
Chapter 1
Harmonic Forcing of a Two-Segment Euler-Bernoulli Beam

Arnaldo J. Mazzei and Richard A. Scott

Abstract This study is on the forced motions of non-homogeneous elastic beams. Euler-Bernoulli theory is employed and
applied to a two-segment configuration subject to harmonic forcing. The objective is to determine the frequency response
function for the system. Two different solution strategies are used. In the first, analytic solutions are derived for the differential
equations for each segment. The constants involved are determined using boundary and interface continuity conditions. The
response, at a given location, can be obtained as a function of forcing frequency (FRF). The procedure is unwieldy. Moreover,
determining particular integrals can be difficult for arbitrary spatial variations. An alternative method is developed wherein
material and geometric discontinuities are modeled by continuously varying functions (here logistic functions). This results
in a single differential equation with variable coefficients, which is solved numerically, for specific parameter values, using
MAPLE

®
. The numerical solutions are compared to the baseline analytical approach for constant spatial dependencies.

For validation purposes an assumed-modes solution is also developed. For a free-fixed boundary conditions example good
agreement between the numerical methods and the analytical approach is found, lending assurance to the continuous variation
model. Fixed-fixed boundary conditions are also treated and again good agreement is found.

Keywords Beams with layered cells • Layered structures resonances

Nomenclature

A Area of the beam cross section (Ai, area of i-cell)
Bi Constants
E Young’s modulus (Ei, Young’s modulus of i-cell)
F External forcing (spatial function, Fi, acting on i-cell)
f External transverse force per unit length acting on the beam (fi, acting on i-cell)
H(x) Logistic function
I Area moment of inertia of the beam cross section (Ii, moment of inertia of i-cell)
L Length of the beam (Li, length of i-cell)
R Spatial function, (for assumed solution, Ri on i-cell)
t Time
w Beam transversal displacement
xyz Inertial reference system (coordinates x , y , z)
Y Non-dimensional beam displacement in the y (transverse) direction
� Non-dimensional frequency (� D �2)
� Mass density (�i, density of i-cell)
� Non-dimensional spatial coordinate
� Non-dimensional time
! Frequency of harmonic excitation
�0 Reference frequency
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1.1 Introduction

This work is an extension of one given in reference [1] in which the determination of the bending natural frequencies of
beams whose properties vary along the length was sought. Of interest were beams with different materials and varying
cross-sections, which were layered in cells and could be uniform or not.

In reference [1] an approach was discussed, in which the discrete cell properties were modeled by continuously varying
functions, specifically logistic functions, which had the considerable advantage of working with a single differential equation
(albeit one with variable coefficients). Natural frequencies could be calculated via a forced motion strategy by means of
MAPLE

®
’s ODE1 solver.

There are several references on vibrations of layered beams. For example reference [2], where free vibrations of stepped
Timoshenko beams were treated via a Lagrange multiplier formalism. Results compared well with values obtained using
other analytical methods. In reference [3] Euler-Bernoulli stepped beams were studied via exact and FEM approaches. FEM
results using non-integer polynomials shape functions [4] compared well with exact solutions. General studies on media with
discrete layers have been given, for example, in references [5–8]. Note that finite difference approaches to the dynamics of
non-homogeneous media can be found in reference [9].

Here the objective is to determine the frequency response functions (FRF) of such beams. Euler-Bernoulli theory is
used for a two-segment configuration under harmonic forcing. Analytic solutions can be obtained for each segment, for
specific conditions, and the response calculated at a given location, thus providing the FRFs. But the procedure is unwieldy
and particular solutions to the differential equations can be difficult to obtain for arbitrary spatial variations. The alternate
approach utilized involves modeling material and geometric discontinuities by continuously varying functions. This results
in a single differential equation with variable coefficients, which is solved numerically. These are compared to analytical
solutions for constant spatial dependencies. An assumed-modes solution is also developed for validation purposes.

1.2 Basic Problem

In this study Euler-Bernoulli beam theory is used. The equation of motion is given below and Fig. 1.1 exhibits the underlying
variables.

@2

@x2

�
E.x/I.x/

@2w .x; t/

@x2

�
C �.x/A.x/

@2w .x; t/

@t2
D f .x; t/ (1.1)

In the derivation of Eq. (1.1) no assumption was made in relation to the material type, therefore it can be either a
homogeneous or a non-homogeneous material.

Fig. 1.1 Beam element
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The layered configuration discussed here is a two-cell beam. Strategies for obtaining the steady state response, due to
harmonic forcing, are investigated in the following.

1.3 Analytical Approach

In this section analytic solutions are sought using standard beam theory.
Consider the beam shown in Fig. 1.2 which is composed by two cells of different materials.
The transversal displacement equation of motion for each segment (“i-th” segment) is:

@2

@x2

�
Ei.x/Ii.x/

@2wi .x; t/

@x2

�
C �i.x/Ai.x/

@2wi .x; t/

@t2
D fi .x; t/ ; i D 1; 2::: (1.2)

where fi are external transverse forces per unit length.
For harmonic forcing with frequency !:

fi .x; t/ D Fi.x/ sin .!t/ (1.3)

Assuming solutions of the form:

wi .x; t/ D Ri.x/ sin .!t/ (1.4)

leads to

d2

dx2

�
EiIi

d2Ri.x/

dx2

�
� �iAi!

2Ri.x/ D Fi.x/ (1.5)

For Ai, �i, Ii and Ei constant in each segment:

d4Ri.x/

dx4
� �iAi

EiIi
!2Ri.x/ D Fi.x/

EiIi
(1.6)

Define �i
4 D �iAi

EiIi
!2 and Pi.x/ D Fi.x/

EiIi
, then for each segment:

d4Ri.x/

dx4
� �i

4Ri.x/ D Pi.x/ (1.7)

General solutions to the linear differential equation (1.7) can be written as:

Ri.x/ D Rih.x/ C Rip.x/ (1.8)

where Rih(x) are the general solutions to the homogeneous equations and Rip(x) are “particular integrals”.
For Eq. (1.7),

R1h.x/ D B1 cosh .�1x/ C B2 sinh .�1x/ C B3 cos .�1x/ C B4 sin .�1x/ (1.9)

R2h.x/ D B5 cosh .�2x/ C B6 sinh .�2x/ C B7 cos .�2x/ C B8 sin .�2x/ (1.10)

Fig. 1.2 Layered beam
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For arbitrary forcing Pi(x), finding tractable particular integrals can pose a problem (this is treated later numerically). In
the following two examples are considered.

1.3.1 Constant Spatial Force

Here attention is restricted to constant spatial forcing: P1(x) D P1,0, P2(x) D P2,0; P1,0, P2,0 constants.
Then

R1p.x/ D �P1;0

�1
4

(1.11)

R2p.x/ D �P2;0

�2
4

(1.12)

Now the general solutions can be written:

R1.x/ D B1 cosh .�1x/ C B2 sinh .�1x/ C B3 cos .�1x/ C B4 sin .�1x/ � P1;0

�1
4

(1.13)

R2.x/ D B5 cosh .�2x/ C B6 sinh .�2x/ C B7 cos .�2x/ C B8 sin .�2x/ � P2;0

�2
4

(1.14)

The overall analytic solution requires that the boundary conditions be defined. Two sets are considered below.

1.3.1.1 Free-Fixed Boundary Conditions

For these conditions the moment and shear free end at x D 0 gives: d2R1.x/

dx2

ˇ̌
ˇ
xD0

D 0 and d3R1.x/

dx3

ˇ̌
ˇ
xD0

D 0, which, from Eq.

(1.13), leads to B1 D B3 and B2 D B4. Then Eq. (1.13) becomes:

R1.x/ D B1 .cosh .�1x/ C cos .�1x// C B2 .sinh .�1x/ C sin .�1x// � P1;0

�1
4

(1.15)

The remaining constants involved in the solutions can be determined as follows. The boundary condition at the other end

(fixed) gives: R2(x) D 0 and dR2.x/

dx

ˇ̌̌
xDL

D 0; x D L .L D L1 C L2/. Interface continuity conditions give: R1(x) D R2(x) , x D L1

(displacement continuity), dR1.x/

dx D dR2.x/

dx ; x D L1(slope continuity), E1I1
d2R1.x/

dx2 D E2I2
d2R2.x/

dx2 ; x D L1(moment continuity)

and E1I1
d3R1.x/

dx3 D E2I2
d3R2.x/

dx3 ; x D L1(shear continuity). The conditions lead to a system of algebraic equations:

B5 cosh .�2L/ C B6 sinh .�2L/ C B7 cos .�2L/ C B8 sin .�2L/ D P2;0

�2
4

B5 sinh .�2L/ C B6 cosh .�2L/ � B7 sin .�2L/ C B8 cos .�2L/ D 0

B1 .cosh .�1L1/ C cos .�1L1// C B2 .sinh .�1L1/ C sin .�1L1// � P1;0

�1
4 D

B5 cosh .�2L1/ C B6 sinh .�2L1/ C B7 cos .�2L1/ C B8 sin .�2L1/ � P2;0

�2
4

B1 .sinh .�1L1/ �1 � sin .�1L1/ �1/ C B2 .cosh .�1L1/ �1 C cos .�1L1/ �1/ D
B5 sinh .�2L1/ �2 C B6 cosh .�2L1/ �2 � B7 sin .�2L1/ �2 C B8 cos .�2L1/ �2

B1

�
cosh .�1L1/ �1

2 � cos .�1L1/ �1
2
� C B2

�
sinh .�1L1/ �1

2 � sin .�1L1/ �1
2
� D

E2I2
E1I1

�
B5 cosh .�2L1/ �2

2 C B6 sinh .�2L1/ �2
2 � B7 cos .�2L1/ �2

2 � B8 sin .�2L1/ �2
2
�

B1

�
sinh .�1L1/ �1

3 C sin .�1L1/ �1
3
� C B2

�
cosh .�1L1/ �1

3 � cos .�1L1/ �1
3
� D

E2I2
E1I1

�
B5 sinh .�2L1/ �2

3 C B6 cosh .�2L1/ �2
3 C B7 sin .�2L1/ �2

3 � B8 cos .�2L1/ �2
3
�

(1.16)

from which B1, B2, B5, B6, B7 and B8 can be determined.
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In non-dimensional matrix form the complete set of equations is given by:

2
66666666666666666664

1 0 �1 0 0 0 0 0

0 1 0 �1 0 0 0 0

0 0 0 0 cosh
�
�r�

�
sinh

�
�r�

�
cos

�
�r�

�
sin

�
�r�

�
0 0 0 0 sinh

�
�r�

�
cosh

�
�r�

�
� sin

�
�r�

�
cos

�
�r�

�

cosh
�

�
1C˛

�
sinh

�
�

1C˛

�
cos

�
�

1C˛

�
sin

�
�

1C˛

�
� cosh

�
�r �

1C˛

�
� sinh

�
�r �

1C˛

�
� cos

�
�r �

1C˛

�
� sin

�
�r �

1C˛

�

sinh
�

�
1C˛

�
cosh

�
�

1C˛

�
� sin

�
�

1C˛

�
cos

�
�

1C˛

�
��r sinh

�
�r �

1C˛

�
��r cosh

�
�r �

1C˛

�
�r sin

�
�r �

1C˛

�
��r cos

�
�r �

1C˛

�

cosh
�

�
1C˛

�
sinh

�
�

1C˛

�
� cos

�
�

1C˛

�
� sin

�
�

1C˛

�
�ErIr�r

2 cosh
�

�r �

1C˛

�
�ErIr�r

2 sinh
�

�r �

1C˛

�
ErIr�r

2 cos
�

�r �

1C˛

�
ErIr�r

2 sin
�

�r �

1C˛

�

sinh
�

�
1C˛

�
cosh

�
�

1C˛

�
sin

�
�

1C˛

�
� cos

�
�

1C˛

�
�ErIr�r

3 sinh
�

�r �

1C˛

�
�ErIr�r

3 cosh
�

�r �

1C˛

�
�ErIr�r

3 sin
�

�r �

1C˛

�
ErIr�r

3 cos
�

�r �

1C˛

�

3
77777777777777777775

2
66666666666666666664

b1

b2

b3

b4

b5

b6

b7

b8

3
77777777777777777775

D

2
66666666666666666664

0

0

1
�r

4

0�
1 �

1
�r

4

�

0

0

0

3
77777777777777777775

Q0

�4

�
ŒA	

fBg D fFg (1.17)

where bi D Bi
L , L2 D ˛L1, L D (1 C ˛)L1, � D �1L,�r D �2

�1
, Ir D I2

I1
, Er D E2

E1
, Q0 D P0L3 and P1,0 D P2,0 D P0.

Note that natural frequencies can found on setting the determinant of [A] to zero.

1.3.1.2 Fixed-Fixed Boundary Conditions

For these conditions the fixed end at x D 0 gives: R1(x) D 0 and dR1.x/

dx

ˇ̌
ˇ
xD0

D 0, which, from Eq. (1.13), leads to B1CB3 D P1;0

�4
1

and B2 D � B4. Following the procedure described above leads to the following non-dimensional system of equations for the
unknowns coefficients (non-dimensional matrix form):

2
66666666666666666664

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 cosh
�
�r�

�
sinh

�
�r�

�
cos

�
�r�

�
sin

�
�r�

�
0 0 0 0 sinh

�
�r�

�
cosh

�
�r�

�
� sin

�
�r�

�
cos

�
�r�

�

cosh
�

�
1C˛

�
sinh

�
�

1C˛

�
cos

�
�

1C˛

�
sin

�
�

1C˛

�
� cosh

�
�r �

1C˛

�
� sinh

�
�r �

1C˛

�
� cos

�
�r �

1C˛

�
� sin

�
�r �

1C˛

�

sinh
�

�
1C˛

�
cosh

�
�

1C˛

�
� sin

�
�

1C˛

�
cos

�
�

1C˛

�
��r sinh

�
�r �

1C˛

�
��r cosh

�
�r �

1C˛

�
�r sin

�
�r �

1C˛

�
��r cos

�
�r �

1C˛

�

cosh
�

�
1C˛

�
sinh

�
�

1C˛

�
� cos

�
�

1C˛

�
� sin

�
�

1C˛

�
�ErIr�r

2 cosh
�

�r �

1C˛

�
�ErIr�r

2 sinh
�

�r �

1C˛

�
ErIr�r

2 cos
�

�r �

1C˛

�
ErIr�r

2 sin
�

�r �

1C˛

�

sinh
�

�
1C˛

�
cosh

�
�

1C˛

�
sin

�
�

1C˛

�
� cos

�
�

1C˛

�
�ErIr�r

3 sinh
�

�r �

1C˛

�
�ErIr�r

3 cosh
�

�r �

1C˛

�
�ErIr�r

3 sin
�

�r �

1C˛

�
ErIr�r

3 cos
�

�r �

1C˛

�

3
77777777777777777775

2
66666666666666666664

b1

b2

b3

b4

b5

b6

b7

b8

3
77777777777777777775

D

2
666666666666666666664

1

0

1
�r

4

0�
1 �

1
�r

4

�

0

0

0

3
777777777777777777775

Q0

�4

�
ŒA	

fBg D fFg

(1.18)

1.4 Continuous Variation Model

Here the transitions from one material to another are approximated via logistic functions (step functions are not used since
they would generate numerical complications because of the singular derivatives):

H.x/ � 1

2
C 1

2
tanh.Kx/ D 1

1 C e�2Kx
(1.19)

Note that in Eq. (1.19) a larger K corresponds to a sharper transition at x D 0.
A non-dimensional version of the equation of motion can be obtained by taking:

� D �0t, � D x
.

L , Y .�; �/ D w .x; t/ �0
.

L , � D !
.

�0
, I(x) D I1H2(K�) D I1f2(�), A(x) D A1H4(K�) D A1f4(�),

E(x) D E1H1(K�) D E1f1(�), �(x) D �1H3(K�) D �1f3(�). (Hi, logistic functions.)
Substituting these into Eq. (1.1) leads to:

@2

@�2

�
f1 .�/ f2 .�/

@2Y .�; �/

@�2

�
C �4

�2
f3 .�/ f4 .�/

@2Y .�; �/

@�2
D g .�; �/ (1.20)



6 A.J. Mazzei and R.A. Scott

�0 is a reference frequency, which is set to �0 D
q

E1I1
�1A1L4 . This gives: �4 D .�1L/4 D

�
�1A1L4!2

E1I1

�
D �2and g .�; �/ D

L3�0

E1I1
f .x; t/.

Analytic solutions may not be feasible for Eq. (1.20). Here the following approach is adopted. Given the material layout
(stacked cells) and cross section variation, i.e., f1(�), f3(�), f2(�) and f4(�), a MAPLE

®
routine is developed for obtaining

numerical approximations to the frequency response function (FRF) of the system. The equation is subjected to a harmonic
forcing function, for example g(� , � ) D F(�) sin (��), and response amplitudes are monitored for different values of �.

An approach described by the authors in reference [10] can also be utilized for extracting resonances and ampli-
tudes. In Eq. (1.20) vibration frequencies can be calculated by assuming Y(� , � ) D S(�) sin (��) and harmonic forcing
g(� , � ) D F(�) sin (��). This leads to:

d2

d�2

�
f1 .�/ f2 .�/

d2S .�/

d�2

�
� �4f3 .�/ f4 .�/ S .�/ D F .�/ (1.21)

where, it should be noted that �2 D �4.
In this case the strategy consists of using MAPLE

®
’s two-point boundary value solver to solve a forced motion problem.

A constant value for the forcing function F is assumed and the frequency � is varied. By observing the mid-span deflection
of the beam, the resonant frequency can be found on noting where an abrupt change in sign occurs. Higher modes can be
obtained by extending the search range.

1.5 Numerical Examples

Consider the beam shown in Fig. 1.2 and assume the following materials: Aluminum (E1 D 71 GPa, �1 D 2710 kg/m3) and
Silicon Carbide (E2 D 210 GPa, �2 D 3100 kg/m3). These values are taken from a basic paper in the field [11].

1.5.1 Free-Fixed Boundary Conditions

For the free-fixed case and taking ˛ D 1(L2 D L1), the determinant of [A] in Eq. (1.17) leads to the following values for the
first two non-dimensional natural frequencies: �1 D 2.3967 and �2 D 5.2342. (The following parameters apply: � r D 0.7886,
Er D 2.9577, Ar D A2/A1 D 1.00, �r D �2/�1 D 1.1481, Q0 D 1.00.)

For this case the non-dimensional version of Eq. (1.15) is given by:

R1 .�/ D b1 .cosh .��/ C cos .��// C b2 .sinh .��/ C sin .�1�// � Q0

�4
(1.22)

Setting � D 0.50 (beam mid-span) and using b1 and b2 from Eq. (1.17), amplitudes can be calculated for different values
of the frequency �.

Using Eq. (1.22) the frequency response function spanning the first two natural frequencies for the mid-point of the beam
is shown in Fig. 1.3.

For the continuous variation model and this uniform beam, the non-dimensional logistic functions and cross-section
functions can be written, for example, as (see Fig. 1.4):

f1 .�/ D 1 C E2�E1

E1

�
1
2

C 1
2

tanh
�
500

�
� � 1

2

���
; f2 .�/ D 1

f3 .�/ D 1 C �2��1

�1

�
1
2

C 1
2

tanh
�
500

�
� � 1

2

���
; f4 .�/ D 1

(1.23)

Assuming a value of 1 for the external forcing and using the approach given in reference [10], the resultant deflections
are plotted bellow for two distinct values of the frequency �.

The resonance frequencies are taken to occur at � D 2.40 and � D 5.25 as seen in Figs. 1.5 and 1.6, respectively.
Amplitudes for the response at the center of the beam can be monitored from Eq. (1.21). This approach leads to the

numerical FRF shown in Fig. 1.7.
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Fig. 1.4 Relative properties variation for two-cell beam

The figure shows an overlap of the numerical results and the results from the analytical approach, Eq. (1.22). It is seen
that good agreement is obtained, the first two resonances are captured and the amplitude values correspond well.

Next the FRF is obtained via solutions to Eq. (1.20). The results are shown in Fig. 1.8.
It is seen in the overlap that the PDE solutions lead to a reasonable approximation to the FRF for this case. The first

resonance is captured within 12% but the second resonance is not. Obtaining better results from MAPLE
®

would require
considerable more effort and is not pursued here in view of the other successful approaches.

For validation purposes, an assumed mode method is pursued in the following. The solution to Eq. (1.1) is assumed to
have the form of a Rayleigh-Ritz expansion:
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w .x; t/ D
nX

iD1

˛i.t/'i.x/ (1.24)

where the generalized coordinates ˛i, in the linear combination of shape functions ®i, are functions of time.
The shape functions ®i must be chosen so they form a linearly independent set that possess derivatives up to the order

appearing in the strain energy expression for the problem. They also must satisfy the prescribed boundary conditions.
Substituting Eq. (1.24) into the appropriate expressions for the kinetic and strain energy, and using Lagrange’s equations,

leads to a set of n differential equations for the generalized coordinates ˛i.
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Fig. 1.7 Results comparison—numerical and analytical approaches (ODE)—Free/Fixed
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Fig. 1.8 Results comparison—numerical and analytical approaches (PDE)—Free/Fixed

For the problem at hand, the discrete non-dimensional mass and stiffness matrices, for the differential equations set, can
be obtained from:

mi;j D
1
2Z
0

'i.x/ 'j.x/ dx C Ar�r

1Z
1
2

'i.x/ 'j.x/ dx; ki;j D
1
2Z
0

'00
i .x/ '00

j .x/ dx C ErIr

1Z
1
2

'00
i .x/ '00

j .x/ dx (1.25)

If the external transverse loads are taken to be sinusoidal with frequency �, the following expression for calculating the
generalized external forces can be used:
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pi D

2
64

1
2Z
0

f1'i.x/ dx C
1Z
1
2

f2'i.x/ dx

3
75 sin .��/ (1.26)

where fi is the amplitude of the force acting on the i-segment.
The natural frequencies can then be evaluated via an eigenvalue problem and the system response to external forcing

estimated via modal analysis. The procedure is tackled using MAPLE
®
.

As a first approach, non-dimensional mode shapes for a homogenous cantilever beam are used for the shape functions set.
They can be written as:

'i.x/ D Ni

nh
cos .ˇi/ C cosh .ˇi/ 	Œsin .ˇi .1 � �// � sinh .ˇi .1 � �//	 C Œsin .ˇi/ C sinh .ˇi/	

Œcosh .ˇi .1 � �// � cos .ˇi .1 � �//	g (1.27)

where Ni is a normalization parameter and ˇ1 D 1:875; ˇ2 D 4:694; ˇk D .2k � 1/ 

2
; k D 3; :::; n. The normalization

parameters are taken to be the inverse of the magnitude of the maximum values of the shape functions in the interval � D 0..1.
Using i D 3, f1 D 1 and f2 D 1, the discrete differential equations of motion for the generalized coordinates ˛i are:

2
4 0:2518 0:0053 0:0053

0:0053 0:2659 0:0192

0:0053 0:0192 0:4670

3
5

2
4 R̨1.t/

R̨2.t/
R̨3.t/

3
5 C

2
4 8:8339 5:5380 �16:0001

5:5380 254:1732 351:7299

� 16:0001 351:7299 3255:3629

3
5

2
4 ˛1.t/

˛2.t/
˛3.t/

3
5 D

2
4 0:3915

0:2170

0:1678

3
5 sin .��/ (1.28)

The natural frequencies are calculated as � D 2.41 and � D 5.33.
Following the procedure, the Rayleigh-Ritz approximation for the steady state response is obtained. Setting an arbitrary

non-dimensional time � D 100, for example, and monitoring the amplitudes at � D 0.5, for distinct values of the excitation
frequency �, leads to the results shown in Fig. 1.9.

The figure shows an overlap of the assumed modes results and the analytic results (solid line). It can be seen that very
good agreement is obtained in terms of frequencies and FRFs for the first two resonances.

In the search for better convergence in the higher modes, one can increase the number of shape functions utilized in
the approach. However, this increases the complexity of the numerical calculations in the algorithm developed, due to the
presence of increasingly more complex trigonometric and hyperbolic functions in the integrals of Eqs. (1.25) and (1.26).

An alternative is to use polynomial shape functions. This is discussed next.

Fig. 1.9 Results
comparison—assumed modes
and analytical
approaches—Free/Fixed
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In this case, the shape functions ®i are taken to be beam characteristic orthogonal polynomials, with each polynomial
satisfying the prescribed boundary conditions of the problem. They are generated by the Gram-Schmidt process [12] as
demonstrated by Bhat [13].

The first polynomial is taken to satisfy the two boundary conditions at the fixed end and to have the following form
(free-fixed non-dimensional homogeneous beam static deflection under distributed load):

'1.x/ D s1

�
x4 � 5x3 C 15x2 � 19x C 8

�
(1.29)

The constant s1 is chosen such that:

1Z
0

.'k.x//2dx D 1 (1.30)

The remainder polynomials are generated by the Gram-Schmidt approach. In addition, the set is also normalized as
described above. For example, an approximation with three polynomials gives:

'1.x/ D 0:1250x4 � 0:6250x3 C 1:8750x2 � 2:3750x C 1:0000

'2.x/ D 5:4569 .x � :1538/
�
0:2959x4 � 1:4797x3 C 4:4391x2 � 5:6228x C 2:3675

�
'3.x/ D 29:5510 .x � 0:3238/ .x � 0:1539/

�
0:2959x4 � 1:4797x3 C 4:4391x2 � 5:6228x C 2:3675

� �
0:1556x4 C 0:7780x3 � 2:3341x2 C 2:9565x � 1:2448

(1.31)

which leads to the following discrete differential equations of motion for the generalized coordinates ˛i:

2
4 0:1790 0:0034 0:0041

0:0034 0:5489 0:0248

0:0041 0:0248 0:5702

3
5

2
4 R̨1.t/

R̨2.t/
R̨3.t/

3
5 C

2
4 9:3374 �54:7945 114:6766

� 54:7945 963:8044 �2147:8536

114:6766 �2147:8536 9888:9234

3
5

2
4 ˛1.t/

˛2.t/
˛3.t/

3
5 D

2
4 0:3063

0:3333

0:2276

3
5 sin .��/ (1.32)

The natural frequencies are calculated as � D 2.42 and � D 5.41.
Following the procedure and using the same non-dimensional time � D 100, monitoring the amplitudes at � D 0.5 leads

to the results shown in Fig. 1.10.
The overlap of the assumed modes and the analytic results (solid line) shows that good agreement is obtained for the first

two frequencies and FRFs.
Figure 1.11 shows results using six polynomials. The natural frequencies are calculated as � D 2.41 and � D 5.31.

Fig. 1.10 Results
comparison—assumed modes
three polynomials and analytical
approaches—Free/Fixed
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Fig. 1.11 Results
comparison—assumed modes six
polynomials and analytical
approaches—Free/Fixed
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Fig. 1.12 FRF for varying spatial functions—Free/Fixed

The overlap shows better agreement and demonstrates convergence of the approach.
Consider next an example in which the spatial force variations are such that the particular integrals in Eq. (1.8) are

intractable analytically. As demonstrated above, the results can be found using the continuous variation model and the
assumed modes method.

Take, for example, variable forces equal in both segments and given by an exponential function: P1.x/ D P2.x/ D
e�Œ.x=L/2	. Then F .�/ D e��2

(refer to Eqs. (1.20) and (1.21)) and f1 D f2 D e��2
in Eq. (1.26).

The frequency response functions given by the forced motion and assumed mode approaches, respectively, are seen in
Fig. 1.12.

In the forced motion plot, the FRF points are represented via a trend line. Very good agreement for the first frequency is
seen.
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Fig. 1.13 FRF for non-homogeneous beam mid-point—Fixed/Fixed

1.5.2 Fixed-Fixed Boundary Conditions

For the fixed-fixed case (˛ D 1), the determinant of [A] in Eq. (1.18) leads to the following values for the first two non-
dimensional natural frequencies: �1 D 5.2329 and �2 D 8.9156. (The parameters � r, Er, Ar, �r, and Q0 are the same as
above.)

For this case the non-dimensional version of Eq. (1.13) is:

R1 .�/ D b1 cosh .��/ C b2 sinh .��/ C b3 cos .��/ C b4 sin .�1�/ � Q0

�4
(1.33)

Setting � D 0.50 and using b1 and b2 from Eq. (1.18), amplitudes can be calculated for different values of the frequency
�. The frequency response function spanning the first two natural frequencies for the mid-point of the beam is shown in Fig.
1.13.

Next only the numerical methods that led to consistent results in the previous example are used to obtain frequencies and
FRFs for this case, i.e., the forced motion and assumed modes approaches.

The forced motion produces these resonance frequencies: � D 5.25 and � D 8.90. Monitoring amplitudes for the response
at the center of the beam (Eq. (1.21)) leads to the numerical FRF shown in Fig. 1.14.

The figure shows an overlap of the numerical results and the results from the analytical approach, Eq. (1.33). As in the
previous example good agreement is obtained.

For the assumed modes method, in this case, the first polynomial is chosen to satisfy the fixed boundary conditions at the
ends. It is given by (fixed-fixed non-dimensional homogeneous beam static deflection under distributed load):

'1.x/ D s1

�
4x3 � 6x2 C 2x

�
(1.34)

The constant s1 satisfies Eq. (1.30).
Utilizing six polynomials, the resulting frequencies are � D 5.27 and � D 8.95. Following the procedure given above

and using the non-dimensional time � D 100, monitoring amplitudes at � D 0.5 leads to the results shown in Fig. 1.15. Good
agreement is also seen here.

Lastly, the spatial force with exponential variation is considered. Results are given in Fig. 1.16 for this case.
Good agreement for frequencies is seen while the assumed modes approach predicts somewhat higher amplitudes.
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Fig. 1.14 Results comparison—numerical and analytical approaches (ODE)—Fixed/Fixed
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Fig. 1.15 Results comparison—assumed modes six polynomials and analytical approaches—Fixed/Fixed

1.6 Conclusions

Replacing discrete property variations with continuously varying ones, in conjunction with numerical solutions, has been
shown to lead to good results for resonant frequencies and FRFs of layered beams subject to harmonic excitation.

Both resonance monitoring of forced motion solutions of the resulting single ordinary differential equation and an assumed
modes approach produced good results toward this objective. MAPLE

®
software was utilized and it has been shown to lead

to accurate solutions via the two approaches, based on a comparison to analytical results for a specific case.
Two sets of boundary conditions were studied. Namely, fixed-free and fixed-fixed for a uniform two-cell beam made of

aluminum and silicon-carbide.
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Fig. 1.16 FRF for varying spatial functions—Fixed/Fixed

Very good agreement was observed for both cases, with some variation on the amplitudes for the FRFs. For improved
accuracy it is conjectured that using more polynomials in the assumed mode approach will produce better agreement.
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