
Chapter 4
Word Embedding for Understanding Natural
Language: A Survey

Yang Li and Tao Yang

4.1 Introduction

Natural language understanding from text data is an important field in Artificial
Intelligence. As images and acoustic waves can be mathematically modeled by
analog or digital signals, we also need a way to represent text data in order to process
it automatically. For example, the sentence “The cat sat on the mat.” can not be
processed or understood directly by the computer system. The easiest way is to rep-
resent is through a sparse discrete vector f.icat; 1/; .imat; 1/; .ion; 1/; .isit; 1/; .ithe; 2/g,
where iw denotes the index of word w in the vocabulary. This is called one-hot
embedding. However, there are several disadvantages for this simple model. First,
it generates high dimensional vectors whose length depends on the volume of
the vocabulary, which is usually very large. Meanwhile, the semantic relationship
between words (e.g., “sit on”) cannot be reflected by these separate counts. Due
to the subjectivity of languages, the meaning of word (phrase) varies in different
contexts. This makes it a more challenging task to automatically process text data.

A goal of language modeling is to learn the joint probability that a given word
sequence occurs in texts. A larger probability value indicates that the sequence is
more commonly used. One candidate solution to involve the relationship between
words is called “n-gram” model, where n is the hyperparameter manually chosen.
The “n-gram” model takes into consideration the phrases of n consecutive words. In
the example above, “the cat”, “cat sat”, “sat on”, “on the”, “the mat” will be counted,
if we set n D 2. The disadvantage of “n-gram” model is that it is constrained by
the parameter n. Moreover, the intrinsic difficulty of language modeling is that: a
word sequence that is used to test the model is likely to be different from all the
sequences in the training set (Bengio et al. 2003). To make it more concrete, suppose
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we want to model the joint distribution of 5-word sequences in a vocabulary of
100,000 words, the possible number of combinations is 1000005 � 1 D 1025 � 1,
which is also the number of free parameters to learn. It is prohibitively large for
further processing. This phenomenon is called “the curse of dimensionality”. The
root of this curse is the “generalization” problem. We need an effective mechanism
to extrapolate the knowledge obtained during training to the new cases. For discrete
spaces mentioned above, the structure of generalization is not obvious, i.e. any
change on the discrete variables, as well as their combinations, will have a drastic
influence on the value of joint distribution to be estimated.

To solve the dilemma, we can model the variables in a continuous space, where
we can think of how training points trigger probability mass and distribute it
smoothly to the neighborhood around them. Then it goes back to the problem
of word embedding, whose concept was first introduced in Hinton (1986). Word
embedding, sometimes named as word representation, is a collective name for
a set of language models and feature selection methods. Its main goal is to
map textual words or phrases into a low-dimensional continuous space. Using
the example above, “cat” can be denoted as Œ0:1; 0:3; : : : ; 0:2�M and “mat” can
be expressed as Œ0:1; 0:2; : : : ; 0:4�M , where M is the hyperparameter. After that,
advanced NLP tasks can be processed implemented based on these real-valued
vectors. Word embedding encodes the semantic and syntactic information of words,
where semantic information mainly correlates with the meaning of words, while
syntactic information refers to their structural roles. Is a basic procedure in natural
language processing. From the high level, most of the models try to optimize a
loss function trying to minimize the discrepancy between prediction values and
target values. A basic assumption is that words in similar context should have
similar meaning (Harris 1954). This hypothesis emphasizes the bound of .w; Qw/

for common word-context pairs (word w and its contextual word Qw usually appear
together) and weaken the correlation of rare ones.

The existing word embedding approaches are diverse. There are several ways to
group them into different categories. According to Sun et al. (2015) and Lai et al.
(2015), the models can be classified as either paradigmatic models or syntagmatic
models, based on the word distribution information. The text region where words
co-occur is the core of the syntagmatic model, but for the paradigmatic model
it is the similar context that matters. Take “The tiger is a fierce animal.” and
“The wolf is a fierce animal.” as examples, “tiger-fierce” and “wolf-fierce” are the
syntagmatic words, while “wolf-tiger” are the paradigmatic words. Shazeer et al.
(2016) divides the models into two classes, matrix factorization and slide-window
sampling method, according to how word embedding is generated. The former is
based on the word co-occurrence matrix, where word embedding is obtained from
matrix decomposition. For the latter one, data sampled from sliding windows is used
to predict the context word.

In this chapter, word embedding approaches are introduced according to the
method of mapping words to latent spaces. Here we mainly focus on the Neural
Network Language Model (NNLM) (Xu and Rudnicky 2000; Mikolov et al. 2013)
and the Sparse Coding Approach (SPA) (Yogatama et al. 2014a). Vector Space
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Model aims at feature expression. A word-document matrix is first constructed,
where each entry counts the occurrence frequency of a word in documents. Then
embedding vectors containing semantic information of words are obtained through
probability generation or matrix decomposition. In the Neural Network Language
Model, fed with training data, word embedding is encoded as the weights of a certain
layer in the neural network. There are several types of network architectures, such
as Restricted Boltzmann Machine, Recurrent Neural Network, Recursive Neural
Network, Convolutional Neural Network and Hierarchical Neural Network. They
are able to capture both the semantic and syntactic information. Sparse coding
model is another state-of-the-art method to get word embedding. Its goal is to
discover a set of bases that can represent the words efficiently.

The main structure of this paper is as follows: the models mentioned above
and the evaluation methods are introduced in Sect. 4.2; the applications of word
embedding are included in Sect. 4.3; conclusion and future work are in Sect. 4.4.

4.2 Word Embedding Approaches and Evaluations

Generally speaking, the goal of word embedding is mapping the words in unlabeled
text data to a continuously-valued low dimensional space, in order to capture the
internal semantic and syntactic information. In this section, we first introduce the
background of text representation. Then, according to the specific methods for
generating the mapping, we mainly focus on the Neural Network Language Model
and Sparse Coding Approach. The former is further introduced in three parts,
depending on the network structures applied in the model. In the end, we provide
evaluation approaches for measuring the performance of word embedding models.

4.2.1 Background

One of the widely used approach for expressing the text documents is the Vector
Space Model (VSM), where documents are represented as vectors. VSM was
originally developed for the SMART information retrieval system (Salton et al.
1997). Some classical VSMs can be found in Deerweste et al. (1990) and Hofmann
(2001).

There are various ways of building VSMs. In scenarios of information retrieval
where people care more about the textual features that facilitate text categorization,
various features selection methods such as document frequency (DF), information
gain (IG), mutual information (MI), �2-test (CHI-test) and term strength (TS)
have different effects on text classification (Yang and Pedersen 1997). These
approaches help reduce the dimension of the text data, which could be helpful
for the subsequent processing. DF refers to the number of documents that a word
appears. IG measures the information loss between presence and absence term in
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the document. MI is the ratio between term-document joint probability and the
product of their marginal probability. CHI-test applies the sums of squared errors
and tries to find out the significant difference between observed word frequency and
expected word frequency. TS estimates how likely a term will appear in “closely-
related” documents. In information retrieval systems, these methods are useful for
transforming the raw text to the vector space, and tremendous improvement has
been achieved for information classification. However, it does not work well alone
in applications that require both semantic and syntax information of words, since
part of the original text information is already lost in feature selection procedures.
However, various word embedding models, such as sparse coding, are built based
on the VSM.

In Deerweste et al. (1990), Latent Semantic Analysis (LSA) is proposed to index
and retrieve the information from text data automatically. It applies SVD on the
term-document association data to gain the embedding output. Work in Landauer
et al. (1998) and Landauer and Dumais (1997) gives an explanation to the word
similarity that derives from the Test of English as a Foreign Language (TOEFL).
After that, Landauer (2002) tries to detect the synonym through LSA. Furthermore,
Yih et al. (2012) uses LSA to distinguish between synonyms and antonyms in
the documents and its extension Multiview LSA (MVLSA) (Rastogi et al. 2015)
supports the fusion of arbitrary views of data. However, all of them have to confront
the limitation that depends on a single matrix of term-document co-occurrences.
Usually the word embedding from those models is not flexible enough, because of
the strong reliance on the observed matrix.

Latent Dirichlet Allocation (LDA) (Bengio et al. 2003) is another useful
model for feature expression. It assumes that some latent topics are contained in
documents. The latent topic T is derived from the conditional distribution p.wjT/,
i.e. the probability that word w appears in T . Word embedding from traditional LDA
models can only capture the topic information but not the syntactic one, which does
not fully achieve its goal. Moreover, traditional LDA-based model is only used for
topic discovery, but not word representation. But we can get the k-dimensional word
embedding by training a k-topic model, the word embedding is from the rows of
word-topic matrix and the matrix is filled by p.wjT/ values.

Although both of LSA and LDA utilize the statistical information directly for
word embedding generation, there are some differences between them. Specifically,
LSA is based on matrix factorization and subject to the non-negativity constraint.
LDA relies on the word distribution, and it is expressed by the Dirichlet priori
distribution which is the conjugate of multinomial distribution.

4.2.2 Neural Network Language Model

The concept of word embedding was first introduced with the Neural Networks
Language Model (NNLM) in Xu and Rudnicky (2000) and Bengio et al. (2003).
The motivation behind is that words are more likely to share similar meaning if they
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are in the same context (Harris 1954). The probability that the word sequence W
occurs can be formulated according to the Bayes rule:

P.W/ D
NY

tD1

P.wtjw1; : : : ;wt�1/ D
NY

tD1

P.wtjht/ (4.1)

where P(W) is the joint distribution of sequence W, and ht denotes the context
words around word wt. The goal is to evaluate the probability that the word wt

appears given its context information. Because there are a huge number of possible
combinations of a word and its context, it is impractical to specify all P.wtjht/. In
this case, we can use a function ˆ to map the context into some equivalent classes,
so that we have

P.wtjht/ D P.wtjˆ.ht// (4.2)

where all of the words are statistically independent.
If we use the n-gram model to construct a table of conditional probability for each

word, then the last n-1 words are combined together as the context information:

P.wtjht/ � P.wtj Qwt�1
t�nC1/ (4.3)

where n is the number of the words considered, while 1 and 2 are the most
commonly used value. Only the successive words occurring before the current word
wt are taken into account.

Most NNLM-based approaches belong to the class of unsupervised models.
Networks with various architectures such as Restrict Boltzmann Machine (RBM),
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and
Long-Short Term Memory (LSTM) can be used to build word embedding. Log-
Bilinear (LBL) model, SENNA, and Word2Vector are some of the most representa-
tive examples of NNLM.

Usually the goal of the NNLM is to maximize or minimize the function of Log-
Likelihood, sometimes with additional constraints. Suppose we have a sequence
w1;w2; : : : ;wn in the corpus, and we want to maximize the log-likelihood of
P.wtj Qwt�1

t�nC1/ in the Feed Forward Neural Network (Bengio et al. 2003). Let x be
the embedding vector of proceeding words, so that

x D Œe.wt�nC1/; : : : ; e.wt�2/; e.wt�1/� (4.4)

where e.w/ represents the embedding of word w. In Feed Forward Neural Network
(without the direct edge in the structure) with one hidden layer, the layer function
can be expressed as:

y D b C U.tanh.d C Wx// (4.5)
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Fig. 4.1 The basic structure of the Feed Forward Neural Network

where U is the transformation matrix, W is the weight matrix of hidden layer, b and
d are bias vectors. Finally, y is fed into a softmax layer to obtain the probability
of the target word, and the basic structure of this model is shown in Fig. 4.1. The
parameters � in this model are .b;U; d;W/. However, since we need to explicitly
normalize (e.g. use softmax) all of the values in the vocabulary when computing
the probability for the next word, it will be very costly for training and testing
(Morin and Bengio 2005). After estimating the conditional probability in Eq. (4.3),
the total probability P.wt�nC1; ::;wt�1;wt/ can be obtained directly by locating the
mark of the phrase that is constructed by the words that appears in the same window
(Collobert et al. 2011). The resultant probability value quantifies the normality if
such a sentence appears in the natural language (more details can be found in
Sect. 4.2.2.3).

Instead of using matrix multiplication on the final layer (Bengio et al. 2003; Mnih
and Hinton 2007) applies the hierarchical structure (see Sect. 4.2.2.4) to reduce the
computational complexity. It constructs the Log-BiLinear (LBL) model by adding
bilinear interaction between word vectors and hidden variables on the basis of the
energy function (see Sect. 4.2.2.1).

Recently, Word2Vector proposed by Mikolov et al. (2013) which contains
Skip-Gram and (Continuous Bag-of-Words) CBOW these two frameworks is very
popular in NLP tasks. It can be seen as a two-layer Neural Network Language
Model. Furthermore, applying Noise Contrastive Estimation (NCE) increases its
efficiency. However, we can also add the priori information into this model, Liu
et al. (2015) extends Skip-Gram by treating topical information as important priori
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knowledge for training word embedding and proposes the topical word embedding
(TWE) model, where text words and their affiliated topic (context) derived from
LDA are combined to obtain the embedding.

In the subsections below, we will introduce some basic architectures of NNLM
for word embedding.

4.2.2.1 Restricted Boltzmann Machine (RBM)

The ability of capturing the latent features among words usually depends on the
model structure. Boltzmann Machine (BM) originates from the log-linear Markov
Random Field (MRF) and its energy function is linearly related to free parameters.
According to the statistical dynamics, energy function is useful in word embedding
generation (Mnih and Hinton 2007). Restricted Boltzmann Machine (RBM), which
prunes the visible-visible and hidden-hidden connections, is a simplified version of
BM. A diagram of RBM is given in Fig. 4.2.

The main components of the energy function in RBM include binary variables
(hidden unites h and visible unites v), weights W D .wi;j/ that establish connections
between hj and vi, biases ai for the visible units and bj for the hidden ones.
Specifically, the energy function is formulated as follows,

E.v; h/ D �vTWh � aTv � bTh (4.6)

During the generation process word embedding, the energy function is used as the
probability distribution as shown in Eq. (4.7).

P.v; h/ D e�E.v;h/=Z (4.7)

where Z is a partition function defined as the sum of e�E.h;v/.

Fig. 4.2 The basic structure
of the RBM
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Mnih and Hinton (2007) proposes three models on the basis of RBM by adding
connections to the previous status. Starting from the undirected graphical model,
they try to estimate the latent conditional distribution of words. To compute the
probability of the next word in a sequence, the energy function is defined as follows:

E.wt; hIwt�nC1Wt�1/ D �.

t�1X

iDt�nC1

vT
i RWi/h � bTh h � bTt R

Tvn � bTv vn (4.8)

where vT
i R denotes the vector that represents word wi from the word dictionary R,

Wi in hidden units denotes the similarity between two words, and bh; bv; br are the
biases for the hidden units, words and word features respectively.

The disadvantage of this class of models is that it is costly to estimate massive
parameters during the training process. To reduce the number of parameters,
Mnih and Hinton (2007) extends the factored RBM language model by adding
connections C among words. It also removes the hidden variables and directly
applies the stochastic binary variables. The modified energy function is as below:

E.wtIwt�nC1Wt�1/ D �.

t�1X

iDt�nC1

vT
i RCi/R

Tvn � bTr R
Tvn � bTv vn (4.9)

Here Ci denotes correlation between word vectors wi and wt, br and bv denotes the
word biases. This function quantifies the bilinear interaction between words, which
is also the reason why models of this kind are called Log-BiLinear Language (LBL)
models. In Eq. (4.9), entries of vector h D Pt�1

iDt�nC1 vT
i RCi correspond to the nodes

in the hidden layer, and yi D hRTvn represents the set of nodes in the output layer.
We can see that the syntax information is contained in the hidden layer, for Ci here
can be seen as the contribution of word i to current word n, which is like the cosine
similarity between two words.

4.2.2.2 Recurrent and Recursive Neural Network

To reduce the number of parameters, we could unify the layer functions with some
repetitive parameters. By treating the text as sequential data, Mikolov et al. (2010)
proposes a language model based on the Recurrent Neural Network, the structure of
which is shown in Fig. 4.3. The model has a circular architecture. At time t, word
embedding w.t/ is generated out of the first layer. Then, it is transferred together
with the output from the context layer at time t � 1 as the new input x.t/ to the
context layer, which is formulated as follows:

x.t/ D w.t/ C s.t � 1/ (4.10)
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Fig. 4.3 The structure of the
recurrent neural network

Fig. 4.4 The structure of the Recursive Neural Network

In each cycle, the outcomes of context layer and output layer are denoted as s.t/ and
y.t/ respectively. Inspired by Bengio et al. (2003), the output layer also applies the
softmax function.

Unlike Recurrent Neural Network, Recursive Neural Network (Goller and
Kuchler 1996) is a linear chain in space as shown in Fig. 4.4. To fully analyze
the sentence structure, the process iterates from two word vectors in leaf nodes
b; c to merge into a hidden output h1, which will continue to concatenate another
input word vector a as the next input. The computing order is determined either by
the sentence structure or the graph structure. Not only could hidden layers capture
the context information, they could also involve the syntax information. Therefore,
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Fig. 4.5 (A) The structure of the Recursive Neural Network model where each node represents
a vector and all the word vectors are in the leaf nodes. (B) The structure of the MV-RNN model
where each node consists of a vector and a matrix

Recursive Neural Network can capture more information than the context-based
model, which is desirable for NLP tasks.

For the sequential text data in Recursive Neural Network, Socher et al. (2011,
2013, 2012) parses the sentences into tree structures through the tree bank models
(Klein and Manning 2003; Antony et al. 2010). The model proposed by Socher
et al. (2011) employs the Recursive Neural Network, and its structure is shown
in Fig. 4.5A,

p D f .W

�
a
b

�
/ (4.11)

where a; b 2 Rd�1 are the word vectors, parent node p 2 Rd�1 is the hidden output,
and f D tanh adds element-wise nonlinearity to the model. W 2 Rd�2d is the
parameter to learn.

To incorporate more information in each node, work in (Socher et al. 2012)
proposes the model of Matrix-Vector Recursive Neural Network (MV-RNN), for
which the parsing-tree structure is shown in Fig. 4.5B. Different from that in
Fig. 4.5A, each node in this parsing tree includes a vector and a matrix. The vector
represents the word vector in leaf nodes and phrase in non-leaf ones. The matrix
is applied to neighboring vectors, and it is initialized by the identity matrix I plus
a Gaussian noise. The vectors a; b; p capture the inherent meaning transferred in
the parsing tree, and the matrixes A;B;P are to capture the changes of the meaning
for the neighboring words or phrases. Apparently, the drawback of this model is
the large number of parameters to be estimated. So in the work of Socher et al.
(2013), the model of Recursive Neural Tensor Network (RNTN) uses the tensor-
based composition function to avoid this problem.

In comparison, the main differences between recurrent and recursive models are
the computing order and the network structure. The structure of the former has
a closed loop dealing with the time sequence, while the latter has an open loop
tackling the spatial sequence.
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4.2.2.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) consists of several feature extraction layers,
which is inspired by biological process (Matsugu et al. 2003). It has already been
successfully applied in many image recognition problems. The main advantage of
CNN is that it does not depend on the prior knowledge or human efforts when doing
feature selection.

CNN can also be applied to extract latent features from text data (Collobert
and Weston 2008; Collobert et al. 2011). As shown in Fig. 4.6, three different
convolutional kernels, in three different colors, select different features from word
embedding separately. The feature vector is the combination of the max values from
the rows of the selected features.

In the models above, supervised learning is applied to train the whole neural
network, and the convolutional layer here is to model the latent feature of the
initialized word embedding. Since supervised training method is applied here, it
is able to generate word embedding suitable for the special task. Though the word
embedding is usually a by-product in this case, it still has a sound performance in
capturing semantic and syntactic information.

Fig. 4.6 The structure of CNN for feature extraction by using convolutional kernels
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4.2.2.4 Hierarchical Neural Language Model (HNLM)

There are many tricks to speed up the process of training NNLM, such as short list,
hash table for the word and stochastic gradient descent (Bengio et al. 2003). But
when facing with datasets of large scale, further improvement in model efficiency is
still needed.

Transferring the knowledge from a small portion of observed data examples to
other cases can save a lot of computational efforts, thus speeding up the learning
process. However, it is a difficult task for neural language models which involve
computing the joint probability of certain word combinations. This is because the
possible combinations of words from a vocabulary is immensely larger than the ones
from all potential texts. So it is necessary to look for some priori information before
searching all possible combinations. Based on human knowledge or statistical
information, we can cluster all the words into several classes where some similar
statistical properties are shared by the words in each class. Some hierarchical models
are constructed based on this idea (Mnih and Hinton 2008; Morin and Bengio 2005).

Hierarchical structures has a big influence on the algorithm complexity. For
example, Mnih and Hinton (2008) and Morin and Bengio (2005) reduces the
complexity of language models by clustering words into a binary tree. Specifically,
given a dictionary V containing jVj words, the speed up will be O.jVj=logjVj/
(Morin and Bengio 2005) if the tree is binary.

To determine the hierarchical structure, hierarchical word classes (lexical word
categories in a narrow sense) are needed in most cases (Rijkhoff and Jan 2007). The
way of constructing word classes is sensitive to the word distribution. Word classes
can be built based on prior (expert) knowledge (Fellbaum 1998) or through data-
driven methods (Sun et al. 2012), but they could also be automatically generated in
accordance with the usage statistics (Mnih and Hinton 2008; McMahon and Smith
1996). The prior knowledge is accurate but limited by the application range, since
there are lots of problems where expert categories are unavailable. The data-driven
methods can boost a high level of accuracy but it still needs a seed corpus which is
manually tagged. Universality is the major advantage of the automatic generation
method. It could be applied to any natural language scenarios without the expert
knowledge, though it will be more complex to construct.

By utilizing the hierarchical structure, lots of language models have been
proposed (Morin and Bengio 2005; Mnih and Hinton 2008; Yogatama et al.
2014a; Djuric et al. 2015). Morin and Bengio (2005) introduces the hierarchical
decomposition bases on the word classes that extract from the WordNet. Similar
with Bengio et al. (2003), it uses the layer function to extract the latent features, the
process is shown in Eq. (4.12).

P.di D 1jqi;wt�nC1Wt�1/ D sigmoid.U.tanh.d C Wx/qi/ C bi/ (4.12)

Here x is the concatenation of the context word [same as Eq. (4.4)], bi is the biases
vector, U;W; bi; x plays the same roles as in Eq. (4.5). The disadvantage is the
procedure of tree construction which has to combine the manual and data-driving
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processing (Morin and Bengio 2005) together. Hierarchical Log BiLinear (HLBL)
model which is proposed by Mnih and Hinton (2008) overcomes the disadvantage
by using a boosting method to generate the tree automatically. The binary tree with
words as leaves consists of two components: the words in the leaves which can be
represented by a sequential binary code uniquely from top to down, as well as the
probability for decision making at each node. Each non-leaf node in the tree also
has an associated vector q which is used for discrimination. The probability of the
predicted word w in HLBL is formulated as follows

P.wt D wjwt�nC1Wt�1/ D
Y

i

P.dijqi;wt�nC1Wt�1/ (4.13)

where di is tth digit in the binary code sequence for word w, and qi is the feature
vector for the ith node in the path to word w from the root. In each non-leaf node,
the probability of the decision is given by

P.di D 1jqi;wt�nC1Wt�1/ D �..

t�1X

jDt�nC1

Cjwj/Pqi C bi/ (4.14)

where �.x/ is the logistic function for decision making, Cj is the weight matrix
corresponding to the context word wj, and bi is the bias to capture the context-
independent tendency to one of its children when leaving this node.

There are both advantages and disadvantages of the hierarchical structure. Many
models benefit from the reduction of computation complexity, while the consuming
time on the structure building is the main drawback.

4.2.3 Sparse Coding Approach

Sparse Coding is an unsupervised model that learns a set of over-complete bases to
represent data efficiently. It generates base vectors f�ig such that the input vector
x 2 Rn can be represented by a linear combination of them x D Pk

iD1 ˛i�i, where k
is the number of base vectors and k > n. Although there are many techniques such as
Principal Component Analysis (PCA) that helps learn a complete set of basis vectors
efficiently, Sparse Coding aims to use the least bases to represent the input x. The
over-complete base vectors are able to capture the structures and patterns inherent
in the data, so the nature characteristic of the input can be seized through Sparse
Coding.

To be specific, sparse Coding constructs an over-complete dictionary D 2 RL�K

of basis vectors, together with a code matrix A 2 RK�V , to represent V words in C
contents X 2 RL�V by minimizing such function as follows:

arg min
D;A

kX � DAk2
2 C ��.A/ (4.15)
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where � is a regularization hyperparameter and � is the regularizer. It applies
the squared loss for the reconstructed error, but loss functions like L1-regularized
quadratic function can also be an efficient alternative for this problem (Schökopf
et al. 2007).

Plenty of algorithms have been proposed to extend the sparse coding framework
starting from the general loss function above. If we apply a non-negativity constraint
on A (i.e. Ai;j � 0), the problem is turned into the Non-Negative Sparse Embedding
(NNSE). Besides adding constraints on A, if we also requires that all entries in D are
bigger than 0, then the problem can be transformed into the Non-Negative Sparse
Coding (NNSC). NNSC is a matrix factorization technique previously studied in
machine learning communities (Hoyer 2002).

For �.A/, Yogatama et al. (2014b) designs a forest-structured regularizer that
enables the mixture use of the dimension. The structure of this model is in Fig. 4.7,
there are seven variables in the tree which describes the order that variables ‘enter
the model’. In this work, it sets the rule that a node may take a nonzero value only
if its ancestors do. For example, nodes 3 and 4 may only be nonzero if nodes 1 and
2 are also nonzero. So the regularizer for A shows in Eq. (4.16).

�.av/ D
VX

iD1

��hav;i; av;Descendants.i/i
��

2
(4.16)

where av is the vth column of A.
Faruqui et al. (2015) proposes two methods by adding restriction on the

dictionary D:

arg min
D;A

kX � DAk2
2 C ��.A/ C � kDk2

2 (4.17)

Fig. 4.7 An example of a
regularization forest that
governs the order in which
variables enter the model
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where � is the regularization hyperparameter. The first method applies l1 penalty on
A, so that the Function 4.17 can be broken into the loss for each word vector, which
makes it possible for parallel optimization.

arg min
D;A

VX

iD1

kxi � Daik2
2 C � kaik1 C � kDk2

2 (4.18)

Here xi and ai are the ith column vector of matrix X and A respectively. The second
method is to add non-negativity constraints on variables so that:

arg min
D2RL�K

�0 ;A2RK�V
�0

VX

iD1

kxi � Daik2
2 C � kaik1 C � kDk2

2 (4.19)

Apart from the work based on Sparse Coding, Sun et al. (2016) adds the l1 regu-
larizer into Word2Vector. The challenge in this work lies in the optimization method,
for stochastic gradient descent (SGD) cannot produce sparse solution directly with
l1 regularizer in online training. The method of Regularized Dual Averaging (RDA)
proposed by Lin (2009) keeps track of online average subgradients at each update,
and optimizes l1 regularized loss function based on Continuous Bag-of-Words
(CBOW) Model (Mikolov et al. 2013) in online learning.

4.2.4 Evaluations of Word Embedding

Measurements for word embedding usually depend on the specific applications.
Some representative examples include perplexity, analogy precision and sentiment
classification precision.

Perplexity is an evaluation method which originates from information theory.
It measures how well a distribution or a model can predict the sample. Bengio
et al. (2003) uses the perplexity of the corpus as the target, where the lower of
the perplexity value is, the higher quality the word embedding conveys since the
information is more specific. Word or phrase analogy analysis is another important
assessment way. Work in (Mikolov et al. 2013) designs the precision of semantic
and syntactic prediction as the standard measurement to evaluate the quality of word
embedding. It is applied in phrase and word level independently. All the assessment
methods mentioned above are from the view of linguistic phenomenon that the
distance between two words in vector space reflects the correlation between them.

Besides the measurements of linguistic phenomenon, a lot of work evaluates
word embedding by using the task where they are applied. For example, if the word
embedding is used in sentiment classification, then the precision of the classification
can be used for evaluation. If it is applied in machine translation, then the precision
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of the translation is the one that matters. This rule also holds for other tasks like
POS tagging, named entity recognize, textual entailment, and so on.

There is no best measurement method for all scenarios. The most useful way is to
combine it with the target of the task to achieve a more reasonable evaluation result.

4.3 Word Embedding Applications

There are many applications for word embedding, especially in NLP tasks where
word embedding is fed as input data or the features of the text data directly. In this
section, we will discuss how word embedding can be applied in the scenarios such as
semantic analysis, syntax analysis, idiomaticity analysis, Part Of the Speech (POS)
tagging, sentiment analysis, named entity recognition, textual entailment as well as
machine translation.

The goal of syntax analysis is to extract the syntactic structure from sentences.
Recent works (Socher et al. 2011; Huang et al. 2012; Collobert and Weston 2008;
Mikolov et al. 2013) have taken the syntax information into consideration to obtain
word embedding, and the result in Andreas and Dan (2014) shows that word
embedding can entail the syntactic information directly. A fundamental problem
to syntax analysis is part of the speech tagging, which is about labeling the words
to different categories (e.g., plural, noun, adverb). It requires the knowledge of
definitions and contextual information. Part of the speech tagging is a word-level
NLP task. Collobert and Weston (2008) and Collobert et al. (2011) apply word
embedding for POS tagging and achieve state-of-the-art results. In some scenarios,
in order to figure out the syntax of text, we need to first recognize the named
entities in it. Named entity recognition aims to find out the names of persons,
organizations, time expressions, monetary values, locations and so on. Works in
Collobert and Weston (2008), Collobert et al. (2011), Zou et al. (2013), Luo et al.
(2014), Pennington et al. (2014) show the expressiveness of word embedding in
these applications.

As a subsequent task, semantic analysis (Goddard 2011) relates the syntactic
structures of words to their language-independent meanings.1 In other words, it
reveals words that are correlated with each other. For example, the vector (“Madrid”
� “Spain” C “France”) is close to (“Paris”). Previous approaches (Scott et al.
1999; Yih et al. 2012) mainly use the statistical information of the text. The works
in Mikolov et al. (2013), Socher et al. (2011), Huang et al. (2012), Collobert
and Weston (2008) apply the analogy precision to measure the quality of word
embedding (see in Sect. 4.2.4). It is shown that word embedding can manifest the
semantic information of words in the text. The semantics of each word can help us
understand the combinatory meaning of several words. The phenomenon of multi-
words expression idiomaticity is common in nature language, and it is difficult to be

1https://en.wikipedia.org/wiki/Semantic_analysis_(linguistics).
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inferred. For example, the meaning of “ivory tower” could not be inferred from the
separate words “ivory” and “tower” directly. Different from semantic analysis and
syntax analysis, idiomaticity analysis (Salehi et al. 2015) requires the prediction on
the compositionality of the multi-words expression. Once we figure out the syntax
and semantics of words, we can do sentiment analysis whose goal is to extract the
opinion, sentiment as well as subjectivity from the text. Word embedding can act as
the text features in the sentiment classifier (Socher et al. 2012; Dickinson and Hu
2015).

In some NLP problems, we need to deal with more than one type of language
corpus. Textual entailment (Saurf and Pustejovsky 2007) is such a task that involves
various knowledge sources. It attempts to deduce the meaning of the new text
referred from other known text sources. Works in Bjerva et al. (2014) and Zhao
et al. (2015) apply word embedding into the score computing in accordance
with the clustering procedure. Machine translation is another important field in
NLP, which tries to substitute the texts in one language for the corresponding
ones in another language. Statistical information is widely used in some previous
works (Ueffing et al. 2007). Neural network models are also a class of important
approaches. Bahdanau et al. (2014) builds the end-to-end model that is based on
the encoder-decoder framework, while it is still common for machine translation
to use word embedding as the word expression (Mikolov et al. 2013; Hill et al.
2014). Furthermore, Zou et al. (2013) handles the translation task using bilingual
embedding which is shown to be a more efficient method.

According to the type of roles that it acts in the applications, word embedding
could be used as the selected feature or in the raw digital format. If word embedding
is used as the selected feature, it is usually used for the higher level NLP tasks, like
sentiment classification, topic discovery, word clustering. In linguistics tasks, word
embedding is usually used in its raw digital format, like semantic analysis, syntax
analysis and idiomaticity analysis. Based on the type of machine learning problems
involved, applications of word embedding could be divided into regression task,
clustering task and classification task. Works in Zhao et al. (2015) prove that word
embedding could make improvements for regression and classification problems
which attempt to find out the pattern of the input data and make prediction after the
fitting. Tasks like semantic analysis, idiomaticity analysis and machine translation
belong to this category. Luo et al. (2014) tries to find out the similarity between short
texts by applying a regression step in word embedding, where the resultant model
could be used for searching, query suggestion, image finding, and so on. Word
embedding is also commonly used in classification tasks like sentiment analysis
and textual entailment (Amir et al. 2015). POS tagging and named entity recognition
discussed above belong to clustering problems.

Besides word embedding, phrase embedding and document embedding are some
other choices for expressing the words in the text. Phrase embedding vectorizes
the phrases for higher level tasks, such as web document management (Sharma
and Raman 2003), paraphrase identification (Yin and Schütze 2016) and machine
translation (Zou et al. 2013). Document embedding treats documents as basic units.
It can be learned from documents directly (Huang et al. 2013) or aggregated
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Fig. 4.8 The citation numbers of the topics in each year

by word embedding (Lin and He 2009; Zhou et al. 2015). Similar to phrase
embedding, document embedding can also be applied in sentiment analysis and
machine translation.

Figure 4.8 summarizes the application distribution of word embedding in
different NLP tasks.2 We can see that word embedding stably gains its popularity
starting from 2004, as reflected though the rising curve. One of the most common
applications is semantic analysis, in which nearly half of the works of word
embedding are involved. Then it comes to the syntax analysis whose popularity
dramatically increases between 2009 and 2011. Compared with syntax and semantic
analysis, although other applications account for a much less proportion of work,
domains like machine translation, names entity recognition and sentiment analysis
receive dramatically increasing attention since 2010.

4.4 Conclusion and Future Work

In conclusion, word embedding is a powerful tool for many NLP tasks, especially
the ones that require original input as the text features. There are various types of
models for building word embedding, and each of them has its own advantages
and disadvantages. Word embedding can be regarded as textual features, so that
it can be counted as a preprocessing step in more advanced NLP tasks. Not only
can it be fed into classifiers, but it can be also used for clustering and regression
problems. Regarding the level that embedding represents, word embedding is a fine-
grit representation compared with phrase embedding and document embedding.

Word embedding is an attractive research topic worth of further exploration.
First, to enrich the information contained in word embedding, we can try to involve
various prior knowledge such as synonymy relations between words, domain

2The citation numbers are from http://www.webofscience.com.

http://www.webofscience.com
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specific information, sentiment information and topical information. The resultant
word embedding generated towards this direction will be more expressive. Then,
besides using words to generate embedding, we may want to explore how character-
level terms can affect the output. This is due to the reason that words themselves are
made up of character-level elements. Such morphological analysis matches the way
of how people perceive and create words, thus can help deal with the occurrences of
new words. Moreover, as data volume is fast accumulating nowadays, it is necessary
to develop techniques capable of efficiently process huge amount of text data. Since
text data may arrive in streams, word embedding models that incorporate the idea of
online learning are more desirable in this scenario. When the new chunk of data is
available, we do not need to learn a new model using the entire data corpus. Instead,
we only need to update the original model to fit the new data.
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