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Abstract. Fix an algebraic structure (A, ∗). Given a graph G = (V, E)
and the labelling function φ (φ : E → A) for the edges, two nodes s,
t ∈ V , and a subset F ⊆ A, the A-Reach problem asks if there is a path
p (need not be simple) from s to t whose yield (result of the operation
in the ordered set of the labels of the edges constituting the path) is in
F . On the complexity frontier of this problem, we show the following
results.
– When A is a group whose size is polynomially bounded in the size of

the graph (hence equivalently presented as a multiplication table at
the input), and the graph is undirected, the A-Reach problem is in
L. Building on this, using a decomposition in [4], we show that, when
A is a fixed quasi-group, and the graph is undirected, the A-Reach

problem is in L. In contrast, we show NL-hardness of the problem over
bidirected graphs, when A is a matrix group over Q. When A is a
fixed aperiodic monoid, we show that the problem is NL-complete.

– As our main theorem, we prove a dichotomy for graphs labelled with
fixed aperiodic monoids by showing that for every fixed aperiodic
monoid A, A-Reach problem is either in L or is NL-complete.

– We show that there exists a monoid M , such that the reachability
problem in general DAGs can be reduced to A-Reach problem for
planar non-bipartite DAGs labelled with M . In contrast, we show that
if the planar DAGs that we obtain above are bipartite, the problem
can be further reduced to reachability testing in planar DAGs and
hence is in UL.

1 Introduction

The reachability problem on combinatorial structures has been fundamental and
well studied in complexity theory. A most striking example of this is the graph
reachability problem which asks, given a directed graph G and two special ver-
tices s and t whether there is a path from s to t in G or not. The problem
is known to be NL-complete for directed acyclic graphs. Deterministic logspace
algorithms are known for restricted classes of graphs - when each component of
the directed graph is Eulerian [19], or the graph has bounded treewidth [10].
Reachability for planar graphs is in unambiguous1 logspace [7]. See [1] for a
survey.
1 A language is said to be in unambiguous logspace if there exists a non-deterministic
logspace Turing machine M such that ∀x, M has at most one accepting computation.
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Word problems over algebraic structures also play a fundamental role in
complexity theoretic characterizations. Fix an algebraic structure A with an
associated binary operation, and a subset F ⊆ A. Given a w ∈ A∗, test if the
sequences of elements and operations among them is in F or not. An important
milestone in this direction is the dichotomy result due to Barrington and Thérein
[3] classifying the complexity of the word problems over a fixed monoid structure:
if the monoid M contains at least one non-solvable group, then the word problem
can be shown to be complete for NC1 (under AC0 projections) and if all groups
are solvable then it characterizes ACC0. Chandra et al. [9] showed that if there
are no non-trivial groups then it characterizes the class AC0. It is also known that
word problems over groupoids characterize LogCFL [6]. Beaudry et al. [5] showed
dichotomy theorem for the complexity of circuit evaluation problem defined over
monoids, based on precise algebraic properties of the monoids.

Reachability on labelled graphs is a natural generalization of the graph reach-
ability problem and the word problem on algebraic structures. A graph G is said
to be labelled if the edges are assigned labels from an underlying set S. When
this set also equipped a binary operation ∗ : S×S → S, the reachability problem
asks to test, given the graph G and two vertices s and t and an element a ∈ S,
if there is a path (need not be simple) from s to t whose yield (result of the
operation in the ordered set of the labels of the edges constituting the path) is
a or not. A closely related problem is that of the L-Reach problem where a
language L over the alphabet Σ, given a graph G(V,E), two vertices s and t
and a labelling function φ : E → Σ, test if there is a path from s to t whose
yield (the concatenation of the labels in the ordered set of edges constituting
the path) belongs to the language L. In [15], characterizations of the language
reachability problem with respect to languages classes and graph classes were
obtained.

In this work, we study the problem when the labels come from richer algebraic
structures. When the structure A is a groupoid (equivalently a case of L-Reach

problem when the language is restricted to be a context-free language) this
problem has been used in inter-procedural slicing and inter-procedural data flow
analysis [12,20,21]. On the complexity frontier, it is easy to observe that the
A-Reach problem is always harder than the word problem over A, and is harder
than the graph reachability problem (under logspace many-one reductions).

Our Results: We start with an observation that the problem of testing reacha-
bility on labelled graphs over semigroups can be reduced to testing reachability
on an associated directed graph (called product graphs - see Sect. 3). From a
complexity-theoretic view point, this motivates the study of the labelled reach-
ability problem. More specifically, in order to show that for a graph class the
reachability problem is in L, it is sufficient to reduce it to the reachability prob-
lem in a labelled graph such that reachability in the product graph can be solved
in L. We prove several properties of this directed graph and explore graph classes
and algebraic structures for which the A-Reach problem is in L. In particular,
we study this for undirected graphs (for which reachability problem is in L [18])
and show:
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Logspace Upper Bounds for Polynomially Growing Groups: We show that when A
is a group, such that |A| = O(nc), where n is the size of the graph, and c
is a constant (hence equivalently presented as a multiplication table at the
input), and the graph is undirected, the A-Reach problem is L-complete.

NL-hardness for Monoids and Matrix Groups: In contrast, we observe that there
exists a fixed monoid A such that A-Reach problem for undirected graphs
is NL-complete. Working over a more structured labelling set, we show NL-
hardness of the problem over bidirected graphs2, when A is a finitely gener-
ated subgroup of GLk(Q) (for k ≥ 2)- the group of invertible k × k matrices
with rational entries.

(NL vs L) Dichotomy for Aperiodic Monoids: We show a dichotomy for aperiodic
monoids: for any fixed aperiodic monoid A, the A-Reach problem for undi-
rected graphs is either NL-complete or is in L.

Logspace Upper Bounds for Quasigroups: When A is a fixed quasigroup, the
A-Reach problem is L-complete.

Logspace Upper Bounds for Treewidth k Graphs labelled with Monoids: When the
graph has bounded treewidth, for any fixed monoid A the A-Reach problem
for undirected graphs is L-complete.

While the general DAGReach problem is complete for NL, the reachability
problem over planar DAGs is known to be in UL [7]. We show that DAGReach

can be reduced to A-Reach over planar DAGs when A is a specific monoid
M . Tightly complementing this, we show that the instances of labelled graph
reachability problem obtained in this reduction, with the additional restriction
that the graph is bipartite, can be solved in deterministic log-space. Moving
towards groups, we show that DAGReach can be reduced to A-Reach over
planar graph when A is a specific exponentially growing group.

Related Work: Group labelled graphs have been extensively studied in the
literature as a generalization of signed graphs (see [11]) with the aim to extend
the graph minor theory to group labelled graphs over a fixed finite Abelian
group. An important comparison that we make is with the results by Kawase
et al. [14], where they consider the reachability problem in group labelled graphs:
to check if there is a simple path from s to t in the given group labelled graph
so that the yield of the path is a given element α. It is observed in [14] that the
problem is NP-complete over Z, since the undirected Hamiltonian path problem
reduces to this problem by replacing each edge with a pair of two arcs of opposite
directions with label 1 and letting α = n − 1. Huynh [13] showed the problem is
polynomial time solvable if the group is a fixed Abelian group.

However, we point out two important differences in our setting. Firstly, in
our setting, the problem does not look for simple paths from s to t, and hence

2 Directed graph (G(V, E)) such that ∀vi, vj ∈ V, (vi, vj) ∈ E =⇒ (vj , vi) ∈ E.
However, φ(vi, vj) need not be equal to φ(vj , vi). To complement this, we observe (see
Corollary 1) that the log-space upper bound for groups whose size is polynomially
bounded in terms of input, holds even for bidirected graphs.
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the NP-completeness result does not apply. Secondly, for the case of undirected
graphs with labelling from a group, the above mentioned results (including [14])
assume that if an edge (u, v) in the graph is labelled with g, the edge (v, u) is
labelled with g−1. In our setting, this is not the case - if an edge in the undirected
graph is labelled g ∈ G, then the edge contributes to the final product as g itself
irrespective of the direction that is taken by the path through the edge. Thus,
the above results of the problem do not apply in our case.

2 Preliminaries

In this section, we list notations and preliminaries used in the paper. For stan-
dard notations and definitions of complexity classes, we refer the reader to the
textbook [2]. We now define some graph theoretic terminologies required. A tree
decomposition of a graph G = (V,E) is a tree T = (I, F ) where each vertex
i ∈ I has a label Xi ⊆ V with

⋃
i∈I Xi = V such that: for any edge (u, v) ∈ E,

there exists an i ∈ I with u, v ∈ Xi and, for any v ∈ V , the vertices contain-
ing v in their label form a connected subtree of T . Given a tree decomposition
T = (I, F ), the width of the decomposition is maxi∈I(|Xi|)−1. The treewidth of
a graph G is the minimum k such that G has a tree decomposition of width k.

We define the algebraic structures that we refer to in the paper. Let A be an
algebraic structure where ∗ is the binary operator. If ∗ has the closure property,
A is said to be a groupoid. Groupoids for which ∗ is associative are called semi-
groups. Semi-groups which have an identity element e (that is, ∀a ∈ A, ae =
ea = a)3 are called monoids. Groups are monoids for which every element has
an inverse with respect to ∗. That is, ∀a ∈ A,∃ b ∈ A such that ab = ba = e. In
general, a monoid M is said to be divided by another monoid N if there exists
a surjective morphism from a submonoid of M to N [22]. Quasigroups are a
generalization of groups in a different direction; the operation in a quasigroup
need not be associative but they are left and right cancellative (that is, ab =
ac ⇒ b = c and ab = cb ⇒ a = c).

A-Reach Problem: Let A = {(A,∗ )} be an infinite collection of algebraic
structures where each (A,∗ ) is the algebraic structure with set of elements [k] =
{1, 2, . . . , k} and the binary operation ∗ defined over A. Let F be a subset of A.
Consider a graph G = (V,E) and a function φ : E → A. We extend the definition
of φ to the yield of a path p = v0, v1, . . . , vm, as φ(p) =

∏m−1
i=0 φ((vi, vi+1)) where

product is the operation ∗ on the concatenated labels of p.

Definition 1. (A-Reach) Fix an algebraic structure A. The A-Reach problem
asks: given a graph G on n vertices and the labelling function φ for the edges,
two nodes s, t and accepting set4 F ⊆ A, test whether there is a path p (need
not be simple) from s to t such that φ(p) ∈ F .
3 We do not use the operator, whenever it is clear from the context. We use 1 and e
interchangeably for the identity element.

4 If the size of A is fixed (or even polynomially bounded) we will assume that |F | = 1.
We also assume that the accepting element a is given as a part of the input. All our
results except Theorem7 hold even if a is fixed apriori.
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For studying the variants of the problem, we introduce the following notation:
A-GReach refers to the A-Reach problem defined over the algebraic structure
A(Monoid, Aperiodic Monoid, Commutative Aperiodic Monoid, Group, Quasi-
group and Semigroup) and the input graphs are restricted to the class G(Tree,
Planar, DAG, k-Treewidth, Undirected(U) and Bidirected(B)).

Aperiodic Monoids and Quasigroups: The monoid class DA is defined as
the class of monoids that satisfy (stu)nt(stu)n = (stu)n, for some n, for all s, t, u
in the monoid. A language L = A∗

0a1A
∗
1a2 · · · akA∗

k is said to be unambiguous if
for all w ∈ L, there is a unique factorization w = w0a1w1a2 · · · akwk, such that
wi ∈ A∗

i for i = 0, 1, . . . , k. Pin et al. [16] showed the following characterization:

Proposition 1. [16] L ⊆ A∗ is recognized by a monoid in DA if and only if
L is a disjoint, finite union of unambiguous products A∗

0a1A
∗
1 · · · akA∗

k, where
Ai ⊆ A, ai ∈ A, for i ∈ [k].

The following was proved by Raymond et al. [17,22].

Proposition 2. [17,22] Let M be a finite, non-commutative monoid. Then M
is divided by one of the following aperiodic monoids. (1) BA2, the syntactic
monoid5 of (c∗ac∗bc∗)∗. (2) U , the syntactic monoid of ((b + c)∗a(b + c)∗b(b +
c)∗)∗. (3) The syntactic monoid of A∗aA∗bA∗. (4) The syntactic monoid of
c∗aA∗ or A∗ac∗. Moreover, if M 
∈ DA, M is divided by either BA2 or U .

In [4], Beaudry et al. define a comb as a left to right bracketing over a word,
and claim that any bracketing over the word, for a quasigroup, can be viewed
as a finite tree with each leaf as a comb. We state this as the following:

Proposition 3. [4] Let q1q2 · · · qn be a word over a quasigroup Q. If there is a
bracketing such that q1q2 · · · qn evaluates to q under that bracketing, then there
is a bracketing with at most 8|Q| combs which yields q.

3 Logspace Upper Bounds

In this section, we explore the algebraic structure of the label set and graphs
which enable us to solve the problem in L. As our main tool, we introduce the
product graph, which is inspired by that of product graphs defined in the context
of L-Reach problem by Yannakakis [23].

Product Graph and Properties: Let G = (V,E) be a labelled graph, with
a labelling φ : E → M , where M is a semigroup. We construct a new directed
graph G′ = (V ′, E′) as follows. We set V ′ = V ×M , and define the edge set E′ as
{((v1,m1), (v2,m2))|(v1, v2) ∈ E and m1φ(v1, v2) = m2}. We show the following
proposition. The proof is given in the full version.

Proposition 4. For s, t ∈ V , m ∈ M , there is a path p from s to t in G such
that φ(p) = m ⇐⇒ there is a path from (s, e) to (t,m) in G′.
5 We denote the elements of this monoid by {1, α, β, αβ, βα, 0}.
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Similarly, we can argue that a path from (s,m1) to (t,m2) in G′ exists if and
only if there is a path from s to t in G, yielding m such that m1m = m2.

NL Upper Bounds: Since the above proposition holds even if G has cycles
in it, this implies that SemiGroupReach is in NL. In later sections, we show
more properties of the product graph. The product graph of an undirected graph
labelled with a group is Eulerian. See Theorem2. Also, the product graph of a
graph with a bounded treewidth (labelled with a finite monoid) also has bounded
treewidth. See Theorem 1.

If the algebraic structure is non-associative, we have to deal with all possible
bracketings. Let us denote the set of all elements obtained by different bracket-
ings of a word w by Yield(w). Caussinus and Lemieux [8] showed that languages
recognized by finite quasigroups are regular. Hence, there exists a morphism ψ
from any quasigroup Q to a monoid M , and subsets Q′ ⊆ Q,M ′ ⊆ M such
that for any word w ∈ Q∗, Yield(w) ∩ Q′ 
= φ if and only if ψ(w) ∈ M ′. Hence,
the product graph construction shows that QuasigroupReach can be solved
in NL.

Original Graph vs Product Graph While Group Labelling: It is a natural
question to ask when the original graph appears as a subgraph in the product
graph. We answer this for group labelled graphs.

Let G = (V,E) be a directed acyclic graph, labelled with a group H, via
labelling φ. Let the product graph be G′. Suppose G is a tree. We show that
G′ contains a copy of G. Let us start with any vertex v. For any g ∈ H, (v, g)
is in G′. Now, consider all neighbors of v in G. If (v, u) is an edge in G, we
have a corresponding edge ((v, g), (u, gφ(v, u))) in G′. Similarly, if (u, v) is an
edge in G, ((u, gφ(u, v)−1)(v, g)) is an edge in G′. Continuing in a breadth first
search manner, we get a copy of G in G′. Hence, it is easy to see that if G is a
tree, G′ contains G as a subgraph. To extend this to general DAGs, we need to
understand when (undirected) cycles of G appear in G′. If all cycles (undirected)
of G appear in the product graph, G also appears in the product graph.

Let C = v1, v2, . . . vk be an undirected cycle in G. We define ψ(vi, vj) as
follows: ψ(vi, vj) = φ(vi, vj) if (vi, vj) ∈ E and φ(vj , vi)−1 if (vj , vi) ∈ E. A
proof of the following proposition is given in the full version.

Proposition 5. G appears as a subgraph in G′ if and only if for each cycle
C = v1, v2, . . . vk in G,

∏k
i=1 ψ(vi, vi+1) = ψ(vkv1)−1.

Bounded Treewidth and Monoid Labelling: Das et al. [10] showed that
reachability in bounded treewidth graphs can be tested in L. We show that,
when a bounded treewidth graph G is labelled with a constant sized monoid M ,
the product graph of G still has constant treewidth, and hence, reachability in
the labelled graph is also in L. The full version contains a detailed proof.

Theorem 1. Monoid-k-TreewidthReach is in L.

Group Labelled Graphs: Now we show that the A-Reach problem can be
solved in L, when the graph is undirected, and labelled with elements of a group,
when the group size is polynomial in the size of the graph.
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Theorem 2. Group-UReach is L-complete.

Proof. To show that Group-UReach is in L, we reduce the problem to Reach

on Eulerian graphs, by showing that the product graph G′ is Eulerian. From [19]
we know that this problem can be solved in L and hence, this is sufficient.
To solve this in L, Reingold et al. [19] observed (without proof) that, when
each component of the given directed graph is Eulerian, a directed edge can
be replaced by an undirected edge, and this does not alter connectivity of the
graph. A proof can be found in the full version of this paper.

To show that G′ is Eulerian, consider an edge (vi, vj) in G. Let φ((vi, vj)) = g.
Each vertex (vi, gk), is hence connected to (vj , gkg). We notice that for each k,
gkg defines a different element in H. Similarly, each vertex (vj , g�) is adjacent
to (vi, g�g). Hence, the edge (vi, vj) in G corresponds to 2|H| edges in G′, and
these edges are such that each vertex of the form (vi, gk) and (vj , g�) each have an
indegree of 1 and an outdegree of 1. Since each edge in G increases the indegree
and outdegree of any vertex in G′ by the same amount, G′ is Eulerian. Using
the result from [19] we see that Group-UReach is in L. To show hardness,
we see that Group-UReach is the undirected reachability problem when the
underlying group is trivial. Hence, Group-UReach is complete for L. �

Observing that, for any g ∈ G, gkg, is a different element for all k, and that
each edge (vi, vj) in G gives rise to one incoming and one outgoing edge for
each (vi, gk) holds even when the graph is bidirected. Hence, we conclude the
following corollary.

Corollary 1. Group-BReach is L-complete.

Logspace Algorithm for Quasigroup-UReach: We notice from the proof
of Theorem 2, that the product graph G′ is Eulerian if the H has right cancel-
lation, that is, if ab = cb ⇒ a = c. Since this holds for quasigroups as well, the
constructed graph is Eulerian when H is a quasigroup. However, since evalua-
tion of a word is over all possible bracketings, checking for a path from (s, e) to
(t, h) is no longer sufficient (since this would correspond to only checking a left
to right bracketing). Proposition 3 is used to prove the following theorem. The
full version of this paper contains the proof.

Theorem 3. Quasigroup-UReach is L-complete.

4 Symmetrizing by Labelling

In this section, we explore the question of whether we can reduce (in logspace)
reachability over directed acyclic graphs to labelled reachability over undirected
paths. We call this task as symmetrization by labelling. We first observe that
symmetrization can be done when the algebraic structure is a specific aperiodic
monoid or a specific, finitely generated, matrix group over Q.

Labelling with Aperiodic Monoids: We give a labelling with a non-
commutative aperiodic monoid, which makes the A-Reach problem NL-hard.
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In [15], Komarath et al. give a labelling with (ab)∗, for all directed acyclic graphs.
We show that the syntactic monoid of this language is aperiodic. To see that it
is aperiodic, we verify that for all a in the monoid, a3 = a2. Hence, this monoid
is aperiodic with index 2. We also observe that the monoid is non-commutative.

Labelling with a Finitely Presented Group: In this subsection, we show
that for matrix groups (even of size 2) with entries from Q, symmetrization can
be done. In Sect. 3, we saw that if symmetrization is done when the algebraic
structure is either a polynomially growing group or a fixed size quasigroup, it
implies that NL = L.

Theorem 4. A is the group of invertible k × k matrices with rational entries.
A-BReach is NL-hard.

Proof. We first show this for k = 2. We work over the following subgroup,

H =
{[

1 α
0 1

]

: α ∈ Z

}

. This group is finitely generated, since
[
1 1
0 1

]

and
[
1 −1
0 1

]

generate H. We define element a =
[
1 1
0 1

]

. Given an instance (G(V,E), s, t) of

Reach we construct an instance (G′(V ′, E′),H, s, t, e) of Group-BReach as
follows. For every edge (vi, vj) ∈ E, we add 2 edges (vi, vj) and (vj , vi) to E′.
We label edge (vi, vj) with e, and edge (vj , vi) with a.

We now argue correctness of this construction. Suppose there was a directed
path from s to t in G. Let this path be v0 = s, v1, v2, . . . , vk = t. Now, in G′, we
have the same path. Moreover, since each edge within the path is labelled with
e, the entire path multiplies out to the identity element. Thus, we have a path
from s to t in G′ whose yield is identity.

Suppose there is no path from s to t in G, but there is a path from s to t in
G′ which yields identity. Let this path be s = v0, v1, v2, . . . , vm = t. Since this
path does not exist in G, there must be an i such that (vi, vi+1) 
∈ E. Hence, the
label on this edge must be a. We can have several edges like this in the path.
Thus, the yield of the path is ak, for some k ≥ 1. Since the path yields identity,
we have [

1 1
0 1

]k

=
[
1 0
0 1

]

However, we see that ak =
[
1 k
0 1

]

. Hence, the yield cannot be identity, and there

is no path from s to t in G′ yielding identity.
To extend this to k × k matrices, we notice that we can embed a into a k × k

matrix b by setting

b[i, j] =

⎧
⎨

⎩

a[i, j], if i ≤ 2, j ≤ 2
1, if i, j > 2, and i = j
0, if i, j > 2, and i 
= j

The forward direction of the proof is easy to see. The reverse direction follows
from the fact that bk can never be identity, for k > 1. �
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5 A Dichotomy Theorem for Aperiodic Labelling

In this section, we prove the main result of the paper, which is the dichotomy
theorem for finite aperiodic monoids with respect to the reachability in labelled
graphs. We first settle the complexity in the case of commutative monoids. For
non-commutative monoids, we show the dichotomy using the classification of
aperiodic monoids by [17,22] (see Proposition 2). We show deterministic logspace
algorithms when the monoid is in DA and for the other cases (when the monoids
are divided by U or BA2), we show that the reachability is complete for NL.

Logspace Algorithm for CommutativeAperiodic-UReach:
Let M = {1, α1, α2, . . . , αk} be a commutative aperiodic monoid.

Theorem 5. Let G be an undirected graph labelled with elements from M , a
commutative aperiodic monoid. Checking if there is a path from s to t which
evaluates to an element α can be done in L.

Proof. We notice that any element α in M can be thought of as several tuples
of integers (n1, n2, . . . , nk), such that α = αn1

1 αn2
2 · · · αnk

k . Hence, checking if a
path evaluates to particular element is equivalent to checking if the the number of
occurrences of each element in each path is one of the tuples associated with the
element. We also know that M is aperiodic with index q (∀α ∈ M,αq+1 = αq).
This implies that, if α = αn1

1 αn2
2 · · · αq

i · · · αnk

k , then α = αn1
1 αn2

2 · · · αq+1
i · · · αnk

k .
Hence, checking for tuples where each value is bounded by q is sufficient.

Let G = (V,E) be the given graph, labelled with a commutative aperiodic
monoid M , via a mapping φ. Let s, t ∈ V and (n1, n2, . . . , nk) be a tuple, where
ni ≤ q,∀i. Let N =

∑
i ni. The algorithm does the following.

Repeat the following for each (u1, v1), (u2, v2), . . . , (uN , vN ) ∈ EN , such that
the labels of (u1, v1), (u2, v2), . . . , (uN , vN ) form the tuple (n1, n2, . . . , nk). Set
v0 = s, uN+1 = t. Let P = {e}∪{αi| ni = q}. Let G′ be G without edges labelled
with any element from M\P . We accept if there is a path from vi to ui+1, in G
for all i.

We see that the algorithm uses only logspace, since N is at most qk.

Correctness: The algorithm iterates over all possible edges, such that the labels
of the edges give the tuple. For each set of edges, it verifies if there is a path
between these edges, which uses only those labels which have crossed the index
(captured by set P ). This ensures that the resulting path also evaluates to the
same element.

For the reverse direction, since every graph accepted by this algorithm has
a path whose tuple is of the form (n′

1, n
′
2, . . . , n

′
k), where n′

i = ni if ni < q, and
n′

i ≥ ni if ni = q. Hence, the elements that both these tuples evaluate to must
be the same. �
Logspace Algorithm for DA-Ureach: We give a logspace algorithm to solve
DA-UReach, when the graph is labelled with letters from an unambiguous
concatenation L = A∗

0a1A
∗
1a2 · · · akA∗

k, where A is the alphabet, Ai ⊆ A, ai ∈
A,∀i. From Proposition 1, this is sufficient to show that DA-UReach can be
solved in logspace.
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Theorem 6. Let G be an undirected graph labelled with elements from an alpha-
bet A. Let s and t be given vertices in G. Let L = A∗

0a1A1a2A
∗
2 · · · akA∗

k be an
unambiguous concatenation, where Ai ⊆ A, ai ∈ A,∀i. Checking if there is a
path from s to t, whose yield is in L can be done in logspace.

Proof. Let G = (V,E) be the given graph, labelled with an alphabet A, via
a mapping φ. Let L = A∗

0a1A
∗
1a2 · · · akA∗

k. Let s, t ∈ V . The algorithm does
the following: Repeat the following for (u1, v1), (u2, v2), . . . , (uk, vk) ∈ Ek, such
that ∀i, φ(ui, vi) = ai. Set v0 = s, uk+1 = t. For each i, let Gi be G without
edges labelled with any element from A\Ai. We accept if there is a path from
vi to ui+1, in Gi for all i. Since k is finite, we see that the algorithm chooses
all possible edges for the ai’s, and check if paths between these edges are in A∗

i .
The algorithm uses only logspace. The correctness of this algorithm is easy to
see - if there exists a path from s to t in L, the algorithm will eventually find it,
since it runs over all possible edges. For the other direction, we notice that the
algorithm only accepts paths in L. �
Labelling with Non-commutative Aperiodic Monoids not in DA: We
show that labelling an undirected graph with either BA2 or U makes the
A-Reach problem NL-hard. Komarath et al. [15] give a labelling with (ab)∗,
for all directed acyclic graphs. This immediately gives us a labelling with BA2.
We give a similar labelling with U . We know that any non-commutative ape-
riodic monoid M not in DA is divisible by either U or BA2. Hence, we have
a surjective morphism from a submonoid of M to either U or BA2. We show
that labelling an undirected graph with BA2 or U makes the A-Reach problem
NL-hard. By using the morphism, we can get instances of A-Reach problem
over undirected graphs, labelled with M , which are NL-hard.

Theorem 7. A-Reach for undirected graphs is NL-complete when the graph is
labelled with U .

Proof. We give a labelling from L = (b∗ab∗bb∗)∗ (whose syntactic monoid is U)
similar to that in [15]. Let G = (V,E) be a directed acyclic graph, with vertices s
and t. Without loss of generality, we assume that s is a source (that is, it has only
outgoing edges). We create a labelled, undirected graph G′ = (V ′, E′) as follows.
Each vertex in V is copied to V ′. Additionally, for each directed edge (vi, vj), we
add a vertex mij to V ′. Edges and labels are constructed as follows. If (vi, vj)
is an edge in G, (vi,mij), (mij , vj) are edges in G′, with (vi,mij) being labelled
with b, and (mij , vj) is labelled with a. That is, we split each edge, labelling the
first half with b, and the second half with a. We also add a new vertex t′, and
add an edge (t, t′), labelled with b. We claim that there is a path from s to t in
G if and only if there is a path from s to t′ in G′, whose yield is in L.

The forward direction is easy to see. Suppose there is a path from s to t
in G. Let the path be s = vi1 , vi2 , . . . , vim

= t. We claim that the path s =
vi1 ,mi1i2 , vi2 ,mi2i3 , vi3 , . . . ,mim−1im

, vim
= t, t′ exists in G′ and the yield of the

path is in L. By our construction, each of these edges exist in G′. To see the
yield, we notice that since (vi�

, vi�+1) is in E, (vi�
,mi�i�+1) is labelled with b,
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whereas (mi�i�+1 , vi�+1) is labelled with a, for all �. Hence, the yield is (ba)mb
which is in L.

Suppose we do not have a path from s to t in G, but there is a path from s
to t′ in G′ with a yield in L. Since there is no path in G, the path in G′ must
have taken some edges incorrectly. Let (u, v) be the first incorrect edge taken.
That is, suppose (vi, vj) ∈ E. The edge taken is either of the form (vj ,mij) or
(mij , vi). For the first, the yield up to this point is (ba)�, for some �, and the edge
is labelled with a. This results in two consecutive a’s, which cannot be in the
language, and the path in G′ cannot have any edge of this form. For the second,
we see that since (mij , ai) is the first incorrect edge taken, the edge taken before
this is (ai,mij), and both these edges can be ignored. Thus, if all incorrect edges
taken are of the second form, we can create a path from s to t in G, contradicting
our initial assumption. �

6 Planarizing by Labelling

We now present a reduction from the reachability problem to A-Reach over pla-
nar DAGs when A is the fixed monoid BA2. The same reduction can be achieved
with group labelling when the size of the groups is allowed to be exponentially
growing. We give a reduction from Reach to Monoid-PlanarReach and
hence it is NL-hard.

Theorem 8. Let G = (V,E) be a graph. Let φ : E → BA2 be a labelling
function. Then Reach reduces to Monoid-PlanarReach.

A proof of this theorem is present in the full version. We make an observation
that the hard instances to Monoid-PlanarReach have the property that the
underlying undirected graph can be bipartite. In a close contrast to the results
in the previous section, we show that if the labels are coming from BA2, and
in particular from the set {α, β} and the graph is bipartite, then NL = UL.
That is, if the labelling had preserved bipartiteness of the graph (which we can
ensure in the reachability instances by subdividing every edge into two edges by
introducing an intermediate vertex), then NL = UL. The proof of the following
theorem is present in the full version.

Theorem 9. Let G = (V,E) be a planar graph whose underlying undirected
graph is bipartite, and labelled with BA2 with φ : E → {α, β}. The A-Reach

problem (between any two vertices) in G can be reduced (in log-space) to testing
reachability in planar DAGs and hence is in UL.

Following the quest for more structure in the labelling set, we now give a
reduction from Reach to Group-PlanarReach, when labelled with a group
having size exponential in the size of the graph, thus showing that it is NL-hard.
A proof for the following theorem is present in the full version.

Theorem 10. Group-PlanarReach is NL-hard when the group size is
Ω(2n4

) where n is the size of the graph.
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