ’N’ ? CUBLAS_OP_N :

transb[0] == ’T’ ? CUBLAS_OP_T : CUBLAS_OP_C;
cublasXtZgemm(handle, cu_transa, cu_transb, *m, *n, *k,

(cuDoubleComplex *)alpha, (cuDoubleComplex *)A, *lda,
(cuDoubleComplex *)B, *ldb,

(cuDoubleComplex *)beta, (cuDoubleComplex *)C, *ldc);
}

In addition, two routines for proper initialization and cleanup of the cuda
runtime and the devices are needed. Finally, for the data transfers between CPU
and GPU to be efficient, memory for the matrices involved must be pinned
(page-locked).

With these minor modifications, about 100 lines of extra coding, the program
is ready to off-load most of the computation to multiple GPUs and attain n-fold
speedups. It is important to highlight that this simple extension is only possible
thanks to the initial effort in rewriting the initial FLEUR code in terms of matrix

Hybrid CPU-GPU Matrix Generation in FLAPW 207

(BLAS/LAPACK) operations. At that point the efficiency and scalability of
the code may be easily ported to more complex architectures. Had the original
FLEUR code not undergone the reengineering process, the coding of efficient low
level routines for the GPUs would be a much more complex and time-consuming
effort.

4 Experimental Results

We turn now our attention to experimental results. We compare the performance
of our hybrid CPU-GPU implementation of Algorithm1 with the performance
of the multi-core (CPU only) HSDLA. As test cases we use two input systems
describing two distinct physical systems, to which we refer as NaCl and AuAg,
respectively. By including both an insulator and a conductor, these systems
represent a heterogeneous sample with different physical properties. The tests
generate the matrices H and S for one single k-point, and different Kmax values.
The actual problem sizes, that is, the values for NA, NL, and NG in each case
are given in Table 1.

Table 1. Problem sizes for NaCl and AuAg and for a variety of Kmax values. The
value of NG varies with Kmax.

Test case NA NL NG : Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

NaCl 512 49 2256 3893 6217 9273
AuAg 108 121 3275 5638 8970 13379

We ran our experiments in two different compute nodes, which we will refer
to as RWTH and JURECA. The RWTH node consists of two eight-core Sandy
Bridge E5-2650 processors, running at a nominal frequency of 2.0 GHz, and 2
NVIDIA Tesla K20Xm GPUs. The node is equipped with 64 GBs of RAM. The
combined peak performance for the 16 CPU cores in double precision is of 256
GFlops, while the peak performance for double precision of each GPU is of 1.3
TFlops, for a total of 2.6 TFlops. The JURECA node consists of two twelve-core
Haswell E5-2680v3 processors, running at a nominal frequency of 2.5 GHz, and
2 NVIDIA K80 GPUs (each of which consists of two K40 GPU devices). The
node is equipped with 128 GBs of RAM. The combined peak performance for the
24 CPU cores in double precision is of 960 GFlops, while the peak performance
for double precision of each GPU device is of about 1.45 TFlops, for a total of
5.8 TFlops. In all cases, the code was linked to Intel MKL version 11.3.2 for the
BLAS and LAPACK routines on the CPU; the GPU code was linked to NVIDIA
cuBLAS-XT version 7.5.

RWTH. Table 2 collects the timings for the NaCl test case for the three scenarios
of interest (CPU only, CPU + 1 GPU, CPU + 2 GPUs). The speedup with
respect to HSDLA is given in parentheses. As expected, the considerable gap in
performance between CPU and GPU is reflected in the observed large speedups:
up to 2.76× and 4.04× for 1 and 2 GPUs, respectively.

208 D. Fabregat-Traver et al.

Similar results are presented in Table 3 for the AuAg test case, but in this case
the observed speedups are even larger. The reason for this is that, while MKL is
already close to its peak performance for the matrix sizes of NaCl, cuBLAS-XT
still has room for improvement and benefits from the larger matrices in AuAg.
In fact, one can expect still better speedups for larger systems.

Table 2. Timings and speedup (in parentheses) for the NaCl test case for varying
Kmax. Results for the RWTH node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 18.27s 39.84s 91.52s 189.53s

CPU + 1 GPU 8.03s (2.28×) 15.87s (2.51×) 35.64s (2.57×) 68.59s (2.76×)

CPU + 2 GPUs 6.51s (2.81×) 12.37s (3.22×) 24.39s (3.75×) 46.97s (4.04×)

Table 3. Timings and speedup (in parentheses) for the AuAg test case for varying
Kmax. Results for the RWTH node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 15.64s 46.23s 104.25s 215.98s

CPU + 1 GPU 7.52s (2.08×) 16.16s (2.86×) 35.62s (2.93×) 71.35s (3.03×)

CPU + 2 GPUs 5.62s (2.78×) 11.28s (4.10×) 23.10s (4.51×) 43.54s (4.96×)

JURECA. Results for the JURECA node are presented in Tables 4 and 5 for
NaCl and AuAg, respectively. In this case we show timings and speedups for up
to 4 GPUs. The maximum observed speedups are 1.77×, 2.76× and 4.26× for
1, 2 and 4 GPUs, respectively. Given that the increase in computational power
in each case is of 2.4×, 3.9× and 6.8×, respectively, these numbers are quite
satisfactory.

Table 4. Timings and speedup (in parentheses) for the NaCl test case for varying
Kmax. Results for the JURECA node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 9.33s 23.29s 41.50s 74.73s

CPU + 1 GPU 6.47s (1.44×) 14.50s (1.61×) 32.73s (1.27×) 66.55s (1.12×)

CPU + 2 GPUs 5.00s (1.87×) 10.38s (2.24×) 21.84s (1.90×) 42.58s (1.76×)

CPU + 4 GPUs 4.72s (1.98×) 8.76s (2.66×) 15.45s (2.69×) 26.58s (2.81×)

4.1 Fine-Tuning for Performance and Scalability

The observed speedups are substantial. Yet, one could expect even better results,
especially in the case of the RWTH node where the computational power of the
two GPUs combined is ten times larger than that of the CPUs. This potential
for improvement comes as no surprise, since this is only a basic port to illustrate

Hybrid CPU-GPU Matrix Generation in FLAPW 209

Table 5. Timings and speedup (in parentheses) for the AuAg test case for varying
Kmax. Results for the JURECA node.

Setup Kmax = 2.5 Kmax = 3.0 Kmax = 3.5 Kmax = 4.0

CPU only 9.10s 22.68s 57.31s 100.19s

CPU + 1 GPU 6.14s (1.48×) 14.47s (1.57×) 32.34s (1.77×) 68.91s (1.45×)

CPU + 2 GPUs 4.38s (2.08×) 9.70s (2.34×) 20.80s (2.76×) 42.24s (2.37×)

CPU + 4 GPUs 3.53s (2.58×) 6.69s (3.39×) 13.46s (4.26×) 25.36s (3.95×)

how far one can get with minimal code modifications; to attain close-to-optimal
performance further work is required. For ideal results, a hybrid and highly-
tuned BLAS as well as a GPU-accelerated version of the computation in the
loops are needed.

In order to have a more tangible discussion, we provide in Table 6 a break-
down of the timings for the NaCl (Kmax = 4.0) test case running in the RWTH
node with two K20x GPUs. The bottom rows correspond to the large BLAS
operations off-loaded to the two GPUs; the top rows correspond to the rest of
the code (both loops and the application of the U norm) executed on the CPU
only. The efficiency is measured with respect to the combined performance of
CPU plus GPUs.

Table 6. Breakdown of timings for NaCl (Kmax = 4.0) together with the respective
attained performance and efficiency.

Section (line(s)) Time Performance Efficiency

Loop 1 (4–9) 2.27 s 80.35 GFlops/s 0.03
Loop 2 (17–27) 2.62 s 34.81 GFlops/s 0.01
U norm (14) 0.23 s 1.01 GFlops/s 0.00
S1 (13) 4.37 s 1974.63 GFlops/s 0.69
S2 (15) 4.41 s 1956.72 GFlops/s 0.68
H1 (10) 9.49 s 1818.57 GFlops/s 0.63
H2 (28) 2.32 s 1859.72 GFlops/s 0.65
H3 (29) 4.75 s 1816.66 GFlops/s 0.63

Three main messages can be extracted from Table 6:

1. NVIDIA’s cuBLAS-XT does a good job attaining an efficiency between 63%
and 69%.

2. Yet, these operations may attain about 90% of the peak if the matrices are
large enough and the code is highly optimized and hybrid. This would mean
attaining around 2.5 TFlops/s, that is, an extra 25% speedup for these heavy
computations.

210 D. Fabregat-Traver et al.

3. When the target architecture offers massive parallelism, minor portions of
code that do not scale may become a bottleneck. In our case, the 3% of the
computation that was not off-loaded to the GPUs becomes non-negligible. In
fact, the weight of these operations in our experiments may account for up to
35% of the time to solution, and compromise the overall scalability.
Due to the size of the matrices involved in these operations (between 50 × 50
and 100 × 100 for the T matrices in our test cases), these products do not
scale well, especially on GPUs.
Specialized code is required to mitigate their impact in the overall time to
solution.

5 Conclusions and Future Work

We concentrated on the benefits of rewriting scientific code in terms of stan-
dardized libraries for portable performance and scalability. As use case we con-
sidered a portion of the FLEUR code base, a software for electronic structure
calculations.

We demonstrated that major efforts in re-engineering part of the original
FLEUR code, and writing it in terms of the BLAS and LAPACK libraries,
enables a fast porting that exploits the vast computational power of emerging
heterogeneous architectures such as multi-core CPUs combined with multiple
GPUs. Most importantly, the porting only required less than 100 new lines of
code. The resulting implementation attains speedups of up to 3× and 5× for
simulations run on a system equipped with two K20x GPUs, respectively, and
speedups of up to 1.8×, 2.8× and 4.3× for runs with 1, 2 and 4 GPUs, respec-
tively, on a system equipped with two K80 GPUs (each consisting of two K40
GPUs).

While satisfactory, these results highlight room for improvement. In the
future, we aim at developing more efficient hybrid CPU-GPU routines for the
major matrix products in the code as well as attaining sufficient scalability of
the rest of the code to ensure a uniform overall scalability.

Acknowledgements. This work was partially funded by the Ministry of Science and
Education of the Republic of Croatia and the Deutsche Akademische Austauschdienst
(DAAD) from funds of the Bundesministeriums für Bildung und Forschung (BMBF)
through project “PPP Kroatien” ID 57216700. Financial support from the Jülich
Aachen Research Alliance-High Performance Computing and the Deutsche Forschungs-
gemeinschaft (DFG) through grant GSC 111 is also gratefully acknowledged. Further-
more, the authors thank the RWTH IT Center and the Jülich Supercomputing Centre
for the computational resources.

Hybrid CPU-GPU Matrix Generation in FLAPW 211

References

1. cuBLAS: The NVIDIA CUDA Basic Linear Algebra Subroutines. https://
developer.nvidia.com/cublas

2. Di Napoli, E., Peise, E., Hrywniak, M., Bientinesi, P.: High-performance genera-
tion of the hamiltonian and overlap matrices in FLAPW methods. Comput. Phys.
Commun. 211, 61–72 (2016). doi:10.1016/j.cpc.2016.10.003

3. FLEUR: The Jülich FLAPW code family, October 2016. http://www.flapw.de/
pm/index.php

4. Jansen, H.J.F., Freeman, A.J.: Total-energy full-potential linearized augmented-
plane-wave method for bulk solids - electronic and structural-properties of tung-
sten. Phys. Rev. B 30(2), 561–569 (1984)

5. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138 (1965)

6. Nogueira, F., Marques, M.A.L., Fiolhais, C.: A Primer in Density Functional The-
ory. Lecture Notes in Physics. Springer, Heidelberg (2003)

7. Sholl, D., Steckel, J.A.: Density Functional Theory: A Practical Introduction.
Wiley, New York (2011)

8. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for
multicore with GPU accelerators. In: Proceedings of the IEEE IPDPS 2010, pp. 1–
8. IEEE Computer Society, Atlanta, GA, 19–23 April 2010. doi:10.1109/IPDPSW.
2010.5470941

9. Wang, L., Wu, W., Xu, Z., Xiao, J., Yang, Y.: BLASX: A high performance level-3
BLAS library for heterogeneous multi-GPU computing. In: Proceedings of the 2016
International Conference on Supercomputing, ICS 2016, pp. 20:1–20:11. ACM, New
York (2016)

10. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-
consistent linearized-augmented-plane-wave method for calculating the electronic-
structure of molecules and surfaces - O2 molecule. Phys. Rev. B 24(2), 864–875
(1981)

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://dx.doi.org/10.1016/j.cpc.2016.10.003
http://www.flapw.de/pm/index.php
http://www.flapw.de/pm/index.php
http://dx.doi.org/10.1109/IPDPSW.2010.5470941
http://dx.doi.org/10.1109/IPDPSW.2010.5470941

Visualizing Performance Data
with Respect to the Simulated Geometry

Tom Vierjahn1,2(B), Torsten W. Kuhlen1,2, Matthias S. Müller1,3,
and Bernd Hentschel1,2

1 JARA-HPC, 52064 Aachen, Germany
2 Visual Computing Institute, RWTH Aachen University, 52064 Aachen, Germany

vierjahn@vr.rwth-aachen.de
3 Chair for High-Performance Computing, RWTH Aachen University,

Seffenter Weg 23, 52064 Aachen, Germany

Abstract. Understanding the performance behaviour of high-perfor-
mance computing (hpc) applications based on performance profiles is
a challenging task. Phenomena in the performance behaviour can stem
from the hpc system itself, from the application’s code, but also from the
application domain. In order to analyse the latter phenomena, we pro-
pose a system that visualizes profile-based performance data in its spatial
context in the application domain, i.e., on the geometry processed by the
application. It thus helps hpc experts and simulation experts understand
the performance data better. Furthermore, it reduces the initially large
search space by automatically labelling those parts of the data that reveal
variation in performance and thus require detailed analysis.

Keywords: Performance measures · Applications · Visualization

1 Introduction

Optimizing an application to use the compute power efficiently that is offered by
a modern high-performance computing (hpc) system requires powerful tools for
performance analysis. With the exponentially growing number of cores in hpc
systems the acquired performance data grows and gets more complex. While
visual exploration of this data is a valuable asset for developers to form an
in-depth understanding of an application’s run-time behaviour, straightforward
means of visualization easily break down for large core counts. Furthermore,
retrieving relevant information that actually fosters a deeper understanding, by
manually browsing the large amounts of performance data easily becomes a
challenging task in itself.

Annotating the individual performance metrics and functions in their exe-
cution contexts, i.e., call paths, with their performance data, e.g., execution
time, gives an overview of an application’s behaviour (Fig. 1). However, this does
only provide an impression on the average load. Potential imbalances cannot be
represented that way.
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 212–222, 2017.
DOI: 10.1007/978-3-319-53862-4 18

Visualizing Performance Data with Respect to the Simulated Geometry 213

(a) Performance metrics (b) Call paths

Fig. 1. Annotating the performance metrics (a) and the call paths (b) with their overall
performance.

(a) Zeus-Mp/2 [2,15] (b) Sweep3d [21]

Fig. 2. Visualizing performance in an hpc system’s topology may reveal the underlying
geometry in small cases (a), but obscures it in larger cases (b).

Visualizing performance data on the process or thread level with respect to
the hpc system’s topology (Fig. 2) clearly shows such imbalances. It thus helps
hpc experts and performance analysts understand an application’s performance
behaviour better. However, it does not clearly reveal performance phenomena
that stem from the application domain that are for instance due to a sub-optimal
domain decomposition.

In simple cases, an analyst might be able to infer the geometry in the appli-
cation domain from the visualization in the hpc system’s topology: in case of
Fig. 2(a) a sphere, cut in half and then mapped to the hpc system’s nodes. For
larger cases the application domain can hardly be inferred: in case of Fig. 2(b)
a 2d gradient, cut several times.

Thus, in order to provide complete insight into an application’s performance
behaviour, analysis tools ought to visualize the available data also with respect
to the geometry in the application domain (cf. Fig. 3). Only then, hpc experts,
performance analysts, and simulation experts can understand the performance
data better. However, only few tools take the application domain into account,
and if they do they restrict it, e.g., to regular grids.

Therefore, we propose a tool that facilitates visualizing performance data in
its spatial context on an arbitrary geometry in the application domain, e.g., a
triangle mesh, provided there is a mapping from the computing resources to the
geometry. In order to help the analyst find meaningful views on the data that

214 T. Vierjahn et al.

(a) 4 mpi ranks (b) 12 mpi ranks

Fig. 3. Two finite-element meshes from a sheet-metal forming simulation and their
domain decomposition. The triangle edges are rendered light gray, the blocks’ outlines
are rendered dark.

are good indicators of performance bottlenecks, the tool automatically identifies
and suggests views that reveal variation in performance.

2 Related Work

Isaacs et al. give an overview of the state of the art in performance visual-
ization [6]. Several tools exist that are able to visualize performance data in
the hpc system’s topology. Boxfish, for instance, visualizes network activity on
3d-torus [7] and on 5d-torus network topologies [8] using a set of 3d visual-
izations and 2d projections. Similarly, VizTorus [14] uses a set of linked pro-
jections to visualize communication in high-dimensional torus networks. The
Tau [12] parallel performance system provides extensive 3d exploration support
for profile-based performance data, including mapping the data to the network
topology in ParaProf [13]. Finally, the Cube performance profile browser [4] also
allows for the mapping of profile data onto Cartesian network topologies in a
pseudo-3d projection.

Yet, very few techniques exist that are considering the application domain.
Nevertheless, Schulz et al. stress the importance of taking the application domain
into account during performance analysis [11]. Wylie and Geimer use Cartesian
grids [20] in the Cube performance profile browser in order to visualize per-
formance with respect to the application domain. For a visualization in Cube,
the application domain can be higher-dimensional. However, then the complete
domain will be displayed as separate 2d slices. A recent visual-analytics app-
roach automatically identifies relevant and similar sections of profile-based per-
formance data in 2d application domains, only [10]. Huck et al. [5] coupled the
visualisation tool VisIt [3] to the Tau [12] parallel performance system, demon-
strating the usefulness of visualizing performance data in the context of the
application domain.

In this work, we propose a tool that is similar in spirit to the Cube per-
formance profile browser. Similar to the said VisIt-Tau combination, it enables

Visualizing Performance Data with Respect to the Simulated Geometry 215

visualizing performance data on arbitrary geometry, however in an integrated
tool. To this end, it extends our prior approach [16] and complements our
performance-visualization toolkit that before only operated in the hpc system’s
domain [17,18].

3 Nomenclature: Performance Profiles, Severity Views

Profiling is a common technique in performance analysis. A profile summarizes
performance data over an application’s complete run-time. Data is collected
according to performance metrics m ∈ M, e.g., execution time, for the call paths
c ∈ C of the application’s functions executed on the system resources s ∈ S, i.e.,
processes or threads. During analysis, by selecting a pair of metric m and call
path c, analysts specify a severity view

vm,c : S �A R,

with vm,c(s) yielding the severity of a user-selected pair (m, c) on a system
resource s.

Instead of analysing performance on a thread or process level, this work
focuses on the individual mpi ranks ri ∈ SMPI that each execute a set Sri

⊆ S of
processes or threads, so that

S =
⋃

ri∈SMPI

Sri
and ∀i∀j �=iSri

∩ Srj
= ∅.

Therefore, the severities measured for the individual processes or threads need
to be aggregated in order to compute the severity for the i-th mpi rank ri:

∑
s∈Sri

vm,c(s).

Slightly abusing the notation we use the shorthand

vm,c(ri) ..=
∑

s∈Sri
vm,c(s),

with vm,c(ri) denoting the severity of, e.g., execution time, for a user-selected
pair (m, c) on the i-th mpi rank ri. Since we require the performance data to
include a mapping from the mpi ranks to the individual parts of the geometry
in the simulation domain, vm,c(ri) also denotes the severity for the part of the
geometry that is computed by the i-th mpi rank ri.

4 Detecting Large-Impact, Large-Variation Views

Visualizing the severity vm,c(ri) for the individual mpi ranks may provide valu-
able insight for finding root causes of performance bottlenecks. However, such a
detailed visualization is only sensible if there is a certain amount of variation in

216 T. Vierjahn et al.

performance across the mpi ranks. Otherwise, a single number representing the
accumulated severity ∑

ri∈SMPI
vm,c(ri)

in the selected performance metric would do.
In order to identify those severity views that have the greatest impact on an

application’s performance, our system first identifies those vm,c for which the
above accumulated severity exceeds a certain threshold τ ′

Σv. This threshold is
set to a fraction τΣv of the accumulated severity for the whole application in the
currently selected metric, for instance the complete execution time:

τ ′
Σv = τΣv

∑
ri∈SMPI

vm,0(ri).

According to the feedback provided by hpc experts, a fraction of τΣv = 0.01,
i.e., detecting those severity views that represent 1% of the application’s perfor-
mance, turned out to be a sensible default. However, τΣv can be interactively
adjusted by the analyst.

In order to identify large-variation severity views, our system uses the vari-
ation coefficient

qm,c =
σm,c

μm,c

as an indicator. Here, μm,c denotes the mean severity of the mpi ranks in the
selected severity view υm,c, and σm,c denotes the standard deviation, with

μm,c =

∑
ri∈SMPI

υm,c(ri)
|SMPI|

and

σm,c =

∑
ri∈SMPI

(
υm,c(ri) − μm,c

)2

|SMPI| .

According to the feedback provided by hpc experts, a threshold of τq = 0.01
turned out to be sensible for detecting severity views of interest with qm,c ≥ τq.
However, τq can be adjusted by the analyst.

Our tool automatically identifies those severity views that exceed both
thresholds. They are indicated to the performance analyst for further inspec-
tion in the application domain.

The performance data may contain a certain amount of variation that is
caused by specific, intentional execution patterns. These are due to performance
trade-offs like using only every second hardware thread in order to efficiently
utilize the available cpu caches. Since these are intentional, such variations are
considered to be already known at the time of analysis. In order to exclude them
from the automatic variation-detection mechanism and thus in order to detect
new variation, we included filtering capabilities [18].

Visualizing Performance Data with Respect to the Simulated Geometry 217

Fig. 4. Proposed user interface: the performance metrics (top) and the call-paths
(bottom) are arranged in tree-view widgets.

5 Interactive Visualizations

The proposed system provides several visualizations that have been developed
according to requirements posed by hpc experts. These facilitate interactive
analysis of profile-based performance data in a top-down fashion in order to find
and analyse severity views of interest that reveal performance phenomena.

5.1 Performance Metrics and Call-Path Tree Widgets

The hierarchies of the metrics and call paths are visualized in tree widgets on
the left of the user interface (Fig. 4). For each entry the total severity including
the descendants (column “Severity”) and the net severity of only the entry itself
(column “Self”) are printed. Both widgets can be sorted by total or net severity.

When the analyst selects a metric, the severities in the call-path tree widget
are updated accordingly. When they select a pair of metric and call path, that
severity view gets visualized in the remaining parts of the user interface. The
columns “Severity” and “Self” can be swapped in any of the two tree widgets.
The leftmost determines whether total or net severity is being visualized.

A glyph in the leftmost column of the call-path tree widget guides the ana-
lyst to the call paths with the largest severity by colour-encoding the severity
relative to the respective parent’s severity. The colour map can be user-defined.
A linear black (100% relative severity) to transparent (0%) map is used by
default. A tilde printed in the second column of the call-path tree widget indi-
cates a large-variation severity view for detailed evaluation. If a severity view in
the descendants of a call path exposes large variation, an asterisk is printed in
order to speed up finding that severity view. Note that the presented data set
contains much variation in every visible view (cf. Sect. 6).

218 T. Vierjahn et al.

(a) 4 mpi ranks (b) 12 mpi ranks

Fig. 5. Proposed user interface: the severity of “Time/Execution” in
“fwbw tri dirichlet ” (Fig. 4) is visualized on the geometry (top). The data from
the table (bottom) is visualized by parallel coordinates (middle). The geometry for
different mpi ranks is selected.

5.2 Visualizing Performance Data in Its Spatial Context

The 3d viewport in the upper right part of the user interface (Fig. 5) renders the
geometry in the application domain. The severity for each mpi rank is visualized
colour-coded on the respective part of the geometry. The colour map can be
user-defined. A linear black (0% severity) to light grey (100%) map is used by
default. The simulation domain can be explored by moving a virtual camera with
five degrees of freedom using keyboard and mouse. Elevation is limited to ±90◦,
and rotation around the viewing direction is locked in order to keep orientation
intuitive and to prevent the analyst from losing track of the perspective.

The table in the lower part of the user interface (Fig. 5) lists the severities
for each mpi rank alongside the properties of the associated part of the geom-
etry, i.e., the number of finite elements and their surface area. In addition, the
severity is related to these properties by, for instance, presenting the severity
per surface area. A parallel coordinates plot in the middle of the user inter-
face (Fig. 5) presents the same data as the table for a better, concise overview.
This is particularly helpful for simulations using many mpi ranks Fig. 5(b). Each
axis is normalized from zero to the respective maximum, and it can be flipped.
That way the performance data can be inspected for meaningful structures when
related to the geometry.

The views are linked: a geometry part or the associated mpi rank can be
selected in the 3d view or the table. Selected geometry and the related informa-
tion are then highlighted in all three views.

Visualizing Performance Data with Respect to the Simulated Geometry 219

Table 1. Data sets, system topology sizes, and search-space reduction by limiting
minimum severity (≥1%) and by suggesting large-variation severity views.

System topology # Views # Suggested, τq =

Code # Dims. # Thr. Excl. �=0 ≥1% 0.01 0.02 0.03 0.04 0.05

Sheet-metal f. (4 R.) 3 64 None 29,482 7,360 7,354 7,349 7,344 7,336 7,318

Thread 5,888 5,538 5,229 4,886 4,530

Sheet-metal f. (12 R.) 3 240 None 46,909 7,652 7,651 7,649 7,645 7,643 7,627

Thread 7,522 7,476 7,431 7,371 7,218

Sweep3d 3 65,536 None 842 393 252 245 232 168 166

4 MPI Ranks 12 MPI Ranks Sweep3D

0.0

0.5

1.0

0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

Threshold τq

R
e
la
ti
v
e
#

V
ie
w
s

Exclude Dimension: none thread

Fig. 6. Search space reduction without (solid) and with dimension exclusion (dashed):
relative number of views being suggested for detailed evaluation, normalized to the
number of views that exceed 1% of total performance measured in the respective metric.
Results for the sheet-metal forming simulation using 4 (left) and 12 mpi ranks (middle),
and for Sweep3d as a reference (right).

6 Results

We have evaluated our system with two performance data sets. They have been
created by Score-P [9], instrumenting a sheet-metal forming simulation. The
simulation was executed

– on 4 thin nodes of SuperMuc (Phase 1) [1], executing 1 mpi rank each, and
– on 6 fat nodes of SuperMuc (Phase 1), executing 2 mpi ranks each.

The simulated geometry has been stored to disk by each mpi rank at the end of
the simulation. The mapping from the mpi ranks to the geometry is implicitly
provided by the file naming convention in use. For reference, we include a mea-
surement of the benchmark code Sweep3d executed on an Ibm R© System Blue
Gene R©/P [21].

The automatic suggestion mechanism effectively sieves out those views that
have a low impact on the overall performance and that expose only low varia-
tion in performance across the individual mpi ranks. Filtering out low-impact

220 T. Vierjahn et al.

views reduces the overall search space by between 53% and 84% for the used
datasets (Table 1). The reduction rates for additionally filtering out low-variation
views, however, are highly application-dependent: they depend on the amount of
variation present in the performance data, i.e., on the performance behaviour of
the application’s code, and to a great deal on the distribution of the simulated
data and thus on the domain decomposition. The results for the sheet-metal
forming datasets serve as an example where the proposed large-variation detec-
tion system can hardly filter out any severity views since variation is large in most
of them. However, the results for Sweep3d serve as a proof of concept (Table 1). In
general, τq = 0.01 serves as a sensible default that can be interactively adjusted
by the analyst. Larger thresholds filter out more views (Table 1, Fig. 6).

The sheet metal forming simulation used in the above examples shows many
imbalances along the hardware threads. These happen on purpose since many
functions are not yet parallelized on a node. Therefore, there is a certain, known
imbalance present in the data. Consequently, the filtering mechanism [18] used
to exclude known patterns from automatic variation detection reduces the search
space even further, at least for the 4 mpi rank data set (Table 1, Fig. 6).

Looking at Fig. 5, the mpi ranks that computed the outer parts of the mesh,
i.e., the selected ones, had lowest execution time. In the parallel coordinates
view these form an almost separate class. Having the 3d visualization and the
parallel coordinates plots available, both, the domain expert and the performance
analyst can clearly see that this quicker execution is caused by the less detail that
is present in these outer parts of the simulated mesh – no matter if looking at the
4 mpi rank data set or the 12 mpi rank one. In fact, in most of the simulation’s
functions mpi ranks simulating the inner blocks of the mesh required most cpu-
time. The 3d visualization clearly points out that these mpi ranks are computing
high-detail parts of the geometry. With our tool, simulation experts were able
to relate the observed performance phenomenon to a disadvantageous domain
decomposition that did not consider the forming tool’s shape.

7 Conclusion and Future Work

We have presented a system that maps performance data to the simulated geom-
etry in the application domain. Our system helps analysts evaluate an hpc appli-
cation’s performance behaviour based on profiles by greatly reducing the search
space: low-impact severity views and ones that do not expose variation in perfor-
mance are sieved out. Glyphs representing the severity of and labels indicating
large-variation severity views quickly guide analysts down the application’s call
hierarchy towards important severity views. Relating the performance data to
the simulation domain provides valuable insight. This is accessible even to pure
domain experts. Our tool directed them to the domain decomposition as the
cause for a performance phenomenon in the presented example. However, tests
with improved decompositions and significantly more compute nodes are left for
future work.

Currently, the provided system maps data to triangle meshes in the appli-
cation domain. Applying the presented technique to other, arbitrary geometries

Visualizing Performance Data with Respect to the Simulated Geometry 221

remains for future work. Then, additional tools for examining the application
domain, like brushing and filtering, need to be integrated.

We have made the current implementation of our system publicly avail-
able [19] to get broader feedback and to facilitate integration into established
performance analysis tools.

Acknowledgements. This work has been partially funded by the German Fed-
eral Ministry of Research and Education (BMBF) under grant number 01IH13001D
(Score-E), and by the Excellence Initiative of the German federal and state
governments.

References

1. SuperMUC petascale system. https://www.lrz.de/services/compute/supermuc/
systemdescription/

2. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: Proceedings of the 39th International
Conference on Parallel Processing, pp. 90–100. IEEE Computer Society, September
2010

3. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas,
K., Miller, M., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C.,
Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J., Navratil, P.: VisIt: an
end-user tool for visualizing and analyzing very large data. In: High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372, November
2012

4. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Fur-
ther improving the scalability of the Scalasca toolset. In: Jónasson, K. (ed.) PARA
2010. LNCS, vol. 7134, pp. 463–473. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28145-7 45

5. Huck, K.A., Potter, K., Jacobsen, D.W., Childs, H., Malony, A.D.: Linking perfor-
mance data into scientific visualization tools. In: Proceedings of the 1st Workshop
on Visual Performance Analysis, pp. 50–57 (2014)

6. Isaacs, K.E., Giménez, A., Jusufi, I., Gamblin, T., Bhatele, A., Schulz, M., Hamann,
B., Bremer, P.T.: State of the art of performance visualization. In: EuroVis - STARs
(2014)

7. Landge, A.G., Levine, J.A., Bhatele, A., Isaacs, K.E., Gamblin, T., Schulz, M.,
Langer, S.H., Bremer, P.T., Pascucci, V.: Visualizing network traffic to under-
stand the performance of massively parallel simulations. IEEE Trans. Vis. Comput.
Graph. 18(12), 2467–2476 (2012)

8. McCarthy, C.M., Isaacs, K.E., Bhatele, A., Bremer, P.T., Hamann, B.: Visualizing
the five-dimensional torus network of the IBM Blue Gene/Q. In: Proceedings of
the 1st Workshop on Visual Performance Analysis, pp. 24–27 (2014)

9. an Mey, D., Biersdorff, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt,
M., Knüpfer, A., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Rössel,
C., Saviankou, P., Schmidl, D., Shende, S.S., Wagner, M., Wesarg, B., Wolf, F.:
Score-P: a unified performance measurement system for petascale applications. In:
Bischof, C., Hegering, H.G., Nagel, W., Wittum, G. (eds.) Competence in High
Performance Computing 2010, pp. 85–97. Springer, Heidelberg (2012)

https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/
http://dx.doi.org/10.1007/978-3-642-28145-7_45
http://dx.doi.org/10.1007/978-3-642-28145-7_45

222 T. Vierjahn et al.

10. von Rüden, L., Hermanns, M.A., Behrisch, M., Keim, D., Mohr, B., Wolf, F.: Sepa-
rating the wheat from the chaff: identifying relevant and similar performance data
with visual analytics. In: Proceedings of the 2nd Workshop on Visual Performance
Analysis, pp. 4:1–4:8 (2015)

11. Schulz, M., Levine, J.A., Bremer, P.T., Gamblin, T., Pascucci, V.: Interpreting per-
formance data across intuitive domains. In: Proceedings of the 40th International
Conference on Parallel Processing (2011)

12. Shende, S.S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

13. Spear, W., Malony, A.D., Lee, C.W., Biersdorff, S., Shende, S.: An approach to
creating performance visualizations in a parallel profile analysis tool. In: Alexander,
M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156, pp. 156–165. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29740-3 19

14. Theisen, L., Shah, A., Wolf, F.: Down to earth: how to visualize traffic on high-
dimensional torus networks. In: Proceedings of the 1st Workshop on Visual Per-
formance Analysis, pp. 17–23 (2014)

15. Vernaleo, J.C., Reynolds, C.S.: Agn feedback and cooling flows: problems with
simple hydrodynamic models. Astrophys. J. 645, 83–94 (2006)

16. Vierjahn, T., Hentschel, B., Kuhlen, T.W.: Geometry-aware visualization of per-
formance data. In: Isenberg, T., Sadlo, F. (eds.) EuroVis 2016 - Posters, pp. 37–39
(2016)

17. Vierjahn, T., Hermanns, M.A., Mohr, B., Müller, M.S., Kuhlen, T.W., Hentschel,
B.: Correlating sub-phenomena in performance data in the frequency domain. In:
LDAV 2016 - Posters (2016)

18. Vierjahn, T., Hermanns, M.A., Mohr, B., Müller, M.S., Kuhlen, T.W., Hentschel,
B.: Using directed variance to identify meaningful views in call-path performance
profiles. In: Proceedings of the 3rd Workshop Visual Performance Analysis, pp.
9–16 (2016)

19. Virtual Reality and Immersive Visualization, RWTH Aachen University: pvt per-
formance visualization toolkit. https://devhub.vr.rwth-aachen.de/VR-Group/pvt.
Accessed 28 Oct 2016

20. Wylie, B.J.N., Geimer, M.: Large-scale performance analysis of PFLOTRAN with
Scalasca. In: Proceedings of the 53rd Cray User Group meeting. Cray User Group
Inc. (2011)

21. Wylie, B.J.N., Geimer, M., Mohr, B., Böhme, D., Szebenyi, Z., Wolf, F.: Large-
scale performance analysis of Sweep3D with the Scalasca toolset. Parallel Process.
Lett. 20(4), 397–414 (2010)

http://dx.doi.org/10.1007/978-3-642-29740-3_19
https://devhub.vr.rwth-aachen.de/VR-Group/pvt

Provenance Tracking

Traditionally, method and data tracking in science was accomplished using the ven-
erable lab notebook where every step of an experiment was noted, result tables were
added, and finally every page was numbered and dated. This approach has been
extended for computational simulations and analyses with careful usage of revision
control systems for code, unique scripts for every production run, and annotated file
names, often cross-referenced to spreadsheet tables. However, as the size of simula-
tions and analyses in HPC centers continue to grow, these manual systems are no
longer scalable. The provenance of results – linking final output files with the original
input files and the pipelines used to construct them – requires the same level of HPC
engineering as the underlying codes, if we hope to ensure reproducibility.

In domains like neuroscience and earth sciences, data sets have grown to the order
of tens of terabytes, while pipelines can span multiple HPC centers to take advantage of
advanced computing architectures. Data sharing has become a requirement for many
funding agencies, creating a need to be able to identify raw original files and the
processes needed to reproduce end files for HPC projects that otherwise would drown
in data intermediates. Developers of visualization and data search front-ends need data
provenance to allow the hierarchical investigation of data from end product back to
source, as well as enabling data mining operations by linking analyses, raw data,
experimental conditions and analytical methods.

As “Big Data” and “Big Simulation” become everyday tools in the scientific
community, the same standards of care for data used in the experimental lab is coming
to bear to the curation of data produced through supercomputing. The papers in this
section tackle these scaling issues which don’t involve more traditional HPC concerns
of new hardware and computer science algorithms – but which are crucial for the
application of HPC in science. They cover data sharing in the geosciences, automatic
tracking of data flows and operations within and across HPC centers, and the con-
struction of large scale frameworks for collaboration in neuroscience.

Framework for Sharing of Highly Resolved
Turbulence Simulation Data

Bastian Tweddell1, Jens Henrik Göbbert1(B), Michael Gauding2,
Benjamin Weyers3, and Björn Hagemeier1

1 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany
j.goebbert@fz-juelich.de

2 CORIA - CNRS UMR 6614, Saint-Étienne-du-Rouvray, France
3 Visual Computing Institute, Virtual Reality and Immersive Visualization Group,

RWTH Aachen University, Aachen, Germany

Abstract. The growing computational capabilities of nowadays super-
computers have made highly resolved turbulence simulations possi-
ble. The large data-sets and tremendous amount of required compute
resources create serious new challenges when attempting to share the
data between different research groups. But even more difficult to solve
is the incompatibility of the data formats and numerical approaches used
for turbulence simulations, which in detail are often only known to the
simulation code developer. In this paper a framework for sharing data
of large scale simulations is presented, which simplifies the access and
further post-processing even beyond a single supercomputing center. It
combines established services to provide an easy to manage-and-extend
software setup without the need to standardize a database or -format.
Beside other advantages, it enables the use of direct file outputs from
simulation runs which are often archived anyway.

Keywords: Data sharing · Framework · Turbulence

1 Introduction

Small scale turbulence continues to be one of the unsolved problems of classical
physics [13]. The turbulent motion of fluids is a highly complex phenomenon and
the statistical description and modeling is challenging. Turbulence is involved in
many natural and engineering processes like turbulent mixing, multi-phase flow,
turbulent combustion, plasma physics or astrophysics and also in environmental
processes like cloud formation and precipitation, or sea-ice melting. Therefore,
the understanding of the physics behind turbulence is of both fundamental and
practical importance.

Turbulence is a continuum field phenomenon with in principle infinite dimen-
sions. The main difficulties regarding the understanding of turbulent flows orig-
inates from its strong non-locality and non-linearity of the governing equations,

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 225–232, 2017.
DOI: 10.1007/978-3-319-53862-4 19

226 B. Tweddell et al.

namely the Navier-Stokes equations (or similar the equations for magnetohydro-
dynamics (MHD)). Although the Navier-Stokes equations are formally deter-
ministic, turbulence dynamics are by no means the same.

A solution of turbulent flows can be obtained by numerical methods. The
growing computational capabilities of nowadays supercomputers have made sim-
ulations of highly resolved turbulent flows an indispensable tool in computa-
tional fluid dynamics (CFD). But the memory and computational requirements
of direct numerical simulations (DNS) dramatically increase with the Reynolds
number, which is the most important non-dimensional number to characterize
turbulent flows. Turbulent flows usually have high Reynolds numbers and there-
fore a numerical solution must be carried out by fast supercomputers and result
in large data-sets.

Preparing and running such a simulation requires substantial expertise in
parallel computing and turbulence research and, even more important, access
to a supercomputing facility. The large data-sets and tremendous amount of
required compute resources create serious new challenges when attempting to
translate the simulation results into meaningful knowledge.

To gain deeper insight it is required to share and discuss simulation results
with domain experts from other research groups world-wide. How can we improve
this process and simplify the steps needed to share large-scale simulation data?

As an answer to this challenge we developed a software for easy and flexible
setup of a data sharing framework for canonical cases of highly resolved turbu-
lence simulations. It is our intention to simplify the access to high-quality, world-
class turbulence DNS data computed at supercomputing centres to researches
in physics, engineering and environmental sciences who might not have access
to supercomputing facilities.

2 State-of-the-Art and Motivation

With a similar intention in mind the ‘Johns Hopkins Turbulence Databases’
(JHTDB) [12] has been started in 2008. It currently provides access to over 20
TiB for isotropic turbulence data, 56 TiB for MHD data, 130 TiB for channel flow
data and 27 TiB for homogeneous buoyancy driven turbulence data (in 10/2016).
These data can be accessed [8] via a web service and C, Fortran and Matlab
interfaces. Subsets of the data can be downloaded in hdf5 file format. Beyond the
raw data itself it allows to calculate spatial differentiation using various order
approximations (up to 8th order) and filtering. A focus of the database is on
particle tracking, which can be performed both forward and backward in time
using a second order accurate Runge-Kutta integration scheme. The JHTDB
project is funded by the US National Science Foundation.

As a Data Pilot Community of EUDAT [11] the ‘Direct simulation data of
turbulent flows’ (DATATURB) [2] started to archives raw data and share it in a
more standardised and stable way for public access using the tools and services
EUDAT provides. It is based on the idea of a meta-data for the community to
reach a standard that allows easy and fluent data exchange between different

Scientific Database for Highly Resolved Turbulence Simulations 227

Fig. 1. Slice of instantaneous scalar dissipation of a DNS of homogeneous isotropic
turbulence on a 20483 grid. It shows the fine filamented structures of the turbulent
flow field. The scalar dissipation is a highly intermittent quantity.

research groups. EUDAT receives funding from the European Union’s Horizon
2020 research and innovation programme (Fig. 1).

JHTDB is already used since years by a wide range of turbulence researchers
and is successful with its centralized infrastructure. After registration any
researcher can have access to its large and well-documented database. The
infrastructure of JHTDB is not intended to allow other researchers to add easily
their own data-sets to the database. In contrast to this DATATURB is open in
both directions: researchers can access the provided data, but can also add new
data to the database. This is possible, because DATATURB is based on common
meta-data for the community and standardize the data format.

In this paper we describe a framework developed to avoid the need for stan-
dardization of data formats and centralization of services as much as possible.
This main motivations are driven by the the following practical experiences.

For high performance simulation codes developed for DNS of turbulent flows
a common file format did not come accepted until now by the community even
though attempts have been made (e.g. the CFD General Notation System). This
partly originates from the need for best I/O performance on different supercom-
puters and the special advantages of each I/O strategy in combination with
the simulation code and -algorithm. Therefore, output files are written today
using I/O libraries like HDF5 [14], NetCDF [15], SIONlib [3] or with MPI-I/O
or POSIX. But using the same file format does not specify any semantic mean-
ing to the stored data. In addition to a common file format a general notation
would be required, too. Nowadays, the turbulence community faces a multitude
of file formats and notations, which do not even need to be convertable into each
other. The details of these file formats are often only known by the simulation
code developers. Hence, the development to extract data from these different file
formats must be left to the simulation code developers.

228 B. Tweddell et al.

Table 1. Examples of different DNS cases with M stored data files, which have
been conducted on JUQUEEN [9]. Reynolds number variation between Reλ = 88 and
Reλ = 754.

R0 R1 R2 R3 R4 R5 R6

N3 5123 10243 10243 20483 20483 40963 40963

Reλ 88 119 184 215 331 529 754

File size (GB) 8 64 64 512 512 4096 4096

M 189 62 61 10 10 6 11

Data size (TB) 1.5 3.88 3.81 5 5 24 44

An additional advantage of using the file format of each specific simulation
code as data base results from the fact, that this data often needs to be archived
for future restart of the simulation and post-processing anyway. Even if possible
to convert the data to a common file format, this would mean to store the same
data a second time on the storage system. Especially for the large amount of
data generated by turbulence simulations this would be not desirable.

Avoiding centralization of services is the second main motivation for this
framework. A framework for sharing highly resolved data must allow communi-
ties or small groups and institutes to build-up and manage online share points in
short time for their simulation data world-wide. Each research domain needs to
collect special information to understand the request of a user asking for data.
Therefore these forms can only be defined by the domain experts themselfs. If the
framework integrates nicely into a large number internet sites without requiring
deep knowledge of specific web technology, the domain experts can setup their
web pages for sharing data on their own. This is faster to setup, more flexible
and less error-prone than leaving it to someone else.

3 Highly Resolved Turbulence Simulation

The temporal and spatial evolution of turbulent flows is governed by the Navier-
Stokes equations. Direct Numerical Simulation (DNS) solves these governing
equations for all scales down to the viscous cut-off length and provides a complete
description of the flow, where the three-dimensional flow fields are known as
function of space and time.

The simulation data is of general interest since the fine-scales of high
Reynolds number turbulence become universal. But DNS of high Reynolds num-
ber turbulence is computationally very expensive. The number of required grid
points N3 to resolve the finest scales increases rapidly with Reynolds number, i.e.

N3 ∝ Re9/2
λ , (1)

where Reλ denotes the Taylor based Reynolds number. Due to Eq.(1) DNS of
fine-scale turbulence results in huge data files. The handling and storage of the
DNS data is very demanding and requires reliable supercomputers.

Scientific Database for Highly Resolved Turbulence Simulations 229

First data sets of the data sharing framework are results of simulations listed
in Table 1. Several publications are based on these simulations, cf. [1,4,6,7]
and [5].

DNS can be understood as a numerical experiment yielding an exact flow
representation. The DNS can be used as reference for further studies and to
validate fundamental results from turbulence theory. Hence, novel questions and
methods arising in turbulence theory can be addressed by the reuse of the same
DNS data already available.

4 Data Sharing Framework

To simplify this reuse of available DNS data we developed a data handling and
sharing concept written in Python 3, which is described in the following.

The framework is sketched in Fig. 2. It is subdivided into three layers of
services. The top layer includes the web services (WS), the middle layer the
data exchange services (DES) and the bottom layer the data process services
(DPS).

To receive data from the turbulence database the user first (Fig. 2-(1)) fills a
web form provided on a web page. This form is defined by the turbulence domain
experts and can be hosted on any web server independent of the location of the
other services or the data. A suitable place could be the web site of the research
group or institute the domain expert belongs to. It queries all information in a
key-value style required to clearly define the requested data set. As most web
sites are build on top of a content management system, which provide extensions

Fig. 2. Sketch of the Data Sharing Framework: User → Website → Mail-Server →
Management Server → Data Access Server → Storage → Data Server

230 B. Tweddell et al.

to generate mail forms (like Typo3/PowerMail [10]) it is easy to implement. The
request and the required information about the user (e.g. name, affiliation, email)
are send via email (Fig. 2-(2)) from the web server to a mail server for temporary
storage.

The middle layer provides the Management Server, which runs the Python
script for requests management (Fig. 3). It provides a queuing system with
processing slots which can handle requests in parallel. Each time an empty
processing slot becomes available after a request has been fully processed it
checks for a new request (Fig. 2-(3)) from the mail server. Then, at first the mail
is translated back to a key-value representation and then checked for plausibility.
If it passes this test a response mail is send to the user to inform that the request
is processed. The key-value pairs are used to generate command line arguments
for a specialized data processing script (Fig. 3) - in this case called h5hypers -
provided by the domain experts.

The data processing can have certain hardware requirements depending on
data size, locality and compute requirements and is not executed on the Manage-
ment Server but as close to the data as possible. The data processing command
enters the bottom layer when it is scheduled (Fig. 2-(4)) to be executed on one
of the Data Access Servers. These servers have fast access to the main storage
servers (Fig. 2-(5)) and are set up to process large data files. The requested data
is processed and stored on the Data Server (Fig. 2-(6)) as a single file.

The Management Server is informed about the successful copying of the
requested data (Fig. 2-(7)) and sends the user an email with all required infor-
mation including a download link (Fig. 2-(8)) if the data processing has be suc-
cessfully finished. In any other case the user gets informed about the failure and
its reason.

The user can now follow the link and download the data (Fig. 2-(9)) until a
certain date.

Different advantage can be named for this approach. The three layers of
services allow to distribute the responsibilities to experts of each field.

Fig. 3. Structure of the requests management script written in Python 3.

Scientific Database for Highly Resolved Turbulence Simulations 231

The web services (WS) in the top layer can be located on any web server and
integrated into any web page independent of the data exchange services (DES)
or the data process services (DPS). A web form can nowadays easily be set up
on static or dynamic web pages or any popular content management systems.
Storing the submitted requests on a mail server decouples the top layer from
the middle layer. The reliability of the top layer is designed to be high as it
is based on the individual web and mail services, which are in general of high
reliability each.

The management services in the middle layer is under control of the super-
computing center. It bear the responsibility of scheduling the requests depending
on the available resources.

The data processing in the bottom layer uses available resources of the super-
computing center and do not require additional services installed. The developer
to the simulation code can be responsible to interpret the incoming commands as
key-value-pairs and to read/write the requested data packages. This is possible
because the data sharing framework consequent decouples the web interface and
data processing from the request management.

5 Conclusion

In this paper, a modular framework for sharing data of large scale simulations is
presented, which is based on established protocols/services (Email, HTTP, SSH)
and simplifies the access to HPC simulation results, especially for turbulence.

At the Jülich Supercomputing Centre each research groups has their estab-
lished workflows, which are based on the data-/file format of their simulation
code they use. The input/output routines of a simulation code are based on
different IO libraries like HDF5 [14], NetCDF [15], SionLib [3] or even use pure
MPI-IO for reading and writing data to/from disk and are tuned for an HPC
system. Even if every group has the time and the intention to change their simula-
tion codes and workflows, it would take a large effort to find a data format which
suites all research groups. Special numerical methods and their computational
grids can often not be represented by just one data format and any definition of
a standard data format limits the developers of HPC simulation codes.

Beside this, each research domain has their own requests they ask on the data.
It is important, that the web interface (and therefore the possible requests/key-
value pairs) are defined by the domain experts and the data processing script is
written by the domain experts.

The data sharing framework decouples the web interface and data processing
from the request management and allows domain experts to manage their web
interface and data processing script on their own. It is easy to integrate in exist-
ing infrastructure and is independent of a special research domain. The frame-
work scales to high loads if needed with its support for multiple web interfaces
and data access servers and allows collaboration of multiple supercomputing
centers.

Our intention is to enhance the data handling and sharing between research
groups world-wide. In future this shall not only include sharing of the DNS data

232 B. Tweddell et al.

files, but also sharing of post-processing results, and the codes. This might be
achieved by a central revision system or by establishing web-based collaborative
tools.

Acknowledgements. The authors gratefully acknowledge the computing time
granted by the John von Neumann Institute for Computing (NIC) and provided on
the supercomputer JURECA at Jülich Supercomputing Centre (JSC) in the context
of the Scientific Big Data Analytics (SBDA) project No. 006.

References

1. Boschung, J., Schaefer, P., Peters, N., Meneveau, C.: The local topology of stream-
and vortex lines in turbulent flows. Phys. Fluids (1994-present) 26(4), 045107
(2014)

2. DataTurb: Direct simulation data of turbulent flows. https://eudat.eu/
communities/dataturb-direct-simulation-data-of-turbulent-flows. [Accessed
30 Nov 2016]

3. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel i/o to task-local files.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1–11. IEEE (2009)

4. Gampert, M., Goebbert, J.H., Schaefer, P., Gauding, M., Peters, N., Aldudak, F.,
Oberlack, M.: Extensive strain along gradient trajectories in the turbulent kinetic
energy field. New J. Phys. 13(4), 043012 (2011)

5. Gauding, M., Goebbert, J.H., Hasse, C., Peters, N.: Line segments in homogeneous
scalar turbulence. Physics of Fluids (1994-present) 27(9), 095102 (2015)

6. Gauding, M., Wick, A., Peters, N., Pitsch, H.: Generalized scale-by-scale energy
budget equations for large-eddy simulations of scalar turbulence at various schmidt
numbers. J. Turbul. (2014)

7. Goebbert, J.H., Gauding, M., Gampert, M., Schaefer, P., Peters, N.: A new view
on geometry and conditional statistics in turbulence. Inside: Innovatives Super-
computing in Deutschland (2011)

8. JHTDB: Johns hopkins turbulence database. http://turbulence.pha.jhu.edu
(2008–2016). [Accessed 30 Nov 2016]

9. JUQUEEN: Jülich blue gene/q. http://www.fz-juelich.de/ias/juqueen (2012–
2015). [Accessed 01 Aug 2015]

10. Kellner, A.: Typo3/powermail. https://docs.typo3.org/typo3cms/extensions/
powermail (2005–2016). [Accessed 30 Nov 2016]

11. Lecarpentier, D., Wittenburg, P., Elbers, W., Michelini, A., Kanso, R., Coveney,
P., Baxter, R.: Eudat: a new cross-disciplinary data infrastructure for science. Int.
J. Digit. Curation 8(1), 279–287 (2013)

12. Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S.,
Szalay, A., Eyink, G.: A public turbulence database cluster and applications to
study lagrangian evolution of velocity increments in turbulence. J. Turbul. (9),
N31 (2008)

13. Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(6787), 639–646 (2000)
14. The HDF Group: Hierarchical data format version 5. http://www.hdfgroup.org/

HDF5 (2000–2016). [Accessed 30 Nov 2016]
15. UCAR/Unidata: Network common data format. http://www.unidata.ucar.edu/

software/netcdf (1989–2016). [Accessed 30 Nov 2016]

https://eudat.eu/communities/dataturb-direct-simulation-data-of-turbulent-flows
https://eudat.eu/communities/dataturb-direct-simulation-data-of-turbulent-flows
http://turbulence.pha.jhu.edu
http://www.fz-juelich.de/ias/juqueen
https://docs.typo3.org/typo3cms/extensions/powermail
https://docs.typo3.org/typo3cms/extensions/powermail
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf

UniProv: A Flexible Provenance Tracking
System for UNICORE

André Giesler1(B), Myriam Czekala1, Björn Hagemeier1, and Richard Grunzke2

1 Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
a.giesler@fz-juelich.de

2 Technische Universität Dresden, Dresden, Germany
http://www.fz-juelich.de/ias/jsc

Abstract. In this paper we present a flexible provenance management
system called UniProv. UniProv is an ongoing development project pro-
viding provenance tracking in scientific workflows and data management
particularly in the field of neuroscience, thus allowing users to validate
and reproduce tasks and results of their experiments.

The primary goal is to equip the commonly used Grid middleware
UNICORE [1] and its incorporated workflow engine with the provenance
capturing mechanism of UniProv. We also explain an approach for using
predefined patterns to ensure compatibility with the W3C PROV [2]
Data Model and to map the provenance information properly to a neo4j
graph database.

Keywords: Scientific workflows · Reproducibility · Interoperability ·
Provenance

1 Introduction

In the past few years, scientific workflows have been often used to automatize
and execute a range of experiments in many domains. However, reproducibility
and validation of workflows did not get the same attention in that context.
As scientific workflows often comprises joint effort, there is a growing demand
for a repository that allows everyone involved to store and query provenance
information of executed workflows having produced relevant data results. Here,
it is particularly important that such a repository must support an interoperable
data model, since provenance may be collected from various systems. Moreover,
the storage of provenance must also be considered in terms of maintenance and
an efficient query processing.

This paper presents UniProv which addresses three main requirements:
(i) enabling the traceability of scientific workflows exemplarily in the domain of
neuroimaging by designing a flexible provenance management system that can
be conveniently integrated in the existing UNICORE workflow system; (ii) build-
ing an interoperable framework so that further potential provenance information
providers can make use of the system; (iii) and designing a suitable storage man-
agement system, so that the provenance graph can be mapped efficiently and
c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 233–242, 2017.
DOI: 10.1007/978-3-319-53862-4 20

234 A. Giesler et al.

arbitrary analytics on its data can be performed. We met the first requirements
by implementing a modular architecture of UniProv that allows to connect differ-
ent provenance providers mapping proprietary source information to the frame-
work by making use of a predefined set of provenance patterns applying the
emerging W3C PROV standard and addresses the interoperability requirement.
Finally, we chose the scalable neo4j graph database [3] that supports Cypher,
an expressive query language. Furthermore, neo4j provides a convenient web
interface to query and visualize the tracked provenance data.

This paper starts with a description of provenance in scientific workflows
in general and related work in that area. Additionally, the UNICORE software
suite and its integrated workflow management system which is particularly used
in neuroimaging studies is briefly examined. It then explains the concept and
implementation of the UniProv provenance management system which we are
currently working on, and concludes with an evaluation of UniProv’s ability
to enhance reproducibility of scientific workflows and its extension capabilities
regarding further potential areas of provenance capturing.

2 Workflows and Provenance

In this section we describe the relation of provenance and scientific workflow
systems, show the existing shortcomings, and provide an overview of related
work to solve them. At the end of the section we present a particular example
which is using UNICORE and requires a flexible provenance management.

2.1 Scientific Workflow Systems

State of the art scientific workflow management systems provide programming
environments for composing and executing complex computational processes
commonly referred to as scientific workflows. Main objectives include provid-
ing an easy-to-use environment for scientists, providing interactive tools to view
results in real-time, and simplifying the process of sharing and reusing workflows
between scientists.

Another motive for abstracting several computations in one workflow is
to enable an integrated and seamless provenance tracking of the derived data
products [4]. Without the possibility to check lineage information, a resulting
data set could be regarded useless from the scientific point of view. This implies
to capture the processing information, to store it efficiently, and to allow queries
over it. The first part of the problem, capturing provenance information, has been
made considerably easier by using scientific workflow management systems. In
such environments, provenance data is often automatically captured in the form
of execution traces. However, these systems often rely on proprietary formats
hampering the interchange of provenance information.

UniProv: A Flexible Provenance Tracking System 235

2.2 Related Work

The need for provenance management in scientific workflows has been widely
acknowledged and has been investigated in many systems and studies. How-
ever, most of these implementations are in a manner specific to their application
domain or using specific concepts and technologies. Only a few research projects
exist addressing generic provenance management systems. Here, we concen-
trate on those supporting especially the handling of scientific workflows. Apache
Taverna [5] is a scientific workflow system for combining web services and local
tools. Taverna records provenance of workflow runs, intermediate values and
even user interactions, and exports that pieces in a workflow data bundle which
is a ZIP archive that relies on the concept of Research Object bundles [6]. The
archive contains additionally a PROV formatted trace of the workflow execu-
tion. For later debugging or reproducibility issues that bundle can be downloaded
from an appropriate server and reused in the Taverna system.

Other workflow systems extended to capture provenance information are
Kepler [7] and VisTrails [8]. Kepler provides an interactive provenance browser
for viewing and navigating workflow data and computations. The PROV-man
toolkit [9] is a more general approach to capture, manage, and store provenance
data permanently. PROV-man is compliant to standard PROV and consists of
a programming interface (API) and a configurable database that can be used to
create and store provenance information. It is however limited to the integration
in Java programming environments and relational database systems.

2.3 Neuroimaging Workflows with UNICORE

UNICORE is an open source middleware that facilitates access to supercom-
puting resources and allows to perform scientific workflows on them. It offers
integrated workflow support that is used to control the execution of multiple
compute jobs at one or multiple sites, dealing with dependencies between jobs
and handling any required data movement. The workflow engine offers a wide
range of control constructs which can be nested to any depth. Workflow variables
can be defined, modified, and used in scripts. A full-featured graphical workflow
editing and monitoring is part of the UNICORE Rich Client (URC) [10].

A significant demand for provenance-enabled scientific workflows exists in
neuroimaging communities. Thus, scientists at the Institute for Neuromedi-
cine (INM-1) at Forschungszentrum Jülich investigate the connectivity of brain
regions by using techniques such as Three-dimensional Polarized Light Imag-
ing (3D-PLI) which make it possible to study the complex nerve fiber archi-
tectures across human brains at the micrometer level [11]. Images of brain
slices are processed with a chain of tools for calibration, independent compo-
nent analysis, stitching and segmentation. These tools have been integrated in a
UNICORE workflow to achieve an automated and accelerated image processing
[12]. The PLI workflow contains a lot of parametrization in its integrated tools,
so that provenance recording of these variables would be a significant bene-
fit to the scientists in order to enhance the repeatability of their experiments.

236 A. Giesler et al.

Fig. 1. Partial screenshot of UNICORE Client showing 3D-PLI workflow control flow
diagram

Figure 1 shows a section of the control diagram of the PLI workflow in the UNI-
CORE Rich Client.

Beyond addressing the individual 3D-PLI use case, UNICORE based work-
flows are becoming increasingly important in neuroscience by deploying the
middleware in the Human Brain Project [13]. UNICORE will be a core element
of the project’s so called Collaboratory which is a web platform for executing
applications and workflows on HPC resources [14]. Additionally, coarse-grained
metadata based on W3C PROV can be registered in the Collaboratory and
domain specific PROV conform provenance data as tracked by UniProv could
be attached to the HBP provenance repository.

3 UniProv Provenance Management

Besides the need to facilitate experiments by making use of scientific workflows,
the availability of provenance information is as important as the results of the
scientific analysis itself [15]. The latter aspect is covered by UniProv which is
designed as a provenance management system for scientific analysis. The first
milestone of UniProv is to support provenance tracking of scientific workflows
designed in UNICORE. UniProv aims to represent both prospective and retro-
spective provenance of workflows and to link them in a searchable repository
[16]. Thus, UniProv captures firstly the “recipe” of the workflow including the

UniProv: A Flexible Provenance Tracking System 237

Fig. 2. Architecture of UniProv

workflow model, scripts of single tasks, dependencies between them, and sta-
tic user annotations [17]. Additionally, each single workflow execution will be
tracked adding information about runtime variables, input data, results, and
other resources. UniProv receives all required information, prospective and ret-
rospective, from the provenance information providers (i.e. UNICORE in case
of this study). Figure 2 shows the dataflow and architecture of the UniProv
provenance management system.

3.1 Implementation

The UNICORE middleware acts as a provenance provider and supplies all
required information to UniProv. The Unicore2PROV module of the UniProv
system captures at first the raw data from UNICORE server components. While
the workflow logic, for instance the sequence of jobs, workflow variables, or data
staging between supercomputers, is captured directly from the UNICORE work-
flow engine, detailed information about single compute job resources is tracked
from the UNICORE job management services. The latter provenance informa-
tion includes, among other things, used supercomputing resources, scripts and
input data, environment variables, user annotations, user information, and also
references to the resulting output of the computations. The recorded provenance
information from the job level is transferred together with other related output
files to the workflow engine and, subsequently, after the whole workflow has

238 A. Giesler et al.

finished, merged with the higher level workflow provenance. This reflects the
federated architecture of the UNICORE middleware where a central workflow
service can manage several job management instances controlling geographically
distributed supercomputers.

UniProv is built based on the W3C recommendation of the PROV Data
Model (PROV-DM) which is a rich vocabulary describing provenance informa-
tion in a standardized way. The mapping from the captured UNICORE raw
data to the W3C PROV-DM has been realized with OWL2 ontologies [18] and
the Apache Jena framework API [19]. The ontology approach guarantees the
interoperable exchange of provenance data and provides an efficient opportunity
to specialize the existing semantics to model provenance information for differ-
ent applications and domains. The basic set of classes, properties, and relations
is already defined in the PROV Ontology (PROV-O) representing the OWL2
encoding of the PROV Data Model.

Since the basic PROV-DM does not provide semantics for the processing logic
of workflows, a suitable ontology extension model was needed to be integrated in
UniProv. Different PROV extension models were analyzed during the evaluation
phase of UniProv with regard to their suitability for UNICORE based workflows.
With wfdesc and wfprov, the Wf4Ever Research Object model [20] provides suit-
able vocabularies describing the static model and the trace of workflows. While
the Wf4ever model is embedded in a higher level research object and is in gen-
eral more oriented towards data preservation, another PROV extensions, the
specialised ProvONE [21] ontology, was chosen as a suitable model description
for the directed acyclic graphs of UNICORE workflows. Figure 3 shows the con-
ceptual ProvONE model as a UML diagram. For example, the Controller class of
the ProvONE ontology allows to specify the execution of a given program which
is controlled by another program. In this manner sequential logic and conditions
in UNICORE workflows as if-else branches and loop constructs can be optimally
implemented by specializing the Controller class.

An additional PROV-O extension is required to describe some UNICORE
specific semantics and features. Accordingly, UniProv supports user annotations
in job and workflow scripts. For that reason PROV-O has been extended with
an appropriate collection class and object relation so that annotations can be
related to workflow scripts. Furthermore, UNICORE compute jobs allow the def-
inition of properties for the required supercomputing resources like the number
of needed cores, memory, and maximum wall times. Even the total execution
time of the complete workflow and single jobs must be tracked. Appropriate
parameters have also been added to the OWL2 encoded PROV-O extension
which has been serialized as the UniProv ontology. Based on the three prove-
nance ontologies, PROV-O and its extensions ProvOne and UniProv, the Jena
framework API maps the captured provenance information from UNICORE to
a PROV modeled output in the compact RDF Turtle syntax. Figure 4 shows a
visual representation of a simple UNICORE job’s provenance output including
used environment resources and variables as well as output data generated by
the executed job script.

UniProv: A Flexible Provenance Tracking System 239

Fig. 3. Workflow provenance model for UniProv: ProvONE UML diagram

Fig. 4. Visualized UniProv provenance output of a single UNICORE job

3.2 Flexible Extensibility

UniProv has been designed to be able for the integration of different prove-
nance providers beyond the UNICORE middleware. Each application connected
to UniProv must be capable to map the captured proprietary provenance infor-
mation to the W3C PROV standard model and, in case of workflow informa-
tion, in its extension ProvONE. To ensure that provenance providers generate a
well-formed and compatible mapping to PROV and its extensions, UniProv has
also implemented a common repository of predefined patterns based on PROV-
TEMPLATE [22] separating the tracking of information from the construction
of provenance. This approach has the additional advantage that patterns which
are often repeated in one or more applications are stored in one central location
and can be re-used by providers which want to store provenance information in
UniProv.

240 A. Giesler et al.

3.3 Provenance Repository

UniProv stores the collected provenance data using the neo4j graph database.
The choice of a graph database was mainly attributed to the much more natural
mapping from a directed acyclic provenance graph to the property graph data
model as offered by neo4j. In order to store PROV information in neo4j, the
PROV representation of the data is mapped to the property graph model. In
UniProv this is performed by the PROV2Neo4j-Generator. Furthermore, with
Cypher, neo4j offers a declarative, SQL-inspired query language for describing
patterns in graphs. Queries can be formulated conveniently in the neo4j browser
interface to submit graph traversals to the underyling database. Additionally,
this web interface is able to visualize the requested results in a customized man-
ner so that users can easily browse through the captured provenance data. Alter-
natively, the PROV formatted provenance information could be stored directly
in a triple store if the users prefer RDF databases. The interoperable PROV rep-
resentation also allows to convert the data conveniently in lightweight notations
like JSON for interchanging it with third party provenance processing services.

4 Conclusion

The main purpose of the UniProv provenance management system is to enable
the back-tracking of experimental data which has either not been possible so far
or could only be realised at considerable costs. This means that UniProv will help
researchers struggling with information tracking, analysis reproducibility and the
verification of scientific output. So for example, end users of UniProv will be able
to query the provenance system in order to receive all execution traces within
a specific time frame that utilized a particular version of an application which
seemed to be incorrect. In general, any possible query about the provenance
information of a workflow will be supported by the repository.

Since UniProv is built upon interoperable standards it therefore guarantees
both the exchange of provenance data and the extensibility of the provenance
management system to various provenance information providers.

At present, UniProv is still work in progress. So the practicality of its design
and implementation will be proven in the near future. Especially tests in envi-
ronments with large collections of traces remain to be carried out.

5 Future Work

Currently, the implementation of UniProv is concentrated on supporting the
provenance tracking of UNICORE based scientific workflows. However, UniProv
has been designed to be able to adapt various provenance information providers.
If one regards data life cycles in science, it becomes apparant that not every
processing task is managed within workflows. There is ingestion of raw data in
laboratories, annotation of data, transfers to storages and computation clusters,
and pre- and post-processing of data outside of controlled workflow executions.

UniProv: A Flexible Provenance Tracking System 241

In future, these tasks could also be captured by UniProv in order to achieve a
complete provenance graph of the data life cycle. One way for keeping track of
datasets in such environments is presented by the PROB tool [23] where prove-
nance information is captured by the version control system GIT and metadata
is converted to W3C PROV by using Git2PROV [24]. For UniProv, the adaption
of provenance information of distributed version control systems which maintain
the revisions of data storages could also provide a promising approach. Another
focus will be the integration with the MASi [25] research data repository. Here,
data processed by UNICORE shall by ingested and managed by MASi and
enriched with provenance information that UniProv provides.

Acknowledgments. The authors thank the German Helmholtz Association’s
LSDMA [26] project for supporting the specification of UniProv. Furthermore, we
would like to thank the DFG for funding the MASi (NA711/9-1) project.

References

1. Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., et al.: UNICORE 6 - recent
and future advancements. Ann. Telecommun. - annales des Télécommunications
65, 757–762 (2010). Springer

2. Moreau, L., Missier, P. (eds.): PROV-DM: The PROV Data Model, 30 April 2013.
W3C Recommendation. http://www.w3.org/TR/2013/REC-prov-dm-20130430/

3. Neo4j graph database. http://neo4j.com
4. Deelman, E., Gil, Y.: NSF Workshop on Challenges of Scientific Workflows. Tech-

nical report, NSF (2006)
5. Wolstencroft, K., Haines, R., Fellows, D., Sufi, S., Goble, C., et al.: The Taverna

workflow suite: designing and executing workflows of web services on the desktop,
web or in the cloud. Nucleic Acids Res. 41(W1), W557–W561 (2013). doi:10.1093/
nar/gkt328

6. Soiland-Reyes, S., Gamble, M., Haines, R.: Research Object Bundle 1.0.
researchobject.org Specification (2014). https://w3id.org/bundle/2014-11-05.
doi:10.5281/zenodo.12586

7. The Kepler Project. http://kepler-project.org
8. The VisTrails Project. http://www.vistrails.org
9. Benabdelkader, A., van Kampen, A.H.C., Olabarriaga, S.D.: PROV-man: a PROV-

compliant toolkit for provenance management. PeerJ PrePr. 3, e1102 (2015)
10. Demuth, B., Schuller, B., Holl, S., Daivandy, J., Giesler, A., Huber, V., Sild, S.: The

UNICORE Rich Client: facilitating the automated execution of scientific workflows.
In: 2010 IEEE Sixth International Conference on e-Science (e-Science), pp. 238–245
(2010)

11. Amunts, K., Bücker, O., Axer, M.: Towards a multiscale, high-resolution model
of the human brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) Brain-
Comp 2013. LNCS, vol. 8603, pp. 3–14. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12084-3 1

12. Hagemeier, B., Giesler, A., Saini, R., Schuller, B., Buecker, O.: A workflow for
polarized light imaging using UNICORE workflow services. In: UNICORE Summit,
Poznan, Poland (2014)

13. The Human Brain Project. http://www.humanbrainproject.eu

http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://neo4j.com
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/nar/gkt328
https://w3id.org/bundle/2014-11-05
http://dx.doi.org/10.5281/zenodo.12586
http://kepler-project.org
http://www.vistrails.org
http://dx.doi.org/10.1007/978-3-319-12084-3_1
http://dx.doi.org/10.1007/978-3-319-12084-3_1
http://www.humanbrainproject.eu

242 A. Giesler et al.

14. BerndSchuller: UNICORE in the Human Brain Project (2016). http://
neuralensemble.org/media/slides/UNICORE HBP.pdf

15. Miles, S., Groth, P., Deelman, E., Vahi, K., Mehta, G., Moreau, L.: Provenance:
the bridge between experiments and data. Comput. Sci. Eng. 10, 38–46 (2008).
AIP Publishing

16. Zhao, Y., Wilde, M., Foster, I.: Applying the virtual data provenance model. In:
Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 148–161. Springer,
Heidelberg (2006). doi:10.1007/11890850 16

17. McPhillips, T., Bowers, S., Belhajjame, K., Ludäscher, B.: Retrospective prove-
nance without a runtime provenance recorder. In: Proceedings of TAPP 2014 (2015)

18. OWL 2 Web Ontology Language. https://www.w3.org/TR/owl2-overview/
19. The Apache Jena Project. http://jena.apache.org/
20. Wf4Ever Research Object Model (2013). http://wf4ever.github.io/ro/
21. ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance

(2014). http://purl.org/provone
22. PROV-TEMPLATE: A Template System for PROV Documents. https://

provenance.ecs.soton.ac.uk/prov-template/
23. Korolev, V., Joshi, A., Korolev, V., Grasso, M.A., Joshi, A., et al.: PROB: a tool

for tracking provenance and reproducibility of big data experiments. In: Reproduce
2014, HPCA 2014, vol. 11, pp. 264–286 (2014)

24. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens,
E., Van de Walle, R.: Git2PROV: exposing version control system content as
W3C PROV. In: Proceedings of the 2013th International Conference on Posters &
Demonstrations Track, vol. 1035, pp. 125–128 (2013)

25. Project: MASI - Metadata Management for Applied Sciences. https://tu-dresden.
de/zih/forschung/projekte/masi

26. LSDMA Project: Large-Scale Data Management and Analysis. https://www.
helmholtz-lsdma.de/

http://neuralensemble.org/media/slides/UNICORE_HBP.pdf
http://neuralensemble.org/media/slides/UNICORE_HBP.pdf
http://dx.doi.org/10.1007/11890850_16
https://www.w3.org/TR/owl2-overview/
http://jena.apache.org/
http://wf4ever.github.io/ro/
http://purl.org/provone
https://provenance.ecs.soton.ac.uk/prov-template/
https://provenance.ecs.soton.ac.uk/prov-template/
https://tu-dresden.de/zih/forschung/projekte/masi
https://tu-dresden.de/zih/forschung/projekte/masi
https://www.helmholtz-lsdma.de/
https://www.helmholtz-lsdma.de/

A Collaborative Simulation-Analysis Workflow
for Computational Neuroscience Using HPC

Johanna Senk1(B), Alper Yegenoglu1(B), Olivier Amblet2, Yury Brukau2,
Andrew Davison3, David Roland Lester4, Anna Lührs5, Pietro Quaglio1,
Vahid Rostami1, Andrew Rowley4, Bernd Schuller5, Alan Barry Stokes4,
Sacha Jennifer van Albada1, Daniel Zielasko6,7, Markus Diesmann1,8,9,

Benjamin Weyers6,7, Michael Denker1, and Sonja Grün1,10

1 Institute of Neuroscience and Medicine (INM-6) and Institute
for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I,

Forschungszentrum Jülich, Jülich, Germany
{j.senk,a.yegenoglu}@fz-juelich.de

2 Human Brain Project, École Polytechnique Fédérale
de Lausanne, Geneva, Switzerland

3 Unité de Neurosciences, Information et Complexité (UNIC),
Centre National de la Recherche Scientifique, Gif-sur-Yvette, France

4 Department of Computer Science, University of Manchester, Manchester, UK
5 Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany

6 Visual Computing Institute, RWTH Aachen University, Aachen, Germany
7 JARA-HPC, Aachen, Germany

8 Department of Psychiatry, Psychotherapy and Psychosomatics,
Medical Faculty, RWTH Aachen University, Aachen, Germany

9 Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
10 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany

Abstract. Workflows for the acquisition and analysis of data in the nat-
ural sciences exhibit a growing degree of complexity and heterogeneity,
are increasingly performed in large collaborative efforts, and often require
the use of high-performance computing (HPC). Here, we explore the
reasons for these new challenges and demands and discuss their impact
with a focus on the scientific domain of computational neuroscience.
We argue for the need of software platforms integrating HPC systems
that allow scientists to construct, comprehend and execute workflows
composed of diverse data generation and processing steps using differ-
ent tools. As a use case we present a concrete implementation of such a
complex workflow, covering diverse topics such as HPC-based simulation
using the NEST software, access to the SpiNNaker neuromorphic hard-
ware platform, complex data analysis using the Elephant library, and
interactive visualization methods for facilitating further analysis. Tools
are embedded into a web-based software platform under development by
the Human Brain Project, called the Collaboratory. On the basis of this
implementation, we discuss the state of the art and future challenges in
constructing large, collaborative workflows with access to HPC resources.

c© Springer International Publishing AG 2017
E. Di Napoli et al. (Eds.): JHPCS 2016, LNCS 10164, pp. 243–256, 2017.
DOI: 10.1007/978-3-319-53862-4 21

244 J. Senk et al.

Keywords: High-performance computing · Workflows · Collaboration ·
Reproducibility · Provenance tracking · Simulation · Neuromorphic
hardware · Comparative data analysis · Visualization

1 Introduction

Workflows in the natural sciences that deal with the acquisition and analy-
sis of experimental or simulated data often comprise an intricate sequence of
processing steps, each of which requires the use of diverse software tools. The
resulting heterogeneity in terms of both the composition of steps of the work-
flows and the diversity of tools employed generates a substantial degree of com-
plexity that increases with the number of researchers involved. The situation is
compounded if the tools themselves add an additional level of complexity, for
instance requiring scientists to be trained in using the software. In particular, in
interdisciplinary settings, users need to know how to integrate the various tools
that may be unfamiliar to them in terms of practical usage and/or the scien-
tific processing step they perform. A commonly encountered scenario where this
holds are workflows and tools that rely on the capabilities of high-performance
computing (HPC) systems, but where the access to and usage of such systems
is complicated for less experienced users. Another problem dimension is added
if requirements such as reproducibility or reusability are considered, for exam-
ple in terms of version control of code and data or provenance tracking of the
analysis. Ad hoc approaches are bound to fail as the complexity of the workflow
increases. Instead, the heterogeneity and the emerging complexity of such work-
flows call for user-friendly standards and software tools that meet and integrate
such requirements.

Interdisciplinary workflows in computational neuroscience are facing these
problems. Computational neuroscience entails integrating and analyzing experi-
mental data, building network models for brain simulations, and using theory to
develop concepts concerning neuronal information processing. Datasets obtained
from both experiments and simulations are highly diverse in their internal struc-
ture and content. Analysis tools are therefore often adapted to the specifics of the
experiment or the simulation study. Moreover, the analysis tools employ meth-
ods with a different focus depending on the source of the data. For instance,
while simulation studies often exploit the fact that data are controlled and can
be acquired over long durations and large ensembles, experimentally obtained
data are often analyzed with respect to the inherent non-stationarity of the data
and the behavioral protocols. Thus, in the attempt to bring experiment and
simulation closer together, a large array of heterogeneous data standards and
tools exist. These need to be merged and linked into workflows for analysis, in
particular for comparison of data from model and experiment. Moreover, work-
flows typically consist of complex chains of processing steps that often require
the use of HPC systems for expensive computations, e.g., to run large-scale net-
work simulations, to process extensive data records, or to perform parameter
scans. At the same time, they necessitate the option of exploratory analysis in
an interactive fashion (cf. [9]).

A Collaborative Simulation-Analysis Workflow 245

To propose a solution for this problem domain, this work presents an exam-
ple of such an interdisciplinary and heterogeneous workflow in computational
neuroscience. We describe in the following a realistic research question, derive
its concrete challenges, and provide a possible approach to tackle them. The
research question addressed is to what extent different simulators produce com-
parable results as they differ, for instance, in the biological detail they can repre-
sent, their underlying architecture, performance, flexibility, or other design goals
like application in robotics. We here compare two simulators, NEST and SpiN-
Naker, relying on two different types of digital hardware, and outline a workflow
which is conceptually applicable for the comparison of other simulators as well.
Both simulators aim at simulations of large networks of simple spiking neuron
models which are currently gaining significant relevance in the field of com-
putational neuroscience [2]. The simulator NEST (NEural Simulation Tool1, see
[11,15]) is optimized to efficiently use existing HPC infrastructure and allows for
exact and reproducible simulations. It combines ease of use (Python interface)
and runtime performance (C++ kernel, multi-threading, and MPI-parallelism).
Recent development of NEST has notably reduced the memory requirements
[17], thus further facilitating large-scale simulations. In contrast, SpiNNaker
(Spiking Neural Network Architecture2, see [12,20]) is a specific neuromorphic
hardware designed for biological real-time operation, low power consumption,
and scalability. The architecture of the SpiNNaker Neuromorphic Computing
Platform itself is inspired by biological neuronal networks. A large number of
low-powered and thus energy-efficient computation units are highly connected
together by an asynchronous communication network.

Since there are by design major differences in how NEST and SpiNNaker
operate, it remains to be evaluated to what extent simulation results are com-
parable at all. This suggests the refined research question (cf. above):

If a simulation of the same neural network model is run both on an
HPC system using NEST and on the neuromorphic hardware system
SpiNNaker, are the results the same?

When investigating the implications of this question in detail, the following
distinct challenges emerge. First of all, access to HPC systems and the neuro-
morphic hardware is required. It must also be guaranteed that the same network
model is simulated on both systems to enable a direct comparison of the sim-
ulation results; this calls for a model description valid for both systems. The
model development itself needs to be performed under version control and the
source code must be accessible to all scientists involved. Assuming that both
simulations have been run successfully, the simulation output must be validated
and compared using a suitable analysis tool. In order to evaluate the recorded
series of spike times of each simulated neuron, i.e., the spike trains, and to assess
whether the results from both simulations can be considered “the same”, a tool
for statistical data analysis is needed. A prerequisite for the analysis is that the
simulation output is readily accessible, for example after transferring it to the

1 http://nest-simulator.org/
2 http://apt.cs.manchester.ac.uk/projects/SpiNNaker/

http://nest-simulator.org/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/

246 J. Senk et al.

same data storage, and that the data is available in the same format. It is fur-
ther desirable to have the possibility of an interactive data analysis and a more
sophisticated one relying on HPC. Finally, visualization techniques are needed
in order to convey a more intuitive understanding of the expectedly complex
analysis results.

In summary, the initially posed research problem can be broken down into
a list of separate demands which encompass the collaboration of experts from
different scientific disciplines as well as a series of consecutive tasks that depend
on access to and usage of specific tools. On first sight, one could argue that
solutions for the isolated problems already exist. To give an example, there are
web-based repository hosting services like GitHub3 for source code management
and version control which allow sharing repositories among researchers of differ-
ent institutions. Sumatra4 allows for automated tracking of scientific computa-
tions. For the field of neuroscience, in particular, there are platforms to facilitate
access, storage, analysis, and exchange of data, such as the G-Node Data Por-
tal5. Resources for computational models of neural systems are Open Source
Brain6 and ModelDB7. The Neuroscience Gateway8 provides an opportunity for
neuroscientists to use HPC resources. When using such independent solutions,
however, one faces major problems in terms of provenance tracking. If there are
no links between the individual components, it will quickly become untraceable
who did what, why, and when. Since scientific progress is rarely straightforward,
but includes trial and error, repetitions, and iterative improvement, it is crucial
to keep track of all steps involved and their history. Here, we suggest integrating
such components into one collaboration platform in order to establish a stable
and reproducible workflow.

In this study, we demonstrate how such a workflow can be implemented
addressing the aforementioned problems by integrating established and emerg-
ing software tools using a web-based infrastructure. We will describe the work-
flow consisting of the following steps: (i) simulate the activity generated by
a model of a cortical microcircuit [18] using the NEST simulator, (ii) simu-
late the same network model with identical parameters using the SpiNNaker
system, (iii) pool data on the centralized storage of the integrative software
infrastructure, (iv) compare the resulting activity data using Elephant (Elec-
trophysiology Analysis Toolkit, see [21,22]), and (v) interactively visualize the
analysis results. In the following, the individual steps comprising this workflow
will be briefly highlighted, before we discuss the benefits and shortcomings of
the currently available implementation of this workflow based on an integrative
software architecture that is developed in the European FET Flagship “Human
Brain Project” (HBP).

3 https://github.com/
4 http://neuralensemble.org/sumatra/
5 http://www.g-node.org/
6 http://opensourcebrain.org/
7 https://senselab.med.yale.edu/modeldb/
8 https://www.nsgportal.org/

https://github.com/
http://neuralensemble.org/sumatra/
http://www.g-node.org/
http://opensourcebrain.org/
https://senselab.med.yale.edu/modeldb/
https://www.nsgportal.org/

A Collaborative Simulation-Analysis Workflow 247

2 Workflow

The principal layout of the workflow that we defined and implemented to com-
pare the activity data coming from the classical NEST-based simulations, and
the neuromorphic SpiNNaker-based simulations is depicted in Fig. 1. The work-
flow comprises a collaboration of different laboratories with different expertises
(marked by colored dots): HPC, neural network simulation, neuromorphic hard-
ware, data analysis, and visualization. Each of the five steps in Fig. 1 is defined
by a set of methods and tools specific to these individual areas of expertise, and
needs to be integrated into a common infrastructure that makes them accessible
for cooperative work. All components integrated in the workflow are based on
or accessible via Python, a programming language which is becoming commonly
used in computational neuroscience for both simulation and data analysis [6].
Furthermore, we incorporate tools like NEST and Elephant which follow stan-
dardized development processes in software engineering, e.g., test-driven devel-
opment and continuous integration.

We embedded our workflow into an integrative software platform called the
“HBP Collaboratory”9. The Collaboratory is a web-based portal which provides
a common entry point to facilitate collaboration by providing a shared project
space (termed the “Collab”) for groups of scientists. Specifically, for our project
we created the “NEST SpiNNaker Elephant Demo” Collab10, which enables us
to share simulation data and analysis results through the centralized “Collab
storage”, to use all relevant applications including access to HPC infrastruc-
tures and neuromorphic hardware, and to document the workflow. For inter-
active Python programming, the Collaboratory provides Jupyter Notebooks11

that run directly in the Collab and have NEST and Elephant preinstalled by
default. The HPC resources required for simulations and analyses are launched
via the Collaboratory’s internal task framework as jobs (“tasks”) which are sent
to predefined compute clusters or supercomputers. Finally, the Collaboratory
offers basic provenance tracking, providing the ability to reenact an already exe-
cuted task.

The specific network we simulate is a full-scale neural network model of a cor-
tical microcircuit [18]. Full-scale means that the natural density of neurons and
synapses of the biological circuit is preserved. The microcircuit represents 1 mm2

of cortex and contains around 80, 000 spiking leaky integrate-and-fire point neu-
rons connected by around 0.3 billion synapses in four cortical layers (L2/3, L4,
L5, L6). Each layer comprises an excitatory and an inhibitory neuron population
which are interconnected with cell-type- and layer-specific connection probabili-
ties derived from experimental data on early sensory cortex. The model is well-
suited for our workflow for two reasons: First, it is of neuroscientific interest since
it is a minimal microcircuit that combines a realistic number of synapses per neu-
ron with sparse network connectivity as found in cortex, exhibits realistic spiking

9 http://collab.humanbrainproject.eu/
10 https://collab.humanbrainproject.eu/#/collab/507/nav/6326
11 http://jupyter.org/

http://collab.humanbrainproject.eu/
https://collab.humanbrainproject.eu/#/collab/507/nav/6326
http://jupyter.org/

248 J. Senk et al.

Fig. 1. Workflow overview: A network simulation of a cortical microcircuit model is
run using both NEST (1) and SpiNNaker (2). Simulation results are transferred to
a common storage (3) and compared utilizing functionalities of the Elephant library
(4). Complex analysis results are visualized to gain further insight (5). The middleware
UNICORE is used to access HPC systems. Colored dots on top of each box indicate the
disciplines involved. For example, supercomputers (red dots) are used to run a NEST
simulation and to compare results using Elephant. (Color figure online)

activity, and serves as a prototype for larger networks (see [19] for an example).
Second, it fits onto both systems in terms of computational resources. More pre-
cisely, the network size indicates HPC for the NEST simulations, although it is
still considered to present a small workload for HPC systems. For SpiNNaker,
the model is an interesting use case because it requires the parallel use of mul-
tiple boards [1]. For comparability of the simulation results, we use a common
model implementation based on PyNN and develop the source code using the
version control system git12. PyNN is a Python API for simulator-independent
neuronal network model specification [5,7,8]. The PyNN API enables writing
generic code to control different simulators such as NEST, NEURON, Brian and

12 https://git-scm.com/

https://git-scm.com/

A Collaborative Simulation-Analysis Workflow 249

also neuromorphic hardware [4], including the SpiNNaker platform. In the case
of SpiNNaker, a software library is used to break down the Python network
description into small chunks each of which can be run on a core, and to route
communications between the parts of the network.

As the first step of the workflow (Fig. 1, Step 1) we run the microcircuit sim-
ulation on an HPC system using NEST. We established two ways to access HPC
resources from within the Collaboratory: using the task framework or interac-
tively from a Jupyter Notebook running within the Collab. Specific simulation
and network parameters such as the simulation duration (in our case: 10 s) can
be configured via a Jupyter Notebook before submitting the job. Both the task
framework and the Jupyter Notebooks use UNICORE13 as middleware that
yields secure and seamless access to supercomputing and data resources from a
web-based environment such as the Collaboratory. UNICORE provides a wide
range of features for HPC job submission and management as well as data trans-
fer and handling. Concretely, the microcircuit simulation runs on JUQUEEN14,
a supercomputer with an IBM BlueGene/Q architecture at the Jülich Super-
computing Centre (JSC), Forschungszentrum Jülich, Germany and is one of the
fastest supercomputers in Europe and worldwide. Gathered simulation results,
i.e., a down-sampled set of spike data from 100 excitatory and 100 inhibitory
neurons from each of the four simulated cortical layers (800 neurons in total),
are automatically copied from the supercomputer to the central Collab storage
(Step 3).

In the second step of the workflow (Step 2), the simulation is run on (a part
of) the half-million-core SpiNNaker machine located in Manchester, UK, with
identical parameters. The Collaboratory integration in this case is implemented
via the Neuromorphic Job Manager App. This allows users to submit PyNN
scripts directly, through a git repository, or as a compressed archive of files
using a webpage-based user interface. It is also possible to submit jobs directly
from a Python script through the hbp neuromorphic platform library15. Jobs for
execution on SpiNNaker are periodically retrieved and run on a virtual machine
cluster situated close to the SpiNNaker machine. Results are then retrieved from
the machine, stored locally, and finally transferred to the Collab storage via the
Job Manager App when requested (Step 3).

In order to compare the simulation results of the two systems and to charac-
terize potential differences, we analyze the statistical features of the two datasets
using the Elephant library (Step 4). Elephant is a community-centered, open-
source Python library for analyzing multi-scale data on brain dynamics from
experiments and simulations. The focus is on tools for the analysis of electrical
activity, such as single-unit or massively parallel spike train data and local field
potentials (LFP). The scope of the library covers the analysis of analog signals
(including time-domain and frequency-domain methods), spike-based analysis
(e.g., spike train correlation, spike pattern analysis), and methods combining

13 https://www.unicore.eu/
14 http://www.fz-juelich.de/ias/jsc/EN/
15 https://pypi.python.org/pypi/hbp neuromorphic platform/

https://www.unicore.eu/
http://www.fz-juelich.de/ias/jsc/EN/
https://pypi.python.org/pypi/hbp_neuromorphic_platform/

250 J. Senk et al.

both signal types (e.g., spike-triggered averaging of an LFP signal). We first
execute a task on the Collab to convert the data into the HDF516 format and
save the result. This data format is compatible with the Neo library [13,14]
which serves as a foundation of Elephant. The internal structure of the HDF5
file complies with the Neo architecture17 introduced in version 0.2 and is created
using the Neo HDF5 I/O18.

Next, we compare the two simulation results in an interactive fashion using
the Elephant library within a Jupyter Notebook. In particular, we consider fea-
tures that are typically analyzed in neuroscience, such as the irregularity of the
individual spike trains and correlations between pairs of neurons. A first visual
impression (Step 5) of the firing behavior of individual neurons and the neu-
ronal populations is provided by dot displays as shown for NEST in Fig. 2A and
for SpiNNaker in Fig. 2B. Each spike is represented as a dot at the time of its
occurrence. Multiple neurons are displayed below each other in different lines.
The summed population activity is shown in the histogram below the dot display
of the respective layer. On the right, the average firing rates of the individual
neurons are depicted. The visualized spiking activity of NEST and SpiNNaker
is qualitatively comparable. As we compare different network realizations on
NEST and SpiNNaker, the neurons do not correspond one-to-one between the
two systems, and hence, statistical measures for comparison are needed.

To capture properties of the coordination between individual neurons, we
also computed Pearson correlation coefficients, i.e., the zero-delay correlation
coefficients between all pairs of neurons in each population. Their distributions
are visualized in Fig. 3A and B. The shapes of the distributions agree between
the two types of simulations–except for a remarkable difference for the layer four
(L4) neurons (second row of Fig. 3). In the process of tracking down the origin
of this variation, a slight improvement in the simulation and recording routine
of SpiNNaker was made. With respect to the dot displays, the dataset resulting
from this iteration step, shown in Fig. 2C, does not exhibit striking differences
to the initial results that are noticeable by eye. However, the distribution of
correlation coefficients, Fig. 3C, approaches the ones from the NEST simulation
in Fig. 3A in L4 much better.

We hence see that rather simple analysis methods already suffice to reveal
prominent differences between the simulation results. To access the subtle differ-
ences, however, we aimed to uncover the full correlation structure of the activity
using more sophisticated techniques. Since these demand HPC resources due
to expensive surrogate generation and multiple hypothesis testing, we execute a
task that uses UNICORE to send the data to the HPC system JURECA, located
at the Forschungszentrum Jülich, and to parallelize the analysis (Step 4).

After completion, the results are again transferred to the Collab storage. Due
to the complicated nature of the resulting data, we decided to visualize them
using a special tool designed to interactively probe the correlation structure in

16 https://www.hdfgroup.org/hdf5/
17 http://neo.readthedocs.io/en/0.4.1/core.html#grouping-objects
18 http://neo.readthedocs.io/en/0.4.1/io.html#neo.io.NeoHdf5IO

https://www.hdfgroup.org/hdf5/
http://neo.readthedocs.io/en/0.4.1/core.html#grouping-objects
http://neo.readthedocs.io/en/0.4.1/io.html#neo.io.NeoHdf5IO

A Collaborative Simulation-Analysis Workflow 251

Fig. 2. The data obtained from the NEST (A) and the first (B) and second (C) itera-
tion of the SpiNNaker simulations are presented as raster displays. Each dot indicates
a spike at its time of occurrence and each line represents the firing activity of a neuron.
Neurons are grouped into different cortical layers (L2/3, L4, L5, L6) and sorted by neu-
ron type, i.e., excitatory (EX) and inhibitory (IN). The histograms at the bottom and
right side show the population activity and the firing rate of the neurons, respectively.

Fig. 3. The distributions of Pearson correlation coefficients are shown for the NEST
(A) and and the two SpiNNaker (B and C) simulations. The correlation coefficients
were computed for all pairs of recorded neurons of the same layer and neuron type.
The y-axis is truncated for comparability between the different neuron populations.

252 J. Senk et al.

order to obtain an overview and to gain further insight. To this end, the data are
staged to a visualization server using dCache19, a distributed file system. This
enables the use of high-fidelity visualization tools, e.g., based on the visualization
toolkit ViSTA (Virtual Reality Toolkit20). Such a tool can interpret the data as
a graph and render it as a node-link diagram, with the nodes representing the
neurons and the weighted edges representing the correlations. The correlation
value serves as attraction criterion in a force-directed layout algorithm that
results in visual clusters of neurons where neurons are spatially close if they
are strongly correlated. This helps the analyst to identify and compare possible
correlation patterns in the statistical data. Using a web-based streaming library,
the visualization tool could deliver the rendered images to a website integrated
into the Collab.

3 Discussion

Our general aim is to map an interdisciplinary workflow involving multiple steps
and tools to a common platform and to address major problems emerging from
this setting: heterogeneous data, diverse knowledge of the participants in the
workflow, the involvement of complex tools and infrastructures as well as aspects
such as reproducibility, reusability and iterative refinement. The requirements
for such a platform are to provide a collaborative environment which allows
one to integrate and easily access software tools, libraries, and data, as well as
HPC systems which are needed for demanding simulations and analyses. As an
example, we demonstrated a concrete working solution implemented in the HBP
Collaboratory and responded to the list of challenges identified in the introduc-
tion. From within the Collaboratory, we established access to the HPC systems
JUQUEEN and JURECA by means of the middleware UNICORE. Likewise,
a connection to a SpiNNaker machine was realized via the Neuromorphic Job
Manager App. PyNN provides an interface to NEST and SpiNNaker and hence
allows for a common model description, developed under version control with
git. The simulation output from both systems was obtained in the HDF5 data
format and, once transferred to the common Collab storage, it was read by the
Elephant library which offers a variety of analysis methods. Jupyter Notebooks
in the Collab were used for interactive Python programming and, as a last point,
analysis results were visualized. In summary, our workflow comprises a variety
of tools and resources which themselves are widely used within the communi-
ties involved. Our Collab is public within the Collaboratory, i.e., other users
can inspect the developed tasks and Jupyter Notebooks as documented there or
integrate them into their own Collabs.

Using a common framework usually restricts the user to available tools, but
a versatile structure allows for adaption and extension if requested by the user.
For example, a continuous exchange between us (computational neuroscientists
19 https://www.dcache.org/
20 http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-

Realitaet/Infrastruktur/∼fgmo/ViSTA-Virtual-Reality-Toolkit/?lidx=1

https://www.dcache.org/
http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-Realitaet/Infrastruktur/protect unhbox voidb@x penalty @M {}fgmo/ViSTA-Virtual-Reality-Toolkit/?lidx=1
http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/Virtuelle-Realitaet/Infrastruktur/protect unhbox voidb@x penalty @M {}fgmo/ViSTA-Virtual-Reality-Toolkit/?lidx=1

A Collaborative Simulation-Analysis Workflow 253

as users and software engineers as developers of the Collaboratory) resulted in
the integration of Jupyter Notebooks into the portal. This shows the importance
of a bilateral communication between developers and users for a successful and
ongoing development of a collaboration platform. Use cases based on the daily
practice of the users are a main component of this development. During the
implementation of the workflow into the Collaboratory, we not only aimed at the
full integration of tools like Jupyter Notebooks, but also at establishing interfaces
to tools outside the portal, for example by making supercomputers accessible
via the middleware UNICORE. Furthermore, we accounted for different data
types and formats with a conversion task to enable applying the same analysis
functions to data obtained from different sources.

In addition to the inherent heterogeneity of workflow components, repro-
ducibility and reusability are considered. For single workflow steps, we use tools
that fulfill criteria of quality assurance, e.g., continuous integration and test-
driven development. The task framework of the Collaboratory already allows
provenance tracking to some extent, but the whole workflow is not fully trace-
able, yet. Thus, we envision that all individual steps of the workflow can be
tracked from the beginning of the simulations to the end of the visualization
The workflow can be improved through an iterative adjustment of single steps
and parameters. Therefore, we need a flexible workflow implementation that
allows for easy integration of individual parts.

Transparency of the workflow is an important property of a successful inte-
gration since it allows collaborators to comprehend and even carry out different
steps of the workflow. The web interface of the Collaboratory serves as a com-
mon access point for collaboration where we collect documentation together with
code, data, and results, as well as provenance information. However, a complete
representation of how individual steps of the workflow are connected within the
Collab is still ongoing work.

A possible next step is to set up a test battery to quantify detailed differences
in results complementing the visual inspection in the interactive analysis. Fur-
thermore, having common metadata (e.g., layer of neuron) for the data simulated
by the two systems is important for the follow-up analysis tools. Here, we aim to
make use of the odML metadata framework which is also used for experimental
data [16,23]. We seek a shared terminology which allows for easy handling and
manipulation of the data, and avoids misinterpretations of vocabulary.

In contrast to well-established groupware solutions, such as BSCW [3] for
project management and file sharing or Moodle [10] used in the context of aca-
demic teaching, the Collaboratory offers a domain-specific integration of tools
and middleware. It concentrates on content-based communication (e.g., sharing
data and documentation) instead of direct communication using video or audio
conference tools and therefore offers a single point of access for tools and data
used in the neurosciences. The latter makes it especially useful for this scientific
community and thus differentiates it from existing more general solutions.

Taken together, we believe that the workflow implementation presented in
this work provides a promising vista of how a collaborative system such as the

254 J. Senk et al.

HBP Collaboratory, supported by a chain of compatible software tools, can help
scientists to come together in large, interdisciplinary, and collaborative research
endeavors. Indeed the availability of technologies that allow for large collabo-
rative research endeavors is expected to become an indispensable asset as neu-
roscience moves towards questions that can no longer be handled by a single
person. Considering the diversity of approaches and data types in the field of
neuroscience, even the workflow presented here, consisting of a collaborative
effort of eighteen researchers distributed over six institutes, may be considered a
small collaboration in the future. These developments are expected to produce
new challenges, e.g., the need for more dynamic ways of setting up workflows,
better visualizations of the provenance information for generated data, or the
ability to control more heterogeneous HPC environments required by the indi-
vidual components of the workflows.

Acknowledgments. This project has received funding from the Helmholtz Port-
folio Supercomputing and Modeling for the Human Brain (SMHB), the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
720270 (HBP SGA1), and the DFG SPP Priority Program 1665 (GR 1753/4-1 and DE
2175/1-1).

References

1. van Albada, S.J., Rowley, A.G., Hopkins, M., Schmidt, M., Senk, J., Stokes,
A.B., Galluppi, F., Lester, D.R., Diesmann, M., Furber, S.B.: Full-scale simulation
of a cortical microcircuit on SpiNNaker. In: Frontiers in Neuroinformatics Con-
ference Abstract: Neuroinformatics 2016 (2016). http://dx.doi.org/10.3389/conf.
fninf.2016.20.00029

2. van Albada, S.J., Helias, M., Diesmann, M.: Scalability of asynchro-
nous networks is limited by one-to-one mapping between effective con-
nectivity and correlations. PLoS Comput. Biol. 11(9), e1004490 (2015).
http://dx.doi.org/10.1371/journal.pcbi.1004490

3. Appelt, W.: WWW based collaboration with the BSCW system. In: Pavelka, J.,
Tel, G., Bartošek, M. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 66–78. Springer,
Heidelberg (1999). doi:10.1007/3-540-47849-3 4

4. Brüderle, D., Petrovici, M.A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S.,
Grübl, A., Wendt, K., Müller, E., Schwartz, M.O., de Oliveira, D.H., Jeltsch,
S., Fieres, J., Schilling, M., Müller, P., Breitwieser, O., Petkov, V., Muller,
L., Davison, A.P., Krishnamurthy, P., Kremkow, J., Lundqvist, M., Muller, E.,
Partzsch, J., Scholze, S., Zühl, L., Mayr, C., Destexhe, A., Diesmann, M.,
Potjans, T.C., Lansner, A., Schüffny, R., Schemmel, J., Meier, K.: A com-
prehensive workflow for general-purpose neural modeling with highly config-
urable neuromorphic hardware systems. Biol. Cybern. 104(4–5), 263–296 (2011).
http://dx.doi.org/10.1007/s00422-011-0435-9

5. Davison, A.P., Brüderle, D., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L.,
Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neu-
roinformatics 2(11), 204 (2009). http://dx.doi.org/10.3389/neuro.11.011.2008

6. Davison, A.P., Hines, M.L., Muller, E.: Trends in programming lan-
guages for neuroscience simulations. Front. Neurosci. 3(3), 374–380 (2009).
http://dx.doi.org/10.3389/neuro.01.036.2009

http://dx.doi.org/10.3389/conf.fninf.2016.20.00029
http://dx.doi.org/10.3389/conf.fninf.2016.20.00029
http://dx.doi.org/10.1371/journal.pcbi.1004490
http://dx.doi.org/10.1007/3-540-47849-3_4
http://dx.doi.org/10.1007/s00422-011-0435-9
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/neuro.01.036.2009

A Collaborative Simulation-Analysis Workflow 255

7. Davison, A.P., Yger, P., Muller, E., Kremkow, J., Brüderle, D., Perrinet, L.,
Eppler, J., Pecevski, D., Debeissat, N., Djurfeldt, M., Schmuker, M., Kaplan, B.,
Natschlaeger, T., Ray, S., Zaytsev, Y., Gravier, A.: PyNN 0.7.5. https://pypi.
python.org/pypi/PyNN/0.7.5

8. Davison, A.P., Yger, P., Muller, E., Kremkow, J., Brüderle, D., Perrinet, L.,
Eppler, J., Pecevski, D., Debeissat, N., Djurfeldt, M., Schmuker, M., Kaplan,
B., Natschlaeger, T., Ray, S., Zaytsev, Y., Antolik, J., Gravier, A., Close, T.,
Breitwieser, O., Schücker, J., Schmidt, M.: PyNN 0.8.0 (2015). https://github.
com/NeuralEnsemble/PyNN/releases/tag/0.8.0

9. Denker, M., Grün, S.: Designing workflows for the reproducible analysis of electro-
physiological data. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds.)
BrainComp 2015. LNCS, vol. 10087, pp. 58–72. Springer, Cham (2016). doi:10.
1007/978-3-319-50862-7 5

10. Dougiamas, M., Taylor, P.: Moodle: Using learning communities to create an open
source course management system. In: World Conference on Educational Multi-
media, Hypermedia and Telecommunications (EDMEDIA) (2003). http://research.
moodle.net/id/eprint/33

11. Eppler, J.M., Pauli, R., Peyser, A., Ippen, T., Morrison, A., Senk, J., Schenck,
W., Bos, H., Helias, M., Schmidt, M., Kunkel, S., Jordan, J., Gewaltig, M.O.,
Bachmann, C., Schuecker, J., Albada, S., Zito, T., Deger, M., Michler, F., Hagen,
E., Setareh, H., Riquelme, L., Shirvani, A., Duarte, R., Deepu, R., Plesser, H.E.:
Nest 2.8.0 (2015). https://doi.org/10.5281/zenodo.32969

12. Furber, S.B., Lester, D.R., Plana, L.A., Garside, J.D., Painkras, E., Temple, S.,
Brown, A.D.: Overview of the SpiNNaker system architecture. IEEE Trans. Com-
put. 62(12), 2454–2467 (2013). http://dx.doi.org/10.1109/TC.2012.142

13. Garcia, S., Davison, A.P., Rodgers, C., Yger, P., Mahnoun, Y., Estabanez,
L., Sobolev, A., Brizzi, T., Jaillet, F., Rautenberg, P., Wachtler, T., Dejean,
C., Pröpper, R., Guarino, D.: Neo 0.4.1. https://github.com/NeuralEnsemble/
python-neo/releases/tag/0.4.1

14. Garcia, S., Guarino, D., Jaillet, F., Jennings, T., Pröpper, R., Rautenberg, P.L.,
Rodgers, C.C., Sobolev, A., Wachtler, T., Yger, P., Davison, A.P.: Neo: an object
model for handling electrophysiology data in multiple formats. Front. Neuroinfor-
matics 8, 10 (2014). http://dx.doi.org/10.3389/fninf.2014.00010

15. Gewaltig, M.O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia
2(4) (2007). http://dx.doi.org/10.4249/scholarpedia.1430

16. Grewe, J., Wachtler, T., Benda, J.: A bottom-up approach to data annotation
in neurophysiology. Front. Neuroinformatics 5 (2011). http://dx.doi.org/10.3389/
fninf.2011.00016

17. Kunkel, S., Schmidt, M., Eppler, J.M., Plesser, H.E., Masumoto, G., Igarashi,
J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M., Helias, M.: Spiking network
simulation code for petascale computers. Front. Neuroinformatics 8(78), 1 (2014).
http://dx.doi.org/10.3389/fninf.2014.00078

18. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating
structure and activity in a full-scale spiking network model. Cereb. Cortex 24(3),
785–806 (2014). http://dx.doi.org/10.1093/cercor/bhs358

19. Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.C., Diesmann, M.,
van Albada, S.J.: Full-density multi-scale account of structure and dynamics of
macaque visual cortex (2015). arXiv preprint https://arxiv.org/abs/1511.09364

https://pypi.python.org/pypi/PyNN/0.7.5
https://pypi.python.org/pypi/PyNN/0.7.5
https://github.com/NeuralEnsemble/PyNN/releases/tag/0.8.0
https://github.com/NeuralEnsemble/PyNN/releases/tag/0.8.0
http://dx.doi.org/10.1007/978-3-319-50862-7_5
http://dx.doi.org/10.1007/978-3-319-50862-7_5
http://research.moodle.net/id/eprint/33
http://research.moodle.net/id/eprint/33
https://doi.org/10.5281/zenodo.32969
http://dx.doi.org/10.1109/TC.2012.142
https://github.com/NeuralEnsemble/python-neo/releases/tag/0.4.1
https://github.com/NeuralEnsemble/python-neo/releases/tag/0.4.1
http://dx.doi.org/10.3389/fninf.2014.00010
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.3389/fninf.2011.00016
http://dx.doi.org/10.3389/fninf.2011.00016
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.1093/cercor/bhs358
https://arxiv.org/abs/1511.09364

256 J. Senk et al.

20. Stokes, A.B., Rowley, A.G.D., Knight, J., Lester, D.R., Rast, A., Hopkins, M.W.,
Davidson, S., Temple, S., Plana, L., Davies, S., Sharpe, T., Patterson, C.,
Furber, S.B.: sPyNNaker 3.0.0 (2016). https://github.com/SpiNNakerManchester/
sPyNNaker/releases/tag/3.0.0

21. Yegenoglu, A., Denker, M., Phan, L., Holstein, D., Chorley, P., Ito, J., Jennings,
T., Meyes, R., Quaglio, P., Rostami, V., Sprenger, J., Torre, E., Davison, A., Grün,
S.: Elephant - open-source tool for the analysis of electrophysiological data sets.
In: Bernstein Conference 2015: Abstract Book, p. W-05 (2015). http://dx.doi.org/
10.12751/nncn.bc2015.0126

22. Yegenoglu, A., Davison, A.P., Holstein, D., Muller, E., Torre, E., Hagen, E.,
Gosmann, J., Sprenger, J., Ito, J., Denker, M., Chorley, P., Yger, P., Quaglio,
P., Meyes, R., Rostami, V., Ray, S., Pröpper, R., Gerkin, R.C., Telenczuk, B.:
Elephant 0.3.0. https://github.com/NeuralEnsemble/elephant/releases/tag/0.3.0

23. Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., Brochier,
T.G., Riehle, A., Denker, M., Grün, S.: Handling metadata in a neurophysiology
laboratory. Front. Neuroinformatics 10 (2016). http://dx.doi.org/10.3389/fninf.
2016.00026

https://github.com/SpiNNakerManchester/sPyNNaker/releases/tag/3.0.0
https://github.com/SpiNNakerManchester/sPyNNaker/releases/tag/3.0.0
http://dx.doi.org/10.12751/nncn.bc2015.0126
http://dx.doi.org/10.12751/nncn.bc2015.0126
https://github.com/NeuralEnsemble/elephant/releases/tag/0.3.0
http://dx.doi.org/10.3389/fninf.2016.00026
http://dx.doi.org/10.3389/fninf.2016.00026

Author Index

Aeberhard, Urs 111
Amblet, Olivier 243
Ansorge, Cedrick 151

Bale, Rahul 13
Behr, Marek 24
Berger, Sandrine 3
Berger, Sven 70
Bode, Mathis 96
Brukau, Yury 243

Celino, Massimo 111
Czaja, Philippe 111
Czekala, Myriam 233

Dang, Siaufung O. 139
Davidović, Davor 200
Davidovic, Marco 96
Davison, Andrew 243
Degirmenci, Niyazi Cem 58
Delalondre, Fabien Jonathan 160
Denker, Michael 243
Di Napoli, Edoardo 170, 200
Diesmann, Markus 243
Duchaine, Florent 3
Duda, Benjamin 48

Erő, Csaba 160

Fabregat-Traver, Diego 200
Fares, Ehab 48
Finsterbusch, Martin 139

Gauding, Michael 225
Gewaltig, Marc-Oliver 160
Gicquel, Laurent 3
Giesler, André 233
Giusepponi, Simone 111
Göbbert, Jens Henrik 151, 187, 225
Grün, Sonja 243

Grunzke, Richard 233
Gusso, Michele 111

Hagemeier, Björn 225, 233
Halver, René 187
Hasse, Christian 82
Hentschel, Bernd 212
Hermanns, Marc-André 187
Hoffman, Johan 58
Höhnerbach, Markus 200
Houzeaux, Guillaume 37
Hunkel, Martin 125
Hüter, Claas 125, 139

Iliev, Hristo 151, 187

Jansson, Johan 58
Jansson, Niclas 13, 58

Kuhlen, Torsten W. 212

Larcher, Aurélien 58
Lester, David Roland 243
Lichtenstein, Julian 170
Lin, Mingxuan 125
Lintermann, Andreas 70
Lührs, Anna 243

Meinke, Matthias 70
Mira, Daniel 37
Mohr, Bernd 187
Müller, Matthias S. 187, 212

Onishi, Keiji 13

Pauli, Lutz 24
Pitsch, Heinz 96, 151
Popp, Sebastian 82
Prahl, Ulrich 125
Prill, Marco 139

Quaglio, Pietro 243

Rostami, Vahid 243
Rowley, Andrew 243

Sánchez de la Peña, David 170
Schicchi, Diego 125
Schlottke-Lakemper, Michael 70
Schröder, Wolfgang 70
Schuller, Bernd 243
Schumann, Till 160
Senk, Johanna 243
Spatschek, Robert 125, 139
Spühler, Jeannette Hiromi 58
Staffelbach, Gabriel 3
Stokes, Alan Barry 243

Terboven, Christian 187
Tsubokura, Makoto 13
Tweddell, Bastian 225

van Albada, Sacha Jennifer 243
Vázquez, Mariano 37
Vidović, Toni 170
Vierjahn, Tom 212
Vilela De Abreu, Rodrigo 58

Weikamp, Marc 125
Weise, Steffen 82
Weyers, Benjamin 225, 243
Winkelmann, Jan 170

Yegenoglu, Alper 243
Yu, Hans 70

Zavala-Aké, Miguel 37
Zielasko, Daniel 243

258 Author Index

	Preface
	Organization
	Invited Talk (Abstract)
	Parallel Programming for the 21st Century
	Contents
	Efficient HPC-Optimized Multi-Physics Coupling Strategies in CFD
	Partitioned High Performance Code Coupling Applied to CFD
	1 Introduction
	2 In Situ Observations
	3 Toy Model
	4 Conclusion
	References

	Dynamic Load Balancing for Large-Scale Multiphysics Simulations
	1 Introduction
	2 Static Load Balancing
	3 Dynamic Load Balancing
	3.1 Workload Modeling
	3.2 Intelligent Remapping

	4 Performance Evaluation
	4.1 Immersed Boundary Method
	4.2 IB Workload Modeling
	4.3 Load Balancing Threshold
	4.4 Nose Landing Gear
	4.5 Full Car Model

	5 Discussion
	6 Summary and Future Work
	References

	On the Significance of Exposure Time in Computational Blood Damage Estimation
	1 Introduction
	2 Methods
	3 Results
	3.1 Blood Flow Simulations
	3.2 Hemolysis Simulations

	4 Discussion
	5 Conclusion
	References

	A Partitioned Methodology for Conjugate Heat Transfer on Dynamic Structures
	1 Introduction
	2 Mathematical Modelling
	2.1 Governing Equations
	2.2 Conjugate Heat Transfer

	3 Numerical Methodology
	3.1 Finite Element Method
	3.2 Coupling Approach

	4 Numerical Results
	4.1 Heated Cylinder
	4.2 Flat-Plate
	4.3 Parallel Efficiency

	5 Conclusions and Future Work
	References

	Farfield Noise Prediction Using Large-Scale Lattice-Boltzmann Simulations
	Abstract
	1 Introduction
	2 Numerical Method
	3 Simulations
	3.1 Isolated Nose Landing Gear
	3.2 Full-Scale Aircraft in Landing Configuration

	4 Conclusion
	References

	FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics
	1 Introduction
	2 The FEniCS-HPC Framework
	3 Mathematical Model and Numerical Methods
	3.1 Conservation Equations
	3.2 Fluid-Structure Interaction
	3.3 Finite Element Approximation for the Pure Fluid Case
	3.4 Turbulent Flow
	3.5 Contact Model
	3.6 Mesh Smoothing Algorithms

	4 Multiphysics in Computational Fluid Dynamics
	4.1 Heart Biomechanics
	4.2 Human Phonation
	4.3 Aeroacoustics

	References

	The Direct-Hybrid Method for Computational Aeroacoustics on HPC Systems
	1 Introduction
	2 The Direct-Hybrid Method
	3 Governing Equations
	4 Numerical Methods
	5 Results
	6 Conclusions
	References

	A Novel Approach for Efficient Storage and Retrieval of Tabulated Chemistry in Reactive Flow Simulations
	1 Introduction
	2 Flatkernel Approach
	2.1 Flatkernel Generation
	2.2 Flatkernel Access

	3 Reactive Hydrogen Jet in a Turbulent Vitiated Cross Flow
	3.1 Case Description
	3.2 Results and Discussion

	4 Summary
	References

	Multi-scale Coupling for Predictive Injector Simulations
	1 Introduction
	2 Numerical Framework
	3 Application Setup and Coupling
	3.1 ``Spray A'' Case
	3.2 Coupling Interface Between Nozzle Internal Flow and Primary Breakup
	3.3 Coupling Interface Between Primary Breakup and Secondary Breakup

	4 Results and Discussion
	5 Conclusions
	References

	Domain-Specific Applications and High-Performance Computing
	Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells
	1 Introduction
	2 Method
	2.1 Atomic Structure Calculations
	2.2 Electronic Structure Calculations
	2.3 Optical Calculations

	3 Results
	3.1 A-Si:H
	3.2 C-Si/a-Si:H Interface

	4 Computational Costs
	5 Conclusions
	References

	Scale Bridging Simulations of Large Elastic Deformations and Bainitic Transformations
	1 Introduction
	2 Nonlinear Elasticity in Phase Field Crystal Models and Comparison to ab initio Simulations
	2.1 Modeling Approach
	2.2 One-Dimensional Nonlinear Elasticity
	2.3 Three-Dimensional Nonlinear Elasticity for bcc Materials
	2.4 Comparison with ab initio Simulations and Continuum Modeling

	3 Phase Field Model of Bainite Formation
	3.1 Multi Phase Field Modeling
	3.2 Results

	4 Near-Tip Segregation at a Mode I Crack
	5 GPU Implementation
	6 Conclusions
	References

	Ab Initio Modelling of Electrode Material Properties
	1 Introduction
	2 Methods
	3 Results
	4 Summary and conclusions
	References

	Overlapping of Communication and Computation in nb3dfft for 3D Fast Fourier Transformations
	1 Introduction
	2 Pseudo-spectral Algorithm
	3 Overlapping Communication and Computation
	4 Results
	5 Conclusion
	References

	Towards Simulating Data-Driven Brain Models at the Point Neuron Level on Petascale Computers
	1 Introduction
	2 Contribution
	3 Methods
	3.1 PointBrainH5
	3.2 Implementation
	3.3 RTC Algorithm

	4 Performance Results
	5 Functionality
	6 Summary
	References

	Parallel Adaptive Integration in High-Performance Functional Renormalization Group Computations
	1 Introduction
	2 The fRG Method and the Truncated Unity Approach
	3 Adaptive Integration A-La Clenshaw-Curtis
	4 Parallel Implementation
	5 Results and Conclusions
	References

	Performance Portability
	Performance Optimization of Parallel Applications in Diverse On-Demand Development Teams
	1 Introduction
	2 Mission Statement
	2.1 Related Activities

	3 Case Study: psOpen
	4 Case Study: MP2C
	5 Conclusion
	References

	Hybrid CPU-GPU Generation of the Hamiltonian and Overlap Matrices in FLAPW Methods
	1 Introduction
	1.1 DFT, FLAPW and the H and S Matrices

	2 Algorithm
	3 Software Re-engineering and Performance Portability
	4 Experimental Results
	4.1 Fine-Tuning for Performance and Scalability

	5 Conclusions and Future Work
	References

	Visualizing Performance Data with Respect to the Simulated Geometry
	1 Introduction
	2 Related Work
	3 Nomenclature: Performance Profiles, Severity Views
	4 Detecting Large-Impact, Large-Variation Views
	5 Interactive Visualizations
	5.1 Performance Metrics and Call-Path Tree Widgets
	5.2 Visualizing Performance Data in Its Spatial Context

	6 Results
	7 Conclusion and Future Work
	References

	Provenance Tracking
	Framework for Sharing of Highly Resolved Turbulence Simulation Data
	1 Introduction
	2 State-of-the-Art and Motivation
	3 Highly Resolved Turbulence Simulation
	4 Data Sharing Framework
	5 Conclusion
	References

	UniProv: A Flexible Provenance Tracking System for UNICORE
	1 Introduction
	2 Workflows and Provenance
	2.1 Scientific Workflow Systems
	2.2 Related Work
	2.3 Neuroimaging Workflows with UNICORE

	3 UniProv Provenance Management
	3.1 Implementation
	3.2 Flexible Extensibility
	3.3 Provenance Repository

	4 Conclusion
	5 Future Work
	References

	A Collaborative Simulation-Analysis Workflow for Computational Neuroscience Using HPC
	1 Introduction
	2 Workflow
	3 Discussion
	References

	Author Index

