
Reachability Analysis of Pushdown Systems
with an Upper Stack

Adrien Pommellet1(B), Marcio Diaz1, and Tayssir Touili2

1 LIPN, Université Paris-Diderot, Paris, France
pommellet@lipn.univ-paris13.fr

2 LIPN, CNRS, Université Paris 13, Villetaneuse, France

Abstract. Pushdown systems (PDSs) are a natural model for sequential
programs, but they can fail to accurately represent the way an assembly
stack actually operates. Indeed, one may want to access the part of the
memory that is below the current stack or base pointer, hence the need
for a model that keeps track of this part of the memory. To this end, we
introduce pushdown systems with an upper stack (UPDSs), an exten-
sion of PDSs where symbols popped from the stack are not destroyed
but instead remain just above its top, and may be overwritten by later
push rules. We prove that the sets of successors post∗ and predecessors
pre∗ of a regular set of configurations of such a system are not always reg-
ular, but that post∗ is context-sensitive, so that we can decide whether a
single configuration is forward reachable or not. In order to underapprox-
imate pre∗ in a regular fashion, we consider a bounded-phase analysis
of UPDSs, where a phase is a part of a run during which either push or
pop rules are forbidden. We then present a method to overapproximate
post∗ that relies on regular abstractions of runs of UPDSs. Finally, we
show how these approximations can be used to detect stack overflows
and stack pointer manipulations with malicious intent.

Keywords: Pushdown systems · Reachability analysis · Stack pointer ·
Finite automata

1 Introduction

Pushdown systems (PDSs) were introduced to accurately model the call stack of
a program. A call stack is a stack data structure that stores information about
the active procedures of a program such as return addresses, passed parameters
and local variables. It is usually implemented using a stack pointer (sp) register
that indicates the head of the stack. Thus, assuming the stack grows downwards,
when data is pushed onto the stack, sp is decremented before the item is placed
on the stack. For instance, in x86 architecture sp is decremented by 4 (pushing
4 bytes). When data is popped from the stack, sp is incremented. For instance,
in x86 architecture sp is incremented by 4 (popping 4 bytes).

This work was partially funded by the FUI project Freenivi.

c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 447–459, 2017.
DOI: 10.1007/978-3-319-53733-7 33

448 A. Pommellet et al.

However, in a PDS, neither push nor pop rules are truthful to the assembly
stack. During an actual pop operation on the stack, the item remains in memory
and the stack pointer is increased, as shown in Figs. 1 and 2, whereas a PDS
deletes the item on the top of the stack, as shown in Figs. 3 and 4.

. . . a b c d . . .

sp

Fig. 1. The original
stack

. . . a b c d . . .

sp

Fig. 2. The stack
after one pop

b c d . . .

Fig. 3. The
original PDS
stack

c d . . .

Fig. 4. The PDS
stack after one
pop

This subtle difference becomes important when we want to analyze programs
that directly manipulate the stack pointer and use assembly code. Indeed, in
most assembly languages, sp can be used like any other register. As an example,
the instruction mov eax [sp − 4] will put the value pointed to at address sp − 4
in the register eax (one of the general registers). Since sp − 4 is an address above
the stack pointer, we do not know what is being copied into the register eax,
unless we have a way to record the elements that had previously been popped
from the stack and not overwritten yet. Such instructions may happen in mali-
cious assembly programs: malware writers tend to do unusual things in order to
obfuscate their payload and thwart static analysis.

. . . a b c d . . .

Fig. 5. The original UPDS stacks

. . . a b c d . . .

Fig. 6. The UPDS stacks after one pop

Thus, it is important to record the part of the memory that is just above the
stack pointer. To this end, we extend PDSs in order to keep track of this upper
stack : we introduce in this paper a new model called pushdown system with an
upper stack (UPDS) that extends the semantics of PDSs. In a UPDS, when a
letter is popped from the top of the stack (lower stack from now on), it is added
to the bottom of a write-only upper stack, effectively simulating the decrement
of the stack pointer. This is shown in Figs. 5 and 6, where after being popped, b
is removed from the lower stack (on the right) and added to the upper stack (on
the left) instead of being destroyed. The top of the lower stack and the bottom
of the upper stack meet at the stack pointer.

Paper Outline. The first contribution of this paper is a more precise model of
the stack of a program as outlined above and defined in Sect. 2.

We then investigate the sets of predecessors and successors of a regular set
of regular configurations of an UPDS. Unfortunately, in Sect. 3 we prove that
neither of them are regular. However, we show that the set of successors is

Reachability Analysis of Pushdown Systems with an Upper Stack 449

context-sensitive. As a consequence, we can decide whether a single configuration
is forward reachable or not in an UPDS.

Then, in Sect. 4, we prove that the set of predecessors of an UPDS is regular
given a limit of k phases, where a phase is a part of a run during which either
pop or push rules are forbidden. Bounded phase reachability is an underapprox-
imation of the actual reachability relation on UPDSs that we can use to detect
some incorrect behaviours.

In Sect. 5, we give an algorithm to compute an overapproximation of the set
of successors. Overapproximation algorithms are often used while proving safety
properties since a set of bad configurations not reachable in the overapproxima-
tion is not reachable in the original model either. Our idea is to first overapproxi-
mate the runs of the UPDS, then compute an overapproximation of the reachable
upper stack configuration from this abstraction of runs and consider its product
with the regular, accurate and computable set of lower stack configurations.

Finally, in Sect. 6, we use these approximations on programs to detect stack
overflow errors and malicious attacks that rely on stack pointer manipulations.

Related Work. In [2,5,6], the pre∗ and post∗ of a regular set of configurations
on a pushdown system are shown to be regular. UPDSs are more expressive than
PDSs, since they feature both an upper stack and a lower stack, the latter being
equivalent to the single stack of PDSs.

One way to improve the expressiveness of pushdown automata is to change
the way transition rules interact with the stack. Ginsburg et al. introduced in
[7] stack automata that can read the inside of their own stack using a moving
stack pointer but can only modify the top. As shown in [8], stack automata are
equivalent to linear bounded automata (LBA). A LBA is a non-deterministic
Turing machine whose tape is bounded between two end markers that cannot
be overwritten. This model cannot simulate a UPDS whose lower stack is of
unbounded height.

Uezato et al. defined in [13] pushdown systems with transductions: in such
a model, a finite transducer is applied to the whole stack after each transition.
However, this model is Turing powerful unless the transducers used have a finite
closure, in which case it is equivalent to a simple pushdown system. When the set
of transducers has a finite closure, this class cannot be used to simulate UPDSs.

Multi-stack automata have two or more stacks that can be read and modified,
but are unfortunately Turing powerful. Following the work of Qadeer et al. in
[10], La Torre et al. introduced in [12] multi-stack pushdown systems with bounded
phases: in each phase of a run, there is at most one stack that is popped from.
Anil Seth later proved in [11] that the pre∗ of a regular set of configurations of
a multi-pushdown system with bounded phases is regular; we use this result to
perform a bounded phase analysis of our model.

2-visibly pushdown automata (2-VPDA) were defined by Carotenuto et all.
in [4] as a variant of two-stack automata where the stack operations are driven
by the input word. Reachability is decidable for a subclass of 2-VPDA with an
ordering constraint on stack operations. However, these ordered 2-VPDA cannot
simulate UPDSs.

450 A. Pommellet et al.

2 Pushdown Systems with an Upper Stack

Definition 1 (Pushdown system with an upper stack). A pushdown sys-
tem with an upper stack (UPDS) is a triplet P = (P, Γ,Δ) where P is a finite set
of control states, Γ is a finite stack alphabet, and Δ ⊆ P ×Γ ×P ×

(
{ε} ∪ Γ ∪ Γ 2

)

a finite set of transition rules.

We further note Δpop = Δ∩P ×Γ ×P ×{ε}, Δswitch = Δ∩P ×Γ ×P ×Γ ,
and Δpush = Δ ∩ P × Γ × P × Γ 2. If δ = (p,w, p′, w′) ∈ Δ, we write δ =
(p,w) → (p′, w′). In a UPDS, a write-only upper stack is maintained above the
stack used for computations (from then on called the lower stack), and modified
accordingly during a transition.

For x ∈ Γ and w ∈ Γ ∗, |w|x stands for the number of times the letter x
appears in the word w, and wR for the mirror image of w. Let Γ̄ be a disjoint
copy (bijection) of the stack alphabet Γ . If x ∈ Γ (resp. Γ ∗), then its associated
letter (resp. word) in Γ̄ (resp. Γ̄ ∗) is written x̄.

A configuration of P is a triplet 〈p,wu, wl〉 where p ∈ P is a control state,
wu ∈ Γ ∗ an upper stack content, and wl ∈ Γ ∗ a lower stack content. A set
of configurations C of a UPDS P is said to be regular if for all p ∈ P , there
exists a finite-state automaton Ap on the alphabet Γ̄ ∪ Γ such that L (Ap) =
{w̄uwl | 〈p,wu, wl〉 ∈ C}, where L (A) stands for the language recognized by an
automaton A.

From the set of transition rules Δ, we can infer an immediate successor

relation ⇒P=
(

⋃

δ∈Δ

δ⇒
)

on configurations of P, which is defined as follows:

Switch rules: if δ = (p, a) → (p′, b) ∈ Δswitch, then ∀wu ∈ Γ ∗ and ∀wl ∈ Γ ∗,
〈p,wu, awl〉 δ⇒ 〈p′, wu, bwl〉. The top letter a of the lower stack is replaced by
b, but the upper stack is left untouched (the stack pointer doesn’t move).

Pop rules: if δ = (p, a) → (p′, ε) ∈ Δpop, then ∀wu ∈ Γ ∗ and ∀wl ∈ Γ ∗,

〈p,wu, awl〉 δ⇒ 〈p′, wua,wl〉. The top letter a popped from the lower stack
is added to the bottom of the upper stack (the stack pointer moves to the
right).

Push rules: if δ = (p, a) → (p′, bc) ∈ Δpush, then ∀wl ∈ Γ ∗, 〈p, ε, awl〉 δ⇒
〈p′, ε, bcwl〉 and ∀wu ∈ Γ ∗, ∀x ∈ Γ , 〈p,wux, awl〉 δ⇒ 〈p′, wu, bcwl〉. A new
letter b is pushed on the lower stack, and a single letter is deleted from the
bottom of the upper stack in order to make room for it, unless the upper
stack was empty (the stack pointer moves to the left).

The reachability relation ⇒∗
P is the reflexive and transitive closure of the

immediate successor relation ⇒P . If C is a set of configurations, we introduce
its set of successors post∗ (P, C) = {c ∈ P × Γ ∗ × Γ ∗ | ∃c′ ∈ C, c′ ⇒∗

P c} and its
set of predecessors pre∗ (P, C) = {c ∈ P × Γ ∗ × Γ ∗ | ∃c′ ∈ C, c ⇒∗

P c′}. We may
omit the variable P when only a single UPDS is being considered.

Reachability Analysis of Pushdown Systems with an Upper Stack 451

For a set of configurations C, let Clow = {〈p,wl〉 | ∃wu ∈ Γ ∗, 〈p,wu, wl〉 ∈ C},
Cup = {〈p,wu〉 | ∃wl ∈ Γ ∗, 〈p,wu, wl〉 ∈ C}, and post∗up (P, C) = (post∗ (P, C))up.
We define post∗low (P, C), pre∗

up (P, C) and pre∗
low (P, C) in a similar fashion.

A run r of P from a configuration c0 is a sequence r = (δi)i=1,...,n ∈ Δ∗ such

that c0
δ1⇒ c1

δ2⇒ c2 . . .
δn⇒ cn, where (ci)i=1,...,n is a sequence of configurations of

P. We then write c0
r⇒ cn. We say that r is a run of P from a set of configurations

C if and only if ∃c ∈ C such that r is a run of P from c.
These definitions are related to similar concepts on simple PDSs detailed in

[2,6]. A UPDS and a PDS indeed share the same definition, but the semantics of
the former expand the latter’s. For a set C ⊆ P ×Γ ∗ of lower stack configurations
(the upper stack is ignored) and a UPDS P, let post∗PDS (P, C) and pre∗

PDS (P, C)
be the set of forward and backward reachable configurations from C using the
PDS semantics. The following lemmas hold:

Lemma 2. For a UPDS P = (P, Γ,Δ), r in Δ∗, and a set of configurations C,
r is a run from C with respect to the UPDS semantics if and only if r is a run
from Clow with respect to the standard PDS semantics.

Lemma 3. post∗low (P, C)=post∗PDS (P, Clow), pre∗
low (P, C)=pre∗

PDS (P, Clow).

3 Reachability Properties

As shown in [2,5,6], we know that pre∗
PDS and post∗PDS are regular for a regular

set of starting configurations. We prove that these results cannot be extended to
UPDSs, but that post∗ is still context-sensitive. This implies that reachability
of a single configuration is decidable for UPDSs.

3.1 post∗ Is Not Regular

The following counterexample proves that, unfortunately, post∗ (P, C) is not
always regular for a given regular set of configurations C and a UPDS P. The
intuition behind this statement is that the upper stack can be used to store sym-
bols in a non-regular fashion. The counter-example should be carefully designed
in order to prevent later push operations from overwriting these symbols.

Let P = (P, Γ,Δ) be a UPDS with P = {p, p′} , Γ = {a, b, x, y,⊥}, and Δ
the following set of pushdown transitions:

(Sx) (p, x) → (p, a) (Ra) (p, a) → (p, ε)
(Sy) (p, y) → (p, b) (Rb) (p, b) → (p, ε)
(C) (p, a) → (p, ab) (E) (p,⊥) → (p′,⊥)

Let C = {p}×{ε}×x (yx)∗ ⊥ be a regular set of configurations. We can compute
a relevant subset L of post∗ (C):

Lemma 4. L =
{〈

p′, an+1bn,⊥
〉
, n ∈ N

}
⊆ post∗ (C).

452 A. Pommellet et al.

Then, we prove an inequality that holds for any configuration in post∗:

Lemma 5. ∀ 〈p,wu, wl〉 ∈ post∗ (C), w = w̄uwl, |w|b + |w|b̄ + 1 ≥ |w|a + |w|ā.

If we suppose that post∗ (C) is regular, then so is the language Lp′
, where

Lp′
= {w̄uwl | 〈p′, wu, wl〉 ∈ post∗ (C)}, and by the pumping lemma, it admits a

pumping length k. We want to apply the pumping lemma to an element of L in
order to generate a configuration that should be in post∗ but does not comply
with the previous inequality.

According to Lemma 4, L ⊆ post∗ (C) and as a consequence w = ak+1bk⊥ ∈
Lp′

. Hence, if we apply the pumping lemma to w, there exist x, y, z ∈
(
Γ ∪ Γ̄

)∗

such that w = xyz, |xy| ≤ k and xyiz ∈ post∗ (C), ∀i ≥ 1. As a consequence of
w’s definition, x, y ∈ ā∗, |y| ≥ 1, and z ∈

(
ā + b̄

)∗.
Hence, for i large enough, wi = xyiz ∈ Lp′

and |wi|ā > |wi|b̄+1. By Lemma 5,
this cannot happen and therefore neither Lp′

nor post∗ (C) are regular.
It should be noted that Lp′

up is not regular either. Indeed, from the definition
of P and C, it is clear that ∀ 〈p′, wu, wl〉 ∈ post∗ (C) , wl = ⊥, so Lp′

up and Lp′
are

in bijection. We have therefore proven the following theorem:

Theorem 6. There exist a UPDS P and a regular set of configurations C for
which neither post∗ (C) nor post∗up (C) are regular.

3.2 pre∗ Is Not Regular

We now prove that pre∗ is not regular either. Let P = (P, Γ,Δ) be a UPDS with
P = {p} , Γ = {a, b, c}, and Δ the following set of pushdown transitions:

(C0) (p, c) → (p, ab) (Ra) (p, a) → (p, ε)
(C1) (p, c) → (p, cb) (Rb) (p, b) → (p, ε)

We define the regular set of configurations C = {p} × (ab)∗ × {c} and again,
compute a relevant subset of pre∗ (C):

Lemma 7. L = {〈p, bn, cnc〉 , n ∈ N} ⊆ pre∗ (C).

Given the rules of P, the following lemma is verified:

Lemma 8. If 〈p, bm, cn〉 ⇒∗ 〈p,wu, wl〉, then |wu|a + |wl|a ≤ n.

If pre∗ (C) is regular, then so is Lp = {w̄uwl | 〈p,wu, wl〉 ∈ pre∗ (C)}, and
by the pumping lemma, it admits a pumping length k. Moreover, by Lemma 7,
w = b̄kckc ∈ Lp.

If we apply the pumping lemma to w, there exist x, y, z ∈
(
Γ ∪ Γ̄

)∗ such that
w = xyz, |xy| ≤ k and wi = xyiz ∈ pre∗ (C), ∀i ≥ 1. As a consequence of w’s
definition, x, y ∈ b̄∗ and z ∈ b̄∗ckc.

Since wi ∈ Lp, ∀i ≥ 1, there exists an integer ni such that wi ⇒∗ ci =
(ab)nic. Moreover, the size of the stack must grow or remain constant during

Reachability Analysis of Pushdown Systems with an Upper Stack 453

a computation, hence |ci| ≥ |wi| and ni ≥ |wi|−1
2 . Since words in the sequence

(wi)i are unbounded in length, the sequence (ni)i must be unbounded as well.
However, by Lemma 8, ni = |ci|ā ≤ |wi|c = k + 1.

Hence, there is a contradiction and pre∗ (C) is not regular.

Theorem 9. There exist a UPDS P and a regular set of configurations C for
which pre∗ (C) is not regular.

3.3 post∗ Is Context-Sensitive

We prove that, if C is a regular set of configurations of a UPDS P, then
post∗ (P, C) is context-sensitive. This implies that we can decide whether a single
configuration is reachable from C or not.

We first show that the problem of computing post∗ (P, C) can be reduced
w.l.o.g. to the case where C contains a single configuration. To do so, we define
a new UPDS P ′ by adding new states and rules to P such that any configura-
tion c in C can be reached from a single configuration c$ = 〈p$, ε, $〉. Once a
configuration in C is reached, P ′ follow the same behaviour as P.

Theorem 10. For each UPDS P = (P, Γ,Δ) and each regular set of configu-
rations C on P, there exists a UPDS P ′ =

(
P ′, Γ ∪ Γ̄ ∪ {$} ,Δ′), P ⊆ P ′, and

p$ ∈ P ′ \ P such that post∗ (P, C) = post∗ (P ′, {〈p$, ε, $〉}) ∩ (P × Γ ∗ × Γ ∗).

We can compute a context-sensitive grammar recognizing post∗. Our intu-
ition is to represent a configuration 〈p,wu, wl〉 of P by a word �wupwl⊥ of a
grammar G. We use Theorem 10 so that the single start symbol of G can be
matched to a single configuration c$. The context-sensitive rules of G mimic the
transitions of the UPDS. As an example, a rule δ = (p, a) → (p′, ε) ∈ Δpop can
be modelled by three rules pa ���G pgδ, pgδ ���G agδ, and agδ ���G ap′ such
that pa ���∗

G ap′, where ���G stands for the one-step derivation relation and gδ

is a nonterminal symbol of G.

Theorem 11. Given a UPDS P and a regular set of configurations C, we can
compute a context-sensitive grammar G such that 〈p,wu, wl〉 ∈ post∗ (P, C) if
and only if �wupwl⊥ ∈ L (G)

Since the membership problem is decidable for context-sensitive grammars,
the following theorem holds:

Theorem 12. Given a UPDS P, a regular set of configurations C, and a con-
figuration c of P, we can decide whether c ∈ post∗ (P, C) or not.

Unfortunately, this method cannot be extended to pre∗, as the backward
reachability relation does not comply with the monotony condition of context-
sensitive grammars (a word can only grow or keep the same length during a
computation).

454 A. Pommellet et al.

4 Underapproximating pre∗

Underapproximations of reachability sets can be used to discover errors in pro-
grams: if X is a regular set of forbidden configurations of a UPDS P, C a regular
set of starting configurations, and U ⊆ pre∗ (X) a regular underapproximation,
then U ∩ C �= ∅ implies that a forbidden configuration can be reached from the
starting set. The emptiness of the above intersection has to be decidable, hence,
the need for a regular approximation.

In this section, we use results on multi-stack pushdown automata to define
an underapproximation of pre∗ for UPDSs. Multi-stack pushdown systems
(MPDSs) are pushdown systems with multiple stacks where, for a given transi-
tion, in a given control state, only one stack is read and modified: a rule of the
form (p,w, n) → (p′, w′) is applied to the n-th stack with semantics similar to
those of common pushdown systems.

Multi-stack automata are unfortunately Turing powerful even with only
two stacks. Thus, La Torre et al. introduced in [12] a restriction called phase-
bounding : runs are divided into phases during which only a single stack can be
popped from, and only the runs that have a number of phases lower than a cho-
sen bound k are allowed. Let pre∗

MPDS (M, C, k) be the set of backward reachable
configurations from C using only runs with k phases. A theorem has been proven
in [11]:

Theorem 13. Given a MPDS M and a regular set of configurations C, the set
pre∗

MPDS (M, C, k) is regular and effectively computable.

The notion of bounded-phase computations can be extended to UPDSs.
A run r of P is said to be k-phased if it is of the form: r = r1 · r2 . . . rk where
∀i ∈ {1, . . . , k}, ri ∈ (ΔPush ∪ ΔSwitch)∗ ∪ (ΔPop ∪ ΔSwitch)∗. During a phase,
one can either push or pop, but can’t do both. Such a run has therefore at most
k alternations between push and pop rules.

The k-bounded reachability relation ⇒∗
k is defined as follows: c0 ⇒∗

k c1 if
there exists a k-phased run r on P such that c0

r⇒ c1. Using this new reachability
relation, given a set of configurations C, we can define pre∗ (P, C, k).

We can show that a UPDS P can be simulated by a MPDS M with two
stacks, the second stack of M being equivalent to the lower stack, and the first
one, to a mirrored upper stack followed by a symbol ⊥ that can’t be popped
and is used to know when the end of the stack has been reached. Elements of
P ×Γ ∗ ×Γ ∗ can equally be considered as configurations of P or M, assuming in
the latter case that we consider the mirror of the first stack and add a ⊥ symbol
to its bottom. Thus:

Lemma 14. For a given UPDS P = (P, Γ,Δ) and a regular set of configura-
tions C, there exists a MPDS M, a regular set of configurations C′, and ⊥ /∈ Γ
such that

〈
p,wR

u ⊥, wl

〉
∈ pre∗

MPDS (M, C′, k) ∩ (P × Γ ∗ × Γ ∗) if and only if
〈p,wu, wl〉 ∈ pre∗ (P, C, k).

From Theorem 13, we get:

Reachability Analysis of Pushdown Systems with an Upper Stack 455

Theorem 15. Given a UPDS P and a regular set of configurations C, the set
pre∗ (P, C, k) is regular and effectively computable.

pre∗ (P, C, k) is obviously an underapproximation of pre∗ (P, C).

5 Overapproximating post∗

While underapproximations of reachability sets can be used to show that an error
can occur, overapproximations can, on the other hand, prove that a program is
safe from a particular error. If X is a regular set of forbidden configurations on an
UPDS P, C a regular set of starting configurations, and O ⊇ post∗ (C) a regular
overapproximation, then O ∩ X = ∅ implies that no forbidden configuration can
be reached from the starting set and that the program is therefore safe. The
emptiness of the above intersection has to be decidable, hence, the need for a
regular approximation.

5.1 A Relationship Between Runs and the Upper Stack

We prove here that from a regular set of runs of a given UPDS, a regular set
of corresponding upper stacks can be computed. A subclass of programs whose
UPDS model has a regular set of runs are programs with finite recursion (hence,
with a stack of finite height).

Theorem 16. For a UPDS P = (P, Γ,Δ), a regular set of configurations C,
and a regular set of runs R of P from C, the set of upper stack configurations
reachable using runs in R, T (R) =

{
〈p,wu〉 | ∃c ∈ C,∃r ∈ R, c

r⇒ 〈p,wu, wl〉
}
,

is regular and effectively computable.

Thanks to Theorem 10, we consider the single configuration case where C =
{c$} w.l.o.g. Let AR = (Δ,Q,E, I, F) be a finite state automaton such that
L (AR) = R. We can assume that Q = ∪

p∈P
Qp where ∀q ∈ Qp, if there is an

edge q′ δ→E q, then the pushdown rule δ is of the form (p′, a) → (p,w). We write
Fp = Qp ∩ F .

We introduce the finite automaton AT = (Γ,Q,E′, I, F) whose set of transi-
tions E′ is defined by applying the following rules until saturation:

(Spop) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, ε),

then we add the edge q0
a→ q1 to E′.

(Sswitch) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, b),

then we add the edge q0
ε→ q1 to E′.

(Spush) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, bc),

then for each state q such that either q ∈ Q and q
x→∗

E′ q0 for x ∈ Γ or q ∈ I

and q
ε→∗

E′ q0, we add an edge q
ε→ q1 to E′.

456 A. Pommellet et al.

Our intuition behind the above construction is to create a new automaton
that follows the structure of the run automaton but accepts upper stack words

instead: an upper stack word w is accepted by AT with the path qi

w

→∗
E′ qf ,

qi ∈ I, qf ∈ Fp, if AR accepts a run r with the path qi

r

→∗
E qf and r starts

from c$, ends in state p and produces the upper stack word w. This property is
preserved at every step of the saturation procedure.

Consider a run r and its associated upper stack word w. Suppose that r

and w satisfy the property above: there is a path qi

r

→∗
E q0 in AR and a path

qi

w

→∗
E′ q0 in AT . Let q0

δ→E q1 be a transition of AR, q1 ∈ Q and δ ∈ Δ. rδ is

also a run of P with a labelled path qi

rδ

→∗
E q1 in AR, and in order to satisfy the

above property, a path qi

w′

→∗
E′ q1 labelled by its associated upper stack word w′

should exist in AT as well.
We show that the saturation rules above ensure such a path exists. If δ ∈

Δpop, the run rδ produces an upper stack word of the form w′ = wa, a ∈ Γ . Rule

(Spop) creates an edge q0
a→ q1 to AT such that there is a path qi

w

→∗
E′ q0

a→E′ q1
labelled by w′. Rules (Sswitch) and (Spush) follow in a similar fashion.

Following this intuition, we can prove that AT only accepts reachable upper
stack configurations:

Lemma 17. At any step of the saturation procedure, if qi

wu

→∗
E′ q′, qi ∈ I,

q′ ∈ Qp, then there exists a run r of P and wl ∈ Γ ∗ such that qi

r

→∗
E q′ and

c$
r⇒ 〈p,wu, wl〉. Moreover, if q′ ∈ Fp, then r ∈ R.

On the other hand, AT accepts every reachable upper stack configuration:

Lemma 18. For every run r such that ∃qi ∈ I, ∃q ∈ Qp, qi

r

→∗
E q, then there

exists a path qi

wu

→∗
E′ q in AT and wl ∈ Γ ∗ such that c$

r⇒ 〈p,wu, wl〉. Moreover,
if q′ ∈ Fp, then AT accepts wu.

Let Lp (AT) =
{

w | ∃i ∈ I,∃f ∈ Fp, i
w

→∗
E′ f

}
be the set of paths in AT

ending in a final node related to a state p of P. By Lemmas 18 and 17, T (R) =
{〈p,wu〉 | wu ∈ Lp (AT)}. Since the languages Lp are regular and there is a finite
number of them, T (R) is regular as well and can be computed using AT .

5.2 Computing an Overapproximation

The set of runs of a UPDS P = (P, Γ,Δ) from a regular set of configurations C
is not always regular. By Lemma 2, runs of P are the same for the UPDS and
PDS semantics. Thus, we can apply methods originally designed for PDSs to
overapproximate runs of a UPDS in a regular fashion, such as [1,3,9].

Reachability Analysis of Pushdown Systems with an Upper Stack 457

With one of these methods, we can compute a regular overapproximation
R (P, C) of the set of runs of P from C. Using the saturation procedure under-
lying Theorem 16, we can then compute the set T (R (P, C)) of upper stack
configurations reachable using overapproximated runs of P, hence, an overap-
proximation of the actual set of reachable upper stack configurations. However,
we still lack the lower stack component of the reachability set. As shown in [6],
post∗PDS (P, C) is regular and computable, and we can determine the exact set of
reachable lower stack configurations.

With O = {〈p,wu, wt〉 | 〈p,wu〉 ∈ T (R (P, C)) , 〈p,wt〉 ∈ post∗PDS (P, C)}, we
get a regular overapproximation of post∗ (P, C).

6 Applications

The UPDS model can be used to detect stack behaviours that cannot be found
using a simple pushdown system. In this section, we present three such examples.

6.1 Stack Overflow Detection

A stack overflow is a programming malfunction occurring when the call stack
pointer exceeds the stack bound. In order to analyze a program’s vulnerability to
stack overflow errors, we compute its representation as a UPDS P = (P, Γ,Δ),
using the control flow model outlined in [6].

Let C = P ×�#m ×L be the set of starting configurations, where � ∈ Γ is a
top stack symbol that does not appear in any rule in Δ, # ∈ Γ a filler symbol, m
an integer depending on the maximal size of the stack, and L a regular language
of lower stack initial words. Overwriting the top symbol would represent a stack
overflow malfunction. Since there is no such thing as an upper stack in a simple
pushdown automaton, we need a UPDS to detect this error.

Let X = P ×(Γ\ {�})∗ ×Γ ∗ be the set of forbidden configurations where the
top stack symbol has been overwritten. If the intersection of the underapprox-
imation U of pre∗ (X) with C is not empty, then a stack overflow does happen
in the program. On the other hand, if the intersection of the overapproximation
O of post∗ (C) with the set X of forbidden configurations is empty, then we are
sure that a stack overflow will not happen in the program

6.2 Reading the Upper Stack

Let us consider the piece of code 1.1. In line 1, the bottom symbol of the upper
stack sp − 4, just above the stack pointer, is copied into the register eax. In line
2, the content of eax is compared to a given value a. In line 3, if the two values
are equal, the program jumps to an error state err.

Listing 1.1. Reading the upper stack

1 mov eax , [sp − 4]
2 cmp eax , a
3 je e r r

458 A. Pommellet et al.

Using a simple PDS model, it is not possible to know what is being read.
However, our UPDS model and the previous algorithms provide us with rea-
sonable approximations which can be used to examine possible values stored in
eax.

To check whether this program reaches the error state err or not, we define
the regular set X = P ×Γ ∗a×Γ ∗ of forbidden configurations where a is present
on the upper stack just above the stack pointer. If the intersection of the underap-
proximation of pre∗ (X) with the set of starting configurations C of the program
is not empty, then eax can contain a critical value, and the program is unsafe.
On the other hand, if the intersection of the overapproximation of post∗ (C) with
the set X is empty, then the program can be considered safe.

6.3 Changing the Stack Pointer

Another malicious use of the stack pointer sp would be to change the starting
point of the stack. As an example, the instruction mov sp, sp - 12 changes the
stack pointer in such a manner that, from the configuration of Fig. 7, the top
three elements above it now belong to the stack, as shown in Fig. 8.

. . . a b c d e f g . . .

sp

Fig. 7. Original stack

. . . a b c d e f g . . .

sp

Fig. 8. After changing sp

If we model a program as a UPDS, then using our previous algorithms to
compute approximations of the reachability set would allow us to have an approx-
imation of the content of the new stack after the stack pointer change.

References

1. Bermudez, M.E., Schimpf, K.M.: Practical arbitrary lookahead LR parsing. J.
Comput. Syst. Sci. 41, 230–250 (1990)

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.
1007/3-540-63141-0 10

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL 2003 (2003)

4. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 132–
144. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73208-2 15

5. Caucal, D.: On the regular structure of prefix rewriting. Theor. Comput. Sci. 106,
61–86 (1992)

http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-540-73208-2_15

Reachability Analysis of Pushdown Systems with an Upper Stack 459

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). doi:10.1007/
10722167 20

7. Ginsburg, S., Greibach, S.A., Harrison, M.A.: Stack automata and compiling. J.
ACM 14, 172–201 (1967)

8. Hopcroft, J., Ullman, J.: Sets accepted by one-way stack automata are context
sensitive. Inf. Control 13, 114–133 (1968)

9. Pereira, F.C.N., Wright, R.N.: Finite-state approximation of phrase structure
grammars. In: ACL 1991 (1991)

10. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 7

11. Seth, A.: Global reachability in bounded phase multi-stack pushdown systems. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 615–628.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 53

12. Torre, S.L., Madhusudan, P., Parlato, G.: A robust class of context-sensitive lan-
guages. In: LICS 2007 (2007)

13. Uezato, Y., Minamide, Y.: Pushdown systems with stack manipulation. In:
Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 412–426. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-02444-8 29

http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://dx.doi.org/10.1007/978-3-642-14295-6_53
http://dx.doi.org/10.1007/978-3-319-02444-8_29

	Reachability Analysis of Pushdown Systems with an Upper Stack
	1 Introduction
	2 Pushdown Systems with an Upper Stack
	3 Reachability Properties
	3.1 post* Is Not Regular
	3.2 pre* Is Not Regular
	3.3 post* Is Context-Sensitive

	4 Underapproximating pre*
	5 Overapproximating post*
	5.1 A Relationship Between Runs and the Upper Stack
	5.2 Computing an Overapproximation

	6 Applications
	6.1 Stack Overflow Detection
	6.2 Reading the Upper Stack
	6.3 Changing the Stack Pointer

	References

