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The Impact of Big Data on the Physician
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Michael Wang, and Erica Sobel

The practice of medicine has historically been a very unilateral process. Physicians
go through a great deal of training to possess near exclusive knowledge of human
health and illness. They are trained to collect information from patients on a
subjective level, combine this with objective data in the form of the physical
exam, laboratory values, and imaging studies and then independently process this
information into a diagnosis with a recommended course of treatment for the patient.
Patients have been traditionally expected to accept and follow this recommendation,
trusting that their physician has been adequately trained and is giving the best
recommendation for their health without having any particular knowledge of the
condition or treatment themselves. As the age of technology and now big data has
evolved, this process and relationship is undergoing dramatic changes. While the
advances are remarkable, the amount of information generated can be overwhelming
and ultimately stifling to individual physicians. As such, a whole other realm of
technology is being created to assist in analyzing this data, ensuring that physicians
are utilizing it to the highest potential, and adhering to the most proven treatment
regimens. As technology has evolved to support a deeper understanding of illness,
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so has a multitude of new types and ways to collect data. Data is being both
passively and actively collected in every aspect of life, from specific biometric data
including glucose readings and blood pressure to everyday data including tracking
an individual’s daily steps and calorie counts for each meal eaten. Increasingly, these
once ordinary activities of daily life are being analyzed as components of health
and living, and becoming a portion of the medical chart. Social engagement and
interaction with the health system is also growing and changing in directions never
before anticipated or experienced. Patients now have the opportunity to directly
compare their doctors and hospitals. Information about medical conditions and
healthcare is more readily available to consumers than ever before. Historically,
one would have had to speak to a physician to learn about their condition and
treatment. Now, anyone can simply “Google” their symptoms and be provided with
a list of diagnoses and potential treatments. Patients seek to learn more about the
therapies being recommended, as well as form communities of individuals with
similar diagnoses to compare treatment plans and lend support. With increasing
adoption of electronic health records (EHRs), and increasing innovation in areas of
big data and healthcare, the ways that physicians interact with patients, approach
diagnosis and treatment, and strive for improved performance at an individual and
a health system level are evolving. This chapter will discuss many of the big data
applications that practicing physicians and their patients encounter.

16.1 Part 1: The Patient-Physician Relationship

16.1.1 Defining Quality Care

Consumers in the healthcare economy strive to be cared for by the “best” doctors
and hospitals, in particular as society increasingly moves towards individualized,
consumer-centered healthcare. However, physicians and hospitals are not chosen
based solely on the quality of care they provide. Geography and health insurance
often play a big role in pairing patients with physicians. Beyond this, patients
largely depend on word of mouth recommendations to infer quality of care (Tu and
Lauer 2008). The result is a system in which patients choose healthcare providers
based on subjective and non-standardized metrics. The challenge lies not only in
quantifying quality, but then making that information transparent to the consumer.
A data science solution can lend rigor and clarity to answering the question: With
whom and where can I get the best care?

A general guideline for what can be considered a data science solution to
assessing healthcare quality contains two major criteria. First, the methods must
process large amounts of data frommultiple sources, and second, the relevant results
of the analysis must be presented in an accessible, interpretable and thus usable
manner. This work is done in the belief that it can lead to better health decisions.
However, quantifying healthcare quality is incredibly challenging as so many vari-



16 The Impact of Big Data on the Physician 417

ables affect physician and hospital success. Factors to be considered include facets
of patient experience, availability of appointments/access, treatment outcomes, and
complication rates. Some measures are more easily quantifiable than others, and
determining how heavily each factor should be weighed is quite subjective. Several
tools have been recently developed to allow healthcare consumers to compare and
contrast physicians and hospitals on key objective measures.

16.1.2 Choosing the Best Doctor

The Internet has given consumers an immense amount of new information regarding
products and services. One may be tempted to cite online review sites such as
Yelp.com as a big data solution for connecting patients with the best physicians.
These online review forums report patient satisfaction through individual anecdotal
experience in an open text format and a self reported star rating of overall
experience. It is interesting to note that multiple studies have shown a strong positive
correlation between a hospital’s patient experience scores and strong adherence
to clinical guidelines and better outcomes (Chaterjee 2015). Still, while patient
satisfaction is an important measure of quality care and correlates well with other
measures of success, patient satisfaction is only one metric. Additionally, not only
is the data sourced through a single method, online review forums do not analyze
nor present the data in an optimized manner.

Health Grades, Inc. (Denver, CO, USA), a data science company, compiles
quality metrics on individual physicians as well as hospitals. The physician rating
is comprised of demographic information about the individual (i.e. education,
specialty, board certification, malpractice claims) and a separate patient satisfaction
survey. While the survey portion has a free text Yelp-like review segment, it
improves upon this model by standardizing the reviews through a series of questions.
Patients rank the physician on a scale of 1–5 stars. Some questions include: level
of trust in a physician’s decisions, how well a physician listens and answers
questions, ease of scheduling urgent appointments, and how likely the patient is
to recommend this physician to others. Unlike Yelp, this scale provides more
quantitative information about the patient experience in a standardized and thus
comparable format. Despite this comparative data, a weakness of the Health Grades
system is that it does not recommend any doctor over another and has no outcomes
data. Therefore, two physicians with similar education and patient satisfaction
scores will appear equal even if one physician has much higher complication rates
than another. In addition, there is no single algorithm or composite score to compare
physicians to one another, and the results are not customized to the patient. Instead,
it is a platform through which demographic information about the physician and
patient satisfaction review results are easily accessed.

A more personalized data science solution has been put forth by Grand Rounds,
Inc. (San Francisco, CA, USA) which uses a multivariate algorithm to identify top
physicians. The proprietary “Grand Rounds Quality Algorithm” uses clinical data
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points from 150 million patients in order to identify “quality verified” physicians
(Freese 2016). 96% of practicing physicians in the United States (�770,000) have
been evaluated by the Grand Rounds Quality Algorithm (Grand Rounds n.d.).
The algorithm scores variables such as physician’s training, publications, affiliated
institution, procedural volumes, complication rates and treatment outcomes. These
and other non disclosed variables are combined to create a composite quality score.
The algorithm takes into account the quality score as well as location, availability,
insurance networks and expertise in specialty topics. Finally, patient characteristics
derived from the patient medical record (i.e. languages spoken) are also included
in order to then match the individual patient to a “quality verified” physician. As
a result, the recommended cardiologist for one patient will not necessarily be the
best for their family member or friend. The great benefit of this model is that it
synthesizes a massive amount of information on a vast number of physicians, and
then works to individualize the results for each patient.

The major criticism of the Grand Rounds model is that the proprietary algorithm
is not transparent. It is not known what data sources the company uses nor how it
extracts individual physician level outcomes data. The exclusion criteria used and
how different variables are weighted in the algorithm is also unknown. As a result
of this lack of transparency, the model has not been externally validated.

16.1.3 Choosing the Best Hospital

Compared to physician quality metrics, patients have more options when examining
hospital quality using tools such as Health Grades, U.S. News World Report, and
Leap Frog. As an example, Health Grades evaluates hospitals in three segments:
clinical outcomes, patient experience and safety ratings. The clinical outcomes
results are derived from inpatient data from the Medicare Provider Analysis and
Review (MedPAR) Database, as well as all payer state registries (Healthgrades
2016a, n.d.). From these databases it presents either mortality rate or complication
rate for 33 conditions and procedures including heart failure, sepsis, heart valve
surgery, and knee replacement. Each of the 33 conditions has a prediction model
which takes into account confounding variables such as patient age, gender and
relevant comorbidities. Using logistic regression, Health Grades then compares the
health care systems actual mortality/complication rate against their own predicted
mortality/complication rate for that condition in that hospital. Finally, hospitals
are presented to the patient as “below expected”, “as expected” or “better than
expected”. The second segment reports patient satisfaction based on the Hospital
Consumer Assessment of Healthcare Providers and Systems (HCAHPS) (Health-
grades 2016b, n.d.). HCAHPS data is available from the Centers of Medicare
and Medicaid Services (CMS). It is a 32 question survey administered to recently
discharged patients with questions focusing on factors including doctor and nurse
communication, pain control, hospital cleanliness and noise levels, post discharge
instructions, and whether they would recommend this hospital to others. The final
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segment, patient safety, is constructed from Medicare claims (Healthgrades 2016c,
n.d.). Health Grades has chosen fourteen patient safety indicators (PSI) such
as catheter related bloodstream infections, development of pressures ulcers and
mortality rates in post surgical patients. Like the clinical outcomes segment, Health
Grades calculates predicted complication rates for each hospital. The predicted
complication rates are adjusted for complexity of cases using the Medicare Case
Mix Index. So hospitals with more complicated cases are given higher predicted
rates of PSI. The actual rates are then compared to the predicted and the hospital
is ranked either “below expected”, “as expected” or “better than expected” for each
PSI. Health Grades presents its final results in a user-friendly format with simple
graphics using star ratings and pie charts.

The major benefits of the Health Grades model are that the methodology and
data sources are transparent and results are displayed in a user-friendly manner.
However, there are also many limitations, both with the statistical analysis and with
the final product. For instance, comparing a hospital’s actual complication rate to a
predicted complication rate is fraught with statistical challenges. Even though the
predicted complication/mortality rates are corrected for age and comorbidities, it is
very hard for a logistic regression to take into account all confounding variables.
This is especially true because patient’s comorbidities are not always accurately
reflected in the billing data. Billing data is also significantly delayed, thus present
day analysis is often carried out on data from several years ago. In addition, the
results for each hospital are not generalizable to every condition or patient. Since
patients can only see data regarding 33 conditions, this leaves out information on
less common diseases or rare surgeries. In addition, data from some patients, such
as those who are discharged to hospice or have metastatic cancer, are not included
in the Health Grades outcomes analysis. Aside from issues of generalizability, there
is a notable limitation of the final product application. While the Health Grades
platform provides a report card for individual hospitals, it does not offer an easy
way to compare multiple institutions.

Today patients have many more tools for making a data driven decisions in
choosing their healthcare provider. However many challenges still exist both for
determining physician and hospital quality, and for matching patients and healthcare
providers in an optimal manner. In an ideal future state, treatment outcomes data
at a physician, department and institutional level would be available and sourced
directly from the electronic medical record as opposed to deduced from billing
data. Additionally, treatment outcomes, patient satisfaction and safety metrics would
be available at faster turnaround times. If available, the applications could extend
beyond patient’s using data to select physicians and allow providers themselves
to have more real time feedback on their individual performance, which could
ultimately influence practice patterns.
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16.1.4 Sharing Information: Using Big Data to Expand
the Patient History

The practice of medicine is undergoing a cultural shift in which the paternalism
ingrained in the patient-physician relationship is no longer expected, and patients
are increasingly and rightfully becoming partners in their medical care. At the same
time, technology has advanced to create near limitless access to information and data
generation, further supporting the patient bid for greater autonomy. From creating
communities and promoting patient advocacy to increasing use of shared decision-
making (Shay and Lafata 2015), patients are playing larger and larger roles in their
health.

Despite this shift, one area in which patients still have surprisingly little input
is with regards to their health data. Currently a patient’s history, whether obtained
directly from the patient or their care-taker, in verbal or written form, resides within
an electronic health record (EHR) controlled by the physician or medical system.
In the most common EHRs, patients may at most be able to view their health
data but do not have the ability to add to or edit their record. As patients become
more engaged and involved in their care, it follows that they should have more
direct input and ownership over their health data. This increasing responsibility and
management over personal health data has the potential to lead to increasing patient
activation, a concept in which patients have the knowledge, skills, and confidence to
become more effectual managers of their own health (Hibbard et al. 2004). Studies
of patient activation, a cornerstone in the management of chronic disease (Clark
2003), have demonstrated improvement in healthy behaviors (Rask et al. 2009)
and overall health outcomes (Dentzer 2013; Greene and Hibbard 2012). Giving
patients ownership over their health data should therefore help promote activation
for improved health outcomes.

16.1.5 What is mHealth?

What will this expansion and shared ownership in patient health data look like?
Where will this data come from? How will it enter the electronic record? How
will it be used? Alongside this change in the patient-physician partnership has
been a rapid expansion in healthcare oriented devices and applications, or “apps,”
giving rise to the field of mobile health (mHealth). mHealth describes mobile
technologies used in healthcare diagnostics, monitoring, and systems support, and
currently encompasses monitoring for the collection of individual biometric and
environmental data, personal emergency response systems (PERS), telemedicine,
mobile medical equipment, Radio Frequency Identification (RFID) tracking, health
and fitness software, mobile messaging, and electronic medical records. mHealth
has developed and flourished under the jurisdiction of the medical establishment,
with remote patient monitoring (RPM) of chronic conditions, most prominently
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using telehealth, capturing the largest portion of the mHealth market. As it stands,
telehealth services are projected to cover 3.2 million patients in 2018, up from
250,000 in 2013 (Japsen 2013). The next frontier in mHealth is shifting from a
focus on physician-collected data via RPM to patient-collected data using consumer
targeted devices and applications.

16.1.6 mHealth from the Provider Side

Remote patient monitoring (RPM) has largely developed within integrated health-
care systems and institutions with the goal of better managing chronic conditions.
Two leading examples of RPM are with the Veterans Health Administration (VHA)
Care Coordination/Home Telehealth (CCHT) program and Partners Healthcare in
Boston, both of which have demonstrated substantial improvements in patient health
care and utilization (Agboola et al. 2015 and Darkins et al. 2008).

Since 2003 the VHA, within the Office of Telehealth Services, has used the
CCHT program to help veterans with chronic medical issues including diabetes,
congestive heart failure, hypertension, posttraumatic stress disorder, chronic
obstructive pulmonary disease, and other chronic conditions coordinate their
care as well as receive remote patient monitoring. The home telehealth devices
are configured to communicate health status including symptoms as well as
capture biometric data. This data is transmitted and remotely monitored by a
care coordinator working in conjunction with the patient’s primary care provider.
For the VHA, one of the primary goals of monitoring has been to reduce use of
institutional medical care, particularly for veterans who may live remotely, and
instead promote patient activation, self-management, and the earlier detection of
complications. For patients with chronic illnesses enrolled in CCHT, monitoring
has resulted in a 25% reduction in bed days of care, 19% reduction in hospital
admissions, and high overall rates of patient satisfaction. By 2010, over 70,000
veterans have been enrolled in CCHT with plans for expansion to cover more.

Partners Healthcare (Partners Healthcare, Boston, MA, USA), a private inte-
grated health system, has been using its own RPM system to improve outcomes in
patients with heart failure. The Connected Cardiac Care Program (CCCP) provides
home telemonitoring combined with nursing intervention, care coordination and
education for patients with heart failure. Telemonitoring consists of the daily
transmission of weight, heart rate, pulse and blood pressure by patients with the
program demonstrating a significantly lower rate of hospitalization for up to 90 days,
and decreased mortality within the first four months after enrollment at discharge.
This model has thrived on strong institutional leadership as well as the overarching
goal of activating and engaging patients in greater self-care through technology.

These examples demonstrate how data gathered from patients remotely can be
used to drive real time clinical decisions and improve healthcare outcomes. Still,
they represent a model of provider driven data collection. This data is reliant on large
teams of care coordinators, often nursing based, for interpretation and use, and does
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not have the benefit of further analytics to distill and detect trends. The emerging
frontier in health related data generation will come from the hands of patients
and their caregivers, from data captured on consumer marketed devices including
smartphones and wearable devices, and processed with sophisticated analytics to
better support provider workflow.

16.1.7 mHealth from the Patient Side

In the U.S., smartphone ownership has increased from 35% of adults in 2011, to
64% of adults in 2014, with 62% of smartphone owners using their smartphone to
look up information about a health condition within the past year (Smith 2015). 34%
of adults have downloaded an app meant to support healthy living, and one in five
have downloaded and regularly use an mHealth app (Witters and Agrawal 2014).
Widespread ownership and use of smartphones is now evolving into ownership
and use of wearable devices, including fitness trackers and smartwatches. A recent
report by PriceWaterhouseCoopers has shown that over 20% of American adults
now own a wearable device with the market share of these devices increasing each
year (PwC 2014).

The rapid innovation in mobile consumer devices, including smartphones and
wearables enabled to capture biometric and health-related data, and the increasing
accessibility of these devices and apps has allowed consumers to capture their own
health related data, or patient-generated health data (PGHD). PGHD encompasses
health-related data including history, symptoms, biometric, and environmental data
that is created, recorded, gathered, or inferred by or from patients or their care
partners to help address a health concern (Shapiro et al. 2012). It is unique because
patients determine with whom it will be shared. Use of consumer targeted mHealth
devices and applications has allowed for greater capture of patient selected and
controlled data, in contrast to provider-selected variables traditionally employed in
remote patient monitoring.

With the generation of such large volumes of raw data, a new industry has
emerged to determine how to best integrate and translate PGHD in a clinically
useful manner into EHRs. One of the main pillars in emerging technologies is in
the design and use of ecosystem-enabling platforms intended to bridge the divide
between humans and technology (Gartner 2016). One particular platform-enabling
technology as it relates to healthcare is seen in the Internet of Things (IoT). The
IoT is an emerging concept that at its simplest is considered solutions generated
from interconnected devices, and is used to describe “the range of new capabilities
brought about by pervasive connectivity : : : involving situations where network
connectivity and computing capability expand to objects, sensors, and everyday
items that exchange data with little to no human involvement” (Metcalf et al. 2016).
As it pertains to health, the IoT promotes a user-focused perspective in how data
is managed and information exchanged, particularly between consumers and their
devices, allowing consumers to engage in greater self-monitoring and management.
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The IoT is an opportunity to passively transmit data from consumer devices, which
can then be transformed into big data using sophisticated analytics, and ultimately
translated into information and insights that can aid in improving individual health.

Further spurring innovation in PGHD is Stage 3 of the meaningful use electronic
health record incentive program by the Office of the National Coordinator for
Health Information Technology, which has placed a high priority on bringing
PGHD into the EHR (U. S. Department of Health and Human Services 2013).
Stage 3 specifies that EHRs should “provide 10% of patients with the ability
to submit patient-generated health information to improve performance on high
priority health conditions, and/or to improve patient engagement in care.” With this
mandate, several companies including eClinicalWorks (Westborough, MA, USA)
and Apple, Inc. (Cupertino, CA, USA) have begun to build and deploy solutions,
using platforms like the Internet of Things, to seamlessly integrate and translate
PGHD captured by consumer devices into EHRs and create analytics to support
clinical decision-making.

eClinicalWorks, a leading ambulatory EHR vendor, is integrating data from
wearable devices into its Health & Online Wellness personal health record healow

®

with the goal of enhancing patient engagement in their health (Caouette 2015a).
To date 45 million patients have access to their health records through healow

®
.

According to a survey conducted online by Harris Poll and commissioned by
eClinicalWorks, 78% of patients with wearable devices using them more than once
a month feel that their physicians would benefit from access to the information
collected (Caouette 2015b). Using its cloud platform, the Internet of Things,
third party hardware platforms can collect, store, and analyze PGHD from home
monitoring and wearable devices. These devices can include activity trackers,
weight scales, glucometers, and blood pressure monitors. The healow

®
IoT contains

analytics and dashboards designed to provide patients and physicians with high yield
data culled from PGHD for more informed clinical decision-making. Though still
early, this partnership has the promise to use big data to improve patient care using
patient owned devices.

Although not a traditional corporation in the field of healthcare, Apple has been
leveraging its existing technologies to collect, capture, and integrate PGHD. Apple
has been rapidly evolving its HealthKit app, initially launched in 2014, into a
platform to allow health data interoperability. It has partnered with numerous EHRs
and over 900 health devices and apps and continues to expand its partnerships
and potential applications. Working with large centers like Duke, Stanford, and
most recently, in its largest patient integration of more than 800,000 patients,
Cedars-Sinai Medical Center, Apple’s HealthKit allows for the centralization and
transmission of data from consumer devices to healthcare operating platforms
(Higgins 2015). Given the potential for large amounts of unfiltered data to be
transmitted, HealthKit incorporates flow sheets to keep PGHD separate from other
data and allows providers to specify the frequency of data transmission. As there
are no clear recommendations for how PGHD is to be incorporated or handled once
within EHRs, healthcare systems like Duke have created modified consents so that
patients understand that the PGHD data transmitted has no guarantee to be viewed
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or acted upon in a real time manner so as to avoid creating a false sense of security
for patients (Leventhal 2015). Ultimately though, in contrast to the current state of
health data in the EHR, patients retain control their PGHD, deciding to whom and
what data is transmitted.

In one of the most promising published applications of mHealth and big data
in clinical care, Apple’s HealthKit has recently been used in a pilot to improve
the management of pediatric diabetics in Stanford’s outpatient clinics. Stanford
partnered with Apple, a major glucose monitoring company Dexcom (San Diego,
CA, USA), and its EHR vendor Epic (Verona, WI, USA) to automatically integrate
patient glucose readings into its EHR and provide analytics to support provider
workflow and clinical decision making (Kumar et al. 2016). Prior processes to input
data from continuous glucose monitoring devices into the EHR have required either
manual entry or custom interfaces, both of which limit widespread applicability and
also impose a time delay variable, as data is only available to providers at clinic
visits. Using the prior mentioned technologies, the study investigators were able
to establish a passive data communication bridge to link the patient’s glucometer
with the EHR via the patient/parents smartphone. In this setting the patient wears
an interstitial glucose sensor connected to a transmitter which sends blood glucose
readings by Bluetooth connection to the Dexcon Share2app on the patient’s Apple
mobile device. The Dexcom Share2 app then passively shares glucose values, date,
and time with the HealthKit app, which transmits the data passively to the Epic
MyChart app. The MyChart patient portal is a part of the Epic EHR and uses
the same database so that the PGHD glucose values are populated into a standard
glucose flow sheet in the patient’s chart. Importantly, this communication bridge
results in the passive integration of the patient’s data into the chart but can only
occur when a provider places an order in the patient’s electronic chart and the
patient accepts the request within their MyChart app, placing ultimate control of
the data with the patient/parent. Hesitations on the part of providers to accept
integration of PGHD into the EHR have often centered on concerns over receiving
large and potentially unmanageable volumes of data, which may lead to increasing
liability and unrealistic patient expectations, as well as to what degree data is
actionable (National eHealth Collaborative 2013). Providers have also expressed
concern about the financial impact of using staff and physician time to review
the data. The study investigators addressed these concerns by creating an analytic
report to triage patients and identify actionable trends between office visits based on
home glucose readings, supporting rather than hindering provider workflow. This
report was not meant to replace real-time patient/parent monitoring and thus verbal
and written notification was used to establish patient/parent expectations regarding
only intermittent provider monitoring. The report was generated every two weeks
to identify trends, such as episodic nocturnal hypoglycemia, rather than provide
real time glucose monitoring. When viewed by the provider, these reports could
also be shared and discussed with the patient/parent via MyChart to create an
ongoing dialogue for care between visits. In this study, several actionable trends
including nocturnal hypoglycemia in a toddler and incorrect carbohydrate counting
in a teenager were identified leading to improvements in overall glycemic control
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between office visits. Additionally, participants were noted to express gratitude
that actionable trends were brought to their attention and there was no report of
frustration regarding lack of contact for specific hypo or hyperglycemic episodes,
further highlighting the importance of early expectation management.

This pilot study, thus far the only study to demonstrate automatic integration of
PGHD into the EHR, demonstrated that integration using widely available consumer
technology is not only possible, but when combined with smart and intuitive
analytics can improve provider workflow for reviewing data and communicating
with patients leading to better care for patients. Notably, this workflow did not
require any institution-level customization or a specific EHR vendor. Additionally,
other companies like Microsoft Health and Google Fit are both in the midst of
developing similar patient-generated data platforms making it likely that any mobile
device, not specifically Apple devices, may be able to be configured to perform
similarly.

16.1.8 Logistical Concerns

The enormous promise of consumer devices and integrated health data platforms to
revolutionize health care is two-fold in the goal of the establishment of the patient
as an owner and active user of their health care data, and in the implementation of
big data to support physician workflow and clinical decision-making. Inherent in the
development and adoption of any new technologies, particularly within health care,
are the logistics of addressing accessibility, privacy, security, and liability.

16.1.9 Accessibility

Despite rapidly expanding ownership and usage of mobile devices, economic
disparities and technological literacy both stand as potential barriers to accessibility.
Use of new technologies is most often associated with younger and more financially
stable demographic categories. This is particularly seen in the wearable devices
market, where approximately half of consumers are between the ages of 18–34
and one-in-three have a household income of greater than $100,000 (Nielsen
2014). However, approximately two thirds of Americans now own a smartphone
of some sort with 10% owning a smartphone without any other form of high-
speed internet access at home, making them heavily dependent on their smartphone
(Smith 2015). Those who tend to be most heavily dependent on a smartphone for
online access include younger adults, those with low household incomes and levels
of educational attainment, and non-whites. This implies that shifting technology
toward smartphones may still be a reasonable strategy to cover diverse demographic
groups. Interestingly, as they relate to health, consumers have indicated that they
are not willing to pay much for wearable devices but would be willing to be
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paid to use them (PwC 2014). This may signal a more broad interest in wearable
technologies for health independent of financial status, and may offer an opportunity
for insurers, providers, and employers to step in and potentially level the playing
field for patients. In fact, consumers have noted that they are more willing to try a
wearable technology provided by their primary care doctor’s office than they are for
any other brand or category (PwC 2014).

16.1.10 Privacy and Security

With regards to privacy and security, health care providers must address HIPAA
requirements and malpractice issues while developers must pay attention to stan-
dards for product liability including Federal Drug Administration (FDA) and
Federal Trade Commission (FTC) rules to protect patients (Yang and Silverman
2014). In the United States, it is generally held that an individual’s medical record
is owned by the provider or institution that retains the record, not the individual
patient the record describes. Patients are however still covered by privacy provisions
included in the Health Insurance Portability and Accountability Act (HIPPA)
of 1996, that ensures the confidential handling and security of protected health
information (PHI) (U.S. Department of Health and Human Services 2013). With
increasing use of mHealth technologies, Congress has expanded the use of HIPAA
through the Health Information Technology for Economic and Clinical Health
(HITECH) Act (U.S. Department of Health and Human Services 2009), which
sets forth requirements for mandatory breach notifications. Despite this, HIPAA
coverage as it pertains to mHealth technologies remains complex. When a patient’s
health data is in the possession of health providers, health plans, or other “covered
entities”, it is protected under HIPAA. When it is transmitted among individuals or
organizations that are not covered entities under HIPAA, it is not protected (Fisher
2014). For example, if a patient checks their heart rate and the data is recorded on
their mobile device, it is not covered by HIPAA. However, if those readings are sent
to their physician for use in clinical care, the data becomes HIPAA protected. This
and many other scenarios will need to be identified and clarified to ensure data from
mHealth apps and devices incorporated into health care are appropriately protected.

Patients themselves are becoming more and more aware of privacy concerns and
even within the context of traditional methods for health information transfer (fax,
electronic transfer), more than 12% of patients noted withholding health information
from a health care professional due to privacy concerns (Agaku et al. 2014).
Inspection of 600 of the most commonly used and rated English-language mHealth
apps showed that only 30.5% had a privacy policy, and that bulk of these policies
required college-level literacy to understand and were ultimately irrelevant to the
app itself instead focusing on the developer (Sunyaev et al. 2015). More stringent
attention from developers with regards to mHealth data privacy will be needed to
both protect data and ensure consumer confidence in their devices.
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Given the nature of mHealth technologies, data from mobile devices (that are
themselves easily lost or stolen), is transmitted to cloud-base platforms over wireless
networks that themselves are prone to hacking and corruption. Even prior to the
expansion of mHealth devices, examples of lost or stolen patient data have already
populated new cycles. In 2012, Alaska’s Medicaid program was fined $1.7 million
by HHS for possible HIPPA violations after a flash drive with patient health
information was stolen from the vehicle of an employee (U.S. Department of Health
and Human Services 2012). Interestingly, health hacking has also become increasing
prevalent given the relative ease of hacking medical systems and devices, and the
increasing worth of health care data. It is estimated that health care data is currently
more lucrative than credit card information for fraudulent purposes (Humer and
Finkle 2014). As more patients, providers, and healthcare organizations use mobile
health technologies to augment and conduct patient care, more attention to security
features and protocols will be needed to ensure privacy.

16.1.11 Regulation and Liability

The regulation of mHealth as it relates to medical licensure and liability is a complex
issue without clear guidelines or answers. In the current state, mHealth devices
and apps may be regulated in a piecemeal fashion by several agencies. Potential
regulatory agencies may include the Federal Communications Commission, Food
and Drug Administration (FDA), Federal Trade Commission (FTC), Office for the
Civil Rights of the Department of Health and Human Services (HHS), and National
Institute of Standards and Technology, each with a unique role. These agencies
can help create standards for mHealth technology, authorize carriers for access and
transition of information from devices connected to networks, ensure appropriate
use of information by health providers, and regulate advertising related to the app
use (Yang and Silverman 2014). The FDA has expressed it will focus on the subset
of mobile apps that are intended to be used as an accessory to a regulated medical
device or transform a mobile platform into a medical device using attachments,
display screens, sensors, and other methods (U. S. Department of Health and Human
Services 2015). In essence, as part of its risk-based approach to cover apps with the
potential to cause the most harm, it will focus its attention to mHealth apps that
transform consumer devices into medical devices but leave the large majority of
other health apps unregulated.

Aside from unclear regulatory domains, jurisdiction, and liability also poses an
issues for mHealth technology. When providers use health apps to communicate
with other providers in different locations, issues regarding the cross-jurisdictional
practice of medicine may arise. As most medical silencing requirements are state
specific, there exist over 50 different sets of requirements. Telemedicine has led the
way in helping to clarify cross-jurisdictional practice (State Telehealth Laws and
Medicaid Program Policies: A Comprehensive Scan of the 50 States and District
of Columbia 2016), but more clarity will be needed as data from mHealth devices



428 E. Le et al.

is potentially transmitted and acted upon across state lines. Additionally, without a
clear standard of care with respect to the use of mHealth technologies, coverage of
malpractice laws come into question. Traditional malpractice liability is based on a
physician-patient relationship with direct contact and care. Given mHealth can be
used to capture and monitor health data using a patient’s own device or application,
it is unclear what a physician’s liability would be if patient injury resulted from
faulty or inaccurate information from the patient’s device. As such malpractice in
the setting of use of mobile health technologies remains an open question.

Advancements in mobile health technologies promise to make healthcare more
accessible and to more effectively engage patients in their medical care, strengthen-
ing the patient-provider relationship. Applying a big data approach with thoughtful
analytics to the massive amounts of data generated, captured, and transmitted on
mobile devices can not only supply providers with additional information, but also
present that information in such a way to enhance provider workflow. Given the
rapid growth of mobile health technologies and their increasing integration into
health records and use in clinical decision-making, more attention will be needed
to clarify privacy, security, and regulatory concerns.

16.1.12 Patient Education and Partnering with Patients

The meeting of a physician and patient is the start of a therapeutic relationship, but
much of the work that happens to improve health occurs beyond the appointment
time. Whether a physician meets a patient in the clinic, hospital, nursing home,
or any other care setting, for the physician’s recommendations to be successfully
implemented by the patient there has to be a trusting partnership. Physicians are the
experts in medicine and patients are the experts in their own lives, so both parties
must be engaged for meaningful changes to occur.

Much research has been done in the areas of patient engagement, activation,
and the patient-physician partnership. Patient engagement includes both the patient
activation to participate in care, and the resulting positive health behaviors from
this motivation (Hibbard and Greene 2013). Patient engagement has been linked
to participating in more preventative activities including health screenings and
immunizations, adherence to a healthy diet, and regular physical exercise. Patients
who are very activated are two or more times more likely than their less activated
counterparts to prepare for doctor visits, look for health information, and know
about the treatment of their conditions (Hibbard and Greene 2013; Fowles et al.
2009; Hibbard 2008). Patient engagement in the therapeutic process has been
studied and encouraged in specific areas such as chronic condition management
and adverse event reporting, but the degree to which patients are able to be engaged
in their healthcare in the current age of social media and Google is unprecedented.

As electronic health records are creating accessible mobile platforms, all patients,
not just those with chronic conditions, are able to engage in their healthcare on a
basic level to schedule appointments, ask questions to medical staff, and initiate
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medication refills online. Despite the fact that not all patients have the technical
knowledge, health awareness, and engagement to interact with their physicians in
this manner between appointments, this is still becoming an increasingly common
way that patients and their caregivers are getting engaged with their medical care.

Understanding the role that patient engagement plays in the physician-patient
interaction and disease treatment and management sets the stage for understanding
the new ways patients can now engage in their healthcare through online access
to medical information. A 2013 study in the journal Pediatrics sums up what
many physicians perceive in the current age of medical care, that “Dr Google is,
for many Americans, a de facto second opinion” (Fox 2013). The Pew Research
Center has studied health information online since 2000. The latest national survey
in 2014 showed that 72% of adults search online for health issues, mostly for
specific conditions and their treatments. Meanwhile, 26% say they have used online
resources to learn about other people’s health experiences in the past 12 months,
and 16% have found others with the same health concerns online in the past year
(Fox 2014). Caregivers and those with chronic health conditions are most likely to
use the internet for health information. Health professionals are still the main source
of health information in the US but online information, especially shared by peers,
significantly supplements the information that clinicians provide (Fox 2014). Many
survey respondents report that clinicians are their source of information for technical
questions about disease management, but nonprofessionals are better sources of
emotional support (Fox 2013).

16.1.13 Developing Online Health Communities Through
Social Media: Creating Data that Fuels Research

PatientsLikeMe Inc. (Cambridge, MA, USA) and the rare disease community exem-
plify the use of social media to both connect people with similar health conditions,
and provide real-time data feedback to healthcare providers, healthcare systems,
pharmaceutical companies and insurance companies. This feedback is unique in
that it collects large amounts of patient-level data to help in the development of new
care plans for specific patient populations.

PatientsLikeMe allows users to input and aggregate details on symptoms,
treatments, medications, and side effects of various illness, connect to support
groups dedicated to challenging health conditions, and creates a platform that
can potentially set the stage for clinical trials and medical product development
(Sarasohn-Kahn 2008; Wicks et al. 2010). Patients who choose to enter their
personal health data on the site are actively choosing to use their personal health
information in a way that is different than the traditional method of encapsulating
health information in the electronic health record, to be seen and used privately
between the physician and patient. For example, those with Amyotrophic Lateral
Sclerosis (ALS) may choose to share personal information about their symptoms,
treatments, and outcomes with the ALS community within PatientsLikeMe. These
community-level symptoms and treatments are aggregated and displayed so that
users can discuss the data within the site’s forums, messages, and comments
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sections. A study of PatientsLikeMe’s data sampled 123 comments (2% of the
total commentary posted) and noted that group members sought out answers to
particular questions guided by this data, offered personal advice to those who could
benefit, and made relationships based on similar concerns and issues. This study
illustrated that individual patients who shared their personal health data benefitted
by participating in conversations that may help with self-management of their
disease. (Frost and Massagli 2008). In addition to individual patients benefitting
from their usage of the site, PatientsLikeMe allows pharmaceutical companies to
partner with patients to design clinical trials and research studies (PatientsLikeMe
Services n.d.). Since 2007, PatientsLikeMe has achieved many milestones in
patient-centered and patient-directed research. For example, in 2007 a study on
excessive yawning in ALS patients was conducted in which the symptom was listed
on the ALS page and each user had to rate the severity of the symptom experienced.
This quickly created a method to evaluate the symptom in the context of the person’s
medications and disease course and ultimately data from the PatientsLikeMe users
helped to identify that the excessive yawning was more likely a symptom of
emotional lability associated with the disease state rather than a drug side effect, or
a side-effect of respiratory issues with ALS. Soon after, it was found that the impact
of the research extended beyond its clinical scope. While the potential physical pain
of yawning in ALS patients may have been the impetus to study this issue, based
on discussions on the site it came to light that people with ALS had lost friends
due to the misinterpretation that the yawning represented lack of interest and was a
sign of rudeness. With this study, patients/families and healthcare professionals are
now better able to understand and be more sympathetic to this symptom, physicians
can warn patients of this symptom, and researchers have a greater impetus to find
a treatment for the emotional lability likely causing yawning (Wicks 2007). The
example highlights the invaluable nature of user input in helping to guide research
in a more patient-centered manner.

The rare disease community has also been a remarkable testament to the power
of online communities for sharing healthcare data and furthering medical practice.
When new findings are published as case reports in academic journals, the process
relies on clinicians in various parts of the world to see those articles and recall
the specific symptomatology at the time needed to make a diagnoses - a process
that can take many years to diagnose individuals with the same rare diseases. With
common online platforms like Facebook, Twitter, and blogs, parents of kids with
rare diseases and people who have rare conditions are taking matters into their
own hands to find and share more information. Patients and families are turning to
social platforms to promote greater collaboration between patients, caregivers, and
healthcare industry professionals.

Bertrand Might is a child with the first known case of NGLY-1 deficiency, a
very rare illness that was not diagnosed until he was nearly 4 years old (Might and
Wilsey 2014). His journey to diagnosis is extraordinary because of the hard work
of his parents, a couple who epitomize a new perspective and the shift occurring in
the work of clinical diagnosis. After years of moving from one genetic specialist to
the next looking for an explanation for their son’s condition, researchers at Duke
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finally gave the family an uncertain diagnosis about a rare new enzyme deficiency.
Bertrand’s parents blogged and documented his journey including evaluations,
symptoms, visits to specialists, wrong diagnoses, and ultimately the gene mutations
leading to his condition. A second patient with Bertrand’s condition was discovered
after a clinician came across this blog and realized that the two children likely shared
the same enzyme deficiency. Yet another patient was identified when parents on
another continent came across the blog after searching for similar symptoms and
were motivated to have sequencing of the NGLY-1 mutation performed on their
child. Now, 14 children from around the world have been diagnosed with this defi-
ciency (Might and Wilsey 2014). Compared to how diseases have traditionally been
discovered and disseminated through medical literature, this innovative new way of
using social media to fuel recognition of symptoms and prompt genetic data analysis
is quite rapid, often leading to a more timely diagnosis for those with extremely rare
conditions. The implications of this phenomenon extend beyond the rapid diagnosis
of rare diseases. Often rare-disease communities prompt pharmaceutical companies
to consider researching and developing treatment options, support creating patient
registries and push for clinical trials, and attend FDA meetings to advocate for the
approval of new therapeutic options (Robinson 2016).

16.1.14 Translating Complex Medical Data
into Patient-Friendly Formats

The value of data from online sources comes from the aggregation of opinions on
a specific topic, such that the sum of different user input is more powerful than a
single person’s comment. A current example of a site making big data useable for
patients and physicians alike is iodine.com.

16.1.15 Beyond the Package Insert: Iodine.com

Since 1968, the US Food and Drug Administration (FDA) has required that certain
prescription medications contain package inserts that consist of usable consumer
medication information (CMI). The suggested CMI includes the name and brand
name of the medication, use, contraindications, how to take the medication, side
effects, and gene years, the FDA’s recommendations have supported changes to the
package insert (Food and Drug Administration 2006).

Expanding upon this concept, Iodine.com (San Francisco, CA, USA) was
founded in 2013 and currently offers free medication information for more than
1000C drugs. This information is compiled from FDA drug side effect data
and augmented with user input on drug side effects from Google Consumer
Surveys (GCS) (Iodine 2014), creating a experience that has been called the “yelp
of medicine” (Sifferlin 2014). Ultimately, these medication-related experiences
become part of a growing database that can guide new insights into how drugs work
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in the real world. There are many other sources of drug information on the internet
for consumers including drugs.com, medlineplus.gov, rxlist.com, webmd.com,
and mayoclinic.org, but these sites lack the peer-to-peer recommendations that
Iodine.com provides. Medication side effect profiles provided for physicians and
that are listed in the drug package inserts are notoriously long, listing all side effects
regardless of incidence frequency from less than a 1% chance of occurring to
frequent side effects. This type of information is hard for consumers to interpret, and
impossible for physicians to memorize, so often patients are prescribed medications
with minimal guidance: only important contraindications such as “don’t take with
alcohol” or “take on an empty stomach” are communicated. Most physicians also
do not have first-hand experience with these drugs, and so are unfamiliar with which
side effects truly occur most often.

Iodine.com helps to fill the void that is common in traditional prescribing
practices by adding personalization. The data for iodine.com is collected from a
variety of sources including traditional medical research literature and pharma-
ceutical product labels, center for Medicare and Medicaid Services (CMS) data,
non-research sources of data like insurance claims formularies, pharmacist reports,
patient reported data from more than 100,000 Americans on Google Consumer
Surveys, and social data sharing health experiences extracted from many other sites
(Iodine Data n.d.).

Iodine users also complete online reviews of their medications, and this
community-generated content contributes to the data on the site. The data from
these sources covers 1000C medications, and offers data subclassified by age,
gender, and medical condition. This subcategorization allows users to see how
similar populations experience and feel about different medications. This unique
aspect, the user experience, is a valuable addition to the information provided by
medical research literature primarily because medical research often has limited
generalizability based on the study design and exclusion criteria. Results of
medical studies can often only be extrapolated to populations similar to the study
populations, which often exclude older adults and those with complex medical
conditions limiting generalizability. These exclusions exist to make study results
easier to interpret, but a consequence of such stringent exclusion criteria is that a
large percentage of complex patients (precisely the ones for which clinicians most
need guidance) do not have a lot of evidence-based management guidelines. If large
amounts of data on patient experience can be captured from this complex population
of older adults, this can help guide clinical decision making (Bushey 2015).

Despite the potential for significantly expanding the database of medication use
and effects, there is a one major limitation of Iodine.com: validity. There is no
mechanism for confirming the self-reported data within the system. The integrity of
the reviews is potentially quite variable. In an attempt to combat this, the company
manually reviews all of the user input. Iodine.com reports that the site rarely receives
reviews that are not legitimate, but if detected, these reviews are removed. They
also check data trends to see if the patterns of reviews are consistent with known
population side effects (Bushey 2015).
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16.1.16 Data Inspires the Advent of New Models of Medical
Care Delivery

The life of a physician is typically a delicate balance between the time demands
of seeing patients, extensive medical documentation of encounters, and billing
and coding. Through all of this, certain interventions such as behavioral health
discussions rarely occur due to low provider knowledge and confidence, insufficient
support services, and little feedback from patients that behavior interventions are
needed and are effective (Mann et al. 2014). There are several companies that have
recognized the need to identify and engage high risk patients through technological
solutions with the goal to yield behavioral change. Two such companies are
Ginger.i.o and Omada health.

Ginger.io (San Francisco, CA, USA) offers a mobile application for patients
with various mental health conditions to have a personalized health coach. It allows
users to communicate through text or live video sessions with a licensed therapist
specializing in anxiety and depression, and has 24/7 access to self care tools through
its app. The company combines mobile technology with health coaches, licensed
therapists, consulting psychiatrists, and medical providers to create an interface
that is technology based, but with a human element. The app collects both active
data through regular mood surveys, and passive data through mobile phone data
on calling, texting, location, and movement. This passive data can generate a
norm for the user’s regular patterns. Once regular patterns are known, changes in
communication and movement can help predict depression or changes in mental
health (Feldman 2014). The active and passive data in addition to in-app activities
to build skills around managing mood changes are synthesized into personalized
reports that can be shared with the person’s doctor and the Ginger.i.o care team.
Accessible mental health care is challenging in the US for a variety of reasons-
availability of providers, cost and cost sharing limitations by insurance companies,
distance to care, and availability of appointments (Cunningham 2009). This type
of mobile platform can help narrow this gap and provide timely and convenient
behavioral care when needed through mobile devices (Ginger.io Evidence N.d.).
Ginger.io combines its data with behavioral health research data from the National
Institutes of Health and other sources to help provide insights from the aggregate
data. One particularly interesting insight is that a lack of movement from a user
could signal that a patient feels physically ill and irregular sleep patterns may
precede an anxiety attack. (Kayyali et al. 2013)

Omada Health (San Francisco, CA, USA) is an innovative company that offers
“digital therapeutics,” which are evidence-based behavioral treatment programs that
are cost-effective and potentially more accessible than traditional programs. Their
16-week program, Prevent, offers a targeted intervention to individuals who are at
high risk for chronic illnesses such as diabetes and heart disease. Each participant
is paired with a personal health coach and online peer group for regular feedback
and support. This program includes weekly lessons about nutrition, exercise, and
psychological barriers. In 2016, a study was published examining long term clinical
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outcomes of the Prevent Pilot and the effects of the program on body weight and
Hemoglobin A1C, a marker of blood sugar control in diabetics. The 187 pre-diabetic
participants who completed the four core lessons achieved an average of 5.0% and
4.8% weight loss at 16 weeks and 12 months, respectively and had some reduction
in their A1C level at final measurement (Sepah 2015).

The type of behavioral change program developed by Omada health would
require extensive staff and resources if replicated in person, rather than administered
online. The benefits of these online interventions include increased access to care,
convenience to patients by using mobile health delivery systems and avoiding travel
time, and increased patient engagement in their healthcare. Potential limitations
of these types of online behavioral intervention technology (BIT) programs are
technological barriers, lack of engagement due to the design of the program, and
issues with translating the program into actionable behavior change. Ideally, human
support should complement BIT use, so that together all potential barriers are
addressed and individuals can gain the maximum potential benefits from these
behavioral change programs (Schueller et al. 2016).

16.2 Part II: Physician Uses for Big Data in Clinical Care

16.2.1 The Role of Big Data in Transforming How Clinicians
Make Decisions

16.2.1.1 Imagine the Following Scenario

An elderly man, Mr. Williams, develops a fever, back pain, and nausea, and is
admitted to the local hospital where he is diagnosed with a kidney infection. He tells
his physician that he has several other medical conditions, such as heart disease and
diabetes, and was hospitalized several times in the past year for different infections,
although they were at another hospital where medical records are not available.
The physician chooses to start him on ciprofloxacin, which is an antibiotic that she
typically uses to treat kidney infections. She also faxes a form to the other hospital to
request records, although the request would not be processed until the following day.

In the middle of the night, the physician receives a page from the nurse saying
that Mr. Williams’ heart rate is elevated. She walks over to his room to examine him,
and notices that he is a bit anxious about being in the hospital. This was actually the
fifth time she was woken up that night; the last four times were all for patients who
were anxious and needed something to help them calm down. She takes a minute to
scan Mr. Williams’ chart and does not notice anything else that looked worrisome,
so instructs the nurse to give him an anti-anxiety medication and goes back to sleep.

The following morning, Mr. Williams develops a high fever and becomes
confused. The physician, now more concerned, looks through his chart and notices
that his heart rate had continued to increase throughout the night. She diagnoses him
with sepsis and immediately starts intravenous fluids and switches his antibiotic to



16 The Impact of Big Data on the Physician 435

piperacillin/tazobactam, which is the antibiotic that she usually uses if ciprofloxacin
is not working. However, he continues to worsen throughout the day and is later
transferred to the intensive care unit. That afternoon, the medical records from the
other hospital are faxed over, which consist of 50 printed pages of progress notes,
discharge summaries, medication lists, and lab reports. Although the physician’s
shift had ended two hours ago, she spends the time looking through the faxed charts
because she is particularly worried about Mr. Williams (she had taken care of a
patient with a kidney infection who ended up dying in the hospital just two weeks
ago). After pouring through the pages of records, she finally notices a line of text in a
lab report that is a critical piece of information: two months ago at the other hospital,
Mr. Williams had developed another kidney infection and his urine at the time grew
out a bacteria that was resistant to both ciprofloxacin and piperacillin/tazobactam.
She remembers that meropenem would be the antibiotic of choice in this situation,
but takes the extra time to look it up in her online reference since she has not used
that medicine in over a year. At 5 pm, almost 24 h after Mr. Williams was admitted
to the hospital, the physician starts him on the correct antibiotic. He eventually
recovers, but was weakened because of the prolonged hospital stay and had to be
discharged to a nursing home.

The above hypothetical scenario is not uncommon in modern hospitals. Although
the resources needed to treat Mr. Williams’ kidney infection were readily available
and his physician did her best to care for him, the limitations in the process by
which medical decisions are made in healthcare led to missed opportunities that
may have improved the care that he received in the hospital. He could have received
the correct antibiotic much earlier, and his sepsis could have been recognized and
acted upon sooner. Clinical decisions are often made in situations of uncertainty
with incomplete information and sometimes inconsistent levels of expertise. As
demonstrated in the scenario with Mr. Williams, many decisions are heavily
influenced by the experiences of the individual physician, which can lead to high
variability in cost and quality of care (Institute of Medicine 2012). Existing clinical
knowledge is often inconsistently applied, with compliance with evidence-based
guidelines ranging from 20%–80%. Additionally, most clinical decisions including
common diseases such as heart attacks, lack strong evidence from clinical research
studies (Institute of Medicine 2012) with only �11% of clinical practice guideline
recommendations supported by high quality evidence (Tricoci et al. 2009). This
section will describe the potential for big data to address these gaps and transform
how decisions are made in healthcare.

The methods by which physicians are currently trained to make medical deci-
sions are not very different from those utilized one hundred years ago. Physicians
undergo a long and arduous training process that heavily relies upon developing
the individual’s knowledge base and experience. The amount of data available for
today’s physicians to process, however, far exceeds the capacity of any individual
and is increasing at a rapid rate. Advances in medical research have not only given
us many more diagnostic and treatment options for long-standing diseases, but have
also defined new diagnoses that add to the already expansive medical vocabulary.
As our understanding of disease grows more granular, the management of patients is
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becoming increasingly complex. A physician in the intensive care unit will manage
a range of 180 activities per patient per day (Institute of Medicine 2012). This
rapidly accumulating knowledge base has allowed us to reimagine what medicine
can accomplish, but also means that today’s physicians are required to know and
do more than ever before to deliver the standards of care that we now expect from
modern healthcare systems. The cognitive tools that physicians are given, however,
have not advanced at the same rate, thus creating a critical need for newer tools to
help physicians make clinical decisions.

The promise of big data to address this need is driven by the increasing wealth
of clinical data that is stored in the electronic medical record (EMR). Information
such as patient histories, laboratory and imaging results, and medications are all
stored electronically at the point of care. This critical mass of data allows for
the development of clinical decision support computational tools that interact with
the EMR to support physicians in making clinical decisions. The development of
clinical decision support is an evolving field with different computational models
that include earlier systems using probabilistic and rule-based models and newer
data driven approaches that more effectively harness the power of big data.

16.2.2 Probabilistic Systems

The diagnosis of disease follows a Bayesian model. When approaching a new
patient, a trained physician will come up with a list of potential diagnoses in order
of likelihood, and adjust the probabilities of those diagnoses being present based
on new information from the examination and diagnostic tests. A patient coming
to the emergency room with chest pain could have anything from a heart attack
to a muscle strain, but additional relevant information such as the character of the
pain and the presence of elevated serum levels of cardiac enzymes will increase
the posterior probability of the diagnosis being a heart attack and decrease that of
the diagnosis being a muscle strain. Physicians use this mental model to diagnose
diseases, but will often be affected by psychological biases. In the case of Mr.
Williams, his physician mistakenly assigned a higher posterior probability to the
diagnosis of anxiety as the cause of his elevated heart rate overnight, likely because
she had just seen several other patients with anxiety. This phenomenon, known as the
availability heuristic, is a common reason for misdiagnosis and physicians become
increasingly susceptible to it when exhausted with data and tasks that exceed what
can be processed by an individual person.

Probabilistic clinical decision support systems use computers to simulate the
Bayesian model with which physicians are trained to think. For a presenting
symptom, a computer can start by considering the prior probabilities of the
differential diagnosis, which is typically based on the known prevalence of those
conditions, and modify the posterior probabilities in a sequential approach based
on new inputted data, such as symptoms and diagnostic test results (Shortliffe and
Cimino 2014). These clinical decision support systems require a knowledge base of



16 The Impact of Big Data on the Physician 437

estimated conditional probabilities of a set of diseases for the pieces of data that are
entered. VisualDx (Rochester, NY, USA) is an example of a commercially available
probabilistic clinical decision support system that is designed to help users create a
differential diagnosis at the point of care that is not affected by human error such
as recall bias. A user can enter combinations of clinical data such as symptoms
and laboratory results to generate lists of likely diagnoses that are ordered by their
posterior probabilities.

16.2.3 Rule-Based Approaches

Rule-based clinical decision support systems rely on encoded concepts in a knowl-
edge base that are derived from content experts to simulate recommendations that
experts might provide. The knowledge base can include probabilistic relationships
such as those between symptoms and diseases, and medications and side effects.
For example, a commonly used rule-based clinical support system is the drug
interaction alert system that is built into many modern EMRs. The system alerts
the physician if a new medication ordered has an adverse interaction with an
existing medication that the patient is taking. When the medication is ordered in
the EMR, the action is then analyzed against a previously encoded knowledge base
of all known medication interactions, which then triggers an alert. Knowledge bases
can be created for specific diseases to create tools such as early disease detection
systems. For example, many hospitals now use EMR embedded clinical decision
support tools to detect severe sepsis, which is a life-threatening physiologic state
that patients can develop when they have an infection. These alerts are powered
by algorithms designed based on probabilistic rules derived from sepsis treatment
guidelines (Rolnick et al. 2016). Such a clinical decision support system may have
been able to help Mr. Williams’ physician recognize earlier that he had sepsis based
on clinical data in the EMR that the physician did not otherwise notice, or could
have initiated an alert when the physician ordered the first antibiotic that his previous
urine culture grew a resistant antibiotic.

16.2.4 Data Driven Approaches

Rule-based and probabilistic models, which comprise the majority of existing clini-
cal decision support systems that are in use, rely on manually curated knowledge
bases that are applied to clinical data in a top down approach. They act on,
rather than use the data in the EMR to generate insights into clinical decisions.
The paradigm of clinical decision support is now evolving towards a data driven
approach, which employ machine learning techniques to mine EMR data for new
knowledge that can guide clinical decisions. Rather than relying on a pre-formed
knowledge base, a data driven approach seeks to “let the data speak for itself”
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by extracting patterns and insights from the data generated by everyday clinical
practice. The most direct approach is to attempt discovery of new knowledge
that can guide clinical decisions. This approach is particularly powerful for the
majority of clinical decisions that do not have an existing evidence base in the
form of clinical trials or guidelines, but for which many “natural experiments”
occur in regular practice. Efforts are underway to develop systems that would allow
physicians to generate real-time, personalized comparative effectiveness data for
individual patients using aggregate EMR data (Longhurst et al. 2014). For example,
there may have been thousands of other patients who share Mr. Williams’ specific
clinical history who were treated at the same hospital. His physician could query
the EMR to find out how this cohort of patients responded to certain treatments
in order to choose the most effective treatment for him. Reliable conclusions can
be challenging due to confounding by indication, but can somewhat be mitigated
by causal inference methods that risk adjust for different clinical factors (e.g.,
propensity score matching) as has been demonstrated through established methods
in retrospective observational research.

Another example of an emerging data driven approach is known as collaborative
filtering. Traversing the hierarchy of medical evidence, we first look to randomized
controlled trials to guide our medical decision making, followed by observational
studies, before accepting consensus expert opinion, or finally our own local expert
(consultant) opinions and individual anecdotal experience. With only �11% of
clinical practice guideline recommendations backed by high quality evidence and
only about a quarter of real-world patients even fitting the profile of randomized
controlled trial inclusion criteria, it should not be surprising that the majority
of medical decisions we have to make on a daily basis require descending the
entire hierarchy to individual experience and opinion. For a practicing clinician,
the established norm is to consult with other individual local experts for advice.
The advent of the EMR, however, enables a powerful new possibility where we can
look to, not just the opinion, but the explicit actions of thousands of physicians
taking care of similar patients. Right or wrong, these practice patterns in the
collective community reflect the real world standard of care each individual is
judged against. More so, these may reflect latent wisdom in the crowd, with clinical
practices refined through years of hard won experience, but which never before
had a fluid mechanism to disseminate through conventional social and publication
channels. Such an approach can represent an entirely new way of generating
and disseminating clinical practice knowledge and experience, owing heavily to
methodology established in product recommender systems for companies such
as Netflix and Amazon. Active research is underway to help discern how such
approaches can separate the wisdom of the crowd from the tyranny of the mob, and
the potential impacts of integrating such dynamic information into a physician’s
point of care decision making process (Chen et al. 2016). When the computer
systems are trained to recognize established standards of care through readily
available clinical data, they will be able to seamlessly anticipate clinical needs even
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without being asked. This will translate endpoint clinical big data into a reproducible
and executable form of expertise and, deploying this right at the point-of-care, can
close the loop of a continuously learning health system.

16.2.5 Challenges and Areas of Exploration

Significant challenges remain in the development and adoption of clinical decision
support. Although the EMR stores clinical data electronically, much of the data
is not in a format that is easily readable by computers. Inherently structured data
such as medication lists and laboratory values are often the sources for data used in
existing rule-based clinical decision support systems. The promise of data driven
machine learning approaches to clinical decision support, however, require the
use of data in the unstructured, free text narratives that comprise the majority of
valuable, actionable EMR data generated by clinicians. The question of how to
structure large amounts of clinical data into reliable variables that can then be used
by computational tools remains one of the “grand challenges” of clinical decision
support (Sittig et al. 2008). Natural language processing, which is a technique that
has been used in other applied fields of computer science, is being explored as a
way to translate clinician generated text into encoded data (Liao et al. 2015). How
this data can then be organized into meaningful groups, or phenotypes, that can
be analyzed is an area of active research. For example, EMR phenotypes can be
used to create electronic cohorts of patients around specific disease states, either
at the point of care to generate real time comparative effectiveness data for clinical
decision support, or for the creation of electronic cohorts that can be used for clinical
research (Xu et al. 2015).

The infrastructure for how clinical data is stored and shared is also in need of
change to accommodate a data driven healthcare system. In our example with Mr.
Williams, a critical piece of clinical data, the urine culture results, was actually
located in another hospital and had to be faxed over as printed text to be read by the
physician. Any clinical decision support system would be limited by the amount
of clinical data available to analyze. Currently, electronic clinical data is stored
throughout disparate EMR systems that are owned by individual healthcare delivery
systems and often not shared electronically. Although the Health Information
Technology and Clinical Health Act (HITECH), which was enacted as part of the
American Recovery and Reinvestment Act of 2009, includes standards for EMR
interoperability that envision a system where clinical data can be shared electron-
ically among clinicians across the country in real time, issues such as privacy,
misaligned financial incentives, and the lack of technological infrastructure continue
to remain as barriers to adoption (Ball et al. 2016). Regional health information
exchanges are beginning to have some success in allowing for data sharing among
health systems, although the scope remains limited (Downing et al. 2016). Further,
insights are needed to understand how to successfully scale implementation of
clinical decision support systems into clinical enterprises. Issues such as physician
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workflow integration, system usability, and alignment with financial incentives of
healthcare delivery systems all need to be considered. Nevertheless, in spite of
these challenges, the convergence of the need for improved healthcare quality, an
unprecedented amount of available clinical data, and the rapid development of
powerful analytical tools is pushing the healthcare system to a tipping point and
into an era of big data.

16.2.6 Using Big Data to Improve Treatment Options

One of the greatest promises of big data as it relates to medical care is in precision or
personalized medicine. These terms are often used interchangeably, with precision
medicine emerging more recently and persisting as the preferred term to describe
the concept of taking individual variability into account in creating prevention and
treatment plans (National Academies Press 2011). Precision medicine has existed
for at least a century with the most prominent example seen in blood typing to
more safely guide blood transfusions (Collins and Varmus 2015). Additionally,
complete sequencing of the human genome at the beginning of this century
has led to a wealth of data towards the better understanding of disease states,
developmental variability, and human interaction with pathogens (Lander et al.
2001). More recently, precision medicine has come to define a framework to
combine huge databases of patient health data with OMICS, primarily genomics
but also proteomics, metabolomics, and so on, to facilitate clinical decision-making
that is “predictive, personalized, preventive and participatory” (P4 Medicine) (Hood
and Flores 2012). The overarching hope for precision medicine is to be able to select
therapies for predictable and optimal responses, and identify potential side effects
to therapies based on a patient’s genetic makeup and individual characteristics.

In his 2015 State of the Union Address, President Obama announced details
about the Precision Medicine Initiative (PMI), a $215 million research effort
intended to be at the vanguard of precision medicine (The White House 2015).
Funds have been invested into the National Institutes of Health (NIH), National
Cancer Institute (NCI), Food and Drug Administration (FDA) and Office of the
National Coordinator for Health Information Technology (ONC) to pioneer a
new model of patient data-powered research intended to accelerate the pace of
biomedical discoveries. The PMI’s initial focus is on cancer treatment, but long-
term goals emphasize preventive care and disease management.

The Precision Medicine Initiative encourages collaboration between the public
and private sectors to accelerate biomedical discoveries using technology to analyze
large health datasets alongside advances in genomics. This ambitious goal, while
simple in framing, in practicality will require an immense amount of oversight
and regulation alongside the actual research components to ensure the safety,
privacy, and security of data used. As such, the NIH is tasked with building a
voluntary national research cohort of over one million Americans to collect a broad
collection of data including medical records, genetic profiles, microbes in and on the
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body, environmental and lifestyle data, patient-generated information, and personal
device and sensor data. The ONC is specifically tasked with developing standards
for interoperability, privacy, and secure data exchange across systems. Additional
provisions within the PMI have been included to protect privacy and address other
legal and technical issues. In sum, the PrecisionMedicine Initiative will help support
and also make practical the transition into the era of precision medicine.

Currently, the best examples of precision medicine can be seen in the field of
oncology, where patients increasingly undergo extensive molecular and genetic
testing so that physicians can chose treatments best suited to improve survival and
reduce side effects (Kummar et al. 2015). One particularly encouraging advance-
ment in targeted oncology has been with the treatment of metastatic melanoma,
which prior to 2011 was thought of as a rapidly fatal condition with a prognosis
usually under one year (Jang and Atkins 2013). Studies of melanoma biology and
immunology revealed that almost 50% of melanomas harbor mutations in BRAF,
mainly at codon 600. Ipilimumab and vemurafenib, two BRAF Val600 selective
inhibitors, demonstrated significant tumor response with improved progression-free
survival. Despite this promising initial response, patients often suffered disease pro-
gression at a median of 5–7 months due to multiple resistance mechanisms within
the tumors. It was then discovered that some patients with BRAF Val600 mutations
were able to obtain more durable responses with the addition of certain immunother-
apies like high-dose interleukin 2. While further studies are still needed to ascertain
the extent of downstream mutations and optimal combination therapies for greater
survival (Robert et al. 2015), targeted therapies like the BRAF V600 selective
inhibitors remain the goal in increasing precision medicine in oncologic care.

While targeted therapies are being designed to treat tumors, testing for somatic
germ line mutations is also being employed to assess risk and stratify management
decisions for certain types of cancer. The most well known mutations, BRCA1
and BRCA2, can be tested in breast cancer patients to identify optimal surgical,
radiotherapeutic, and drug choices for patients (Trainer et al. 2010). When tested
in patients without cancer, identification of these mutations can significantly alter
an individual’s knowledge of their risk profile and affect downstream management
of cancer screening and prevention (U.S. Preventative Services Task Force 2014).
Studies are currently being undertaken to examine the potential benefits versus
harms of BRCA genetic testing at the population level (Gabai-Kapara et al. 2014).

With respect to the management of chronic diseases, precision medicine has
already yielded some concrete improvements in patient health. In 2014, direct
and indirect mental health expenditures exceeded those of any organic health
condition including cardiovascular disease and diabetes (Agency for Healthcare
Research and Quality 2014). Treatment of mental health conditions, particularly
refractory conditions, can be exceedingly challenging and is often based on trial and
error with various medications. The field of pharmacogenomics has developed to
identify genetic differences in the pharmacokinetic and pharmacodynamic profiles
of individuals, and stratify their likely responses to different drugs. This can not
only lead to more effective drug use but also mitigate adverse effects and potentially
deliver cost savings to the health care system. The GeneSight Psychotropic test
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was developed to provide clinicians with a composite phenotype for each patient
applied to the known pharmacology of certain psychiatric medications (Winner
et al. 2013). A recent study showed that pharmacogenomic-guided treatment with
GeneSight doubled the likelihood of response for patients with treatment resistant
depression, and identified patients with severe gene-drug interactions enabling them
to be switched to genetically preferable medication regimens. A later study showed
that use of GeneSight in medication selection resulted in patient exposure to fewer
medications with greater adherence and an overall decrease in annual prescription
costs (Winner et al. 2015). These examples exemplify the improvements in indi-
vidual clinical care that can come about as a result of the collaboration between
informatics, research, and clinical medicine.

Harnessing big data can also transform the way physicians apply research to
their daily practice. Clinical research has traditionally relied on time-consuming
acquisition of data and human driven analysis to conduct studies. However, this
exposes them to only a fraction of published data. Furthermore, clinically relevant
research then is distributed through published journals that often take weeks to
months at minimum to disseminate to clinicians. True changes in practice patterns
take 17 years on average to then be fully implemented (Morris et al. 2011). Well
designed EHR interfaces could one day intelligently match publications to clinical
situations, significantly augmenting physicians’ ability to apply new published
evidence at the point of medical decision making. Meanwhile real-time aggregation
of data at smaller levels such as a city or county can lead to timely public health
interventions.

Despite the huge promise of big data in precision medicine, some of the largest
issues to be addressed include variability and reliability of information (Panahiazar
et al. 2014). Health records can potentially provide fragmentary information if the
health record is not complete and there is not systematic quality control for data
elements gathered to ensure data accuracy. Additionally, with such a large amount
of information being gathered and inputted from various sources, issues with
incongruent formatting and lack of interoperability exist. Several different strategies
are being employed to address this, from platforms such as the Internet of Things
to loop in data from devices to semantic web technologies to make information
interpretable for search and query and integration. Data must additionally be
standardized and processed to ensure high quality input.

The limits of what data may be captured, in particular, has potential for
controversy. For example, healthcare organizations that wish to reduce healthcare
costs may wish to see patients’ credit card data to assess their risk for disease based
on things such as travel history or food, alcohol, and tobacco purchases. However,
further discussion is needed to determine where the boundaries of this big data
“creep” may lie. Meanwhile, as the pure volume of data available exceeds what
providers can process in a reasonable timeframe, physicians will increasingly rely
on big data analytics to augment their clinical reasoning. Already, robust decision
support systems are being developed with IBM’s Watson to help clinicians match
advanced molecular therapies with an individual’s tumor (Parodi et al. 2016). Future
providers and patients will need to determine the role of increasingly powerful clin-
ical decision support without inappropriately making it a clinical decision maker.



16 The Impact of Big Data on the Physician 443

Moving away from traditional fee-for-service payment models and historic
medical disease management techniques is necessary to facilitate innovation and
incorporation of big data into medical care. In many current health systems, payers
and providers are incentivized differently and care is influenced by what will be
covered by insurance and what will not, rather than all stakeholders focusing on
high quality effective care (Kayyali et al. 2013). Political and financial pressures
are already improving the landscape for standardized data. In some cases, this has
taken the form of interoperability and led to immediate clinical benefit. Kaiser
Permanente has fully integrated their electronic EHR HealthConnect, to allow
information to cross over all health care settings, inpatient and outpatient, and across
all facilities. The integrated system has shown improved outcomes in heart disease
management and has created an estimated $1 billion savings from reduced office
visits and redundant diagnostic tests (Kayyali et al. 2013). Meanwhile, the Health
Observational Healthcare Sciences and Informatics collaborative has aggregated
over 680 million records across Australia and many countries in Asia and has
been working on the early identification of adverse drug reactions (Duke 2015).
In other cases, larger institutions are intentionally curating more robust databases
to drive advanced analytics. Both the VA and the NIH are creating databases with
one million or more patients with a specific emphasis on combining large genomic
datasets with clinical datasets (VA 2016, National Institutes of Health 2016). These
two movements will ultimately create richer, standardized datasets to drive higher
quality big data analytics.

This chapter is intended to be an overview of the applications of big data as they
interface with a physician’s practice. Currently, healthcare data is derived from a
multitude of sources including those internal to a health system like electronic health
records, computerized order entry systems, and data from devices and sensors.
External sources including billing records from insurance companies, pharmacies,
social media, and mobile and wearable consumer devices are becoming more and
more prominent. The acquisition and aggregation of data from these new sources,
ranging from standardized biometric data to highly variable patient captured data,
adds both a wealth of potentially actionable health information as well as a layer
of complexity related to systems interoperability, privacy and security concerns,
and legal and regulatory challenges. Despite these challenges, promising examples
of big data applications have emerged in both the public and private sector to
transform the patient-physician relationship, expand knowledge of patient health
factors, activate and engage patients in their health care, strengthen evidence-
based physician decision-making, and accelerate research for more individualized
patient care. Currently, much work is needed to create mechanisms to translate
data and data-informed insights into useable data that can directly affect patient
care and drive quality improvement in healthcare (Neff 2013). While the technical
aspects of big data applications may be out of the scope of knowledge for many
physicians, every aspect of medicine and health care will soon be influenced by the
transformative potential of big data to achieve high quality, efficient, and effective
patient-centered care.
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