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Preface

These proceedings contain the papers that were presented at the 11th International
Conference on Language and Automata Theory and Applications (LATA 2017), held
in Umeå, Sweden, during March 6–9, 2017.

The scope of LATA is rather broad, including: algebraic language theory, algo-
rithms for semi structured data mining, algorithms on automata and words, automata
and logic, automata for system analysis and program verification, automata networks,
automatic structures, codes, combinatorics on words, computational complexity, con-
currency and Petri nets, data and image compression, descriptional complexity, foun-
dations of finite-state technology, foundations of XML, grammars (Chomsky hierarchy,
contextual, unification, categorial, etc.), grammatical inference and algorithmic learn-
ing, graphs and graph transformation, language varieties and semigroups,
language-based cryptography, mathematical and logical foundations of programming
methodologies, parallel and regulated rewriting, parsing, patterns, power series, string
processing algorithms, symbolic dynamics, term rewriting, transducers, trees, tree
languages and tree automata, weighted automata.

LATA 2017 received 73 submissions. Every paper was reviewed by three Program
Committee members. There were also a few external experts consulted. After a thor-
ough and vivid discussion phase, the committee decided to accept 31 papers (which
represents an acceptance rate of about 42%). The conference program included four
invited talks.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their cooperation, and Springer for
its very professional publishing work.

December 2016 Frank Drewes
Carlos Martín-Vide

Bianca Truthe
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Approximation in Description Logics:
How Weighted Tree Automata Can Help

to Define the Required Concept Comparison
Measures in FL0

Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis

Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,oliverfernandez.gil,
pavlos.marantidis}@tu-dresden.de

Abstract. Recently introduced approaches for relaxed query answering,
approximately defining concepts, and approximately solving unification prob-
lems in Description Logics have in common that they are based on the use of
concept comparison measures together with a threshold construction. In this
paper, we will briefly review these approaches, and then show how weighted
automata working on infinite trees can be used to construct computable concept
comparison measures for FL0 that are equivalence invariant w.r.t. general
TBoxes. This is a first step towards employing such measures in the mentioned
approximation approaches.

Pavlos Marantidis—Supported by DFG Graduiertenkolleg 1763 (QuantLA).



LARS Stream Reasoning and Temporal Logic

Harald Beck, Minh Dao-Tran, and Thomas Eiter

TU Wien, Vienna, Austria
{fbeck,dao,eiterg}@kr.tuwien.ac.at

Abstract. In this talk, we revisit the LARS framework for logic-based reasoning
on streams and contrast it with temporal logic. While there are commonalities
between LARS and LTL resp. TEL (temporal equilibrium logic), respectively,
there are yet differences which are discussed. Furthermore, bridging between the
formalisms is explored.

1 Introduction

Stream Reasoning is a recent field of computation with broad interest1 in which streams
of data over time are considered. These streams may origin in different ways and at
different velocities, ranging from low frequency updates in the realm of minutes, days,
or even months, to high frequency changes such as sensor data produced in real-time
environment (e.g., in transport and traffic scenarios), to very high speed changes such
as of bonds at the stock market. Typically, a large amount of data is produced, and
processing these large data streams requires special methods and techniques in order to
cope with it.

In the database and data processing area, stream processing addresses this issue by
limiting the available memory, such that only a snapshot of the data, a window, is kept
and other data is dropped. In practice, the latter is guided by the underlying infras-
tructure: if data arrives in buffers, then the size of the buffer may regulate the contents
that can be handled, and only the latest data is kept (tuple-based windows); alterna-
tively, data within a certain time of arrival are kept (time-based window). In addition,
arrival times of data might be dropped. The way in which windows are changed over
time (continuously, periodically, etc) is another aspect of low-level data management.
An important note is that ideally, dropping data does not result in a loss of information,
but it may be voluntarily accepted in order to cope with the data.

This work was partially supported by the Austrian Science Fund (FWF) under projects P26471
and W1255-N23.
1 Several workshops on this subject have been held in the recent years, e.g. in Vienna 2015 and in
Berlin 2016 apart from further workshops at conferences.



2 Lars

As many of the stream processing systems have an operational semantics, LARS [1]
has been proposed as a logic-based framework that provides a means to express
semantics of stream processing formally, and in a declarative way. Furthermore, LARS
has been conceived in order to model more expressive reasoning than plain filtering,
joining and aggregation of data. To this end, a language has been proposed in which
besides Boolean connectives windows are native elements, where the latter are unary
operators ⊞w. Within a stream resp. window, truth of a formula / everywhere ( ⃞/) or
somewhere ( ⃟/) is expressible (the latter corresponds to detemporalizing data, i.e.,
remove time information); furthermore, an operator @t/ enables on to evaluate the
formula / at the time point t.

For example, a formula ⊞60 ⃞(tram ! ⊞+5 ⃟bus) may informally express that
within the last 60 time points (say minutes), there whenever a tram arrived at a stop,
within five minutes also a bus was arriving.

The semantics of the LARS language is based on streams, which are pairs S ¼
T; tð Þ of a closed interval T�N of natural numbers and an assignment t : T ! 2A of
interpretations (sets of atoms) of an underlying propositional alphabet A. Window
functions w(S, t) map a stream S at a time point t of evaluation to a substream, i.e., a
stream S0 ¼ T 0; tð Þ such that T 0�T and t0�t.

LARS structures consist, in simplified form, of a pair M ¼ hSI;Wi of stream SI

and an interpretation W of the window operators, i.e., each ⊞w is associated with a
window function w 2 W . Given a substream S ¼ T; uð Þ of SI and a time point t 2 N,
entailment of formulas / is inductively defined as follows:

Here ⊳ is a further operator that allows one to access the original input stream
inside a formula (this replaces the more complicated original mechanism of stream
choice). Besides the monotone semantics of LARS, also an answer set (i.e., stable
model) semantics has been introduced for a rule language with nonmonotonic negation,
which properly generalizes the stable model semantics of logic programs.

Deciding , i.e., formula evaluation, is PSPACE-complete in general,
under the assumption that window functions are evaluable in polynomial time; likewise
is satisfiability, where we require S ¼ SI and that for SI ¼ T; tð Þ a suitable assignment
t is found. The stable semantics has the same complexity, but is lower for relevant
fragments of the language.

LARS Stream Reasoning and Temporal Logic XV



3 Temporal Logic

LARS is apparently related to temporal logic, most prominently to LTL but also to
MTL (metric temporal logic) [5]; as for the rule language, it is related to the recent
formalism of temporal equilibrium logic (TEL) [4], which extends logic programs
under Pearce’s logical characterization of stable model semantics [6] to temporal
sequences of models.

While from a complexity perspective, LTL has like LARS PSPACE complexity,
these results can not be simply compared. This is not only because the formalisms have
different operators, but also as the underlying problem definitions are different: in
temporal logic, reasoning centers around possible future states of the system, while in
stream reasoning as in LARS, it is concerned with a history of data that is considered to
be input (like sensor readings) up to a query evaluation time; future evolutions would
regard predictions of evaluation results. Furthermore, in stream reasoning repeated
evaluation, possibly in an incremental manner, is regarded as important.

In this talk, we shall look more in detail into this issue, and we shall highlight
commonalities and differences between LARS and temporal logic. Furthermore, we
shall consider the possibility to express fragments of LARS in temporal logic, and to
provide in this way alternative characterizations of LARS semantics via temporal logic.
Besides monotonic LARS, we shall also consider its nonmonotonic version and discuss
its relation to temporal equilibrium logic. The latter has much higher complexity than
LTL and is EXPSPACE-complete [2, 3]. As arbitrary window operators in LARS are
incompatible with the intuitionistic model structures for TEL, restrictions are necessary
to obtain a reformulation of LARS in TEL; on the other hand, via TEL also alternative
nonmonotonic semantics of LARS can be given.

This investigation aims at a better understanding of stream reasoning versus tem-
poral logic, and to bridge between these subjects such that results and techniques
developed for temporal logic can be exploited for stream reasoning.

References

1. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for analyzing
reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceedings 29th Conference on
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Logic, Languages, and Rules for Web Data
Extraction and Reasoning over Data

Georg Gottlob1, Christoph Koch2, Andreas Pieris3

1University of Oxford, Oxford, USA
georg.gottlob@cs.ox.ac.uk

2École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
christoph.koch@epfl.ch

3University of Edinburgh, Edinburgh, UK
apieris@inf.ed.ac.uk

Abstract. This paper gives a short overview of specific logical approaches to
data extraction, data management, and reasoning about data. In particular, we
survey theoretical results and formalisms that have been obtained and used in
the context of the Lixto Project at TU Wien, the DIADEM project at the
University of Oxford, and the VADA project, which is currently being carried
out jointly by the universities of Edinburgh, Manchester, and Oxford. We start
with a formal approach to web data extraction rooted in monadic second order
logic and monadic Datalog, which gave rise to the Lixto data extraction system.
We then present some complexity results for monadic Datalog over trees and for
XPath query evaluation. We further argue that for value creation and for
ontological reasoning over data, we need existential quantifiers (or Skolem
terms) in rule heads, and introduce the Datalog± family. We give an overview of
important members of this family and discuss related complexity issues.



Finite Backward Deterministic Automata
on Infinite Words

Thomas Wilke

Kiel University, Kiel, Germany
thomas.wilke@email.uni-kiel.de

Around the turn of the millennium, Olivier Carton and Max Michel [1] introduced a
model of automata for infinite words which here is referred to as finite backward
deterministic x-automata. Their main result was that their new model is equivalent
with respect to expressive power to all the models studied before, be it Büchi, Muller or
parity automata.

Since their introduction by Carton and Michel, backward deterministic x-automata
have been studied intensively.

In my presentation, I explain what backward deterministic x-automata are and what
they can be used for. In particular, I present the following:

– transformations between traditional x-automata models and backward deterministic
x-automata,

– characterization of fragments of temporal logic using backward deterministic x-
automata,

– counter-free backward deterministic x-automata and bi-machines,
– the connection between the alternation-free modal l-calculus (and alternation in

general) and backward deterministic x-automata.

Reference

1. Carton, O., Michel, M.: Unambiguous Büchi automata. In: Gonnet, G.H., Panario, D., Viola,
A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 407–416. Springer, Heidelberg (2000)
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Abstract. Recently introduced approaches for relaxed query answering,
approximately defining concepts, and approximately solving unification
problems in Description Logics have in common that they are based
on the use of concept comparison measures together with a threshold
construction. In this paper, we will briefly review these approaches, and
then show how weighted automata working on infinite trees can be used
to construct computable concept comparison measures for FL0 that are
equivalence invariant w.r.t. general TBoxes. This is a first step towards
employing such measures in the mentioned approximation approaches.

1 Introduction

Description Logics (DLs) [5] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as biology and medicine [22]. To define the impor-
tant notions of such an application domain as formal concepts, DLs state nec-
essary and sufficient conditions for an individual to belong to a concept. These
conditions can be atomic properties required for the individual (expressed by
concept names) or properties that refer to relationships with other individuals
and their properties (expressed as role restrictions). The expressivity of a par-
ticular DL L is determined on the one hand by what sort of properties can
be required and how they can be combined. On the other hand, DLs provide
their users with ways of stating terminological axioms in a so-called TBox. The
simplest kind of TBoxes are called acyclic TBoxes, which consist of concept
definitions without cyclic dependencies among the defined concepts. Basically,
such a TBox introduces abbreviations for complex concept descriptions. General
TBoxes use so-called general concept inclusions (GCIs) to state subconcept-
superconcept constraints between concepts. Once the relevant concepts of an
application domain are formalized in a TBox, they can be employed to state
information about specific entities (individuals, objects) and their relationships
in a so-called ABox. Given a TBox and an ABox, queries can then be used to
retrieve new information from the data formalized this way. We will introduce
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the basic notions of DLs in Sect. 2, and define three DLs of different expressive
power, namely the DLs ALC, EL, and FL0.

Since the semantics of traditional DLs is based on classical first-order logic,
the interpretation of the properties required for a concept is strict in the sense
that all these properties need to be satisfied for an individual to belong to a
concept, and the same is true for answers to queries. In applications where exact
definitions are hard to come by, it would be useful to relax this strict requirement
and allow for approximate definitions of concepts, where most, but not all, of the
stated properties are required to hold. Similarly, if a query has no exact answer,
approximate answers that satisfy most of the features the query is looking for
could be useful. For example, in clinical diagnosis, diseases are often linked to a
long list of medical signs and symptoms, but patients that have a certain disease
rarely show all these signs and symptoms. Instead, one looks for the occurrence of
sufficiently many of them. Similarly, people looking for a flat to rent or a bicycle
to buy may have a long list of desired properties, but will also be satisfied if
many, but not all, of them are met.

In order to allow for approximate definitions of concepts, we have introduced
the notion of a graded membership function in [4]. Instead of a Boolean mem-
bership value 0 or 1 such a graded function yields a membership degree from the
interval [0,1]. Threshold concepts can then, for example, require that an individ-
ual belongs to a concept C with degree at least 0.8. A different approach, which
is based on the use of similarity measures on concepts [25], was used by Ecke
et al. [19,20] to relax instance queries (i.e., queries that consist of a single con-
cept). Given a query concept C, they are looking for answers to queries D whose
similarity to C is higher than a certain threshold. While these two approaches
were originally developed independently of each other, it has turned out that
there are close connections. Similarity measures can be used to define graded
membership functions, and threshold concepts w.r.t. these functions provide a
more natural semantics for relaxed instance queries [4,6]. Thus, in both approxi-
mation approaches mentioned until now, the availability of appropriate measures
for comparing concepts is crucial. The same is true for the approximate unifica-
tion of concepts introduced in [8]. Basically, unification in DLs tries to make two
concepts equivalent by replacing some of the concept names occurring in their
descriptions by complex concepts [9,10]. In the approximate case, one requires
that concepts are made “almost” equivalent, where the meaning of “almost” is
formalized using distance measures between concepts. Strictly speaking, these
distance measures are not similarity measures in the sense of [25] since they need
not map into [0,1]. In the following, we will call functions that compare pairs of
concepts by mapping them into a (usually numerical) domain equipped with a
partial order concept comparison measures.

An indispensable requirement for the concept comparison measures used in
the three approximation approaches mentioned above is that they respect the
semantics of concepts in the sense that they are invariant under equivalence
of concepts w.r.t. their definitions in the TBox. For the DL EL, a framework
for defining concept similarity measures that are equivalence invariant w.r.t.
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acyclic TBoxes has been introduced in [25]. This was extended in [20] to general
TBoxes. For FL0, concept similarity measures that are equivalence invariant for
acyclic TBoxes were introduced in [30]. The main technical contribution of this
paper is to introduce a framework for defining computable concept comparison
measures for FL0 that are equivalence invariant w.r.t. general TBoxes. Basically,
this is achieved by leveraging a new formal language-based characterization of
equivalence in FL0 w.r.t. general TBoxes [28], where the semantics of a concept
is characterized using a tuple of (possibly infinite) formal languages. Following
the ideas in [10,11,28], such tuples can be represented by (infinite) trees. These
trees (or more precisely, appropriate finite representations of them) can in turn
be used as inputs for weighted tree automata [31], which then yield the output
of the measure. We will show that, under certain conditions on the weighted tree
automata, this approach indeed yields computable concept comparison measures.

2 Description Logics, Concept Comparison Measures,
and Approximation

We start by recalling basic notions of Description Logics, and in particular the
DLs ALC, EL, and FL0. Then, we introduce concept comparison measures,
which generalize concept similarity measures, and finally we show how such
measures can be used to relax query answering, approximately define concepts,
and approximately solve unification problems.

2.1 Description Logics

In Description Logics, concept constructors are used to build complex concept
descriptions out of concept names (unary predicates) and role names (binary
predicates). A particular DL L is determined by the available constructors. Given
finite, disjoint sets NC and NR of concept names and role names, respectively,
we denote the set of all concept descriptions that can be built from NC and NR

using the constructors of L with CL(NC,NR).
As an example, consider the constructors top concept (�), bottom concept

(⊥), conjunction (C � D), disjunction (C � D), negation (¬C), value restriction
(∀r.C), and existential restriction (∃r.C), which determine the DL ALC. Then,
CALC(NC,NR) is inductively defined as follows:

– {�,⊥} ∪ NC ⊆ CALC ,
– if C,D ∈ CALC and r ∈ NR, then {C � D,C � D,¬C,∀r.C,∃r.C} ⊆ CALC .

We will also consider the following two sub-logics EL and FL0 of ALC:

– EL has the constructors top concept, conjunction, existential restriction;
– FL0 has the constructors top concept, conjunction, value restriction.

The semantics of a DL L is defined using first-order interpretations I =
(ΔI , .I) consisting of a non-empty domain ΔI and an interpretation function .I
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that assigns a set AI ⊆ ΔI to each concept name A ∈ NC and a binary relation
rI ⊆ ΔI × ΔI to each role name r ∈ NR. This function is extended to com-
plex concept descriptions by assigning a set CI ⊆ ΔI to each C ∈ CL(NC,NR)
according to the semantics of the constructors of L. The semantics of the con-
structors is defined by equations that enable the inductive definition of CI for
any interpretation I.

For the above constructors, the equations fixing their semantics are as follows:

�I = ΔI and ⊥I = ∅,
(C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI , and (¬C)I = ΔI \ CI ,
(∀r.C)I = {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ rI ⇒ y ∈ CI},
(∃r.C)I = {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}.

An L terminology (TBox) T is a finite set of general concept inclusions
(GCIs), which are expressions of the form C � D for C,D ∈ CL(NC,NR). The
interpretation I is a model of T if it satisfies all its GCIs, i.e., CI ⊆ DI holds
for all GCIs C � D in T . An L ABox A is a finite set of assertions, which are
expressions of the form C(a) or r(a, b), where C ∈ CL(NC,NR), r ∈ NR and a, b
are elements of an additional set NI of individual names, which is disjoint with
NC and NR. An interpretation then additionally assigns elements aI ∈ ΔI to
individual names a ∈ NI. The interpretation I is a model of A if it satisfies all
its assertions, i.e., aI ∈ CI (resp. (aI , bI) ∈ rI) holds for all assertions C(a)
(resp. r(a, b)) in A.

Given an L TBox T and two L concept descriptions C,D, we say that C is
subsumed by D (denoted as C �T D) if CI ⊆ DI for all models I of T . These
two concept descriptions are equivalent (denoted as C ≡T D) if C �T D and
D �T C. Equivalent concept descriptions have the same meaning w.r.t. T in
the sense that they always (i.e., in every model of T ) yield the same set. In the
presence of an L ABox A, we can also consider the instance problem: given an
individual name a and an L concept description C we say that a is an instance
of C in A w.r.t. T (written A |=T C(a)) if aI ∈ CI for all models I of T
that are also models of A. For the DL EL, the subsumption, equivalence, and
instance problem are polynomial [15] whereas they are ExpTime-complete for
FL0 [3] and for ALC [32].

2.2 Concept Comparison Measures

Subsumption and equivalence can be seen as operations that compare concept
descriptions, and yield the comparison value 1 if the relation holds and 0 other-
wise, i.e.,

�T (C,D) = 1 if C �T D and �T (C,D) = 0 if C ��T D,

and accordingly for equivalence. Intuitively, concept comparison measures gen-
eralize such operations by yielding a degree to which the comparison relation is
satisfied. More formally, they return a value in a partially ordered set.
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Definition 1. Let L be a DL. A concept comparison measure (CCM) for L is a
family of functions c that contains, for every L TBox T , an equivalence invariant
function cT : CL(NC,NR) × CL(NC,NR) → S, where

– S is a non-empty set equipped with a partial order ≤S,
– and equivalence invariant means that cT (C,D) = cT (C ′,D′)

whenever C ≡T C ′ and D ≡T D′.

The reason we require equivalence invariance is that we do not view concept
descriptions as syntactic objects, but rather as semantic ones that, for every
interpretation, yield a subset of the interpretation domain. Since equivalent con-
cept descriptions always yield the same sets, they are the same objects from a
semantic point of view, and thus should also be treated the same way by the
comparison function. The partial order on S allows us to compare different com-
parison degrees. We will later use the natural numbers and the non-negative real
numbers, possibly extended with infinity +∞, as well as the closed real interval
[0, 1] with the obvious orders as sets S.

Well-investigated examples of CCMs are concept similarity measures (CSMs),
for which S = [0, 1] (see e.g., [25]). Intuitively, a CSM ��T is a graded vari-
ant of equivalence, where two concept descriptions C,D are equivalent iff
��T (C,D) = 1, and they become less and less similar with decreasing value
��T (C,D). Usually, one also requires CSMs to be symmetric in the sense that
��T (C,D) = ��T (D,C). For the DL EL, a framework for defining CSMs satis-
fying certain additional properties has been introduced in [25], but equivalence
invariance was only achieved for so-called acyclic TBoxes. This was extended in
[20] to general TBoxes. For FL0, CSMs that are equivalence invariant for acyclic
TBoxes were introduced in [30]. We will show later how CCMs for FL0 that are
equivalence invariant for general TBoxes can be obtained by using weighted tree
automata. CSMs for ALC are, for instance, investigated in [16].

Our definition of CCMs encompasses CSMs, but also covers other measures
such as concept distance measures, which are mappings into [0,+∞) for which
a larger value indicates that the concept descriptions are less similar (see e.g.,
[8]). In addition, it covers graded variants of subsumption, which map into [0, 1],
but in contrast to CSMs are not supposed to be symmetric. For example, the
CSMs for EL and FL0 in [34] and [30], respectively, are based on asymmetric
concept subsumption measures, which are then turned into symmetric CSMs by
combining the results of the comparisons in both directions by computing the
average.

2.3 Approximation

In contrast to approaches that try to speed up reasoning by employing approx-
imate inference techniques [27], we use approximation as a way to extend the
range of admissible answers to queries or admissible elements of concept descrip-
tions. In this context, CCMs can be used together with a threshold construction
to define which answers or individuals are admissible.
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Relaxing Instance Queries. Ecke et al. [19,20] use CSMs to relax instance
queries in EL, i.e., instead of requiring that an individual is an instance of the
query concept, they only require that it is an instance of a concept description
that is “similar enough” to the query concept.

Definition 2. Let �� be a CSM for EL, T an EL TBox, A an EL ABox, and t ∈
[0, 1). The individual a ∈ NI is a relaxed instance of the EL concept description
Q w.r.t. T , A, ��, and the threshold t if there exists an EL concept description
X such that ��T (Q,X) > t and A |=T X(a).

Ecke et al. [19,20] show that, under certain conditions on the CSMs used, the
relaxed instance problem for EL is decidable. They also introduce a class of
polynomially computable CSMs on EL concept descriptions for which the relaxed
instance problem is in NP.

Adding Threshold Concepts to EL. In [4], a similar construction is used to
relax membership in EL concept descriptions. To be more precise, the authors
introduce the notion of a graded membership function m to generalize element-
hood in concept descriptions, and then use a threshold construction to obtain
new concept constructors.

Definition 3. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ΔI × CEL(NC,NR) → [0, 1]
satisfying the following conditions (for C,D ∈ CEL(NC,NR)):

M1:∀I ∀d ∈ ΔI : d ∈ CI ⇔ mI(d,C) = 1,

M2:C ≡ D ⇔ ∀I ∀d ∈ ΔI : mI(d,C) = mI(d,D).

Intuitively, given an interpretation I and d ∈ ΔI , mI(d,C) ∈ [0, 1] represents
the degree to which d belongs to C in I. The threshold concept C∼t for ∼ ∈
{<,≤, >,≥} then collects all the elements of ΔI that belong to C with degree
∼ t, as measured by m. To be more precise, the formal semantics of threshold
concepts is then defined as follows: (C∼t)I := {d ∈ ΔI | mI(d,C)∼ t}. The DL
τEL(m) extends EL with such threshold concepts.

In [4] a specific such graded membership function called deg is introduced and
the complexity of reasoning in τEL(deg) w.r.t. empty TBoxes (NP-complete or
coNP-complete, depending on the reasoning problem) is investigated in detail. In
addition, it is shown that, using a construction similar to the one in Definition 2,
a CSM �� satisfying certain properties can be used to define a graded membership
function:

mI
��(d,C) := max{��∅(C,D) | D ∈ CEL(NC,NR) and d ∈ DI}.

To ensure that this construction yields a well-defined graded membership func-
tion, the CSM must be equivalence invariant, role-depth bounded, and equiva-
lence closed (see [4,25] for definitions of the latter two properties). Finally, the
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authors of [4] prove that answering relaxed instance queries w.r.t. �� is the same
as answering instance queries for threshold concepts C>t in τEL(m��).

In [6] it is shown that, for computable CSMs �� satisfying these properties,
reasoning in τEL(m��) can effectively be reduced to reasoning in the DL ALC,
but the reduction is in general non-elementary. The authors then introduce a
class of CSMs �� such that reasoning in τEL(m��) has the same complexity as
reasoning in τEL(deg).

2.4 Approximate Unification

Unification has been introduced as a novel inference service that can be used to
detect redundancies in ontologies. Basically, in unification one views some of the
concept names in concept descriptions as variables, which can be replaced by
concept descriptions using a substitution. The goal is then to make two concept
descriptions equivalent by applying the same substitution to both. For example,
consider the FL0 concept descriptions

C = A � ∀r.(X � ∀s.B) and D = Y � ∀r.(Z � A � ∀r.B).

Obviously, the substitution σ that replaces X by A � ∀r.B, Y by A, and Z by
∀s.B makes C,D equivalent (w.r.t. the empty TBox):

σ(C) = A � ∀r.(A � ∀r.B � ∀s.B) ≡∅ A � ∀r.(∀s.B � A � ∀r.B) = σ(D).

Such substitutions are called unifiers.
Unification was first investigated in detail for the DL FL0 [10], and later on

for the DL EL [9]. The unification problem, i.e., deciding whether two concept
descriptions with variables have a unifier or not, is ExpTime-complete in FL0

and NP-complete in EL. Both works basically restrict their attention to the
case of an empty TBox. For EL, some attempts have been made to extend the
results to unification w.r.t. GCIs [2], but these approaches can at the moment
only deal with TBoxes that satisfy a certain restriction on cyclic dependencies
between concept names. For ALC, decidability of the unification problem (even
w.r.t. the empty TBox) is a longstanding open problem, though it is known that
undecidability holds for extensions of ALC by so-called nominals or the universal
role [36].

Approximate unification relaxes the requirement that the two concept
descriptions must be made equivalent. Instead, it requires that they are made
“almost” equivalent, where the meaning of “almost” is formalized using distance
measures between concept descriptions. Such measures are CCMs that map into
[0,+∞) and satisfy some additional properties. Basically, given such a measure
and a threshold value, one then asks whether one can lower the distance between
two concept descriptions below the threshold value by applying a substitution.
This is called the decision problem for approximate unification. For the compu-
tation problem, one wants to calculate the lowest achievable distance.

In [8], approximate unification is introduced and then investigated for the DL
FL0 and two concept distance measures that are induced by distance measures
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between formal languages (see the next section). It is shown that (w.r.t. the
empty TBox and these two measures), approximate unification has the same
complexity (ExpTime) as unification.

3 Concept Comparison Measures for FL0

Until recently, the research on concept comparison measures in DLs was mostly
concerned with EL [20,25,34] and more expressive DLs [16]. To achieve equiva-
lence invariance, concept descriptions are usually first translated into an appro-
priate normal form, and then the structure of the normalized descriptions is
compared. For instance, measures that achieve equivalence invariance only for
the empty TBox or for acyclic TBoxes in EL [25,34] make use of the reduced
form of EL concept descriptions introduced in [24]. Extensions to general TBoxes
[20] use the so-called canonical model, which is generated by the polynomial-time
subsumption algorithm for EL [3].

Two recent approaches for defining concept comparison measures for FL0

[8,30] were restricted to the case of the empty TBox. Both approaches employ
a formal language-based characterization of equivalence between FL0 concept
descriptions. In the remainder of this paper, we will develop a general approach
for defining concept comparison measures for FL0 concept descriptions that are
equivalence invariant also w.r.t. general TBoxes. This is achieved by using a
new formal language-based characterization of equivalence in FL0 w.r.t. general
TBoxes [28], where the semantics of a concept description is characterized using
a tuple of (possibly infinite) formal languages. Basically, this tuple serves as a
normal form for the concept description. In order to define equivalence invariant
measures on FL0 concept descriptions, it is thus sufficient to define measures
that compare such tuples. We will show how tuples of languages can be rep-
resented by infinite trees, and then use appropriate weighted tree automata to
compute the comparison value.

3.1 From FL0 Concept Descriptions to Tuples of Formal Languages

In FL0, subsumption and equivalence can be nicely characterized using language
inclusion. This characterization relies on transforming FL0 concept descriptions
into an appropriate normal form as follows. First, the semantics given to concept
constructors in FL0 implies that value restrictions distribute over conjunction,
i.e., for all C,D ∈ CFL0(NC,NR) and r ∈ NR it holds that

∀r.(C � D) ≡∅ ∀r.C � ∀r.D.

Using this equivalence as a rewrite rule from left to right, each FL0 concept
description can be translated into an equivalent concept description that is
either � or a conjunction of concept descriptions of the form ∀r1 . . . ∀rn.A, where
{r1, . . . , rn} ⊆ NR and A ∈ NC. Such concept descriptions can be abbreviated as
∀w.A, where w represents the word r1 . . . rn. Note that n = 0 means that w is the
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empty word ε, and thus ∀ε.A corresponds to A. Furthermore, a conjunction of
the form ∀w1.A� . . .�∀wm.A can be written as ∀L.A where L ⊆ NR

∗ is the finite
language {w1, . . . , wm}. We use the convention that ∀∅.A corresponds to the top
concept �. Thus, if we fix the set of concept names as NC := {A1, . . . , A�}, then
any two concept descriptions C,D ∈ CFL0(NC,NR) can be represented as

C ≡∅ ∀K1.A1 � . . . � ∀K�.A�,

D ≡∅ ∀L1.A1 � . . . � ∀L�.A�,
(1)

where K1, L1, . . . ,K�, L� are finite languages over the alphabet of role names
NR, i.e., finite subsets of NR

∗. Using this representation, it was shown in [10]
that C �∅ D iff Li ⊆ Ki for all i, 1 ≤ i ≤ �. Since equivalence corresponds to
subsumption in both directions, the FL0 concept descriptions C,D in (1) are
equivalent w.r.t. the empty TBox iff Li = Ki for all i, 1 ≤ i ≤ �.

In the presence of a non-empty TBox T , a similar characterization of sub-
sumption and equivalence can be obtained [28], but now the definition of the
languages needs to take the GCIs in T into account. Given an FL0 concept
description C and a TBox T , we define for all A ∈ NC the following language

LT (C,A) := {w ∈ NR
∗ | C �T ∀w.A},

and call this language the value restriction set of C with respect to T and A.
It can easily be verified that, for all concept names Ai ∈ NC, the sets Ki in (1)
are actually equal to L∅(C,Ai). However, while in the case of the empty TBox
these languages are finite, they may be infinite for non-trivial TBoxes. This is
illustrated by the following example.

Example 1. Let C be the FL0 concept description C := A � ∀s.(A � B) and T
the TBox T := {A � ∀r.A,B � ∀s.B}. It is easy to see that the value restriction
sets for A and B are

LT (C,A) = r∗ ∪ sr∗ and LT (C,B) = ss∗,

where we have used standard notation for writing regular expressions to describe
these infinite languages.

Just as in the case of the empty TBox, the value restriction sets can be used to
characterize equivalence and subsumption w.r.t. general TBoxes (see [28]):

C �T D iff LT (D,Ai) ⊆ LT (C,Ai) (1 ≤ i ≤ �), (2)
C ≡T D iff LT (C,Ai) = LT (D,Ai) (1 ≤ i ≤ �). (3)

The equivalence (3) shows that, in FL0, formal languages can be used to repre-
sent the semantic content of concept descriptions: up to equivalence, every FL0

concept description C ∈ CFL0(NC,NR) is uniquely represented by the tuple of
languages

LT (C) := (LT (C,A1), . . . ,LT (C,A�)).
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We will use this fact to reduce the definition of concept comparison measures
between FL0 concept descriptions w.r.t. a TBox to the definition of measures
comparing tuples of languages: given two FL0 concept descriptions C,D, we
define cT (C,D) by comparing the tuples LT (C) and LT (D). One advantage of
this approach is that equivalence invariance comes “for free” since equivalent
concept descriptions are indistinguishable from the language point of view.

3.2 Using Tuples of Languages to Define CCMs

The idea of using tuples of languages to compare FL0 concept descriptions
has already been employed in [8,30], but restricted to the empty TBox. In both
works, the general approach used to define such measures consists of the following
three steps:

1. Translate the FL0 concept descriptions C and D into their corresponding
tuples of languages L∅(C) = (K1, . . . ,K�) and L∅(D) = (L1, . . . , L�). For the
sake of readability, we will denote these tuples as K and L, respectively.

2. To compare the tuples K and L, their components Ki and Li are compared
pairwise, and the values obtained this way are then appropriately combined
into a value s(K,L).

3. Finally, the value s(K,L) is used to define c∅(C,D).

In the following, we recall the exact definitions of the measures introduced in
[8,30].

Example 2. In [30], the authors’ goal is to define concept similarity measures.
To this end, given K and L, they first define an asymmetric measure s, which
they apply to (K,L) and (L,K). The obtained values are then combined using
average. For the definition of the asymmetric measure, they propose two possible
functions e1 and e2 to compare every pair (Ki, Li):

– the function e1 checks inclusion: e1(Ki, Li) = 1 if Li ⊆ Ki, and 0 otherwise;
– the function e2 returns the fraction of the words in Li that also belong to Ki,

and thus yields 1 if Li ⊆ Ki, but 0 only if the two languages are disjoint:1

e2(Ki, Li) =
|Ki ∩ Li|

|Li|

The asymmetric measure s is then defined as s(K,L) = f(ej(K1, L1), . . . ,
ej(K�, L�)), where f is the average operator and j ∈ {1, 2}. Finally, the CSM
��∅ for FL0 concept descriptions is defined as

��∅(C,D) :=
s(L∅(C),L∅(D)) + s(L∅(D),L∅(C))

2
.

1 Note that this function is well-defined only for finite languages. Thus, e2 cannot be
used in the presence of general TBoxes, where the languages may be infinite.
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Example 3. In [8], the authors introduce the notion of concept distance measures
for FL0. They obtain such measures by applying a language distance (which is
assumed to be a topological metric) to the pairs of languages (Ki, Li), and then
combining these values using a function f . In particular, they define two language
distances d1 and d2, which we introduce below.

Let M1 and M2 be two languages over an alphabet Σ. We denote the sym-
metric difference of M1 and M2 as M1 ΔM2, i.e.,

M1 ΔM2 := (M1 \ M2) ∪ (M2 \ M1). (4)

The language distances d1 and d2 are now defined as

d1(M1,M2) := 2−n where n = min {|w| | w ∈ M1 ΔM2},

d2(M1,M2) := μ(M1 ΔM2) where μ(M) = 1
2

∑

w∈M

(2|Σ|)−|w|.

Intuitively, the symmetric difference captures all the discrepancies between two
concept descriptions C and D with respect to a concept name A. More precisely,
if for instance, w ∈ L∅(C,A) \ L∅(D,A) for some w ∈ NR

∗, then C �∅ ∀w.A
and D ��∅ ∀w.A, which amounts to a semantically relevant difference between
C and D. Based on this intuition, the first distance looks for the shortest such
discrepancy, while the second one takes all differences into account, but differ-
ences for longer words count less than differences for shorter ones (see [8] for a
more detailed explanation).

As already mentioned, these language distances are then used to define a
measure s on tuples by setting s(K,L) := f(dj(K1, L1), . . . , dj(K�, L�)) where
j ∈ {1, 2}. For functions f satisfying certain properties (called combining func-
tions in [8]), this yields a concept distance md,f for FL0 concept descriptions:

md,f (C,D) := s(L∅(C),L∅(D))

In the two examples above, the definition of a CCM for FL0 was in the end
reduced to define a distance function that compares two languages. Thus, the
input for this function is a pair of languages. In general, one may also want
to allow for definitions of distance functions on language tuples that do not
resort to binary comparisons of the components of the tuples. The inputs for the
function are then 2�-tuples of languages. For this reason we now develop means
for defining functions that receive tuples of languages as input, which covers
both the binary and the general case.

Though developed for the case of the empty TBox, and thus with finite
languages in mind, the functions e1, d1, d2 of our examples are also well-defined
for infinite languages, and thus can also be employed in the more general setting
of non-empty TBoxes. However, if we are not only interested in defining, but
also in computing the functions, we need to find ways of representing their input
(i.e., tuples of possibly infinite languages) in a finite way. In the next section, we
show that finite automata working on infinite trees can be used for this purpose.
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3.3 Finitely Representing Tuples of Languages

Following the ideas in [10,11,28], we will represent tuples of (possibly infinite)
languages using infinite trees.

Definition 4. Let Σ = {σ1, . . . , σk} be a non-empty, finite set of symbols. Given
a set of labels L, an L-labeled Σ-tree is a mapping t : Σ∗ → L that assigns a
label t(w) ∈ L to every node w ∈ Σ∗. The set of all L-labeled Σ-trees is denoted
as Tω

Σ,L.

Intuitively, the nodes of a Σ-tree t correspond to finite words in Σ∗, where
the empty word ε represents the root of t and every node w has k children
corresponding to the words wσ1, . . . , wσk. Since for a non-empty alphabet Σ the
set Σ∗ of all words over Σ is infinite, Σ-trees are by definition infinite. We use
tuples over {0, 1} as labels to represent tuples of languages over Σ.

Definition 5. Let Σ be a finite set of symbols and � ∈ N. We define the mapping
γ� :

(
2Σ∗)� → Tω

Σ,{0,1}� as follows. Given a tuple of languages L = (L1, . . . , L�)
over Σ, γ�(L) := tL where tL : Σ∗ → {0, 1}� is the Σ-tree such that

tL(w) := (x1, . . . , x�), where xi = 1 iff w ∈ Li (for all w ∈ Σ∗).

It is easy to see that γ� is a bijection between tuples of languages over the
alphabet Σ and {0, 1}�-labeled Σ-trees. Given a tree t ∈ Tω

Σ,{0,1}� , the inverse
function yields the tuple γ−1

� (t) = (L1, . . . , L�) where Li consists of the words w
for which the ith component of t(w) is equal to 1.

Basically, this translation of tuples of languages into trees is used in [28] to
represent the tuple of value restriction sets LT (C) of an FL0 concept description
C as an NR-tree tC . Strictly speaking, the label set employed in [28] is 2NC for
NC = {A1, . . . , A�} rather than {0, 1}�, but it should be clear that, by fixing
a linear order A1 < A2 < . . . < A� on NC, these two representations can be
translated into each other. Obviously, a single value restriction set LT (C,Ai)
can be represented as a {0, 1}-labeled NR-tree tC,Ai

, where the words belonging
to this language receive label 1 and the others label 0.

The following example illustrates this representation of value restriction sets
by trees using the concept description C and the TBox T of Example 1.

Example 4. Recall from Example 1 that LT (C,A) = r∗ ∪ sr∗ and LT (C,B) =
ss∗. To express the tuple of these languages as a tree, we assume that r is
the first symbol of the alphabet and s is the second, and that A < B. Then
LT (C) = (r∗ ∪ sr∗, ss∗), and this tuple is represented by the tree sketched on
the left-hand side of Fig. 1. For better readability, we have labeled the edges
with the symbols r and s. As an example for the labeling, consider the node
corresponding to the word sr. It has label (1, 0) since this word belongs to
r∗ ∪ sr∗, but not to ss∗. The extension of this tree to infinity is obtained as
follows. On the one hand, the outgoing dotted edges tell us that all the nodes
below are labeled with the tuple (0, 0). Notice, for example, that there are no
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tC : (1, 0)
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(0)
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(1)

(1)

(1)

r

. . .

r

(0)

s

s

Fig. 1. Tuples of languages as infinite trees.

words starting with rs or srs in any of the two languages. On the other hand,
the nodes rrr, srr and sss are the roots of infinite trees representing the tuples
of languages (r∗, ∅), (r∗, ∅) and (∅, s∗), respectively.

The tree on the right-hand side of the figure represents the language
LT (C,A), which is obtained from tC by projecting the label-tuples to the first
component.

Using the same approach, given two concept descriptions C,D, the pair
of tuples (LT (C),LT (D)) can obviously be represented as an infinite NR-tree
t(C,D) : NR

∗ → {0, 1}� × {0, 1}�.
As mentioned before, our goal is to represent such input tuples in a finite

way. Using infinite trees obviously does not solve this problem. Thus, we need
to develop an approach for representing such trees in a finite way. For general
tuples of infinite languages and thus arbitrary Σ-trees this is clearly not possi-
ble. However, a closer look at the trees tC constructed in [28] shows that they
are actually regular trees, which admit a finite representation. Therefore, we
restrict our attention to the class of regular trees. We start by formally defining
the notion of a regular tree, and then show that regular trees can always be
represented using certain kinds of tree automata.

Definition 6 (Regular tree). Let t be a tree in Tω
Σ,L. Given a node w ∈ Σ∗,

the subtree tw : Σ∗ → L of t is defined as tw(v) := t(wv) for all v ∈ Σ∗. We
say that t contains the subtree tw. Then, t is a regular tree if it contains finitely
many distinct subtrees.

There are different ways to represent regular trees in a finite way [35]. Here,
we use looping tree automata for this purpose.

Definition 7 (Looping Tree Automaton (LTA)). A looping tree automa-
ton is a tuple A = (Σ,Q,L,Δ, I) where Σ = {σ1, . . . , σk} is a finite set of
symbols, Q is a finite set of states, L is a finite set of labels, Δ ⊆ Q × L × Qk is
the transition relation and I ⊆ Q is a set of initial states. A run of this automa-
ton on a tree t ∈ Tω

Σ,L is a Q-labeled Σ-tree r : Σ∗ → Q such that r(ε) ∈ I
and

(r(w), t(w), r(wσ1), . . . , r(wσk)) ∈ Δ
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for all w ∈ Σ∗. The tree language L(A) recognized by A is the set of all trees
t ∈ Tω

Σ,L such that A accepts t, i.e., A has a run on t.

In general, LTAs recognize sets of trees. Therefore, to uniquely represent a
tree we only consider those recognizing singleton sets.

Definition 8. Let A = (Σ,Q,L,Δ, I) be a looping tree automaton. We say that
A represents the infinite tree t ∈ Tω

Σ,L if L(A) = {t}.

It is easy to see that trees that can be represented by looping tree automata
are indeed regular. In fact, LTAs are Rabin tree automata [29,35] with trivial
acceptance conditions, and it is well-known that non-empty tree languages recog-
nized by Rabin tree automata always contain a regular tree. Thus, if such an
automaton recognizes the singleton set {t}, then t must be regular. Conversely,
we can show that any regular tree can be represented in this way.

Proposition 1. Let t ∈ Tω
Σ,L be an L-labeled Σ-tree. Then, t is regular iff it

can be represented by an LTA.

Proof. We have already seen that the if-direction holds. To show the only-if
direction, assume that t is a regular tree. By Definition 6 it thus contains only
finitely many distinct subtrees, say t0, t1, . . . , tm where we assume without loss
of generality that t0 = t. For all 1 ≤ i ≤ m, we denote the direct subtrees of ti

as tiσ1
, . . . , tiσk

. Note that these are also subtrees of t, and thus belong to the set
{t0, t1, . . . , tm}. We build the looping tree automaton At = (Σ,Qt, L,Δt, {t0})
as follows: Qt := {t0, t1, . . . , tm} and Δt := {(ti, ti(ε), tiσ1

, . . . , tiσk
) | 1 ≤ i ≤ m}.

It is easy to see that t = t0 is the only tree accepted by At. ��

The automaton At constructed in the above proof actually has a very specific
syntactic shape (see Definition 9 below), which ensures that it accepts only one
tree.

Definition 9 (Representing Looping Tree Automaton (rLTA)). A re-
presenting looping tree automaton is a looping tree automaton A = (Σ,P,L,Δ,
{ps}) such that Δ satisfies the following condition:

– for every p ∈ P , there exists a unique symbol lp ∈ L and a unique tuple
(p1, . . . , p|Σ|) ∈ P |Σ| such that (p, lp, p1, . . . , p|Σ|) ∈ Δ.

The following proposition states some obvious consequences of this definition
and the proof of Proposition 1.

Proposition 2. Let A be an rLTA and t a regular tree. Then

1. t can be represented by some rLTA At.
2. L(A) is a singleton set consisting of a regular tree tA and A has a unique run

rA on tA.

In [28] it is shown that, given an FL0 concept description C and a TBox T ,
the tree tC encoding the tuple LT (C) can be represented by an rLTA.
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Theorem 1 [28]. Let C be an FL0 concept description and T a TBox. Then
one can construct a representing looping tree automaton that represents tC in
time exponential in the size of C and T .

In case we are given a general LTA A, we should like to know whether it
actually represents a tree (i.e., recognizes a singleton set), and if the answer
is affirmative construct an rLTA that represents the same tree. Basically, this
can be achieved as follows. Given A, we apply the emptiness test for looping
automata [13] to check whether L(A) = ∅. If this is the case, A does not represent
a tree. Otherwise, we reduce A to an automaton Ar by removing superfluous
states and then removing all but one transition for every state. If A represents
a tree, Ar is the rLTA we are looking for. To check whether this is the case, we
check whether A accepts a tree that is different from the unique tree accepted
by Ar (see [7] for details).

Lemma 1. Let A be an LTA. We can decide in polynomial time whether A
represents a tree. If A represents a tree t ∈ Tω

Σ,L, then we can construct an
rLTA representing t in polynomial time.

The results of this section show that we can restrict the attention to rLTAs
when representing regular trees.

4 Using Weighted Looping Tree Automata to Assign
a Value to a Tuple of Languages

Our goal is now to assign values from a (numerical or other) domain to tuples
of (possibly infinite) languages that can be represented by regular trees. Conse-
quently, we need a device that takes as input such a tree and returns a value.
Weighted looping tree automata are such devices: they assign values (from a
so-called semiring) to infinite trees. In the next subsection, we introduce the
special type of weighted tree automata that we will use together with the neces-
sary notions (semirings, discounting, etc.). We show how the language distances
d1, d2 introduced in the previous section can be realized using such automata.
Then, we turn to the problem of how to actually compute the value assigned by
such an automaton to a regular tree that is represented by an rLTA.

4.1 Weighted Looping Tree Automata

In order to assign a value to a tree, weighted tree automata make use of tran-
sitions that are equipped with weights. These weights are usually elements of a
semiring such that one can add and multiply weights. An extensive survey of
weighted tree automata can be found in [21]. In a setting where the automata
are required to work on infinite trees, the underlying semiring should admit suit-
able infinite sums and products [31]. In the context of infinite trees, it is also
useful to employ discounting. This has been used for modeling systems with
non-terminating behavior [1] in order to assign different degrees of importance
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to incidents that happen later in time. In our setting, discounting can be used
to assign less importance to differences that occur for longer words, i.e., further
down in the tree.

Semirings. The weight structures underlying our weighted tree automata are
totally complete commutative semirings [31].

Definition 10. A semiring S = (S,⊕,⊗,O,1) consists of a set S, two binary
operations ⊕ and ⊗, and two constant elements O and 1 such that:

1. (S,⊕,O) is a commutative monoid,
2. (S,⊗,1) is a monoid,
3. multiplication distributes over addition from left and right,
4. O ⊗ a = a ⊗ O = O for all a ∈ S.

A semiring is called commutative if a ⊗ b = b ⊗ a for all a, b ∈ S.

In totally complete commutative semirings, addition and multiplication can be
extended to infinite sums

⊕
i∈I ai and countably infinite products

⊗
i≥0 ai sat-

isfying properties that suitably extend the properties of binary addition and
multiplication in semirings to the infinite case (see [31] for formal definitions).

Examples. The following semirings are commutative and totally complete [31]:

– the semiring (N∪ {+∞},+, ·, 0, 1) of natural numbers extended with positive
infinity +∞,

– the tropical semiring Trop = (N ∪ {+∞},min,+,+∞, 0) and the arctic
semiring Arc = (N ∪ {+∞,−∞}, sup,+,−∞, 0) with the binary operations
extended in the natural way to infinitary operations,

– their real counterparts Rinf = (R≥0 ∪ {+∞}, inf,+,+∞, 0), Rsup = (R≥0 ∪
{+∞,−∞}, sup,+,−∞, 0),

– the Viterbi semiring ([0, 1], sup, ·, 0, 1),
– every complete distributive lattice.

Discounting. In the setting of semirings, discounting is defined by using semi-
ring endomorphisms. This approach was originally used for weighted automata
on infinite words by Droste and Kuske in [17], and extended to weighted
automata on infinite trees by Mandrali and Rahonis [26].

Definition 11. Let S = (S,⊕,⊗,O,1) be a semiring. A mapping f : S → S is
called an endomorphism if f(a⊕ b) = f(a)⊕ f(b) and f(a⊗ b) = f(a)⊗ f(b) for
all a, b ∈ S, and f(O) = O, f(1) = 1. The set End(S) of all endomorphisms of
S is a monoid with composition ◦ as binary operation and the identity mapping
id as unit.

For Rsup, it was proved in [17] that every endomorphism is of the form
p(a) = p · a for some p ∈ [0,+∞), and conversely, every p ∈ [0,+∞) defines
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an endomorphism of Rsup in this way. The same result can be shown for Rinf as
well [18]. Finally, it is not difficult to see that, for the Viterbi semiring, every
endomorphism is of the form p̃(a) = ap for some p ∈ [0,+∞), and conversely
every p ∈ [0,+∞) defines an endomorphism of Viterbi.

Definition 12. Let Σ = {σ1, . . . , σk} be a finite set of symbols and S a semi-
ring. A discounting for Σ and S is a tuple Φ ∈ (End(S))k.2

For a discounting Φ = (φ1, . . . , φk) and for every word w = σi1σi2 . . . σin
∈

Σ∗, we define the endomorphism φw of S induced by Φ and w as φw = φi1 ◦φi2 ◦
· · · ◦ φin

, where for w = ε the empty composition is id .

Weighted Looping Tree Automata. In the following, S is assumed to be a
totally complete commutative semiring. An infinitary tree series h over L and
S is a mapping h : Tω

Σ,L → S. The class of all infinitary tree series over L and S
is denoted by S〈〈Tω

Σ,L〉〉.

Definition 13 (Weigthed looping tree automaton with discounting Φ).
A weighted looping tree automaton with discounting Φ (Φ-wLTA) over S is a
tuple M = (Σ,Q,L, in, wt) where Q is a finite state set, L is a finite set of
labels, Σ = {σ1, . . . , σk} is a finite set of symbols, in : Q → S is the initial
distribution, and wt : Q × L × Qk → S is a mapping assigning weights to the
transitions of the automaton.

Given a Φ-wLTA M = (Σ,Q,L, in, wt) over S, a run of M on a tree t ∈
Tω

Σ,L is a mapping r : Σ∗ → Q. We denote the set of all runs of M on t by
RM(t). Given a run r, we denote the transition (r(w), t(w), r(wσ1), . . . , r(wσk))
by −→r (w). The weight of the run r at w ∈ Σ∗ is defined as wt(r, w) := wt(−→r (w)).
The Φ-weight (or simply weight) of r is defined as

weight(r) := in(r(ε)) ⊗
⊗

w∈Σ∗
φw(wt(r, w)).

Finally, the Φ-behavior (or simply behavior) of M is the infinitary tree series
||M|| ∈ S〈〈Tω

Σ,L〉〉 whose coefficients are determined for every t ∈ Tω
Σ,L by

(||M||, t) :=
⊕

r∈RM(t)

weight(r).

If we take φi = id for every i = 1, . . . , k, then we are left with a “normal” wLTA
over S in the sense of [31], and thus dispense with the prefix Φ- in the notation.

If |L| = 1, then Tω
Σ,L consists of a single tree tul , which we will call the

unlabeled tree since the labels are then irrelevant. In this case, we omit the label
from the transitions of a Φ-wLTA M and write RM for its runs, omitting tul .
Also note that then ‖M‖ is a single element of S rather than a tree series.
2 In the literature, more general forms of discounting have been introduced, where the
tuple of endomorphisms to be used depends also on the label of a node, but here we
restrict our attention to the simpler form of discounting introduced above.
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Expressing Language Distance Functions. The functions d1, d2 introduced
in Example 3 take a pair of languages over an alphabet Σ as input. Thus, to
represent this kind of input in a tree, we use the label set L2 := {0, 1}2. We
show that d2 as well as a vital component of d1 can be expressed by weighted
looping automata with discounting over Rinf . The function d1 itself and the
function e1 of Example 2 can be expressed using the Viterbi semiring (see [7]).

Example 5. The first language distance described in [8] is d1(K,N) = 2−n where
n = min{|w| | w ∈ K ΔN}. We introduce a wLTA (without discounting) that,
given a tree t representing the tuple of languages (K,N), computes the minimum
n rather than 2−n itself. Given n, the exponentiation can be done by external
computation. Consider the wLTA M1 = (Σ,Q,L2, in1, wt1) over Rinf = (R≥0 ∪
{+∞}, inf,+,+∞, 0), where Q = {q0, q1}, in1(q0) = +∞, in1(q1) = 0 and

wt1(q, l, p1, . . . , pk) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if q = q1, l ∈ {(0, 0), (1, 1)}, pi = q1 for some 1 ≤ i ≤ k

and pj = q0 for j �= i

0 if q = q1, l ∈ {(1, 0), (0, 1)}, pi = q0 for all 1 ≤ i ≤ k

0 if q = q0, l ∈ {0, 1}2, pi = q0 for all 1 ≤ i ≤ k

+∞ otherwise

Intuitively, each run using only transitions with non-infinite weights selects one
path in the tree, which it labels with q1 until an element in the symmetric
difference is found. The transitions up to this point in the selected path receive
weight 1, and all other transitions have weight 0. Thus, adding up the weights
(with the multiplication ⊗ = + of Rinf) gives us the distance from the root to
the node where the difference was detected, i.e., the length of the word in the
symmetric difference (or +∞ in case no difference is found on the chosen path).
By building the infimum over all runs, the length of the shortest word in the
symmetric difference is found.

Example 6. The second distance described in [8] is d2(K,N) = μ(K ΔN),
where μ(M) = 1

2

∑
w∈M (2|Σ|)−|w|. We introduce a Φ-wLTA that, given a

tree t representing the tuple of languages (K,N), computes μ(K ΔN). Con-
sider the Φ-wLTA M2 = (Σ,Q,L2, in2, wt2) over Rinf where Q = {q0, q1},
in2(q0) = in2(q1) = 0 and

wt2(q, l, p1, . . . , pk) =

⎧
⎪⎨

⎪⎩

0 if q = q0, l ∈ {(0, 0), (1, 1)}
1
2

if q = q1, l ∈ {(1, 0), (0, 1)}
+∞ otherwise

Finally, the discounting Φ = (φ1, . . . , φk) is defined as φi = 1
2|Σ| for every i =

1, . . . , k, where 1
2|Σ| (a) = 1

2|Σ| · a for a ∈ R≥0 and 1
2|Σ| (+∞) = +∞.

It is easy to see that there is a unique run r0 with non-infinite weight, the one
that assigns q0 to the nodes labeled with (0, 0) or (1, 1), i.e., words that do not
belong to K ΔN , and q1 to the ones labeled with (1, 0) or (0, 1), i.e., words that
belong to K ΔN . The discounting multiplies the weight of every word w ∈ Σ∗
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with ( 1
2|Σ| )

|w|. If the word does not belong to K ΔN it gets a zero weight. If
it does belong to K ΔN , it gets weight 1

2 . “Multiplying” in Rinf (i.e., summing
over all words in Σ∗), we obtain exactly μ(K ΔN) as weight for this run.

4.2 Computing the Behavior on Regular Trees

Given a Φ-wLTA M over a semiring S and an rLTA A representing a regular
tree t, we want to compute the behavior of M on t, i.e., (||M||, t). In a first step,
we reduce this problem to the problem of computing the behavior of a Φ-wLTA
on the unlabeled tree. To be more precise, we combine the two automata M
and A into a single Φ-wLTA MA that works on the unlabeled tree tul such that
(||M||, t) = (||MA||, tul).

Theorem 2. Given a Φ-wLTA M = (Σ,Q,L, in, wt) over S and an rLTA
A = (Σ,P,L,Δ, {ps}) representing a regular tree t, one can construct in poly-
nomial time a Φ-wLTA MA over S working on the unlabeled tree tul such that
(||M||, t) = (||MA||, tul).

Proof. Let S = (S,⊕,⊗,O,1). By the definition of rLTAs, for every state p ∈ P
there exists a unique letter lp ∈ L such that (p, lp, . . .) ∈ Δ.

We define the Φ-wLTA MA = (Q × P × L,Σ, in′, wt′) over S as follows:

in′(q, p, l) :=

{
in(q) if p = ps and l = lps

O otherwise

wt′((q0, p0, l0),(q1, p1, l1), . . . , (qk, pk, lk)
)

:=

{
wt(q0, l0, q1, . . . , qk) if (p0, l0, p1, . . . , pk) ∈ Δ

O otherwise

To prove that (‖M‖, t) = (‖MA‖, tul), it is sufficient to show that there exists
an injection τ : RM(t) → RMA such that weight(r) = weight(τ(r)) for every
r ∈ RM(t) and weight(r′) = O for every r′ ∈ RMA \ im(τ), where im(τ) stands
for the image set of the mapping τ . The definition of the injection τ and a proof
that it has the required properties can be found in [7]. ��

Thus, it remains to show how the behavior of a Φ-wLTA working on the
unlabeled tree can be computed. For wLTAs (without discounting) over complete
distributive lattices this was done in [12]. In the next section, we show how the
behavior of a Φ-wLTA over the semiring Rinf can be computed.

5 Computing the Behavior on the Unlabeled Tree in Rinf

Concentrating on Rinf is motivated, on the one hand, by the fact that our moti-
vating examples (the distance functions d1 and d2) can be expressed using wLTA
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with discounting over this semiring. On the other hand, discounting for this semi-
ring is well-understood [17] and nicely behaved. Note, however, that our results
can be extended to the Viterbi semiring (see [7]).

Recall that, for Rinf , all endomorphisms are of the form p(a) = p · a for
p ∈ R≥0, and thus the discounting is of the form Φ = (p1, . . . , pk). Given w =
σi1 . . . σim

∈ Σ∗, we set pw = pi1 · . . . ·pim
where the empty product (case w = ε)

is 1. Then φw(a) = φi1 ◦· · ·◦φim
(a) = pi1 · . . . ·pim

·a = pw(a), and thus φw = pw.
It is easy to see that, for p > 0, p distributes over inf and

∑
. In the following,

we assume that pi �= 0 for i = 1, . . . , k, and we will write pw · a instead of φw(a).
A q-run r of M is a run with r(ε) = q. We denote the set of all q-runs of M as

R(q). The running weight of a q-run is defined like its weight, but without taking
the initial distribution into account, i.e., rweight(r) :=

∑
w∈Σ∗ pw ·wt(r, w), and

thus weight(r) = in(q) + rweight(r). Consequently, if we define

μ(q) := inf
r∈R(q)

rweight(r) (for every q ∈ Q)

then (‖M‖, tul ) = minq∈Q {in(q) + μ(q)} . Hence, in order to compute the
behavior of M on tul , it suffices to calculate the values μ(q) for all q ∈ Q.
These values satisfy the following system of recursive equations (see [7] for a
proof):

μ(q) = min
(q1,...,qk)∈Qk

{

wt(q, q1, . . . , qk) +
k∑

i=1

pi · μ(qi)

}

. (5)

Our approach for computing the values μ(q) depends on the kind of discounting
used.

5.1 Behavior for Nondecreasing Discounting

In this section we assume that the discounting is nondecreasing, i.e., pi ≥ 1 for
all i = 1, . . . , k. Note that absence of discounting corresponds to the special case
where pi = 1 for all i = 1, . . . , k.

If the discounting is nondecreasing, then we have for every run r ∈ RM that

rweight(r) =
∑

w∈Σ∗
pw · wt(r, w) ≥

∑

w∈Σ∗
wt(r, w),

where in the latter infinite sum only finitely many distinct non-negative real
numbers occur. Consequently, this sum is a finite number iff only 0 is used
infinitely often in the sum. Therefore, a run r has finite weight iff from a certain
depth on it has only zero-weight transitions. Consequently, we can restrict our
attention to deciding for each state q whether such a (finite weight) q-run exists,
and compute the smallest weight among all of them.

The first step consists of computing the set of states in Q that admit a
run with only zero-weight transitions. Clearly, these are exactly the states q for
which μ(q) = 0. By keeping only transitions with weight 0 and then applying
the emptiness test for LTAs [13] to the resulting automaton, these states can
easily be computed (see [7] for details).
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Lemma 2. The set of states Qμ=0 := {q ∈ Q | μ(q) = 0} can be computed in
polynomial time.

A run with finite weight does not use a transition with weight +∞ and below
a certain depth in the tree it contains only states that belong to Qμ=0. Thus, the
states used in the run must have access to states in Qμ=0 through transitions
with finite weight. To be more precise, define the set Qacc of states that have
access to Qμ=0 to be the least subset of Q such that (i) Qμ=0 ⊆ Qacc and (ii)
if qi ∈ Qacc for every i = 1, . . . , k and wt(q, q1, . . . , qk) �= +∞ then q ∈ Qacc.
States q that have access to Qμ=0 have a q-run with finite running weight, and
hence μ(q) < +∞. If q does not have access to Qμ=0, then μ(q) = +∞. By using
an approach inspired by Dijkstra’s shortest path algorithm, we can compute the
states that have access to Qμ=0 together with their μ-value in polynomial time
(see [7] for details). Since the behavior of M on tul can easily be computed from
the values μ(q) for q ∈ Q, this yields the following theorem.

Theorem 3. The behavior of a Φ-wLTA with nondecreasing discounting Φ over
Rinf on the unlabeled tree can be computed in polynomial time.

5.2 Behavior for Contracting Discounting

In this section, we assume a contracting discounting, i.e., pi < 1
k for all i =

1, . . . , k, where k = |Σ|.
Recall that it suffices to compute the value μ(q) for every q ∈ Q. To achieve

this, we generalize the approach used in [8] for the special case of d2. Let Q =
{q1, . . . , qn}. For each qi ∈ Q, the unknown value μ(qi) is associated to a variable
xi. Additionally, let I = {1, . . . , n}. Then, (5) states that (μ(q1), . . . , μ(qn)) is a
solution of the following system of equations:

xi = min
(i1,...,ik)∈Ik

⎧
⎨

⎩
wt(qi, qi1 , . . . , qik

) +
k∑

j=1

pj · xij

⎫
⎬

⎭
(6)

Since we use contracting discounting, Banach’s fixed point theorem [14,23]
can be used to show that the system (6) has a unique solution in R (see [7] for
details). Thus, to compute the values μ(q) for q ∈ Q it is sufficient to compute a
solution of (6). This can be realized using Linear Programming [33], basically by
the same approach used in [8]. Since solutions of Linear Programming problems
can be computed in polynomial time, this is also the case for the values μ(q),
and thus for the behavior.

Theorem 4. The behavior of a Φ-wLTA with contracting discounting Φ over
Rinf on the unlabeled tree can be computed in polynomial time.

6 Conclusion

We have seen that concept comparison measures are important components of
several approaches for approximation in DLs. Given two concepts C,D, such a
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measure assigns to them a value that expresses how well they compare. In gen-
eral, these values come from a partially ordered set, but in most approaches to
approximation considered so far, measures that map into the real numbers, and
often only into the real interval [0, 1], are used. An important requirement for such
measures is that they respect the semantics of concepts, i.e., are invariant under
equivalence in the sense that, if we replace C,D by equivalent concepts C ′,D′,
then the returned similarity comparison value is the same. To be useful in prac-
tice, another important requirement on the measures is that they are computable.

The main technical contribution of this paper is the development of a general
framework for defining concept comparison measures for the DL FL0 that are
computable and invariant under equivalence w.r.t. general TBoxes. Our frame-
work is based on a characterization of equivalence w.r.t. general FL0 TBoxes
that uses tuples of formal languages. These tuples can be expressed by infinite
trees, which in turn are represented by looping tree automata. Assigning a com-
parison value to a pair of FL0 concepts in an equivalence invariant way thus
boils down to assigning a value to a tree that is represented by a looping tree
automaton. We use weighted tree automata with discounting for this purpose,
and reduce the problem of computing the comparison value to the problem of
computing the behavior of such an automaton on the unlabeled infinite tree. If
the weights of the automaton come from the semiring Rinf , then this behavior
can be computed in polynomial time provided that the employed discounting
is nondecreasing or contracting. An obvious topic for future research is thus to
extend these results to discounting that is neither contracting nor nondecreasing,
or to other semirings as weight structures.

While the use of our framework guarantees that the obtained concept compar-
ison measures are equivalence invariant and computable, the user of the frame-
work needs to ensure (by appropriately defining the weighted automaton) that
the obtained values make sense in the intended application. Nevertheless, it
might be helpful to provide the user with automated tools for checking whether
the defined measure satisfies certain properties, such as the properties often
required for concept similarity measures [25]. In our framework, this boils down
to deciding certain properties of weighted tree automata with discounting.

Finally, if concept comparison measures defined using our framework are
employed within one of the approximation approaches sketched in Sect. 2.3, one
can investigate whether the important inference problems in this approach are
guaranteed to be decidable. For example, assume that a concept similarity mea-
sure defined using our approach is employed to relax instance queries in FL0.
Can we extend our computability result for the measure to a decidability result
for the relaxed instance problem? If the answer is affirmative, what is the exact
complexity of the relaxed instance problem in this setting?
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for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR
2001. LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001). doi:10.1007/
3-540-45744-5 8

14. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux
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Abstract. This paper gives a short overview of specific logical
approaches to data extraction, data management, and reasoning about
data. In particular, we survey theoretical results and formalisms that
have been obtained and used in the context of the Lixto Project at TU
Wien, the DIADEM project at the University of Oxford, and the VADA
project, which is currently being carried out jointly by the universities
of Edinburgh, Manchester, and Oxford. We start with a formal app-
roach to web data extraction rooted in monadic second order logic and
monadic Datalog, which gave rise to the Lixto data extraction system.
We then present some complexity results for monadic Datalog over trees
and for XPath query evaluation. We further argue that for value creation
and for ontological reasoning over data, we need existential quantifiers
(or Skolem terms) in rule heads, and introduce the Datalog± family. We
give an overview of important members of this family and discuss related
complexity issues.

1 Introduction

“The web is the largest database” is a sentence one nowadays can hear quite fre-
quently. However, this statement is not really true. The web, including the deep
web, is certainly the largest data repository, but not a database. In a database,
data is homogeneously formatted, and can be retrieved efficiently and uniformly
via query languages. Web data, even when it is about the same type of items
(say, used cars or any other consumer good) appears in a different format on
many different websites. There is, moreover, no uniform query or retrieval mech-
anism. In order to be able to query such data, we thus have to extract it from the
different web sources, recast it into a single format, and, if appropriate, store it
in a single database. This process is called web data extraction, and the programs
that extract data from the web are called wrappers.

The wrapping problem is often seen as a software and web-engineering task,
but has also been addressed by a substantial amount of systems-oriented research
work, see e.g. TSIMMIS [55], FLORID [46], DEByE [44], W4F [56], XWrap [45],
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 27–47, 2017.
DOI: 10.1007/978-3-319-53733-7 2
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Lixto [4,6,29] and Diadem [22], some of which led to commercial spin-outs. More-
over, in [27], a logical theory of data extraction has been developed that has led
people to consider monadic Datalog as a logical language for data extraction,
which has, in turn, been the basis of a more practical logical language imple-
mented in the Lixto system. In Sect. 2, which is a slightly shortened exposition
of material from [29] (which in turn summarizes [27]), we will give a short survey
of the logical approach to web data extraction.

Web documents in HTML are essentially labeled trees, where many labels
correspond to formatting instructions for data presentation (such as <table>,
<td>, or <header1>, and so on) and where the actual data items reside at
the leaf level. Thus, rather than imposing a logical structure on the data, the
labels in HTML take care of the display format and make sure that a web page
displayed in a browser meets the eye of the beholder. However, XML1, a well-
known language quite similar to HTML, allows one to impose a tree-shaped
logical structure on data. From a conceptual point of view, this generalizes the
“flat” relational data format. Special query language such as XPath2, XQuery3,
and XSLT4 have been designed for XML databases. With some minor additions,
monadic Datalog can be used to simulate the core fragment of XPath [26], which
indicates that core XPath is not more expressive than monadic Datalog. This
observation gave rise to complexity studies of XPath evaluation whose basic
results will be summarized in Sect. 3.

Once data is extracted, one usually wants to combine it with other extracted
data and corporate data from local databases. In addition, some cleaning, rea-
soning and further provisioning tasks have to be performed. All this together is
called data wrangling [23]. Apparently, languages for data wrangling purposes
should be able to perform complex data transformation, data exchange, data
integration and ontological reasoning tasks. However, Datalog, let alone monadic
Datalog, is not powerful enough for performing such tasks. In Sect. 4, which is
based on the longer survey [10], we argue that the crucial limitation of Datalog
is the fact that is not able to infer the existence of new objects, which are not
already in the extensional database. We then proceed to introduce Datalog±, a
family of logical languages that extend Datalog with key modeling features such
as existential quantifiers in rule heads, which allow to infer the existence of new
objects. We give an overview of important members of this family and discuss
related complexity issues.

2 Logical Foundations of Web Data Extraction

2.1 Desiderata for Wrapping Languages

To allow for a foundational study of wrapping languages, we first need to estab-
lish criteria that allow us to compare such languages. In [27], four desiderata
1 https://www.w3.org/TR/1998/REC-xml-19980210.
2 http://www.w3c.org/TR/xpath/.
3 https://www.w3.org/XML/Query/.
4 http://www.w3.org/TR/xslt.

https://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3c.org/TR/xpath/
https://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt
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were proposed that a good wrapping language should satisfy. In particular, such
a language should

(i) have a solid and well-understood theoretical foundation,
(ii) provide a good trade-off between complexity and the number of practical

wrappers that can be expressed,
(iii) be easy to use as a wrapper programming language, and
(iv) be suitable for incorporation into visual tools.

The core notion that we base our wrapping approach on is that of an infor-
mation extraction function, which takes a labeled unranked tree (representing a
Web document) and returns a subset of its nodes. A wrapper is a program which
implements one or several such functions, and thereby assigns unary predicates
to document tree nodes. Based on these predicate assignments and the structure
of the input tree, a new data tree can be computed as the result of the informa-
tion extraction process in a natural way, along the lines of the input tree, but
using the new labels and omitting nodes that have not been relabeled (by some
form of tree minor computation).

Given a set of information extraction functions, one natural way to wrap an
input tree t is to compute a new label for each node n (or filter out n) as a
function of the predicates assigned using the information extraction functions.
The output tree is computed by connecting the resulting labeled nodes using the
(transitive closure of) the edge relation of t, preserving the document order of t.
In other words, the output tree contains a node if a predicate corresponding to
an information extraction function was computed for it, and contains an edge
from node v to node w if there is a directed path from v to w in the input
tree, both v and w were assigned information extraction predicates, and there
is no node on the path from v to w (other than v and w) that was assigned
information extraction predicates. We do not formalize this operation here; the
natural way of doing this is obvious.

That way, we can take a tree, re-label its nodes, and declare some of them
as irrelevant, but we cannot significantly transform its original structure. This
coincides with the intuition that a wrapper may change the presentation of
relevant information, its packaging or data model (which does not apply in the
case of Web wrapping), but does not handle substantial data transformation
tasks. We believe that this captures the essence of wrapping.

We assume unary queries in monadic second-order logic (MSO) over trees as
the expressiveness yardstick for information extraction functions. MSO over trees
is well-understood theory-wise [15,18,20,58] (see also [59]) and is quite expres-
sive. In fact, it is considered by many as the language of choice for defining
expressive node-selecting queries on trees (see e.g. [27,43,53,54]; [57] acknowl-
edges the role of MSO but argues for even stronger languages). In our experience,
when considering a wrapping system that lacks this expressive power, it is usu-
ally quite easy to find real-life wrapping problems that cannot be handled (see
also the related discussion on MSO expressiveness and node-selecting queries
in [43]).
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Fig. 1. (a) An unranked tree and (b) its representation using the binary relations
“firstchild” (↙) and “nextsibling” (↘).

In this section, we discuss monadic Datalog over trees, a simple form of the
logic-based language Datalog, as a wrapper programming language. Monadic
Datalog satisfies desiderata (i) to (iv) raised above. Monadic Datalog is the
logical core of Elog [5], which is the internal language of the Lixto system. Elog
extends monadic Datalog by features for handling the most common tasks of
web navigation and visual wrapper-definition. Elog it strictly more expressive
than MSO. For a detailed description of Elog, which we will not further discuss
here, see [5]. For a formal study of Elog and a comparison to other wrapping
languages, see [27,28].

A monadic Datalog program can compute a set of unary queries (“infor-
mation extraction functions”) at once. Each intensional predicate of a program
selects a subset of dom and can be considered to define one information extrac-
tion function. However, in general, not all intensional predicates define informa-
tion extraction functions. Some have to be declared as auxiliary.

2.2 Tree Structures

Trees are defined in the normal way and have at least one node. We assume
that the children of each node are in some fixed order. Each node has a label
taken from a finite nonempty set of symbols Σ, the alphabet5. We consider
only unranked finite trees, which correspond closely to parsed HTML or XML
documents. In an unranked tree, each node may have an arbitrary number of
children. An unranked ordered tree can be considered as a structure

tur = 〈dom, root, leaf, (labela)a∈Σ ,firstchild, nextsibling, lastsibling〉

where “dom” is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and
the “labela” relations are unary, while “firstchild” and “nextsibling” are binary.
5 In this simple model, unrestricted sets of tags as well as string and attribute values

are assumed to be encoded as lists of character symbols modeled as subtrees in our
document tree.
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All relations are defined according to their intuitive meanings. “root” con-
tains exactly one node, the root node. “leaf” consists of the set of all leaves.
“firstchild(n1, n2)” is true iff n2 is the leftmost child of n1; “nextsibling(n1, n2)”
is true iff, for some i, n1 and n2 are the i-th and (i + 1)-th children of a com-
mon parent node, respectively, counting from the left (see also Fig. 1). labela(n)
is true iff n is labeled a in the tree. Finally, “lastsibling” contains the set of
rightmost children of nodes. (The root node is not a last sibling, as it has no
parent.) Whenever the structure t may not be clear from the context, we state it
as a subscript of the relation names (as e.g. in domt, roott, . . . ). By default, we
will always assume trees to be represented using the schema (signature) outlined
above, and will refer to them as τur.

The document order relation ≺ is a natural total ordering of dom used in
several XML-related standards. It is defined as the order in which the opening
tags of document tree nodes are first reached when reading an HTML or XML
document (as a flat text file) from left to right.

2.3 Monadic Datalog

We assume the function-free logic programming syntax and semantics of the
Datalog language and refer to [1] for a detailed survey of Datalog. Monadic Dat-
alog [14,27] is obtained from full Datalog by requiring all intensional predicates
to be unary. By unary query, we denote a function that assigns a predicate to
some elements of dom (or, in other words, selects a subset of dom). For monadic
Datalog, one obtains a unary query by distinguishing one intensional predicate
as the query predicate. By signature, we denote the (finite) set of all extensional
predicates (with fixed arities) available to a Datalog program. By default, we
use the signature τur for unranked trees.6

Example 1. The monadic Datalog program over τur

Italic(x) ← labeli(x) (1)
Italic(x) ← Italic(x0), firstchild(x0, x) (2)
Italic(x) ← Italic(x0), nextsibling(x0, x) (3)

computes, given an unranked tree (representing an HTML parse tree), all nodes
whose contents are displayed in italic font (i.e., for which an ancestor node in the
parse tree corresponds to a well-formed piece of HTML of the form 〈i〉 . . . 〈/i〉
and is thus labeled “i”). The program uses the intentional predicate, Italic, as
the query predicate.

Monadic second-order logic (MSO) extends first-order logic by quantification
over set variables, i.e., variables ranging over sets of nodes, which coexist with
6 Note that our tree structures contain some redundancy (e.g., a leaf is a node x such

that ¬(∃y)firstchild(x, y)), by which (monadic) Datalog becomes as expressive as its
semipositive generalization. Semipositive Datalog allows to use the complements of
extensional relations in rule bodies.
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first-order quantification of variables ranging over single nodes. A unary MSO
query is defined by an MSO formula ϕ with one free first-order variable. Given
a tree t, it evaluates to the set of nodes {x ∈ dom | t � ϕ(x)}. The following
holds for arbitrary finite structures:

Proposition 2 (Folklore). Each monadic Datalog query is MSO-definable.

Here, our main measure of query evaluation cost is combined complexity , i.e.
where both the database and the query (or program) are considered variable.
Later, we will also be interested in data complexity, where the query (or program)
is fixed and only the database is considered variable.

Proposition 3. (see e.g. [27]) Monadic Datalog (over arbitrary finite struc-
tures) is NP-complete w.r.t. combined complexity.

2.4 Monadic Datalog over Trees

By restricting our structures to trees, monadic Datalog acquires a number of
additional nice properties. First,

Theorem 4 [27]. Over τur, monadic Datalog has O(|P| · |dom|) combined com-
plexity (where |P| is the size of the program and |dom| the size of the tree).

This follows from the fact that all binary relations in τur have bidirectional
functional dependencies; for instance, each node has at most one first child and is
the first child of at most one other node. Thus, given a program P, an equivalent
ground program can be computed in time O(|P| · |dom|), while ground programs
can be evaluated in linear time [52].

A unary query over trees is MSO-definable exactly if it is definable in monadic
Datalog.

Theorem 5 [27]. Each unary MSO-definable query over τur is definable in
monadic Datalog over τur.

(The other direction follows from Proposition 2.) Judging from our experience
with the Lixto system, real-world wrappers written in monadic Datalog are small.
Thus, in practice, we do not trade the complexity compared to MSO (for which
query evaluation is known to be PSPACE-complete) for considerably expanded
program sizes.

Each monadic Datalog program over trees can be efficiently rewritten into an
equivalent program using only very restricted syntax. This motivates a normal
form for monadic Datalog over trees.

Definition 6. A monadic Datalog program P over τur is in Tree-Marking Nor-
mal Form (TMNF) if each rule of P is of one of the following three forms:

(1) p(x) ← p0(x),
(2) p(x) ← p0(x0), B(x0, x).
(3) p(x) ← p0(x), p1(x).
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where the unary predicates p0 and p1 are either intensional or of τur and B is
either R or R−1, where R is a binary predicate from τur. ��

In the next result, the signature for unranked trees may extend τur to include
the “child” relation – likely to be the most common form of navigation in trees.

Theorem 7 [27]. For each monadic Datalog program P over τur ∪ {child},
there is an equivalent TMNF program over τur which can be computed in time
O(|P|).

From the above discussion, we conclude that monadic Datalog has the expres-
sive power of our yardstick MSO (on trees), can be evaluated efficiently, and is a
good (easy to use) wrapper programming language. Indeed, with respect to the
desiderata listed in Subsect. 2.1, we point out that:

1. The existence of the normal form TMNF demonstrates that rules in monadic
Datalog never have to be long or intricate.

2. The monotone semantics makes the wrapper programming task quite mod-
ular and intuitive. Differently from an automaton definition that usually has
to be understood entirely to be certain of its correctness, adding a rule to a
monadic Datalog program usually does not change its meaning completely,
but adds to the functionality.

3. Wrappers defined in monadic Datalog are implemented as queries, whose
definitions can be local and only need to consider as much context as required
by the query conditions. This distinguishes them from tree automata, which,
even in flavors able to define monadic queries, always recognise a language
of trees and conceptually traverse the entire input tree. This makes tree
automata more brittle in real-world wrapping scenarios, and causes them
to require a greater effort from the programmer, much of which is directed
towards accepting a large enough tree language, rather than the essence of
the wrapping task at hand.

Thus, monadic Datalog over trees as a framework for Web information extrac-
tion satisfies the first three of our desiderata stated in Subsect. 2.1: efficient
evaluation, appropriate expressiveness, and suitability as a practical wrapper
programming language. Only the fourth desideratum – the visual specification
of wrappers – is not addressed here; we refer the interested reader to [6,29],
where it is clearly explained that monadic Datalog paradigm is ideally suited for
representing wrappers generated by a visual wrapper definition process using
successive restriction and generalization steps.

3 The Complexity of XPath Query Evaluation

We have seen in Theorem 4 that monadic Datalog over trees defined by unary
relations and the binary relations “firstchild”, “nextsibling”, and “lastsibling”
can be solved in time linear in the size of the program and linear in the size
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of the tree. Relations such as “child” play an important role in various query
languages on trees, such as XPath (and thus, XQuery and XSLT); there, they
are called axes.

There are two main modes of navigation in trees, horizontal and vertical.
For horizontal navigation, one can distinguish between navigating among sibling
nodes and among nodes – intuitively – further left or right in the tree (the “fol-
lowing” axis in XPath). The most natural axis relations are thus Child, Child∗,
Child+, Nextsibling, Nextsibling∗, Nextsibling+, and Following, where

Following(x, y) := ∃z1, z2 Child∗(z1, x) ∧ Nextsibling+(z1, z2) ∧ Child∗(z2, y).

Note that if we consider complexity rather than expressiveness, we do not need
to deal with relations such as Firstchild in addition; we may assume a unary
predicate Firstsibling such that

Firstchild(x, y) ⇔ Child(x, y) ∧ Firstsibling(y).

A natural question is to ask for the complexity of monadic Datalog programs
over these axes, or, to start with a more basic problem, conjunctive queries
(which can be seen as Datalog programs containing only a single nonrecursive
rule). Note that conjunctive queries over trees also have natural applications in
computational linguistics, term rewriting, and data integration [32].

In the case that all individual rule-bodies are acyclic (conjunctive queries),
it is known from [27] that monadic Datalog over arbitrary axes can be evaluated
in linear time. However, in data extraction, as well as in many other practical
contexts, programs with cyclic rule bodies naturally arise.

As already observed in Proposition 3, while full Datalog is EXPTIME-
complete (see, e.g., [16]), monadic Datalog over arbitrary finite structures
is in NP (actually, NP-complete). For a lower bound on trees, it is
known [49] that already Boolean conjunctive queries over structures of the form
〈(Pi)i, child, child∗〉 are NP-hard w.r.t. combined complexity.

A detailed study of the tractability frontier of conjunctive queries over trees
is presented in [32]. As observed, the subset-maximal polynomial cases of axis
sets are

– {child+, child∗},
– {child,nextsibling,nextsibling+,nextsibling∗}, and
– {following}.

That is, for each class of conjunctive queries over a subset of one of these three
sets and over unary relations, the query evaluation problem is polynomial (with
respect to combined complexity). We have the dichotomy that for all other cases
of conjunctive queries using our axis relations (e.g. Child and Child+), the prob-
lem is NP-complete. Obviously, the complexity of monadic Datalog over a given
set of axes is always the same as that of conjunctive queries over the same axes.

The special case that queries are acyclic is also worth studying, since the
probably most important node-selecting query language on trees, XPath, is nat-
urally tree-shaped. All XPath engines available in 2002 took exponential time in
the worst case to process XPath [30]. However,
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Theorem 8 [30]. XPath 1 is in PTIME w.r.t. combined complexity.

This result is based on a dynamic programming algorithm which, in an
improved form [30], yielded the first XPath engine guaranteed to run in polyno-
mial time.

Most people use only the most common features of XPath, so it is worthwhile
to study restrictive fragments of this language. In [30], the Core XPath has been
introduced, the navigational fragment of XPath, which includes both horizontal
and vertical tree navigation with axes, node tests, and boolean combinations
of condition predicates. As shown there, Core XPath can be evaluated in time
linear in the size of the database and linear in the size of the query. However,

Theorem 9 [31]. Core XPath is P-hard w.r.t. combined complexity.

This property – shared by XPath, of which Core XPath is a strict fragment
– renders it highly unlikely that query evaluation is massively parallelizable (=
in the complexity class NC, c.f. [40]) or that algorithms exist that take less than
a polynomial amount of space for query processing. Interestingly, if we remove
negation in condition predicates, the complexity of Core XPath is reduced to
LOGCFL, a parallel complexity class in NC2 [31].

Theorem 10 [31]. Positive Core XPath is LOGCFL-complete w.r.t. combined
complexity.

This generalizes to a very large fragment of full XPath (called pXPath),
from which besides negation only few very minor features have to be removed
to obtain that

Theorem 11 [31]. pXPath is LOGCFL-complete w.r.t. combined complexity.

Further results on the complexity of various fragments of XPath 1 can be
found in [31]. Positive Core XPath queries correspond to acyclic positive queries
over axis relations. Interestingly, each conjunctive query over axis relations can
be mapped to an equivalent acyclic positive query, however there are no poly-
nomial translations for doing this [32]. Thus,

Corollary 12. For ever conjunctive query over trees, there is an equivalent pos-
itive Core XPath query.

Of course, when talking about conjunctive queries over trees, we assume that
all binary relations in the signature are relations from our set of axes.

Finally, Core XPath queries can be mapped to monadic Datalog in linear
time. The slightly curious fact here is that this remains true in the presence
of negation in Core XPath (for which no analogous language feature exists in
Datalog.)

Theorem 13 [21]. Each Core XPath query can be translated into an equivalent
TMNF query in linear time.
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4 Datalog±: A Family of Logical Languages

It is generally agreed that Datalog is a powerful language with several different
applications. We have already discussed that the monadic fragment of Datalog
gives rise to a good wrapping language that can be used for web data extraction
purposes. Moreover, Datalog has been used as an inference engine for knowledge
processing within several software tools, and has gained popularity in the context
of, e.g., source code querying and program analysis, and modeling distributed
systems.

Although Datalog is a powerful rule-based formalism, it is not able to infer
the existence of new objects that are not already in the extensional database.
For a number of applications, however, it would be desirable that a Datalog
extension could be able to express the existence of certain values that are not
necessarily from the domain of the extensional database. This can be achieved
by allowing existentially quantified variables in rule heads. Let us give a couple
of brief examples of such applications.

Data Exchange. When data needs to be transposed or copied from one rela-
tional database to another one, the problem of heterogeneous schemas often
arises. Imagine, for example, company ACME stores data about their employ-
ees in a relation EmpACME with schema (Emp#,Name,Address,Salary), while
the FOO corporation does not store employees’ addresses, but only phone
numbers, keeping their employee data in a relation EmpFOO having schema
(Emp#,Name,Phone,Salary). Imagine ACME is acquired by FOO and the
ACME employee data ought to be transferred into the FOO database, although
the phone numbers of the ACME employees are not (currently) known. This
could be achieved by a rule of the form:

EmpACME(e, n, a, s) → ∃p EmpFOO(e, n, p, s),

where phone numbers are simply existentially quantified. In practice, each phone
number is stored by a different (labeled) null value, representing a globally exis-
tentially quantified variable (i.e., a kind of Skolem constant). Advanced data
management systems such as Clio [51] have been developed, that effectively man-
age data-exchange mappings, handle existential nulls, and allow one to query
relations with nulls. In database theory, a rule of the above form is actually
called a tuple-generating dependency (TGD), while in the KR community is
known as existential rule; henceforth, we adopt the term TGD. In addition to
TGDs, equality-generating dependencies (EGDs) are often used. They cover the
well-known key constraints and functional dependencies that have been studied
for a long time [1]. For example, we may impose that every ACME employee has
only one phone number stored. This may be expressed as a Datalog rule with
an equality in the head:

EmpFOO(e, n, p, s),EmpFOO(e, n′, p′, s′) → p = p′.

The data exchange literature insists on finite target relations because it is
assumed that these relations are actually stored. It is thus important in this
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context to restrict our syntax to make sure that only a finite number of different
null values will be invented.

Ontology Querying. Description logics (DLs) [3] are used to formalize so-called
ontological knowledge about relationships between objects, entities, and classes
in a certain application domain. For example, we could express that every per-
son has exactly one father who, moreover, is himself a person, by the following
DL clauses, where Person is a set of objects whose initial value is specified in
the form of an extensional relation, called concept, and where HasFather is a
binary relation, a so-called role in DL terminology: (i) Person � ∃HasFather,
(ii) ∃HasFather− � Person, (iii) (funct HasFather). In an appropriate extension
of Datalog, the same can be expressed as:

Person(x) → ∃y HasFather(x, y),
HasFather(x, y) → Person(y),

HasFather(x, y),HasFather(x, y′) → y = y′.

Note that here the relation Person, which is supplied in the input with an ini-
tial value, is actually modified. Therefore, we no longer require (as in standard
Datalog) that extensional relation symbols cannot occur in rule heads.

DLs usually rely on classical first-order (FO) semantics, and so arbitrary
models (finite or infinite) are considered. In the above example, models with
infinite chains of ancestors are perfectly legal. Rather than “materializing” such
models, i.e., computing and storing them, we are interested in reasoning and
query answering. For example, whenever the initial value of Person is nonempty,
then the Boolean conjunctive query

∃x∃y∃z (HasFather(x, y) ∧ HasFather(y, z))

will evaluate to true, while the query

∃x∃y (HasFather(x, y) ∧ HasFather(y, x))

will evaluate to false, because it is false in some models.
To sum up, as we have briefly tried to sketch, some applications as the

ones discussed above could possibly profit from appropriate forms of Datalog
extended by the possibility of using rules with existential quantifiers in their
heads (TGDs), and by several additional features (such as, for example, equal-
ity, negation, disjunction, etc.).

Unfortunately, already for sets Σ of TGDs alone, most basic reasoning and
query answering problems are undecidable. In particular, checking whether a
Boolean conjunctive query evaluates to true w.r.t. a database D and a set Σ
of TGDs is undecidable [7]. Worse than that, undecidability holds even in case
both Σ and q are fixed, and only D is given as input [8]. It is thus important to
single out large classes of formalisms for rule sets Σ that

(i) are based on Datalog, and thus enable a modular rule-based style of knowl-
edge representation,
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(ii) are syntactical fragments of first-order logic so that answering a Boolean
query q under Σ for an input database D is equivalent to the classical
entailment check D ∧ Σ |= q,

(iii) are expressive enough for being useful in real applications in the above
mentioned areas,

(iv) have decidable query answering, and
(v) have good query answering complexity properties in case Σ and q are fixed.

This type of complexity is called data complexity, and is an important
measure, because we can realistically assume that the extensional database
D is the only really large object in the input.

In what follows we report on languages that fulfill these criteria. We dubbed
the family of such languages Datalog±, because, as already explained, they add
features to Datalog, and on the other hand make some syntactic restrictions in
order to fulfill desiderata (iv) and (v). In the rest of the paper, we focus on the
key feature of existential quantification, or, in other words, on languages that
are based on TGDs.

4.1 Acyclicity

Recall that for data exchange purposes, it is important to ensure that the target
instance is finite since it is actually stored. However, executing an arbitrary set
of TGDs on an input database, in general, we are forced to build an infinite
instance due to the presence of the existentially quantified variables. Consider,
for example, the set Σ of TGDs:

Person(x) → ∃y HasFather(x, y) HasFather(x, y) → Person(y),

which states that each person has a father who is also a person. Assuming now
that the input database is D = {Person(Bob)}, stating that Bob is a person,
after executing Σ on D we obtain an infinite instance. Indeed, from the first TGD
we conclude that the atom HasFather(Bob, z1) holds, where z1 is a (labeled) null
value, while from the second TGD we obtain that Person(z1) holds. But then
we can infer that also the atoms HasFather(z1, z2) and Person(z2) hold, where
z2 is a fresh labeled null value, and it is apparent that this inference process
is infinite. The inference algorithm that we have just described is known in the
literature as the chase procedure (or simply chase) [1].

It is clear that a TGD-based language is suitable for data exchange purposes
if, in addition to the desiderata (i)–(v) discussed above, ensures the termina-
tion of the chase. Several languages with this property have been proposed; see,
e.g., [17,19,39,48]. The general idea underlying all these languages is to pose an
acyclicity condition on a graph that encodes how terms are propagated during
the execution of the chase procedure. The two most basic formalisms in this
family of languages are the classes of acyclic (a.k.a. non-recursive) and weakly-
acyclic sets of TGDs.
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Acyclic Sets of TGDs. The definition of this class relies on the notion of the
predicate (dependency) graph, which encodes how predicates depend to each
other. More precisely, the predicate graph of a set Σ of TGDs is a directed graph
G = (V,E), where V consists of all the relation symbols in Σ, and E is defined
as follows: for each σ ∈ Σ, for each relation R in the body of σ, and for each
relation P in the head of σ,7 (R,P ) ∈ E; no other edges occur in E. We say that
Σ is acyclic if G is acyclic.

It is not difficult to see that the chase always terminates under acyclic sets
of TGDs. This immediately implies the decidability of our main reasoning task,
that is, query answering. Given a Boolean conjunctive query q, to decide whether
a database D and an acyclic set Σ of TGDs entails q, we simply need to compute
the chase instance C w.r.t. D and Σ, and then check whether C satisfies q. We
know that:

Theorem 14 [47]. Query answering under acyclic sets of TGDs is in AC0

w.r.t. data complexity, and NEXPTIME-complete w.r.t. combined complexity.8

Notice that to explicitly compute the chase under acyclic sets of TGDs takes
polynomial time in the size of the database. Thus, to obtain the AC0 upper
bound w.r.t. the data complexity, we need a more refined approach. This is done
by unfolding the given set of TGDs (using a resolution-based procedure [34]) in
order to construct a (finite) union of conjunctive queries, which is then evaluated
over the input database. This allows us to conclude the AC0 upper bound stated
in the above theorem.

Weakly-Acyclic Sets of TGDs. It is clear that acyclic sets of TGDs do not cap-
ture plain Datalog. Nevertheless, an acyclicity-based class exists, called weakly-
acyclic sets of TGDs, that captures both acyclic sets of TGDs and Datalog.
This formalism has been proposed as the main language for data exchange pur-
poses [19]. Weak-acyclicity relies on a slightly more involved graph notion, called
position (dependency) graph, which encodes how terms are propagated from one
position to another during the chase. Instead of giving the rather long definition,
let us explain the key idea via a simple example.

R[1]

P[1]

R[2]

P[2]

Fig. 2. Position graph.

7 For a TGD of the form b → h, b is called the body, while h is called the head.
8 Here, the data complexity is calculated by fixing the set of TGDs and the query,

while in the combined complexity we assume that everything is part of the input.
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Example 15. Consider the set Σ consisting of the TGDs

R(x, y) → ∃z R(x, z) R(x, y) → P (x, y).

The position graph of Σ is shown in Fig. 2. We have an edge from R[1] to itself
since in the first TGD the variable x is propagated from the first position of the
relation R in the body to the first position of the relation R in the head. Now,
observe that at the same time, during the execution of the chase, a null value
will be generated at the second position of R; this is encoded by the dashed
edge, called special, from R[1] to R[2]. The other two (normal) edges are present
due to the second TGD.

A normal edge (π, π′) keeps track of the fact that a term may propagate
from π to π′ during the chase. A special edge (π, π′′) keeps track of the fact
that propagation of a value from π to π′ also creates a new value at position π′′.
Thus, if there is a cycle in the dependency graph that goes via a special edge,
then it is likely that the generation of a null value at certain position will cause
the generation of some other null value at the same position, and thus the chase
is infinite. A set Σ of TGDs is weakly-acyclic if there is no cycle in its position
graph that involves a special edge. We know that:

Theorem 16 [12,47]. Query answering under weakly-acyclic sets of TGDs is
PTIME-complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. com-
bined complexity.

The upper bounds are shown by simply constructing the chase instance C,
and then evaluate the input query over C. Notice that the PTIME-hardness is
immediately inherited from the fact that weakly-acyclic sets of TGDs capture
plain Datalog.

4.2 Guardedness

Although (weakly-)acyclic sets of TGDs are good languages for data exchange,
they are not suitable for modeling ontological knowledge. Even the very simple
knowledge that each person has a father who is also a person goes beyond weakly-
acyclic sets of TGDs. Thus, we need classes of TGDs that do not guarantee the
termination of the chase, but still query answering is decidable. In other words,
we need languages that allow us to develop methods for reasoning about infinite
models without explicitly building them.

Guarded TGDs. A prime example of such a formalism is the class of guarded
TGDs, inspired by the guarded-fragment of first-order logic. A TGD is called
guarded it has an atom in its body that contains all the body-variables [8].
The reason why we can answer queries under guarded TGDs, even if the chase
procedure is infinite, is because the chase instance is tree-like, or, in more formal
terms, has bounded tree-width. We know that:
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Theorem 17 [8]. Query answering under guarded TGDs is PTIME-complete
w.r.t. data complexity, and 2EXPTIME-complete w.r.t. combined complexity.

A core fragment of guarded TGDs, which, despite its simplicity, captures
features of the most widespread tractable description logics such as DL-Lite,
is the class of linear TGDs. A TGD is called linear if it has only one atom in
its body [9]. As expected, this allows us to show that the complexity of query
answering is lower:

Theorem 18 [9,41]. Query answering under linear TGDs is in AC0 w.r.t. data
complexity, and PSPACE-complete w.r.t. combined complexity.

Interestingly, under some fairly weak assumptions, queries to be evaluated
under linear TGDs (or corresponding DLs) can be translated into polynomially-
sized Datalog programs, or even polynomially-sized first-order formulas to be
evaluated directly over input databases. This is discussed in detail in [25,33,38].

Weakly-Guarded Sets of TGDs. As for acyclic sets of TGDs, we can define
a weak version of guarded TGDs, called weakly-guarded, that captures both
guarded TGDs and plain Datalog [8]. The key idea is to relax guardedness in
such a way that a variable x in the body can be unguarded as long as, during
the construction of the chase, x is unified only by constants that already appear
in the input database. This seemingly mild relaxation gives rise to a highly
expressive language. We know that:

Theorem 19 [8]. Query answering under weakly-guarded sets of TGDs
is EXPTIME-complete w.r.t. data complexity, and 2EXPTIME-complete
w.r.t. combined complexity.

It is interesting, and somehow surprising, that query answering under this
class of TGDs is provably intractable even w.r.t. the data complexity. What is
even more interesting is the fact that by allowing negation of a very mild form, in
particular, stratified negation, weakly-guarded sets of TGDs are powerful enough
to capture every database property that can be checked in exponential time, even
without assuming an order in the input database. In other words, every Boolean
query Q that can be evaluated in exponential time in data complexity, it can be
expressed as a pair (Σ,Ans), where Σ is a weakly-guarded set of TGDs and Ans
a 0-ary relation, such that the following holds: D satisfies Q iff D and Σ entails
the atomic query Ans, for every database D.

Theorem 20 [37]. Weakly-guarded sets of TGDs with stratified negation capture
EXPTIME, even without assuming ordered databases.

4.3 Stickiness

Although guardedness is a well-accepted decidability paradigm, with desirable
model-theoretic and complexity properties, it is not powerful enough for cap-
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(a) 

T(x,y,z)  w S(x,w)

R(x,y), P(y,z) w T(x,y,w)

(b) 

×

T(x,y,z)  w S(y,w)

R(x,y), P(y,z) w T(x,y,w)

T(x,y,z)  w S(x,w)

R(x,y), P(y,z) w T(x,y,w)

Fig. 3. Stickiness and marking.

turing knowledge that is inherently non-tree-like. Consider, for example, the
following TGDs:

Elephant(x) → ∃y HasAncestor(x, y),Elephant(y),
Mouse(x) → ∃y HasAncestor(x, y),Mouse(y),

Elephant(x),Mouse(y) → BiggerThan(x, y),

which essentially state that elephants are bigger than mice. It is clear that the
first two TGDs are guarded (in fact, linear). However, the third TGD, although
it looks simple and harmless, destroys the tree-likeness of the chase instance.
Indeed, due to the first two TGDs, the chase will invent infinitely many null
values that represent elephants and mice; let E and M be the sets of null values
that represent elephants and mice, respectively. Then, the third TGD, will force
the chase to compute the cartesian product of E and M , and store it in the
binary relation BiggerThan. Therefore, the extension of BiggerThan in the chase
instance C stores an infinite bipartite graph, which in turn implies that the tree-
width of C is infinite. This immediately implies that the above set of TGDs
cannot be rewritten as a set of guarded TGDs.

Sticky Sets of TGDs. The class of sticky sets of TGDs, introduced in [12], is
a formalism that allows us to capture non-tree-like knowledge as the one cap-
tured by the above example. The key property of stickiness can be described
as follows: during the chase, terms that are unified with variables that appear
more than once in the body of a TGD (i.e., join variables) are always propagated
(or “stick”) to the inferred atoms. This is illustrated in Fig. 3(a); the first set
of TGDs is sticky, while the second is not. The formal definition is based on
an inductive marking procedure that marks the variables that may violate the
semantic property of the chase described above. Roughly, during the base step
of this procedure, a variable that appears in the body of a TGD σ but not in the
head-atom of σ is marked. Then, the marking is inductively propagated from
head to body as shown in Fig. 3(b). Finally, a finite set of TGDs Σ is sticky if
no TGD in Σ contains two occurrences of a marked variable. We know that:
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Theorem 21 [12]. Query answering under sticky sets of TGDs is in AC0

w.r.t. data complexity, and EXPTIME-complete w.r.t. combined complexity.

Weakly-Sticky Sets of TGDs. As one might expect, a weak version of stickiness,
which captures both sticky sets of TGDs and plain Datalog, can be defined.
The principle under this more expressive language is the same as for weakly-
acyclic and weakly-guarded sets of TGDs. Intuitively, we can relax the stickiness
condition in such a way that variables that can be unified with finitely many
null values during the construction of the chase are not taken into account. It is
known that:

Theorem 22 [12]. Query answering under weakly-sticky sets of TGDs is
PTIME- complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. com-
bined complexity.

4.4 Further Applications

As already discussed at the beginning of the section, data exchange and onto-
logical reasoning, are applications that could possibly profit from Datalog± lan-
guages that extend Datalog with existential quantifiers in rule heads. Let us con-
clude by briefly describing other applications that could profit from languages
as the ones discussed above.

RDF and Semantic Web. Various ‘‘classical” query languages for RDF and the
semantic Web are discussed in [24]. One of the distinctive features of Semantic
Web data is the existence of vocabularies with predefined semantics: the RDF
Schema (RDFS)9 and the Ontology Web Language (OWL)10, which can be used
to derive logical conclusions from RDF graphs. Thus, it would be desirable to
have an RDF query language equipped with reasoning capabilities to deal with
these vocabularies. Besides, it has also been recognised that navigational capa-
bilities are of fundamental importance for data models with an explicit graph
structure such as RDF, and, more generally, it is also agreed that a general form
of recursion is a central feature for a graph query language. Thus, it would also be
desirable to have an RDF query language with such functionalities. We strongly
believe that Datalog± languages are well-suited for this purpose. In fact, steps
towards this direction have been already made in the recent works [2,36].

Conceptual Modeling. It has been observed that graphical conceptual modeling
formalisms, and in particular UML and ER diagrams, can be faithfully trans-
lated into TGDs and EGDs. In fact, core fragments of the above formalisms can
be captured via guarded TGDs (with some additional features such as equal-
ity) [11,35]. This is quite beneficial since it provides logical semantics to the
above formalism, which in turn allows us to formally study relevant problems
such as consistency, i.e., whether a given diagram admits at least one model.
9 http://www.w3.org/TR/rdf-schema.

10 http://www.w3.org/TR/owl-features/.

http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-features/
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Object-Oriented Deductive Databases. It has been shown that formalisms intro-
duced for object-oriented databases can be embedded into Datalog±, which in
turn allows us to exploit existing query answering algorithms. For example, F-
Logic Lite, introduced in [13], is a small but expressive subset of F-Logic [42]
that can be captured by weakly-guarded sets of TGDs [8].

Ontology-Based Multidimensional Contexts. Data quality assessment and data
cleaning are context dependent activities, and thus, context models for the assess-
ment of the quality of a database have been proposed. A context takes the form of
a possibly virtual database or a data integration system into which the database
under assessment is mapped, for additional analysis, processing, and quality
data extraction. The work [50] extends contexts with dimensions, and hence,
multidimensional data quality assessment becomes possible. At the core of mul-
tidimensional contexts we have ontologies that are modeled using Datalog±, and,
in particular, weakly-sticky sets of TGDs.

Acknowledgements. This work has been supported by the EPSRC Programme
Grant EP/M025268/ “VADA: Value Added Data Systems – Principles and Archi-
tecture”.
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Abstract. We give the first non-interleaving early operational semantics
for the pi-calculus which generalizes the standard interleaving semantics
and unfolds to the stable model of prime event structures. Our start-
ing point is the non-interleaving semantics given for CCS by Mukund
and Nielsen, where the so-called structural (prefixing or subject) causal-
ity and events are defined from a notion of locations derived from the
syntactic structure of the process terms. The semantics is conservatively
extended with a notion of extruder histories, from which we infer the
so-called link (name or object) causality and events introduced by the
dynamic communication topology of the pi-calculus. We prove that the
semantics generalises both the standard interleaving early semantics for
the pi-calculus and the non-interleaving semantics for CCS. In particu-
lar, it gives rise to a labelled asynchronous transition system unfolding
to prime event structures.

Keywords: Concurrency · Non-interleaving · Pi-calculus · Early
operational semantics · Asynchronous transition systems · Stability

1 Introduction

The pi-calculus [19] is the seminal model for concurrent mobile processes, repre-
senting mobility by the fresh creation and communication of channel names. The
standard operational semantics adopt an interleaving approach to concurrency,
that represent concurrent execution of actions as their arbitrary sequential inter-
leaving and employ basic transition systems or automata as semantic models.
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However, the ability to distinguish concurrency from interleaving has several
practical applications, including dealing with state-space explosion in model-
checking [9], supporting action refinement [14] and reversibility (e.g. [17,28]).

To give a non-interleaving semantics one needs to identify the underlying
events and their concurrency and causality relationships, and from that define a
notion of non-interleaving observations, e.g. in terms of a bisimulation or testing
equivalence [14,25] or employ a non-interleaving model (e.g. [1,6,22,27,29]), in
which the concurrency can be represented explicitly. The dynamic communica-
tion topology of the pi-calculus makes it non-trivial to identify what accounts
for causality, and indeed several possible approaches have been proposed. As
described in [4], the source of the complexity is that the causal dependencies fall
in two categories: The structural (prefixing or subject) dependencies, coming
from the static process structure, i.e. action prefixing and parallel composition,
and the link (name or object) dependencies, which come from the dynamic cre-
ation of communication links by scope extrusion of local names.

There has been quite some work on providing non-interleaving semantics for
pi-calculus [4,6,8,10–12,16,20,25] and process algebras in general (e.g. [5,7]).

Among the most recent work, a stable operational semantics for reversible,
deterministic and finite pi-calculus processes is provided in [12]. Stability means
that every event depends on a unique history of past events, which supports
reversibility of computations. A denotational semantics for the pi-calculus is
provided in [10] as extended event structures. The semantics discards the prop-
erty of stability to avoid the complexity and increase in number of events aris-
ing from achieving unique dependency histories. Both papers consider the late
style pi-calculus semantics, where names received from the environment are kept
abstract and thus distinct from any previously extruded names. We found no
prior work providing a stable, non-interleaving, early style structural opera-
tional semantics generalising the standard early operational semantics of the
pi-calculus. In the early style semantics, names received from the environment
are concrete, and thus may be identical to a previously extruded name. Con-
sequently, the choice between late and early style semantics influences the link
causality.

Our key contribution is to provide the first stable, non-interleaving oper-
ational early semantics for the pi-calculus that generalises the standard, non-
interleaving early operational semantics for the pi-calculus [26] and supports
standard non-interleaving bisimulations [13,15,24]. Our starting point is the
work of Mukund and Nielsen [21], which defines a structural operational non-
interleaving semantics for Milner’s CCS [18] as (labelled) asynchronous transi-
tion systems using locations to identify the structural causality, which is the only
type of causality in CCS. We generalize the approach of [21] to the pi-calculus
by employing also a notion of extruder histories, recording the location of both
name extrusions and name inputs. Together, the locations and extruder histories
allow to identify the underlying events of transitions and both their structural
and link causal dependencies.
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Overview of Paper: In Sect. 2 we generalise the structural operational early
semantics for the pi-calculus with locations for transitions, extrusion histories
and link dependencies. In Sect. 3 we show that the semantics yields a standard
labelled asynchronous transitions system, which is known to unfold to labelled
prime event structures. We conclude and comment on future work in Sect. 4.
Proof details can be found in the companion technical report [23].

2 Causal Early Operational Semantics

In this section we give an early operational semantics of the pi-calculus recording
both the structural and link causal dependencies between events.

We first recall the syntax for the pi-calculus with guarded choice.

Definition 1. The set of pi-calculus processes Proc, ranged over by P,Q, are
defined using an infinite set of names N , ranged over by n,m, by the grammar:

P :: = Σϕi.Pi | (νn)P | P ||Q | !P | 0, ϕ :: = a〈n〉 | a(n)

For a process P we denote by n(P ) the set of all names appearing in P , by
bn(P ) the bound names, i.e. those n that are restricted by (νn) or by the input
action a(n), and by fn(P ) = n(P )\bn(P ) the free names. We assume all bound
names are unique in a process and identify processes up to α-conversion.

In Fig. 1 we give the causal early semantics for pi-processes with transitions of
the form (H ,H ) � P

α−→
u

(H
′
,H ′) � P ′. Following the approach in [21] we have

added location labels u under the transitions, identifying the location of the
prefixes in the term contributing to a transition and allowing to infer structural
(CCS-like) events and causalities. To capture the finer notion of events and link
causalities of the pi-calculus, we enrich the semantics with extrusion histories
(H ,H ) to the left of the turnstile, which record the location in the parallel
process of the prefixes extruding respectively receiving some name.

Formally, we define the set of prefix locations as follows.

Definition 2. Let L = {0, 1}∗ ×Proc×Proc be the set of prefix locations and
write s[P ][P ′] for elements in L.

The location labels u of transitions in Fig. 1 are then of the following forms:

1. s[P ][P ′] ∈ L, if α is an input or output action,
2. s〈0s0[P0][P ′

0], 1s1[P1][P ′
1]〉, for sisi[Pi][P ′

i ] ∈ L and i ∈ {0, 1}, if α = τ .

In words, a prefix location s[P ][P ′] provides a path s ∈ {0, 1}∗ to an
input/output prefixed subterm P through the abstract syntax tree, with 0 and
1 referring to the left respectively right branch of a parallel composition, and P ′

being the residual sub-term after the transition. The location labels of the sec-
ond form provide two prefix locations, sisi[Pi][P ′

i ] ∈ L for i ∈ {0, 1}, identifying
the output and input prefix in a communication.
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u = [a(m).P ][P ] P = P [m := n]
(in)

(H ,H ) a(m).P
a(n)−−→

u
(H ,H ∪ {(n, u)}) P

u=[a n .P][P]
(out)

(H ,H ) a n .P
a n−−→

u
(H ,H ) P

(H ,H ) P
a n− →

u
(H ,H ) P n = a

(open)

(H ,H ) (νn)P
a n−−→

u
(H ∪ {(n, u)},H ) P

(H ,H ) P
α−→
u

(H ,H ) P b ∈ n(α)
(scope)

(H ,H ) (νb)P
α−→
u

(H ,H ) (νb)P

(H ,H ) P || !P α−→
u

(H ,H ) P
(rep)

(H ,H ) !P
α−→
u

(H ,H ) P

(H ,H ) ϕi.Pi
α−→
u

(H ,H ) P
(sum)

(H ,H ) Σi∈I : ϕi.Pi
α−→
u

(H ,H ) P

H = {(n, u) | α = a n , n ∈ dom([j]H ),

∀l.l|{0,1} ≺ iu : (n, l) ∈ H ∪ H }
([̌i]H , [̌i]H ) Pi

α−→
u

(H i,H i) Pi

Pj = Pj

j = 1 − i
b̃ ∩ n(Pj) = ∅

(pari)
(H ,H ) P0 || P1

α−→
iu

(H \[i]H ) ∪ i(H i ∪ H ), (H \[i]H ) ∪ iH i P0 || P1

H = {(n, v) |
∃(n, l) ∈ [i](H ∪ H ) : l|{0,1} ≺ u}
([̌i]H , [̌i]H ) Pi

a n−−

−−−

→
u

(H i,H i) Pi

b̃ ∩ n(Pj) = ∅, j = 1 − i

([ǰ]H , [ǰ]H ) Pj
a(n)−−→

v
(H j ,H j) Pj

(comi)
(H ,H ) P0 || P1

τ− →
0u,1v

(H ,H ∪ jH ) (νb̃)(P0 || P1)

Fig. 1. Early operational semantics enriched with action labels α :: = τ | a〈n〉 | a(x),
locations u (under the arrows) and extruder histories (H ,H ) (to the left of the turn-
stile). We identify processes up-to α-equivalence, assume unique bound names and

that for all rules, if (H ,H ) � P
α−→
u

(H
′
,H ′) � P ′ is the conclusion, we require

dom(H ∪ H ) ∩ bn(P ) = ∅. For rules (comi) and (pari), consider i ∈ {0, 1}, and

let b̃ = dom(H
′
i)\dom([̌i]H ) and allow writing (ν∅)P and (ν{n})P for P and (νn)P

respectively. The blue text shows what is added to the standard semantics. (Color
figure online)
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Note that to keep locations of action prefixes fixed, we cannot assume the
usual structural congruence making parallel composition commutative. There-
fore we must use two rules (pari), i ∈ {0, 1} for parallel composition and two
rules (comi), i ∈ {0, 1} for communication.

From the locations we define our first notion of structural events and inde-
pendence, which correspond to the events and independence defined for CCS
in [21]. We will later show how to take into account the additional link causal
relationships of the pi-calculus.

Definition 3. Let Ev = {(α, u) | (H ,H ) � P
α−→
u

(H
′
,H ′) � P ′} be the struc-

tural events. For e = (α, u) ∈ Ev define Loc(e)⊆{0, 1}∗, the locations where e
occurs, by

Loc(e) =

{
{s} ifu = s[P ][P ′]
{ss0, ss1} ifu = s〈s0[P0][P ′

0], s1[P1][P ′
1]〉.

Define an independence relation on locations Il ⊆ {0, 1}∗ × {0, 1}∗ by

(s0, s1) ∈ Il iff si = sis′
i,

where i ∈ {0, 1} and s, s0, s1, s
′
0, s

′
1 ∈ {0, 1}∗. Define the structural independence

relation on events Is ⊆ Ev × Ev by:

(e, e′) ∈ Is iff ∀s ∈ Loc(e),∀s′ ∈ Loc(e′) : (s, s′) ∈ Il.

As the following example shows, Is misses the link dependencies.

Example 4. Consider the process (νn)(a〈n〉 ||n(x)). According to Is the two
events e = (a〈n〉, 0[a〈n〉][0]) and em = (n(m), 1[n(x)][0]) are independent, for
any m 	= n, but the semantics does not allow the input event to happen until
after the name n has been extruded, i.e. there is an objective dependency between
the extruding output and the input.

The next example illustrates that both names in an input action m(n) may
have been previously extruded, giving rise to a conjunctive causality.

Example 5. Consider the process P = (νn)(νm)(a〈n〉 || (b〈m〉 ||m(x))). From
(∅, ∅) � P we can have two extruding outputs on channels a and b of the
names n respectively m, after which the output history would contain two pairs
H = {(n, 0[a〈n〉][0]), (m, 10[b〈m〉][0])}. We now may have an input action with
label m(n) that depends on both extruders.

The final example shows that a name may have several parallel extruders,
giving rise to a disjunctive causality.

Example 6. Consider the process (νn)(a〈n〉 || (b〈n〉 ||n(x))), which has two par-
allel extruders a〈n〉 and b〈n〉. We have the three events ea = (a〈n〉, 0[a〈n〉][0]),
eb = (b〈n〉, 10[b〈n〉][0]), and en = (n(m), 11[n(x)][0]). The event en for the input
action is independent of both output events, but it cannot happen before at least
one has happened.
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The extrusion histories to the left of the turnstile helps us take into account
the link causalites.

Definition 7. A history H ⊆ H = N ×L is a relation between names and prefix
locations, and an extrusion history (H ,H ) is a pair of histories, referred to as
the output history and input history respectively. For a history H and i ∈ {0, 1}
let iH denote the history {(n, iu)|(n, u) ∈ H }. Let [̌i]H = {(n, u) | (n, iu) ∈ H }
and [i]H = {(n, iu) | (n, iu) ∈ H } and [ε̌]H = H . Finally, let dom(H ) = {n |
(n, u) ∈ H }, i.e. the set of names recorded in the history.

Based on the examples above, we refine our transitions and events to also
capture link dependencies by enriching the transitions with (deterministic) his-
tories D recording the link dependencies for each non-output name in α, i.e. the
past extruding events it depends on, if it was extruded in the past.

Definition 8. Define the causal early semantics as the transitions (H ,H ) �
P

α−−→
u,D

(H
′
,H ′) � P ′ if (H ,H ) � P

α−→
u

(H
′
,H ′) � P ′ and

1. D ⊆ H ,
2. (n, l), (n, l′) ∈ D implies l = l′

3. dom(D) = dom(H ) ∩ no(α),

where no(α) is the non output names of α, defined by no(n〈m〉) = {n}\{m},
no(n(m)) = {n,m} and no(τ) = ∅.

The link dependencies D allow us to define our final notion of events and
independence relation for the causal semantics.

Definition 9. Let the set of events Ev be defined by:

Ev = {
(
(α, u),D

)
∈ Ev × H | (H ,H ) � P

α−−→
u,D

(H
′
,H ′) � P ′}

Two events ei = (e′
i,Di) ∈ Ev for e′

i = (αi, ui) and i ∈ {0, 1} are independent,
written e0Ie1, iff

e′
0Is e′

1 ∧ �n : Di(n) = u1−i for i ∈ {0, 1}.

Returning to Example 6, the event en = (n(m), 11[n(x)][0]) will be split in
two events

(
en, (n, 0[a〈n〉][0])

)
and

(
en, (n, 10[b〈n〉][0])

)
corresponding to tran-

sitions between the same two states.
We now briefly explain the rules in Fig. 1.
The (in) rule is the standard early input rule, substituting a received name n

for the parameter m in P , yielding P ′ = P [m := n], and enriched by recording
the prefix location u = [a(m).P ][P ′] on the transition. Moreover, the rule takes
care to add the name n to the input history H .

The (out) rule is the standard output rule, except the prefix location u =
[a〈n〉.P ][P ′] is added to the transition.
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The (open) is the standard open rule, except the prefix location is recorded
for the extruded name n in the output history and not in the label, as is custom
for the standard pi-semantics. Avoiding name extrusions in the labels ensures
unique labels for events in Sect. 3, and only one (com) rule.

The (scope), (rep) and (sum) rules are the standard rules, just extended
to retain locations and histories.

If we do not consider the locations and histories, the (pari) rules, for i ∈
{0, 1} are the standard left and right parallel rules, except that we extract a
possibly extruded name from the histories by the set b̃ = dom(H

′
i)\dom([̌i]H )

and not from the action label α. In the location, we record in which branch of
the parallel composition the action happened by prefixing with i ∈ {0, 1}. The
extruders recorded in the set H

′′
in the rules (par)i captures exactly the parallel

extrusion illustrated in Example 6. Specifically, an output prefix is added to the
output extruder history, if the name has been extruded in the other parallel
component and not previously extruded (recorded in the output history) nor
received (recorded in the input history) by the current component. We illustrate
the use of the input history in the example below.

Example 10. Consider the process P = (νn)(a〈n〉 || b(x).c〈n〉). Starting with
empty histories, we have the two transitions

1. (∅, ∅) � P
a〈n〉−−−−−−→

0[a〈n〉][0]
({(n, 0[a〈n〉][0])}, ∅) � P1, for P1 = 0 || b(x).c〈n〉

2. (∅, ∅) � P
b(m)−−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
(∅, {(m, 1)}) � (νn)(a〈n〉 || c〈n〉), with m 	=n.

After the first transition we may both be receiving n or a name m 	= n:

({(n, 0[a〈n〉][0])}, ∅) �P1
b(n)−−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
({(n, 0[a〈n〉][0])}, {(n, 1)}) �(0 || c〈n〉).

({(n, 0[a〈n〉][0])}, ∅) �P1
b(m)−−−−−−−−−−−→

1[b(x).c〈n〉][c〈n〉]
({(n, 0[a〈n〉][0])}, {(m, 1)})�(0 || c〈n〉).

In the first case, a subsequent output of n on channel c will not be an extrusion,
since it happens after the input of n from the environment. In the second case
it will, since this output is independent of the extrusion in transition 1.

Finally, if we again ignore histories and locations, the (comi) rules are the
usual communication rules combined with the close rule, closing a scope previ-
ously opened by an (open) rule. We combine the communication and close rules
by abuse of notation, writing (ν∅)P for P in the (comi) rules, thereby combin-
ing the standard (close) rule for communication of a bound name with that of
communication of a free name. The location label is made into a pair, recording
the two prefixes taking part in the communication. Looking at the histories, we
discard any changes to histories formed in each component and only forwards
input histories from the sender to the receiver via the set H ′′.

We end by stating the result that the standard interleaving, early operational
semantics can be obtained from the rules in Fig. 1 by ignoring the locations and
extract only the scope extrusion from the histories.
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Proposition 11. For a pi-process P , the transition system reachable from P
using the standard interleaving, early operational semantics is bisimilar to the
transition system (ProcP , (∅, ∅) � P,Λ,−→π), where

– ProcP = {(H ,H ) � P ′ | (∅, ∅) � P −→∗ (H ,H ) � P ′}, and −→∗ is the transitive
closure of the transition relation in Fig. 1

– λ ∈ Λ is defined by the grammar λ :: = (νn)m〈n〉 | m〈n〉 | m(n) | τ

– (H ,H ) � P
α′
−→π (H

′
,H ′) � P ′ if (H ,H ) � P

α−→
u

(H
′
,H ′) � P ′ for some

H , H , H
′
, H ′, u, and α′ = (νn)α if dom(H

′
)\dom(H ) = {n} and α′ = α

otherwise.

3 A Stable Non-interleaving Early Operational Semantics

In this section we show that the operational semantics, events and indepen-
dence relation given for the pi-calculus in the previous section yields a labelled
asynchronous1 transition system (LATS) [1,15,27,29] as recalled below.

Definition 12. A labelled asynchronous transition system (LATS) is a tuple
(S, i, E, I, T , lab,A) such that

– (S, i, E, T ) is a transition system with S the set of states and i an initial
state, E a set of events, and T ⊆ S × E × S the transition relation;

– lab : E → A is a labelling map from the set of events to the action set A;
– I ⊆ E × E is an irreflexive, symmetric independence relation, satisfying:

1. e ∈ E ⇒ ∃s, s′ ∈S : (s, e, s′)∈T ;
2. (s, e, s′)∈T ∧ (s, e, s′′)∈T ⇒ s′ = s′′;
3. e1Ie2 ∧ {(s, e1, s1), (s, e2, s2)}⊆T ⇒ ∃s3 : {(s1, e2, s3), (s2, e1, s3)}⊆T ;
4. e1Ie2 ∧ {(s, e1, s1), (s1, e2, s3)}⊆T ⇒ ∃s2 : {(s, e2, s2), (s2, e1, s3)}⊆T .

LATS are known to satisfy the stability property, that is, every event depends
on a unique set of events, and unfold to standard labelled prime event structures
[29, Ch.7]. This also implies, that LATS admits standard non-interleaving bisim-
ulations, notably the (hereditary) history-preserving bisimulation [15].

Recalling the standard semantics derived in Proposition 11 we define the non-
interleaving semantics as a labelled asynchronous transition system.

Definition 13. The semantic rules for the pi-calculus that we gave in Fig. 1
generate a labelled asynchronous transition system TSπ(P ) = (ProcP , (∅, ∅) �
P,EvP , I, T , lab,A) for a pi-process P where

–
(
(H ,H ) � P, e, (H

′
,H ′) � P ′) ∈ T iff (H ,H ) � P

α−−→
u,D

(H
′
,H ′) � P ′ and

e =
(
(α, u),D

)
∈ Ev,

– EvP = {e | (q, e, q′) ∈ T }
– lab

(
(α, u),D

)
= α,

– α ∈ A is the set of labels generated by the grammar α :: = a〈n〉 | a(n) | τ

1 Asynchronous here refers to non-interleaving, not the style of communication.
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Theorem 14. The transition system given in Definition 13 is a labelled asyn-
chronous transition system.

That the semantics in 13 satisfy the first property of Definition 12 follows
trivially from the definition. The following lemma states that the transition
system is event deterministic, i.e. that it satisfies property 2 of Definition 12.

Lemma 15. For any two transitions (H ,H ) � P
α−−→

u,D
(H

′
,H ′) � P ′ and

(H ,H ) � P
α−−→

u,D
(H

′′
,H ′′) � P ′′ then (H

′
,H ′) = (H

′′
,H ′′) and P ′ = P ′′.

To prove that the transition system given in Definition 13 satisfies the last
two (diamond) properties of a labelled asynchronous transition system we need
some intermediate results, following the approach in [21]. The following partial
function makes precise how a sequence s ∈ {0, 1}∗ identifies a subprocess, called
the component, in a process.

Definition 16 (components). Define inductively the partial function

Comp : {0, 1}∗ × Proc ⇀ Proc

1. Comp(ε, P ) = P, when P 	= !P1 and P 	= (νn)P1 (and ε is the empty string)
2. Comp(0s, P0 ||P1) = Comp(s, P0) 3. Comp(1s, P0 ||P1) = Comp(s, P1)
4. Comp(s, (νn)P ) = Comp(s, P ) 5. Comp(s, !P ) = Comp(s, P || !P )

Corollary 17. For any s, s′ ∈ {0, 1}∗ and any process P , whenever Comp is
defined, we have Comp(s,Comp(s′, P )) = Comp(s′s, P ).

From any transition we can recover the transition in the immediate component.

Lemma 18. For s ∈ {ε, 0, 1} and s′ ∈ {ε, 0, 1}∗ we have (H ,H ) � P
α−−−→

ss′uε

(H
′
,H ′) � P ′ if

([š]H , [š]H ) � Comp(s, P ) α′
−−−→
s′uε

(H
′′
,H ′′) � Comp(s, P ′),

where uε is either [P ′′][P ′′′] or 〈0s0s
′
0[P0][P ′

0], 1s1s
′
1[P1][P ′

1]〉, and depending on
the case we have the following extra properties:

1. when s = 0 we have α′ = α and bn(α) ∈ fn(Comp(1, P ));
2. when s = 1 we have α′ = α and bn(α) ∈ fn(Comp(0, P ));
3. when s = ε and P = (νñ)P1 and P1 	= (νm̃)P2 for ñ and m̃ non-empty, we

either have (ñ ∩ n(α) = ∅ and α′ = α) or (∃b ∈ ñ : α = a〈b〉 and α′ = a〈b〉
with a /∈ ñ);

4. when s = ε and P =!P1 we have α′ = α.

Applying several times Lemma 18, we can extend s to be a string of loca-
tion components: s ∈ {0, 1}∗. From any communication transition we can then
recover the transitions in the components identified by the location labels.
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Lemma 19. For location strings s, s0, s1, s
′
0, s

′
1 ∈ {0, 1}∗ we have

(H ,H ) � P
τ−−−−−−−−−−−−−−−−−−−→

s〈0s0s′
0[P0][P ′

0],1s1s′
1[P1][P ′

1]〉
(H

′
,H ′) � P ′

if

([šl]H , [šl]H ) � Comp(s0s0, P ) α−−−−−−→
s′
0[P0][P ′

0]
(H

′′
,H ′′) � Comp(s0s0, P

′)

and

([šr]H , [šr]H ) � Comp(s1s1, P ) α−−−−−−→
s′
1[P1][P ′

1]
(H

′′′
,H ′′′) � Comp(s1s1, P

′)

where sl = s0s0, sr = s1s1, and a〈n〉 = a(n) and a(n) = a〈n〉.

Conversely, we can lift a transition from a component.

Lemma 20. For s ∈ {ε, 0, 1} we have that

if ([š]H , [š]H ) � Comp(s, P ) α−−−−−−→
s′[P0][P ′

0]
P ′
1

then
(H ,H ) � P

α′
−−−−−−−→
ss′[P0][P ′

0]
P ′ with Comp(s, P ′) = P ′

1

and α′ defined in terms of α, under the following restrictions:

1. for s = 0 if bn(α) ∈ fn(Comp(1, P )) and α′ = α;
2. for s = 1 if bn(α) ∈ fn(Comp(0, P )) and α′ = α;
3. for s = ε and P = (νn)P1 if (n ∈ fn(α) and α′ = α) or (α = a〈n〉 and

α′ = a〈n〉 and n 	= a).

Applying several times Lemma 20, when the needed restrictions exist, we can
extend s to be a string of location components: s ∈ {0, 1}∗.

Lemma 21. Whenever we have

([0̌]H , [0̌]H ) � Comp(0, P )
a〈n〉−−−−−−→

s0[P0][P ′
0]

(H
′
0,H

′
0) � P ′′

0

and
([1̌]H , [1̌]H ) � Comp(1, P )

a(n)−−−−−−→
s1[P1][P ′

1]
(H

′
1,H

′
1) � P ′′

1 ,

for a /∈ dom(H 0\H
′
0), then we have the communication

(H ,H ) � P
τ−−−−−−−−−−−−−−−→

〈0s0[P0][P ′
0],1s1[P1][P ′

1]〉
(H

′
,H ′) � P ′

with Comp(0, P ′) = P ′′
0 and Comp(1, P ′) = P ′′

1 . A symmetric case was elided.
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Lemma 22. For any process P and a location string s then

1. if (H ,H ) � P
α−−−−−→

s[P1][P ′
1]

(H
′
,H ′) � P ′ and (s, s′) ∈ Il then Comp(s′, P ) =

Comp(s′, P ′),
2. if (H ,H ) � P

τ−−−−−−−−−−−−−−−→
s〈s0[P0][P ′

0],s1[P1][P ′
1]〉

(H
′
,H ′) � P ′ and (ss0, s′) ∈ Il and

(ss1, s′) ∈ Il then Comp(s′, P ) = Comp(s′, P ′).

We end by noting that the non-interleaving semantics is a conservative exten-
sion of the one for CCS given in [21]. To this end, we let the CCS subset refer to
the sub calculus of the pi-calculus obtained by allowing only input and output
prefixes in which the subject and object are the same, i.e. of the form n(n) and
n〈n〉. In this case it is easy to see that the output histories and link dependencies
D are always empty and thus the independence relation and events coincide with
the structural independence and events.

Proposition 23. For the CCS subset of the pi-calculus, the non-interleaving
semantics of Fig. 1 is bisimilar to the non-interleaving semantics for CCS in [21].

4 Conclusion and Related Work

We provided the first stable, non-interleaving operational semantics for the pi-
calculus conservatively generalising the interleaving early operational semantics.
The semantics is given as labelled asynchronous transition systems admitting
standard non-interleaving bisimulations such as (hereditary) history-preserving
bisimulation [3,13,15,24]. We followed and conservatively generalised the app-
roach for CCS in [21] by capturing the link causalities introduced in the pi-
calculus processes by employing a notion of extrusion histories. In the compan-
ion technical report [23] we have worked out the generalisation to unguarded
choice, which makes the notion of location more complex, as also described
in [7]. We are currently working on a more thorough comparison with the related
work [4,6,8,10–12,16,17,20,25], in particular we aim to explore reversibility,
non-interleaving bisimulations and the differences betwen early and late style
non-interleaving semantics. Finally, we work on extending this work to the
psi-calculus [2].
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Abstract. We introduce an algorithm that learns the class of Tier-based
Strictly k-Local (TSLk) formal languages in polynomial time on a sample
of positive data whose size is bounded by a constant. The TSLk languages
are useful in modeling the cognition of sound patterns in natural language
[6,11], and it is known that they can be efficiently learned from positive
data in the case that k = 2 [9]. We extend this result to any k and
improve on its time efficiency. We also refine the definition of a canonical
TSLk grammar and prove several properties about these grammars that
aid in their learning.

Keywords: Grammatical inference · Algorithmic learning

1 Introduction

This paper introduces an algorithm that provably and efficiently learns a gram-
mar for any Tier-based Strictly k-Local (TSL) formal language [6]. In brief, this
subclass of the regular languages encompasses those languages that prohibit cer-
tain sequences of adjacent symbols, where adjacency is assessed with respect to a
subset of the alphabet (the tier) while ignoring all intervening non-tier symbols.
A TSLk grammar therefore comprises a tier, labeled T , and a set of k-factors
(length-k sequences) that are forbidden on the tier, labeled R.

The TSL languages have been motivated from linguistic and cognitive per-
spectives [6,8,11,12], drawing from patterns in natural language phonology in
which co-occurrence restrictions apply to a subset of the sounds, ignoring all
sounds not in that subset. For example, Finnish words only contain vowels from
the set {ü, ö, ä} or the set {u, o, a}, and not both, regardless of any interven-
ing consonants or vowels {i, e}. For example, words pöütänä ‘the table (essive)’
and pappina ‘priest (essive)’ are attested in Finnish, but words like poütäna and
päppina, which contain vowels from both sets, are not attested [14,15]. This can
be modeled by a TSL2 grammar which bans, e.g., äa and aä sequences once all
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sounds not in the set {ü, ö, ä, u, o, a} (i.e., all consonants and the vowels {i, e})
have been deleted [6]. Such patterns are common in natural language, ranging
over a variety of tiers [11,15]. As such, it is of interest to understand how such
grammars can be learned from positive evidence.

While the learning problem is trivial when the contents of the tier are
provided a priori [6], it has not yet been established that an efficient, non-
enumerative algorithm exists which can induce both the tier and the k-factor
components of the grammar for TSLk languages of any k. For k = 2, the Tier-
based Strictly 2-Local Inference Algorithm (2TSLIA) of [9] exactly identifies a
TSL2 tier and permitted 2-factors given positive data in O(n4) time, where n is
the size of the data sample. The present work generalizes and improves on this
result, introducing an algorithm we call the Tier-based Strictly k-Local Inference
Algorithm (kTSLIA) that learns the class of TSLk languages for any value of
k in quadratic time, with the amount of data requisite for learning bounded by
a constant. A secondary result is that we refine the notion of canonical TSLk

grammars, distinct from the notion introduced for TSLk grammars in [9], and
prove properties of these grammars that the kTSLIA can use to induce a TSL
grammar exactly from positive examples.

The paper is structured as follows. Section 2 summarizes the relevant nota-
tion, concepts, and definitions used throughout this paper. Section 3 defines the
TSL class of formal languages and proves some properties of this class that can
be exploited in learning. Section 4 presents the kTSLIA and Sect. 5 proves that
the algorithm learns the TSLk class of languages in polynomial time and data
for any value of k. Section 6 summarizes the contributions of the paper, discusses
future work, and concludes.

2 Preliminaries

We use standard set notation. For a set S, |S| denotes its cardinality and Pfin(S)
the set of finite subsets of S. For sets S and R, S − R denotes {s ∈ S|s �∈ R}.

An alphabet Σ is a finite set of symbols. A string w = σ1σ2 . . . σn over Σ
is a finite sequence of n symbols σi ∈ Σ; let |w| denote its length (i.e., n). Let
λ denote the empty string, the unique string of length 0. We write wv for the
concatenation of strings w and v; note that wλ = λw = w. By Σ∗ we denote the
set of all strings over Σ, including λ. A set L of strings or language is a subset
of Σ∗. The size ||L|| of a language L is the sum of the lengths of its composite
strings; i.e. ||L|| =

∑
w∈L |w|. A grammar G is some finite representation of a

language; we write L(G) for the language represented by G (concrete examples
of how to interpret L(G) for specific types of grammars are given in Sect. 3).

We often make use of special boundary symbols � and �, assumed not to be
members of Σ, to mark the beginning and end of a strings, respectively. We abuse
the concatenation notation somewhat and write wL (Lw) for the concatenation
of w to the beginning (and/or end) of each string in L. Thus, �Σ∗� denotes the
set of strings over Σ marked with beginning and end boundaries.

A string u is a substring of w if there are two strings v1, v2 such that w =
v1uv2. Let |w| be the length of w. We say u is a k-factor of w if u is a substring
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of � w� and |u| = k. Note that λ is the single 0-factor for any string. Define a
function fack which returns the k-factors of �w� (or �w� if | � w � | ≤ k):
fack(w) = {u | u is a k-factor of w} if |� w�| > k, {� w�} otherwise. Finally,
we extend fack to languages such that fack(L) =

⋃
w∈L fack(w).

2.1 Learning Paradigm

The learning paradigm considered here is exact identification in the limit [2]
in polynomial time and data [7]. Under this paradigm, a learning algorithm is
assumed to be given sufficient examples to identify the learning target. How-
ever, the size of these examples must be polynomial with respect to the size
of the representation (grammar) for this target, and the algorithm must run in
polynomial time complexity with respect to the size of the input data.

A class C of languages is said to be generated by a class G of grammars if
each G ∈ G is finite and there is a total, surjective naming function f : G → C
from any grammar to a language in C. The goal is an algorithm A which, given
a finite set of examples from any L ∈ C, returns a grammar G ∈ G for L.

Definition 1 ((C, G)-learning algorithm). Let C be a class of languages
over an alphabet Σ generated by a class G of grammars. An input sample I of
some L ∈ C is a finite set of strings in L; that is, I ⊆ L. A (C,G)-learning
algorithm is a function A : Pfin(Σ∗) → G that takes a finite sample of strings
as an input and outputs a grammar in G.

Given a particular (C,G)-learning algorithm, a characteristic sample of a
language in C is a sample of that language such that the algorithm is guaranteed
to identify a grammar which exactly generates the language.

Definition 2 (Characteristic sample). Given a (C,G)-learning algorithm A,
a characteristic sample IC for A for a language L is a sample of L such that for
all samples I ⊇ IC of L, L = L(A(I)).

A further goal is that the algorithm learns any language in the class in polyno-
mial time complexity with respect to the input data, and that the characteristic
sample for any language is polynomial in size with respect to the size of any
grammar G (denoted |G|) for the language.

Definition 3 (Identification in polynomial time and data). A (C,G)-
learning algorithm A identifies C in polynomial time and data when there are two
polynomial functions f and g such that, for any language L ∈ C, given a sample
I containing a characteristic sample of L, L(A(I)) = L, and (1) the size IC of
the characteristic sample of L is, for any grammar G ∈ G that represents L, at
most f(n), where n = |G|; and (2) A returns a grammar for L in O(g(||I||))
time.
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3 Tier-Based Strictly Local Languages

3.1 Strictly Local Languages

The Tier-based Strictly Local (TSL) class of formal languages [6] is a generaliza-
tion of the Strictly Local (SL) (otherwise known as Locally Testable in the Strict
Sense) class of languages first studied in [13]. It will be useful to understand some
concepts with respect to the SL languages, so we review these languages first.

Given an alphabet Σ, define a SLk grammar as a set R ⊆ fack(Σ∗). The
language of this grammar is thus L(R) = {w ∈ Σ∗ | fack(w) ∩ R = ∅}. In other
words, R defines a set of forbidden k-factors that do not appear as substrings
of any string in L(R). For example, for the alphabet Σ = {a, b}, R = {�a, a�}
describes the set of strings L(R) = {λ, b, bb, bab, bbb, . . .}; i.e., exactly the strings
in Σ∗ that do not begin or end with an a. This L(R) is a Strictly 2-Local (SL2)
language, as R consists of 2-factors of Σ∗.

The SL languages lie at the bottom of the Sub-Regular Hierarchy of sub-
classes of the Regular languages [13,16,17]. Though simple in computational
complexity, SL languages are formally similar to n-gram models [10], and have
been shown to model local co-occurrence restrictions in natural language phonol-
ogy [4,16]. Furthermore, given k, any SLk class is efficiently identifiable in the
limit from positive data using a very simple procedure [1,3]. For a sample I
of strings from a target SLk language L, we can return a grammar R where
R = fack(Σ∗) −

⋃
w∈I fack(w) such that L(R) = L. Remark 4 notes the effi-

ciency of this procedure (which bears on the results of Sect. 5).

Remark 4. Calculating fack(I) is linear in ||I||.

Proof. Returning the k-factors of a string w takes | � w � | − k − 1 steps, which
is effectively O(|w|). For a set of strings I the complexity is thus O(||I||). 
�

3.2 TSL Languages, Grammars, and Known Properties

The Tier-based Strictly Local (TSL) languages generalize the SL languages in
that forbidden k-factors are interpreted to only apply to some subset or tier T
of the alphabet Σ. Following [6], we define a function eraseT that returns a
string with all non-members of T removed: eraseT (σ1σ2 . . . σn) = u1u2 . . . un

where each ui = σi if σi ∈ T ; ui = λ otherwise. For example, for Σ = {a, b} and
T = {b}, then eraseT (abbaaabab) = bbbb. We then can define the tier k-factors
of a string as fack(eraseT (w)). A TSL grammar is thus a pair 〈T,R〉 where T
is a tier and R ⊆ fack(T ∗) is a set of forbidden tier k-factors. The language of
such a grammar is thus L(〈T,R〉) = {w ∈ Σ∗ | fack(eraseT (w)) ∩ R = ∅}.

For example, for Σ = {a, b}, L(〈{b}T , {bbb}R〉) is the set of strings such that
no 3 bs occur in the string, no matter how many as intervene (note the above
string abbaaabab is not in this language; abaaab, for example, is). Because they
restrict how members on T may appear in a language, we will sometimes refer to
members of R as restrictions on symbols on the tier. For the closure properties
of the TSL class and its relation to other formal language classes, see [6].



68 A. Jardine and K. McMullin

We say a grammar G = 〈T,R〉 is canonical if and only if T is as small as it
can be without changing the language. The notion of canonical grammar leads
to important properties a learning algorithm can use to learn the tier.

Definition 5 (Canonical TSLk grammar). A TSLk grammar G = 〈T,R〉 is
canonical iff for any TSLk grammar G′ = 〈T ′, R′〉, L(G) = L(G′) and G �= G′

implies T ⊂ T ′.

Example 6. Let Σ = {a, b, c}. Let G = 〈{b}T , {bb}R〉; L(G) is the strings of any
number of as and cs but at most one b. G is canonical as no TSL2 grammar for
L(G) has a smaller tier. For example, L(〈{a, b}T ′ , {bb}R′〉) = L(G′) but T ⊂ T ′.

Note that, under this definition, the canonical grammar for Σ∗ is 〈∅, ∅〉, which
does not specify restrictions on any σ ∈ Σ, as the empty set is the smallest tier
needed to describe Σ∗ (note that this is the unique case in which R can be
empty in a canonical grammar). Likewise, the canonical grammar for the empty
language is 〈∅, {λ}〉 for k = 0, 〈∅, {�, �}〉 for k = 1, and 〈∅, {��}〉 for k > 1.

Several existing learning results pertain to the TSL languages. First, given
T , learning R is identical to SL learning [6] procedure outlined in Sect. 3.1 [6].
An interesting question, however, is whether or not T can also be learned. As Σ is
finite, the set of possible T s is finite, and so the class of possible TSL languages for
a given Σ and k is finite, and thus can be learned via an enumerative method [2].
Thus, in principle, there is a method for learning T . However, as TSL grammars
appear to be relevant to linguistic cognition and learning [5,11], it is of interest to
pursue a non-enumerative method that meets the efficiency criteria in Sect. 2.1.

For TSL2 languages, such a method does exist. The Tier-based Strictly 2-
Local Inference Algorithm (2TSLIA) of [9] can learn TSL2 languages in quartic
time with a data sample bounded by a constant. Essentially, the 2TSLIA does
this by recursively removing symbols in Σ from its hypothesis for T and checking
the tier 2-factors present in the data based on this new guess for the tier.

The algorithm described in the following section improves on this result in
two ways. One, it can learn a TSLk language given any k. Two, it accomplishes
this in quadratic time by removing the recursive step.

3.3 Some Useful Properties of Canonical TSL Grammars

Given a canonical grammar 〈T,R〉, Lemmas 7 and 9 give important properties
of restricted members of T and nonmembers of T , respectively. We henceforth
assume factors are of strings in �Σ∗� (e.g., ignoring all u1 � u2 where u1 �= λ).

Lemma 7. If G = 〈T,R〉 is a canonical TSLk grammar, then for all σ ∈ T
which appear in R (i.e., for which there is at least one u1σu2 ∈ R), there is at
least one v1σv2 ∈ R such that v1v2 ∈ fack−1(L(G)).

Proof. Consider any grammar G and L = L(G) for which there exists a σ ∈ T
that appears in R such that for all v1σv2 ∈ R, v1v2 �∈ fack−1(L). We show
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there is a G′ = 〈T ′, R′〉 such that σ �∈ T ′ but L(G′) = L. Thus any such G is not
canonical (and so conversely for any canonical grammar, Lemma 1 must hold).

First, if v1v2 �∈ fack−1(L), then all tier k-factors containing it must be
banned. This means that either v1v2 = �v3� and v1v2 ∈ R, or for all τ ∈
(T ∪{�, �}), both τv1v2 ∈ R and v1v2τ ∈ R. Because for this σ for all w1σw2 ∈
R it is the case that w1w2 �∈ L, the previous sentence applies recursively. That
is, if v1v2τ = v′

1σv′
2, then for all τ ′ ∈ (T ∪ {�, �}), v′

1v
′
2τ

′ ∈ R and τ ′v′
1v

′
2 ∈ R.

Thus for any string v = t0σt1σ . . . tn−1σtn ∈ R consisting of n σs interpolated
with n + 1 strings ti ∈ ((T ∪ {�, �}) − {σ})∗, then ut0t1 . . . tnu′ ∈ R for all
strings u, u′ ∈ ((T ∪{�, �})−{σ})∗ such that ut0t1 . . . tnu′ ∈ fack((T −{σ})∗).
In other words, for all ut0 . . . tnu′ ∈ fack(�(T − {σ})∗�), ut0 . . . tnu′ ∈ R.

Now consider G′ = 〈T ′, R′〉 that is identical to G except that σ has been
removed from R′ and T ′; i.e. R′ = R−{w|w = v1σv2 for some v1, v2 ∈ fack(T ∗)}
and T ′ = T − {σ}. Let L′ = L(G′). We show that L′ = L.

For L′ ⊆ L, note that R′ ⊂ R and, because there is no v1σv2 ∈ R′, for
all v ∈ R′, eraseT ′(v) = eraseT (v). So if there is some w ∈ Σ∗ s.t. there is
a v ∈ R′ and v ∈ fack(eraseT ′(w)), v ∈ R and u ∈ fack(eraseT (w)). Thus
w �∈ L′ implies w �∈ L. For L ⊆ L′, take any v = t0σt1σ . . . tn−1σtn ∈ R
(where each ti is a string in ((T ∪ {�, �}) − {σ})∗) and some w ∈ Σ∗ where
v ∈ fack(eraseT (w)). As shown above, for all ut0 . . . tnu′ ∈ fack((T − {σ})∗),
ut0 . . . tnu′ ∈ R, and so also ut0 . . . tnu′ ∈ R′. Thus there is some ut0t1 . . . tnu′ ∈
R′ such that ut0t1 . . . tnu′ ∈ fack(eraseT ′(w)), and so w �∈ L implies w �∈ L′.
Thus, L(G) = L(G′) but T �⊆ T ′, so G is not canonical. 
�
Example 8. Consider G = 〈{b, a}T , {bab}R〉. This is canonical for k = 3, and sat-
isfies Lemma 7. For example, for a, bab is a banned 3-factor but bb is an allowed 2-
factor in L(G) (witnessed by the string abba ∈ L(G2)) and for b, ab is an allowed
2-factor (as aab ∈ L(G2)). Consider then G′ which is identical except bb is not a 2-
factor in L(G′). This means that L(G′) = 〈{a, b}T ′ , {bab, �bb, bb�, bba, abb}R′〉,
where R′ bans all tier 3-factors that contain bb. However, L(G′) is not canonical,
as L(G′) = L(〈{b} , {�bb, bbb, bb�}〉), and {b} ⊂ T ′.

Lemma 9. For a canonical TSLk grammar G, the following hold iff σ �∈ T :

1. ∀v1v2 ∈ fack−1(L(G)), v1σv2 ∈ fack(L(G)).
2. ∀v1σv2 ∈ fack+1(L(G)), v1v2 ∈ fack(L(G)).

Proof. Let L = L(G). (→) This follows from the definition of a TSL gram-
mar. For (1), if σ �∈ T , then for any w = w1v1v2w2 ∈ L, there is also a w′ =
w1v1σv2w2 ∈ L. This is because when σ �∈ T , eraseT (w) = eraseT (w′), and
thus the two strings are equivalent with respect to G. The same applies to (2):
if σ �∈ T , then for any w′ = w1v1σv2w2 ∈ L, there is also a w = w1v1v2w2 ∈ L.

(←) We show that for any σ that is a member of T , either (1) or (2) is false.
There are two important cases for σ ∈ T . Either there is some v1σv2 ∈ R, or
there is no such member of R and σ is thus unrestricted. For the case in which
there does exist a v1σv2 ∈ R, it follows directly from Lemma 7 that (1) is false,
because we know that there is some u1u2 ∈ fack−1(L(G)) for which u1σu2 ∈ R,
which implies that u1σu2 �∈ fack(L(G)).
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For any σ ∈ T for which there is not some v1σv2 ∈ R, (2) will always be
false as long as R is nonempty. Consider any v′

1v
′
2 ∈ R. It must be true that

v′
1σv′

2 ∈ fack+1(L), because any u ∈ fack(v′
1σv′

2) necessarily contains σ, and
thus u �∈ R. However, because v′

1v
′
2 ∈ R, v′

1v
′
2 �∈ fack(L) by the definition of a

TSL grammar, and so (2) is false. 
�

Example 10. For Σ = {a, b, c}, consider G = 〈{a, b, c}T , {bab}R〉. For b, (1) is
false because bb is a 2-factor in L(G), but bab is not a 3-factor in L(G). For c,
(2) is false because bcab is a 4-factor in L(G) but bab is not a 3-factor.

4 The Tier-Based Strictly k-Local Inference Algorithm

We can now define an efficient learning algorithm for learning a TSLk lan-
guage, for any k, by taking advantage of the properties of canonical TSLk gram-
mars proven in Lemmas 7 and 9 in Sect. 3.3. The algorithm is given below in
Algorithm 1. Proofs of its correctness and efficiency are given in Sect. 5.

Data: A finite input sample I ⊂ Σ∗, a positive integer k
Result: A k-TSL grammar G = 〈T, R〉
Initialize T = Σ;
foreach σ ∈ T do

if a) ∀v1v2 ∈ fack−1(I), v1σv2 ∈ fack(I) and
b) ∀v1σv2 ∈ fack+1(I), v1v2 ∈ fack(I) then
remove σ from T

end

end
Initialize R to fack(T

∗);
foreach u ∈ R, if u ∈ fack(I) do remove u from R;
Algorithm 1: The Tier-based Strictly k-Local Inference Algorithm

Recall from Lemma 9 that, for a language L whose canonical grammar is
G = 〈T,R〉, for any σ ∈ Σ, σ �∈ T if and only if (1) ∀v1v2 ∈ fack−1(L), v1σv2 ∈
fack(L) and (2) ∀v1σv2 ∈ fack+1(L), v1v2 ∈ fack(L). Given a set of input data
I, the algorithm searches for exactly these pairs for each σ ∈ Σ. If all such pairs
are present in I, then σ is removed from the algorithm’s hypothesis for the tier.
In this way, the algorithm can identify members of Σ that have the properties
established in Lemma 9 and correctly remove them from the tier.

To describe the algorithm in more detail, it first sets its hypothesis for the tier
to Σ. Then, in the first foreach loop, it cycles through each σ ∈ Σ, searching
for the above information. Specifically, for every v1v2 in the k − 1-factors of
I, it searches for v1σv2 in the k-factors of I, in order to determine whether σ
is permitted to co-occur with every k − 1-factor that is otherwise unrestricted.
Likewise, for every v1σv2 in the k + 1-factors of I, the algorithm searches for
v1v2 in the k-factors of I, in order to determine that there is no k-factor whose
occurrence in the language is dependent on the intervening σ. If it finds all such
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pairs, then it removes σ from its hypothesis for the tier. Having calculated a
hypothesis for the tier, it then calculates a hypothesis for R by initializing its
hypothesis to the full set of possible k-factors of T ∗ and then removing from this
hypothesis any tier k-factor it finds in the k-factors of I. In other words, all tier
k-factors not seen in I will appear in the algorithm’s hypothesis for R.

Example 11. Consider a case in which k = 3, Σ = {a, b}, and the target language
is L(G∗) where G∗ =

〈
{b}T∗ , {bbb}R∗

〉
and the algorithm is given as an input

a sample I from L where I = {λ, a, b, bb, aaa, bab, abba, aabaabaa}. Given I, the
algorithm will return a grammar G = 〈T,R〉 where T = T∗ and R = R∗. To see
how, Table 1 lists the k − 1-factors, k-factors, and k + 1-factors of I.

First, the algorithm initializes its hypothesis T to {a, b}, then in the first
foreach loop checks if either a or b meets the conditions in the if statement
for removal from T . Say the algorithm first considers a. In condition (a) of the
if statement, the algorithm checks that for every v1v2 ∈ fack−1(I), v1av2 ∈
fack(I). This is true in all cases: for example, �a ∈ fack−1(I) (row (b) in
Table 1), and �aa ∈ fack(I) (row (e)); also, bb ∈ fack−1(I) (row (d)), and
abb, bab, bba ∈ fack(I) (rows (g), (f), and (g), respectively). Thus, a satisfies
condition (a) of the if statement. Next, condition (b) in the if statement checks
that, for every v1av2 ∈ fack+1(I), v1v2 ∈ fack(I). This is also true: for example,
�aaa ∈ fack+1(I) (row (e)) and �aa ∈ fack(I) (also row (e); also, abba ∈
fack+1(I) (row (g)) and bba, abb ∈ fack(I) (also row (g)). So a also satisfies
condition (b) of the if statement. It is thus removed from T .

This, however, does not occur with b. In condition (a) of the if statement,
the algorithm will check to see if the k − 1-factor bb (which appears in row (c))
has a corresponding k-factor bbb. This does not appear in I. In fact, no sample
of L(G∗) will contain bbb as a 3-factor, as bbb ∈ R∗. Thus b will remain on T .

Having checked through each symbol in Σ for removal from T , the algorithm
then calculates its hypothesis for R in the second foreach loop. First, it initializes
R to all possible tier k-factors; in this case, this is {��, �b�, �bb, bb�, bbb}. Note
that all but bbb are attested in Table 1, so the foreach loop will remove all but
bbb from R. Thus, the algorithm returns a grammar 〈T,R〉 = 〈T∗, R∗〉.

Of course, the algorithm can only accurately determine if a symbol σ is on
the tier if the data in I is somehow representative of the target language L.
Definition 12 below defines a set D of data that I must contain in order for it
to be representative of L. The following section will then prove that any such
representative sample is a characteristic sample, in the sense defined in Sect. 2.1.

Definition 12 (Representative sample). For a TSLk language L whose ca-
nonical grammar is G = 〈T,R〉, S = fack(T

∗) − R, P = {σ | v1σv2 ∈ R}, a set
D is a representative sample of L if it meets the following conditions:

1. Non-tier element condition. For all non-tier elements σ �∈ T ,
(a) ∀v1v2 ∈ fack−1(L),∃v1σv2 ∈ fack(D).
(b) ∀v1σv2 ∈ fack+1(L),∃v1v2 ∈ fack(D).
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Table 1. Breakdown of the factors of I from Example 11. Each row gives the new 2-,
3-, and 4-factors (i.e., the k −1-, k-, and k +1-factors) generated from each data point.

Input string k-1-factors k-factors k+1-factors

a. λ ��

b. a �a, a� �a�

c. b �b, b� �b�

d. bb bb �bb, bb� �bb�

e. aaa aa �aa, aaa, aa� �aaa, aaa�

f. bab ba, ab �ba, bab, ab� �bab, bab�

g. abba ab, ba �ab, abb, bba, ba� �abb, abba, bba�

h. aabaabaa — aab, aba, baa �aab, aaba, abaa, baa�

2. The tier element condition. For each σ ∈ T ,
(a) if σ ∈ P , then ∃v1v2 ∈ fack−1(D) s.t. v1σv2 ∈ R.
(b) if σ �∈ P , then ∃v1σv2 ∈ fack+1(D), where v1v2 ∈ R.

3. Allowed tier k-factor condition. For all v ∈ S,∃w ∈ D s.t. v ∈ fack(w).

Essentially, Definition 12 states that a representative sample is a set that
contains the relevant information for each σ ∈ Σ to distinguish it as a non-
member or member of the tier. The non-tier element condition ensures that for
each σ �∈ T , a representative sample includes in its k-factors at least one v1σv2
for every v1v2 in the k − 1-factors of L and at least one v1v2 for every v1σv1
in the k + 1-factors of L. Again, the presence of these k-factors was shown by
Lemma 9 to be definitional for non-members of T .

For any σ ∈ T , the tier element condition ensures that the representative
sample includes sufficient information to identify σ as a member of the tier. This
is done by ensuring the inverse of Lemma 9 is true: that for σ for which such
there is some v1σv2 ∈ R (and thus will never appear as a k-factor in a sample
of L), there is some v1v2 ∈ fack−1(D). Note that Lemma 7 guarantees such a
v1v2 to exist as a k − 1-factor of L. For σ ∈ T for which no such k-factor exists
in R, part (b) of the tier element condition states that a representative sample
must include some v1σv2 as a k+1-factor, where v1v2 ∈ R. Thus, for any σ ∈ T ,
a representative sample includes information showing that σ does not obey the
properties Lemma 9 establishes for non-tier elements.

Finally, the allowed tier k-factor condition, ensures that the representative
sample includes all tier k-factors allowed by G.

5 Identification in Polynomial Time and Data

We now prove that the kTSLIA can correctly identify any TSL language in
polynomial time and data. First, we establish its time complexity.

Lemma 13. Given an input sample I of size n, kTSLIA runs in polynomial
time complexity with respect to n.
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Proof. The algorithm needs to calculate the k−1-, k-, and k+1-factors of I, each
of which (per Remark 4) takes time linear in n. Note also that the cardinality of
each of these sets of factors is bound by n.

The first foreach loop is called exactly |Σ| times. Checking condition (a) in
this loop requires that for every σ1 . . . σk−1 ∈ fack−1(I), the algorithm checks
fack(I) for v1σv2 ∈ fack(I) where v1 = λ, v2 = σ1 . . . σk−1, v1 = σ1, v2 =
σ2 . . . σk−1 v1 = σ1σ2, v2 = σ3 . . . σk−1, etc. Thus condition (a) requires, for each
member of fack−1(I), k + 1 passes through fack(I). This takes n · (k + 1) · n =
(k+1) ·n2 steps. Checking condition (b) requires that, in the worst case, for each
member of fack+1(I), the algorithm passes through fack(I) k + 1 times, taking
(k + 1) · n2 steps. Since fac is calculated in linear time, the time complexity for
this loop is therefore O(|Σ|2(k + 1)n2) = O(n2) since |Σ| and k are constants.

The final step of the algorithm, identifying the permissible tier-based k-
factors, requires one final run through the k-factors of I, which again takes
n steps. In total, the algorithm runs in O(3n + n2 + n) = O(n2) time. 
�

Lemma 14. For a language L, the size of the representative sample D for L is
polynomial with respect to the size of G for any grammar G of L.

Proof. The non-tier condition requires that for each σ �∈ T and for each
v1v2 ∈ fack−1(L), the sample minimally contains a v1σv2 factor. The length
of these strings equals |Σ − T | · |Σ|k−1 · k. Additionally, for every σ �∈ T and
for each v1σv2 ∈ fack+1(L), the sample includes minimally a v1v2 substring.
The combined length of these strings is |Σ − T | · |Σ|k · (k + 1). The tier condi-
tion requires that for each σ ∈ T there is minimally either one string v1v2 such
that v1σv2 ∈ R or one string v1σv2 such that v1v2 ∈ R. The total length of
these strings is at most |T | · (k + 1). The allowed tier k-factor condition requires
for each u ∈ S that minimally u is contained in the sample. Hence the length
of these words equals |S|. Altogether, there is therefore a sample D such that
||D|| = |Σ −T | · |Σ|k−1 ·k + |Σ −T | · |Σ|k · (k +1)+ |T | · (k +1)+ |S|. Since |T | is
bounded by |Σ| and |S| and |R| bounded by |Σ|k, ||D|| is bounded by O(|Σ|k).
As |Σ| and k are constant, ||D|| is thus bounded by a constant. 
�

Lemma 15. Given any superset I of a representative sample D for a TSLk

language L whose canonical grammar is G = 〈T,R〉, the kTSLIA will return a
grammar G′ = 〈T ′, R′〉 such that T ′ = T .

Proof. This is essentially due to the fact that a representative sample is defined
as one which contains the information established in Lemmas 7 and 9 as distin-
guishing symbols on the tier from non-tier symbols in a canonical TSL grammar.
Let L = L(G). We show that σ �∈ T implies σ �∈ T ′ and that σ ∈ T implies σ ∈ T ′,
and thus that T = T ′.

First, for any non-tier element σ �∈ T , σ �∈ T ′ if and only if ∀v1v2 ∈
fack−1(I), v1σv2 ∈ fack(I) (condition (a) of the algorithm) and ∀v1σv2 ∈
fack+1(I), v1v2 ∈ fack(I) (condition (b) of the algorithm). Part (1a) of the
non-tier element condition for the representative sample (Definition 12-1a) guar-
antees that for any possible k−1-factor v1v2 of L that v1σv2 ∈ fack(D). (Such a
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k +1 factor is guaranteed to exist in L by Lemma 9-2. Recall that if σ ∈ T , then
eraseT (v1v2) = eraseT (v1σv2), and so G cannot distinguish between them; i.e.
v1v2 appears in L iff v1σv2 does as well). Thus for any superset I of D consistent
with L, if v1v2 ∈ fack−1(I) then v1σv2 ∈ fack(I). So σ satisfies condition (a).

Similarly, part (1b) of the non-tier element condition for the representative
sample requires that for any v1v2 ∈ fack(L), then v1σv2 ∈ fack+1(D). (Again,
this is possible because G will not distinguish between v1v2 and v1σv2, and so
if v1v2 ∈ fack(L), then v1σv2 ∈ fack+1(L)). Thus, for any v1v2 ∈ fack(I) that
the algorithm encounters, it will also v1v2 ∈ fack(I). Thus σ will also satisfy
condition (b) and be taken off of the tier. Thus σ �∈ T implies σ �∈ T ′.

For σ ∈ T , if there is a v1σv2 ∈ R, then part (2a) of the tier element condition
for the representative sample (Definition 2-1a) requires that v1v2 ∈ fack−1(D).
Thus I is guaranteed to contain some k − 1-factor v1v2 for which there will be
no v1σv2 ∈ fack(I), as long as I is consistent with L. Thus σ will fail condition
(a) of the algorithm for removal from the tier.

If there is no v1σv2 ∈ R, then part (2b) of the tier element condition for
the representative sample (Definition 2-2b) requires that there must be some
v1v2 ∈ R such that v1σv2 ∈ fack+1(D). (Such a k + 1 factor is guaranteed to
exist because, again, there are no restrictions on σ.) As any sample consistent
with L will never contain v1v2, σ is guaranteed to fail condition (b) for removal
from the tier.

Thus, in either situation σ fails one of the algorithm’s conditions (a) and (b)
for removal from the tier, and so σ ∈ T implies σ ∈ T ′. Thus T = T ′. 
�

Lemma 16. Given any superset I of a representative sample D for a TSLk

language L whose canonical grammar is G = 〈T,R〉, the kTSLIA will return a
grammar G′ = 〈T ′, R′〉 such that R′ = R.

Proof. By Lemma 15, T = T ′. Thus, in the last two lines of the algorithm R′

is initialized to fack(T ′∗) = fack(T ∗), and the final foreach loop will correctly
locate all u ∈ fack(T ∗) found in D. By Definition 2 of the representative sample,
D will contain all allowable tier substrings in S = fack(T ∗)−R. These will thus
all be removed from R′ by the algorithm, and so R′ = fack(T ∗) − S = R. 
�

Lemma 17. A representative sample D for L is a characteristic sample for L.

Proof. From Lemmas 15 and 16, given a superset of D the kTSLIA will return
a grammar G′ = 〈T ′, R′〉 such that T ′ = T and R′ = R, where 〈T,R〉 is the
canonical grammar for L. Thus L(G′) = L. 
�

Theorem 18. For any TSLk language L, the kTSLIA identifies L in polynomial
time and data.

Proof. From Lemmas 13, 14, and 17. 
�
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6 Discussion and Conclusion

The main contributions of this paper have been twofold. One, it redefined the
notion of a canonical TSLk grammar, and proved several resulting important
properties of members and non-members of the tier. Two, it established an algo-
rithm which uses these properties that is guaranteed to induce a TSLk grammar
in polynomial time and data.

Future work can now examine how results can be applied directly to nat-
ural language learning, the context that TSL languages were initially designed
to model. While this paper has established, based on the aforementioned prop-
erties of members and non-members of the tier, a characteristic sample for the
kTSLIA, it remains to be seen whether or not this characteristic sample appears
in natural language data. Future work can examine to what extent this informa-
tion is present in phonological corpora, and discuss what modifications may be
necessary for the algorithm to be successful in these situations (as done in [8] for
the 2TSLIA). Furthermore, while the learner presented here is fundamentally
categorical and thus brittle in the face of noisy data, future work can build on
the results here to create a stochastic version of the kTSLIA.
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Abstract. We identify the properties of context-free grammars that
exactly correspond to the behavior of the dual and primal versions of
Clark and Yoshinaka’s distributional learning algorithm and call them
the very weak finite context/kernel property. We show that the very weak
finite context property does not imply Yoshinaka’s weak finite context
property, which has been assumed to hold of the target language for the
dual algorithm to succeed. We also show that the weak finite context
property is genuinely weaker than Clark’s strong finite context property,
settling a question raised by Yoshinaka.

Keywords: Grammatical inference and algorithmic learning · Dis-
tributional learning · Finite context property · Finite kernel
property · Context-free languages

1 Introduction

Clark [2] and Yoshinaka [8] pioneered an approach to efficient learning of context-
free languages under the paradigm of polynomial-time identification in the limit
from positive data and membership queries, which they called distributional
learning.1 The idea of distributional learning was based on the assumption that
the target language has a context-free grammar each of whose nonterminals is
characterized either by a finite set of strings or by a finite set of contexts (i.e.,
pairs of strings). There are strong and weak variants to this notion of character-
ization: A nonterminal X is strongly characterized by a set C of contexts if the
strings derived from X are exactly those that can appear in all contexts from C;
X is strongly characterized by a set K of strings if X is strongly characterized
by the set of contexts in which all elements of K can appear. The weak notion
of characterization is obtained by replacing “the strings derived from X” in this
definition by their closure, i.e., “the strings that can appear in every context in
which all strings derived from X can appear”. A context-free grammar G has
the strong (resp. weak) finite context property (FCP) if each nonterminal of G is
1 Clark and Yoshinaka have used the term “distributional learning” more loosely in

connection with a number of different learning paradims (see [5] for a survey).
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strongly (resp. weakly) characterized by a finite set of contexts; G has the strong
(resp. weak) finite kernel property (FKP) if each nonterminal of G is strongly
(resp. weakly) characterized by a finite set of strings. The dual variant of the
distributional learner uses finite sets of contexts as nonterminals and succeeds
under the assumption that the target grammar has the weak FCP, while the
primal variant uses finite sets of strings as nonterminals and assumes that the
target grammar has the weak FKP. Distributional learning, both in its dual and
primal variants, has since been extended to string and tree grammar formalisms
that are “context-free” in a broad sense of the term [4,5,9,11].

Despite the naturalness and wide applicability of the approach, there is a
notable discrepancy between the assumption of the (weak) FCP/FKP and the
behavior of the learning algorithm. For, in hypothesizing a rule, what the algo-
rithm tries to check is the “local” requirement that the rule be valid under the
presumption that each nonterminal in the rule is strongly characterized by itself.
For example, when the dual algorithm constructs a binary rule C0 → C1C2,
where each Ci is a finite set of contexts, it checks whether the available evidence
is consistent with the assumption C�

0 ⊇ C�
1C�

2 , where C�
i denotes the set of

strings that can appear in each context from Ci in the target language. (Note
that the definition of the set C�

i refers to the target language, not to any gram-
mar for it.) In contrast, the weak or strong FCP/FKP of a context-free grammar
is a “global” property of the grammar, since it refers to the set of strings derived
from each nonterminal, something that you cannot determine just by looking at
each individual rule in isolation.

The original idea of Clark [2] was to identify each nonterminal with a closed
set of strings (i.e., a set that is its own closure). Thus, he employed the strong
variant of the finite context property. Yoshinaka [8] recognized the possibility
that the set of strings derived from a nonterminal in the hypothesized gram-
mar may not be a closed set, and introduced the weak variants of the FCP
and FKP. In his later paper [10] on distributional learning of conjunctive gram-
mars, Yoshinaka mentioned as an open problem the question of whether the
context-free grammars with the strong FCP generate the same languages as the
context-free grammars with the weak FCP. However, the question of whether
the weak FCP and FKP are weak enough, i.e., whether the two variants of the
distributional learner always converge to a grammar with the weak FCP/FKP,
does not seem to have attracted much attention.

In fact, the properties of context-free grammars that exactly correspond to
the behavior of the dual and primal variants of the distributional learner are
easy to state; we call them the very weak FCP/FKP. The dual/primal algorithm
converges to a correct grammar for the target language when the latter has a
grammar satisfying the very weak FCP/FKP, and the grammar it converges
to always satisfies the very weak FCP/FKP. As we show below, the very weak
FKP turns out to be equivalent to the weak FKP, and the primal algorithm is
guaranteed to converge to a grammar with the weak FKP. In contrast, the very
weak FCP is genuinely weaker than the weak FCP. We exhibit a language that
has a context-free grammar with the very weak FCP but has no context-free
grammar with the weak FCP. The fact that the dual algorithm succeeds on such
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languages has not been recognized so far. We also show that a similar separation
holds between the weak and strong variants of both the FCP and the FKP. This
negatively settles the above-mentioned open problem of Yoshinaka [10].

2 Preliminaries

We adopt the standard definition of context-free grammars (as in [1]), except
that we allow them to have multiple initial nonterminals. Thus, a context-free
grammar (CFG) is a 4-tuple G = (N,Σ,P, I), where I ⊆ N is the set of initial
nonterminals. If A is a nonterminal of G, we write L(G,A) for {w ∈ Σ∗ |
A ⇒∗

G w}, the set of terminal strings derived from A. Then the language of G
is L(G) =

⋃
A∈I L(G,A). We write C(G,A) for {(u, v) ∈ Σ∗ × Σ∗ | S ⇒∗

G uAv
for some S ∈ I}.

Let G = (N,Σ,P, I) be a CFG. It is well known that G can be thought of as a
system of equations where the nonterminals are viewed as variables ranging over
P(Σ∗). This system contains the equation A = α1∪· · ·∪αk for each nonterminal
A, where α1, . . . , αk list the right-hand sides of the productions with A on the
left-hand side. A sequence of sets (XA)A∈N is a fixed point of G if assigning
the value XA to each A satisfies all these equations. The sequence (XA)A∈N is
a pre-fixed point of G if it instead satisfies A ⊇ α1 ∪ . . . · · · ∪ αk. Equivalently,
(XA)A∈N is a pre-fixed point of G if for each production A → w0A1w1 . . . Anwn

in P (with wi ∈ Σ∗ and Ai ∈ N), it holds that XA ⊇ w0XA1w1 . . . XAn
wn. It

is known that the sequence (L(G,A))A∈N is the least fixed point as well as the
least pre-fixed point of G under the partial order of componentwise inclusion.

3 Three Variants of the Finite Context and Kernel
Properties

We begin by reviewing some important notions from Clark’s syntactic concept
lattice [3]. Let L ⊆ Σ∗ be given. For C ⊆ Σ∗ × Σ∗ and K ⊆ Σ∗, we put

C〈L| = {x ∈ Σ∗ | uxv ∈ L for all (u, v) ∈ C},

K |L〉 = {(u, v) ∈ Σ∗ × Σ∗ | uKv ⊆ L}.

When the language L is understood from context, these are simply written C�

and K�. For a set K ⊆ Σ∗, its closure is K��. The function (·)�� is indeed a
closure operator in the sense that (i) K ⊆ K��, (ii) K1 ⊆ K2 implies K��

1 ⊆ K��
2 ,

and (iii) K���� = K��. A set K ⊆ Σ∗ is closed if K = K��; equivalently, K
is closed if and only if there exists a C ⊆ Σ∗ × Σ∗ such that K = C�. (These
notions are all relative to the given language L.) Note that L is always closed
relative to L, since L� always contains (ε, ε). (We write ε for the empty string.)

An important property of the closure operator (·)�� is the following [3]: for
X,Y ⊆ Σ∗,

(XY )�� = (X��Y ��)��. (1)

Let G = (N,Σ,P, I) be a CFG, and let the operators � and � be understood
relative to L(G). A pre-fixed point (XA)A∈N of G is sound if

⋃
A∈I XA = L(G).
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We abbreviate “sound pre-fixed point” to “SPP”. It is easy to see that if
(XA)A∈N is an SPP of G, then uXAv ⊆ L(G) for all (u, v) ∈ C(G,A). Since
(L(G,A))A∈N is the least pre-fixed point of G, it is the least SPP.

Proposition 1. If (XA)A∈N is an SPP, then so is (X��
A )A∈N .

Proof. This easily follows from the fact that (w0X
��
A1

w1 . . . X��
An

wn)�� equals
(w0XA1w1 . . . XAn

wn)��, which in turn is a consequence of (1). 	


Since (L(G,A)��)A∈N is the least pre-fixed point consisting entirely of closed
sets, it is the least such SPP. It need not be the greatest SPP of G. In fact, it is
not hard to see that the greatest SPP may not exist.

Let k be a natural number, and let L ⊆ Σ∗. A set X ⊆ Σ∗ is k-context-
generated relative to L if X = C〈L| for some C ⊆ Σ∗×Σ∗ such that |C| ≤ k. We
say that X is k-kernel-generated relative to L if X = K |L〉〈L| for some K ⊆ Σ∗
such that |K| ≤ k. A sequence of sets is k-context-generated (k-kernel-generated)
if each of its component sets is k-context-generated (k-kernel-generated).

We say that G has

– the strong k-finite context property (resp. strong k-finite kernel property) if
(L(G,A))A∈N is k-context-generated (resp. k-kernel-generated) relative to
L(G);

– the weak k-finite context property (resp. weak k-finite kernel property) if
(L(G,A)��)A∈N is k-context-generated (resp. k-kernel-generated) relative to
L(G);

– the very weak k-finite context property (resp. very weak k-finite kernel prop-
erty if G has an SPP that is k-context-generated (resp. k-kernel-generated)
relative to L(G).

We abbreviate “finite context property” to “FCP” and “finite kernel prop-
erty” to “FKP”. Clearly, a CFG G has the strong k-FCP (k-FKP) if and only
if G has the weak k-FCP (k-FKP) and in addition L(G,A) is a closed set rel-
ative to L(G) for each nonterminal A of G. It is also obvious that the weak
k-FCP (k-FKP) implies the very weak k-FCP (k-FKP). We say that G has
the strong/weak/very weak FCP/FKP when G has the strong/weak/very weak
k-FCP/k-FKP for some k.

What Clark [2] called the finite context property was what we here call the
strong finite context property. The weak finite context property was introduced
by Yoshinaka [8] and adopted by Leiß [6].

Proposition 2. (i) There is a language that has a CFG with the strong 1-FKP
but has no CFG with the very weak FCP.

(ii) There is a language that has a CFG with the strong 1-FCP but has no CFG
with the very weak FKP.

Proof. (i). Let

L = L1 ∪ L2, L1 = {amcb2m | m ∈ N}, L2 = {amdbn | n ≤ m ≤ 2n}.
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Let G be the following CFG with initial nonterminals S1 and S2:

S1 → aS1bb | c, S2 → aS2b | aaS2b | d.

Then L(G,S1) = L1 = {c}�� and L(G,S2) = L2 = {d}��. So L(G) = L and G
has the strong 1-FKP.

Now let G′ be any CFG for L. Applying the pumping lemma to apcb2p for a
sufficiently large p, we get

S ⇒∗
G′ ai1Ebj1 , E ⇒+

G′ aiEbj , E ⇒∗
G′ ai2cbj2

with i + j > 0, i1 + i + i2 = p, and j1 + j + j2 = 2p, for some nonterminal E
and initial nonterminal S. Since ai1+ni+i2cbj1+nj+j2 ∈ L for all n ∈ N, we must
have j = 2i, which implies i > 0. By way of contradiction, assume that G′ has
an SPP whose component for E is C�

E for some finite CE ⊆ Σ∗ × Σ∗. We must
have

L ⊇ ai1C�
Ebj1 , C�

E ⊇ aiC�
Eb2i, C�

E ⊇ {ai2cbj2}.

By the last inclusion, every element of CE must be of the form (an−i2 , b2n−j2)
for some n such that n ≥ i2 and 2n ≥ j2. Take an m large enough that m ≥ 2n
for all n such that (an−i2 , b2n−j2) ∈ CE . Then for all such n,

2m + 2n − j2 ≤ 3m ≤ 3m + n − i2 ≤ 4m ≤ 2(2m + 2n − j2),

which implies a3mdb2m ∈ C�
E . But since L ⊇ ai1+niC�

Ebj1+2ni for all n ∈ N, we
get ai1+ni+3mdbj1+2ni+2m ∈ L and hence i1 + ni + 3m ≥ j1 + 2ni + 2m for all
n, which contradicts i > 0.

(ii). Let L = {ambn | m = n}. Let G be the following CFG with a unique
initial nonterminal S:

S → A | B | aSb, A → a | aA, B → b | bB.

Then L(G,S) = L = {(ε, ε)}�, L(G,A) = a+ = {(ε, ab)}�, L(G,B) = b+ =
{(ab, ε)}�, so G has the strong 1-FCP.

Now suppose that L has a CFG with the very weak FKP. Then L =
K��

1 ∪ · · · ∪ K��
n for some finite sets K1, . . . ,Kn ⊆ Σ∗. Clearly, Ki ⊆ L for

i = 1, . . . , n. Let p = max{|m − n| | ambn ∈ Ki for some i}. Then for each i,
K�

i ⊇ {(am, bn) | |m − n| > p}, which implies K��
i ⊆ {ambn | |m − n| ≤ p}. This

is a contradiction, since L ⊆ {ambn | |m − n| ≤ p}. 	


4 Distributional Learning

The distributional learner has access to an infinite stream of positive examples
and the membership oracle for the target language L∗. Let � and � be understood
relative to L∗.

The dual algorithm forms productions of the form C0 → w0C1w1 . . . Cnwn,
where each nonterminal Ci is a finite set of contexts (u, v) contained in the input
positive data D (i.e., uwv ∈ D for some w). Such a production is valid if

C�
0 ⊇ w0C

�
1w1 . . . C�

nwn.
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The membership of a string in C�
i can be determined by a membership query, but

since C�
i is in general infinite, the validity of a production cannot be determined

in finite time. At each stage, the algorithm uses only those productions that are
valid on the set E of all substrings of the positive examples, in the sense that

C�
0 ⊇ w0(E ∩ C�

1 )w1 . . . (E ∩ C�
n)wn.

Testing this condition for all candidate productions can be done with a poly-
nomial number of membership queries if there is a fixed bound on n and the
cardinality of each Ci. Since E continues to grow, if the output of the algorithm
stabilizes on a particular grammar, all its productions will be valid.

The primal algorithm in contrast constructs productions of the form K0 →
w0K1w1 . . . Knwn where each Ki is a finite set of strings w drawn from the
input positive data D (i.e., uwv ∈ D for some u, v). Such a production is valid
if K��

0 ⊇ w0K
��
1 w1 . . . K��

n wn. It is not difficult to see that this condition is
equivalent to

K�
0 ⊆ (w0K1w1 . . . Knwn)�.

In hypothesizing a production, the primal algorithm checks that it is valid on
the set J of all contexts contained in the input positive data, in the following
sense:

J ∩ K�
0 ⊆ (w0K1w1 . . . Knwn)�.

Again, this ensures the validity of all productions in the limit.

Algorithm 1. Dual learner for CFGs.
Parameters: Positive integers r, k;
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

let D0 := ∅; E0 := ∅; J0 := ∅; H0 := ∅; G0 := (∅, Σ, ∅, ∅);
for i = 1, 2, . . . do

let Di := Di−1 ∪ {ti}; Ei := Sub(Di);
if Di � L(Gi−1) then

let Ji := Con(Di); Hi := Sub≤r+1(Di);
else

let Ji := Ji−1; Hi := Hi−1;

output Gi := (Ni, Σ, Pi, Ii) where

Ni = {C ⊆ Ji | 1 ≤ |C| ≤ k},

Pi = {C0 → w0C1w1 . . . Cnwn | (w0, w1, . . . , wn) ∈ Hi,

C0, C1, . . . , Cn ∈ Ni, C0 → w0C1w1 . . . Cnwn is valid on Ei},

Ii = {C ∈ Ni | Ei ∩ C〈L∗| ⊆ L∗};

Exact formulations of the two algorithms are given in Algorithms 1 and 2.2

In the algorithms, Sub(D) = {w ∈ Σ∗ | uwv ∈ D for some u, v}, Subn(D) =
2 The present formulations follow [4].
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{(w1, . . . , wn) ∈ (Σ∗)n | u0w1u1 . . . wnun ∈ D for some u0, . . . , un}, Sub≤m(D)
=

⋃
1≤n≤m Subn(D), and Con(D) = {(u, v) ∈ Σ∗ × Σ∗ | uwv ∈ D for some w}.

Algorithm 2. Primal learner for CFGs.
Parameters: Positive integers r, k;
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

let D0 := ∅; E0 := ∅; J0 := ∅; H0 := ∅; G0 := (∅, Σ, ∅, ∅);
for i = 1, 2, . . . do

let Di := Di−1 ∪ {ti}; Ji := Con(Di);
if Di � L(Gi−1) then

let Ei := Sub(Di); Hi := Sub≤r+1(Di);
else

let Ei := Ei−1; Hi := Hi−1;

output Gi := (Ni, Σ, Pi, Ii) where

Ni = {K ⊆ Ei | 1 ≤ |K| ≤ k},

Pi = {K0 → w0K1w1 . . . Knwn | (w0, w1, . . . , wn) ∈ Hi,

K0, K1, . . . , Kn ∈ Ni, K0 → w0K1w1 . . . Knwn is valid on Ji},

Ii = {K ∈ Ni | K ⊆ L∗};

We say that the dual or primal learner converges to G on L∗ if, given a
positive presentation (i.e., enumeration) of L∗ and the membership oracle for
L∗, the output of the learner eventually stabilizes on G.

Theorem 3. Suppose that the dual learner converges to a grammar G on L∗.
Then L(G) = L∗ and G has the very weak k-FCP.

Proof. Let G = (N,Σ,P, I). It is easy to see that Di ⊆ L(Gi) holds at each
stage, so L∗ ⊆ L(G). Since every element of Sub(L∗) eventually appears in Ei,
each production of G must be valid. Hence the sequence (C〈L∗|)C∈N is a pre-
fixed point of G. By the same token, we must have C〈L∗| ⊆ L∗ for all C ∈ I. So⋃

C∈I C〈L∗| ⊆ L∗ ⊆ L(G). Since (L(G,C))C∈N is the least pre-fixed point of G,
L(G) =

⋃
C∈I L(G,C) ⊆

⋃
C∈I C〈L∗|. Hence L(G) = L∗ and (C〈L(G)|)C∈N is an

SPP of G, which means that G has the very weak k-FCP. 	

Similarly, we have

Theorem 4. Suppose that the primal learner converges to a grammar G on L∗.
Then L(G) = L∗ and G has the very weak k-FKP.

The following theorems are clear from the existing proof of correctness of the
dual and primal learners (see, e.g., [4]).

Theorem 5. Let G be a CFG each of whose productions has at most r non-
terminals on the right-hand side. If G has the very weak k-FCP, then the dual
learner converges to a grammar for L(G) on L(G).
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Theorem 6. Let G be a CFG each of whose productions has at most r nonter-
minals on the right-hand side. If G has the very weak k-FKP, then the primal
learner converges to a grammar for L(G) on L(G).

5 The Strong vs. Weak Finite Context and Kernel
Properties

We write xR for the reversal of a string x, and |x|a for the number of occurrences
of a symbol a in x. Let

Σ = {a, b, c, d, e,#, $},

L = L1 ∪ L2 ∪ L3,

L1 = {w1#w2# . . . #wn$wR
n . . . wR

2 wR
1 | n ≥ 1, w1, . . . , wn ∈ {a, b}∗},

L2 = {wycidiejz | w, z ∈ {a, b}∗, y ∈ (#{a, b}∗)∗, i, j ≥ 0, |w|a ≥ |w|b},

L3 = {wycidjejz | w, z ∈ {a, b}∗, y ∈ (#{a, b}∗)∗, i, j ≥ 0, |w|a ≤ |w|b}.

Lemma 7. Every CFG G for L has a nonterminal E such that L(G,E) is not
a closed set relative to L.

Proof. Let G be a CFG for L. By applying Ogden’s [7] lemma3 to a derivation
tree of a sufficiently long string in L1 of the form apbp#ap$apbpap, we obtain

S1 ⇒+
G am1Aal1 , A ⇒+

G an1Aan1 , A ⇒+
G am2bm3Bbl3al2 ,

B ⇒+
G bn2Bbn2 , B ⇒+

G bm4#am5Dal5bl4 , D ⇒+
G am6$al6 ,

for some n1, n2,m1,m2,m3,m4,m5,m6 ≥ 1, l1, l2, l3, l4, l5, l6 ≥ 0 such that m1+
n1 + m2 = m3 + n2 + m4 = m5 + m6 = l1 + n1 + l2 = l3 + n2 + l4 = l5 + l6 = p,
where S1 is an initial nonterminal. We show that L(G,D) is not a closed set.

Let (u, v) ∈ L(G,D)�. Then uam6$al6v ∈ L. Since y$z ∈ L implies ycidieiz ∈
L for every y, z ∈ Σ∗ and i ≥ 0, we have uam6cidieial6v ∈ L for every i ≥ 0.
This shows

{am6cidieial6 | i ≥ 0} ⊆ L(G,D)��. (2)

On the other hand, since

S1 ⇒∗
G am1(an1)iam2bm3(bn2)jbm4#am5Dal5bl4(bn2)jbl3al2(an1)ial1

for all i, j ≥ 0, there are w,w′, z, z′ ∈ {a, b}∗ such that |w|a > |w|b, |w′|a < |w′|b.
and

S1 ⇒∗
G w#am5Dz, S1 ⇒∗

G w′#am5Dz′, (3)

3 It is clear from Ogden’s proof that the lemma is really about one particular derivation
tree of a context-free grammar. If p is the constant of Ogden’s lemma for G, we obtain
the required decomposition of the derivation tree by first marking the initial ap, then
the bp preceding #, and then the ap immediately following #.
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Now suppose am6cidjekal6 ∈ L(G,D)��. Since (3) implies (w#am5 , z) ∈
L(G,D)� and (w′#am5 , z′) ∈ L(G,D)�, we must have w#am5am6cidjekal6z ∈
L2 and w′#am5am6cidjekal6z ∈ L3. It follows that

am6cidjekal6 ∈ L(G,D)�� only if i = j = k. (4)

By (2) and (4), L(G,D)�� ∩ am6c∗d∗e∗al6 = {am6cidieial6 | i ≥ 0}, which
implies that L(G,D)�� is not context-free. Therefore, L(G,D) = L(G,D)�� and
L(G,D) is not a closed set. 	


The above lemma implies that L has no CFG that has either the strong FCP
or the strong FKP.

Lemma 8. There is a CFG for L that has both the weak 2-FCP and the weak
2-FKP.

Proof. Let G be the following CFG, where S1, S2, S3 are the initial nonterminals.

S1 → $ | aS1a | bS1b | #S1, C → ε | cC,
Q → ε | aQbQ | bQaQ, J → ε | dJe,
F → Q# | Fa | Fb | F#, S2 → HE | FS2 | QS2 | aS2 | S2a | S2b,
H → ε | cHd, S3 → CJ | FS3 | QS3 | bS3 | S3a | S3b.
E → ε | Ee,

We have

L(G,S1) = L1,

L(G,S1)� = {(w1#w2# . . . #wn, wR
n . . . wR

2 wR
1 ) | n ≥ 1, w1, . . . , wn ∈ {a, b}∗},

L(G,S1)�� = L1 ∪ {ycidieiz | y ∈ {a, b,#}∗, z ∈ {a, b}∗, i ≥ 0}
= {(a#, a), (b#, b)}� = {$}��,

L(G,Q) = {w ∈ {a, b}∗ | |w|a = |w|b} = {(ε,#cd), (a, b#de)}� = {ε, ab}��,

L(G,F ) = {w#y | w ∈ {a, b}∗, |w|a = |w|b, y ∈ {a, b,#}∗}
= {(ε, cd), (ε, ade)}� = {#, ab#}��,

L(G,H) = {cidi | i ≥ 0} = {(a#c, d)}� = {ε, cd}��,

L(G,E) = e∗ = {(a#cd, e)}� = {ε, e}��,

L(G,C) = c∗ = {(b#c, de)}� = {ε, c}��,

L(G, J) = {diei | i ≥ 0} = {(b#d, e)}� = {ε, de}��,

L(G,S2) = L2,

L(G,S2)� = {(wy, z) | w, z ∈ {a, b}∗, y ∈ (#{a, b}∗)∗, |w|a ≥ |w|b},

L(G,S2)�� = L2 ∪ {vcidieiz | v ∈ {a, b,#}∗, z ∈ {a, b}∗, i ≥ 0}
= {(ε, ε), (a#, b)}� = {cda}��,

L(G,S3) = L3,
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L(G,S3)� = {(wy, z) | w, z ∈ {a, b}∗, y ∈ (#{a, b}∗)∗, |w|a ≤ |w|b},

L(G,S3)�� = L3 ∪ {vcidieiz | v ∈ {a, b,#}∗, z ∈ {a, b}∗, i ≥ 0}
= {(ε, ε), (b#, a)}� = {#de}��.

This shows that G has both the weak 2-FCP and the weak 2-FKP. 	


Theorem 9. There is a language that has a CFG with both the weak 2-FCP
and the weak 2-FKP but has no CFG with either the strong FCP or the strong
FKP.

6 The Weak vs. Very Weak Finite Context and Kernel
Properties

Proposition 10. If a language L has a CFG with the very weak k-FKP, then
L has a CFG with the weak k-FKP.

Proof. Let G = (N,Σ,P, I) be a CFG and let L = L(G). Suppose that KA ⊆ Σ∗
is a finite set for each A ∈ N such that |KA| ≤ k and (K |L〉〈L|

A )A∈N is an SPP
for G. Let G′ = (N,Σ,P ′, I), where P ′ = P ∪ {A → w | A ∈ N,w ∈ KA}.
Then (L(G′, A))A∈N is the least pre-fixed point (XA)A∈N of G such that KA ⊆
XA. Since KA ⊆ K

|L〉〈L|
A , this implies L(G′, A) ⊆ K

|L〉〈L|
A for each A ∈ N . As

a consequence, L(G′) ⊆
⋃

A∈I K
|L〉〈L|
A = L. Clearly, L = L(G) ⊆ L(G′), so

L(G′) = L. Since KA ⊆ L(G′, A), we get K
|L〉〈L|
A ⊆ L(G′, A)|L〉〈L| and hence

K
|L〉〈L|
A = L(G′, A)|L〉〈L|. This shows that G′ has the weak k-FKP. 	


The proof of Proposition 10 shows that Theorem 4 can be strengthened to

Corollary 11. If the primal learner converges to a grammar G on L∗, then
L(G) = L∗ and G has the weak FKP.

Let

Σ′ = {a, b, c, d, e, f,#, $,%},

L′ = L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5,

L4 = {v$zck%f l | v ∈ {a, b,#}∗, z ∈ {a, b}∗, k, l ≥ 0},

L5 = {vcidiejzck%f l | v ∈ {a, b,#}∗, z ∈ {a, b}∗, i, j, k, l ≥ 0, j = k},

where L1, L2, L3 are as defined in Sect. 5.

Lemma 12. There is a CFG for L′ that has the very weak 2-FCP.

Proof. Let G′ be the extension of the grammar G in the proof of Lemma8 with
the following additional productions:

T → ε | Ta | Tb, S4,5 → $TC% | HU% | aS4,5 | bS4,5 | #S4,5 | S4,5f.

U → EeT | TcC | eUc,
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The nonterminals T,U, S4,5 are new and S4,5 is an initial nonterminal. All the
old nonterminals except S1 continue to be (weakly) characterized by the same
sets of contexts as before, but we now have

L(G′, S1)� = {(w1#w2# . . . #wn, wR
n . . . wR

2 wR
1 ) | n ≥ 1, w1, . . . , wn ∈ {a, b}∗}

∪ {(v, zck%f l) | v ∈ {a, b,#}∗, z ∈ {a, b}∗, k, l ≥ 0},

L(G′, S1)�� = L(G′, S1) = L1,

where of course �, � are now relative to L′. For the new nonterminals, we have

L(G′, T ) = {a, b}∗ = {($, a%)}�,

L(G′, U) = {ejzck | z ∈ {a, b}∗, j, k ≥ 0, j = k} = {(e, c%)}�,

L(G′, S4,5) = L4 ∪ L5 = {(ε, f)}�.

Now if we let

XS1 = C(G′, S1)�

= {(w1#w2# . . . #wn, wR
n . . . wR

2 wR
1 ) | n ≥ 1, w1, w2, . . . , wn ∈ {a, b}∗}�

= L1 ∪ {vcidieiz | v ∈ {a, b,#}∗, z ∈ {a, b}∗, i ≥ 0},

then we have XS1 ⊇ {$} ∪ aXS1a ∪ bXS1b ∪ #XS1 , so XS1 together with (the
closures of) the languages of the other nonterminals constitute an SPP for G′.
Since XS1 = {(a#, a), (b#, b)}�, this shows that G′ has the very weak 2-FCP. 	

Lemma 13. There is no CFG for L′ that has the weak FCP.

Proof. Let G be any CFG for L′. As in the proof of Lemma 7, we obtain

S ⇒∗
G am1(an1)iam2bm3(bn2)jbm4#am5Dal5bl4(bn2)jbl3al2(an1)ial1 ,

D ⇒+
G am6$al6 ,

for every i and j, where S is an initial nonterminal, D is a nonterminal, and
n1, n2 ≥ 1. It is easy to see that

L(G,D) ⊆ {a, b,#}∗({$} ∪ {cidiei | i ≥ 0}){a, b}∗,

L(G,D)� ⊆ {am6$al6}�

⊆ {a, b,#}∗ × {a, b}∗({ε} ∪ c∗%f∗).

Since L(G,D) is context-free, there must be a k1 such that

L(G,D) ∩ {a, b,#}∗cidiei{a, b}∗ = ∅ for all i > k1.

It follows that {(ε, ci%) | i > k1} ⊆ L(G,D)� and so

L(G,D)�� ∩ {a, b,#}∗cidiei{a, b}∗ = ∅ for all i > k1.

However, for any finite set W ⊆ L(G,D)�, there is a k2 such that W ∩
({a, b,#}∗ × {a, b}∗ci%f∗) = ∅ for all i > k2, which implies {cidiei | i >
k2} ⊆ W �. It follows that L(G,D)�� = W � for any finite W . 	

Theorem 14. There is a language that has a CFG with the very weak 2-FCP
but has no CFG with the weak FCP.
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7 Conclusion

The basic idea of distributional learning has been to let a finite set of con-
texts/strings determine (the distributions of) the strings derived from each non-
terminal. We have shown that while this is indeed a necessary condition for the
primal learner, the dual learner may succeed in the absence of such a character-
izing finite set of contexts.
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Abstract. The concept of N-memory automaton over the alphabet N is
studied. We show a result on robustness of this model (by a connection to
MSO-logic), give a discussion on its expressive power and closure prop-
erties, and show among other decidability results the solvability of the
non-emptiness problem. We conclude with perspectives for applications
and some open questions.
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1 Introduction

Much of the theory of automata and formal languages is based on the assumption
that words and languages are formed over a given finite alphabet – indeed, the
notion “alphabet” is usually considered as pointing to a finite set of symbols.

Automata over infinite alphabets were first proposed in the 1990s, notably
the finite memory automata of Kaminski and Francez [9]. A more recent interest
is triggered by two areas of applications, namely database theory where it is rea-
sonable to work over infinite data spaces, and the verification of hybrid systems
where infinite value domains enter. In this context several automata models were
proposed, such as the data automata of Bojańczyk et al. [2], the G-automata
of Bojańczyk et al. [3] and the ordered data automata of Tan [12,13]; see also
the survey [10]. An important criterion for an automaton model over infinite
alphabets to be useful is, besides a finite presentation, the solvability of the
non-emptiness problem.

A weakness of the automata mentioned above is the fact that they can com-
pare letters in a given word only in restricted ways, either just by equality or
inequality, or (as in [12]) also by special conditions regarding their order. For
example, over the alphabet N the “increasing words” of the form 12 . . . k are not
recognizable in the frameworks of [2,9,12]. In order to be able to test such con-
ditions on increase and decrease of values in a word, the model of “progressive
grid automaton” (PGA) was introduced in [7], still keeping decidability of the
non-emptiness problem.

Let us recall the PGA model, which is later extended in the present paper to
what we call “N-memory automata”. Here we always use N as the typical infinite
alphabet. A word n1 . . . nk ∈ N

∗ is coded by a grid structure where each of the k

c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 91–102, 2017.
DOI: 10.1007/978-3-319-53733-7 6
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columns represents a number. The number n is coded by a column carrying base
symbol #, n symbols 1, and then an infinite sequence of symbols ⊥. Figure 1
shows the grid coding the word 4 2 0 4 3.

A PGA scans such a word by traversing the corresponding grid in three-way
mode: Starting at the bottom, it analyzes the first column by moving up and
down, then at some position on this column moves to the right, starting there
the analysis of the second column, again in two-way mode, before jumping to the
next column, etc. The input is accepted if a final state is reached when the last
column has been left by a jump to the right. It is easy to see that an automaton
of this kind can check, for example, whether the letters of the input word form a
weakly increasing sequence, or whether the first and the last letter coincide. The
test whether there are two positions with the same letter (= number) requires
a nondeterministic PGA (to guess the first of the two positions).

...
...

...
...

...

1 1 ⊥
1 1 1
1 1 ⊥ 1 1
1 1 ⊥

⊥⊥
⊥
⊥⊥

⊥
⊥ ⊥ ⊥

1 1
# # # # #

Fig. 1. Grid representation of
the word 4 2 0 4 3

If a PGA leaves a column at a certain height
and enters there the next column, it implicitly
uses the set N as a memory structure (or Q×N,
when we also incorporate the finite state space
Q of the automaton): entering a column cod-
ing number n in state p at height i and leaving
it in state q at height j means to update the
memory Q × N from (p, i) to (q, j) upon read-
ing the input n. This connection between (p, i),
n, and (q, j) is more easily and without involve-
ment of technicalities expressible in the struc-
ture N of the natural numbers with successor,
using monadic second-order logic (MSO-logic).
We just can write down a formula ϕp,q(x, y, z) that is true in the structure
N = (N,Succ) for numbers i, n, j iff the above change of state from (p, i) via n
to (q, j) is possible. One can associate with any PGA a finite set of MSO-formulas
(namely for all combinations (p, q) of control states) that describe the transition
relation of the PGA over columns. However, the converse fails, as explained in
Sect. 3; hence, in the model of PGAs, the steps from one column to the next are
not “expressively complete” with respect to MSO-logic.

In the present paper we extend PGAs in order to capture precisely MSO-
logic for the transition between columns, while keeping all the desired proper-
ties offered by PGAs. We call this model N-memory automaton. Rather than
using the height at which a column is entered as memory, N-memory automata
involve tokens that are placed on a given column. A column coding the number
n is scanned from the bottom, and the initial memory content i is captured by
a “memory marker” on position i. The automaton also has a “memory update
token” at its disposal, and the position j where this token resides at the end
of the processing of this column (possibly after having been repositioned mul-
tiple times) gives the new memory content. N-memory automata are a proper
extension of PGAs; for example the set of words i0i (shown not to be PGA-
recognizable in [7]) is easily recognizable by an N-memory automaton.
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After presenting the formal definitions in the subsequent section, we dis-
cuss the expressive power of N-memory automata. Then we show (as a first
main result) the expressive equivalence with MSO-logic (regarding the transi-
tion relation). This establishes a bridge to logic that facilitates later arguments,
and it documents some robustness of the concept of N-memory automaton. We
then establish the (rather weak) closure properties both in the deterministic and
nondeterministic version, and show results on decidability and undecidability.
Finally we briefly treat ω-languages over the alphabet N and related applica-
tions.

Some results of the present paper have been stated without proof in [4] where
an application to infinite games is treated.

2 Definitions

2.1 N-Memory Automata

We introduce N-memory automata in a top-down fashion, using two steps. The
global structure is described first, the local one (dealing with individual transi-
tions) in a second step.

Definition 1. An N-memory automaton A is a tuple (Q,Δ, q0, F ) where Q is
a finite set of states, Δ ⊆ ((Q×N)×N× (Q×N)) is a transition relation defined
by a transition automaton (as explained below), q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states.

The automaton A is called deterministic if for all (q1, h1) ∈ Q × N and all
n ∈ N there exists at most one (q2, h2) ∈ Q × N with ((q1, h1), n, (q2, h2)) ∈ Δ.

An accepting run of an N-memory automaton A on a word w1 . . . wk ∈ N
∗ is

a sequence ρ = (p0, h0), . . . , (pk, hk) ∈ (Q × N)∗ with p0 = q0, h0 = 0, pk ∈ F ,
and ((pi, hi), wi+1, (pi+1, hi+1)) ∈ Δ for all 0 ≤ i < k.

The automaton A accepts a word w if there exists an accepting run of A
on w. The language recognized by A is L(A) := {w ∈ N

∗ | A accepts w}.
A language L ⊆ N

∗ is (deterministically) N-memory recognizable, if there exists
a (deterministic) N-memory automaton A with L = L(A).

Definition 2. A transition automaton AΔ is a tuple (S,Q,R, s0, sH) where S
is a finite set of states, Q is a finite set of labels, s0 ∈ S is the initial state, sH

is the halting state, and R ⊆ S × (Q? × {#, 1,⊥} × Q?) × S × ({↑, ↓} ∪ Q) is the
transition relation. (Here Q? is the set Q ∪ {	} with 	 indicating the absence of
a label from Q.)

A transition automaton AΔ is called deterministic if for all s ∈ S and all x ∈
(Q? × {#, 1,⊥} × Q?) there exists at most one (s, x, s′, d) ∈ R.

The automaton AΔ works on a single column of a grid (see Fig. 1). A triple
x ∈ (Q? × {#, 1,⊥} × Q?) refers to the (absence of the) memory marker, the
current column letter, and the (absence of the) memory update token. In each
step, AΔ can move upwards or downwards or reposition the memory update
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token to the current height (and possibly change its label). Formally, the memory
update token is a pair mu = (qu, hu) ∈ Q×N, where qu is the label and hu is the
height of the token. A configuration of AΔ is a tuple (s, h,mu) ∈ S×N×(Q×N),
indicating the current state s, the current height h, and the current memory
update token mu. Altogether, AΔ is said to produce the memory update token
(qu, hu) ∈ Q×N on a column labeled n ∈ N from the memory marker (qin, hin) ∈
Q × N if there exists a sequence ρ = c0, . . . , ck of configurations such that

– c0 =
(
s0, 0, (qin, 0)

)
,

– for all 0 ≤ i < k if ci = (si, hi,m
i
u) and ci+1 = (si+1, hi+1,m

i+1
u ) then(

si, (qin[hi = hin], γ(n, hi), qi
u[hi = hi

u]), si+1, d
)

∈ R, where:1

• d =↑, hi+1 = hi + 1 and mi+1
u = mi

u = (qi
u, hi

u),

• or d =↓, hi+1 = hi − 1 and mi+1
u = mi

u = (qi
u, hi

u),

• or d = q, hi+1 = hi, mi
u = (qi

u, hi
u) and mi+1

u = (q, hi).

– ck =
(
sH , h, (qu, hu)

)
for an arbitrary h ∈ N.

This sequence ρ is called a run of AΔ.
The transition automaton AΔ defines the set of triples ((q1, h1), n, (q2, h2))

such that AΔ produces (q2, h2) on a column labeled n from (q1, h1), so it can
be used to represent the transition relation of an N-memory automaton. Note
that if an N-memory automaton is deterministic then the associated AΔ is func-
tional (i.e., giving a unique result) but need not be deterministic. If we want to
emphasize that AΔ is deterministic we call A strongly deterministic.

2.2 MSO-N-Memory Automata

In order to reduce the technicalities of the previous definition, we introduce
MSO-N-memory automata, where the description of the transitions is done in a
logical framework. We use here MSO-logic over the structure N = (N,Succ) of
the natural numbers with the successor relation. (For MSO-logic see e.g. [14].)

Definition 3. An MSO-N-memory automaton A is a tuple A = (Q,Φ, q0, F )
where Q is a finite set of states, Φ is a family of MSO-formulas ϕp1,p2(x, y, z),
q0 ∈ Q is the initial state and F ⊆ Q is a set of final states.

The family of MSO-formulas Φ is called functional if for all (q1, h1) ∈
Q × N and all n ∈ N there exists at most one (q2, h2) ∈ Q × N with
N |= ϕq1,q2 [h1, n, h2]. In this case we call A deterministic.

An accepting run of an MSO-N-memory automaton A on the word
w1 . . . wk ∈ N

∗ is a sequence ρ = (p0, h0), . . . , (pk, hk) ∈ (Q × N)∗ with p0 = q0,
h0 = 0 and such that N |= ϕpi,pi+1 [hi, wi+1, hi+1] for all 0 ≤ i < k, and pk ∈ F .

The automaton A accepts w if there exists an accepting run of A on w. The
language recognized by A is L(A) := {w ∈ N

∗ | A accepts w}.
1 We use the notation q[condition] to indicate q if the condition is satisfied and �
otherwise. We set γ(n, h) to be # if h = 0, 1 if 0 < h ≤ n, and ⊥ if h > n.
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3 Remarks on Expressive Power

In this section we discuss the expressive power of N-memory automata, giving
examples and a comparison to related models.

As a first remark, we note that the restriction to finite alphabets (formally,
the restriction of the input letters to a finite initial segment [0, n] of the natural
numbers) yields the well-known model of counter automata.

A simple language recognized by a deterministic N-memory automaton is the
set of words {1 2 3 . . . k | k ≥ 1}. Similarly we can recognize the set of words
having a subsequence of successive numbers leading from the first letter 1 to
the last letter, i.e., of the form 1N∗2N∗3N∗ . . . k. Further examples are the set of
words where successive numbers differ by 1 and the set of words where odd and
even numbers alternate. Nondeterminism can be invoked (and is needed, as we
shall see in Sect. 5) in order to check the existence of several occurrences of the
same letter (= number).

It is instructive to compare N-memory automata with closely related mod-
els considered in recent literature; we mention here the N -MSO-automata (see
[1,7]), the strong automata of [11], the progressive grid automata (PGA) of [7]
and the ordered data automata of [12]. In the N -MSO-automata we just have a
finite state space and transitions from a state p to a state q as specified by an
MSO-formula ϕp,q(y); a transition from p via n to q is executable if the number
n satisfies this formula in N . This model allows information flow from letter to
letter only via its states and thus cannot recognize a simple language such as
{ii | i ≥ 0}. In a strong automaton the transitions are specified in a more general
way, by formulas ϕp,q(x, y) that impose a condition on the input number n (as
interpretation of y) in relation to the previous input number m (as interpretation
of x). This amounts to using MSO-N-memory automata in a special way, namely
where the memory update token is always placed on the position of the current
input letter m (to allow a comparison with the next input letter n). The first
example language as mentioned above is clearly recognizable in this way, but
the set of words of the form kN+k is not. Comparing N-memory automata with
PGAs, it is obvious that each PGA can be simulated by an N-memory automa-
ton (use the position where a column is left as the position where the memory
update token is placed). On the other hand, in PGAs the initial position from
where a column is analyzed is available only at the start of a computation. Thus
the N-memory recognizable language of words i0i is not PGA-recognizable (as
shown formally in [7]): When the PGA starts on position i of the second column
and moves to the bottom to check whether number 0 is the input, the initial
position i is lost when moving to the third letter. The use of a memory marker
repairs this defect. Finally, we note that N-memory automata are incompara-
ble in expressive power to the ordered data automata of [12]: The language of
words kmkm is recognized by the latter but not by the former, and the set of
words 12 . . . k provides the converse. Let us note that in the context of temporal
logic, a formalism close to N-memory automata appears in [6]; however there
the comparison of values from N is restricted to occurrences within a bounded
time-interval – so a language as given by the expression 1N∗2N∗3N∗ . . . k is not
covered.
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The use of tokens can be applied also in the definition of N-memory trans-
ducers. Here an extra token is employed which is placed at the position that
gives the respective output number (in the sense of a Mealy automaton). For
definitions and an application we refer to [4].

4 An Equivalence Result and a Normal Form

We show that N-memory automata and MSO-N-memory automata have the
same expressive power:

Theorem 4. A language L ⊆ N
∗ is (strongly deterministically) N-memory

recognizable if and only if it is recognizable by a (deterministic) MSO-N-memory
automaton.

First, using a standard approach as found, e.g., in [14], we show how to construct
an MSO-formula from a given transition automaton.

Lemma 5. Let AΔ be a (functional) transition automaton. There exists a
(functional) family of MSO-formulas (ϕp1,p2(x, y, z))p1,p2∈Q such that for all
qin, qu ∈ Q and all hin, hu, n ∈ N it holds that N |= ϕqin,qu [hin, n, hu] if and
only if AΔ produces (qu, hu) from (qin, hin) on a column labeled n.

Proof. In a first step one can construct an MSO-formula describing partial runs
of the transition automaton, disregarding the placement of the memory update
token. That is an MSO-formula ψs1,s2,qin,qu with five free variables such that
N |= ψs1,s2,qin,qu [h1, h2, hin, hu, n] iff the transition automaton AΔ can reach
from state s1 on height h1 the state s2 on height h2 by using only ↑ and ↓ tran-
sitions, while working on a column labeled n with the memory marker (qin, hin)
and the token (qu, hu) present. The idea behind this formula is to quantify over
a set of heights for each state s ∈ S and define that if these sets are closed under
the transition relation R and include height h1 for state s1 they will also include
height h2 for state s2.

Using this formula, we then are able to describe partial runs with a single
placement of the memory update token at the end. And finally we can define an
MSO-formula expressing the existence of a complete run. We obtain a functional
family of MSO-formulas if AΔ is functional. ��

Now we turn to the more interesting direction of the theorem.

Lemma 6. Let (ϕp1,p2(x, y, z))p1,p2∈Q be a family of MSO-formulas. There
exists a transition automaton AΔ, such that for all qin, qu ∈ Q and all
hin, hu, n ∈ N it holds that N |= ϕqin,qu [hin, n, hu] if and only if AΔ produces
(qu, hu) from (qin, hin) on a column labeled n.

Proof. For each MSO-formula ϕp1,p2 , there exists a nondeterministic Büchi
automaton Bp1,p2 accepting precisely those ω-words for which ϕp1,p2 evaluates to
true [14]. Note that Bp1,p2 will enter a loop (either accepting or rejecting) after
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it has read the memory marker, the memory update token and the height of the
column. Thus, we can transform each Bp1,p2 into an NFA Cp1,p2 that accepts or
rejects after reading only a finite prefix of the ω-word.

Finally, we can use these NFAs to construct the transition automaton AΔ

as follows: First, AΔ places an arbitrary memory update token on an arbitrary
height and moves back down again to height 0. From there it guesses p1 and
p2, simulates the corresponding NFA Cp1,p2 and enters the halting state if Cp1,p2

accepts. ��

This concludes the proof of Theorem 4 as far as nondeterministic automata
are concerned. To cover the deterministic case, we shall prove the subsequent
two lemmas. Let us first note, however, a normal form for nondeterministic N-
memory automata, obtained as a consequence of the constructions in Lemmas 5
and 6, where we can restrict the use of nondeterminism:

Corollary 7. For each N-memory recognizable language L there exists a non-
deterministic N-memory automaton recognizing L such that its underlying tran-
sition automaton AΔ behaves as follows:

1. It places the memory update token nondeterministically at an arbitrary height.
2. Then it moves back to height 0 and continues from a fixed state s′

0 ∈ S.
3. Finally AΔ deterministically moves only upwards (i.e., it only uses transitions

in Δ↑ := S × (Q? × {#, 1,⊥} × Q?) × S × {↑}).

Now we show that every deterministically N-memory recognizable language can
be recognized by an N-memory automaton whose transition automaton is not
only functional but deterministic (and thus conclude the proof of Theorem4).
We start with an interesting property of deterministic N-memory automata.

Lemma 8. If A = (Q,Δ, q0, F ) is a deterministic N-memory automaton, then
there exists a B ∈ N such that for all qin ∈ Q and hin, n ∈ N the uniquely
defined qu ∈ Q and hu ∈ N with ((qin, hin), n, (qu, hu)) ∈ Δ fulfill that hu ∈
[0, . . . , B] ∪ [hin − B, . . . , hin + B] ∪ [n − B, . . . , n + B].

Proof. W.l.o.g. we can assume that A fulfills the property of Corollary 7. Define
B := m2 where m is the number of states of the underlying transition automaton
AΔ. Let us assume that there is ((qin, hin), n, (qu, hu)) ∈ Δ with hu ∈ [0, . . . , B]∪
[hin − B, . . . , hin + B] ∪ [n − B, . . . , n + B]. If hu > max(hin, n) + B then there
exists a state repetition in the final one-way part of the run between hin or n
and hu. Thus there also is an accepting run that produces a different memory
update token. This is a contradiction to A being deterministic. On the other
hand, if hu < max(hin, n) we still know that |hu − 0|, |hu − n| and |hu − hin|
are all larger than B. We assume that hin < hu < n (all other cases are quite
similar). Because hu − hin > B > m there is a state repetition in the one-way
part of the run of AΔ between hin and hu. Let k ≤ m be the size of this state
repetition. Since n − hu > B = m2, there also exists a state repetition between
hu and n of a size k · r that is a multiple of k. Then by a pumping argument (by
duplicating the first state repetition r times while deleting the second one), there
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is also an accepting run that produces the memory update token (qu, hu + kr)
from the memory marker (qin, hin) on the column of height n. This is again a
contradiction to the fact that A is deterministic. ��

Using this property we can now prove the following lemma.

Lemma 9. An N-memory automaton A = (Q,Δ, q0, F ) is deterministic iff
there exists a deterministic transition automaton AΔ defining Δ.

Proof. We only address the direction from left to right. By Lemma 5 and the con-
struction in the proof of Lemma6 it is possible to define for a given transition rela-
tion the NFAs Cp1,p2 that accept precisely those words that correspond to valid
transitions. If A is deterministic, then by Lemma 8, the memory update token
can only be at finitely many possible heights (in bounded intervals). Thus, we
can define an NFA that first guesses this relative height (one of the three possible
intervals and the position within that interval) then guesses p1 and p2 and finally
simulates the correspondig automaton Cp1,p2 . In each step of this simulation, the
automaton has to check whether its current position is the guessed height of the
memory update token. To obtain the desired automaton, we transform this NFA
into a DFA. It remains to place the memory update token at the correct height,
which can be extracted from the final state reached by the DFA. ��

5 Closure Properties

Our results are summarized in Fig. 2. We first consider Boolean operations and
then concatenation and iteration.

Theorem 10. The class of N-memory recognizable languages is closed under
union but neither under intersection nor complement. The class of determinis-
tically N-memory recognizable languages is closed under complement but neither
under union nor intersection.

The closure under union in the case of nondeterministic N-memory automata
is trivial. For the closure under complement in the deterministic case, the idea is
to exchange the final and non-final states. The problem that the given automaton
may reject a word just by lack of a run is overcome by introducing a sink state.

Applying de Morgan’s laws it remains to show that neither deterministic nor
nondeterministic N-memory automata are closed under intersection. Consider
the languages L1 := {w ∈ N

∗ | w1 = w3} and L2 := {w ∈ N
∗ | w2 = w4}, both

recognizable by deterministic N-memory automata. Let us consider the language
L := L1∩L2. Assume that there exists an N-memory automaton A recognizing L
and assume that it is in a normalized form according to Corollary 7. Let m ∈ N

be bigger than the number of states in the associated transition automaton.
Consider a run of A on the word i	i	 where i = m and 	 = 4m2. The memory
marker on the fourth column is on a height hin4 ≥ 	 − m. Otherwise there
would be a state repetition of size k ≤ m during the one-way computation of
the transition automaton between hin4 and 	. By a pumping argument, this
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would imply that A accepts the word i	ij with j = 	 − k. Using a similar
argument we know that the memory marker on the third column is on a height
hin3 ≥ 	 − 2m. But then it holds that |hin3 − i| ≥ m2 and |i − 0| ≥ m. Thus
there is a state repetition of size k < m during the one-way computation of the
transition automaton on the third column between heights 0 and i as well as a
state repetition with a size that is a multiple of k (say r · k), between heights
i and hin3. Therefore by another pumping argument similar to the one in the
proof of Lemma 8, it follows that A accepts the word i	j	 with j = i+kr, which
gives a contradiction. ��

Theorem 11. The class of N-memory recognizable languages is closed under
concatenation and iteration, whereas the class of deterministically N-memory
recognizable languages is neither closed under concatenation nor under iteration.

The first statement holds because of the nondeterminism of N-memory
automata. For the second statement consider the deterministic N-memory recog-
nizable language L = {kN∗k | k ∈ N}. Assume that there exists a deterministic
N-memory automaton A recognizing L · L. Consider the run of A on the word
w := iiij for letters i and j. Note that A has to accept wi,wj ∈ L · L, but
must reject wm for all other letters m (i = m = j). Since A is deterministic it
cannot remember both i and j. This can be shown with a pumping argument
analogous to the one in the proof of Theorem10. By the same argument, L∗ is
not deterministically N-memory recognizable. ��

det. n.det.

Union (∪) NO YES

Intersection (∩) NO NO

Complement (¬) YES NO

Concatenation (·) NO YES

Iteration (∗) NO YES

Fig. 2. Closure properties of N-memory
recognizable languages

det. n.det.

non-emptiness YES YES

membership YES YES

universality YES NO

inclusion NO NO

empty intersection NO NO

equivalence ? NO

deterministic — NO

Fig. 3. Decidability results for N-memory
automata

6 Decision Problems

In this section we discuss the decidability of some decision problems for
N-memory automata. The results are displayed in Fig. 3.

Theorem 12. The non-emptiness problem for N-memory automata is decidable.

For the proof we apply a reduction to the decision problem of the MSO-theory
of N = (N,Succ). This theory was shown to be decidable by Büchi in 1962 [5].
Starting with an MSO-N-memory automaton A, we present an MSO-formula
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ϕA which is true in N iff A accepts at least one word. To describe the existence
of a run of A we first define a formula Ψq,q′(h, h′) that is true in the structure
N iff there exists a word on which A starting in state q on height h will finally
reach state q′ on height h′. Assume that the set of states of A is {1, . . . , n}.

Ψq,q′(h, h′) := ∀X1 . . . ∀Xn((Xq(h) ∧ Θ(X1, . . . , Xn)) → Xq′(h′))

where Θ(X1, . . . , Xn) describes the transitive closure of the transition relation
defined by the family of MSO-formulas (ϕp,q)p,q.

Θ(X1, . . . , Xn) := ∀h1∀h2(
∧

q1,q2∈Q

(Xq1(h1) ∧ ∃yϕq1,q2(h1, y, h2)) → Xq2(h2))

We can set ϕA := ∃hf

∨
qf∈F Ψq0,qf (0, hf ) to obtain the desired formula. ��

Note that the membership problem (whether a given N-memory automaton
A accepts a given word w) is solvable by enhancing A with a test whether the
sequence of scanned letters matches w and then checking for non-emptiness.

For deterministic N-memory automata, Theorem 12 implies the decidabil-
ity of the universality problem, due to the fact that deterministic N-memory
automata can effectively be complemented (cf. Theorem 10). This, however, does
not extend to nondeterministic N-memory automata. We just invoke the unde-
cidability of the universality problem for the weaker model of progressive grid
automata, shown in [7]. It follows that also the equivalence problem and the
inclusion problem for nondeterministic N-memory automata are undecidable.
Theorem 13. The empty intersection problem for deterministic N-memory
automata is undecidable.

Proof. We apply an easy reduction from the halting problem for 2-register
machines. Given a register machine R, we construct two deterministic N-memory
automata A1 and A2. For an input sequence r0s0r1s1 . . . rnsn, A1 verifies that
r0r1 . . . rn is the sequence of values of the first register along a halting computa-
tion of R. Analogously, A2 checks the sequence s0s1 . . . sn. The automata keep
track of the current instruction in their control states and remember the last
register value (of the respective register) using the memory marker. ��

It follows that the inclusion problem for deterministic N-memory automata is
undecidable, since deterministic N-memory automata are effectively closed under
complement. We leave as an open question whether the equivalence problem is
decidable.

Theorem 14. The problem to determine for a given nondeterministic
N-memory automaton whether there exists an equivalent deterministic
N-memory automaton is undecidable.

For the proof we apply a reduction from the universality problem, adapting
a proof given by Ginsburg et al. [8] for one-way stack automata.

We mention that it is even undecidable whether a given deterministic N-
memory automaton A is equivalent to a nondeterministic one B for which one
knows that L(B) is deterministically N-memory recognizable. This is analogous
to the case of pushdown automata.
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7 Extension to Infinite Words and Related Applications

In applications regarding the algorithmic verification or synthesis of state-based
systems, it is often appropriate to consider non-terminating computations. In
the present context, it is thus useful to consider infinite words over N; so we add
a third dimension of infinity beyond using infinite alphabets and infinite memory
spaces. We briefly touch this topic without entering details.

The extension of N-memory automata to infinite words, using the standard
acceptance conditions (Büchi condition, Muller condition, parity condition), is
obvious by referring to the finite space Q of control states of an N-memory
automaton. In contrast to the theory of regular ω-languages, each determinis-
tic model mentioned here has strictly weaker expressive power than the cor-
responding nondeterministic model; this is clear from the example language
{ukvkα | k ≥ 0, u, v ∈ N

∗, α ∈ N
ω}. On the other hand, the solvability of

the non-emptiness problem holds in all these cases. This is seen by adapting the
last formula in the proof of Theorem12 to the desired acceptance condition.

The latter fact opens the possibility to (moderate) applications in program
verification. In the standard setting, the verification problem is the intersec-
tion problem “L(Sys) ∩ L(¬Spec) = ∅?” where L(Sys) and L(¬Spec) are the
ω-languages that capture the set of possible system runs and the undesired sys-
tem runs (described by the negation of the specification), respectively. While
the intersection problem is undecidable for N-memory automata in general, we
can solve this problem in the special case where the specification is definable
by deterministic Muller- or parity N -MSO-automata (as mentioned in Sect. 3).
So we can conclude: The verification problem is decidable for systems defined in
terms of nondeterministic Muller or parity N-memory automata and specifica-
tions defined by deterministic Muller or parity N -MSO-automata.

A second type of application is concerned with program synthesis. Here the
specification is a condition on pairs of ω-words, the input stream and the out-
put stream of a program, and the fundamental question is whether a program
(an automaton) exists that can transform arbitrary input streams into output
streams letter-by-letter such that the specification is satisfied (Church’s Syn-
thesis Problem). In a nice analogy to the case of finite-state systems where
the Büchi-Landweber Theorem provides a positive solution, we can show the
corresponding result for specifications given by deterministic parity N-memory
automata, using N-memory transducers as indicated in Sect. 3. The details can
be found in [4].

8 Conclusion

We have studied the concept of N-memory automata, a natural model for
processing words over the alphabet N, extending the progressive grid automata
of [7]. N-memory automata were shown to be a “robust” concept by its close rela-
tion to MSO-logic. It may have algorithmic applications due to the solvability
of the non-emptiness problem, but also has rather weak closure properties.
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The present approach calls for a number of extensions, some of which have
been carried out in (so far unpublished) bachelor and master theses at RWTH
Aachen University. For example, the alphabet N may be replaced by the set
Σ∗ of words over a finite alphabet, by the set of finite trees over a finite label
alphabet, or in general by some “alphabet structure” together with some logic for
the definition of transitions. Another type of generalization concerns N-memory
automata over (finite or infinite) trees instead of words.
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Abstract. Consequence-based and automata-based algorithms encom-
pass two families of approaches that have been thoroughly studied as rea-
soning methods for many logical formalisms. While automata are useful
for finding tight complexity bounds, consequence-based algorithms are
typically simpler to describe, implement, and optimize. In this paper, we
show that consequence-based reasoning can be reduced to the emptiness
test of an appropriately built automaton. Thanks to this reduction, one
can focus on developing efficient consequence-based algorithms, obtain-
ing complexity bounds and other benefits of automata methods for free.

1 Introduction

In logic-based knowledge representation, the knowledge from a domain is
encoded using a finite set of axioms, expressed and interpreted in a suitable
logic, that restrict the ways in which the domain symbols can be used. To keep
the representation task feasible, only the most relevant portions of the knowl-
edge are explicitly represented, while other consequences of these axioms are
only implicitly available. The task of making this implicit knowledge explicit is
usually known as reasoning.

For practical applications, it is fundamental to have effective reasoning meth-
ods. Ideally, these should be optimal w.r.t. the computational complexity of the
reasoning problem, easy to implement, and behave well in practice. Keeping these
desiderata in mind, many reasoning algorithms have been developed over the
years. These can be broadly classified into two approaches: the automata-based,
and the tableaux-based approaches. In a nutshell, the automata-based approach
constructs an automaton that accepts all relevant models of a knowledge base.
An emptiness test can then be used to decide whether a given (implicit) conse-
quence can be derived from it. On the other hand, tableaux methods apply rules
to extend the explicit knowledge until the consequence is derived. They can thus
be thought of as “goal-directed” approaches. Consequence-based algorithms fall
into this latter category, where rule applications have a limited effect.

Automata-based methods provide formal tools for understanding the theo-
retical properties and limitations of reasoning in the underlying logical formal-
ism. They have been successfully used to prove tight (worst-case) complexity
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bounds [2]. They also provide an elegant solution for dealing with supplemental
reasoning problems that can be seen as weighted model counting problems [4,20].
However, with a few notable exceptions [11], automata-based methods are not
suitable for efficient implementations due to the match between their best-case
and their worst-case behaviour.

Due to their goal-directed behaviour, tableaux-based methods are the basis
of some of the most efficient implementations of reasoning algorithms available.
However, extending these methods to handle supplemental reasoning problems
is far from obvious, and might even lead to non-terminating procedures [5]. In
fact, the known method for transforming a consequence-based algorithm into a
supplemental reasoning procedure requires the application of an NP-hard propo-
sitional entailment test on every step of the execution, potentially damaging the
overall complexity of the methods [6]. This is especially negative if one takes into
account that the supplemental extensions of automata-based methods typically
preserve the original complexity.

In this paper, we combine the benefits of consequence-based and automata-
based methods to overcome their respective drawbacks. More precisely, we show
that every consequence-based algorithm can be effectively transformed into an
automaton deciding the same reasoning problem. Thus, one can focus on design-
ing and implementing an efficient consequence-based algorithm and take advan-
tage of this transformation to obtain tight complexity bounds and extensions to
supplemental reasoning provided by the automata-based view.

Throughout this paper, we consider a general notion of consequence-based
algorithm, which makes our results applicable to a wide range of settings. To
improve readability, we use as a running example a known method for deciding
subsumption in the description logic EL.

2 Consequence-Based Algorithms

We consider a general notion of consequence-based algorithms as automated
reasoning methods. The family of these methods, also called ground tableaux in
the literature [5], encompasses many well-known algorithms, such as DPLL [8],
congruence closure [19], and the prominent methods for reasoning in EL [1] and
other description logics [13]. As a running example for all our notions, we will
adapt the consequence-based algorithm for deciding subsumption first presented
in EL from [14]. Thus we briefly recall this logic and its reasoning problem.

EL is a lightweight description logic whose main building blocks are concepts
and roles. Given two disjoint infinite sets NC and NR of concept names and
role names, respectively, EL concepts are constructed using the grammar rule
C ::= A | � | C � C | ∃r.C, where A ∈ NC and r ∈ NR. An EL TBox is a finite
set of general concept inclusions (GCIs) of the form C � D, where C,D are EL
concepts. The semantics of this logic is based on interpretations, which are pairs
of the form J = (ΛJ , ·J ), with ΛJ a non-empty set called the domain and ·J the
interpretation function that maps every concept name A to a subset AJ ⊆ ΛJ

and every role name r to a binary relation rJ ⊆ ΛJ × ΛJ . This function is
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extended to EL concepts by defining �J := ΛJ , (C � D)J := CJ ∩ DJ , and
(∃r.C)J := {λ ∈ ΛJ | ∃μ ∈ CJ .(λ, μ) ∈ rJ }. The interpretation J satisfies the
GCI C � D iff CJ ⊆ DJ . It is a model of the TBox T if it satisfies all GCIs
in T . The concept C is subsumed by the concept D w.r.t. the TBox T if every
model of T also satisfies the GCI C � D.

We now define the notion of consequence-based algorithm. To remain as
general as possible, for the rest of this paper we consider that we have two
arbitrary (but fixed) sets I of inputs and T of axioms. We denote by Pfin(T) the
set of all finite subsets of T. The different inputs in I will be usually denoted by
calligraphic letters like I, and the axioms with lower-case letters; e.g., s.1 We
start by defining the consequences that will be decided by our algorithms.

Definition 1 (property). A consequence property (or property for short) is
a binary relation P ⊆ I × Pfin(T) such that if (I, T ) ∈ P, then (I, T ′) ∈ P for
all T ⊆ T ′ ∈ Pfin(T).

In other words, we are interested in deciding whether a given input I is entailed
by a finite set of axioms T through a monotone relation. We use monotonicity
in the standard logical sense in which new information can only generate more
consequences, but never negate previously entailed ones. Throughout this paper
we call pairs of the form (I, T ) axiomatized inputs.

Consider for example the subsumption problem in EL. In this case, the set T
of axioms consists of all possible GCIs C � D. I is the class of all possible sub-
sumption relations, which will be denoted by C �? D to distinguish them from
the axioms in the TBox. The property P refers to the entailment of subsumption
relations; that is, (C �? D, T ) ∈ P iff C is subsumed by D w.r.t. T .

Depending on the specific shape of the property P, there exist many different
approaches for deciding whether a given axiomatized input (I, T ) belongs to P
or not. We focus on a class of decision methods which we call consequence-based
algorithms.

Definition 2 (consequence-based algorithm). Let I be a set of inputs, and
T a set of axioms. A consequence-based algorithm for I and T is a tuple of the
form S = (Σ, ·S ,R, C) where

– Σ is a set called the signature;
– ·S is the initialization function that maps every I ∈ I and every t ∈ T to a

finite subset of Σ;
– R is a set of rules of the form (B0,S) → B, where B0 and B are finite

subsets of Σ and S ∈ Pfin(T); and
– C is a set of finite subsets of Σ, which are called clashes.

The idea of a consequence-based algorithm is to decide a property by making
explicit all the consequences of the given axiomatized input. The explicit knowl-
edge derived during the execution of the algorithm S is preserved in S-states.
1 In the literature (e.g. [5]) the sets of axioms allowed are sometimes restricted to

satisfy an admissibility criterion. As this criterion is irrelevant for our methods, we
leave it out for the sake of simplicity.
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Formally, given a consequence-based algorithm S = (Σ, ·S ,R, C), an S-state is
a pair S = (A, T ) where A is a finite subset of Σ and T ∈ Pfin(T). We call the
elements of A in such an S-state assertions.

Given the axiomatized input (I, T ), the decision procedure begins with the
initial S-state (I, T )S defined by (I, T )S := (IS ∪

⋃
t∈T tS , T ). That is, the

initial S-state contains all the assertions obtained by applying the initialization
function to the input I and the axioms in T . Notice that the second component
of this S-state is the same set of axioms T . As we will see, the algorithm never
modifies this set. However, preserving the information of the set of axioms used
will be helpful in the following sections. The first component of the S-state S is
iteratively extended through rule applications, which depend exclusively on the
assertions and axioms appearing in S.

Definition 3 (rule application). Let S = (A, T ) be an S-state. The rule
R : (B0,S) → B is applicable to S iff (i) S ⊆ T , (ii) B0 ⊆ A; and (iii) B �⊆ A.
The application of R to S yields the new S-state S′ := (A∪B, T ). In this case,
we write S →R S′, or S →S S′ if the specific rule applied is irrelevant.

As usual, the reflexive and transitive closure of →S is denoted by ∗−→S .
Starting from the initial state, consequence-based algorithms apply rules in

a not-care non-deterministic manner until a saturated state is reached; that is, a
state for which no rule is applicable. In this case, the not-care non-determinism
means that whenever more than one rule can be applied to a given state, any
one of them can be chosen. Finally, the set of clashes C is used to decide the
property once a saturated S-state is reached: the axiomatized input is accepted
(i.e., it belongs to the property P) if and only if it contains a clash.

A consequence-based algorithm decides a property P if it always terminates
and the resulting saturated S-state contains a clash whenever the axiomatized
input belongs to P. This notion is formalized next.

Definition 4 (correct). The consequence-based algorithm S = (Σ, ·S ,R, C) is
correct for the property P iff for every axiomatized input Γ = (I, T ), the follow-
ing two conditions hold:

1. S terminates on Γ ; that is, there exists no infinite chain of rule applications
S0 →S S1 →S · · · starting with S0 = Γ ; and

2. for every chain of rule applications S0
∗−→S Sn with S0 = Γ and Sn a

saturated S-state, Γ ∈ P iff Sn contains a clash.

Example 5. A consequence-based algorithm for deciding subsumption in EL is
given by SEL = (Σ, ·SEL ,R, C), where

– Σ := {C � D,C �? D | C,D are EL concepts};
– for every GCI in T, (C � D)SEL := {C � C,C � �};
– for every C �? D ∈ I, (C �? D)SEL := {C �? D};
– the set of rules R is depicted in Fig. 1; and
– C := {{C � D,C �? D}}
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B0 S → B

R−: {C D1 D2} ∅ → {C D1, C D2}
R+: {C D1, C D2} ∅ → {C D1 D2}
R∃: {E r.C,C D} ∅ → {E r.D}
R : {C D} {D E} → {C E}

Fig. 1. Rules for the consequence-based algorithm SEL

Intuitively, the algorithm makes all the relevant subsumption relations that fol-
low from the TBox T explicit by applying the rules. The input subsumption
relation, whose entailment is being decided, is kept in the set of assertions to be
able to produce a clash when it is derived through the application of rules. The
correctness of this algorithm has been shown in [14].

Notice that the second condition from Definition 4 requires that the algo-
rithm yields the same answer regardless of the order in which the rules were
applied. This corresponds to the not-care non-determinism mentioned above. As
a consequence, any order chosen suffices for deciding whether a property holds
or not; i.e., there is no need to backtrack if a saturated S-state without a clash is
found. In fact, for consequence-based algorithms, the second condition is equiv-
alent to requiring that there exists one sequence of rule applications that leads
to a saturated state with a clash. More precisely, for every axiomatized input
Γ and saturated S-states S,S′, if ΓS ∗−→S S and ΓS ∗−→S S′, then S and S′

must be equivalent. This can be easily seen from the fact that whenever a rule
(B0,S) → B is applicable in an S-state, it remains applicable to any succes-
sive S-state until all the assertions in B have been introduced, which has the
same effect as having applied the rule before-hand. Once again, this in particular
means that the order in which the rules are applied is irrelevant for deriving a
clash or not.

For supplemental reasoning, it is often important to know all the possible
ways in which clashes can be generated by rule applications (see Sect. 5). In order
to keep track of the different orders that have already been followed, extensions of
consequence-based algorithms developed for dealing with these problems require
the use of an NP oracle [5].

3 Tree Automata

We briefly recall the basic notions of tree automata. These automata receive
finite trees of a fixed arity k with identified successors as inputs. For the rest
of this paper, given a positive integer k, we will denote by K the set {1, . . . , k}.
As is usual, we identify the nodes in a k-ary tree by words in K∗: the root node
is identified by the empty word ε, and the i-th successor of the node u ∈ K∗ is
identified by the word ui for all i ∈ K.

Definition 6 (finite tree). A finite k-ary tree is a finite subset t ⊆ K∗ such that
for every node ui ∈ t it holds that (i) u ∈ t, and (ii) uj ∈ t for all j, 1 ≤ j ≤ i.
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Intuitively, Condition (i) states that the parent of every node belongs to the tree;
this in particular means that a non-empty tree will always contain the root node
ε. The second condition ensures that all the successors of a node are adequately
identified by the smallest possible natural numbers without gaps. We say that a
tree is full if every node is either a leaf (i.e., has no successors), or has exactly
k successors.

A labelled tree is a tree t ⊆ K∗ extended with a labelling function lab. If the
labels belong to a given set Q, we will often denote labelled trees as a function
lab : t → Q. For this paper, we focus on tree automata that receive full finite
unlabelled trees of a fixed arity k as inputs.

Definition 7 (finite tree automaton). A finite tree automaton of arity k is
a tuple A = (Q,Δ, I, F ) where

– Q is a finite set, whose elements are called states;
– Δ ⊆ Qk+1 is the transition relation;
– I ⊆ Q is the set of initial states; and
– F ⊆ Q is the set of final states.

A run of this automaton on the full unlabelled finite tree t is a labelled tree of
the form lab : t → Q such that for every non-leaf node u ∈ t, it holds that
(lab(u), lab(u1), . . . , lab(uk)) ∈ Δ. This run is successful iff for every leaf node
u ∈ t, lab(u) ∈ F .

The emptiness problem for finite tree automata refers to the problem of
deciding whether there exists a finite unlabelled tree t and a successful run on t
with lab(ε) ∈ I. In this case, we say that the automaton is non-empty. We often
refer to successful runs with lab(ε) ∈ I as accepting. It is well known that the
emptiness problem can be solved in polynomial time on the number of states.
This general bound can be in fact improved to linear time in the number of
states through a bottom-up approach that identifies the states that may appear
in a successful run—we call these good states. All final states are clearly good.
Further good states can be iteratively found by adding all states q ∈ Q such that
there is a transition of the form (q, q1, . . . , qk) ∈ Δ where every qi, 1 ≤ i ≤ k is a
good state. This iteration detects an initial state that is good if and only if the
automaton is non-empty.

4 From Consequence-Based to Automata

We now show how to translate any given consequence-based algorithm S into a
finite tree automaton of an appropriate arity in such a manner that the emptiness
test of the latter can be used to verify whether an axiomatized input Γ belongs
to the property decided by the former or not.

For this section we consider an arbitrary but fixed consequence-based algo-
rithm S = (Σ, ·S ,R, C). We fix the constant k := max{|B0| | (B0,S) → B ∈ R}.
In the following, whenever we refer to a tree, we implicitly assume that it is a
finite k-ary tree, where k is defined as before.
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⊥

A ? C A C

A C D

A B ♦

A A ♦

♦

Fig. 2. A derivation tree for (A �? C, {A � B,B � C � D}) and its binary padding.

We can assume w.l.o.g. that all the rules in R are of the form (B0,S) → {σ}
with σ ∈ Σ; that is, a rule application adds only one alphabet symbol as a conse-
quence. To see this, notice that the rule (B0,S) → B can be equivalently replaced
in R by the set of rules {(B0,S) → {σ} | σ ∈ B}. Similarly, we assume that the
set of clashes C contains only the singleton {⊥}. Otherwise, we can extend the
set of rules R to include (C, ∅) → {⊥} for every C ∈ C. This extension does not
change the behaviour of the algorithm S, as it will still detect the presence of
a clash by verifying whether the new symbol ⊥ was derived. For example, we
can change the rule R−

� of the consequence-based algorithm SEL (see Example 5)
into two rules that derive C � D1 and C � D2, respectively, and add a new rule
Rc : ({C � D,C �? D}, ∅) → {⊥} to satisfy the aforementioned assumptions
without compromising its correctness for deciding subsumption relations.

Under these assumptions, we can view the possible derivations of the clash
⊥ as labelled trees, where each node is labelled with an assertion from Σ, the
root node is labelled by ⊥, and the children of each node represent the set of
assertions needed to apply a rule that generates them.

Definition 8 (derivation tree). A derivation tree for the axiomatized input
Γ = (I, T ) w.r.t. the consequence-based algorithm S is a labelled finite k-ary tree
lab : t → Σ such that the following conditions hold:

1. lab(ε) = ⊥;
2. for every leaf node u ∈ t, lab(u) ∈ ΓS; and
3. for every non-leaf node u ∈ t with i successors, there exists a rule of the form

({lab(u1), . . . , lab(ui)},S) → {lab(u)} in R such that S ⊆ T .

Example 9. Consider again the algorithm SEL for deciding subsumption in EL
from Example 5. Since the rules in SEL have at most two assertions as prerequisite
for application, derivation trees for this algorithm will be binary. If we want to
decide whether A is subsumed by C w.r.t. the TBox T = {A � B,B � C � D},
we will call SEL with the axiomatized input Γ = (A �? C, T ). A derivation tree
for this input w.r.t. SEL is depicted in Fig. 2 (ignore the nodes labelled with ♦ for
the moment). Notice that there are only two leaf nodes, labelled with A �? C
and A � A. Both of them belong to ΓSEL .
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As shown by the following theorem, to decide whether the axiomatized input
Γ belongs to the property P, it suffices to check for the existence of a derivation
tree.

Theorem 10. Let S be a consequence-based algorithm that is correct for the
property P, and Γ = (I, T ) an axiomatized input. Then Γ ∈ P iff there exists a
derivation tree for Γ w.r.t. S.

Proof. Let S = (A, T ) be a saturated S-state such that ΓS ∗−→S S. It suffices to
show that ⊥ ∈ A iff there exists a derivation tree for Γ w.r.t. S.
(if) Assume first that lab : t → Σ is a derivation tree. We show by induction on
the tree structure that lab(u) ∈ A holds for all u ∈ t. First, for all leaf nodes u, we
have by definition that lab(u) ∈ ΓS ⊆ A. For the induction step consider a node
u such that all its successors satisfy the property. By Condition 3 of Definition 8,
there exists a rule ({lab(u1), . . . , lab(ui)},S) → {lab(u)} in R with S ⊆ T . Since
this rule is not applicable to S, it must be the case that lab(u) ∈ A, which
finishes the induction proof. In particular, this means that lab(ε) = ⊥ ∈ A.
(only if) Assume now that ⊥ ∈ A. We construct a derivation tree lab : t → Σ
recursively as follows. First set lab(ε) := ⊥. For each node u ∈ t do the following.
If lab(u) ∈ ΓS , then u is a leaf node. Otherwise, since lab(u) ∈ A, there exists
a rule (B0,S) → {lab(u)} ∈ R with B0 ⊆ A and S ⊆ T such that for all
predecessors v of u it holds that lab(v) /∈ B0. Let B0 = {b1, . . . , bn}. Then we
add n new nodes u1, . . . , un to t with lab(ui) := bi for all i, 1 ≤ i ≤ n. It is easy
to see that this construction yields a derivation tree for Γ . ��

Based on this result, we will construct an automaton that produces derivation
trees as its accepting runs. If such a run exists—i.e., if the automaton is not
empty—then the axiomatized input belongs to the property.

Recall that we are interested only in consequence-based algorithms that can
correctly decide a given property P. In particular, this means that the algorithm
S must terminate on all axiomatized inputs Γ . It is thus reasonable to assume
that for every such axiomatized input Γ = (I, T ), there exists a finite subset
ΣΓ ⊆ Σ of signature symbols that contains ΓS and ⊥, and is closed under
rule applications w.r.t. the axioms in T . In other words, ΣΓ is a known over-
approximation of all the symbols that will be used during the execution of the
consequence-based algorithm. Such a set may e.g., be known from the proof of
termination. For example, many reasoning algorithms—including SEL from our
running example—satisfy the subformula property that states that all assertions
derived during the rule applications are subformulas of the input provided; i.e.,
of the concepts appearing in the TBox and in the subsumption relation to be
verified.

We will use the transitions from the automaton to search for the preconditions
of a rule application, which correspond to the successor nodes in a derivation
tree. Notice, however, that while tree automata accept only full k-ary trees,
nodes in a derivation tree can have less than k successors. To solve this issue,
we will complete the trees through a distinguished new symbol ♦ /∈ Σ, that will
be used as padding for labelling all the irrelevant nodes from the input tree.
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Let R : (B0,S) → {σ} ∈ R with B0 = {b1, . . . , bn}, 1 ≤ n ≤ k. We define the
tuple δR := (σ, b1, . . . , bn) × {♦}k−n; that is, the trailing n − k symbols in the
tuple δR are filled with the special symbol ♦. Using these notions, we can now
construct the family of automata AS .

Definition 11. (AS). Let S = (Σ, ·S ,R, {{⊥}}) be a consequence-based algo-
rithm for I and T, and Γ = (I, T ) be an axiomatized input. The finite tree
automaton AS(Γ ) = (Q,Δ, I, F ) is defined by

– Q := ΣΓ ∪ {♦}
– Δ = {δR | R : (B0,S) → {σ} ∈ R,S ⊆ T }
– I := {⊥}
– F := ΓS ∪ {♦}.

Our goal is to prove that if S is correct for the property P, then for every
axiomatized input Γ , it holds that Γ ∈ P iff AS(Γ ) has a successful run lab on
some finite unlabelled tree with lab(ε) = ⊥. To achieve this, it would suffice to
prove that the automaton is non-empty iff there exists at least one derivation
tree. We will in fact provide a stronger result and show that the accepting runs
of AS(Γ ) correspond exactly to the (padded) derivation trees of Γ w.r.t. S.

We start by showing that all successful runs that label the root node with
⊥ correspond to derivation trees. Given a run lab : t → Q of AS(Γ ) we define
the sub-tree tΣ ⊆ t as the set of all nodes not labelled with ♦; in other words,
tΣ := {u ∈ t | lab(u) ∈ Σ}. Since Δ does not have any transition with ♦
in the head, the tree tΣ is well-defined. The labelled tree labΣ : tΣ → Σ is
defined by restricting the labelling function lab to the nodes of tΣ only. Formally,
labΣ(u) = lab(u) for all u ∈ tΣ . Notice that by construction, no node in tΣ can
be labelled with the distinguished symbol ♦.

Lemma 12. If lab : t → Q is an accepting run of AS(Γ ), then labΣ : tΣ → Σ
is a derivation tree for Γ w.r.t. S.

Proof. Since lab : t → Q is an accepting run, it follows that lab(ε) = ⊥ ∈ Σ,
and hence also labΣ(ε) = ⊥. Moreover, lab is successful. Thus, for every node
u ∈ tΣ , if u is a leaf, then u was also a leaf in t and thus labΣ(u) ∈ ΓS . If
u is not a leaf, then there is a transition (lab(u), lab(u1), . . . , lab(uk)) ∈ Δ. By
construction, this transition is of the form (σ, b1, . . . , bn)×{♦}k−n for some rule
({b1, . . . , bn},S) → {σ} ∈ R with S ⊆ T , n ≤ k. Thus labΣ satisfies also the
third condition from Definition 8. ��

Conversely, every derivation tree can be padded to form a full tree by adding the
necessary nodes labelled with ♦. If lab : t → Σ is a derivation tree, we construct
the tree t♦ by adding all missing nodes needed to have a full tree from t; that is,
t♦ := t ∪ {uj | u1 ∈ t, 1 ≤ j ≤ k}. The labelling function lab♦ : t♦ → Q extends
lab by mapping all new nodes to ♦:

lab♦(u) :=

{
lab(u) if u ∈ t

♦ otherwise
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For instance, the gray nodes and edges in Fig. 2 show the padding for the
derivation tree described in Example 9.

Lemma 13. If lab : t → Σ is a derivation tree for Γ w.r.t. S, then lab♦ : t♦ → Q
is a successful run of AS(Γ ) on t♦ and lab♦(ε) = ⊥ ∈ I.

Proof. First, since ε ∈ t, we immediately have that lab♦(ε) = lab(ε) = ⊥, where
the last equality follows from the first condition in Definition 8. Similarly, for
every leaf node u ∈ t♦, if u ∈ t, then lab♦(u) = lab(u) ∈ ΓS and if u /∈ t, then
lab♦(u) = ♦. In both cases, lab♦(u) ∈ F = ΓS ∪{♦}. We now only need to show
that for every non-leaf node u it holds that (lab♦(u), lab♦(u1), . . . , lab♦(uk)) ∈ Δ.
Notice first that the nodes in t♦ that are labelled with ♦ are all leafs. Hence,
all non-leaf nodes of this extended tree existed already in the derivation tree
t. Given such a non-leaf node u ∈ t, by the conditions of derivation trees, we
know that there exists a rule R : ({lab(u1), . . . , lab(un)},S) → {lab(u)} ∈ R
with S ⊆ T , and 1 ≤ n ≤ k. Hence, δR ∈ Δ. But

δR := (lab(u), lab(u1), . . . , lab(un)) × {♦}k−n

= (lab♦(u), lab♦(u1), . . . , lab♦(uk)),

which concludes the proof. ��

From these two lemmas it follows that the family of automata AS(Γ ) decides
the same property as the consequence-based algorithm S.

Theorem 14. Let S be a consequence-based algorithm that is correct for the
property P. For every axiomatized input Γ it holds that Γ ∈ P iff AS(Γ ) is
non-empty.

Recall from the last paragraph of Sect. 3 that the emptiness test iteratively
constructs the set of all good states, starting from the final states, making the
transition relation explicit, and at the end verifies whether an initial state is good.
In the case of the automaton AS(Γ ), the final states are exactly those from ΓS ;
the transition relation emulates the rules from S, and the only initial state is ⊥
expressing that there is a clash found. Thus, the execution of the consequence-
based algorithm S over the axiomatized input Γ is in fact an application of the
emptiness test of the automaton AS(Γ ).

As mentioned already, the relationship between a consequence-based algo-
rithm S and its associated family of automata AS is much stronger. Rather
than merely checking whether the execution of S over Γ yields the clash ⊥, the
automaton AS(Γ ) accepts all possible derivation trees. These trees can be seen
as different proofs for the existence of a clash, and hence for the derivation of
the properties. Notice that each of these proofs may require the presence of dif-
ferent axioms to trigger the rule applications. By tracing these axioms through
the rule applications, it is possible to understand the axiomatic causes for this
derivation, which is a fundamental task for many non-standard reasoning tasks
that have been studied for many different formalisms.
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5 Supplemental Reasoning

The automata AS(Γ ) can be seen as dual constructions to the axiomatic
automata from [4]. Similar to that approach, associating a weight to every tran-
sition of the automaton—i.e., to every rule application of the original algorithm
S—one can define the weight of every derivation tree. By extension, every axiom-
atized input is associated to the weight obtained from aggregating the weights of
all its derivation trees. Supplemental reasoning refers to the task of computing
the weight of each axiomatized input according to different interpretations.

Some of the typical examples of supplemental reasoning are axiom pinpoint-
ing [6,12,22] and MUS enumeration [7,15,18], in which the goal is to compute
all the sets of axioms that entail the consequence, and its weaker version of lean
kernel computation [16,17]; probabilistic logics with distribution semantics [21];
access control [3] and reasoning with meta-knowledge [9], to name a few.

An automaton that decides a property through an emptiness test can be
modified into a weighted automaton [10] as described in [4] to solve these sup-
plemental reasoning tasks through a so-called behaviour computation execution.
Interestingly, if the weights of the automaton (which arise from the supple-
mental reasoning task under consideration) form a distributive lattice, then the
behaviour of this automaton can be computed in polynomial time. That is, sup-
plemental reasoning is as expensive as standard reasoning, when the underlying
reasoning method is automata-based.

6 Conclusions

We have shown that reasoning with consequence-based methods can be reduced
to the emptiness test of an automaton that accepts all the derivation trees of the
former. In fact, the execution of a consequence-based method and the emptiness
test of its associated automaton can be seen as two faces of the same process.
This duality seamlessly combines the benefits of both approaches. On the one
hand, we have a method that is easy to describe, implement, and optimize;
and on the other, we have the complexity bounds and supplemental reasoning
extensions that automata provide. As a simple application of our techniques, we
obtain the first pinpointing extension of the consequence-based approach for EL.
Further similar results can be attained by instantiating our framework.

One important consideration for future work is to consider the application
of non-deterministic rules in consequence-based methods. We notice, however,
that tree automata can only provide deterministic complexity classes, due to
their polynomial-time emptiness test. Thus, the benefits of translating non-
deterministic procedures into automata are less obvious.
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15. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability, pp. 339–401 (2009)

16. Kullmann, O.: Investigations on autark assignments. Discret. Appl. Math. 107(1–
3), 99–137 (2000)

17. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunc-
tive normal forms: minimally unsatisfiable sub-clause-sets and the lean kernel. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer,
Heidelberg (2006). doi:10.1007/11814948 4

18. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

19. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Inf. Com-
put. 205(4), 557–580 (2007)
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Abstract. We propose a hybrid process calculus for modelling and rea-
soning on cyber-physical systems (CPSs). The dynamics of the calculus
is expressed in terms of a labelled transition system in the SOS style of
Plotkin. This is used to define a bisimulation-based behavioural seman-
tics which support compositional reasonings. Finally, we prove run-time
properties and system equalities for a non-trivial case study.

Keywords: Process calculus · Cyber-physical system · Semantics

1 Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed
computing systems with physical processes, where feedback loops allow physical
processes to affect computations and vice versa. For example, in real-time control
systems, a hierarchy of sensors, actuators and control processing components
are connected to control stations. Different kinds of CPSs include supervisory
control and data acquisition (SCADA), programmable logic controllers (PLC)
and distributed control systems.

The physical plant of a CPS is often represented in the literature by means
of a discrete-time state-space model1 consisting of two equations of the form

xk+1 = Axk + Buk + wk

yk = Cxk + ek

where xk ∈ Rn is the current (physical) state, uk ∈ Rm is the input (i.e., the
control actions implemented through actuators) and yk ∈ Rp is the output (i.e.,
the measurements from the sensors). The uncertainty wk ∈ Rn and the measure-
ment error ek ∈ Rp represent perturbation and sensor noise, respectively, and
A, B, and C are matrices modelling the dynamics of the physical system. The
next state xk+1 depends on the current state xk and the corresponding control
actions uk, at the sampling instant k ∈ N. Note that, the state xk cannot be
directly observed: only its measurements yk can be observed.

The physical plant is supported by a communication network through which
the sensor measurements and actuator data are exchanged with the controller(s),
i.e., the cyber component, also called logics, of a CPS.
1 See [17] for a tassonomy of the time-scale models used to represent CPSs.
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The range of CPSs applications is rapidly increasing and already covers sev-
eral domains: automotive, avionics, energy conservation, environmental monitor-
ing, critical infrastructure control, etc. However, there is still a lack of research
on the modelling and validation of CPSs through formal methodologies that
might allow to model the interactions among the system components, and to
verify the correctness of a CPS, as a whole, before its practical implementation.
A straightforward utilisation of these techniques is for model-checking, i.e. to
statically assess whether the current system deployment behaves as expected.
However, they can also be an important aid for system planning, for instance to
decide whether different deployments are behavioural equivalent.

In this paper, we propose a contribution in the area of formal methods for
CPSs, by defining a hybrid process calculus, called CCPS, with a clearly-defined
behavioural semantics for specifying and reasoning on CPSs. In CCPS, systems are
represented as terms of the form E �� P , where E denotes the physical plant (also
called environment) of the system, containing information on state variables,
actuators, sensors, evolution law, etc., while P represents the cyber component of
the system, i.e., the controller that governs sensor reading and actuator writing,
as well as channel-based communication with other cyber components. Thus,
channels are used for logical interactions between cyber components, whereas
sensors and actuators make possible the interaction between cyber and physical
components. Despite this conceptual similarity, messages transmitted via chan-
nels are “consumed” upon reception, whereas actuators’ states (think of a valve)
remains unchanged until its controller modifies it.

CCPS is equipped with a labelled transition semantics (LTS) that satisfies
some standard time properties such as: time determinism, patience, maximal
progress, and well-timedness. Based on our LTS, we define a natural notion of
weak bisimilarity. As a main result, we prove that our bisimilarity is a congruence
and it is hence suitable for compositional reasoning . We are not aware of similar
results in the context of CPSs. Finally, we provide a non-trivial case study, taken
from an engineering application, and use it to illustrate our definitions and our
semantic theory for CPSs. Here, we wish to remark that while we have kept the
example simple, it is actually far from trivial and designed to show that various
CPSs can be modelled in this style.

In this extended abstract, proofs are omitted; full details can be found in [10].

Outline. In Sect. 2, we give syntax and operational semantics of CCPS. In Sect. 3,
we provide a bisimulation equivalence for CCPS, and prove its compositionality.
In Sect. 4, we propose a case study, and prove for it run-time properties as well
as system equalities. In Sect. 5, we discuss related and future work.

2 The Calculus

In this section, we introduce our Calculus of Cyber-Physical Systems CCPS. Let
us start with some preliminary notations. We use x, xk ∈ X for state vari-
ables; c, d ∈ C for communication channels, a, ak ∈ A for actuator devices, and
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s, sk ∈ S for sensors devices. Actuator names are metavariables for actuator
devices like valve, light , etc. Similarly, sensor names are metavariables for sensor
devices, e.g., a sensor thermometer that measures, with a given precision, a state
variable called temperature. Values, ranged over by v, v′ ∈ V, are built from basic
values, such as Booleans, integers and real numbers; they also include names.

Given a generic set of names N , we write RN to denote the set of functions
assigning a real value to each name in N . For ξ ∈ RN , n ∈ N and v ∈ R, we
write ξ[n �→ v] to denote the function ψ ∈ RN such that ψ(m) = ξ(m), for any
m �= n, and ψ(n) = v. Given ξ1 ∈ RN1 and ξ2 ∈ RN2 such that N1 ∩ N2 = ∅,
we denote with ξ1 � ξ2 the function in RN1∪N2 such that (ξ1 � ξ2)(x) = ξ1(x), if
x ∈ N1, and (ξ1 � ξ2)(x) = ξ2(x), if x ∈ N2. Finally, given ξ ∈ RN and a set of
names M ⊆ N , we write ξ|M for the restriction of function ξ to the set M.

In CCPS, a cyber-physical system consists of two components: a physical envi-
ronment E that encloses all physical aspects of a system (state variables, physical
devices, evolution law, etc.) and a cyber component , represented as a concurrent
process P that interacts with the physical devices (sensors and actuators) of the
system, and can communicate, via channels, with other processes of the same
CPS or with processes of other CPSs.

We write E �� P to denote the resulting CPS, and use M and N to range
over CPSs. Let us formally define physical environments.

Definition 1 (Physical Environment). Let X̂ ⊆ X be a set of state vari-
ables, Â ⊆ A be a set of actuators, and Ŝ ⊆ S be a set of sensors. A physical
environment E is 7-tuple 〈ξx, ξu, ξw, evol , ξe,meas, inv〉, where:

– ξx ∈ RX̂ is the state function,
– ξu ∈ RÂ is the actuator function,
– ξw ∈ RX̂ is the uncertainty function,
– evol : RX̂ × RÂ × RX̂ → 2R

X̂
is the evolution map,

– ξe ∈ RŜ is the sensor-error function,
– meas : RX̂ × RŜ → 2R

Ŝ
is the measurement map,

– inv : RX̂ → {true, false} is the invariant function.

All the functions defining an environment are total functions.

The state function ξx returns the current value (in R) associated to each
state variable of the system. The actuator function ξu returns the current value
associated to each actuator. The uncertainty function ξw returns the uncertainty
associated to each state variable. Thus, given a state variable x ∈ X̂ , ξw(x)
returns the maximum distance between the real value of x and its representation
in the model. Both the state function and the actuator function are supposed to
change during the evolution of the system, whereas the uncertainty function is
supposed to be constant.

Given a state function, an actuator function, and an uncertainty function,
the evolution map evol returns the set of next admissible state functions. This
function models the evolution law of the physical system, where changes made
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on actuators may reflect on state variables. Since we assume an uncertainty in
our models, the evolution map does not return a single state function but a
set of possible state functions. Note that we admit evolution maps that are not
necessarily linear. Note also that, although the uncertainty function is constant,
it can be used in the evolution map in an arbitrary way, with different weights.

The sensor-error function ξe returns the maximum error associated to
each sensor. Again due to the presence of the sensor-error function, the
measurement map meas returns a set of admissible measurement functions
rather than a single one.

Finally, the invariant function inv represents the conditions that the state
variables must satisfy to allow for the evolution of the system. A CPS whose
state variables don’t satisfy the invariant is in deadlock.

Let us now formalise in CCPS the cyber components of CPSs. We extend the
timed process algebra TPL [8] with two constructs: one to read values detected
at sensors, and one to write values on actuators.

Definition 2 (Processes). Processes are defined by the grammar:
P,Q ::= nil

∣
∣ idle.P

∣
∣ P ‖ Q

∣
∣ π.P �Q

∣
∣ [b]{P}, {Q}

∣
∣ P\c

∣
∣ X

∣
∣ rec X.P.

We write nil for the terminated process. The process idle.P sleeps for one
time unit and then continues as P . We write P ‖ Q to denote the parallel
composition of concurrent processes P and Q. The process π.P �Q, with π ∈
{snd c〈v〉, rcv c(x), read s(x),write a〈v〉}, denotes prefixing with timeout. Thus,
snd c〈v〉.P �Q sends the value v on channel c and, after that, it continues as
P ; otherwise, if no communication partner is available within one time unit, it
evolves into Q. The process rcv c(x).P �Q is the obvious counterpart for channel
reception. The process read s(x).P �Q reads the value v detected by the sensor s,
whereas write a〈v〉.P �Q writes the value v on the actuator a. The process P\c is
the channel restriction operator of CCS. The process [b]{P}, {Q} is the standard
conditional, where b is a decidable guard. For simplicity, as in CCS, we identify
[b]{P}, {Q} with P , if b evaluates to true, and [b]{P}, {Q} with Q, if b evaluates
to false. In processes of the form idle.Q and π.P �Q, the occurrence of Q is said
to be time-guarded. The process rec X.P denotes time-guarded recursion as all
occurrences of the process variable X may only occur time-guarded in P .

In the two constructs rcv c(x).P �Q and read s(x).P �Q, the variable x is said
to be bound . Similarly, the process variable X is bound in rec X.P . This gives rise
to the standard notions of free/bound (process) variables and α-conversion. We
identify processes up to α-conversion (similarly, we identify CPSs up to renaming
of state variables, sensor names, and actuator names). A term is closed if it
does not contain free (process) variables, and we assume to always work with
closed processes: the absence of free variables is preserved at run-time. As further
notation, we write T{v/x} for the substitution of the variable x with the value
v in any expression T of our language. Similarly, T{P/X} is the substitution of
the process variable X with the process P in T .

The syntax of our CPSs is slightly too permissive as a process might use
sensors and/or actuators which are not defined in the physical environment.
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Definition 3 (Well-formedness). Given a process P and an environment
E = 〈ξx, ξu, ξw, evol , ξe,meas , inv〉, the CPS E �� P is well-formed if: (i) for any
sensor s mentioned in P , the function ξe is defined in s; (ii) for any actuator a
mentioned in P , the function ξu is defined in a.

Hereafter, we will always work with well-formed networks.
Finally, we assume a number of notational conventions. We write π.P instead

of rec X.π.P �X, when X does not occur in P . We write snd c (resp. rcv c)
when channel c is used for pure synchronisation. For k ≥ 0, we write idlek.P
as a shorthand for idle.idle. . . . idle.P , where the prefix idle appears k consecutive
times. Given M = E �� P , we write M ‖ Q for E �� (P ‖ Q), and M\c for
E �� P\c.

2.1 Labelled Transition Semantics

In this section, we provide the dynamics of CCPS in terms of a labelled transition
system (LTS) in the SOS style of Plotkin. In Definition 4, for convenience, we
define some auxiliary operators on environments.

Definition 4. Let E = 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 be a physical environment.

– read sensor(E, s) = {ξ(s) : ξ ∈ meas(ξx, ξe)}
– update act(E, a, v) = 〈ξx, ξu[a�→v], ξw, evol , ξe,meas, inv〉
– next(E) =

⋃
ξ∈evol(ξx,ξu,ξw){〈ξ, ξu, ξw, evol , ξe,meas, inv〉}

– inv(E) = inv(ξx).

The operator read sensor(E, s) returns the set of possible measurements
detected by sensor s in the environment E; it returns a set of possible values
rather than a single value due to the error ξe(s) of sensor s. update act(E, a, v)
returns the new environment in which the actuator function is updated in such
a manner to associate the actuator a with the value v. next(E) returns the set
of the next admissible environments reachable from E, by an application of the
evolution map. inv(E) checks whether the state variables satisfy the invariant
(here, with an abuse of notation, we overload the meaning of the function inv).

In Table 1, we provide standard transition rules for processes. Here, the meta-
variable λ ranges over labels in the set {idle, τ, cv, cv, a!v, s?v}. The symmetric
counterparts of rules (Com) and (Par) are omitted.

In Table 2, we lift the transition rules from processes to systems. All rules
have a common premise inv(E): a CPS can evolve only if the invariant is sat-
isfied, otherwise it is deadlocked. Here, actions, ranged over by α, are in the
set {τ, cv, cv, idle}. These actions denote: non-observable activities (τ); observ-
able logical activities, i.e., channel transmission (cv and cv); the passage of time
(idle). Rules (Out) and (Inp) model transmission and reception, with an exter-
nal system, on a channel c. Rule (SensRead) models the reading of the current
data detected at sensor s. Rule (ActWrite) models the writing of a value v on
an actuator a. Rule (Tau) lifts non-observable actions from processes to systems.
A similar lifting occurs in rule (Time) for timed actions, where next(E) returns
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Table 1. LTS for processes

(Outp)
−

�snd c〈v〉.P	Q
cv−−−→ P

(Inpp)
−

�rcv c(x).P	Q
cv−−−→ P{v/x}

(Write)
−

�write a〈v〉.P	Q
a!v−−−−→ P

(Read)
−

�read s(x).P	Q
s?v−−−−→ P{v/x}

(Com)
P

cv−−−→ P ′ Q
cv−−−→ Q′

P ‖ Q
τ−−→ P ′ ‖ Q′

(Par)
P

λ−−→ P ′ λ �= idle

P ‖ Q
λ−−→ P ′ ‖ Q

(ChnRes)
P

λ−−→ P ′ λ {∈� cv, cv}

P\c
λ−−→ P ′\c

(Rec)
P{rec X.P/X} λ−−→ Q

recX.P
λ−−→ Q

(TimeNil)
−

nil
idle−−−→ nil

(Delay)
−

idle.P
idle−−−→ P

(Timeout)
−

�π.P	Q
idle−−−→ Q

(TimePar)
P

idle−−−→ P ′ Q
idle−−−→ Q′ P ‖ Q � τ−−→

P ‖ Q
idle−−−→ P ′ ‖ Q′

Table 2. LTS for CPSs

(Out)
P

cv−−−→ P ′ inv(E)

E �� P
cv−−−→ E �� P ′

(Inp)
P

cv−−−→ P ′ inv(E)

E �� P
cv−−−→ E �� P ′

(SensRead)
P

s?v−−−−→ P ′ inv(E) v ∈ read sensor(E, s)

E �� P
τ−−→ E �� P ′

(ActWrite)
P

a!v−−−−→ P ′ inv(E) E′ = update act(E, a, v)

E �� P
τ−−→ E′

�� P ′

(Tau)
P

τ−−→ P ′ inv(E)

E �� P
τ−−→ E �� P ′ (Time)

P
idle−−−→ P ′ E �� P � τ−−→ inv(E) E′ ∈ next(E)

E �� P
idle−−−→ E′

�� P ′

the set of possible environments for the next time slot. Thus, by an application
of rule (Time) a CPS moves to the next physical state, in the next time slot.

Below, we report a few desirable time properties which hold in our calculus:
(a) time determinism, (b) maximal progress, (c) patience, and (d) well-timedness
(symbol ≡ denotes standard structural congruence for timed processes [8,13]).

Theorem 5 (Time Properties). Let M = E �� P an arbitrary CPS.

(a) If M
idle−−→ Ê �� Q and M

idle−−→ Ẽ �� R, then {Ê, Ẽ} ⊆ next(E) and Q ≡ R.
(b) If M

τ−→ M ′ then there is no M ′′ such that M
idle−−→ M ′′.

(c) If M
idle−−→ M ′ for no M ′ then either next(E) = ∅ or inv(M) = false or there

is N such that M
τ−→ N .

(d) There is k such that whenever M
α1−→ ..

αn−−→ N , with αi �= idle, then n≤k.

Well-timedness [4,13] ensures the absence of infinite instantaneous traces which
would prevent the passage of time, and hence the physical evolution of a CPS.
The proof of this property relies on time-guardedness of recursive processes.



A Calculus of Cyber-Physical Systems 121

3 Bisimulation

Once defined the labelled transition semantics, we are ready to define our
bisimulation-based behavioural equality for CPSs. We recall that the only observ-
able activities in CCPS are: time passing and channel communication. As a conse-
quence, the capability to observe physical events depends on the capability of the
cyber components to recognise those events by acting on sensors and actuators,
and then signalling them using (unrestricted) channels.

We adopt a standard notation for weak transitions: we write ⇒ for the
reflexive and transitive closure of τ -actions, namely ( τ−→)∗, whereas α=⇒ means
=⇒ α−→=⇒, and finally α̂=⇒ denotes ⇒ if α = τ and α=⇒ otherwise.

Definition 6 (Bisimulation). A binary symmetric relation R over CPSs is
a bisimulation if M R N and M

α−→ M ′ implies that there exists N ′ such that
N

α̂=⇒ N ′ and M ′ R N ′. We say that M and N are bisimilar, written M ≈ N ,
if M R N for some bisimulation R.

A main result of the paper is that our bisimilarity can be used to compare
CPSs in a compositional manner. In particular, our bisimilarity is preserved by
parallel composition of (non-interfering) CPSs, by parallel composition of (non-
interfering) processes, and by channel restriction.

Two CPSs do not interfere with each other if they have a disjoint physical
plant. Thus, let Ei = 〈ξi

x, ξ
i
u, ξ

i
w, evol i, ξi

e,measi, inv i〉 with sensors in Ŝi, actua-
tors in Âi, and state variables in X̂i, for i ∈ {1, 2}. If Ŝ1 ∩ Ŝ2 = ∅ and Â1 ∩ Â2 = ∅
and X̂1 ∩ X̂2 = ∅, then we define the disjoint union of the environments E1 and
E2, written E1 � E2, to be the environment 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 such
that: ξx = ξ1x � ξ2x, ξu = ξ1u � ξ2u, ξw = ξ1w � ξ2w, ξe = ξ1e � ξ2e , and

evol(ξ, ψ, φ) = {ξ′ = ξ1 � ξ2 : ξi ∈ evol i(ξ|X̂i
, ψ|Âi

, φ|X̂i
), for i ∈ {1, 2}}

meas(ξ, ψ) = {ξ′ = ξ1 � ξ2 : ξi ∈ measi(ξ|X̂i
, ψ|Ŝi

), for i ∈ {1, 2}}
inv(ξ) = inv1(ξ|X̂1

) ∧ inv2(ξ|X̂2
).

Definition 7. Let Mi = Ei �� Pi, for i ∈ {1, 2}. We say that M1 and M2 do
not interfere with each other if E1 and E2 have disjoint sets of state variables,
sensors and actuators. In this case, we write M1�M2 to denote the CPS defined
as (E1 � E2) �� (P1 ‖ P2).

A similar but simpler definition can be given for processes. Let M = E �� P ,
a non-interfering process Q is a process which does not interfere with the plant
E as it never accesses its sensors and/or actuators. Thus, in the system M ‖
Q the process Q cannot interfere with the physical evolution of M . However,
process Q can definitely affect the observable behaviour of the whole system by
communicating on channels. Notice that, as we only consider well-formed CPSs
(Definition 3), a non-interfering processes is basically a (pure) TPL process [8].

Definition 8. A non-interfering process never acts on sensors and/or
actuators.
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Now, everything is in place to prove the compositionality of our bisimilarity.

Theorem 9 (Congruence). Let M and N be two CPSs.

1. M ≈ N implies M � O ≈ N � O, for any non-interfering CPS O;
2. M ≈ N implies M ‖ P ≈ N ‖ P , for any non-interfering process P ;
3. M ≈ N implies M\c ≈ M\c, for any channel c.

As we will see in the next section, these compositional properties will be very
useful when reasoning about complex systems.

4 Case Study

In this section, we model in CCPS an engine, called Eng , whose tempera-
ture is maintained within a specific range by means of a cooling system. The
physical environment Env of the engine is constituted by: (i) a state variable
temp containing the current temperature of the engine; (ii) an actuator cool
to turn on/off the cooling system; (iii) a sensor st (such as a thermometer
or a thermocouple) measuring the temperature of the engine; (iv) an uncer-
tainty δ = 0.4 associated to the only variable temp; (v) a simple evolution
law that increases (resp., decreases) the value of temp of one degree per time
unit if the cooling system is inactive (resp., active)—the evolution law is obvi-
ously affected by the uncertainty δ; (vi) an error ε = 0.1 associated to the
only sensor st; (vii) a measurement map to get the values detected by sensor
st, up to its error ε; (viii) an invariant function saying that the system gets
faulty when the temperature gets out of the range [0, 30].

Formally, Env = 〈ξx, ξu, ξw, evol , ξe,meas, inv〉 with:

– ξx ∈ R{temp} and ξx(temp) = 0;
– ξu ∈ R{cool} and ξu(cool) = off; for the sake of simplicity, we can assume ξu

to be a mapping {cool} → {on, off} such that ξu(cool) = off if ξu(cool) ≥ 0,
and ξu(cool) = on if ξu(cool) < 0;

– ξw ∈ R{temp} and ξw(temp) = 0.4 = δ;
– evol(ξi

x, ξ
i
u, ξw) =

{
ξ : ξ(temp) = ξi

x(temp) + heat(ξi
u, cool) + γ ∧ γ ∈

[−δ,+δ]
}
, where heat(ξi

u, cool) = −1 if ξi
u(cool) = on (active cooling), and

heat(ξi
u, cool) = +1 if ξi

u(cool) = off (inactive cooling);
– ξe ∈ R{st} and ξe(st) = 0.1 = ε;
– meas(ξi

x, ξe) =
{
ξ : ξ(st) ∈ [ξi

x(temp)−ε , ξi
x(temp)+ε]

}
;

– inv(ξx) = true if 0 ≤ ξx(temp) ≤ 30; inv(ξx) = false, otherwise.

The cyber component of Eng consists of a process Ctrl which models the
controller activity. Intuitively, process Ctrl senses the temperature of the engine
at each time interval. When the sensed temperature is above 10, the controller
activates the coolant. The cooling activity is maintained for 5 consecutive time
units. After that time, if the temperature does not drop below 10 then the
controller transmits its ID on a specific channel for signalling a warning , it keeps
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cooling for another 5 time units, and then checks again the sensed temperature;
otherwise, if the sensed temperature is not above the threshold 10, the controller
turns off the cooling and moves to the next time interval. Formally,2

Ctrl = rec X.read st(x).[x > 10]{Cooling}, {idle.X}
Cooling = write cool〈on〉.rec Y.idle5.read st(x).

[x > 10]{sndwarning〈ID〉.Y }, {write cool〈off〉.idle.X}.

The whole engine is defined as: Eng = Env ��Ctrl , where Env is the physical
environment defined before.

Our operational semantics allows us to formally prove a number of run-time
properties of our engine. For instance, the following proposition says that our
engine never reaches a warning state and never deadlocks.

Proposition 10. Let Eng be the CPS defined before. If Eng α1−→ . . .
αn−−→ Eng ′,

for some Eng ′, then αi ∈ {τ, idle}, for 1 ≤ i ≤ n, and there is Eng ′′ such that
Eng ′ α−→ Eng ′′, for some αi ∈ {τ, idle}.

Actually, we can be quite precise on the temperature reached by the engine
before and after the cooling activity: in each of the 5 time slots of cooling, the
temperature will drop of a value laying in the interval [1− δ, 1+ δ], where δ is
the uncertainty of the model. Formally,

Proposition 11. For any execution of Eng, we have:

– when Eng turns on the cooling, the value of the state variable temp ranges
over (10 − ε , 11 + ε + δ];

– when Eng turns off the cooling, the value of the variable temp ranges over
(10 − ε − 5 ∗ (1+ δ) , 11 + ε + δ − 5 ∗ (1− δ)].
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Fig. 1. Simulations in MATLAB of the engine Eng

In Fig. 1, the left graphic collects a campaign of 100 simulations, lasting 250
time units each, showing that the value of the state variable temp when the
2 We recall that π.P is a shorthand for recX.�π.P �X, when X does not occur in P .
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cooling system is turned on (resp., off) lays in the interval (9.9, 11.5] (resp.,
(2.9, 8.5]); these bounds are represented by the dashed horizontal lines. Since
δ = 0.4, these results are in line with those of Proposition 11. The right graphic
shows three examples of possible evolutions of the state variable temp.

Now, the reader may wonder whether it is possible to design a variant of
our engine which meets the same specifications with better performances. For
instance, an engine consuming less coolant. Let us consider the variant: of the
engine described before:

Eng = Env ��Ctrl

where Env is the same as Env except for the evolution map, as we set
heat(ξi

u, cool) = −0.8 if ξi
u(cool) = on. This means that in Eng we reduce the

power of the cooling system by 20%. In Fig. 2, we report the results of our sim-
ulations over 10000 runs lasting 10000 time units each. From this graph, Eng
saves in average more than 10% of coolant with respect to Eng . So, the new
question is: are these two engines behavioural equivalent? Do they meet the
same specifications?

Our bisimilarity provides us with a precise answer to these questions.
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Fig. 2. Simulations in MATLAB of coolant consumption

Proposition 12. The two variants of the engine are bisimilar: Eng ≈ Eng.

At this point, one may wonder whether it is possible to improve the per-
formances of our engine even further. For instance, by reducing the power
of the cooling system by a further 10%, by setting heat(ξi

u, cool) = −0.7 if
ξi
u(cool) = on. We can formally prove that this is not the case.

Proposition 13. Let Êng be the same as Eng, except for the evolution map, in
which heat(ξi

u, cool) = −0.7 if ξi
u(cool) = on. Then, Eng �≈ Êng.

This is because the CPS Êng may experience a warning, while Eng may not.
Finally, we show how we can use the compositionality of our behavioural

semantics (Theorem 9) to deal with bigger CPSs. Suppose that Eng denotes
the modelisation of an airplane engine. We could define in CCPS a very simple
airplane control system that checks whether the left engine (EngL) and the right
engine (EngR) are signalling warnings. The whole CPS is defined as follows:

Airplane =
(
(EngL � EngR) ‖ Check

)
\warning
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where EngL = Eng{L/ID}{temp l/temp}{cool l/cool}{st l/st}, and, similarly, EngR =
Eng{R/ID}{temp r/temp}{cool r/cool}{st r/st}, and process Check is defined as:

Check = recX.�rcvwarning(x).[x = L]{CheckL
1}, {CheckR

1 }�X
Check id

i = �rcvwarning(y).[y �= id ]{snd alarm.idle.X}, {idle.Check id
i+1}�Check id

i+1

Check id
5 = �rcvwarning(z).[z �= id ]{snd alarm.idle.X}, {snd failure〈id〉.idle.X}�

snd failure〈id〉.X
for 1 ≤ i ≤ 5. Intuitively, if one of the two engines is in a warning state then the
process Check id

i , for id ∈ {L,R}, checks whether also the second engine moves
into a warning state, in the following 5 time intervals (i.e. during the cooling
cycle). If both engines gets in a warning state then an alarm is sent, otherwise,
if only one engine is facing a warning then the airplane control system yields a
failure signalling which engine is not working properly.

So, since we know that Eng ≈ Eng , the final question becomes the following:
can we safely equip our airplane with the more performant engines, EngL and
EngR, in which heat(ξi

u, cool) = −0.8 if ξi
u(cool) = on, without affecting the

whole observable behaviour of the airplane? The answer is “yes”, and this result
can be formally proved by applying Proposition 12 and Theorem 9.

Proposition 14. Let Airplane =
(
(EngL � EngR) ‖ Check

)
\warning. Then,

Airplane ≈ Airplane.

5 Related and Future Work

A number of approaches have been proposed for modelling CPSs using formal
methods. For instance, hybrid automata [1] combine finite state transition sys-
tems with discrete variables (whose values capture the state of the modelled
discrete or cyber components) and continuous variables (whose values capture
the state of the modelled continuous or physical components).

Hybrid process algebras [2,5,7,15] are a powerful tool for reasoning about
physical systems, and provide techniques for analysing and verifying protocols for
hybrid automata. CCPS shares some similarities with the φ-calculus [15], a hybrid
extension of the π-calculus. In the φ-calculus, a hybrid system is represented as
a pair (E,P ), where E is the environment and P is the process interacting with
the environment. Unlike CCPS, in φ-calculus, given a system (E,P ) the process P
can dynamically change both the evolution law and the invariant of the system.
However, the φ-calculus does not have a representation of physical devices and
measurement law. Concerning behavioural semantics, the φ-calculus is equipped
with a weak bisimilarity between systems that is not compositional.

In the HYPE process algebra [7], the continuous part of the system is rep-
resented by appropriate variables whose changes are determined by active influ-
ences (i.e., commands on actuators). The authors defines a strong bisimulation
that extends the ic-bisimulation of [2]. Unlike ic-bisimulation, the bisimulation
in HYPE is preserved by a notion of parallel composition that is slightly more
permissive than ours. However, bisimilar systems in HYPE must always have
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the same influence. Thus, in HYPE we cannot compare CPSs sending different
commands on actuators, as we do in Proposition 12.

Vigo et al. [16] proposed a calculus for wireless-based cyber-physical systems
endowed with a theory to study cryptographic primitives, together with explicit
notions of communication failure and unwanted communication. The calculus
does not provide any notion of behavioural equivalence.

Lanese et al. [9] proposed an untimed calculus of IoT devices. The calculus
does not contain any representation of the physical environment, and the bisim-
ilarity is not preserved by parallel composition (compositionality is recovered by
significantly strengthening the discriminating power of the bisimilarity).

Lanotte and Merro [11] extended and generalised the work of [9] in a timed
setting by providing a bisimulation-based semantic theory that is suitable for
compositional reasoning. As in [9], the physical environment is not represented.

Bodei et al. [3] proposed an untimed process calculus for IoT systems sup-
porting a control flow analysis to track how data spread from sensors to the
logics of the network, and how physical data are manipulated. Sensors and actu-
ators are modelled as value-passing CCS channels. No behavioural equivalence
is defined.

As regards future works, we believe that our paper can lay and streamline
theoretical foundations for the development of formal and automated tools to
verify CPSs before their practical implementation. To that end, we will consider
applying, possibly after proper enhancements, existing tools and frameworks
for automated verification, such as Maude [14] and SMC UPPAAL [6]. Finally,
in [12], we developed an extended version of CCPS to provide a formal study of a
variety of cyber-physical attacks targeting physical devices. Again, the final goal
is to develop formal and automated tools to analyse security properties of CPSs.

Acknowledgements. We thank Riccardo Muradore for providing us with simula-
tions in MATLAB of our case study. We thank the anonymous reviewers for valuable
comments.
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Abstract. Motivated by applications in bioinformatics, in what follows,
we extend the notion of gapped strings to elastic-degenerate strings. An
elastic-degenerate string can been seen as an ordered collection of solid
(standard) strings interleaved by elastic-degenerate symbols; each such
symbol corresponds to a set of two or more variable-length solid strings.
In this article, we present an algorithm for solving the pattern matching
problem with a solid pattern and an elastic-degenerate text running in
O(N + αγmn) time; where m is the length of the pattern; n and N are
the length and total size of the elastic-degenerate text, respectively; α
and γ are parameters, respectively representing the maximum number
of strings in any elastic-degenerate symbol of the text and the maximum
number of elastic-degenerate symbols spanned by any occurrence of the
pattern in the text. The space used by the proposed algorithm is O(N).

Keywords: String processing algorithms · Degenerate strings ·
Indeterminate strings · Elastic-degenerate strings · Gapped strings

1 Introduction

Uncertainty in sequential data (strings) can be characterised using various repre-
sentations. One such representation is a degenerate string, which is defined by the
existence of one or more positions that are represented by sets of symbols from
an alphabet Σ, unlike a solid (or deterministic, standard) string characterised
by a single symbol at each position. For instance,

[
a
b

]
ac

[
b
c

]
a
[ a
b
c

]
is a degenerate

string of length 6 over Σ = {a,b,c}; and abaababa is a solid string of length 8
over Σ = {a,b}. When a string is solid, we simply refer to it as string.

A gapped string is another way to capture uncertainty: it is an ordered collec-
tion of standard strings separated by variable-length gaps defined by an ordered
collection of intervals [4]. Simply, a gapped string P can be represented as fol-
lows [15]: P = P1 ∗a1,b1 P2 ∗a2,b2 P3 · · · ∗a�−1,b�−1 P�, where ∗ is a wildcard symbol
(also called don’t care symbol or hole) that matches any symbol in alphabet Σ;
∀i ∈ [1, �] each Pi is a string over Σ; and ∀i ∈ [1, �−1] each pair (ai, bi) represents
the gap (minimum and maximum number of wildcard symbols, respectively)
between two consecutive strings Pi and Pi+1.

This work was partially supported by the British Council funded INSPIRE Project.
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Here we introduce another representation to encapsulate uncertainty in
sequential data—which we call elastic-degenerate strings—by extending and
combining the ideas of gapped strings and degenerate strings. An elastic-
degenerate string is a string such that an elastic-degenerate symbol can occur
at one or more positions; each such symbol corresponds to a set of two or more
variable-length strings. Another way to visualise an elastic-degenerate string is
to see it as an ordered collection of k > 1 strings interleaved by k − 1 elastic-

degenerate symbols. For instance, bc

⎡
⎣

ab
aab
aca

⎤
⎦ ca

[
abcab
cba

]
bb is an example of an elastic-

degenerate string over Σ = {a,b,c}.
This generalisation of the concept of degeneracy is motivated by several data

mining problems [10] which can be reduced to the core task of discovering occur-
rences of one or more patterns in a text that can best be described as an ordered
collection of strings interleaved by sets of variable-length strings.

More specifically, in genomics an important class of problems is to study
within-species genetic variation; state-of-the-art solutions for this class comprises
of matching (mapping) short strings (called reads) to a longer genomic sequence
(canonical reference genome obtained through assembly). Owing to the high
diversity among biologically relevant genomic regions in many organisms, the
population level complexities cannot be captured by the linear structure of a
reference genome (see [11]). Consequently, the recent research trend has shifted
towards using alternative representations of genomic sequence for population-
based genome assembly [2,5,8,12]. One such representation that encodes a set of
related genomes with variations in the reference genome itself (called Population
Reference Genome in [12]), can be seen as an elastic-degenerate string.

The problem of pattern matching and discovery in the context of gapped
strings has been studied extensively using combinatorial approaches (see [14]
and references therein). However, a gapped string, which specifies the constraint
on only the length of the gap between two consecutive strings Pi and Pi+1, differs
from an elastic-degenerate string because the later precisely defines the possible
strings (of varying lengths) that can exist between Pi and Pi+1. This precise
identification of allowed strings in a gap makes the matching problem, in the
context of elastic-degenerate strings, algorithmically more challenging.

In this article, we not only formalise the concept of elastic-degenerate strings
but also present an efficient—in terms of both time and space—algorithm to
solve the pattern matching problem in a given elastic-degenerate text. To the
best of our knowledge, no other work, heretofore, explores the problem account-
ing for elastic-degeneracy in the text. In the next section, we introduce the
basic definitions and establish the notions of elastic-degeneracy that will be used
throughout. The algorithmic tools required to build the solution are described
in Sect. 3. In Sect. 4, we formally define the problem along with presenting the
algorithm. The algorithm is analysed in Sect. 5. Finally, the article is concluded
in Sect. 6 with some remarks and future proposals.



Efficient Pattern Matching in Elastic-Degenerate Texts 133

2 Terminology and Technical Background

We begin with basic definitions and notation. We think of a string X of length
n = |X| as an array X[1 . . n], where every X[i], 1 ≤ i ≤ n, is a symbol drawn
from some fixed alphabet Σ of size |Σ| = O(1). The empty string of length 0 is
denoted by ε. Σ∗ denotes the set of all strings over alphabet Σ including the
empty string ε. A string Y is a factor of a string X if there exist two strings
U and V , such that X = UY V . We say that there is an occurrence of Y in X,
or simply, that Y occurs in X, when Y is a factor of X. The starting position
of an occurrence, say i, is called head of the occurrence and its ending position
i + |Y | − 1 is called tail of the occurrence. Note that an empty string occurs at
each position in a given string. Consider the strings X, Y, U , and V , such that
X = UY V . If U = ε, then Y is a prefix of X. If V = ε, then Y is a suffix of X.

A degenerate symbol σ̃ over an alphabet Σ is a non-empty subset of Σ, i.e.,
σ̃ ⊆ Σ and σ̃ �= ∅. |σ̃| denotes the size of the set and we have 1 ≤ |σ̃| ≤ |Σ|.
A degenerate string is built over the potential 2|Σ| − 1 non-empty subsets of
symbols of Σ. In other words, a degenerate string X̃ = X̃[1 . . n] is a string such
that every X̃[i] is a degenerate symbol, 1 ≤ i ≤ n. If |x̃[i]| = 1, that is, X̃[i]
represents a single symbol of Σ, we say that X̃[i] is a solid symbol and i is a
solid position. Otherwise X̃[i] and i are said to be a non-solid symbol and a non-
solid position, respectively. For example,

[
a
b

]
ac

[
b
c

]
a
[ a
b
c

]
is a degenerate string of

length 6 over Σ = {a, b, c}. A string consisting of only solid symbols is called
a solid string or, simply, a string.

Now we give the terminology to build the concept of elastic-degeneracy by
presenting the following definitions and examples.

Definition 1 (Seed: S). A seed S is a (possibly empty) string over Σ.

Definition 2 (Elastic-Degenerate Symbol: ξ). An elastic-degenerate symbol
ξ, over a given alphabet Σ, is a set of two or more strings over Σ (i.e. ξ ⊆ Σ∗

and |ξ| > 1). An elastic-degenerate symbol ξ is denoted by

⎡
⎢⎢⎢⎣

E1
E2

.

.

.
E|ξ|

⎤
⎥⎥⎥⎦, where each

Ei, 1 ≤ i ≤ |ξ|, is a solid string. The minimum (resp. maximum) length in
ξ, denoted by |ξ|min (resp. |ξ|max), is the length of the shortest (resp. longest)
string in the set.

Definition 3 (Elastic-Degenerate String: X̂). An elastic-degenerate string
X̂, over a given alphabet Σ, is a sequence S1ξ1S2ξ2S3 . . . Sk−1ξk−1Sk, where
Si, 1 ≤ i ≤ k, is a seed and ξi, 1 ≤ i ≤ k − 1 is an elastic-degenerate symbol.

An elastic degenerate string X̂ can be visualised as follows:

X̂ = S1

⎡

⎢
⎢
⎢
⎣

E1,1

E1,2

...
E1,|ξ1|

⎤

⎥
⎥
⎥
⎦

S2

⎡

⎢
⎢
⎢
⎣

E2,1

E2,2

...
E2,|ξ2|

⎤

⎥
⎥
⎥
⎦

S3 . . . Sk−1

⎡

⎢
⎢
⎢
⎣

Ek−1,1

Ek−1,2

...
Ek−1,|ξk−1|

⎤

⎥
⎥
⎥
⎦

Sk.
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Example 1. X̂ = abbc

⎡
⎣

ab
aab
acca

⎤
⎦ cca

[
aabcab
cba

]
bb is an elastic-degenerate string, where

we have the following:

– Three seeds: S1 = abbc, S2 = cca, and S3 = bb.
– Two elastic-degenerate symbols:

ξ1 =

⎡
⎣

ab
aab
acca

⎤
⎦ and ξ2 =

[
aabcab
cba

]
.

– For ξ1: E1,1 = ab, E1,2 = aab, E1,3 = acca; minimum length is 2 (length of
E1,1); and maximum length is 4 (length of E1,3).

– For ξ2: E2,1 = aabcab, E2,2 = cba; minimum length is 3 (length of E2,2); and
maximum length is 6 (length of E2,1).

Observe the use of X̂ to distinguish an elastic-degenerate string from a solid
string X or a degenerate string X̃. In the following, we define three characteristics
of a given elastic-degenerate string X̂ with k seeds.

Definition 4 (Total Size: ‖X̂‖). The total size of X̂, denoted by ‖X̂‖, is
defined as the sum of the total length of its seeds and the total length of all the

strings in each of its elastic-degenerate symbols: ‖X̂‖ =
k∑

i=1

|Si| +
k−1∑

i=1

|ξi|∑

j=1

|Ei,j |.

Definition 5 (Length: |X̂|). The length of X̂, denoted by |X̂|, is defined as the
sum of the total length of its seeds and the total number of its elastic-degenerate

symbols: |X̂| =
k∑

i=1

|Si| + k − 1.

Informally, the total number of positions in X̂ is its length considering an
elastic-degenerate symbol to occupy only one position. Intuitively, a position
belonging to some seed will be called solid position and that of an elastic-
degenerate symbol will be called elastic-degenerate position. In the running
example, the total length of the seeds is 9; hence, ‖X̂‖ = 9+(2+3+4)+(6+3) =
27, while |X̂| = 9 + 2 = 11. The first a occurs at (solid) position 1, followed by
b at (solid) position 2 and so on; ξ1and ξ2 are at (elastic-degenerate positions)
5 and 9, respectively; the last b is at (solid) position 11.

Definition 6 (Possibility-Set: 
). For the elastic-degenerate string X̂ =
S1ξ1S2ξ2S3 . . . Sk−1ξk−1Sk, its possibility-set 
 is defined as


 = {S1E1,r1S2E2,r2 . . . Ek−1,rk−1Sk} ∀ri, 1 ≤ i ≤ k − 1 such that 1 ≤ ri ≤ |ξi|.

Informally, the possibility-set 
 of X̂ is the set of all possible solid strings
obtained from X̂. A solid string can be obtained by replacing each of the elastic-
degenerate symbols with one of its constituent strings. In the running example,

 = {abbcabccaaabcabbb, abbcabccacbabb, abbcaabccaaabcabbb, abbaabccacbabb, abbcaccaccaaabcabbb,
abbcaccaccacbabb}. Note that constituent strings replacing the elastic-degenerate
symbols have been underlined for clarity.

We are now in a position to define matching and occurrence in the context
of elastic-degenerate strings.
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Definition 7 (Matching). An elastic-degenerate string X̂ with k seeds and a
solid string Y are said to match, denoted by X̂ � Y , if, and only if, there exists
a solid string S = S1E1,r1S2E2,r2 . . . Ek−1,rk−1Sk, 1 ≤ ri ≤ |ξi|, obtained from
X̂ (i.e. S ∈ 
 of X̂), such that S = UY V , where U, V ∈ Σ∗, satisfying:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U = ε, V = ε if S1 �= ε, Sk �= ε

E1,r1 �= ε, V = ε, U is either empty or a prefix of E1,r1 if S1 = ε, Sk �= ε

Ek−1,rk−1 �= ε, U = ε, V is either empty or a suffix of Ek−1,rk−1 if S1 �= ε, Sk = ε

E1,r1 �= ε, U is either empty or a prefix of E1,r1 ,
Ek−1,rk−1 �= ε, V is either empty or a suffix of Ek−1,rk−1

if S1 = ε, Sk = ε.

Informally, we say that X̂ and Y match such that Y starts at the first position
of X̂ if the position is solid or as a suffix of one of its non-empty strings if it is
elastic-degenerate; and Y ends at the last position of X̂ if the position is solid
or as a prefix of one of its non-empty strings if it is elastic-degenerate.

Example 2. Consider X̂ as given in Example 1. For string Y = abbcabccacbabb we
have that X̂ � Y .

Definition 8 (Occurrence). In an elastic-degenerate string (text) T̂ , a solid
string (pattern) P is said to have an occurrence starting and ending at positions
i and j respectively, if P � T̂ [i . . j]. An occurrence is represented as the pair of
starting position i (head) and ending position j (tail).

For consistency with the intuitive meaning of an occurrence, we say that P
occurs at the position of some elastic-degenerate symbol (say ξi) of T̂ , if it is a
factor of any of the constituent strings of ξi.

Example 3. Consider a pattern P = cabbcb and a text T̂ as follows:

aacabbcbbc

⎡

⎣
a

aab

acca

⎤

⎦ bb

⎡

⎣
c

acabbcbb

cba

⎤

⎦ bacabbc

⎡

⎢
⎢
⎣

b

cabb

bbc

aacabb

⎤

⎥
⎥
⎦ cbc.

All the occurrences of P in T̂ are given below.

Occurrence: (3, 8) (10,15) (11,14) (11,15) (14,14) (17,22) (22,24)

Strings chosen: - ξ1: a

ξ2: c

ξ1: acca

ξ2: cba

ξ1: acca

ξ2: c

ξ2: acabbcbb ξ3: b

or ξ3: bbc

ξ3: cabb

or ξ3: aacabb

Note that more than one occurrence of P can start at the same starting posi-
tion but their ending positions are different: for instance, (11, 14) and (11, 15)
in Example 3. Also, note that different strings in the same elastic-degenerate
symbols can lead to the same occurrence: for instance, the same pair of head
and tail as happened for occurrences (17, 22) and (22, 24) in Example 3.
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Example 4. Here, we illustrate the case, where an elastic-degenerate string has
the empty string as a seed. Consider a pattern P = babbcb and a text T̂ as follows:

T̂ = ab

[
bcab

abb

]
⎡

⎣
ab

cbb

abc

⎤

⎦ cca

[
bb

cb

]

ca.

There is an occurrence of P at (2, 4) of T̂ .

3 Algorithmic Tools

In this section, we briefly introduce a fundamental data structure, which supports
a wide variety of string matching operations, and a well-known pattern matching
algorithm. Both the data structure and the pattern matching algorithm will be
used extensively by the proposed algorithm.

Suffix Tree

The suffix tree S(X) of a non-empty string X of length n is a compact trie
representing all the suffixes of X such that S(X) has n leaves labelled from 1 to
n. Additionally, each edge is labelled with a symbol of Σ. For any i, 1 ≤ i ≤ n,
the concatenation of the edge labels on the path from the root of S(X) to leaf i is
precisely the suffix X[i . . n]. For any two suffixes U = X[i . . n] and V = X[j . . n]
of X, if W is the longest common prefix (LCP) of U and V , then the path in
S(X) corresponding to W is the same for U and V . In other words, the depth of
the least common ancestor (LCA) of the two leaves is the same as the length of
the LCP of the suffixes represented by those leaves. For a general introduction
to suffix trees, see [3].

The construction of the suffix tree S(X) for string X of length n over a
fixed-sized alphabet takes O(n) time and space using one of the algorithms
in [13,17,18]. Once the suffix tree of X has been constructed, it can be used to
support queries that return all Occ occurrences of a given string (called pattern)
of length m in time O(m + Occ). In addition, the LCA of any two leaves of
S(X), thus the length of the LCP of any two suffixes of X, can be computed in
constant time after a linear-time pre-processing [7,16]. A generalised suffix tree
is a suffix tree for a set of strings [1,6].

KMP Algorithm and Failure Function

Knuth, Morris, and Pratt (KMP) introduced a linear-time algorithm for pattern
matching in [9]; that is, an algorithm for finding all occurrences of a pattern P
in a text T . The KMP algorithm follows the Näıve approach for this problem,
that is, it slides P across T . Additionally, it pre-processes P by computing a
failure function f that indicates the maximum possible shift using previously
performed symbol comparisons. Specifically, the failure function f(i) is defined
as the length of the longest prefix of P that is a suffix of P [1 . . i]. By using
the failure function, it achieves an optimal search time of O(n) after O(m)-time
pre-processing, where n is the length of T and m < n is the length of P .
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4 Algorithm for Pattern Matching in Elastic-Degenerate
Texts

4.1 Problem Definition

Problem. Pattern Matching in Elastic-Degenerate Texts
Input: An elastic-degenerate text T̂ = S1ξ1S2 . . . ξk−1Sk of length n and total
size N , a pattern P of length m < N .
Output: All the occurrences of P in T̂ .

By definition, all the occurrences of the pattern P in the text T̂ fall under
the following cases:

1. P entirely lies in some seed.
2. P entirely lies in some string of an elastic-degenerate symbol.
3. P spans across one or more elastic-degenerate symbols. This can further be

seen as:
(a) P starts in some seed.
(b) P starts in some string of an elastic-degenerate symbol.

For instance, consider Example 3: the occurrences (3, 8) and (14, 14) fall into
Case 1 and Case 2, respectively; (10, 15) and (17, 22) fall into Case 3(a); (11, 14),
(11, 15), and (22, 24) fall into Case 3(b).

4.2 Algorithm

Note that a näıve solution to this problem would be to find the pattern occur-
rences in the possibility-set 
 of T̂ using the KMP algorithm; this time is expo-
nential in the number of elastic-degenerate symbols. In this section, we present
an efficient algorithm that makes use of the KMP algorithm and the suffix tree
data structure. Clearly, the KMP algorithm can easily report the occurrences
corresponding to the Cases 1 and 2. Case 3 requires some additional processing
and data structures. The algorithm works in two stages, outlined below.

Stage 1: Pre-processing. Pre-process the pattern P to compute its failure-
function as required by the KMP algorithm. In addition, create the generalised
suffix tree SS for the set {P, S1, S2, . . . , Sk} of strings corresponding to all the
seeds of T̂ , as well as the generalised suffix tree Sξ for the set {P} ∪ ξ1 ∪ ξ2 ∪ . . . ∪
ξk−1 of strings corresponding to all the strings in each of the elastic-degenerate
symbols of T̂ . Furthermore, pre-process these two suffix trees so as to answer
LCA queries in constant time.

Stage 2: Search. Start searching the pattern P in the text T̂ using the KMP
algorithm, comparing the symbols and using the failure function to shift the
pattern on a mismatch. The starting position of an occurrence being tested may
be either solid or elastic-degenerate; we call the two types of occurrences as Type
1 and Type 2, respectively. We consider the two types separately as follows.
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Type 1: Solid Starting Position. Consider a situation when an occurrence
starting from a position (say pos) that lies in some seed Si is being tested. Pro-
ceed normally comparing the corresponding symbols of P and Si; and shifting the
pattern using failure function on a mismatch. As soon as the elastic-degenerate
symbol ξi is encountered (suppose corresponding position in the pattern is p),
abort the KMP algorithm (for this test). Check each of the strings of ξi (i.e.
Ei,j) whether or not it occurs in the pattern at position p, using LCA queries
on Sξ, and tick (mark) the tails of the found occurrences. This can be realised
by maintaining a Boolean array of size m, which we denote by Ti.

Next, Procedure 1 (given formally below) is executed. Each ticked position of
Ti is tried to extend by testing whether Si+1 occurs adjacent to it (using LCA
queries on SS). For each such found occurrence of Si+1, occurrences of strings of
ξi+1 are checked using the suffix tree Sξ and their tails are ticked in Ti+1. The
procedure will then be repeated for Ti+1; this continues recursively until there
is no tail marked in some call.

Once the process ends (reporting all the occurrences of P starting from pos,
if any), the failure function corresponding to the position where the KMP algo-
rithm was aborted (i.e. p) is used to shift the pattern and the KMP algorithm
resumes. It is to be noted that an occurrence of P is implied if the length returned
by the LCA query between the pattern starting from some ticked-tail t and either
of the following hits the boundary of the pattern:

– some seed Si;
– any string Ei,j of some elastic-degenerate symbol ξi.

Figure 1 elucidates the description given above.

Procedure 1. Procedure to extend ticked tails in a given Ti and reporting
the occurrences found, if any.

Extend(Ti)
input : A boolean array Ti of size m indicating ticked tails to be extended.
output: Reporting the found occurrences and preparing Ti+1 for the next recursive call.

isNonEmpty ← false;

forall indices t of Ti which are ticked do
ls ← | LCA(P [t + 1 . . m], Si+1[1 . . |Si+1|]) |;
if (ls + t) == m then // Pattern ends

Report the occurrence;
else if ls = |Si+1| then // Si+1 occurs here

e ← t + |Si+1|;
forall Ei+1,j in ξi+1 do

le ← | LCA(P [e + 1 . . m], Ei+1,j [1 . . |Ei+1,j |]) |;
if (le + e) == m then // Pattern ends

Report the occurrence (if not reported already);
else if le = |Ei+1,j | then // Ei+1,j occurs here

Mark e + |Ei+1,j | − 1 in Ti+1;
isNonEmpty ← true;

if isNonEmpty then
Extend(Ti+1);
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pos

T̂

Si ξi Si+1 ξi+1 Si+2 ξi+2 Si+3

Ei,|ξi|
Ei+1,|ξi+1| Ei+2,|ξi+2|

Ei,1 Ei+1,1 Ei+2,1

Ei,r1

Ei,r2

Ei+1,j1
Ei+1,j2
Ei+1,j3

Ei+2,p1

Ei+2,p2

P

Ti

p

Ei,r1

e1

Ei,r2

e1

Ti+1

Si+1 Ei+1,j1

e2

Si+1 Ei+1,j2

e2

Ei+1,j3

e2

Ti+2

Si+2
X

Si+2 Ei+2,p1

e3

Si+2 Ei+2,p2

e3

X

Ti+3

Prefix(Si+3)

pattern ends

Fig. 1. An illustration of how the algorithm works for Type 1 occurrences. Strings
in elastic-degenerate symbols are shown as zigzag, while solid lines depict the seeds.
Symbol X denotes that this path could not be extended further while the symbol �
represents a ticked tail.

Type 2: Elastic-Degenerate Starting Position. Consider a situation when
the starting position of an occurrence to be tested is an elastic-degenerate symbol
ξi. This case can be processed in a similar fashion as the one described for Type
1, with the only difference being the manner in which tails are ticked initially.

Begin by applying the KMP algorithm for each Ei,j to achieve two purposes:
finding the occurrences of P in Ei,j and ticking the last position of Ei,j for
which a prefix of P appears as a suffix of Ei,j . The ticked tails obtained in that
way are then extended by Procedure 1 recursively and occurrences are reported.
After the Procedure 1 ends, the KMP algorithm resumes and the testing starts
at the beginning of the seed Si+1.

5 Analysis

In this section, we discuss the correctness of the algorithm and analyse its space
and time complexity.
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5.1 Correctness

Consider an occurrence (i, j). If the occurrence falls under the Case 1 (resp. Case
2) then j = i + m − 1 (resp. j = i) for some fixed i. Thus, the number of occur-
rences falling under either Case 1 or Case 2 is bounded by O(n). On the other
hand, for occurrences under Case 3, let parameter γ represent the maximum
number of elastic-degenerate symbols spanned by any occurrence (i, j). Note
that γ captures the possibility that the elastic-degenerate symbols contain empty
strings. As there can be maximum m prefixes going past an elastic-degenerate
position, the number of occurrences per starting position i are bounded by
O(γm). Thus the total number of distinct occurrences (i, j) is bounded by
O(γmn).

The correctness of the presented algorithm is straightforward as every start-
ing position of the text is being tested for potential occurrences exhaustively.
While the occurrences corresponding to the Cases 1 and 3(a) are covered by
Type 1, Type 2 investigates all occurrences associated with Case 2 and Case
3(b). Thus all the occurrences of P in T̂ are reported.

5.2 Space Complexity

The space required by both, the failure-function and ticked tails array, is O(m).

The suffix tree SS uses O(m +
k∑

i=1

|Si|) space and the suffix tree Sξ uses

O(m +
k−1∑

i=1

|ξi|∑

j=1

|Ei,j |) space. This leads to the total space required to be O(N),

as
k∑

i=1

|Si| +
k−1∑

i=1

|ξi|∑

j=1

|Ei,j | = N and m < N .

5.3 Time Complexity

The time taken by the pre-processing stage is O(N) as the failure function can
be computed in O(m) time and construction of both the suffix trees (along with
their pre-processing required to answer LCA queries in constant time) can be
done in O(N) time.

The search stage uses the KMP algorithm over each seed and each string of
every elastic-degenerate symbol in the text to report the occurrences for Case 1
and Case 2; and to search the beginning of the occurrence for Case 3. Thus the

time consumed by the KMP algorithm is O(
k∑

i=1

|Si| +
k−1∑

i=1

|ξi|∑

j=1

|Ei,j |) = O(N).

Procedure 1 can be analysed as follows. Intuitively, for every ticked posi-
tion in the pattern (which can at most be m), an LCA query is used to find
whether the corresponding seed occurs at the ticked position or not; a found
such occurrence is then tried to extend by another LCA query with each of the
strings in the following elastic-degenerate symbol. Let parameter α represent the
maximum number of strings in any elastic-degenerate symbol of the text. This
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extension step for each ticked position will be carried out at most α times. More
specifically, the outer loop of the procedure runs m times and the inner one
takes O(α) time, as each LCA query takes constant time. Thus, each recursive
call requires O(mα) time. The number of recursive calls depends on the number
of the elastic-degenerate symbols spanned by the occurrence of P being tested.
In other words, if an occurrence spans across i elastic-degenerate symbols, there
will be i recursive calls to the procedure. If γ is the maximum such i, Procedure 1
executes in O(αγm) time in total for each starting position.

Initial ticking of the tails in Type 1 needs O(α) time. For Type 2, initial
ticking is done by KMP algorithm (already accounted above). In the worst case,
Procedure 1 will be called from each of the n starting positions of the text,
leading to an overall time-complexity of the algorithm to be O(N + αγmn). In
other words, the algorithm takes O(N +αγmn) time to find and report O(γmn)
number of possible occurrences of the pattern.

6 Final Remarks

Motivated by applications in bioinformatics, we extended the notion of gapped
strings to elastic-degenerate strings. In particular, we presented an efficient algo-
rithm for pattern matching in elastic-degenerate texts. Given a solid pattern
and an elastic-degenerate text the presented algorithm runs in O(N + αγmn)
time; where m is the length of the given pattern; n and N are the length and
total size of the given elastic-degenerate text, respectively; α and γ are parame-
ters, respectively representing the maximum number of strings in any elastic-
degenerate symbol of the text and the maximum number of elastic-degenerate
symbols spanned by any occurrence of the pattern in the text.

Note that in applications involving gene sequence variation data, α repre-
sents the number of sequences in the multiple sequence alignment of the similar
sequences and γ represents the number of genetic variation-sites falling in a full
occurrence. The values of these parameters can be small and so the presented
algorithm is expected to work very fast in practice. The space used by the algo-
rithm is linear in the size of the input.

A proof-of-concept implementation of this algorithm (that has been tested
for efficiency using synthetic data similar to the datasets used in genomics) can
be accessed at https://github.com/Ritu-Kundu/ElDeS. Due to lack of space,
experimental results are not included in the current version; they will be added
in the full version of this article.
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Abstract. A compression cryptosystem based on adaptive arithmetic
coding is proposed, in which the updates of the frequency tables for the
underlying alphabet are done selectively, according to some secret key
K. We give empirical evidence that the compression performance is not
hurt, and discuss also aspects of the system being used as an encryption
method.

1 Introduction

Some of the main concerns of communication over a network are security, space
savings of the transformed information, and processing speed. These challenges
can be overcome by means of encryption and compression of the involved data.
Data compression focuses on representing the given data in fewer bits, while
encryption concentrates on protecting information from third parties by trans-
forming the data into a secure ciphertext. Although compression and encryp-
tion are two different disciplines, their goals are achieved for both by removing
redundancies. We refer to a system combining the two disciplines as a Compres-
sion Cryptosystem. We suggest, in this research, a Compression Cryptosystem
based on arithmetic coding that provides security as well as a data transfer rate
increase, by generating a data file of reduced size.

Coding schemes like Huffman coding, that use a fixed set of codewords to rep-
resent the sequence of symbols in some given input file, are easily breakable by a
simple chosen plaintext attack [1]. This type of attack is easiest for the attacker
and most difficult for the cipher to withstand. Huffman coding schemes are able
to cope with communication errors such as bit losses and changes: even if fol-
lowing such an error, the actually decoded text differs from the original encoded
one, synchronization is generally regained after a small number of erroneous
codewords [2]. Arithmetic coding schemes, however, are rendered inoperable at
the loss of a single bit. The dependence of the encoded message upon all the pre-
viously transmitted characters ensures that even a minor discrepancy between
the model actually used for encoding and that assumed for the decoding will, in
the long run, produce nonsensical output.

Simultaneous compression and encryption can be achieved by either embed-
ding compression into encryption algorithms as in [3], or by adding cryptographic
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 143–154, 2017.
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features into compression schemes, as we suggest here. The combination of arith-
metic coding with data security was already suggested long ago by Jones [4] and
Witten and Cleary [5]. Jones’s implementation uses fixed source symbol prob-
abilities but is flexible in the choice of source and code alphabets. Bergen and
Hogan [1] investigate the security provided by static arithmetic coding, and show
how the attacker can determine both the ordering of the symbols in the cumula-
tive frequency table, and the actual value of the symbol frequencies, by feeding
repeated binary substrings as the input to the algorithm.

Witten and Cleary [5] refer to the model as a very large key, without which
decryption is impossible, and claim that an adaptive scheme provides protection
of messages from a casual observer and against chosen plaintext attacks. This
claim is justified in the work of Bergen and Hogan [6], where the authors con-
sider adaptive arithmetic coding, in which all symbols are initialized to have unit
frequencies, maintaining frequency counts adaptively, and halving the frequen-
cies once the total cumulative frequency exceeds some fixed maximum value.
Instead of attempting to discover the present state of the model, the attacker
rather takes control of the model and is able to match his model to the one under
attack by allowing decryption until the model is re-initialized.

In [7], a key controls the interval splitting of arithmetic coding, but the
scheme suffers from an attack based on known plaintext [8] by using the fact
that the same key is used to encode many messages. In [9], the authors show
that even an improved version that uses different keys for encrypting different
messages is still insecure under ciphertext-only attacks. Randomized arithmetic
coding was proposed in [10], which is inefficient in terms of compression when
compared to the traditional “compress-then-encrypt” approach. Utilizing chaotic
systems for arithmetic coding was suggested in [11], where the secret key controls
both the position and the direction of the line segments in the piecewise linear
chaotic map. Klein et al. [12] suggest several heuristics for using compression as
a data encryption method in order to prevent illegal use of copyright material.

Fraenkel and Klein [13] suggest methods for increasing the cryptographic
security of ciphertexts containing variable length prefix free codes. Their methods
are based on the NP-completeness of various decoding problems involving these
ciphertexts, such that there is probably no polynomial algorithm for breaking
the code.

In [14] a cryptosystem is used to provide security for mobile SMS communi-
cation. This system first compresses the SMS and then uses RSA for encryption.
A compression cryptosystem especially suited for secure transmission of medical
information such as images, audio, video etc. is proposed in [15], which is only
suitable for short enough messages, as efficiency drops when the length of the
message increases. In addition, the system requires a very large public key which
makes it very difficult to use in several practical application. Singh and Gilhotra
[16] use private key encryption based on static arithmetic coding. The data is
first compressed and only then encrypted to provide security.

Cleary et al. [17] consider static arithmetic coding with a binary alphabet and
show that for a chosen plaintext attack, w +2 symbols are sufficient to uniquely
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determine a w-bit probability. Obviously, they deal with a very simplified version
of arithmetic coding, while in our method, many more parts of the system remain
unknown, besides the single probability. Duan et al. [18] propose a dynamic
arithmetic coding method based on a Markov model for joint encryption and
compression. The ith symbol is encoded based on a Markov chain of order 0 or 1,
possibly permuting the relevant conditional probabilities in the model depending
on a given secret key. Similarly to their scheme, we also update the model based
on a secret key, but we ignore the dependency between consecutive characters.

In this paper we suggest a cryptosystem based on arithmetic coding. Altho-
ugh simultaneous arithmetic coding and encryption was already studied, most
of these schemes are found insecure and especially inefficient in terms of com-
pression. Unlike previous research, preliminary empirical results give evidence
that our proposed algorithm provides security without hurting the compression
efficiency. Section 2 describes our proposed method and Sect. 3 reports the exper-
iments we have performed.

2 Proposed Method

We consider a cryptosystem, to be described below, which we imagine as being
superimposed upon an adaptive arithmetic coder. Given is a plaintext T =
t1t2 · · · tn of length n characters, drawn from an alphabet Σ of fixed size s. The
text will be encoded using adaptive arithmetic coding, producing a compressed
text B = b1b2 · · · bm of length m bits.

Arithmetic coding represents a message to be encoded by a sub-interval
[low, high) of [0, 1). For an initially empty string T , the algorithm starts with
the basic interval [0, 1), which is increasingly narrowed as more characters from
T are processed. The narrowing procedure is based on partitioning the current
interval into sub-segments according to the probabilities of the characters in Σ.

For example, if Σ = {a, b, c} and the probabilities are 0.2, 0.7 and 0.1,
respectively, a possible partition could be into the segments [0, 0.2), [0.2, 0.9)
and [0.9, 1). If the first character of T is b, the current interval after processing
b is [0.2, 0.9). In subsequent steps, the same procedure is applied after appro-
priate scaling. So if the second character of T is c, to which the last 10% of the
initial interval have been assigned, the current interval after processing bc will
be [0.83, 0.9), the last 10% of the current interval [0.2, 0.9). After processing 3
characters bcb, the interval would be [0.844, 0.893).

The longer the text T , the narrower will the corresponding interval be, thus
the more bits will usually be needed to represent any real number in it. To save
space and since there will often be some overlap between the representations of
the real numbers low and high (in the last example, they both start with 0.8),
the final encoding will not be the resulting interval itself, but rather a single real
number within it. This suffices to allow decoding by reversing the above proce-
dure, if some external stopping condition is added, like transmitting an end-of-
text character or the length of the text. For the above example, one could choose,
say, 0.86, or, even better, 0.875, which is the number with the shortest binary
representation, 0.111, in the interval [0.844, 0.893) = [0.1101100, 0.1110010).
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In the static variant of arithmetic coding just described, the partition of [0, 1)
into sub-segments is fixed throughout the process. A dynamic variant calls for
updating these segments adaptively, according to the probability distribution of
the alphabet within the prefix of the text that has already been processed. In
fact, the general step of the dynamic variant consists of two independent actions:

1. compute the new interval as a function of the current one, the current char-
acter and the currently assumed distribution of probabilities;

2. update the model by incrementing the frequency of the current character and
adjusting the relative sizes of all the intervals in the partition accordingly.

The encryption we suggest is based on the fact that the model updates of
the second action above are done selectively, not necessarily at every step. The
exact subset of the processing steps at which the model is altered is controlled
by a secret key K. Specifically, if K = k0k1 · · · kt−1 is the standard binary
representation of key K, where its length t is chosen large enough, say, t = 512
or more, then the model will be updated at step i, that is, after encoding the ith
character, for i ≥ 1, if and only if k(i−1) mod t = 1. The algorithm for encrypting
a given message M according to a secret key K is presented in Fig. 1.

encode(M,K)
1 n ←−

←−

|M |
2 t ←− |K|
3 initialize the interval to be [0, 1) with uniform distribution of the alphabet symbols
4 for i 1 to n
4.1 compute the new interval as a function of:

the current interval
mi (the current character)
the currently assumed distribution of probabilities

4.2 if k(i−1) mod t = 1 then
4.2.1 update the model
4.3 else
4.3.1 the new partition into intervals is the current one
5 return some value in the current interval

Fig. 1. Cryptosystem based on dynamic arithmetic encoding

The beginning of the encoding may introduce some weakness of the process,
as the initial model of uniform distribution is not a secret. This might facilitate
attempts of an attacker to incrementally decrypt at least the beginning of the
encoded message. To avoid this flaw, the plaintext could be preceded by some
known text of a predefined size, say, the thousand first characters of Moby Dick.
This prefix is then used just to tune the encryption and decryption processes to a
safe initialization of the boundaries of the intervals. The real encoding only starts
when the original plaintext is processed. The rationale behind prepending a long
enough known text, is that we expect that after updating the model selectively
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several times according to a secret key, the chances for the decryption model
assumed by the attacker to be perfectly synchronized with the actual encryp-
tion model, without the knowledge of the secret key, are negligible, despite the
fact that the characters are also known to the adversary. Thus, decoding errors
will eventually appear, which in turn will initiate a snowball effect, as sporadic
mistakes at the beginning will trigger even more errors subsequently, and the
cumulative impact in the long run may destroy any similarity to the original
text. The alternative of guessing a random key with 2512 potential variants is
obviously ruled out.

We thus expect not to hurt the compression efficiency on the one hand, yet
to provide strong enough encryption on the other hand in the long run. Indeed,
dynamic arithmetic coding in particular, and all adaptive compression methods
in general, are based on the assumption that the distribution of the characters
in the text starting from the current position onwards will be similar to the
distribution in the part of the text preceding this current position. This leads
to the intuition that a longer history window will always be preferable to a
shorter one. This will, however, not always be the case. It might well happen, in
particular for non-homogeneous texts, that basing the prediction of the character
probabilities on a random subset of n of the 2n most recently read characters
may yield a compression performance that is not inferior, and sometimes even
better, than using just the last n characters as basis.

It is easy to construct a worst case example in which any deviation from the
standard model of considering the full history (or in case of limited memory, a
bounded size window with a suffix of the history), will give deteriorated com-
pression performance. Consider, for instance, a text of the form abababab· · · ,
consisting of strictly alternating characters of a binary alphabet. An adaptive
arithmetic encoder will produce a uniform probability distribution (12 , 1

2 ) for any
standard (even) sized history window. However, if the model is based on choos-
ing n of the 2n last seen characters, according to some secret key K, then the
uniform distribution will be obtained only if exactly half of the chosen charac-
ters are a and half are b. Assuming the values of K are randomly chosen, the
probability of this event is

(
n

n/2

)(
n

n/2

)

(
2n
n

) � 2√
π n

,

where we have used Stirling’s approximation. Thus for k = 512, only in 5% of
the cases will the exactly uniform model be obtained. Nevertheless, this worst
case behavior is restricted to such artificial texts, and our empirical tests of
several real language texts suggest that the loss incurred by turning to a selective
updating procedure as suggested is hardly noticeable.

3 Empirical Results

We considered four texts of different languages and sizes, each encoded as a
sequence of characters. ebib is the Bible (King James version) in English, in
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which the text was stripped of all punctuation signs; ftxt is the French version of
the European Union’s JOC corpus, a collection of pairs of questions and answers
on various topics used in the arcade evaluation project [19]; sources is formed
by C/Java source codes obtained by concatenating .c, .h and .java files of the
linux-2.6.11.6 distributions; and English is the concatenation of English text files
selected from the etext02 to etext05 collections of the Gutenberg Project, from
which the headers related to the project were deleted so as to leave just the real
text.

3.1 Compression Performance

We have assumed that basing the prediction of the character probabilities on a
random subset of bits will not hurt the compression performance. We therefore
compared our method to traditional dynamic arithmetic coding, which uses the
entire portion of the file that has already been processed to predict the current
character, and measured their compression performance.

Table 1 presents information on the compression performance of the data
files involved. The second column presents the original file size in MB. The third
column gives the size of the file, in MB, compressed by adaptive arithmetic coding
without any key, that is, using the full history window. The fourth column shows
the difference in size, in bytes, of the compressed file, when the updates of the
model are done according to a randomly chosen key as suggested. Interestingly,
there was a loss, albeit a negligibly small one, in all our tests. The last column
gives the ratio of the loss to the size of the file.

Table 1. Information about the used datasets

File Full size MB Compressed size MB Absolute loss bytes Relative loss

ebib 3.5 1.8 56 3 × 10−5

ftxt 7.6 4.2 316 7 × 10−5

sources 200.0 136.6 436 3 × 10−6

English 1024.0 579.3 437 7 × 10−7

As can be seen, there is hardly any noticeable difference in size between the
files obtained by using the standard adaptive arithmetic code, and that with
the selective updating. Timing results for both encoding and decoding were also
almost identical for both variants.

3.2 Uniformity

As to security, any reasonably compressed or encrypted file should consist of a
sequence of bits that is not distinguishable from a randomly generated binary
sequence. A criterion for such randomness could be that the probability of occur-
rence, within the compressed file, of any substring of length m bits should be
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2−m, for all m ≥ 1, that is, the probability for 1 or 0 are both 0.5, the probabili-
ties for 00, 01, 10 and 11 are 0.25, etc. We checked this fact on all our compressed
test files, for all values of m up to 8, and found distributions that are very close
to uniform, with small fluctuations, for both methods of the original arithmetic
coding and that with our selective updates. We bring here only the data for the
file ebib; the results for the other files were practically identical.

The left part of Fig. 2 plots the probability of occurrence of 8-bit strings as a
function of their possible values 0 to 255. As expected, the probabilities fluctuate
within a narrow interval centered at 1

256 = 0.0039. All the possible bit-positions
have been taken into account, so the strings were not necessarily byte aligned.
The solid line corresponds to the method with a secret key suggested herein,
whereas the broken line is the distribution for the original arithmetic coding.
As can be seen, these distributions can be equally considered as uniform, and
there seems to be no obvious deterioration of the uniformity due to the selective
choice of the update steps.
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Fig. 2. Probability of occurrence of 8- and 7-bit substrings as function of their value.

The right part of Fig. 2 repeats the test with 7-bit strings. Here the values
are in the range [0, 127], and the probabilities fluctuate around 1

128 = 0.0078.
Similar graphs would be produced for the other values of m. For m ≤ 3, the
probabilities are shown in Table 2.

To get a more quantitative judgement of the intuitive impression that these
values are evenly spread, we calculated the standard deviation of the distribution
of the 2m values for each value of m. Usually, the standard deviation σ is of the
order of magnitude of the average μ, so their ratio σ

μ may serve as a measure of
the skewness of the distribution. Table 3 gives this ratio for 1 ≤ m ≤ 8, for both
the standard adaptive arithmetic coding with model updates after every encoded
character, and for the selective model we proposed. As can be seen, the ratio is
very small in all cases, of the order of 1

1000 , suggesting that the distributions are
indeed very close to uniform.
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Table 2. Probability of occurrence of 3-, 2- and 1-bit substrings as function of their
value.

value Standard arithmetic Selective updates

m = 3 m = 2 m = 1 m = 3 m = 2 m = 1

0 0.12503 0.25002 0.50011 0.12507 0.25010 0.500005004

1 0.12498 0.25009 0.49989 0.12503 0.24991 0.499994996

2 0.12510 0.25009 0.12491 0.24991

3 0.12499 0.24981 0.12499 0.25009

4 0.12498 0.12503

5 0.12511 0.12488

6 0.12499 0.12499

7 0.12482 0.12499

Table 3. Ratio σ
μ

of standard deviation to average within the set of 2m values for
m = 1, . . . , 8.

m 8 7 6 5 4 3 2 1

Standard 0.00383 0.00251 0.00164 0.00125 0.00094 0.00072 0.00053 0.00030

Selective 0.00135 0.00042 0.00207 0.00182 0.00059 0.00013 0.00003 0.00001

3.3 Cryptographic Attacks

Uniformity is a necessary, but not sufficient condition for a secure system. There
might be other possible attacks that could render the method vulnerable. For
our following experiment we wanted to check the ability of the adversary to
predict the partition of [0,1) into intervals according to the probabilities of the
characters, without knowledge of the key. This is important, because in a chosen
cleartext attack, an adversary would know at each stage the true distribution of
the characters in the already processed prefix of the text, which could possibly
help to infer from it the stages at which the model has been updated, and thereby
guess the secret key on which the encryption is based. We are therefore interested
in measuring, at each stage, the size of the overlapping parts of the subintervals
of all characters, between two possible partitions: the one induced by the entire
history processed so far, and the one corresponding to the subset of updating
steps according to the secret key.

Figure 3 illustrates what we mean by overlap. The interval [0, 1) is shown,
partitioned into 5 segments, corresponding to an alphabet {a, b, c, d, e} of 5 char-
acters, but with slightly differing boundaries in the upper and lower parts of the
figure. Overlapping parts of segments assigned to the same character are empha-
sized. Our measure for the overall overlap is the cumulative size of the boldfaced
sub-intervals, 0.714 in this example.

Figure 4 plots this overlap for the partitions of [0, 1) into sub-intervals accord-
ing to:
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a b c d e

a b c d e

0

0 1

1

Fig. 3. Overlapping intervals.

1. a model updating the partition after each character read;
2. a model updating the partition selectively, according to some secret key.

The test text for this figure is the beginning of Moby Dick, which we have used to
initiate the frequency table prior to the processing of the cleartext itself. As can
be seen, the overlap is large at the beginning, but quickly drops to a level of about
10%, which is reached after roughly 100 characters. Then the overlap slowly rises
until reaching a value of about 0.76 for 10000 processed characters. Indeed, the
initial prefixes of the text are too short to be representative samples of the general
text; but as more characters are accumulated, even the distribution within a sub-
sample will be increasingly similar to that of the entire set. A similar phenomenon
can be observed when considering several independent sources describing the
distribution of the characters in “standard” English. Almost all will agree that
the order of the characters will be E, T, A, O, I, N,, and will give quite similar
values for their probabilities.

Returning to the suggested compression cryptosystem, the overlap after 1000
characters is roughly around 0.3, which means that an adversary guessing the
partition, or basing it on the full distribution of all the characters in the prefixed
Moby Dick sample, will have, for each processed characters, a chance of about
0.7 for being wrong. The probability for correct guesses in all of the 10 first
attempts is thus less than 0.000006, and a single wrong guess will imply many
more subsequently.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

size of overlap

Fig. 4. Size of overlap as a function of the number of processed characters.
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In the last test, we checked the sensitivity of the system to variations in
the secret key. The measure of similarity between two image files proposed in
[18] is the normalized number of differing pixels. Since we consider encrypted
files which are not images, we shall use the normalized Hamming distance: let
A = a1 · · · an and B = b1 · · · bm be two bitstrings and assume n ≥ m. First
extend B by zeros so that both strings are of the same length n. The normalized
Hamming distance is then defined by 1

n

∑n
i=1(ai xor bi). Figure 5 plots these

values for prefixes of size n, for 1 ≤ n ≤ 1000 of the file ebib: the first plot
considers two independently generated random keys, for the second and third
plots the same key is used, with just the first or last bit flipped. In any case, one
sees that the produced cipherfiles are completely different, with the number of
differences in corresponding bits rapidly tending to the expected value 1

2 . The
values of the ratio for the three tests at the end of the file (after processing
1.8 MB) were 0.499894, 0.500004 and 0.499995, respectively. We conclude that
the suggested selective update procedure of the model is extremely sensitive to
even small alterations: all produced files pass the above randomness tests, are
practically of the same size, and are completely different from each other.
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Fig. 5. Normalized Hamming distance.

4 Conclusion

A standard way to devise a compression cryptosystem is to compress the text and
only then encrypt the compressed form. The alternative of encrypting first and
then compressing would not be effective, as a reasonably encrypted file lacks any
easily detectable redundancy and thus would not be compressible at all. We have
suggested a way to combine the compression and encryption transformations
in a single step, by using selective update steps in the maintained adaptive
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model. Experiments show that neither the compression performance, nor the
running time are hurt. Moreover, the randomness of our ciphertext suggests
that decryption is hard without the knowledge of the key.

Several aspects are left for future research and we shall mention only two:

1. Using repeatedly the same key K might give an attacker the opportunity to
try to guess K by some chosen plaintext or other attack. This can be overcome
by considering K as the seed of some random number generator. For example,
use a large constant randomly chosen prime P and a large constant a and
choose a new K at each iteration by K ← aK mod P . Going backwards then
means calculating the discrete log. So there is hardly any addition in encoding
or decoding time, but an enemy cannot do any analysis since every block of
512 chars uses a different key.

2. We assumed that the order of the characters is constant and known (say
alphabetic). If this is risky (maybe there is, or will be, some chosen plaintext
or other attack based on this knowledge), it has been suggested to permute
the alphabet at every step. But this is costly. We suggest using the key K
also to permute the alphabet at every step.
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Abstract. A two-dimensional word (2D) is a rectangular finite array of
letters from the alphabet Σ. A 2D word is said to be a 2D palindrome if
it is equal to its reverse image. In this paper, we study some combinato-
rial properties of 2D palindromes. In particular, we provide a sufficient
condition under which a 2D word is said to be a 2D palindrome, discuss
the necessary and sufficient condition under which a 2D word can be
decomposed into 2D palindromes, and find the relation between the set
of all 2D palindromes and the set of all 2D primitive words. We also show
that the set of all 2D palindromes is not a recognizable language, and
study a special class of 2D palindromes, namely 2D palindrome square
words.

Keywords: Combinatorics on words · Two-Dimensional words ·
Two-Dimensional palindromes · Recognizable languages · Primitivity ·
Symmetry

1 Introduction

Identification of symmetric patterns in digital images and non-rigid shapes is one
of the most interesting problems in image processing, [6,11,16]. It has numer-
ous applications ranging from face recognition technologies to biology. In [14],
authors provide an algorithm that detects and measures the bilateral symmetry
of an image of arbitrary dimension and discuss its application in medical image
processing. The relation of the field of image processing to genetic algorithms has
been established in [8] by discussing a global optimization algorithm to detect
the local reflectional symmetry in grey level images. To extract a set of significant
features of a human face, face recognition technologies exploits the symmetry
characteristics of human face, [3]. One of the symmetrical characteristic that can
be of interest is the palindromic property in images.

Thus, it is of natural interest to extend the concept of palindromes to two-
dimension that in some sense possesses a symmetrical property. Palindromes
are one of the most important category of words that have been extensively
studied in formal language theory and combinatorics on words. (A non-empty
word w is a palindrome if it is equal to its mirror image, i.e., w = mi(w).) The
c© Springer International Publishing AG 2017
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156 M.S. Kulkarni and K. Mahalingam

formal notion of 2D palindromes was first introduced by Berthé and Vuillon [2]
in order to characterize 2D Sturmian sequences in terms of 2D palindromes.
2D palindromes are also studied in [4] where authors provide an algorithm for
searching 2D words for maximal 2D palindromes.

In this paper, we attempt to study 2D palindrome words and 2D palindrome
languages from combinatorics on words point of view rather than algorithmic or
formal language perspective. We study the relation between 2D palindromes and
2D primitive words, discuss the decomposition of a 2D primitive word into 2D
palindromes and prove the non-recognizability of the set of all 2D palindromes.

The paper is organized as follows: In Sect. 2, we provide the basic definitions
and notations for words in single as well as two dimension along with providing
formal definitions of prefix, suffix and subword of a 2D word, and a 2D primitive
word. In Sect. 3, we recall the definition of a 2D palindrome, and prove various
properties of these words including the relation between 2D palindromes and
2D primitive words (Proposition 11), the non-recognizability of the set of all 2D
palindromes (Sect. 3.2). We discuss a special class of 2D palindromes in Sect. 3.1
with concluding remarks in Sect. 4.

2 Basic Definitions and Notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of
all words over Σ including the empty word λ. Σ+ is the set of all non-empty
words over Σ. The length of a word u ∈ Σ∗ (i.e., the number of symbols in a
word) is denoted by |u|. The reversal of u = a1a2 · · · an is defined to be a string
uR = an · · · a2a1 where ai ∈ Σ for 1 ≤ i ≤ n. A word u is said to be a palindrome
or 1D palindrome if u = uR. A word w is said to be primitive if w = un implies
n = 1 and w = u. For all other concepts in the formal language theory and
combinatorics on words, the reader is referred to [7,10,17].

2.1 Two-Dimensional Words

Definition 1. A two-dimensional word or block (also called a picture) w =
[wi,j ]1≤i≤m,1≤j≤n over an alphabet Σ of size (m,n) is defined to be a two-
dimensional rectangular finite array of letters:

w =

w1,1 w1,2 · · · w1,n−1 w1,n

w2,1 w2,2 · · · w2,n−1 w2,n

...
...

. . .
...

...
wm−1,1 wm−1,2 · · · wm−1,n−1 wm−1,n

wm,1 wm,2 · · · wm,n−1 wm,n

In case of 2D words, an empty word is a word of the size (0, 0), and we use the
same notation, λ to denote such a word. The set of all 2D (rectangular) words
including the empty word λ over Σ is denoted by Σ∗∗, whereas Σ++ is the set
of all non-empty 2D words over Σ. A 2D language over Σ is a subset of Σ∗∗.
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Note that, the words of size (m, 0) and (0,m) for m > 0 are not defined. We
recall the following definition of the concatenation operation between 2D words,
and 2D languages.

Definition 2 [5]. Let u and v be two words over an alphabet Σ of size (m1, n1)
and (m2, n2), respectively with m1, n1,m2, n2 > 0:

u =

u1,1 · · · u1,n1

...
...

um1,1 · · · um1,n1

, v =

v1,1 · · · v1,n2

...
...

vm2,1 · · · vm2,n2

1. The column catenation of u and v (denoted by �) is a partial operation,
defined if m1 = m2 = m, and it is given by

u � v =

u1,1 · · · u1,n1 v1,1 · · · v1,n2

...
...

...
...

um,1 · · · um,n1 vm,1 · · · vm,n2

The column closure of u (denoted by u∗�) is defined as u∗� =
⋃

i≥0 ui� where
u0� = λ, u1� = u, un� = u � u(n−1)�.

2. The row catenation of u and v (denoted by �) is a partial operation defined
if n1 = n2 = n, and it is given by

u � v =

u1,1 · · · u1,n

...
...

um1,1 · · · um1,n

v1,1 · · · v1,n
...

...
vm2,1 · · · vm2,n

The row closure of u (denoted by u∗�) is defined as u∗� =
⋃

i≥0 ui� where
u0� = λ, u1� = u, un� = u � u(n−1)�.

It is clear that the operations of row and column catenation are associative but
not commutative. Moreover, the column and row catenation of u and the empty
word λ is always defined and λ is a neutral element for both the operations.

The definitions of column catenation (row catenation, respectively) and col-
umn closure (row closure, respectively) of words can be extended to languages
in a similar fashion.

Definition 3

1. Let u, v ∈ Σ++ be two words of size (m1, n1) and (m2, n2) respectively. Then
the operation of a dual-catenation, ⊕ is defined as

u ⊕ v =

⎧
⎪⎨

⎪⎩

u � v if n1 = n2

u � v if m1 = m2

{u � v, u � v} if (m1, n1) = (m2, n2).
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2. Let x ∈ Σ++, then

xk⊕ = {(xk1�)k2� : for all 1 ≤ k1, k2 ≤ k such that k1k2 = k}.

In lieu of above definition, we use the convention u ⊕ v ∈ X for some set X
to represent u ⊕ v to be an element of X if m1 = m2 or n1 = n2, or to represent
u ⊕ v to be a subset of X if (m1, n1) = (m2, n2).

In [1], prefix of a 2D word w is defined to be a rectangular sub-block (sub-
block of a block w of size (m,n) is any block of size (h, k) in w where h ≤
m, k ≤ n) that contains one corner of w, whereas suffix of w is defined to
be a rectangular sub-block that contains the diagonally opposite corner of w.
However, in this paper we consider prefix of a 2D word w to be a rectangular
sub-block that contains only the top left corner of w, and suffix of w to be a
rectangular sub-block that contains only the bottom right corner of w. Formally,

Definition 4. Given u ∈ Σ∗∗, v ∈ Σ∗∗ is said to be a prefix of u (respectively,
suffix of u), denoted by v ≤p u (respectively v ≤s u) if u = (v � x) � y or
u = (v � x) � y (respectively, u = y � (x � v) or u = y � (x � v)) for x, y ∈ Σ∗∗.
Furthermore, v is said to be a proper prefix of u (respectively proper suffix of
u) denoted by v <p u (respectively v <s u) if either x �= λ or y �= λ, or both
x, y ∈ Σ++.

Similarly, given u ∈ Σ∗∗, v ∈ Σ∗∗ is said to be a subword (respectively, proper
subword) of u, denoted by v ≤sw u (respectively, v <sw u) if u = x�(x′�v�y′)�y
or u = x� (x′

� v � y′)� y for x, x′, y, y′ ∈ Σ∗∗ (respectively, if any of x, x′, y, y′

are non-empty).

A 2D word w ∈ Σ++ is said to be 2D-primitive if w = xk⊕ implies that
k = 1 and w = x, [9]. By Q2d, let us denote the set of all 2D primitive words.
Also, if w = xk⊕ and x is 2D primitive, then x is said to be a 2D-primitive root
of w denoted by ρ2d(w).

Definition 5. Let w = [wi,j ] be a 2D word of size (m,n).

• The clockwise rotation of w denoted by wCR is defined as wCR = A1 � A2 �
· · · � An where Ak = wm,k � wm−1,k � · · · � w2,k � w1,k for 1 ≤ k ≤ n

• The counter-clockwise rotation of w denoted by wACR is defined as wACR =
Bn � Bn−1 � · · · � B1 where Bk′ = w1,k′ � w2,k′ � · · · � wm−1,k′ � wm,k′ for
1 ≤ k′ ≤ n.

3 Two-Dimensional Palindromes

In this section, we recall the definition of a 2D palindromes and, study some basic
properties of 2D palindromes. We give a sufficient condition for a 2D word to
be a 2D palindrome. The relation between 2D palindromes and 1D palindromes,
as well as the relation between the set of all 2D palindromes and the set of all
2D primitive words is given. In order to define 2D palindromes, we recall the
definition of the reverse of a 2D word.
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Definition 6 [2]. Let w = [wi,j ] be a 2D word of size (m,n). The reverse image
of w, i.e., wR is defined as:

wR =

wm,n wm,n−1 · · · wm,2 wm,1

wm−1,n wm−1,n−1 · · · wm−1,2 wm−1,1

...
...

. . .
...

...
w2,n w2,n−1 · · · w2,2 w2,1

w1,n w1,n−1 · · · w1,2 w1,1

If w is equal to its reverse image wR, then w is said to be a two-dimensional
palindrome, [2,4]. By P2d we denote the set of all 2D palindromes over an alpha-
bet Σ. In [2], 2D palindromes are referred to as centrosymmetric factors, while
in [4] they are referred to as rect2DP.

Example 7. Let Σ = {a, b, c}. Then w =

a b b c
b c b a
a b c b
c b b a

is a 2D palindrome.

Observation: Consider a 2D palindrome w = [wi,j ] of size (m,n) over an alpha-
bet Σ. Then concatenation of rows i and m− i+1 of w for 1 ≤ i ≤ m written as
a string is a 1D palindrome. Similar property holds for concatenation of columns
j and n − j + 1 for 1 ≤ j ≤ n.

The notions of conjugacy and commutativity are one of the most basic notions
studied and used in combinatorics on words, [12]. The fundamental results asso-
ciated with these notions are extended to their 2D counterpart in [9]. These
results play a major role in proving some of the properties of 2D palindromes.

A 2D word u is said to be a conjugate of another 2D word w if u⊕v = v⊕w for
some v ∈ Σ++. Two words u, v ∈ Σ++ are said to be commutative if u⊕v = v⊕u.
The following results provides a characterization of 2D words that are conjugates
of each other, and 2D words that commute.

Lemma 8 [9]. Let u, v, w ∈ Σ++ be words of size (m1, n1), (m2, n2) and
(m3, n3) respectively where m1,m2,m3, n1, n2, n3 ≥ 1. Then u ⊕ v = v ⊕ w
implies that for k ≥ 0, x ∈ Σ++ and y ∈ Σ∗∗,

1. If m1 = m2 = m3, then u = x � y, v = (x � y)k�
� x, w = y � x.

2. If n1 = n2 = n3, then u = x � y, v = (x � y)k� � x, w = y � x.

Lemma 9 [9]. Let u, v ∈ Σ++. Then u ⊕ v = v ⊕ u implies that u and v share
a common 2D primitive root.

It is known that for u ∈ Σ∗, u is a palindrome if and only if u = (xy)ix
for some palindromes x, y ∈ Σ∗ and i ≥ 1, [18]. Proposition 10 provides only a
sufficient condition for a 2D word to be a palindrome.

Proposition 10. If u = (x ⊕ y)i⊕ ⊕x where x, y ∈ P2d and i ≥ 1 then u ∈ P2d.
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However, converse of the above proposition is not true in general. For
example,

u =
a b c
c a c
c b a

is a 2D palindrome, but there does not exist any x, y ∈ P2d such that u =
(x ⊕ y)i⊕ ⊕ x.

Note that, for any u ∈ Σ++, u ∈ P2d if and only if ρ2d(u) ∈ P2d. Consider
the set of all non-empty 2D palindromes, denoted by P 1

2d, i.e., P 1
2d = P2d\λ. It

is clear that ρ2d(P 1
2d) ⊆ P2d. Also, P2d ∩ Q2d ⊆ ρ2d(P 1

2d). Hence we have the
following result.

Proposition 11. ρ2d(P 1
2d) = P2d ∩ Q2d.

The following theorem provides a necessary and sufficient condition such that
the dual catenation of two non-empty 2D palindromes is a 2D palindrome.

Theorem 12. Let u ∈ P 1
2d and v ∈ Σ++. The following statements are

equivalent:

1. {v, u ⊕ v} ⊆ P2d;
2. ρ2d(u) = ρ2d(v);
3. {v, ui⊕ ⊕ vi⊕} ⊆ P2d for some i, j ≥ 1;
4. u∗⊕ ⊕ v∗⊕ ⊆ P2d.

Proof. (1) ⇒ (2): Let u, v, u⊕v ∈ P2d. Then u⊕v = (u⊕v)R = vR ⊕uR = v⊕u
and hence by Lemma 9, ρ2d(u) = ρ2d(v).

(2) ⇒ (4): Let ρ2d(u) = ρ2d(v). Since u ∈ P2d, ρ2d(u) ∈ P2d. Consider
ui⊕⊕vj⊕ such that i, j ≥ 0 and i+j ≥ 0. Since ρ2d(u) = ρ2d(v), ρ2d(ui⊕⊕vj⊕) =
ρ2d(u) ∈ P2d. Hence ui⊕ ⊕ vj⊕ ∈ P2d and thus u∗⊕ ⊕ v∗⊕ ⊆ P2d.

(4) ⇒ (1) and (4) ⇒ (3): Follows immediately.
(3) ⇒ (2): Let v, ui⊕ ⊕ vj⊕ ∈ P2d for i, j ≥ 1. This implies ui⊕ ⊕ vj⊕ =

[ui⊕ ⊕ vj⊕]R = [vj⊕]R ⊕ [ui⊕]R = vj⊕ ⊕ ui⊕ which by Lemma 9 further implies
that ρ2d(ui⊕) = ρ2d(u) = ρ2d(v) = ρ2d(vj⊕). ��

In the following result we state the relationship between the set of all 2D
palindromes and the set of all 2D primitive words.

Proposition 13. Let u, v ∈ Σ++. Then u ⊕ v ∈ P2d ∩ Q2d implies that either
u /∈ P2d or v /∈ P2d.

Proposition 14. Let u ∈ P2d and p ∈ Σ++ such that p ≤p u. Then ui⊕ ⊕pj⊕ ∈
P2d for some i, j ≥ 1 iff ρ2d(u) = ρ2d(p).

We state the relationship between 2D palindromes and 1D palindromes in
the following proposition.

Proposition 15. Every 2D palindrome can be written as a palindrome and vice
versa.
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Lemma 8 gives a characterization of 2D words that are conjugates of each
other under the operation of dual catenation. The following result illustrates
that a 2D word v can be decomposed in terms of 2D palindromes if it is a
conjugate of its reverse, vR.

Lemma 16. If u⊕ v = vR ⊕u, then v = y ⊕x, u = (x⊕ y)k⊕ ⊕x for x, y ∈ P2d

and k ≥ 0.

In the following we calculate the total number of 2D palindromes of a given
size over an alphabet of fixed size.

Observation: Consider all 2D palindromes of size (m,n) and |Σ| = t. Then

1. If m = 2k, then the total number of 2D palindrome words over Σ is tkn.
2. If m = 2k+1, then the total number of 2D palindrome words over Σ is tnk+k′

where if n′ is even, then n = 2k′ and if n is odd then n = 2k′ − 1.

Propositions 17 and 18 provides a necessary and sufficient condition under
which a 2D word can be decomposed as a dual catenation of two non-empty 2D
palindromes.

Proposition 17. Let x, v, y ∈ Σ++ be such that x ⊕ y ∈ P2d. If x ⊕ v ⊕ y ∈ P2d

then v = v1 ⊕ v2 such that v1, v2 ∈ P2d.

Proof. Let x ⊕ y ∈ P2d and x ⊕ v ⊕ y ∈ P2d. Let the sizes of x, v, y be
(m1, n1), (m2, n2), (m3, n3) respectively. Then we have following cases:

Case 1: (m1, n1) = (m3, n3). Since x⊕ y, x⊕ v ⊕ y ∈ P2d, x⊕ y = (x⊕ y)R =
yR ⊕xR and x⊕ v ⊕y = (x⊕ v ⊕y)R = yR ⊕ vR ⊕xR which implies that x = yR

and v = vR.
Case 2: Without loss of generality, let us assume that m1 = m2 = m3. The

case when n1 = n2 = n3 can be proved similarly. Let n1 < n3.
Case 2(a): n3 ≤ n1 + n2. Since x ⊕ y = x � y ∈ P2d, i.e., x � y = yR

� xR,
we get yR = x � y1 and y2 = xR for y = y1 � y2 where y1, y2 ∈ Σ++ which
implies yR

2 � yR
1 = x � y1 which further implies y1 = yR

1 and x = yR
2 . Also,

since x ⊕ v ⊕ y = x � v � y ∈ P2d, i.e., x � v � y = yR
� vR

� xR, we get
yR = x � v1 and vR

� xR = v2 � y for v = v1 � v2 where v1, v2 ∈ Σ++. This
implies v2 � y = vR

� xR = (v1 � v2)R � xR = vR
2 � vR

1 � xR which further
implies v2 ∈ P2d. Also, yR = x � v1, i.e., yR

2 � yR
1 = x � v1 which together with

y2 = xR implies v1 = yR
1 ∈ P2d. Thus v = v1 � v2 where v1, v2 ∈ P2d.

Case 2(b): n3 > n1 + n2. We know from Case 2(a) that x � y ∈ P2d implies
y1 ∈ P2d and y2 = xR for y = y1 � y2 where y1, y2 ∈ Σ++. Also, we have
x � v � y = yR

� vR
� xR. This implies yR = x � v � y′ = y′′R

� y′R and
y′′ = vR

�xR for y = y′
�y′′ which further implies y′ ∈ P2d where y′, y′′ ∈ Σ++.

Also, x � y = x � y′
� y′′ = x � y′

� vR
� xR = x � v � y′

� xR = yR
� xR

which by size argument implies y′
� vR = v � y′ and by Lemma 16 there exists

α, β ∈ P2d such that y′ = α � (β � α)i� and v = α � β for i ≥ 0.
Case 3: n1 ≥ n3. The proof is similar to that of Case 2. ��
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Proposition 18. Let u, v ∈ Σ++ such that u ∈ P2d, and either u ⊕ v ∈ P2d or
v ⊕ u ∈ P2d, then v = x ⊕ y where x, y ∈ P2d.

The following lemma shows the uniqueness of decomposition of a 2D primitive
word into 2D palindromes.

Lemma 19. For x, y ∈ Σ++ ∩ P2d, let u = x ⊕ y ∈ Q2d. Then u /∈ P2d, and x
and y are unique such words.

Proof. Assume that u ∈ P2d. Then u = x ⊕ y = yR ⊕ xR = y ⊕ x which by
Lemma 9 implies that ρ2d(x) = ρ2d(y) which further implies that u /∈ Q2d, a
contradiction. Thus u /∈ P2d.

Assume that there exists α, β ∈ Σ++ ∩P2d such that u = x⊕ y = α⊕β, and
x �= α, y �= β. Let the sizes of x, y, α, β be (m1, n1), (m2, n2), (m′

1, n
′
1), (m

′
2, n

′
2),

respectively, for m1, n1,m2, n2,m
′
1, n

′
1,m

′
2, n

′
2 ≥ 1. Let us assume that m1 =

m2 = m′
1 = m′

2. The case when n1 = n2 = n′
1 = n′

2 can be proved similarly. Let
n1 < n′

1. Then α = x � x′ = x′R
� x = αR and y = x′

� β = β � x′R = yR for
x′ ∈ Σ++. Thus u = x � y = (x � β) � x′R = x′R

� (x � β) = α � β which by
Lemma 9 implies ρ2d(x � β) = ρ2d(x′R) which further implies that u /∈ Q2d, a
contradiction. Hence x = α and y = β. The case when n1 ≥ n′

1 will lead to the
same contradiction. ��

3.1 2D Palindrome Square Words

In this subsection, we study a special class of 2D palindromes namely 2D palin-
drome square words which are 2D palindrome words of size (n, n) with some
extra conditions as follows:

Definition 20. Consider a 2D palindrome word w = [wi,j ] of size (n, n), then
w is said to be a 2D palindrome square word if wi,j = wj,i = wk,l = wl,k where
k = n + 1 − j and l = n + 1 − i.

In [4], 2D palindrome square words are referred to as sq2DP and defined as
those 2D words that admit four symmetries, which are, identity, two diagonal
reflections, and 180◦ rotation. (The first occurrence of 2D palindrome square
word can be dated back to at least 79 AD with the discovery of famous “Sator
Square”, [15].)

Example 21. Let Σ = {a, b, c}, then w =
c b a
b a b
a b c

is a 2D palindrome square word

of size (3, 3).

In the last section, we have seen that any 2D palindrome can be written as
a palindrome and vice versa. Similarly, every 2D palindrome square word can
be written as a palindrome. However, every palindrome need not necessarily be
written as 2D palindrome square word as demonstrated by the following example.
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Example 22. Let Σ = {a, b, c}. Then w = abcba is a palindrome, but w cannot
be written as a 2D palindrome square word.

The following lemma follows immediately from the definition and hence the
proof is omitted.

Lemma 23. Let w ∈ Σ++ be a 2D palindrome square word of size (n, n)
given by w = [wi,j ] Then, p = wi,1wi,2 · · · wi,n−1wi,n = wn−(i−1),nwn−(i−1),n−1

· · · wn−(i−1),2wn−(i−1),1 = wn,n−(i−1)wn−1,n−(i−1) · · · w2,n−(i−1)w1,n−(i−1) =
w1,iw2,i · · · wn−1,iwn,i.

The following proposition demonstrates the construction of a 2D palindrome
square word of size (n, n) from a 2D palindrome square word of size (n+1, n+1).

Proposition 24. Let w ∈ Σ++ be a 2D palindrome square word of size (n +
1, n + 1). Then a 2D palindrome square word u of size (n, n) can be constructed
from w as follows:

1. If n + 1 = 2k + 1 and w = A1 � · · · � Ak � Ak+1 � Ak+2 � · · · � A2k+1 where
Ai = wi,1 � · · · � wi,k � wi,k+1 � wi,k+2 � · · · � wi,2k+1 for 1 ≤ i ≤ 2k + 1,
then u = A′

1 � · · · � A′
k � A′

k+2 � · · · � A′
2k+1 where A′

j = wj,1 � · · · � wj,k �

wj,k+2 � · · · � wj,2k+1 for 1 ≤ j ≤ k and k + 2 ≤ j ≤ 2k + 1.
2. If n + 1 = 2k and w = B1 � · · · � Bk � Bk+1 � Bk+2 � · · · � B2k where

Bi = wi,1 � · · · � wi,k � wi,k+1 � wi,k+2 � · · · � wi,2k for 1 ≤ i ≤ 2k
then, u = B′

1�· · ·�B′
k �B′

k+2�· · · B′
2k where B′

j = wj,1� · · · wj,k �wj,k+2�

wj,2k for 1 ≤ j ≤ k − 1, B′
k = wk,1 � · · · � wk,k � wk+1,k+2 � · · · wk+1,2k,

B′
j = wj,1 � · · · � wj,k−1 � wj,k+1 � · · · � wj,2k for k + 2 ≤ j ≤ 2k.

We demonstrate Proposition 24 using the following example.

Example 25. From w ∈ Σ++ which is a 2D palindrome square word, we con-
struct u, and then from u, v is constructed such that u and v are 2D palindromes.
Note that, the letters in bold denote the letters to be deleted.

w =

e s c a p e
s c o q n p
c o r t q a
a q t r o c
p n q o c s
e p a c s e

, u =

e s c p e
s c o n p
c o r o c
p n o c s
e p c s e

, v =

e s p e
s c n p
p n c s
e p s e

Lemma 26. Let w ∈ Σ++ be a 2D palindrome square word of size (n, n) then
every row of w�wCR and every column of w�wCR is a 2D palindrome. Similar
property holds for wCR ⊕ w, w ⊕ wACR, wACR ⊕ w.

However, the above lemma does not hold in case of general 2D palindromes
that are not 2D palindrome square words as demonstrated by the following
example.
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Example 27. Let Σ = {a, b, c} and for a given w ∈ Σ++ one can observe that
none of the rows of w � wCR are 2D palindromes.

w =
a b c
c a c
c b a

, w � wCR =
a b c c c a
c a c b a b
c b a a c c

Observation: Let |Σ| = t and consider all 2D palindrome square words of size
(m,m). Then,

1. The total number of 2D palindrome square words of size (2k, 2k) is tk(k+1).
2. The total number of 2D palindrome square words of size (2k + 1, 2k + 1) is

t(k+1)2 .

3.2 Non-Recognizability of the Set of 2D Palindromes

The class of regular 2D languages is the smallest class of 2D languages over
an alphabet Σ containing all singleton languages, and thus it is believed that
the class of recognizable 2D (picture) languages is a two-dimensional equivalent
of regular word languages, [13]. It is known that the set of all palindromes is
not regular but a context-free language. In this subsection we prove the non-
recognizability of the set of all 2D palindromes.

Let w = [wi,j ] be a 2D word of size (m,n). Let us call the square 2D word of
size (2, 2) a tile. By B2,2(w), let us denote the set of all tiles/subwords of w of
size (2, 2). Let w′ be a word of size (m+2, n+2) obtained from w by surrounding
w with a special boundary symbol # such that # /∈ Σ.

For a 2D word w of size (m,n), the projection by mapping π of w is a
2D word w′ ∈ Σ∗∗ such that w′

i,j = π(wi,j), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Similarly, the projection by mapping π of a 2D language L is the language
L′ = {w′ : w′ = π(w) ∀w ∈ L}.

Definition 28 [5]. Let Γ be a finite alphabet. A 2D language L ⊆ Γ ∗∗ is local if
there exists a finite set Θ of tiles over the alphabet Γ ∪ {#} such that L = {w ∈
Γ ∗∗ : B2,2(w′) ⊆ Θ}, whereas Γ is called a local alphabet.

Definition 29. A tiling system (TS) is a 4-tuple τ = (Σ,Γ,Θ, π), where Σ and
Γ are two finite alphabets, Θ is a finite set of tiles over the alphabet Γ ∪ {#}
and π : Γ → Σ is a projection.

A tiling system τ is said to recognize a language L, denoted by L = L(τ),
if L = π(L′) where L′ is the underlying local language. A language L ⊆ Σ∗∗ is
said to be recognizable if there exists a tiling system τ = (Σ,Γ,Θ, π) such that
L = L(τ).

The following lemma is analogous to the Pumping lemma for regular
languages.



Two-Dimensional Palindromes and Their Properties 165

Lemma 30 [5] (Horizontal Iteration Lemma). Let L be a recognizable two-
dimensional language. Then there is a function ϕ : N → N such that if p is
a word in L such that the number of rows of p, |p|row = n and the number of
columns of p, |p|col > ϕ(n), we may write p = x�q�y with |x�q|col ≤ ϕ(n) and
|y|col ≥ 1; and for all i ≥ 0, word x � qi� � y is in L. Furthermore, ϕ(n) ≤ γn,
n ∈ N, where γ is the size of any local alphabet used to represent L.

Theorem 31. The set of all 2D palindromes, P2d is not a recognizable 2D
language.

Proof. We prove the result by contradiction. By |p|row and by |p|col, let us denote
the number of rows and columns of a 2D word p, respectively.

Let us assume that P2d is recognizable. Then, let τ = (Σ,Γ,Θ, π) be a tiling
system that recognizes P2d such that Σ = {a, c}, Γ = {0, 1, 2} and π : τ → Σ be
such that π(0) = π(1) = a and π(2) = c. Thus, the size of local alphabet, γ = 3.

For p ∈ P2d, let |p|row = 2k. Then by Horizontal Iteration Lemma, there
exists a function ϕ : N → N such that ϕ(2k) ≤ 32k, |p|col = 32k+2 + 1 > ϕ(2k),
and we can write p = x � q � y with |x � q|col ≤ ϕ(2k) and |y|col ≥ 1; and for
all i ≥ 0, x � qi� � y is in L.

Now, we have l2(p) = 32k+2 +1 = (2k′ +1)+1, and it is easy to observe that
k′ will always be even. Also, it can be verified that ϕ(2k) < k′. Let,

p = [(a � c) � (c � a)]k�} k′
2 �

� (a � a)2k�
� {[(a � c) � (c � a)]k�} k′

2 �.

We can write p = p
k′
2 �

1 � p2 � p
k′
2 �

1 where p1 = [(a� c)� (c�a)]k� and p2 =
(a�a)2k�. Clearly p2 ∈ P2d, and since p1 has a 2D primitive root ((a�c)�(c�a))
which is a 2D palindrome, p1 ∈ P2d, and hence p ∈ P2d. Since ϕ(2k) < k′ and
|x � q|col ≤ ϕ(2k), q must be a subword of {[(a � c) � (c � a)]k�} k′

2 � with
|q|col ≤ k′. Thus we have following four cases:

Case 1: q = (a � c)k�
� q1 � (a � c)k� where q1 ∈ Σ∗∗. Then for i = 2,

x � q2�
� y = x � [(a � c)k�

� q1 � (a � c)k�]2�
� y = pm�

1 � p2 � p
k′
2 �

3 where
m > k′

2 . This implies x � q2�
� y /∈ P2d, a contradiction. The other cases can be

proved similarly.
Case 2: q = (a � c)k�

� q2 � (c � a)k� where q2 ∈ Σ∗∗.
Case 3: q = (c � a)k�

� q3 � (c � a)k� where q3 ∈ Σ∗∗.
Case 4: q = (c � a)k�

� q4 � (a � c)k� where q4 ∈ Σ∗∗.
Since all the four cases lead to a contradiction, our assumption was incorrect,

and hence P2d is not recognizable. ��

4 Conclusions

In this paper, we studied a special class of 2D words, namely 2D palindromes
and 2D palindrome square words. In particular, we showed its relation with
other types of 2D words, such as 2D primitive words, counted the number of
2D words give the size of an alphabet and proved the non-recognizability of the
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set of all 2D palindromes. We also studied the properties of special class of 2D
palindromes, namely 2D palindrome square words.

Further directions of research include detailed investigation of important
notions in combinatorics on words including, square free and cube freeness,
exploration of the concept of 2D words and languages under the more generalized
involution mappings, and extension of two fundamental results in combinatorics,
namely, Fine-Wilf theorem and Lyndon-Schützenberger equation.
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Abstract. A language L over an alphabet Σ is suffix-convex if, for any
words x, y, z ∈ Σ∗, whenever z and xyz are in L, then so is yz. Suffix-
convex languages include three special cases: left-ideal, suffix-closed, and
suffix-free languages. We examine complexity properties of these three
special classes of suffix-convex regular languages. In particular, we study
the quotient/state complexity of boolean operations, product (concate-
nation), star, and reversal on these languages, as well as the size of their
syntactic semigroups, and the quotient complexity of their atoms.

Keywords: Different alphabets · Left ideal · Most complex ·
Quotient/state complexity · Regular language · Suffix-closed ·
Suffix-convex · Suffix-free · Syntactic semigroup · Transition semigroup ·
Unrestricted complexity

1 Introduction

Suffix-Convex Languages. Convex languages were introduced in 1973 [27],
and revisited in 2009 [1]. For w, x, y ∈ Σ∗, if w = xy, then y is a suffix of w.
A language L is suffix-convex if, whenever z and xyz are in L, then yz is also in L,
for all x, y, z ∈ Σ∗. Suffix-convex languages include three well-known subclasses:
left-ideal, suffix-closed, and suffix-free languages. A language L is a left ideal if
it is non-empty and satisfies the equation L = Σ∗L. Left ideals play a role in
pattern matching: If one is searching for all words ending with words in some
language L in a given text (a word over Σ∗), then one is looking for words in
Σ∗L. Left ideals also constitute a basic concept in semigroup theory. A language
L is suffix-closed if, whenever w is in L and x is a suffix of w, then x is also in L,
for all w, x ∈ Σ∗. The complement of every suffix-closed language not equal to
Σ∗ is a left ideal. A language is suffix-free if no word in the language is a suffix of
another word in the language. Suffix-free languages (with the exception of {ε},
where ε is the empty word) are suffix codes. They have many applications, and
have been studied extensively; see [2] for example.
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Quotient/State Complexity. If Σ is an alphabet and L ⊆ Σ∗ is a language
such that every letter of Σ appears in some word of L, then the (left) quotient
of L by a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and
only if it has a finite number of distinct quotients. So the number of quotients
of L, the quotient complexity κ(L) [3] of L, is a natural measure of complexity
for L. A concept equivalent to quotient complexity is the state complexity [28]
of L, which is the number of states in a complete minimal deterministic finite
automaton (DFA) with alphabet Σ recognizing L. We refer to quotient/state
complexity simply as complexity.

If Ln is a regular language of complexity n, and ◦ is a unary operation,
then the complexity of ◦ is the maximal value of κ(L◦

n), expressed as a function
of n, as Ln ranges over all regular languages of complexity n. Similarly, if L′

m

and Ln are regular languages of complexities m and n respectively, ◦ is a binary
operation, then the complexity of ◦ is the maximal value of κ(L′

m◦Ln), expressed
as a function of m and n, as L′

m and Ln range over all regular languages of
complexities m and n. The complexity of an operation is a lower bound on its
time and space complexities, and has been studied extensively; see [3,4,28].

In the past the complexity of a binary operation was studied under the
assumption that the arguments of the operation are restricted to be over the same
alphabet, but this restriction was removed in [5]. We study both the restricted
and unrestricted cases.

Witnesses. To find the complexity of a unary operation we find an upper bound
on this complexity, and languages that meet this bound. We require a language
Ln for each n � k, that is, a sequence (Lk, Lk+1, . . . ), where k is a small integer,
because the bound may not hold for small values of n. Such a sequence is a
stream of languages. For a binary operation we require two streams. Sometimes
the same stream can be used for both operands; in general, however, this is not
the case. For example, the bound for union is mn, and it cannot be met by
languages from one stream if m = n because Ln ∪ Ln = Ln and the complexity
is n instead of n2.

Dialects. For all common binary operations on regular languages the second
stream can be a “dialect” of the first, that is it can “differ only slightly” from the
first, and all the bounds can still be met [4]. Let Σ = {a1, . . . , ak} be an alphabet
ordered as shown; if L ⊆ Σ∗, we denote it by L(a1, . . . , ak) to stress its depen-
dence on Σ. A dialect of L is obtained by deleting letters of Σ in the words of L,
or replacing them by letters of another alphabet Σ′. More precisely, for a partial
injective map π : Σ �→ Σ′, we obtain a dialect of L by replacing each letter a ∈ Σ
by π(a) in every word of L, or deleting the word entirely if π(a) is undefined. We
write L(π(a1), . . . , π(ak)) to denote the dialect of L(a1, . . . , ak) given by π, and
we denote undefined values of π by “−”. For example, if L(a, b, c) = {a, ab, ac},
then L(b,−, d) is the language {b, bd}. Undefined values at the end of the alpha-
bet are omitted. A similar definition applies to DFAs. Our definition of dialect
is more general than that of [7,12], where only the case Σ′ = Σ was allowed.
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Most Complex Streams. It was proved that there exists a stream (L3, L4, . . . )
of regular languages which together with some dialects meets all the complex-
ity bounds for reversal, (Kleene) star, product (concatenation), and all binary
boolean operations [4,5]. Moreover, this stream meets two additional complexity
bounds: the size of the syntactic semigroup, and the complexities of atoms (dis-
cussed later). A stream of deterministic finite automata (DFAs) corresponding
to a most complex language stream is a most complex DFA stream. In defining a
most complex stream we try to minimize the size of the union of the alphabets
of the dialects required to meet all the bounds.

Most complex streams are useful in the designs of systems dealing with regu-
lar languages and finite automata. To know the maximal sizes of automata that
can be handled by the system it suffices to use the most complex stream to test
all the operations.

It is known that there is a most complex stream of left ideals that meets all
the bounds in both the restricted [7,12] and unrestricted [12] cases, but a most
complex suffix-free stream does not exist [14].

Our Contributions

1. We derive a new left-ideal stream from the most complex left-ideal stream
and show that it meets all the complexity bounds except that for product.

2. We prove that the complement of the new left-ideal stream is a most complex
suffix-closed stream.

3. We find a new suffix-free stream that meets the bounds for star, product and
boolean operations; it has simpler transformations than the known stream.

4. Our witnesses for left-ideal, suffix-closed, and suffix-free streams are all
derived from one most complex regular stream.

2 Background

Finite Automata. A deterministic finite automaton (DFA) is a quintuple D =
(Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite non-
empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We extend δ to a function δ : Q×Σ∗ →
Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language
accepted by D is denoted by L(D). If q is a state of D, then the language Lq

of q is the language accepted by the DFA (Q,Σ, δ, q, F ). A state is empty if its
language is empty. Two states p and q of D are equivalent if Lp = Lq. A state
q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal
if all of its states are reachable and no two states are equivalent. Usually DFAs
are used to establish upper bounds on the complexity of operations and also as
witnesses that meet these bounds.

A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F )
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
function, and I ⊆ Q is the set of initial states. An ε-NFA is an NFA in which
transitions under the empty word ε are also permitted.
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Transformations. We use Qn = {0, . . . , n − 1} as our basic set with n ele-
ments. A transformation of Qn is a mapping t : Qn → Qn. The image of q ∈ Qn

under t is denoted by qt. If s and t are transformations of Qn, their compo-
sition is denoted (qs)t when applied to q ∈ Qn. Let TQn

be the set of all nn

transformations of Qn; then TQn
is a monoid under composition.

For k � 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆
Q is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-
cycle is denoted by (q0, q1, . . . , qk−1). A 2-cycle (q0, q1) is called a transposition.
A transformation that sends all the states of P to q and acts as the identity on the
remaining states is denoted by (P → q) the transformation (Qn → p) is called
constant. If P = {p} we write (p → q) for ({p} → q). The identity transformation
is denoted by 1. The notation (ji q → q +1) denotes a transformation that sends
q to q + 1 for i � q � j and is the identity for the remaining states. the notation
(ji q → q − 1) is defined similarly.

Semigroups. The Myhill congruence ≈L [25] (also known as the syntactic con-
gruence) of a language L ⊆ Σ∗ is defined on Σ+ as follows: For x, y ∈ Σ+, x≈L y
if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The quotient set Σ+/≈L

of equivalence classes of ≈L is a semigroup, the syntactic semigroup TL of L.
Let D = (Qn, Σ, δ, 0, F ) be a DFA. For each word w ∈ Σ∗, the transition

function induces a transformation δw of Qn by w: for all q ∈ Qn, qδw = δ(q, w).
The set TD of all such transformations by non-empty words is the transition
semigroup of D under composition [26]. Sometimes we use the word w to denote
the transformation it induces; thus we write qw instead of qδw. We extend the
notation to sets: if P ⊆ Qn, then Pw = {pw | p ∈ P}. We also find write
P

w−→ Pw to indicate that the image of P under w is Pw.
If D is a minimal DFA of L, then TD is isomorphic to the syntactic semigroup

TL of L [26], and we represent elements of TL by transformations in TD. The
size of this semigroup has been used as a measure of complexity [4,18,21,24].

Atoms. Atoms are defined by a left congruence, where two words x and y are
equivalent if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y
are equivalent if x ∈ u−1L if and only if y ∈ u−1L. An equivalence class of
this relation is an atom of L [17]. Thus an atom is a non-empty intersection of
complemented and uncomplemented quotients of L. The number of atoms and
their complexities were suggested as possible measures of complexity of regular
languages [4], because all the quotients of a language, and also the quotients of
atoms, are always unions of atoms [16,17,22].

Our Key Witness. The stream (Dn(a, b, c) | n � 3) of Definition 1 and Fig. 1
was introduced in [4]. It will be used as a component in all the classes of languages
examined in this paper. It was shown in [4] that this stream together with
some dialects is most complex for restricted operations, and also for unrestricted
operations if an input d that induces the identity transformation is added [5,12].

Definition 1. For n � 3, let Dn = Dn(a, b, c) = (Qn, Σ, δn, 0, {n − 1}), where
Σ = {a, b, c}, and δn is defined by a : (0, . . . , n − 1), b : (0, 1), c : (n − 1 → 0).



Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages 175
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Fig. 1. Minimal DFA of a most complex regular language.

3 Left Ideals

The following stream was studied in [18] and also in [6,7,13]. This stream is
most complex when the two alphabets are the same in binary operations [7]. It
is also most complex for unrestricted operations [12].

Definition 2. For n � 4, let Dn = Dn(a, b, c, d, e) = (Qn, Σ, δn, 0, {n − 1}),
where Σ = {a, b, c, d, e}, and δn is defined by transformations a : (1, . . . , n − 1),
b : (1, 2), c : (n − 1 → 1), d : (n − 1 → 0), and e : (Qn → 1). See Fig. 2. Let Ln =
Ln(a, b, c, d, e) be the language accepted by Dn.

0 1 2 3 . . . n − 2 n − 1
e a, b a a a a

a, b, c, d c, d, e c, d b, c, d b, c, d b
b, e

e

e

a, c, e

d

Fig. 2. Minimal DFA of a most complex left ideal Ln(a, b, c, d, e).

Theorem 3 (Most Complex Left Ideals [7,12]). For each n � 4, the DFA
of Definition 2 is minimal. The stream (Ln(a, b, c, d, e) | n � 4) with some dialect
streams is most complex in the class of regular left ideals.

1. The syntactic semigroup of Ln(a, b, c, d, e) has cardinality nn−1 + n − 1.
2. Each quotient of Ln(a,−,−, d, e) has complexity n.
3. The reverse of Ln(a,−, c, d, e) has complexity 2n−1 + 1, and Ln(a,−, c, d, e)

has 2n−1 + 1 atoms.
4. For each atom AS of Ln(a, b, c, d, e), the complexity κ(AS) satisfies:

κ(AS) =

⎧
⎪⎨

⎪⎩

n, if S = Qn;
2n−1, if S = ∅;
1 +

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
, otherwise.
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5. The star of Ln(a,−,−,−, e) has complexity n + 1.
6. (a) Restricted product: κ(L′

m(a,−,−,−, e)Ln(a,−,−,−, e)) = m + n − 1.
(b) Unrestricted product: κ(L′

m(a, b,−, d, e)Ln(a, d,−, c, e)) = mn + m + n.
7. (a) Restricted complexity: κ(L′

m(a,−, c,−, e) ◦ Ln(a,−, e,−, c)) = mn.
(b) Unrestricted complexity: κ(L′

m(a, b,−, d, e) ◦ Ln(a, d,−, c, e)) = (m +
1)(n + 1) if ◦ ∈ {∪,⊕}), mn + m if ◦ = \, and mn if ◦ = ∩.

In both cases the bounds for boolean operations are the same as those for
regular languages.

We now define a new left-ideal witness similar to the witness in Definition 2.

Definition 4. For n � 4, let En = En(a, b, c, d, e) = (Qn, Σ, δn, 0, {1, . . . , n −
1}), where Σ and the transformations induced by its letters are as in Dn of
Definition 2. Let Mn = Mn(a, b, c, d, e) be the language accepted by En.

Theorem 5 (Nearly Most Complex Left Ideals). For each n � 4, the
DFA of Definition 4 is minimal and its language Mn(a, b, c, d, e) is a left ideal
of complexity n. The stream (Mn(a, b, c, d, e) | n � 4) with some dialect streams
meets all the complexity bounds for left ideals, except those for product.

Proof. It is easily verified that En(a,−,−, d, e) is minimal; hence Mn(a, b, c, d, e)
has complexity n. Mn is a left ideal because, for each letter � of Σ, and each
word w ∈ Σ∗, w ∈ Mn implies �w ∈ Mn. We prove all the claims of Theorem 3
except the claims in Item 6.

1. Semigroup. The transition semigroup is independent of the set of final
states; hence it has the size of the DFA of the most complex left ideal.

2. Quotients. Obvious.
3. Reversal. The upper bound of 2n−1 + 1 was proved in [8], and it was shown

in [17] that the number of atoms is the same as the complexity of the reverse.
Applying the standard NFA construction for reversal, we reverse every transi-
tion in DFA En and interchange the final and initial states, yielding the NFA
in Fig. 3, where the initial states (unmarked) are Qn \ {0}.
We perform the subset construction. Set Qn\{0} is initial. From {q1, . . . , qk},
1 � q1 � qk, we delete qi, q1 � qi � qk � n − 1, by applying aqidan−1−qi .
Thus all 2n−1 subsets of Qn \{0} can be reached, and Qn is reached from the
initial state {1} by e. For any distinct S, T ⊆ Qn with q ∈ S \T , either q = 0,
in which case S is final and T is non-final, or Saq−1e = Qn and Taq−1e = ∅.
Hence all 2n−1 + 1 states are pairwise distinguishable.

4. Atoms. The upper bounds in Theorem3 for left ideals were derived in [6].
The proof of [6] that these bounds are met applies also to our witness Mn.

5. Star. The upper bound n + 1 was proved in [8]. To construct an NFA recog-
nizing (Mn(a,−,−, d, e))∗ we add a new initial state 0′ which is also final
and has the same transitions as the former initial state 0. We then add an
ε-transition from each final state of E(a,−,−, d, e) to the initial state 0′. The
language recognized by the new NFA N is (Mn(a,−,−, d, e))∗. The final state
{0′} in the subset construction for N is distinguishable from every other final
state, since it rejects a, whereas other final states accept it.
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0 1 2 3 . . . n − 2 n − 1e a a a a a
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Fig. 3. NFA for reversal of Mn(a, −, −, d, e).

6. Product. Not applicable.
7. Boolean Operations. Proof sketch; omitted proofs can be found in [11].

(a) Restricted complexity: The upper bound of mn is the same as for regular
languages. We show that M ′

m(a, b,−, d, e)◦Mn(a, e,−, d, b) has complexity
mn. Using the standard construction for boolean operations, we consider
the direct product of E ′

m(a, b,−, d, e) and En(a, e,−, d, b). The set of final
states of the direct product varies depending on ◦ ∈ {∪,⊕, \,∩}.
It is easy to see that all mn states are reachable. We then verify for each
operation that every two states in the direct product are distinguishable.

(b) Unrestricted complexity: To produce a DFA recognizing M ′
m(a, b, c, d, e)◦

Mn(a, e, f, d, b), we add an empty state ∅′ to E ′
m(a, b, c, d, e), and send

all the transitions from any state of Q′
m under f to ∅′. Similarly add

an empty state ∅ to En(a, e, f, d, b) and send all the transitions from
any state of Qn under c to ∅. Now the DFAs are over {a, b, c, d, e, f}
and we take their direct product. By the restricted case all the states of
Q′

m × Qn are reachable and distinguishable using words in {a, b, d, e}∗.
Let R∅′ = {(∅′, q) | q ∈ Qn} and C∅ = {(p′, ∅) | p′ ∈ Q′

m}. States of
R∅′ ∪ C∅ ∪ {(∅′, ∅)} are easily seen to be reachable.
Union. Here all (m+1)(n+1) states turn out to pairwise distinguishable.
Symmetric Difference. Same as union.
Difference. States of R∅′ ∪ {(∅′, ∅)} are empty and therefore equiva-
lent. However, since the alphabet of M ′

m(a, b, c, d, e) \ Mn(a, e, f, d, b) is
{a, b, c, d, e} we omit f , delete the states of R∅′ ∪{(∅′, ∅)}, and have a DFA
over {a, b, c, d, e} accepting M ′

m(a, b, c, d, e)\Mn(a, e, f, d, b). The mn+m
remaining states are pairwise distinguishable.
Intersection. States of R∅′∪C∅∪{(∅′, ∅)} are empty and therefore equiva-
lent. Since the alphabet of M ′

m(a, b, c, d, e)∩Mn(a, e, f, d, b) is {a, b, d, e},
we omit c and f , delete the states of R∅′ ∪ C∅ ∪ {(∅′, ∅)}, and have a
DFA over {a, b, d, e} accepting M ′

m(a, b, c, d, e) ∩ Mn(a, e, f, d, b). By the
restricted case, all mn states are pairwise distinguishable. �

4 Suffix-Closed Languages

The complexity of suffix-closed languages was studied in [9] in the restricted
case, and the syntactic semigroup of these languages, in [13,15,18]; however,
most complex suffix-closed streams have not been examined.
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Definition 6. For n � 4, let Dn = Dn(a, b, c, d, e) = (Qn, Σ, δn, 0, {0}), where
Σ = {a, b, c, d, e}, and δn is defined by transformations a : (1, . . . , n−1), b : (1, 2),
c : (n − 1 → 1), d : (n − 1 → 0), e : (Qn → 1). Let Ln = Ln(a, b, c, d, e) be the
language accepted by Dn; this language is the complement of the left ideal of
Definition 4. The structure of Dn(a, b, c, d, e) is shown in Fig. 4.

0 1 2 3 . . . n − 2 n − 1
e a, b a a a a

a, b, c, d c, d, e c, d b, c, d b, c, d b
b, e

e

e
a, c, e

d

Fig. 4. Minimal DFA Dn(a, b, c, d, e) of Definition 6.

Theorem 7 (Most Complex Suffix-Closed Languages). For each n � 4,
the DFA of Definition 6 is minimal and its language Ln(a, b, c, d, e) is suffix-
closed and has complexity n. The stream (Ln(a, b, c, d, e) | n � 4) with some
dialect streams is most complex in the class of suffix-closed languages.

1. The syntactic semigroup of Ln(a, b, c, d, e) has cardinality nn−1+n−1. More-
over, fewer than five inputs do not suffice to meet this bound.

2. All quotients of Ln(a,−,−, d, e) have complexity n.
3. The reverse of Ln(a,−,−, d, e) has complexity 2n−1 +1, and Ln(a,−,−, d, e)

has 2n−1 + 1 atoms.
4. For each atom AS of Ln(a, b, c, d, e), the complexity κ(AS) satisfies:

κ(AS) =

⎧
⎪⎨

⎪⎩

n, if S = ∅;
2n−1, if S = Qn;
1 +

∑|S|
x=1

∑n−|S|
y=1

(
n−1
y

)(
n−y−1
x−1

)
, if {0} ⊆ S � Qn.

5. The star of Ln(a,−,−, d, e) has complexity n.
6. (a) Restricted complexity: κ(L′

m(a, b,−, d, e)Ln(a, e,−, d, b)) = mn − n + 1.
(b) Unrestricted complexity: κ(L′

m(a, b, c, d, e)Ln(a, e, f, d, b)) = mn + m + 1.
7. (a) Restricted complexity: κ(L′

m(a, b,−, d, e) ◦ Ln(a, e,−, d, b)) = mn for ◦ ∈
{∪,⊕,∩, \}.

(b) Unrestricted complexity: κ(L′
m(a, b, c, d, e)◦Ln(a, e, f, d, b)) = (m+1)(n+

1) if ◦ ∈ {∪,⊕}, it is mn + m if ◦ = \, and mn if ◦ = ∩.

The above results for syntactic complexity, reversal, complexity of atoms, and
restricted boolean operations follow easily from Theorem 5.



Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages 179

5 Suffix-Free Languages

The complexity of suffix-free languages was studied in detail in [10,14,19,20,23].
For completeness we present a short summary of some of those results. The
main result of [14] is a proof that a most complex suffix-free language does not
exist. Since every suffix-free language has an empty quotient, the restricted and
unrestricted cases for binary operations coincide.

For n � 6, the transition semigroup of the DFA defined below is the largest
transition semigroup of a minimal DFA accepting a suffix-free language.

Definition 8. For n � 4, we define the DFA Dn(a, b, c, d, e) = (Qn, Σ, δ, 0, F ),
where Qn = {0, . . . , n−1}, Σ = {a, b, c, d, e}, δ is defined by the transformations
a : (0 → n − 1)(1, . . . , n − 2), b : (0 → n − 1)(1, 2), c : (0 → n − 1)(n − 2 → 1),
d : ({0, 1} → n− 1), e : (Q \ {0} → n− 1)(0 → 1), and F = {q ∈ Qn \ {0, n− 1} |
q is odd}. For n = 4, a and b coincide, and we can use Σ = {b, c, d, e}. Let the
transition semigroup of Dn be T�6(n).

The main result for this witness is the following theorem:

Theorem 9 (Semigroup, Quotients, Reversal, Atoms, Boolean Ops.).
Consider DFA Dn(a, b, c, d, e) of Definition 8; its language Ln(a, b, c, d, e) is a
suffix-free language of complexity n. Moreover, it meets the following bounds:

1. For n � 6, Ln(a, b, c, d, e) meets the bound (n − 1)n−2 + n − 2 for syntactic
complexity, and at least five letters are required to reach this bound.

2. The quotients of Ln(a,−,−,−, e) have complexity n − 1, except for L which
has complexity n, and the empty quotient which has complexity 1.

3. For n � 4, the reverse of Ln(a,−, c,−, e) has complexity 2n−2 + 1, and
Ln(a,−, c,−, e) has 2n−2 + 1 atoms.

4. Each atom AS of Ln(a, b, c, d, e) has maximal complexity:

κ(AS) =

⎧
⎪⎨

⎪⎩

2n−2 + 1, if S = ∅;
n, if S = {0};
1 +

∑|S|
x=1

∑n−2−|S|
y=0

(
n−2
x

)(
n−2−x

y

)
, ∅ �= S ⊆ {1, . . . , n − 2}.

5. For n,m � 4, the complexity of Lm(a, b,−, d, e)◦Ln(b, a,−, d, e) is mn−(m+
n − 2) if ◦ ∈ {∪,⊕}, mn − (m + 2n − 4) if ◦ = \, and mn − 2(m + n − 3) if
◦ = ∩.

6. A language which has a subsemigroup of T�6(n) as its syntactic semigroup
cannot meet the bounds for star and product.

The DFA defined below has the largest transition semigroup when n ∈ {4, 5}.
The transition semigroup of this DFA is T�5(n), and at least n letters are
required to generate it.

Definition 10. For n � 4, Dn(a, b, c1, . . . , cn−2) = (Qn, Σn, δ, 0, {n−2}), where
Qn = {0, . . . , n − 1}, Σn = {a, b, c1, . . . , cn−2}, δ is given by a : (0 → n −
1)(1, . . . , n−2), b : (0 → n−1)(1, 2), and cp : (p → n−1)(0 → p) for 1 � p � n−2.
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We now define a DFA based on Definition 10, but with only three inputs.

Definition 11. For n � 4, define the DFA Dn = (Qn, Σ, δ, 0, {n − 2}), where
Qn = {0, . . . , n−1}, Σ = {a, b, c}, and δ is defined by a : (0 → n−1)(1, . . . , n−2),
b : (0 → n − 1)(1, 2), c : (1, n − 1)(0 → 1). See Fig. 5.

0 1 2 3 . . . n − 3 n − 2

n − 1

c
a, b

b

c b, c b, c b, c

a a a a

a

a, b c

Σ

Fig. 5. Witness for star, product, and boolean operations.

Theorem 12 (Star, Product, Boolean Operations). Let Dn(a, b, c) be the
DFA of Definition 11, and let the language it accepts be Ln(a, b, c). Then Ln

and its permutational dialects meet the bounds for star, product, and boolean
operations as follows:

1. For n � 4, (Ln(a, b, c))∗ meets the bound 2n−2 + 1.
2. For m,n � 4, L′

m(a, b, c)Ln(c, a, b) meets the bound (m − 1)2n−2 + 1.
3. For m,n � 4, but (m,n) �= (4, 4), the complexity of L′

m(a, b, c) ◦ Ln(b, a, c) is
mn−(m+n−2) if ◦ ∈ {∪,⊕}, mn−(m+2n−4) if ◦ = \, and mn−2(m+n−3)
if ◦ = ∩.

The transition semigroup of the DFA of Definition 13 below is a also a sub-
semigroup of T�5(n), and its language also meets the bounds for product, star
and boolean operations. The advantage of this DFA is that its witnesses use only
two letters for star and only two letters (but three transformations) for boolean
operations. Its disadvantages are the rather complex transformations. For more
details see [14]. The DFA of Definition 11 seems to us more natural.

Definition 13. For n � 6, we define the DFA Dn = (Qn, Σ, δ, 0, {1}), where
Qn = {0, . . . , n − 1}, Σ = {a, b, c}, and δ is defined by the transformations
a : (0 → n − 1)(1, 2, 3)(4, . . . , n − 2), b : (2 → n − 1)(1 → 2)(0 → 1)(3, 4),
c : (0 → n − 1)(1, . . . , n − 2).

6 Conclusions

We have examined the complexity properties of left-ideal, suffix-closed, and
suffix-free languages together because they are all special cases of suffix-convex
languages. We have used the same most complex regular language as a basic
component in all three cases.

Our results are summarized in Table 1. The largest bounds are shown in
boldface type. Recall that for regular languages we have the following results:



Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages 181

Table 1. Complexities of special suffix-convex languages

Left-ideal Suffix-closed Suffix-free

Semigroup nn−1 + n − 1 nn−1 + n − 1 (n − 1)n−2 + n − 2

Reverse 2n−1+1 2n−1+1 2n−2 + 1

Star n + 1 n 2n−2+1

Product restricted m + n − 1 mn − n + 1 (m − 1)2n−2+1

Product unrestricted mn + m + n mn + m + 1 (m − 1)2n−2+1

∪ restricted mn mn mn − (m + n − 2)

∪ unrestricted (m + 1)(n + 1) (m + 1)(n + 1) mn − (m + n − 2)

⊕ restricted mn mn mn − (m + n − 2)

⊕ unrestricted (m + 1)(n + 1) (m + 1)(n + 1) mn − (m + n − 2)

\ restricted mn mn mn − (m + 2n − 4)

\ unrestricted mn+m mn+m mn − (m + 2n − 4)

∩ restr. and unrestr. mn mn mn − 2(m + n − 3)

semigroup: nn; reverse: 2n; star: 2n−1 + 2n−2; product, restricted: (m − 1)2n +
2n−1; unrestricted: m2n+2n−1; ∪ and ⊕, restricted: mn; unrestricted: (m+1)(n+
1); \, restricted: mn; unrestricted: mn+m; ∩, restricted: mn; unrestricted: mn.

The complexities for left ideals are the same as those for suffix-closed lan-
guages, except for star and product, and the complexities of boolean operations
for these two classes are the same as those for arbitrary regular languages. The
complexities of suffix-free languages are smaller than those of left ideals and
suffix-closed languages, except for star and product.
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Abstract. Complexity theory provides a wealth of complexity classes
for analyzing the complexity of decision and counting problems. Despite
the practical relevance of enumeration problems, the tools provided by
complexity theory for this important class of problems are very limited.
In particular, complexity classes analogous to the polynomial hierarchy
and an appropriate notion of problem reduction are missing. In this work,
we lay the foundations for a complexity theory of hard enumeration prob-
lems by proposing a hierarchy of complexity classes and by investigating
notions of reductions for enumeration problems.

1 Introduction

While decision problems often ask for the existence of a solution to some prob-
lem instance, enumeration problems aim at outputting all solutions. In many
domains, enumeration problems are thus the most natural kind of problems.
Just take the database area (usually the user is interested in all answer tuples
and not just in a yes/no answer) or diagnosis (where the user wants to retrieve
possible explanations, and not only whether one exists) as two examples. Nev-
ertheless, the complexity of enumeration problems is far less studied than the
complexity of decision problems.

It should be noted that even simple enumeration problems may produce
big output. To capture the intuition of easy to enumerate problems – despite
a possibly exponential number of output values – various notions of tractable
enumeration classes have been proposed in [13]. The class DelayP (“polynomial
delay”) contains all enumeration problems where, for given instance x, (1) the
time to compute the first solution, (2) the time between outputting any two
solutions, and (3) the time to detect that no further solution exists, are all
polynomially bounded in the size of x. The class IncP (“incremental polynomial
time”) contains those enumeration problems where, for given instance x, the time
to compute the next solution and for detecting that no further solution exists
is polynomially bounded in the size of both x and of the already computed
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 183–195, 2017.
DOI: 10.1007/978-3-319-53733-7 13
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solutions. Obviously, the relationship DelayP ⊆ IncP holds. In [17], the proper
inclusion DelayP � IncP is mentioned. For these tractable enumeration classes,
a variety of membership results exist, a few examples are [2,6,9,14,15].

There has also been work on intractable enumeration problems. Intractability
of enumeration is typically proved by showing intractability of a related decision
problem rather than directly proving lower bounds by relating one enumera-
tion problem to the other. Tools for a more fine-grained analysis of intractable
enumeration problems are missing to date. For instance, up to now we are not
able to make a differentiated analysis of the complexity of the following typical
enumeration problems:

ΠkSATe / ΣkSATe

INSTANCE: ψ = ∀x1∃x2 . . . Qkxkφ(x,y) / ψ = ∃x1∀x2 . . . Qkxkφ(x,y)
OUTPUT: All assignments for y such that ψ is true

This is in sharp contrast to decision problems, where the polynomial hierar-
chy is crucial for a detailed complexity analysis. As a matter of fact, it makes a big
difference, if an NP-hard problem is in NP or not. Indeed, NP-complete problems
have an efficient transformation into SAT and can therefore be solved by making
use of powerful SAT-solvers. Similarly, problems in ΣP

2 can be solved by using
ASP-solvers. Finally, also for problems on higher levels of the polynomial hier-
archy, the number of quantifier alternations in the QBF-encoding matters when
using QBF-solvers. For counting problems, an analogue of the polynomial hier-
archy has been defined in form of the # · C–classes with C ∈ {P, coNP,ΠP

2 , . . . }
[12,19]. For enumeration problems, no such analogue has been studied.
Goal and Results. The goal of this work is to lay the foundations for a com-
plexity theory of hard enumeration problems by defining appropriate complexity
classes for intractable enumeration and a suitable notion of problem reductions.
We propose to extend tractable enumeration classes by oracles. We will thus
get a hierarchy of classes DelayPC , IncPC , where various complexity classes C are
used as oracles. As far as the definition of an appropriate notion of reductions
is concerned, we follow the usual philosophy of reductions: if some enumeration
problem can be reduced to another one, then we can use this reduction together
with an enumeration algorithm for the latter problem to solve the first one. We
observe that two principal kinds of reductions are used for decision problems,
namely many-one reductions and Turing reductions. Similarly, we shall define a
more declarative-style and a more procedural-style notion of reduction for enu-
meration problems. Our results are summarized below. All missing proof details
can be found in the full version of this article [5].

• Enumeration complexity classes. In Sect. 3, we introduce a hierarchy of com-
plexity classes of intractable enumeration via oracles and prove that it is strict
unless the polynomial hierarchy collapses.

• Declarative-style reductions. In Sect. 4, we introduce a declarative-style notion
of reductions. While they enjoy some desirable properties, we do not succeed
in exhibiting complete problems under this reduction.



On the Complexity of Hard Enumeration Problems 185

• Procedural-style reductions and completeness results. In Sect. 5, we introduce a
procedural-style notion of reductions and show that they remedy some short-
comings of the declarative-style notion. In particular we prove completeness
results. We obtain a Schaefer-like dichotomy complexity classification for the
enumeration of models of generalized CNF-formulas.

2 Preliminaries

In the following, Σ denotes a finite alphabet and R denotes a polynomially
bounded, binary relation R ⊆ Σ∗ × Σ∗, i.e., there is a polynomial p such that
for all (x, y) ∈ R, |y| ≤ p(|x|). For every string x, R(x) = {y ∈ Σ∗ | (x, y) ∈ R}.
A string y ∈ R(x) is called a solution for x. With a polynomially bounded,
binary relation R, we can associate several natural problems:

Exist R
INSTANCE: x ∈ Σ∗

QUESTION: Exists y ∈ Σ∗

s.t. (x, y) ∈ R?

Exist-AnotherSol R / AnotherSol R
INSTANCE: x ∈ Σ∗, Y ⊆ R(x)
OUTPUT: Is (R(x) \ Y ) �= ∅? / y ∈ R(x)\Y

or declare that no such y exists.

Check R
INSTANCE: (x, y) ∈ Σ∗ × Σ∗

QUESTION: Is (x, y) ∈ R?

ExtSol R
INSTANCE: (x, y) ∈ Σ∗ × Σ∗

QUESTION: Is there some (possibly empty)
y′ ∈ Σ∗ such that (x, yy′) ∈ R?

A binary relation R also gives rise to an enumeration problem, which aims
at outputting the function SolR : Σ∗ → 2Σ∗

, x 
→ {y ∈ Σ∗ | (x, y) ∈ R}.

Enum R
INSTANCE: x ∈ Σ∗

OUTPUT: R(x) = {y ∈ Σ∗ | (x, y) ∈ R}.

We assume the reader to be familiar with the polynomial hierarchy – the
complexity classes P, NP, coNP and, more generally, ΔP

k , ΣP
k , and ΠP

k for k ∈
{0, 1, . . . }. For a definition of the counting hierarchy # · C via the complexity of
the Check R problem, we refer to [12].

In Sect. 1, we have already recalled two important tractable enumeration com-
plexity classes, DelayP and IncP from [13]. Note that in [17,18], these classes are
defined slightly differently by allowing only those Enum R problems in DelayP
and IncP where the corresponding Check R problem is in P. We adhere to the
definition of tractable enumeration classes from [13].

A complexity class C is closed under a reduction ≤r if, for any two binary
relations R1 and R2 we have that R2 ∈ C and R1 ≤r R2 implies R1 ∈ C. Further-
more, a reduction ≤r is transitive if for any three binary relations R1, R2, R3, it
is the case that R1 ≤r R2 and R2 ≤r R3 implies R1 ≤r R3.



186 N. Creignou et al.

3 Complexity Classes

In contrast to counting complexity, defining a hierarchy of enumeration prob-
lems via the Check R problem of binary relations R is not appropriate. This
can be seen by considering artificial problems obtained by padding the set of
solutions of any problem with an exponential number of fake (and trivial to pro-
duce) solutions. While these fake solutions do not change the complexity of the
check problem, enumerating these exponentially many fake solutions first gives
an enumeration algorithm enough time to search for the non trivial ones.

Thus, we need an alternative approach for defining meaningful enumeration
complexity classes. To this end, we first fix our computation model. We have
already observed in the previous section that an enumeration problem may pro-
duce exponentially big output. Hence, the runtime and also the space require-
ments of an enumeration algorithm may be exponential in the input. Therefore,
it is common (cf. [17]) to use the RAM model as a computational model, because
a RAM can access parts of exponential-size data in polynomial time. We restrict
ourselves here to polynomially bounded RAM machines, i.e., throughout the
computation of such a machine, the size of the content of each register is poly-
nomially bounded in the size of the input.

For enumeration, we will also make use of RAM machines with an output-
instruction, as defined in [17]. This model can be extended further by introducing
decision oracles. The input to the oracle is stored in special registers and the
oracle takes consecutive non-empty registers as input. Moreover, following [1], we
use a computational model that does not delete the input of an oracle call once
such a call is made. For a detailed definition, refer to [17] or [5]. It is important
to note that due to the exponential runtime of an enumeration algorithm and
the fact that the input to an oracle is not deleted when the oracle is executed,
the input to an oracle call may eventually become exponential as well. Clearly,
this can only happen if exponentially many consecutive special registers are non-
empty, since we assume also each special register to be polynomially bounded.

Using this we define a collection of enumeration complexity classes via oracles:

Definition 1 (enumeration complexity classes). Let Enum R be an enu-
meration problem, and C a decision complexity class. Then we say that:

– Enum R ∈ DelayPC if there is a RAM machine M with an oracle L in C such
that M enumerates Enum R with polynomial delay. The class IncPC is defined
analogously.

– Enum R ∈ DelayPC
p if there is a RAM machine M with an oracle L in C such

that for any instance x, M enumerates R(x) with polynomial delay and the
size of the input to every oracle call is polynomially bounded in |x|.

Note that the restriction of the oracle inputs to polynomial size only makes sense
for DelayPC , where we have a discrepancy between the polynomial restriction
(w.r.t. the input x) on the time between two consecutive solutions are output
and the possibly exponential size (w.r.t. the input x) of oracle calls. No such
discrepancy exists for IncPC , where the same polynomial upper bound w.r.t. the
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already computed solutions (resp. all solutions) applies both to the allowed time
and to the size of the oracle calls.

We now prove several properties of these complexity classes. First, we draw
a connection between the complexity of enumeration and decision problems.

It turns out that in order to study the class DelayPC
p the ExtSol R problem is

most relevant. Indeed, the standard enumeration algorithm [6,17], which outputs
the solutions in lexicographical order, gives the following relationship.

Proposition 2. Let R be a binary relation, k ≥ 0, and C ∈ {ΔP
k , ΣP

k }. If
ExtSol R ∈ C then Enum R ∈ DelayPC

p .

An important class of search problems are those for which search reduces to
decision, the so-called self-reducible problems. This notion can be captured by
the following definition.

Definition 3 (self-reducibility). Let ≤T denote Turing reductions. We say
that a binary relation R is self-reducible, if ExtSol R ≤T Exist R,

For self-reducible problems the above proposition can be refined as follows.

Proposition 4. Let R be a binary relation, which is self-reducible, and k ≥ 0.
Then the following holds: Exist R ∈ ΔP

k if and only if Enum R ∈ DelayPΔP
k

p .

The above proposition gives a characterization of the class DelayPΔP
k

p in
terms of the complexity of decision problems in the case of self-reducible rela-
tions. Analogously, the notion of “enumeration self-reducibility” introduced by
Kimelfeld and Kolaitis [14] allows a characterization of the class IncPΔP

k .

Definition 5 ([14], enumeration self-reducibility). A binary relation R is
enumeration self-reducible if AnotherSol R ≤T Exist-AnotherSol R.

Proposition 6. Let R be a binary relation, which is enumeration self-reducible,
and k ≥ 0. Then the following holds: Exist-AnotherSol R ∈ ΔP

k if and only
if Enum R ∈ IncPΔP

k .

We now prove that our classes provide strict hierarchies under the assumption
that the polynomial hierarchy is strict.

Theorem 7. Let k ≥ 0. Then, unless the polynomial hierarchy collapses to the
(k + 1)-st level,

DelayPΣP
k

p � DelayP
ΣP

k+1
p ,DelayPΣP

k � DelayPΣP
k+1 and IncPΣP

k � IncPΣP
k+1

Proof. Let k ≥ 0, let L be a ΣP
k+1-complete problem. Define a relation RL =

{(x, 1) | x ∈ L}. It is clear that Check RL is ΣP
k+1-complete. Moreover, the

enumeration problem Enum RL is in DelayP
ΣP

k+1
p (thus also in DelayPΣP

k+1 and
IncPΣP

k+1). Assume that Enum RL ∈ DelayPΣP
k

p (or Enum RL ∈ DelayPΣP
k or

Enum RL ∈ IncPΣP
k ). Then Check RL can be decided in polynomial time using

a ΣP
k -oracle, meaning that Check RL ∈ ΔP

k+1 and thus the polynomial hierar-
chy collapses to the (k + 1)-st level.
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The following proposition states that the complexity classes based on DelayPp

and DelayP, respectively, are very likely to be distinct. We refer to the definition
of the exponential hierarchy in [11]. We only recall here that ΔEXP

k+1 denotes the
class of decision problems decidable in exponential time with a ΣP

k -oracle.

Proposition 8. Let k ≥ 0. If EXP � ΔEXP
k+1, then DelayPΣP

k
p � DelayPΣP

k �⊆
DelayP

ΣP
k+1

p .

I.e., the lower computational power of DelayPp compared with DelayP or
IncP cannot be compensated by equipping the lower class with a slightly more
powerful oracle. While complementing this result, we now also show that in
contrast, the lower computational power of DelayP compared with IncP can be
compensated by equipping the lower class with a slightly more powerful oracle.

Theorem 9. Let k ≥ 0. Then the following holds.

1. DelayP
ΣP

k+1
p �⊆ DelayPΣP

k and DelayP
ΣP

k+1
p �⊆ IncPΣP

k , unless the polynomial
hierarchy collapses to the (k + 1)-st level.

2. DelayPΔP
k+1 = IncPΣP

k .

Proof (Idea). The first claim follows from the proof of Theorem7. For the sec-
ond claim, the inclusion DelayPΔP

k+1 ⊆ IncPΣP
k holds since the incremental delay

with access to a ΣP
k -oracle gives enough time to compute the answers of a

ΔP
k+1-oracle. To show that DelayPΔP

k+1 ⊇ IncPΣP
k , let Enum R ∈ IncPΣP

k and
A be a corresponding enumeration algorithm. We define a decision problem
AnotherSolExt<∗

R that, on an input y1, . . . , yn, y′, x ∈ Σ∗, decides whether y′

is the prefix of the (n+1)-st output of A(x). Since A witnesses the membership
Enum R ∈ IncPΣP

k , it follows that AnotherSolExt<∗
R ∈ ΔP

k+1, and using this

language as an oracle, we have that Enum R ∈ DelayPΔP
k+1 .

Concerning the effect of the allowed input size to the oracles, observe that it

follows immediately that DelayPΔP
k+1 �= DelayPΣP

k , but DelayP
ΔP

k+1
p = DelayPΣP

k
p .

4 Declarative-Style Reductions

As far as we know, only a few kinds of reductions between enumeration problems
have been investigated so far. One such reduction is implicitly described in [7]. It
establishes a bijection between sets of solutions. A different approach introduced
in [3] relaxes this condition and allows non-bijective reduction functions. We go
further in that direction in proposing a declarative style reduction relaxing the
isomorphism requirement while closing the relevant enumeration classes.

Definition 10 (reduction ≤e). Let R1, R2 ⊆ Σ∗ be binary relations. Then we
define Enum R1 ≤e Enum R2 if there exist a function σ : Σ∗ → Σ∗ computable
in polynomial time and a relation τ ⊆ Σ∗ × Σ∗ × Σ∗, s.t. for all x ∈ Σ∗ the
following holds. For y ∈ Σ∗, let τ(x, y,−) := {z ∈ Σ∗ | (x, y, z) ∈ τ} and for
z ∈ Σ∗, let τ(x,−, z) := {y ∈ Σ∗ | (x, y, z) ∈ τ}. Then:
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1. SolR1(x) =
⋃

y∈SolR2 (σ(x))
τ(x, y,−);

2. ∀y ∈ SolR2(σ(x)), we have ∅ � τ(x, y,−) ⊆ SolR1(x) and τ(x, y,−) can be
enumerated with polynomial delay in |x|;

3. ∀z ∈ SolR1(x), we have τ(x,−, z) ⊆ SolR2(σ(x)) and the size of τ(x,−, z) is
polynomially bounded in |x|.

SolR1(x)

..
.

SolR2(σ(x))

..
.

One solution of R2(σ(x)) may map to an un-
bounded number of solutions of R1(x).

At most polynomially many solutions of R2(σ(x))
may map to one solution of R1(x).

z y

Fig. 1. Illustration of relation τ from Definition 10.

Intuitively, τ establishes a relationship between instances x, solutions y ∈
SolR2(σ(x)) and solutions z ∈ SolR1(x). We can thus use τ to design an enu-
meration algorithm for SolR1(x) via an enumeration algorithm for SolR2(σ(x)).
The conditions imposed on τ have the following meaning: By condition 1,
the solutions SolR1(x) can be computed by iterating through the solutions
y ∈ SolR2(σ(x)) and computing τ(x, y,−) ⊆ SolR1(x). Conditions 2 and 3 make
sure that the delay of enumerating SolR1(x) only differs by a polynomial from the
delay of enumerating SolR2(σ(x)): condition 2 ensures that, for every y, the set
τ(x, y,−) can be enumerated with polynomial delay and that we never encounter
a “useless” y (i.e., a solution y ∈ SolR2(σ(x)) which is associated with no solu-
tion z ∈ SolR1(x)). In principle, we may thus get duplicates z associated with
different values of y. However, condition 3 ensures that each z can be associated
with at most polynomially many values y. Using a priority queue storing all z
that are output, we can avoid duplicates, c.f. the proof of Proposition 12 or [17].
Figure 1 illustrates τ .

Example 11. The idea of the relation τ can also be nicely demonstrated on an
≤e reduction from 3-Colourabilitye to 4-Colourabilitye (enumerating all
valid 3- respectively 4-colourings of a graph). We intentionally choose this reduc-
tion since there is no bijection between the solutions of the two problems.

Recall the classical many-one reduction between these problems, which takes
a graph G and defines a new graph G′ by adding an auxiliary vertex v and con-
necting it to all the other ones. This reduction can be extended to a ≤e reduction
with the following relation τ : With every graph G in the first component of τ , we
associate all valid 4-colourings (using 0, 1, 2, and 3) of G′ in the third component
of τ . With each of those we associate the corresponding 3-colouring of G in the
second component. They are obtained from the 4-colourings by first making sure
that v is coloured with 3 (by “switching” the colour of v with 3) and then by
simply reading off the colouring of the remaining vertices.
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The reductions ≤e have two desirable important properties, as stated next.

Proposition 12. Let C ∈ {ΣP
k ,ΔP

k | k ≥ 0}. The classes DelayPC
p , DelayPC,

and IncPC are closed under ≤e. In addition, the reductions ≤e are transitive.

Nevertheless their main drawback is that it is very unlikely that completeness
results under ≤e reductions can be obtained, since even the most natural prob-
lems are not complete under such a reduction.

Proposition 13. Let k ≥ 1. The problem ΣkSATe is not complete for DelayPΣP
k

p

under ≤e reductions unless the polynomial hierarchy collapses to the kth level.

5 Procedural-Style Reductions and Completeness Results

Although Turing reductions are too strong to show completeness results for
classes in the polynomial hierarchy, Turing style reductions turn out to be mean-
ingful in our case. In this section we introduce two types of reductions that are
motivated by Turing reductions. Both of them are able to reduce between enu-
meration problems for which the reduction ≤e seems to be too weak.

Towards this goal, we first have to define the concept of RAMs with an oracle
for enumeration problems. The intuition behind the definition of such enumer-
ation oracle machines is the following: For algorithms (i.e., Turing machines or
RAMs in the case of enumeration) using a decision oracle for the language L,
we usually have a special instruction that given an input x decides in one step
whether x ∈ L, and then executes the next step of the algorithm accordingly. For
an algorithm A using an enumeration oracle, an input x to some Enum R-oracle
returns in a single step (using the instruction NOO, see the definition below) a
single element of SolR(x), and then A can proceed according to this output.

Definition 14 (Enumeration Oracle Machines). Let Enum R be an enu-
meration problem. An Enumeration Oracle Machine with an enumeration oracle
Enum R (EOM R) is a RAM with a sequence of new registers Oe(0), Oe(1), . . .
and a new instruction NOO (next Oracle output). An EOM R is oracle-bounded
if the size of all inputs to the oracle is at most polynomial in the size of the input
to the EOM R.

When executing NOO, the machine writes – in one step – some yi ∈ SolR(x)
to the accumulator A, where x is the word stored in Oe(0), Oe(1), . . . and yi is
defined as follows:

Definition 15 (Next Oracle Output). Let R be a binary relation, π1, π2, . . .
be the run of an EOM R and assume that the kth instruction is NOO, i.e.,
πk = NOO. Denote with xi the word stored in Oe(0), Oe(1), . . . at step i. Let
K = {πi ∈ {π1, . . . , πk−1} | πi = NOO and xi = xk}. Then the oracle output
yk in πk is defined as an arbitrary yk ∈ SolR(xk) s.t. yk has not been the oracle
output in any πi ∈ K. If no such yk exists, then the oracle output in πk is
undefined.
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When executing NOO in step πk, if the oracle output yk is undefined, then
the accumulator A contains some special symbol in step πk+1. Otherwise in step
πk+1 the accumulator A contains yk.

Observe that since an EOM Me is a polynomially bounded RAM and the com-
plete oracle output is stored in the accumulator A, only such oracle calls are
allowed where the size of each oracle output is guaranteed to be polynomially in
the size of the input of Me.

Using EOMs, we can now define another type of reductions among enumer-
ations problems, reminiscent of classical Turing reductions. I.e., we say that one
problem Enum R1 reduces to another problem Enum R2 if Enum R1 can be
solved by an EOM using Enum R2 as an enumeration oracle.

Definition 16 (Reductions ≤D, ≤I). Let R1 and R2 be binary relations.

– We say that Enum R1 ≤D Enum R2 if there is an oracle-bounded EOM R2

that enumerates R1 in DelayP and is independent of the order in which the
Enum R2 oracle enumerates its answers.

– We say that Enum R1 ≤I Enum R2 if there is an EOM R2 that enumerates
R1 in IncP and is independent of the order in which the Enum R2 oracle
enumerates its answers.

For ≤D, we required the EOM R2 to be oracle-bounded. We would like to
point out that this restriction is essential: if we drop it, then the classes DelayPC

are not closed under the resulting reduction. They are, however, closed under
the reductions as defined above.

Proposition 17. Let C ∈ {ΣP
k ,ΔP

k | k ≥ 0}. The classes DelayPC and DelayPC
p

are closed under ≤D. The classes IncPC are closed under ≤I .

We note that all of these properties still hold when there is no oracle at all, i.e.,
for the classes DelayP and IncP.

Proposition 18. The reductions ≤D and ≤I are transitive.

Now, unlike for ≤e, the next theorem shows that the reductions ≤D and ≤I

induce complete problems for the enumeration complexity classes introduced in
Sect. 3.

Theorem 19. Let R be a binary relation and k ≥ 1 such that Exist R is ΣP
k -

complete.

– Enum R is DelayPΣP
k

p -hard under ≤D reductions.

– Enum R is IncPΣP
k -hard under ≤I reductions.

– If R is self-reducible, then Enum R is DelayPΣP
k

p -complete under ≤D reduc-

tions and IncPΣP
k -complete under ≤I reductions.
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Proof (Idea). Let Enum R′ ∈ DelayPL
p for some L ∈ ΣP

k , and assume that
z is the input to an L-oracle when enumerating SolR′(x) for some x ∈ Σ∗.
As Exist R is ΣP

k -complete and the enumeration is oracle-bounded, z can be
transformed to an equivalent instance z′ of Exist R in time polynomial only
in |x|. Therefore by calling the Enum R-oracle once and by checking whether
SolR(z′) = ∅, one can decide whether z ∈ L. The membership Enum R ∈
DelayPΣP

k
p in the case of self-reducibility follows by Proposition 2.

As a consequence, the enumeration problems ΣkSATe and also ΠkSATe are
natural complete problems for our enumeration complextiy classes:

Corollary 20. Let k ≥ 0. Then

1. Σk+1SATe is complete for DelayP
ΣP

k+1
p under ≤D reductions.

2. ΠkSATe and Σk+1SATe are complete for IncPΣP
k+1 under ≤I reductions.

Observe that, under different reductions, ΣkSATe is complete for both,
IncPΣP

k and for the presumably smaller class DelayPΣP
k

p . This provides addi-

tional evidence that the two reductions nicely capture IncPΣP
k and DelayPΣP

k
p ,

respectively. Also from Corollary 20 it follows as a special case that IncPΣP
0 and

IncPΣP
1 are equivalent under ≤I reductions: Clearly, Σ0SATe = Π0SATe, since

in both cases the formulas are quantifier free and one asks for all satisfying truth
assignments. Now by the theorem we know that both, Σ1SATe and Π0SATe,
and thus also Σ0SATe, are complete for IncPΣP

1 . As a result we have that the
enumeration variant of the traditional SAT problem is IncPNP-complete.

Roughly speaking Theorem19 says that any self-reducible enumeration prob-
lem whose corresponding decision problem is hard, is hard as well. An interesting
question is whether there exist easy decision problems for which the correspond-
ing enumeration problem is hard. We answer positively to this question in revis-
iting, in our framework, a classification theorem obtained for the enumeration
of generalized satisfiability [4]. It is convenient to first introduce some notation.

A logical relation of arity k is a relation R ⊆ {0, 1}k. A constraint, C, is
a formula C = R(x1, . . . , xk), where R is a logical relation of arity k and the
xi’s are variables. An assignment m of truth values to the variables satisfies
the constraint C if

(
m(x1), . . . ,m(xk)

)
∈ R. A constraint language Γ is a finite

set of nontrivial logical relations. A Γ -formula φ is a conjunction of constraints
using only logical relations from Γ . A Γ -formula φ is satisfied by an assignment
m : var(φ) → {0, 1} if m satisfies all constraints in φ.

Throughout the text we refer to different types of Boolean relations following
Schaefer’s terminology, see [4,16]. We say that a constraint language is Schaefer
if every relation in Γ is either Horn, dualHorn, bijunctive, or affine.

SAT(Γ )e

INSTANCE: φ a Γ -formula
OUTPUT: all satisfying assignments of φ
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The following theorem gives the complexity of this problem according to Γ .

Theorem 21. Let Γ be a finite constraint language. If Γ is Schaefer, then
SAT(Γ )e is in DelayP, otherwise it is DelayPNP

p -complete under ≤D reductions.

Proof. The polynomial cases were studied in [4]. Let us now consider the case
where Γ is not Schaefer. Membership of SAT(Γ )e in DelayPNP

p is clear. For
the hardness, let us introduce T and F as the two unary constant relations
T = {1} and F = {0}. According to Schaefer’s dichotomy theorem [16], deciding
whether a Γ ∪ {F,T}-formula is satisfiable is NP-complete. Since this problem
is self-reducible, according to Theorem 19, SAT(∪{F,T})e is DelayPNP

p -complete
under ≤D reductions. From the proof given in [4] it is easy to see that if Γ is
not Schaefer, then SAT(∪{F,T})e ≤D SAT(Γ )e, thus concluding the proof.

To come back to the above discussion, we point out that there exist con-
straint languages Γ such that the decision problem SAT(Γ ) is in P, while the
enumeration problem SAT(Γ )e is DelayPNP

p -complete, namely 0-valid or 1-valid
constraint languages that are not Schaefer.

A rather surprising completeness result is the following.

Proposition 22. Let CIRCUMSCRIPTIONe denote the problem of enumerat-
ing all subset minimal models of a boolean formula. Then CIRCUMSCRIPTIONe

is IncPNP-complete under ≤I reductions.

What makes this result surprising is the discrepancy from the behaviour of the
counting variant of the problem: The counting variant of CIRCUMSCRIPTIONe

is a prototypical # · coNP-complete problem [8], and thus of the same hardness
as the counting variant of Π1SATe. However, for enumeration we have that
CIRCUMSCRIPTIONe shows the same complexity as Σ1SATe, which is consid-
ered to be lower than that of Π1SATe.

Observe that CIRCUMSCRIPTIONe is very unlikely to be self-reducible: In
fact, the problem of deciding if a partial truth assignment can be extended to
a subset minimal model is ΣP

2 -complete [10], while deciding the existence of
a minimal model is clearly NP-complete. Thus CIRCUMSCRIPTIONe is not
self-reducible unless the polynomial hierarchy collapses to the first level.

6 Conclusion

We introduced a hierarchy of enumeration complexity classes, extending the well-
known tractable enumeration classes DelayP and IncP, just as the ΔP

k -classes of
the polynomial-time hierarchy extend the class P. We show that under reason-
able complexity assumptions these hierarchies are strict. We introduced a type
of reduction among enumeration problems under which the classes in our hierar-
chies are closed and which allow to exhibit complete problems. For well-studied
problems like Boolean CSPs in the Schaefer framework or circumscription, we
obtain completeness results for the associated enumeration problems. Up to now,
lower bounds for enumeration problems were only of the form “Enum R is not
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in DelayP (or IncP) unless P �= NP”. Our work provides a framework which
allows us to pinpoint the complexity of such problems in a better way in terms
of completeness.
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Abstract. The consensus string (or center string, closest string) of a
set S of strings is defined as a string which is within a radius r from
all strings in S. It is well-known that the consensus string problem for a
finite set of equal-length strings is NP-complete. We study the consensus
string problem for multiple regular languages. We define the consensus
string of languages L1, . . . , Lk to be within distance at most r to some
string in each of the languages L1, . . . , Lk. We also study the complexity
of some parameterized variants of the consensus string problem. For a
constant k, we give a polynomial time algorithm for the consensus string
problem for k regular languages using additive weighted finite automata.
We show that the consensus string problem for multiple regular languages
becomes intractable when k is not fixed. We also examine the case when
the length of the consensus string is given as part of input.

Keywords: Consensus string problem · Computational complexity ·
Regular languages · Edit-distance

1 Introduction

In bioinformatics, the multiple sequence alignment is a process of finding an
optimal alignment from its multiple reads to find a correct biological sequence
[10,21]. See Fig. 1 for example. Moreover, it is a very important task to find
the consensus sequence for detecting data commonalities from a set of strings in
many practical applications such as coding theory [5,7], data compression [8],
and so forth.

There have been several definitions of a consensus string for a set of strings.
Frances and Litman defined the consensus string based on the concept of the
radius [7]. The radius of a string w with respect to a set S of strings is the
smallest number r such that the distance between w and any string in S is
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 196–207, 2017.
DOI: 10.1007/978-3-319-53733-7 14
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Read 1 G A T A C G T C A - A G T C

Read 2 G A G A C G A C A - A G T C

Read 3 G G G A C G T C A A A G - C

Sequence G A G A C G T C A - A G T C

Fig. 1. The correct biological sequence can be estimated as the consensus sequence
derived from the multiple sequence alignment from its reads

bounded by r. It is known that the consensus string problem based on radius
is NP-complete even when the strings are given over the binary alphabet [7].
Sim and Park considered a different consensus string problem where they try
to minimize the sum of distances between w and all strings in S, which is the
consensus error. They showed that the consensus string problem based on the
consensus error is NP-complete when the penalty matrix is a metric [25].

Amir et al. [1] examined the consensus string problem by considering both
distance sum and radius, where the distance sum is the sum of distances from
the strings in the given set to the consensus string and the radius is the largest
distance from the set to the consensus string. They presented efficient polynomial
time algorithms for the set of three strings. Amir et al. [2] studied the consensus
string problem for other string metrics such as the swap metric and the reversal
metric and showed that the problem is NP-hard for the swap metric and APX-
hard for the reversal metric.

Since there is no polynomial-time solution for the consensus string prob-
lem unless P = NP, many researchers studied approximation algorithms and
fixed-parameter tractability [10,16]. Stojanovic et al. [26] proposed a linear-time
algorithm when the radius is one. Gramm et al. [9,10] designed the first fixed-
parameter algorithm whose time complexity is O(kl + krr+1) where k is the
number of strings, l is the length of strings, and r is the radius, which yields
a linear-time algorithm for a constant r. For more details on fixed-parameter
tractability of the consensus string problem, we refer the reader to [10,16,21].

We consider the consensus string problem for multiple regular languages,
that is, to compute the consensus string which is within a given radius to the
given regular languages. We use the Levenshtein distance (edit-distance) as a
distance function for strings instead of the Hamming distance since the regular
languages may be infinite and thus containing strings of unequal length.1

Given k regular languages given by NFAs or DFAs (nondeterministic or deter-
ministic finite-state automata) and a radius r, we define the consensus string
problem which decides the existence of a consensus string of radius r. We show
that the problem is PSPACE-complete in general, and also when the radius r
is fixed. We also establish that the problem becomes polynomial-time decid-
able when k is fixed using additive weighted finite automata. Lastly, we study a
special case when the length l of the consensus string is given as input.

1 The Hamming distance is only for strings of equal length.
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2 Preliminaries

In the following Σ is always a finite alphabet, Σ∗ is the set of strings over Σ,
and ε is the empty string. The length of a string w is |w|. When there is no
danger of confusion, a singleton set {w} is denoted simply as w. The set of non-
negative integers is N0. For n ∈ N0, bin(n) ∈ {0, 1}∗ is the string giving the
binary representation of n.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of
final states. We extend the transition function δ to a function Q × Σ∗ → 2Q in
the usual way. A string w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F �= ∅ and the
language recognized by A consists of all strings accepted by A. The automaton
A is a deterministic finite automaton (DFA) if, for all q ∈ Q and a ∈ Σ∗, δ(q, a)
either consists of one state or is undefined.

The reader can find more details on finite automata and regular languages
in the text by Shallit [24] or the survey by Yu [27].

2.1 Distance Measures and Neighbourhoods

Intuitively, a distance measure on strings is a numerical description of how far
apart two strings are. We view a distance on strings as a function from Σ∗ ×Σ∗

to the nonnegative rationals that has value zero only for two identical strings,
is symmetric, and satisfies the triangle inequality [6]. For our purposes it is
sufficient to consider integral distances [20] where the values are integers. We
define that a function d : Σ∗ × Σ∗ → N0 is a distance if it satisfies, for all
x, y, z ∈ Σ∗,

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z).

The neighbourhood of radius r of a language L is the set

E(L, d, r) = {x ∈ Σ∗ : (∃y ∈ L) d(x, y) ≤ r}.

A distance d is said to be finite if the neighbourhood of any given radius of an
individual string with respect to d is finite. A distance d is additive [3] if for
every factorization w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

Additive distances preserve regularity in the sense that the neighbourhood of a
regular language is always regular [3].

The Levenshtein distance [15], a.k.a. the edit-distance de [4,11,13,22] is an
example of an additive distance. By the elementary edit operations on strings



Consensus String Problem for Multiple Regular Languages 199

we mean an operation that replaces an alphabet symbol by another alphabet
symbol (substitution), a deletion of an alphabet symbol or an insertion of an
alphabet symbol into a string. The edit-distance between strings s1 and s2 is the
smallest number of elementary edit operations that transform s1 into s2. More
generally, we can associate a non-negative cost to each elementary edit operation
and then define the edit-distance between s1 and s2 as the smallest cost of all
sequences of elementary edit operations that transform string s1 into string s2.

Unless otherwise mentioned, in the following we assume that elementary
edit operations are all associated a unit cost. Our results would not change
significantly if we use more general costs for the elementary edit operations.

We recall a result on the nondeterministic state complexity of edit-distance
neighbourhoods. The result is originally due to Povarov [23] who states it for
the Hamming distance neighbourhoods. However, exactly the same construction
works for a general edit-distance where the costs of elementary edit operations
are non-negative integers [20]. We add to the statement of the result a time
bound needed for the construction.

Proposition 1 [20,23]. Let A be an NFA with n states and r ∈ N. The neigh-
bourhood of L(A) of radius r with respect to the edit-distance de can be recognized
by an NFA B with n · (r +1) states. The NFA B can be constructed in time that
depends polynomially on n and r.

2.2 Additive Weighted Finite Automata

An additive weighted finite automaton model has been used by Ng et al. [19] to
recognize the neighbourhood of an NFA language. Since we need to recognize
an intersection of neighbourhoods we extend the model to a multi-component
weighted finite automaton where the states are k-tuples and transition weights
are k-tuples of integers. The original definition allows real weights but integer
weights will be sufficient for our purposes.

Definition 2. An additive k-component weighted finite automaton (additive k-
WFA) is a 6-tuple A = (Q,Σ, γ, ω, q0, F ) where Q = P1 × · · · × Pk, k ∈ N, and
each Pi is a finite set of states, Σ is an alphabet, γ : Q × (Σ ∪ {ε}) → 2Q is
the transition function, ω : Q × (Σ ∪ {ε}) × Q → N

k
0 is a partial weight function

where ω(q1, a, q2) is defined if and only if q2 ∈ γ(q1, a), (a ∈ Σ ∪ {ε}), q0 ∈ Q is
the initial state, and F ⊆ Q is the set of accepting states.

Strictly speaking, the transitions of γ are also determined by the domain of
the partial function ω. By a transition of an additive k-WFA A on symbol a ∈ Σ
we mean a triple (q1, a, q2) such that q2 ∈ γ(q1, a), q1, q2 ∈ Q. A computation
path α of the additive k-WFA A along a string w = a1a2 · · · am, ai ∈ Σ, i =
1, . . . ,m, from state s1 to s2 is a sequence of transitions that spells out the
string w,

α = (q0, a1, q1)(q1, a2, q2) · · · (qm−1, am, qm), (1)

where s1 = q0, s2 = qm, and qi ∈ γ(qi−1, ai), 1 ≤ i ≤ m.
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In the following, we use componentwise notation for addition and inequal-
ity for k-tuples in N

k
0 . Let (x1, . . . , xk), (y1, . . . , yk) ∈ N

k
0 . Then, (x1, . . . , xk) +

(y1, . . . , yk) = (x1 + y1, . . . , xk + yk), and (x1, . . . , xk) ≤ (y1, . . . , yk) if and only
if xi ≤ yi, i = 1, . . . , k.

The weight of the computation path α as in Eq. (1) is

ω(α) =
m∑

i=1

ω(qi−1, ai, qi) ∈ N
k
0 .

We let Θ(s1, w, s2) denote the set of all computation paths along a string w
from state s1 to state s2. The language recognized by the additive k-WFA A
within the weight bound r ≥ 0 is the set of strings for which there exists a
computation path that is accepted by A and each component of the weight is at
most r. Formally, we define

L(A, r) = {w ∈ Σ∗ : (∃f ∈ F )(∃α ∈ Θ(q0, w, f)) ω(α) ≤ (r, . . . , r)}.

3 Consensus String for Multiple Regular Languages

We define that the consensus string of languages L1, . . . , Lk is a string that is
within a given edit-distance r from a string in each of the languages.

Definition 3 (consensus string of multiple languages). Let Li ⊆ Σ∗, 1 ≤
i ≤ k be k languages over an alphabet Σ. Then, a string w is a radius r consensus
of the languages L1, L2, . . . , Lk, if min{de(w,wi) | wi ∈ Li} ≤ r for all 1 ≤ i ≤ k.

The following lemma is an immediate consequence of the definition.

Lemma 4. Let r, k ∈ N. Languages L1, . . . , Lk have a radius r consensus string
if and only if

⋂k
i=1 E(Li, de, r) �= ∅.

We will consider the algorithmic problem of determining the existence of
a consensus string of radius r for given k regular languages. We consider also
uniform variants of the problem where the values k and/or r will be given as
part of the input. The terminology for talking about different variants of the
problem is defined next.

Definition 5. Let k, r ∈ N0 be fixed. The (k, r)-consensus string problem for
NFAs (respectively, for given DFAs) is the problem of determining, for given
NFAs (respectively, for DFAs) A1, . . . , Ak

whether or not L(A1), . . . , L(Ak) have a radius r consensus string. (2)

For a fixed r ∈ N0, the (∗, r)-consensus string problem for NFAs is the prob-
lem of determining whether (2) holds for given k ∈ N and NFAs A1, . . . , Ak. For
a fixed k ∈ N, the (k, ∗)-consensus string problem for NFAs asks whether (2)
holds for given r ∈ N and NFAs A1, . . . , Ak, and the (∗, ∗)-consensus problem
for NFAs is the same problem where both k and r are part of the input.

The (∗, r)- (respectively, (k, ∗)-, (∗, ∗)-) consensus string problem for DFAs
is defined analogously by restricting the input automata to be DFAs.



Consensus String Problem for Multiple Regular Languages 201

3.1 The (∗, r)-Consensus String Problem for NFAs

Using Proposition 1 it is easy to see that the (k, r)-consensus string problem
for NFAs can be solved in polynomial time. In Sect. 3.2, more generally, we
show that the (k, ∗)-consensus string problem for NFAs has a polynomial time
algorithm. On the other hand, the (∗, 0)-consensus string problem for DFAs is
the standard DFA intersection emptiness problem and is known to be PSPACE-
complete [12,14]. Below we show that, for any r ∈ N, the (∗, r)-consensus string
problem is PSPACE-complete.

Lemma 6. For r ∈ N, the (∗, r)-consensus string problem for DFAs is
PSPACE-complete.

Proof. For given k and DFAs A1, . . . , Ak, by Proposition 1, we can construct
in polynomial space NFAs Bi recognizing the neighbourhood E(L(Ai), de, r),
i = 1, . . . , k, since r is a constant. Then, the intersection emptiness of the NFAs
Bi can be decided in polynomial space.

For the hardness result, we reduce the DFA intersection emptiness problem
to the (∗, r)-consensus string problem for DFAs. Let C1, . . . , Ck be DFAs over an
alphabet Σ. We construct DFAs D1, . . . , Dk such that D1, . . . , Dk have a radius
r consensus string if and only if

⋂k
i=1 L(Ci) �= ∅.

Let h : Σ∗ → Σ∗ be a morphism defined by the condition h(σ) = σ2r+1

for all σ ∈ Σ. Let Di, 1 ≤ i ≤ k, be a DFA for the language h(L(Ci)). If
⋂k

i=1 L(Ci) = ∅, L(D1), . . . , L(Dk) cannot have a radius r consensus because
a block of 2r + 1 symbols cannot be converted to a different block in r edit
steps. Conversely, if w ∈

⋂k
i=1 L(Ci), then h(w) is a radius 0 consensus string

for L(D1), . . . , L(Dk). �

The first part of the proof works equally well for NFAs and we have

Corollary 7. For a constant r ∈ N, the (∗, r)-consensus string problem for
NFAs is PSPACE-complete.

The proof of Lemma 6 explicitly constructs NFAs for the neighbourhoods
E(L(Ai), de, r). In the case where the radius r is part of the input this construc-
tion cannot be completed in polynomial space and the proof does not imply
that the (∗, ∗)-consensus string problem is in PSPACE. In Sect. 3.2, we give a
different PSPACE algorithm for the (∗, ∗)-consensus string problem.

It is known that the intersection emptiness for unary NFAs or DFAs is NP-
complete [12] and this implies, as in the proof of Lemma6, that for all r ∈ N,
the (∗, r)-consensus string problem for unary DFAs is NP-hard.

Theorem 8. For a constant r ∈ N, the (∗, r)-consensus string problem for
unary NFAs is NP-complete.

Proof. We first show that the (∗, r)-consensus string problem for unary NFAs
over Σ = {0} is in NP. Suppose that we have k unary NFAs from A1 to Ak and
Ai, 1 ≤ i ≤ k has mi states. If there is a radius r consensus string for unary
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NFAs A1, . . . Ak, then the intersection of the neighbourhood ∩k
i=1E(L(Ai), de, r)

is not empty. Since we can construct the neighbourhood E(L(Ai), de, r) of unary
NFA Ai with mi + r states, we have an upper bound m on the number of states
of ∩k

i=1E(L(Ai), de, r) as follows: m =
∏k

i=1(mi + r).
This implies that if there is a radius r consensus string for unary NFAs

A1, . . . Ak, then there exists a consensus string whose length is bounded by
m. Hence, we can nondeterministically guess a string w = 0n, n ≤ m which
is a radius r consensus string of unary NFAs. We can test whether or not
w ∈ E(L(Ai), de, r), 1 ≤ i ≤ k in time bounded by a polynomial in |bin(n)|
by successively squaring and multiplying matrices for the transition function.
Since |bin(n)| ≤ |bin(m)| = O(log m), we can verify that the unary string w is
a radius r consensus string of unary NFAs in time bounded by a polynomial in
the size of NFAs.

For the hardness, we reduce the intersection emptiness of unary NFAs to the
(∗, r)-consensus string problem for unary NFAs as in the proof of Lemma6. �

Finally, we note that since the emptiness problem for two context-free lan-
guages is undecidable, similarly as in Lemma6, it follows that for all k ≥ 2 and
r ≥ 0 the (k, r)-consensus problem for context-free languages is undecidable.

Corollary 9. For all k ≥ 2 and r ≥ 0 the (k, r)-consensus problem for context-
free languages is undecidable.

3.2 The (k, ∗)-Consensus String Problem for NFAs

In this section we consider the consensus string problem where the number of
NFAs is fixed. Proposition 1 yields “small” NFAs for radius r neighbourhoods
of regular languages. However, the NFAs are still too big to yield a polynomial
time algorithm if the size of the input is counted to be the length of the binary
representation of r. On the other hand, if the distance r is given in unary, then
the above approach yields polynomial time algorithm and we consider this case
first.

By the (k, ∗unary)-consensus string problem, we mean a variant of the (k, ∗)-
consensus string problem for NFAs where the radius r is given in unary notation,

Lemma 10. For a constant k ∈ N, the (k, ∗unary)-consensus string problem for
NFAs can be decided in polynomial time.

Proof. Consider NFAs Ai with mi states, i = 1, . . . , k. By Proposition 1, the
neighbourhood E(L(Ai), de, r) has an NFA Bi with mi · (r+1) states, 1 ≤ i ≤ k,
and Bi can be constructed in time that depends polynomially on mi and r. An
NFA C for

⋂k
i=1 L(Bi) can be obtained from the NFAs Bi, 1 ≤ i ≤ k, using

the standard cross-product construction and emptiness of L(C) can be tested in
polynomial time. The claim follows by Lemma 4. �

Note that if the radius r is given in binary the proof of Lemma10 does
not yield a polynomial time algorithm because the NFAs Bi are too large to
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write down. Next we extend the polynomial time algorithm of the standard
(k, ∗)-consensus string problem for NFAs. Given NFAs A1, . . . , Ak and r, we
again, roughly speaking, need to decide non-emptiness of

⋂k
i=1 E(L(Ai), de, r).

However, instead of NFAs (with a number of states that depends exponentially
on the size of the representation of r) we use a weighted finite automaton where
the number of states is independent of r.

We obtain a construction for the weighted finite automaton by modifying the
proof of the following lemma from [19].

Lemma 11 [19]. Let N = (Q,Σ, δ, q0, F ) be an NFA with n states, d an addi-
tive quasi-distance, and R ≥ 0 is a constant. There exists an additive WFA A
with n states such that for any 0 ≤ r ≤ R,

L(A, r) = E(L(N), d, r)

Furthermore, the WFA A can be constructed in time O(n3).

Note that Lemma 11 assumes that the radius is a constant and for this reason
we have to be a little careful to check that the construction can be done in
time that depends polynomially on the length of the binary representation of r.
Furthermore, Lemma 11 deals only with one component WFAs (the case k = 1)
but changing the construction for k components is straightforward. On the other
hand, the construction for Lemma 11 allows the use of a general additive quasi-
distance, and we are dealing with the simpler case of edit-distance where a
neighbourhood of a string is always finite.

Lemma 12. Let k ∈ N be fixed. Let Bi = (Si, Σ, δi, si,0, Fi), i = 1, . . . , k be an
NFA with mi states and r ∈ N. There exists an additive k-WFA A with

∏k
i=1 mi

states such that

L(A, r) =
k⋂

i=1

E(L(Bi), de, r) (3)

Furthermore, the additive k-WFA A can be constructed in time that depends
polynomially on the sizes of the NFAs Bi, 1 ≤ i ≤ k, and |bin(r)|.

Proof. We define an additive k-WFA A = (Q,Σ, γ, ω, q0, F ), where Q = S1 ×
· · ·×Sk, q0 = (s1,0, . . . , sk,0), F = F1 ×· · ·×Fk and the transitions of γ and the
weight function are defined as follows.

The transition function γ is defined by setting, for (s1, . . . , sk) ∈ Q, b ∈
Σ ∪ {ε},

γ((s1, . . . , sk), b) =
{(s′

1, . . . , s
′
k) : (∃x ∈ Σ∗) s′

i ∈ δi(si, x), 1 ≤ i ≤ k, and de(b, x) ≤ r}.
(4)

That is, for each two states of A we add a transition on b ∈ Σ ∪ {ε} if there is
a string x ∈ Σ∗ within edit-distance at most r from the symbol b that in the
NFAs Bi transform the components of the first state to the components of the
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second state. The transition (s, b, s′), s = (s1, . . . , sk), s′ = (s′
1, . . . , s

′
k), in A has

weight
ω((s, b, s′)) = min

x∈Σ∗
{de(b, x) : s′

i ∈ δ(si, x), i = 1, . . . , k}. (5)

The correctness of the construction (i.e., that Eq. (3) holds) is verified as in
[19] and we only need to check that the construction, for non-constant r, can
be done in time that is polynomial in the mi’s and |bin(r)| (whereas in [19] the
radius was treated as a constant).

For si, s
′
i ∈ Si and b ∈ Σ ∪ {ε}, to check whether there exists a string x such

that s′
i ∈ δi(si, x) and de(x, b) ≤ r we determine whether the shortest path in Bi

from si to s′
i has length at most r, or length at most r +1 if b ∈ Σ and the path

contains an occurrence of b. This can be done in time that depends polynomially
on mi and |bin(r)|. Then, the transitions of γ (4) can be computed by repeating
this procedure (Πk

i=1mi)2 times.
For each two tuples s = (s1, . . . , sk) and s′ = (s′

1, . . . , s
′
k) that will have

a γ-transition on b ∈ Σ ∪ {ε}, the process finds the string x which transforms
components of s into components of s′ in the NFAs Bi and minimizes the distance
de(b, x), and this allows us to compute also the weights in (5). Note that although
the length of x may be superpolynomial in |bin(r)|, the length is upper bounded
by the values mi which are the sizes of the input NFAs. �

We need one more technical lemma.

Lemma 13. Let k ∈ N be fixed. Given an additive k-WFA A with n states and
r ∈ N, we can decide in time that is polynomial in n and in |bin(r)| whether or
not L(A, r) = ∅.

Proof. We use a polynomial time graph reachability algorithm to check whether
a final state of A is reachable from the initial state, and the computation keeps
track of the smallest cumulative weight of the path traversed up to that point.
Recall that each state of A is a k-tuple of states.

Let A = (Q,Σ, γ, ω, q0, F ) be the given additive k-WFA. In stage one, the
algorithm marks the states of A reachable from q0 = (q0,1, . . . , q0,k) in a sin-
gle transition. Each of these states q = (q1, . . . , qk) is marked by a k-tuple
(w1, . . . , wk), where wi is the smallest weight of a transition that reaches qi

from q0,i. The marking process is then repeated n − 1 times as follows.
Suppose states p1, . . . , pr are marked at the ith stage (i ≤ n − 2) where

the cumulative weight of pi is wi. In stage i + 1 the algorithm marks states
p′
1, . . . , p

′
s reachable from a state among p1, . . . , pr with a single transition. Each

state p′
i = (p′

i,1, . . . , p
′
i,k) will have a weight tuple w′

i = (w′
i,1, . . . , w

′
i,k) where for

1 ≤ 
 ≤ k, we have

wi,� = min({wj,� + ω(pj,�, b, p
′
i,�) | 1 ≤ j ≤ r, b ∈ Σ ∪ {ε}} ∪ {r + 1}).

Note that weight r +1 is used as an error value indicating that the computation
path has failed.

If at some point a final state is marked with a weight where each component
is at most r, the algorithm answers “yes”. The algorithm is correct because
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L(A, r) �= ∅ if and only if A has a computation of weight at most r leading to
a final state on a string of length at most n − 1. The number of steps of the
marking algorithm is upper bounded by O(kn2) (when the size of the alphabet
Σ is viewed as a constant). The individual weight additions can be done in time
linear in |bin(r)|. �

Now we present a polynomial time algorithm for the (k, ∗)-consensus string
problem.

Theorem 14. For a constant k ∈ N0, the (k, ∗)-consensus string problem for
NFAs can be solved in polynomial time.

As a corollary we extend the result of Lemma 6 for the (∗, ∗)-consensus string
problem.

Corollary 15. The consensus string problem for NFAs (or DFAs) is PSPACE-
complete.

3.3 Finding a Consensus String of Given Length

Interestingly, if we are given the length l ∈ N0 of a consensus string in unary, then
the computational complexity of the problem becomes NP-complete. We use a
reduction from the classical consensus string problem which is already proven
to be NP-complete. First, we give the definition of the classical consensus string
problem. Note that the distance function dH denotes the Hamming distance.

Definition 16. Let S ⊆ Σl be a finite set of strings of length l. Then, a string w
is a radius r consensus of S, if dH(w, s) ≤ r for all s ∈ S.

Then, given 
, r ∈ N and a set S ⊆ Σl, it is NP-complete to decide whether or
not there exists a radius r consensus of S [7]. The problem remains NP-complete
even when |Σ| = 2.

However, because we are considering the edit-distance for our variant of the
consensus string problem, first we need to reduce the Hamming distance to
the edit-distance. Manthey and Reischuk [17] have shown that it is possible to
reduce the Hamming distance to the edit-distance when only binary strings are
considered. Here we first show that we can reduce the Hamming distance to the
edit-distance in a much simpler way by introducing one more character.

Lemma 17. Let w,w′ be a strings of length l over Σ and h : Σ∗ → (Σ ∪
{$})∗, $ /∈ Σ be a morphism defined by h(σ) = $lσ for all σ ∈ Σ. Then,
dH(w,w′) = de(h(w), h(w′)).

The next lemma shows that the consensus string problem for multiple NFAs
is NP-complete when the length 
 of the consensus string is given in unary. The
lemma is proved by a reduction from the classical consensus string problem and
by relying on Lemma 17.
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Lemma 18. The consensus string problem for NFAs (or DFAs) is NP-complete
if the length l of consensus string is given in unary.

We also mention that the problem is still NP-complete if context-free
languages are considered instead of regular languages since the edit-distance
between a string and a context-free language described by a context-free gram-
mar (CFG) can be computed in polynomial time [18].

Corollary 19. The consensus string problem for context-free languages is NP-
complete if the length l of consensus string is given in unary.

However, the problem becomes PSPACE-complete if the length 
 is given in
binary.

Theorem 20. The consensus string problem for NFAs (or DFAs) is PSPACE-
complete if the length l of consensus string is given in binary.

We also establish that the fixed-length consensus problem, where the length l
of the consensus string is fixed, can be decided in polynomial time.

Corollary 21. The fixed-length consensus string problem for NFAs (or DFAs)
can be decided in O(n log n) time, where n is the size of NFAs (or DFAs).

As a final note, we state that the fixed-length consensus string problem for
context-free languages given by CFGs can be also decided in polynomial time.

Corollary 22. The fixed-length consensus string problem for CFGs can be
decided in O(n log n) time, where n is the size of CFGs.
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Abstract. In our setting enumeration amounts to generate all solutions
of a problem instance without duplicates. We address the problem of
enumerating the models of B-formulæ. A B-formula is a propositional
formula whose connectives are taken from a fixed set B of Boolean con-
nectives. Without imposing any specific order to output the solutions,
this task is solved. We completely classify the complexity of this enu-
meration task for all possible sets of connectives B imposing the orders
of (1) non-decreasing weight, (2) non-increasing weight; the weight of a
model being the number of variables assigned to 1. We consider also the
weighted variants where a non-negative integer weight is assigned to each
variable and show that this add-on leads to more sophisticated enumer-
ation algorithms and even renders previously tractable cases intractable,
contrarily to the constraint setting. As a by-product we obtain also com-
plexity classifications for the optimization problems known as Min-Ones
and Max-Ones which are in the B-formula setting two different tasks.

Keywords: Computational complexity · Enumeration · Non-decreasing
weight · Polynomial delay · Post’s lattice · MaxOnes

1 Introduction

We deal in this paper with algorithmic and complexity of enumeration, the
task of generating all solutions of a problem instance. Over the last 15 years,
in both practice and theory, one can observe a growing interest in studying
enumeration problems which have previously been poorly studied compared to
decision, optimization and counting problems. The main reason for this may lie
in the huge increase of the size of the data computers are nowadays demanded
and able to process in everyday applications.

It is in the meanwhile commonly agreed to consider an enumeration algorithm
efficient if it has polynomial delay ([9,16]), i.e., the time passing between outputs
of two successive solutions is polynomial in the input size (while the total time
of the output process is usually exponential, due to large solution sets). Variants
and different degrees of efficiency in this context exist, see e.g. [9,19]. Known
reductions for enumeration are essentially one-to-one parsimonious reductions,
as opposed to counting complexity where a greater variety of useful reductions
exist, see e.g. [3,7]. An interesting issue of enumeration is the order in which the
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 208–219, 2017.
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solutions are output. Imposing different orders for an enumeration process may
drastically change the complexity, see e.g. [2,5,9].

We focus in this paper on the task of enumerating the models of a proposi-
tional formula. This task has already been addressed in the context of Boolean
constraint satisfaction problems (CSPs). One considers here formulæ in gener-
alized conjunctive normal form [15], also called Γ-formulæ where Γ is the con-
straint language. In [4] this task, EnumSAT for short, has been studied without
imposing any special order. There is a polynomial delay algorithm if and only
if the underlying constraint language Γ is either Horn, or dual Horn, or affine,
or 2CNF, unless P = NP. It is worth mentioning that the algorithms underly-
ing this result are all straight forward extensions of the corresponding decision
procedures via the notion of self-reducibility [18] which naturally leads to lexico-
graphic order. In the non-Boolean domain the self-reducible fragment does not
deliver all tractable cases anymore [17] and things get much more involved.

Back to the Boolean domain, EnumSAT has also been considered imposing
the order of non-decreasing weight (EnumSAT↑ for short), the weight of a model
being the number of variables assigned to 1. The weight is a natural parameter
in Boolean CSPs that can be assimilated to the cost of an assignment. Hence,
the task EnumSAT↑ can be seen as the task of enumerating the cheapest solu-
tions first, then the more expensive ones in order of increasing cost. In [5] the
task EnumSAT↑ has been studied for Γ-formulæ. There is a polynomial delay
algorithm to enumerate the models of a propositional Γ-formula by order of
non-decreasing weight if and only if Γ is width-2-affine or Horn, unless P = NP.
By duality in that context, the task of enumerating by order of non-increasing
weight (EnumSAT↓) is tractable if and only if Γ is width-2-affine or dual Horn.

In this paper we reveal new tractable fragments of propositional logic for
EnumSAT↑ and EnumSAT↓ by considering fragments of propositional logic by
a different approach. A B-formula is a propositional formula whose connectives
are taken from B, a fixed set of Boolean functions. This approach covers differ-
ent fragments than the classical constraint approach, e.g. monotonic, self-dual,
0-separating of degree n. It has first been taken by Lewis [12] who showed that
the satisfiability problem for B-formulæ, Sat(B) for short, is NP-complete if and
only if the set B is able to express negation of implication (x∧¬y), unless P = NP.
Since then, a number of problems dealing with propositional formulæ have been
parameterized by B-formulæ in order to get a finer classification of their complex-
ity, e.g. equivalence [14], implication [1], circumscription [20], abduction [6].

In [2] the model enumeration problem has been studied in the context of B-
circuits without imposing an order and imposing lexicographic order. Roughly
speaking, a B-formula can be represented by a B-circuit without size-increase,
but, in general, not vice versa. Therefore, tractability translates from B-circuits
to B-formulæ, whereas this does not automatically hold for hardness results.
We observe however that only slight modifications in the hardness proof from
[2] suffice and one obtains the same classification for B-formulæ.

Our main contribution lies in complete classifications for EnumSAT↑ and
EnumSAT↓. We show that the models of a B-formula can efficiently be
enumerated by order of non-decreasing weight if and only if the connectives are
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either 0-separating, or affine, or conjunctive, or disjunctive, unless P = NP. We
further show that we can efficiently enumerate by order of non-increasing weight
if and only if the connectives are either 0-separating of degree 2, or monotone, or
affine, unless P = NP. We also consider the weighted variants of EnumSAT↑ and
EnumSAT↓ (denoted W-EnumSAT↑ and W-EnumSAT↓, respectively) where
a weight function w : {x1, . . . , xn} → N assigns a non-negative integer weight to
each variable and the weight of an assignment is the sum of the weights of the
variables assigned to 1. We show that for W-EnumSAT↑ the previously tractable
fragment of 0-separating connectives now compounds intractable cases.

We also shed new light on the optimization problems known as Min-Ones
and Max-Ones where the task is to find a model of minimal/maximal weight.
We use these tasks, together with their weighted and non-trivial variants, to
obtain hardness of the enumeration problems. These two tasks are in our set-
ting not “the same”: contrary to the classical constraint setting [10], no duality
notion allows to easily derive the classification for Max-Ones from the one for
Min-Ones, or vice versa. This is because the duality notion in our setting trans-
forms Min-Ones (find a satisfying assignment with minimal number of 1’s) into
the task of finding a non-satisfying assignment with maximal number of 1’s. We
show further that allowing weights on the variables renders previously tractable
fragments intractable, contrarily to the classical constraint approach.

Among the algorithmic enumeration strategies we use, we apply a method we
shall call priority queue method. It has first been used in [9] in order to enumerate
all maximal independent sets of a graph in lexicographical order. This method
turned out to be applicable in much more generality [5,11,16]. We use it to
obtain various polynomial delay algorithms for EnumSAT↑ and EnumSAT↓
and their weighted variants.

We give another non-trivial enumeration algorithm for EnumSAT↓ for the
fragment of connectives that are 0-separating of degree 2 (Proposition 16) that
may be intuitively best described by nested or incremental bruteforce: we use
the Erdős-Ko-Rado Theorem [8] to obtain a combinatorial bound that allows us
to buy time [17] from a relatively large number of models whose output process
delivers then enough time to compute further, computationally more involving
models that are stored and output afterwards.

The paper is organized as follows. In Sect. 2 we give the necessary preliminar-
ies on complexity theory, propositional formulæ and clones of Boolean functions.
In Sect. 3 we briefly look at model enumeration without order prescription. We
treat the order of non-decreasing and non-increasing weight in Sects. 4 and 5
respectively. We conclude in Sect. 6. A version of this paper with full proofs can
be found at https://arxiv.org/pdf/1612.00675.pdf.

2 Preliminaries

2.1 Complexity Theory

For the decision problems the arising complexity degrees encompass the classes
P and NP. For our hardness results we employ logspace many-one reductions.

https://arxiv.org/pdf/1612.00675.pdf
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An enumeration problem E can be formalized by a triple (I, Sol,≤), where
I are the instances, Sol is a function mapping each instance x ∈ I to its set of
solutions Sol(x) and ≤ is a partial order (possibly empty) on the solution space.
We say that an algorithm A solves an enumeration problem E = (I, Sol,≤) if
for a given input x ∈ I, A generates one by one the elements of Sol(x) without
repetition such that for all y, z ∈ Sol(x) such that y < z, A outputs y before z.

An enumeration algorithm runs in polynomial delay if the delay until the first
solution is output and thereafter the delay between any two consecutive solutions
is bounded by a polynomial p(n) in the input size n. We denote DelayP the class
of enumeration problems that admit a polynomial delay algorithm and SpaceDe-
layP those problems in DelayP that are solvable within polynomial space.

2.2 Propositional Formulæ

We assume familiarity with propositional logic. For a propositional formula ϕ we
denote by Vars(ϕ) the set of variables occurring in ϕ. We represent an assignment
σ : Vars(ϕ) → {0, 1}n usually as a tuple over {0, 1} or when convenient by the
set of variables assigned to 1, i.e., the empty set corresponds to 0 and Vars(ϕ)
to 1. A model for a formula ϕ is an assignment that satisfies ϕ. A non-trivial
assignment is an assignment different from 0 and 1. The complement of an
assignment σ is defined as σ(x) = 0 ⇔ σ(x) = 1. We call a variable x ∈ Vars(ϕ)
fictive, if the assignment x = 0 can be extended to a model of ϕ if and only if
so can the assignment x = 1. We denote by ϕ[α/β] the formula obtained from
ϕ by replacing all occurrences of α with β.

2.3 Clones of Boolean Functions

A Boolean function is an n-ary function f : {0, 1}n → {0, 1}. For technical
reasons we consider only Boolean functions of arity > 0. It is not difficult but
just technical to include also functions of arity 0 into our considerations. We
denote the n-ary Boolean constants by Cn

0 and Cn
1 , respectively. When the arity

is not relevant, we indicate them also by C0 and C1, keeping in mind that
they have at least one fictive coordinate. An n-ary assignment m such that
f(m) = 1 will be called model of f . A clone is a set of Boolean functions that is
closed under superposition, i.e., it contains all projections (that is, the functions
f(a1, . . . , an) = ak for all 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary
composition. Let B be a finite set of Boolean functions. We denote by [B] the
smallest clone containing B and call B a base for [B]. In 1941 Post identified
the set of all clones of Boolean functions [13]. He gave a finite base for each of
the clones and showed that they form a lattice under the usual ⊆-relation, hence
the name Post’s lattice (see, e.g., Fig. 1). To define the clones we introduce the
following notions, where f is an n-ary Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
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– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exists
an i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}.

– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn).
– f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

A list of some clones with definitions and finite bases is given in Table 1.
We will often add some function f /∈ C to a clone C and consider the clone

C ′ = [C ∪ {f}] generated out of C and f . With Post’s lattice one can determine
this C ′ quite easily: It is the lowest clone above C that contains f . We will use
in particular the identities [S12 ∪{C1}] = S1, [D∪{C1}] = BF, [R1 ∪{C0}] = BF,
[D1 ∪ {C1}] = R1, and [S10 ∪ {C1}] = M1.

A propositional formula using only connectives from B is called a B-formula.

Definition 1. Let f be an n-ary Boolean function and let B be a set of Boolean
functions. A B-formula ϕ with Vars(ϕ) = {x1, . . . , xk} is called B-representation
of f if there is an index function π : {1, . . . , n} → {1, . . . , k} such that ∀x1, . . . , xk

∈ {0, 1} it holds f(xπ(1), . . . , xπ(n)) = 1 if and only if ϕ evaluates to 1.

We note that such a B-representation exists for every f ∈ [B]. We note fur-
ther that, if f does not contain fictive coordinates, then there is also a B-
representation for f without fictive variables. We shall keep this in mind, since
some problems we consider are not stable under introduction/elimination of fic-
tive variables.

There is a canonical transformation of a B1-formula ϕ1 into a B-formula,
if B1 ⊆ [B]: replace every connective in ϕ1 by its B-representation. Though,
this may lead to an explosion of the formula size. This can happen when a B-
representation for some f ∈ [B] uses some input variable more than once and ϕ1

is of linear nesting depth, see e.g. [6]. We will nevertheless use this transformation
idea in order to obtain reductions. This is possible since in the cases we encounter,
we are always able to (re-)write ϕ1 as a formula of logarithmic nesting depth. We
note that this is not possible in general. We call formulæ of logarithmic nesting
depth compact.

3 Enumeration Without Order Prescription

We begin by looking at the model enumeration problem without order
prescription.

Problem: EnumSAT(B)
Instance: a B-formula ϕ
Question: generate all models of ϕ (without duplicates)

This problem has been studied in [2] considering B-circuits instead of B-
formulæ. It is not difficult to observe that the algorithms from [2] also prove
SpaceDelayP-membership for B-formulæ for the clones M, L, D and S20. But we
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Table 1. List of relevant Boolean clones with definitions and bases, where tqp denotes
the q-ary p-threshold function and d1(x, y, z) = (x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z).

Name Definition Base

BF All Boolean functions {x ∧ y, ¬x}
R1 {f | f is 1-reproducing} {x ∨ y, x = y}
R2 R0 ∩ R1 {∨, x ∧ (y = z)}
M {f | f is monotonic} {x ∨ y, x ∧ y,C0,C1}
Sn0 {f | f is 0-separating of degree n} {x → y, tn+1

2 }
S0 {f | f is 0-separating} {x → y}
S1 {f | f is 1-separating} {x ∧ ¬y}
Sn00 Sn0 ∩ R2 ∩ M {x ∨ (y ∧ z), tn+1

2 }
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
S12 S1 ∩ R2 {x ∧ (y → z)}
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {d1}
D2 D ∩ M {t32}
L {f | f is affine} {x ⊕ y,C1}
V {f | f is a disjunction of variables or constants} {x ∨ y,C0,C1}
E {f | f is a conjunction of variables or constants} {x ∧ y,C0,C1}

have to slightly modify the hardness proof from [2] in order to deal with the
issue of possible exponential blowup. Hardness of EnumSAT(B) is inherited from
Sat∗(B), the non-trivial satisfiability problem for B-formulæ (given a B-formula,
does it admit a non-trivial model m, i.e., m /∈ {0,1}?). A look at Post’s lattice
shows us that S12 �⊆ [B] if and only if either [B] ⊆ M, or [B] ⊆ L, or [B] ⊆ D, or
[B] ⊆ S20. The following proposition will therefore complete the classification.

Proposition 2. Let S12 ⊆ [B]. Then Sat∗(B) is NP-complete.

Theorem 3. Let B be a finite set of Boolean functions. Then EnumSAT(B) is

1. NP-hard if S12 ⊆ [B],
2. in SpaceDelayP otherwise (i.e., [B] ⊆ M or [B] ⊆ L or [B] ⊆ D or [B] ⊆ S20).

4 Enumeration by Order of Non-decreasing Weight

In this section we consider model enumeration by order of non-decreasing weight.

Problem: EnumSAT↑(B)
Instance: a B-formula ϕ
Question: generate all models of ϕ by order of non-decreasing weight

Proposition 4. Let [B] ⊆ V or [B] ⊆ E or [B] ⊆ L or [B] ⊆ S0. Then
EnumSAT↑(B) ∈ SpaceDelayP.

Proof. The first three cases are easy. More interesting is the fourth case. Let ϕ
be a B-formula with n variables. Since we are 0-separating, we know that there
is a special variable, call it xj , such that any assignment with xj = 1 is a model.
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Fig. 1. The complexity of all problems from this paper illustrated on Post’s Lattice.

The number of assignments of weight k with xj = 1 (which all are satisfying
assignments, we call them therefore steady models) is

(
n−1
k−1

)
, while the number

of assignments of weight k with xj = 0 is
(
n−1

k

)
. Since the factor between

(
n−1
k−1

)

and
(
n−1

k

)
is polynomial, the output process of the steady models delivers enough

time to determine in the meanwhile the set of unsteady models, that is, models
of weight k with xj = 0. These can be stored and output afterwards. Note that
this method uses exponential space. One can however obtain polynomial space
(still maintaining polynomial delay) by not storing for each k the whole set
of unsteady models, but by starting outputting them while still outputting the
steady ones.

Solving EnumSAT↑ requires to efficiently solve Min-Ones, the task of com-
puting a model of minimal weight. We will therefore inherit hardness from
Min-Ones.

Proposition 5. Let S10 ⊆ [B] or Sn
00 ⊆ [B] for an n ≥ 2 or D2 ⊆ [B]. Then

Min-Ones(B) is NP-hard.
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Proof. In the all three cases we reduce from Min-Ones(positive-2CNF) (NP-
hard according to [10]). The second and third case are technically involving,
where we deal with the q-ary p-threshold function.

Theorem 6. Let B be a finite set of Boolean functions. Then EnumSAT↑(B)

1. is NP-hard if Sn
00 ⊆ [B] for some n ≥ 2 or D2 ⊆ [B] or S10 ⊆ [B],

2. is in SpaceDelayP otherwise (i.e., [B] ⊆ S0 or [B] ⊆ V or [B] ⊆ L or [B] ⊆ E).

We turn to the weighted variant.
The following method will deliver us several tractability results.

Theorem 7 (Priority queue method [9,16]). Let E = (I, Sol,≤) be an enu-
meration problem. If it holds

1. for each x ∈ I, ≤ restricted to Sol(x) is total and computable in polynomial
time in |x|,

2. it can be determined in polynomial time in |x| whether Sol(x) is non-empty
and if so, then min(Sol(x)) is computable in polynomial time in |x|,

3. there is a binary function f such that for all x ∈ I and for all y ∈ Sol(x)
holds:
(a) f(x, y) is computable in polynomial time in |x|
(b) f(x, y) ⊆ Sol(x)
(c) if y �= min(Sol(x)) then there is a z ∈ Sol(x) such that z < y and

y ∈ f(x, z),

then E ∈ DelayP.

Proof. Correctness of the following algorithm is not difficult to
observe.
1: if Sol(x) = ∅ then return ’no’
2: Q = newPriorityQueue(≤)
3: compute � := min(Sol(x))
4: Q.enqueue(�)
5: while Q is not empty do
6: � := Q.dequeue
7: output �
8: compute L := f(x, �)
9: for all z ∈ L do

10: if z > � then Q.enqueue(z)
11: end for
12: end while

The priority queue is supposed to eliminate duplicates. Note that this method
may run in exponential space.

In order to apply the method to the partial order induced by the weight
of assignments, it suffices to extend it to a total order, for instance by the
lexicographical order on assignments.



216 J. Schmidt

Proposition 8. Let [B] ⊆ V or [B] ⊆ E. Then W-EnumSAT↑(B) ∈ DelayP.

Proof. In the first case a B-formula can be seen as disjunction of variables and
constants. All assignments are models, with the possible exception of 0. Thus,
we reduce our problem to

Problem: SubSetSum
Instance: A sequence of non-negative integers C = (w1, . . . , wn) ∈ N

n

Question: generate all subsets S ⊆ {1, . . . , n} by non-decreasing weight
δ(S), where δ(S) =

∑
i∈S wi

This task can be solved in polynomial delay and polynomial space by a
dynamic programming method if the weights on the variables are polynomially
bounded [5]. Otherwise, the priority queue method from Theorem7 is applicable
with f(C,S) = {S ∪ {i} | i ∈ {1, . . . , n}}.

In the second case a B-formula can be seen as conjunction of variables and
constants. If this disjunction contains a constant C0, then there are no models.
Otherwise 1 is the only model, up to fictive variables occurring in constants C1.
Again, we reduce our problem to SubSetSum as in the previous case.

Proposition 9. Let [B] ⊆ L. Then W-EnumSAT↑(B) ∈ DelayP.

Proof. Apply Theorem 7 with f(ϕ,m) = {m ∪ {x} | x fictive} ∪ {m ∪ {x, y} |
x, y not fictive and m ∩ {x, y} = ∅}.

The following previously tractable fragment becomes intractable.

Proposition 10. Let S00 ⊆ [B]. Then W-Min-Ones(B) is NP-hard.

Proof. Via a reduction from Min-Ones(B ∪{C0}), replacing C0 by a fresh vari-
able of big weight.

Theorem 11. Let B be a finite set of Boolean functions. W-EnumSAT↑(B)

1. is NP-hard if S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B],
2. is in DelayP otherwise (i.e., [B] ⊆ V or [B] ⊆ L or [B] ⊆ E).

5 Enumeration by Order of Non-increasing Weight

In this section we consider model enumeration by order of non-increasing weight.

Problem: EnumSAT↓(B)
Instance: a B-formula ϕ
Question: generate all models of ϕ by order of non-increasing weight

Analogously to Proposition 4 we obtain SpaceDelayP-membership for dis-
junctive, conjunctive, affine, or 0-separating formulæ.

Proposition 12. Let [B] ⊆ V or [B] ⊆ E or [B] ⊆ L or [B] ⊆ S0. Then
EnumSAT↓(B) ∈ SpaceDelayP.
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For monotone formulæ in general we apply once more the priority queue
method.

Proposition 13. Let [B] ⊆ M. Then EnumSAT↓(B) ∈ DelayP.

Proof. Apply Theorem 7 with f(ϕ,m) = {m\{x} | m\{x} |= ϕ}.

We now address one of the rare cases where the priority queue method is not
applicable and still we obtain tractability. We use for this the following classical
result from combinatorics.

Theorem 14 (Erdős-Ko-Rado Theorem [8]). Let n ≥ 2r and A be a family
of distinct subsets of {1, . . . , n} such that each subset is of size r and each pair
of subsets intersects. Then it holds

|A| ≤
(

n − 1
r − 1

)

.

Lemma 15. Let f ∈ S20 be an n-ary Boolean function and let k be an integer
such that n/2 ≤ k ≤ n. Then the number of models of weight k is at least

(
n−1
k−1

)
.

Proposition 16. Let [B] ⊆ S20. Then EnumSAT↓(B) ∈ DelayP.

Proof. In a first step we give a description of the enumeration scheme for the
weight range n down to n/2.

We start with weight n: there is one such assignment which is also a model (all
functions in S20 are 1-reproducing). We continue with an inductive argument (for
n/2 ≤ k < n): assume that we know for weight k exactly the set of models Sk. By
Lemma 15, we have

(
n−1
k−1

)
≤ |Sk| ≤

(
n
k

)
. The total time needed to output these

models is something polynomial in |Sk|. This delivers enough time to bruteforce
all assignments of the next weight level k − 1: There are

(
n

k−1

)
such assignments

to be tested, and the factor between
(

n
k−1

)
and |Sk| is obviously polynomially

bounded in n. Summed up, while outputting (with polynomial delay) the mod-
els of weight k, we can compute the set of models of weight k − 1. Repeated
application of this allows to enumerate with polynomial delay all models in the
weight range n down to n/2 by order of non-increasing weight.

The models in the weight range n/2 down to 0 can be computed and stored
during the first step: When during the first step an assignment a is tested, also
test its complement, a, which lies then in the weight range n/2 down to 0. If a is
a model, put it on a stack. After step 1 has finished, output all the assignments
from the stack.

We turn to the intractable cases. Solving EnumSAT↓ requires to efficiently
solve Max-Ones∗, the task of computing a model of maximal weight differ-
ent from 1. The hardness of this task will therefore deliver us hardness of
EnumSAT↓. The hardness of Max-Ones∗ is obtained from Sat∗ and the fol-
lowing problem.
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Problem: Inverse-Root-Weight-Sat
Instance: a 3CNF-formula ϕ of n variables
Question: does ϕ admit a model of weight ≥ n − √

n?

Lemma 17. Inverse-Root-Weight-Sat is NP-complete. If the number of
variables is assumed to be a power of 3 it remains NP-complete.

Proposition 18. Let S12 ⊆ [B] or D1 ⊆ [B]. Then Max-Ones∗(B) is NP-hard.

Proof. In the first case we reduce from Sat∗(B) via ϕ �→ (ϕ, 1) and conclude
with Proposition 2. In the second case we have a technically involving reduction
from Inverse-Root-Weight-Sat.

Theorem 19. Let B be a finite set of Boolean functions. Then EnumSAT↓(B)

1. is NP-hard if S12 ⊆ [B] or D1 ⊆ [B],
2. is in DelayP otherwise (i.e., [B] ⊆ S20 or [B] ⊆ M or [B] ⊆ L), where

EnumSAT↓(X) ∈ SpaceDelayP for X ∈ {V,E, L,S0}
Lastly, a look at the weighted variant, where we obtain only partial results.

Proposition 20. Let [B] ⊆ S0 or [B] ⊆ M. Then W-EnumSAT↓(B) ∈ DelayP.

Proof. Apply Theorem 7 with f(ϕ,m) = {m\{x} | m\{x} |= ϕ}.

Proposition 21. Let [B] ⊆ L. Then W-EnumSAT↓(B) ∈ DelayP.

Proof. Analogously to Proposition 9.

The following tractability indicates that also W-EnumSAT↓(S20) might be
tractable. However, none of the above algorithmic strategies seems to work out.

Proposition 22. Let [B] ⊆ S20. Then W-Max-Ones∗(B) ∈ P.

6 Conclusion

In this paper we provided complete complexity classifications of the problem of
enumerating all satisfying assignments of a propositional B-formula for every set
B of allowed connectives, imposing the orders of non-decreasing weight and non-
increasing weight. We also considered the weighted variant, where the variables
are assigned a non-negative integer weight. We obtained a complete classification
for the weighted variant when imposing the order of non-decreasing weight and
remained with one open case for the order of non-increasing weight when the
connectives are 0-separating of degree 2. Interesting are the polynomial delay
algorithms we obtained. They either rely on combinatorial bounds allowing a
brute force approach, or on the use of a priority queue which necessarily leads
to an exponential space usage. Future research could affront the open case, but
should also investigate the question of exponential space: can it be avoided, or is
it inherent to these problems, in particular to SubSetSum without polynomial
bounds on the weights?
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Abstract. We present a minimization algorithm for finite state
automata that finds and merges bisimulation-equivalent states, identi-
fied through partition aggregation. We show the algorithm to be correct
and run in time O

(
n2d2 |Σ|), where n is the number of states of the

input automaton M , d is the maximal outdegree in the transition graph
for any combination of state and input symbol, and |Σ| is the size of the
input alphabet. The algorithm is slower than those based on partition
refinement, but has the advantage that intermediate solutions are also
language equivalent to M . As a result, the algorithm can be interrupted
or put on hold as needed, and the derived automaton is still useful. Fur-
thermore, the algorithm essentially searches for the maximal model of
a characteristic formula for M , so many of the optimisation techniques
used to gain efficiency in SAT solvers are likely to apply.

1 Introduction

Finite-state automata form one of the key concepts of theoretical computer sci-
ence, and their computational and representational complexity is the subject of a
great body of work. In the case of deterministic finite state automata (dfa), there
is for every dfa M a minimal language-equivalent dfa M ′, and this M ′ is canon-
ical with respect to the recognized language. In the general, non-deterministic
case, no analogous result exists. In fact, nfa minimization is PSPACE com-
plete [14] and the solution is not guaranteed to be unique. Moreover, given an
nfa with n states, the minimization problem cannot be efficiently approximated
within a factor o(n), unless P = PSPACE [9].

Since nfa minimization is inherently difficult, attention has turned to efficient
heuristic language minimization algorithms, that often, if not always, perform
well. In this category we find bisimulation minimization. Intuitively, two states
are bisimulation equivalent if every transition that can be made from one of
them, can be mirrored starting from the other. More formally, an equivalence
relation E on the states Q of a nfa M is a bisimulation relation if the following
holds: (i) the relations respects the separation in M of final and non-final states,
and (ii) for every p, q ∈ Q such that (p, q) ∈ E , if p′ ∈ Q can be reached from
p on the symbol a, then there exists a q′ ∈ Q that can be reached from q on a,
and (p′, q′) ∈ E .
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 223–235, 2017.
DOI: 10.1007/978-3-319-53733-7 16
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The transitive closure of the union of two bisimulation relations is again a
bisimulation relation, so there is a unique coarsest bisimulation relation E of
every nfa M . When each equivalence class of E is merged into a single state, the
result is a smaller but language-equivalent nfa. If M is deterministic, then this
approach coincides with regular dfa minimization. The predominant method
of finding E is through partition refinement. The states are initially divided
into final and non-final states, and the algorithm resolves contradictions to the
bisimulation condition by refining the partition until a fixed point is reached.
This method is fast, and requires O(m log n) computation steps [17], where m is
the size of M ’s transition function. The drawback is that up until termination,
merging equivalence classes into states will not preserve the recognized language.

In Sect. 4, we present an nfa minimization algorithm in which also the
intermediate solutions are language-equivalent with M . Similarly to previous
approaches, the algorithm computes the coarsest bisimulation relation E on M .
However, the initial partition is entirely made up of singleton classes, and these
are repeatedly merged until a fixed point is reached. The algorithm runs in time
O

(
n2d2 |Σ|

)
, where d is the maximal outdegree in the transition graph for any

combination of state and input symbol, and Σ is the input alphabet.
The use of aggregation was inspired by a family of minimization algorithms

for dfa (see Sect. 1.1), and we lift the technique non-deterministic devices. In
the deterministic case, our algorithm runs in O

(
n2 |Σ|

)
, which is the same as for

the fastest aggregation-based dfa minimisation algorithms.
Another contribution is the computational approach: we derive a character-

istic propositional-logic formula wM for the input automaton M , in which the
variables are pairs of states. The algorithm entails finding the maximal model v̂
of wM , in the sense that v̂ assigns ‘true’ to as many variables as possible. We
show that if wM is satisfiable, then v̂ is unique and efficiently computable by a
greedy algorithm, and v̂ encodes the coarsest bisimulation relation on M .

1.1 Related Work

dfa minimization has been studied extensively since the 1950s [10,12,15]. Ten
Eikelder observed that the equivalence problem for recursive types can be formu-
lated as a dfa reachability problem, and gave a recursive procedure for deciding
equivalence for a pair of dfa states [19]. This procedure was later used by Wat-
son to formulate a dfa minimization algorithm that works through partition
aggregation [20]. The algorithm runs in exponential time, and two mutually
exclusive optimization methods were discussed in [21]. One uses memoziation to
limit the number of recursive invocations; the other bases the implementation
on the union-find data structure [2,11,18]. The latter method reduces the com-
plexity from O

(
|Σ|n−2n2

)
to O

(
α(n2)n2

)
, where α(n), rougly speaking, is the

inverse of Ackermann’s function. The value of this function is less than 5 for
n ≤ 2216

, so it can be treated as a constant. The original version of the algorithm
has been lifted to deterministic tree automata (a generalisation of finite state
automata) both as an imperative sequential algorithm and in terms of communi-
cating sequential processes [7]. In [8, Chapter 7], Daciuk continues the discussion
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of aggregation-based dfa minimization, starting from the work reported in [21].
He simplifies the presentation and generally improves the algorithm, including
the removal of an incorrect combination of memoization and restricted recursion
depth. The fact that this combination was problematic had been pointed out by
Marco Almeida, and is also reported in [3]; Almeida had found apparently rare
dfa cases in which the Watson-Daciuk algorithm returned non-minimal dfas.
In [3], Almeida et al. also present a simpler version, doing away with presum-
ably costly dependency list management. Assuming a constant alphabet size,
they state that their algorithm has a worst-case running time of O

(
α(n2)n2

)
for

all practical cases, yet also claim it to be faster than the Watson-Daciuk one.
Based on Almeida’s reporting, Daciuk in [8, Section 7.4] provides a new ver-
sion, presented as a compromise between the corrected Watson-Daciuk and the
Almeida-Moreira-Reis algorithm, but does not discuss its efficiency. nfa min-
imisation has also received much attention, but we restrict ourselves to heuris-
tics that compute weaker relations than the actual Nerode congruence (recalled
in Sect. 2). In [17], three partition refinement algorithms were presented, one
of which is essentially bisimulation minimization for nfa. The technique was
revived in [1], then in the domain of finite-state tree automata. The paper
was soon followed by bisimulation-minimization algorithms for weighted and
unranked tree automata [4,5], and also algorithms based on more general sim-
ulation relations [1,13]. This work is to the best of our knowledge the first in
which the bisimulation relation is computed through aggregation.

2 Preliminaries

Sets and Numbers. We write N for the set of natural numbers including 0. For
n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅. The cardinality of
a set S is written |S| and the powerset of S by pow (S).

Relations. A binary relation is an equivalence relation if it is reflexive, sym-
metric and transitive. Let E and F be equivalence relations on S. We say
that F is coarser than E (or equivalently: that E is a refinement of F), if
E ⊆ F . The equivalence class of an element s in S with respect to E is the
set [s]E = {s′ | (s, s′) ∈ E}. Whenever E is obvious from the context, we
simply write [s] instead of [s]E . It should be clear that [s] and [s′] are equal
if s and s′ are in relation E , and disjoint otherwise, so E induces a partition
(S/E) = {[s] | s ∈ S} of S. We denote the identity relation {(s, s) | s ∈ S} on S
by IS .

Strings. An alphabet is a finite nonempty set. The empty string is denoted by
ε. For an alphabet Σ, a string is a sequence of symbols from Σ, in other words,
an element of Σ∗. A string language is a subset of Σ∗.
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Finite Automata. A non-deterministic finite state automaton (or nfa, for
short) is a tuple M = (Q,Σ, δ,QI , QF ), where Q is a finite set of states; Σ is
an alphabet of input symbols; δ = (δf )f∈Σ is a family of transition functions
δf : Q → pow (Q); QI ⊆ Q is a set of initial states; and QF ⊆ Q is a set of final
states. The size of M is |M | = |δ|.

We immediately extend δ to (δ̂w)w∈Σ∗ where δ̂w : pow (Q) → pow (Q) as
follows: For every w ∈ Σ∗ and P ⊆ Q,

δ̂w(P ) =
{

P if w = ε, and
⋃

p∈P δ̂w′(δf (p)) if w = fw′ for some f ∈ Σ, and w′ ∈ Σ∗.

The language recognised by M is L(M) = {w ∈ Σ∗ | δ̂w(QI) ∩ QF �= ∅}. From
here on, we identify δ with δ̂. If |QI | ≤ 1, and if |δf ({q})| ≤ 1 for every f ∈ Σ
and q ∈ Q, then M is said to be deterministic.

Let E be an equivalence relation on Q. The aggregated nfa with respect to
E is the nfa (M/E) = ((Q/E),Σ, δ′, Q′

I , Q
′
F ) given by δ′

f ([q]) = {[p]|p ∈ δf (q)}
for every q ∈ Q and f ∈ Σ; Q′

I = {[q] | q ∈ QI}; and Q′
F = {[q]|q ∈ QF }.

The right language of q ∈ Q is
→
L (q) = {w ∈ Σ∗ | δw({q}) ∩ QF �= ∅}.

The Nerode congruence [16] is the coarsest congruence relation E on Q w.r.t the
right-languages

→
L (q); i.e. E(p, q) if and only if

→
L (p) =

→
L (q) for all p, q ∈ Q.

Propositional Logic. We assume that the reader is familiar with propositional
logic, but recall a few basics to fix the terminology. The Boolean values true and
false are written as 	 and ⊥, respectively, and we use B for {	,⊥}. Let L be
a propositional logic over the logical variables V , and let WF(L) be the set of
well-formed formulas over L. An interpretation of L is a partial function V → B.
Given interpretations v and v′, we say that v′ is an extension of v if v′(π) = v(π)
for all π ∈ dom (v). The set of all such extensions is written Ext(v).

A substitution of formulas for variables is a set {x1 ← w1, . . . , xn ← wn},
where each xi ∈ X is a distinct variable and each wi ∈ WF(L) is a formula. The
empty substition is defined by the empty set.

Let θ = {x1 ← w1, . . . , xn ← wn} and σ = {y1 ← w′
1, . . . , yk ← w′

k} be two
substitutions. Let X and Y be the sets of variables substituted for in θ and σ,
respectively. The composition θσ of θ and σ is the substitution {xi ← wiσ | xi ∈
X} ∪ {yj ← wj | yj ∈ Y \ X}. The application of θ to a formula w is denoted
wθ and defined by (simultaneously) replacing every occurrence of each xi in w
by the corresponding wi. Finally, given a set of formulas W ⊆ WF(L), we let
Wθ = {wθ | w ∈ W}.

Every interpretation v of L can be seen as a substitution, in which π ∈ dom (v)
is replaced by v(π). This allows us to extend v to a function WF(L) → B where
v(w) = 	 if wv is a tautology, v(w) = ⊥ if wv is a contradiction, and v(w) is
undefined otherwise. The formula w is resolved by v if v(w) ∈ {	,⊥}, and v is
a model for w if v(w) = 	. The set of models of w is denoted by Mod(w).
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3 Logical Framework

In this section, we express the problem of finding the coarsest simulation relation
on a finite automaton, as a problem of computing the maximal model of a
propositional-logic formula. Due to space restrictions, the argumentation is kept
at an intuitive level1.

From here on, let M = (Q,Σ, δ,QI , QF ) be a fixed but arbitrary nfa.

Definition 1 (Bisimulation, cf. [6] [Definition 3.1]). Let E be a relation
on Q. It is a bisimulation relation on M if for every (p, q) ∈ E, (1) p ∈ QF if
and only if q ∈ QF ; and (2) for every symbol f ∈ Σ,

for every p′ ∈ δf (p) there is a q′ ∈ δf (q) such that (p′, q′) ∈ E
and for every q′ ∈ δf (q) there is a p′ ∈ δf (p) such that (p′, q′) ∈ E .

Condition 2 of Definition 1 can be expressed in a propositional logic, in which
the variables are pairs of automata states. The variable corresponding to the pair
〈p, q〉 is true if and only if p and q satisfy Condition 2.

Definition 2 (Characteristic formula). Let VM = {〈p, q〉 | p, q ∈ Q} be a
set of propositional variables. For π = 〈p, q〉 ∈ VM and f ∈ Σ, we denote by wf

π

the negation-free CNF formula
∧

p′∈δf (p)

∨

q′∈δf (q)

〈p′, q′〉 ∧
∧

q′∈δf (q)

∨

p′∈δf (p)

〈p′, q′〉

and by wπ the formula
∧

f∈Σ wa
π. Observe that wπ is negation-free. Finally, we

denote by wM the conjunction
∧

π∈VM
π → wπ.

We could also model Condition 1 in the formula wM , but that would intro-
duce negations and require a more complex algorithm than that which we are to
present. To find the coarsest bisimulation relation for M , we instead start out
from a partial interpretation of VM satisfying Condition 1 of Definition 1 and
search for a ‘maximal’ extension that also satisfies Condition 2. By ‘maximal’
we mean that it assigns as many variables as possible the value 	.

Definition 3 (Maximal model). Let v and v′ be interpretations of VM . Then
v ∨ v′ denotes the interpretation of VM given by (v ∨ v′)(π) = v(π) ∨ v′(π), for
every π ∈ VM . We say that v ∈ Mod(w) is maximal if v ∨ v′ = v for every
v′ ∈ Ext(v) ∩ Mod(w).

Due to the structure of wM , its models are closed under variable-wise ‘or’. In
other words, if v, v′ ∈ Mod(wM ), then v∨v′ ∈ Mod(wM ). From this we conclude
that when a solution exists, it is unique.

Lemma 1. Let v be a partial interpretation of VM . If Ext(v) ∩ Mod(wM ) �= ∅,
then there is a v̂ ∈ Ext(v) that is a maximal model for wM , and v̂ is unique.
1 Detailed proofs are provided in the technical report available for download at

https://www8.cs.umu.se/research/uminf/index.cgi?year=2016&number=18.

https://www8.cs.umu.se/research/uminf/index.cgi?year=2016&number=18
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To translate our logical models back into the domain of bisimulation relations,
we introduce the notion of their associated relations.

Definition 4 (Associated relation). We associate with every (partial) inter-
pretation v of VM a relation ∼v on VM , given by p ∼v q ⇐⇒ v(〈p, q〉) = 	. We
say that the interpretation v is reflexive, symmetric, and transitive, respectively,
whenever ∼v is.

Note that Definition 4 makes no difference between a state pair π for which
v(π) = ⊥, and a state pair for which v is undefined.

If v is an arbitrary model for wM , then its associated relation need not be
an equivalence relation, but for the maximal model, it is.

Lemma 2. Let v be a partial interpretation of VM such that ∼v is an equivalence
relation, and let v̂ be an extension of v that is a maximal model of VM , then
also ∼v̂ is an equivalence relation.

We introduce a partial interpretation v0 to reflect Condition 1 of Definition 1
and use this as the starting point for our search.

Definition 5. Let v0 be the partial interpretation of VM such that

v0(〈p, p〉) = 	 for every p ∈ Q
v0(〈p, q〉) = ⊥ for every p, q ∈ Q with p ∈ QF �≡ q ∈ QF

and v0 undefined on all other state pairs.

Lemma 3. v0 ∈ Mod(wM ) and ∼v0 is an equivalence relation.

Theorem 1. There is a unique maximal extension v̂ of v0 in Mod(wM ), and
the relation ∼v̂ is the coarsest bisimulation relation on M .

4 Algorithm

Aggregation-based algorithms for automata minimization start with a singleton
partition, in which each state is viewed as a separate equivalence class, and iter-
atively merge partitions found to be equivalent. When all states are mutually
distinguishable, the algorithm terminates. We use the same approach for the
more general problem of minimizing nfas with respect to bisimulation equiva-
lence. The procedure is outlined in Algorithm1 and the auxiliary Algorithm2.

The input to Algorithm1 is an nfa M = (Q,Σ, δ,QI , QF ). The algorithm
computes an interpretation v̂ of the set of variables VM = {(p, q) | p, q ∈ Q},
where v̂(π) = 	 means that π is a pair of equivalent states, and v̂(π) = ⊥ that
π is a pair of distinguishable states. The interpretation v̂ is an extension of v0

as in Definition 5, and a maximal model for the characteristic formula wM . Due
to the structure of wM such a model can, as we shall see, be computed greedily.

The construction of v̂ is done by incrementally building up a substitution σi

that replaces state pairs by logical formulas. This is done in such a way that
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Algorithm 1. Aggregation-based bisimulation minimization algorithm
1: function minimize(M)
2: σ0:: = {〈q, q〉 ← � | q ∈ Q} ∪ {〈p, q〉 ← ⊥ | (p ∈ QF ) 	≡ (q ∈ QF )}
3: for π ∈ VM \ dom (σi) do
4: equiv(π, {π})
5: end for
6: return (M/ ∼σi)
7: end function

Algorithm 2. Point-wise computation of π ∈ VM

1: function equiv(π, S)
2: while ∃π′ ∈ var(wπ) \ dom(σi) \ S and wπσi is not resolved do
3: equiv(π′, S ∪ {π′})
4: end while
5: if wπσi is resolved then
6: σi+1:: = σi{π ← wπσi}
7: else
8: σi+1:: = σi{π ← wπσi{π ← �}}
9: end if

10: end function

(i) the substitution is eventually a total function, and (ii) no right-hand side of
the substitution contains a variable that is also in the domain of the substitution.
In combination, this means that when the algorithm terminates, the logical value
of every variable is resolved to 	 or ⊥. The substitution thus comes to represent
a total interpretation of VM . In the computations, σi is a global variable. It
is initialised such that it substitutes 	 for each pair of identical states, and ⊥
for each pair of states that differ in their finality (see Line 2 of Algorithm1).
Following this initialisation, the function equiv (see Algorithm 2) is called for
each pair of states not yet resolved by the substitution.

Function equiv has two parameters: the pair of states π for which equivalence
or distinguishability should be determined, and a set S of such pairs. This set
consists of pairs of states that are under investigation in earlier, though not yet
completed invocations of the function. In other words, S contains pairs that
are higher up in the call hierarchy. The function recursively invokes itself with
those pairs of states that occur as a variable in formula wπ, but which have
note yet been resolved, nor form part of the call stack S. After these calls have
been completed and we have exited the while loop, wπσi may or may not have
been resolved. If it has, then we extend the substitution with the appropriate
substitution rule, that is, one which replaces occurrences of π by the value of
wπσi. If wπσi has not been resolved, then we first rewrite wπσi by replacing every
occurrence of π by 	 and then extend the substitution with a rule substituting π
by wπσi{π ← 	}. These operations clear cyclic dependencies, and the maximal
model for the updated formula is the maximal model for the original one.
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4.1 Correctness

It can be shown that throughout the computation, var(wπσi) ∩ dom (σi) = ∅,
for every π ∈ VM ; i.e. during every point of the computation, the set of variables
that occur in the domain of σi is disjoint from the set of variables that occur
in wπσi, π ∈ VM . This avoids circular dependencies, and helps us prove that
eventually, every variable will be resolved. Intuitively, it holds because every
time we update σi by adding a particular π to its domain, the assignment on
Line 8 clears π from wπ in such a way that Mod(wMσi) is kept unchanged.
Furthermore, it is always the case that v̂(v0(wM )) = v̂(wMσi).

We now make the following observation: Let σt be σi at the point of ter-
mination. Let σt be the interpretation of VM given by σt(π) ≡ wπσt. Since
var(wπσt) = ∅, for every π ∈ VM , the interpretation σt is total.

Theorem 2. Algorithm1 terminates, and when it does, the relation ∼σt
is the

unique coarsest bisimulation equivalence on M .

4.2 Complexity

Let us now discuss the efficient implementation of Algorithm 1. The key idea
is to keep the representation of the characteristic formula and the computed
substitutions small by linking shared structures, rather than copying them. We
use the parameter r to capture the amount of nondeterminism in M . It is defined
as r = maxq∈Q,f∈Σ |δf (q)|. In particular, r ≤ 1 whenever M is deterministic.

Let us denote the union of all wπ, π ∈ VM , i.e. that appear as right-hand
sides in wM , by rhsM . In the update of σi on Line 8, some of these formulas
may be copied into others, so the growth of rhsMσi is potentially exponential.
For the sake of compactness we therefor represent rhsMσi as a directed acyclic
graph (DAG) and allow node sharing between formulas. In the initial DAG,
only nodes representing variables and the logical constants 	 and ⊥ are shared,
but as the algorithm proceeds, greater parts of the graph come to overlap. The
construction is straight-forward but has many steps, so readers that are satisfied
with a high-level view may want to continue to Theorem3.

Definition 6 (DAG representation of formulas). Let L be the proposi-
tion logic (VM , {∨,∧,	,⊥}) and let w ∈ WF(L). The (rooted, labelled) DAG
representation D(w) of w is recursively defined. For every x ∈ VM ∪ {	,⊥},

D(x) = ({v}, ∅, {(v, x)}) with root(D(x)) = v.

The DAG D(x) thus consists of a single node v labelled x, and v is the root of
D(x). For ⊗ ∈ {∨,∧} and w,w′ ∈ WF(L), we derive D(w ⊗ w′) from D(w) =
(V,E, l) and D(w′) = (V ′, E′, l′) by letting

D(w ⊗ w′) = (V ∪ V ′ ∪ {v},
E ∪ E′ ∪ {(v, root(D(w))), (v, root(D(w′)))},
l ∪ l′ ∪ {(v,⊗)}),

where root(D(w ⊗ w′)) = v, and then merging leaf nodes with identical labels.
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Given the above definition, we obtain the many-rooted DAG representation
D(rhsM ) of rhsM by taking the disjoint union of D(wπ), wπ ∈ rhsM , and merging
all leaf nodes that have identical labels. Thus, for each state pair π and for each
of 	 and ⊥, there is a single leaf node in D(rhsM ).

Throughout the computation, we maintain a DAG representing D(rhsMσi).
This is initialised to D(rhsM∅) and then immediately updated to D(rhsMσ0).
On top of this DAG, we assume that for each pair π, we have a reference refrhs(π)
to wπ, i.e. to the corresponding right hand side representation in the DAG. Part
of the initial DAG is depicted in Fig. 1.

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

Fig. 1. A tiny example DAG D(rhsMσi) with state-pair variables π′ and π. References
refrhs are depicted by double-lined arrows. ∧∨ denotes a node labeled by either ∧ or ∨.

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

	⊥

Fig. 2. The update of the DAG D(rhsMσi) in the case where π gets resolved to either
� or ⊥. The symbol ∧∨ denotes a node labeled by either ∧ or ∨, and the symbol �⊥ one
labelled by � or ⊥. The update to wπ for the aforementioned case is depicted in cyan
(new edges, node relabelling, and propagation) and gray (removed edges and nodes).

During the computation, the graph D(rhsMσi) is reorganised by changing
the targets of certain edges, but D(rhsMσi) does not grow. The exceptions are
a potential once-off addition of 	 and ⊥ labelled nodes during initialisation in
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Algorithm 1, and the addition of a single outgoing edge to each of the initial
leave nodes. Moreover, every time a variable is resolved, D(rhsMσi) is updated
to reflect this; while the refrhs(π)’s will continue to point at wπσi, expression
wπσi changes to reflect the latest σi, and will be simplified as much as possible.

There are two kinds of updates to a variable that can occur in our algorithm.
The first is the resolution of wπσ to either 	 or ⊥, which happens during initial-
isation of σ on Line 2 of Algorithm 1, on Line 6 of Algorithm 2, and possibly on
Line 8 of that algorithm as well. In this case, as sketched in Fig. 2, three things
must happen to the graph D(rhsMσi) to ensure that it reflects the updated
wπσi+1: Firstly, formula wπσi in D(rhsMσi) must be replaced by 	 or ⊥ as the
case may be. Thus, the graph D(rhsMσi) is modified to remove the nodes and
edges of such wπσi. Secondly, the unique shared leaf node representing π in the
DAG must be re-labeled to 	 or ⊥. Thirdly, this re-labeling must be propagated
upwards along each DAG branch leading to this node, now labeled 	 respec-
tively ⊥, as this resolution of π may lead subtrees rooted further up this branch
to resolve to either ⊥ or 	 as well. In the case of ⊥, if the immediate parent is
labeled by ∧, then it can be resolved to (i.e. replaced by a reference to) ⊥. If
the parent is instead labelled ∨, then we can simplify the graph by deleting the
edge and if it was the last edge, also resolving the parent to ⊥. In the case of 	
and parent ∨, the parent can be resolved to 	. In the case of 	 with parent ∧,
a simplification is possible by deleting the edge between them, and if it was the
last edge, resolving the parent to 	. This processes continues upwards through
the DAG until no more simplifications and resolutions are possible.

The second kind of update, sketched in Fig. 3, is that corresponding to Line
8 of Algorithm 2 extending σi by a substitution for π by wπσi{π ← 	} in case
the latter does not correspond to ⊥ or 	. Again, a number of things must

∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π′′ π′ π π′′′

π′ ∧∨

∧∨ ∧∨ ∧∨

∧∨ ∧∨ ∧∨

π

	

Fig. 3. The update of the DAG D(rhsMσi) in the case where π gets resolved to either
� or ⊥. The symbol ∧∨ denotes a node labeled by either ∧ or ∨, and the symbol
�⊥ one labelled by � or ⊥. Cyan indicates new edges in wπ, as well as the following
upward propagation to simplify wπσi+1. The leftmost oddly dashed arrow depicts the
replacement of leaf node π’s label by a reference to the simplified wπσi+1. Removed
edges in wπσi+1 are depicted dotted in gray. Note that if upward propagation reaches
the root of the DAG part representing wπσi+1, then the propagation continues upwards
through the DAG part for w′

πσi+1. This is similar to the case shown in Fig. 2.
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happen to D(rhsMσi). Firstly, references in wπσi to the unique shared leaf node
for π itself must be replaced by references to 	. Secondly, this change must be
propagated upwards along each DAG branch leading to this reference to 	, as
this local resolution of π may either simplify (in case of ∧) or resolve (in case
of ∨) subtrees rooted further up in rhsMσi. The resulting modified right hand
side wπσi+1 may either resolve to 	, or still be a proper tree. In the first case,
the unique shared leaf node representing π in the DAG is re-labeled to 	. This
change is then propagated upwards, as described in the previous paragraph. In
the second case, the node π may still be used in right-hand sides other than
wπσi+1, and is there replaced by a reference to the modified wπσi+1.

In combination, these graph manipulations permit an efficient implementa-
tion of Algorithm 1.

Theorem 3 (Complexity). Algorithm1 is in O
(
n2r2 |Σ|

)
.

Recall that bisimulation minimization coincides with classical minimization
in the case of dfa. Since r ≤ 1 for such devices, the run time of our algorithm
is comparable to that of the algorithm in [21].

4.3 Lazy Evaluation

We argued from the outset that one advantage of the aggregation approach
is that also intermediate solutions are language-equivalent with the original
automaton. Let us now show that every time that the call hierarchy returns
to the level of Algorithm 1 (i.e., the function minimize), the status of all pairs
on which equiv has been called is known.

We use var(σi) as shorthand for ∪π∈dom (σi)var(σi(π)).

Lemma 4. Throughout the computation, the following invariants hold: Firstly,
var(σi) ⊆ S. Secondly, from the point the function equiv has reached Line 5 on
the pair π, we have var(wπσi) ⊆ S for every subsequent σi.

Theorem 4. Every time the process control returns to minimize, every pair π
on which equiv has been called is resolved.

5 Conclusion

We have presented a minimization algorithm for nfa that identifies and merges
bisimulation-equivalent states. In terms of running time, it is as efficient as any
existing aggregation-based minimisation algorithm for dfa, but less efficient than
current refinement-based minimisation algorithms for nfa. However, compared
to the latter group, it has the advantage that intermediate solutions are usable
for language-preserving reduction of the input automaton M . Thus, implementa-
tions can be interrupted in time-constrained settings, to save memory by trans-
forming the input to a reduced, not necessarily minimal, equivalent automaton.

The algorithm is the first to compute the coarsest bisimulation relation on M
through partition aggregation. Also the logical framework used for representation
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and computation appears to be new for this application. For this reason, the
investigation of optimization techniques similar to those used in SAT solvers is
an interesting future endeavour. Furthermore the generalization of the algorithm
to, e.g., nondeterministic graph automata could be considered.

Certain highly connected automata might lead the algorithm to only converge
in the final iteration. As future work, an empirical investigation of its behaviour
on various automata would also be interesting.
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Abstract. This paper studies derivatives and automata for expressions
in star normal form as defined by Brüggemann-Klein. For an expression
in star normal form, the paper shows that the derivatives are either ∅ or
unique, while in general Berry and Sethi’s result shows the derivatives are
either ∅ or similar. It is known that the partial derivative automaton and
the follow automaton are two small automata, each of which is a quotient
of the position automaton. For the relation between the partial derivative
and follow automata, however, Ilie and Yu stated that a rigorous analysis
is necessary but difficult. The paper tackles the issue, and presents several
results. Our work shows that there are different conditions under which
the relation of the two automata can be different.

Keywords: Regular expressions · Finite automata · Derivatives ·
Partial derivatives · Star normal form

1 Introduction

Finite automata are basic for efficient implementation and application of regular
expressions. Derivatives are a fundamental concept for regular expressions and a
useful tool to study automata construction from regular expressions. This paper
studies derivatives and automata of regular expressions in star normal form,
defined by Brüggemann-Klein [3]. It is known that every regular expression can
be transformed into star normal form in linear time [3], and several algorithms
depend on star normal form (e. g., [3,8]).

Derivatives of regular expressions were introduced by Brzozowski [5]. The
notion was generalized to partial derivatives by Antimirov [1]. There has been
no result about derivatives particular for expressions in star normal form.
Among the many constructions of ε-free non-deterministic finite automata (NFA)
from regular expressions, we consider position automata proposed separately by
Glushkov [10] and McNaughton and Yamada [12], partial derivative or equation

Work supported by the National Natural Science Foundation of China under Grant
No. 61472405.

c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 236–248, 2017.
DOI: 10.1007/978-3-319-53733-7 17



Derivatives and Finite Automata of Expressions in SNF 237

automata using partial derivatives [1], and follow automata proposed by Ilie and
Yu [11]. The position automaton has size at most quadratic and can be com-
puted in quadratic time [3,9,14]. Berry and Sethi [2] showed a natural connec-
tion between the position automaton and the derivatives. The partial derivative
automaton has also been proved to be equivalent to the automaton constructed
from the prebase [13]. Champarnaud and Ziadi [7] proposed a quadratic algo-
rithm for computing the partial derivative automata which improved very much
the original algorithm [1], and proved that the partial derivative automaton is a
quotient of the position automaton. Ilie and Yu [11] proposed a simplified proof
of the result. Lombardy and Sakarovitch [15] gave another proof in the more
general setting of expressions with multiplicity which applies to present Boolean
case. Recently Ilie and Yu [11] introduced the follow automaton which can be
computed in quadratic time, and proved that the follow automaton is a quotient
of the position automaton. Champarnaud, Nicart and Ziadi presented another
quadratic algorithm [8] for computing the follow automaton.

The paper first shows that, for an expression in star normal form, the deriva-
tives of the marked expression (see Sect. 2 for the explanation of marked expres-
sion) with respect to word of the form wa for any word w and a fixed symbol a
are either ∅ or unique, while Berry and Sethi’s result [2] establishes that in gen-
eral the above derivatives are either ∅ or similar. This uniqueness of derivatives
is of course an attractive property.

The paper then discusses the relation between the partial derivative and
follow automata. It has been known that both the partial derivative and follow
automata are quotients of the position automaton. The question is what is the
relation between the first two automata. In [11] Ilie and Yu compared some
examples and stated that “a more rigorous comparison” between the automata
“should be done” but “seems difficult”. Champarnaud et al. [6] gave a condition
(“normalized” regular expressions) under which the partial derivative automaton
is a quotient of the follow automaton1. The paper gives several conditions for
the following relations between the two automata: (1) the partial derivative
automaton is a quotient of the follow automaton, (2) the converse, and (3) the
two automata are isomorphic. Our work thus shows, for the first time, there are
different conditions under which the relation of the two automata is different.

In concrete, it first presents several simple characterizations, in terms of
derivatives, of the above relations between the two automata. Then based on the
structure of expressions, we find conditions that are connected to the relations,
and give several properties of the conditions. We show that for an expression in
star normal form satisfying CONC condition (see Sect. 4), the partial derivative
automaton is a quotient of the follow automaton. Compared with the work in [6],
the CONC condition is more general (meaning that it allows more expressions
than normalized regular expressions), and captures more adequately the nature
of expressions for which the resulting partial derivative and follow automata

1 This quotient result, however, is not given in [6]. In [6] the main theorem (Theorem
4, p.11) states for a “normalized” regular expression, the size of the partial derivative
automaton is smaller than the size of the follow automaton.
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retain the above quotient relation. For example, none of the expressions given
in Example 37 are normalized regular expressions, while they all satisfy CONC
condition, and for each of the expressions the partial derivative automaton is a
quotient of the follow automaton. See Sect. 4 for a discussion. We further present
conditions for some special situations, in which the two automata are isomorphic
or the follow automaton is a quotient of the partial derivative automaton. Since
regular expressions can be transformed to star normal form in linear time, we can
easily get the smaller automaton when one of the above conditions is satisfied.

Section 2 introduces basic notations and notions. Derivatives for expressions
in star normal form are considered in Sect. 3. Section 4 focuses on the relation
of partial derivative and follow automata. Section 5 gives concluding remarks.

2 Preliminaries

We assume the reader to be familiar with basic regular language and automata
theory, e.g., from [16]. We introduce here only some notations and notions used
later in the paper.

Let Σ be an alphabet of symbols. The empty word is denoted by ε. The set
of all finite words over Σ is denoted by Σ∗. A regular expression over Σ is ∅, ε or
a ∈ Σ, or is the union E1+E2, the concatenation E1E2, or the star E∗

1 for regular
expressions E1 and E2. For a regular expression E, the language specified by E is
denoted by L(E). Define λ(E) = ε if ε ∈ L(E) and ∅ otherwise. The size of E is
denoted by |E| and is the length of E when written in postfix (parentheses are not
counted). The number of symbol occurrences in E, or the alphabetic width of E,
is denoted by ‖E‖. The symbols that occur in E, which is the smallest alphabet
of E, is denoted by ΣE . We assume that rules E +∅ = ∅+E = E,E∅ = ∅E = ∅,
and Eε = εE = E (rules-∅ε) hold in the paper.

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b2)∗a3b4(a5 + b6) is a marking of the expression (a + b)∗ab(a + b). The marking
of an expression E is denoted by E. The same notation will also be used for
dropping of subscripts from the marked symbols: E = E. We extend the notation
for words and automata in the obvious way. It will be clear from the context
whether · adds or drops subscripts.

For an expression E over Σ, we define the following sets: first(E) =
{a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗}, last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈
Σ}, follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ} for a ∈ Σ.

Define followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v �= ε, b ∈ Σ,w ∈
Σ∗}. An expression E is in star normal form (SNF) [4] if, for each starred
subexpression H∗ of E, followlast(H) ∩ first(H) = ∅ and ε /∈ L(H). It is
known that regular expressions can be transformed to SNF in linear time [3].

A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is the alphabet, δ ⊆ Q × Σ × Q is the transition mapping, q0 is
the start state, and F ⊆ Q is the set of accepting states. Denote the language
accepted by the automaton M by L(M).
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Fig. 1. (a) Mpos(E1), (b) Mpd(E1), and (c) Mf(E1), corresponding to E1 = (ab(c+ε))∗.

Let ≡⊆ Q × Q be an equivalence relation. We say that ≡ is right invariant
w.r.t. M iff (1) ≡⊆ (Q−F )2 ∪F 2 and (2) for any p, q ∈ Q, a ∈ Σ, if p ≡ q, then
p1 ≡ q1 for p1 ∈ δ(p, a), q1 ∈ δ(q, a). If ≡ is right invariant, then we can define a
quotient automaton M/≡ in the usual way.

The position automaton was introduced independently by Glushkov [10] and
McNaughton and Yamada [12]. The position automaton of E is Mpos(E) =
(Qpos, Σ, δpos, qE , Fpos), where Qpos = ΣE ∪ {qE}, δpos(qE , a) = {x | x ∈
first(E), x = a} for a ∈ Σ, δpos(x, a) = {y | y ∈ follow(E, x), y = a} for
x ∈ ΣE and a ∈ Σ, Fpos = last(E) ∪ {qE} if λ(E) = ε, or last(E) otherwise.

For further purpose we set last0(E) equal to last(E) if ε /∈ L(E) and last(E)∪
{qE} otherwise, and extend follow(E, qE) = first(E).

Example 1. The position automaton Mpos(E1) for the regular expression E1 =
(ab(c + ε))∗ is shown in Fig. 1(a).

As shown by Glushkov [10] and McNaughton and Yamada [12], L(Mpos

(E)) = L(E). Mpos(E) can be computed in quadratic time [3,9,14].
Below we introduce deravatives.

Definition 2 (Brzozowski [5]). Given a regular expression E and a symbol a,
the derivative a−1(E) of E w.r.t. a is defined inductively as follows:

a−1(∅) = a−1(ε) = ∅
a−1(b) = ε if b = a, ∅ otherwise

a−1(F + G) = a−1(F ) + a−1(G)

a−1(FG) = a−1(F )G + a−1(G) if λ(F ) = ε, a−1(F )G otherwise

a−1(F ∗) = a−1(F )F ∗

Derivative w.r.t. a word is computed by ε−1(E) = E, (wa)−1(E) = a−1

(w−1(E)).
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Definition 3 (Antimirov [1]). Given a regular expression E and a symbol a, the
set of partial derivatives ∂a(E) of E w.r.t. a is defined as follows:2

∂a(∅) = ∂a(ε) = ∅
∂a(b) = {ε} if b = a, ∅ otherwise
∂a(F + G) = ∂a(F ) ∪ ∂a(G)
∂a(FG) = ∂a(F )G ∪ ∂a(G) if λ(F ) = ε, ∂a(F )G otherwise
∂a(F ∗) = ∂a(F )F ∗

Partial derivative w.r.t. a word is computed by ∂ε(E) = {E}, ∂wa(E) =⋃
p∈∂w(E) ∂a(p). The language denoted by ∂w(E) is L(∂w(E)) =

⋃
p∈∂w(E) L(p).

It is proved in [1] that the cardinality of the set PD(E) = ∪w∈Σ∗∂w(E) of
all partial derivatives of a regular expression E is less than or equal to ‖E‖ + 1.

The partial derivative or equation automaton [1] constructed by partial deriv-
atives is Mpd(E) = (PD(E), Σ, δpd, E, {q ∈ PD(E) | ε ∈ L(q)}), where
δpd(q, a) = ∂a(q), for any q ∈ PD(E), a ∈ Σ. An example is shown in Fig. 1(b).

It is proved that for a regular expression, the partial derivative automaton is a
quotient of the position automaton [7,11]. Another proof is given by Lombardy
and Sakarovitch [15], which is in the more general setting of expressions with
multiplicity but still applies to present case (multiplicities over the Boolean
semiring).

Expressions with distinct symbols are called linear. For any expression E,
E is the linearized version of E. For linear expressions from Brzozowski [5] and
Berry and Sethi [2] the following fact is easily derived.

Proposition 4. Let E be linear. Given a ∈ ΣE, for all words w,
1. If E = E1 + E2, then

(wa)−1(E1 + E2) =
{

(wa)−1(E1) if a ∈ ΣE1

(wa)−1(E2) if a ∈ ΣE2

(1)

2. If E = E1E2, then

(wa)−1(E1E2) =

⎧
⎪⎪⎨

⎪⎪⎩

(wa)−1(E1)E2 if a ∈ ΣE1

(va)−1(E2) if w = uv, λ(u−1(E1)) = ε, a ∈ ΣE2 ,
u ∈ Σ∗

E1
, v ∈ Σ∗

E2

∅ otherwise

(2)

3 Derivatives of Expressions in SNF

Two regular expressions E1 and E2 which reduce to the same expression using
associativity, commutativity, and idempotence of + are called ACI-similar [5],

2 RF = {EF |E ∈ R} for a set R of regular expressions and a regular expression F .
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which is denoted by E1 ∼aci E2. Berry and Sethi [2] have shown that, for a
marked expression E, given a fixed x ∈ ΣE , (wx)−1(E) is either ∅ or unique
modulo ∼aci for all words w. In [2], based on this a natural connection between
the position automaton and derivatives is set up.

Here, we further show that, if E is in SNF then the ACI-similarity in the
above is unnecessary.

Proposition 5. For a marked expression E, if E is in SNF then given a fixed
x ∈ ΣE, (wx)−1(E) is either ∅ or unique for all words w.

Proof. We prove it by induction on the structure of E. The cases for E = ε, ∅, x,
x ∈ ΣE , are obvious.

1. E = E1 + E2. By Eq. (1), if x is in E1, then (wx)−1(E1), and the inductive
hypothesis applies to it. The case for x in E2 follows in the same way.

2. E = E1E2. If x is in E1, then by Eq. (2) (wx)−1(E) = (wx)−1(E1)E2, and the
inductive hypothesis applies to it. Otherwise, x is in E2 and (wx)−1(E) =
(vx)−1(E2) for some w = uv or (wx)−1(E) = ∅. Therefore the inductive
hypothesis applies to it.

3. E = E1
∗
. From [5] and [2] (wx)−1(E) is a sum of subterms of the form

(vx)−1(E1)E1
∗

where wx = uvx. We show that there is at most one non-null
subterm.

Suppose there are non-null subterms (v1x)−1(E1)E1
∗

and (v2x)−1(E1)E1
∗
.

If v1 �= v2, suppose |v1| < |v2|. Let wx = a1a2 . . . at. We can suppose v1x =
ar1 . . . at, v2x = ar2 . . . ar1 . . . at, 1 ≤ r2 < r1 ≤ t. Since (v1x)−1(E1) �= ∅, we
have ar1 ∈ first(E1). Since (v2x)−1E1) �= ∅, there exists a word w1, such that
ar2 . . . ar1 . . . atw1 ∈ L(E1). Then ar1 ∈ follow(E1, ar1−1).

A careful analysis on the derivation of (wx)−1(E) shows that if
(v1x)−1(E1) �= ∅, then either ε ∈ L((ar1−1)−1(E1)) or ε ∈ L((an . . . ar1−1)−1

(E1)) for some n < ar1−1. In either case, we have ar1−1 ∈ last(E1). Note the
symbols and positions are in one-one correspondence for E. Therefore E is not
in SNF, which is a contradiction.

If v1 = v2, then v1x = v2x = ar1 . . . at, 2 < r1 ≤ t. Similarly, a careful
analysis on (wx)−1(E) shows that there must be ε ∈ L((an1 . . . ai)−1(E1)), ε ∈
L((an2 . . . ai)−1(E1)) and ε ∈ L((an3 . . . an1−1)−1(E1)), n2 < n1 ≤ i ≤ r1 −
1, n3 < n1. So we have an1 ∈ first(E1), an1 ∈ follow(E1, an1−1), an1−1 ∈
last(E1). Therefore E is not in SNF, which is a contradiction.

So there is at most one non-null subterm, and the inductive hypothesis applies
to it. �

This uniqueness of derivatives is of course an attractive property. There have
been several work relying on finding a unique representative for the set of non-
null (wx)−1(E) [7,11]. If E is in SNF, then (wx)−1(E) is already unique.

Corollary 6. If E is in SNF and there are non-null (w1)−1(E) and (w2)−1(E),
such that (w1)−1(E) ∼aci (w2)−1(E), then (w1)−1(E) = (w2)−1(E).
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From the proof of Proposition 5 above, it follows

Corollary 7. If E = E∗
1 is in SNF, then for a non-null (wx)−1(E), (wx)−1(E)

= (vx)−1(E1)E for some wx = uvx.

4 Partial Derivative and Follow Automata

The follow automaton Mf(E) was introduced by Ilie and Yu [11]. It is constructed
by eliminating ε-transitions from an ε-automaton defined in [11]. We do not
present the construction in detail here. An example is shown in Fig. 1(c). What
is important here is the following.

Define the equivalence ≡f ⊆ Q2
pos by x1 ≡f x2 iff x1 ∈ last0(E) ⇔ x2 ∈

last0(E) and follow(E, x1) = follow(E, x2). The equivalence relation is right
invariant w.r.t. Mpos(E). Define M1 � M2 if M1 and M2 are isomorphic. It is
known that

Proposition 8 [11]. Mf(E) � Mpos(E)/≡f
.

As we have mentioned, it is well-known that the partial derivative automaton
is a quotient of the position automaton [7,11,15]. Here it is presented following
[11]. For a letter x ∈ ΣE , denote Cx(E) any expression (wx)−1(E) �= ∅. Denote
also CqE (E) = E (qE is the start state of the position automaton of E). For
an SNF expression E, Cx(E) is already unique. For general expressions assume
that we find a proper representative for each Cx(E) [7,11]. Define the equivalence
=c⊆ Q2

pos by x1 =c x2 iff Cx1(E) = Cx2(E). Define the equivalence ≡c⊆ Q2
pos

by x1 ≡c x2 iff Cx1(E) = Cx2(E). Each of the equivalence relations is right
invariant w.r.t. Mpos(E). It is known that

Proposition 9. (1) Mpd(E) � Mpos(E)/≡c
; (2) Mpd(E) � Mpos(E)/=c

.

From Propositions 8 and 9 both Mpd(E) and Mf(E) are always smaller than
or equal to Mpos(E). However, for the relation between Mpd(E) and Mf(E), Ilie
and Yu [11] compared some examples and showed that it is difficult to give a
theoretical analysis. Here we try to do so.

First we give characterizations of the different relations between the two
automata. It is easy to see the following:

Lemma 10. For any a ∈ ΣE, (1) first(Ca(E)) = follow(E, a) [2], and
(2) a ∈ last0(E) ⇔ λ(Ca(E)) = ε.

From Lemma 10 and the above definitions of the equivalence relations, the
following are implied

Lemma 11. (1) =c ⊆ ≡f ; (2) =c ⊆ ≡c.

Then we give a characterization of =c = ≡f as follows.

Proposition 12. For an expression E, we have =c = ≡f iff ∀a, b ∈ Qpos,
first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E)) ⇒ Ca(E) = Cb(E).
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Similarly the following are other characterizations.

Proposition 13. For an expression E, we have =c = ≡c iff ∀a, b ∈ Qpos,
Ca(E) = Cb(E) ⇒ Ca(E) = Cb(E).

Proposition 14. For an expression E, we have ≡c = ≡f iff ∀a, b ∈ Qpos,
Ca(E) = Cb(E) ⇔ first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E)).

On the other hand, from Propositions 8, 9 and Lemma 11 it follows

Theorem 15. For an expression E,

(1) if =c = ≡f , then Mpd(E) is a quotient of Mf(E), Mpd(E) � Mf(E); and
(2) if =c = ≡c, then Mf(E) is a quotient of Mpd(E), Mpd(E) � Mpd(E); and
(3) if ≡c = ≡f , then Mpd(E) � Mf(E).

Example 16. Let E1 = aa∗ + ba∗, E2 = (a∗ + ε)a∗a∗, E3 = a∗, one can verify
that Mpd(E1) is a quotient of Mf(E1), Mf(E2) is a quotient of Mpd(E2), and
Mpd(E3) � Mf(E3).

The above characterizations are given in terms of Cx(E). Below we consider
conditions in terms of the structure of expressions. We first prove the following
Lemmas. Recall that we assume that the rules (rules-∅ε) hold. It is known that
the following property holds:

first(F + G) = first(F ) ∪ first(G), first(F ∗) = first(F ),

first(FG) = first(F ) ∪ first(G) if ε ∈ L(F ), first(F ) otherwise.

last(F + G) = last(F ) ∪ last(G), last(F ∗) = last(F ),

last(FG) = last(F ) ∪ last(G) if ε ∈ L(G), last(G) otherwise.

follow(F + G, a) =
{

follow(F , a), if a ∈ ΣF

follow(G, a), if a ∈ ΣG

follow(FG, a) =

⎧
⎨

⎩

follow(F , a), if a ∈ ΣF − last(F )
follow(F , a) ∪ first(G), if a ∈ last(F )
follow(G, a), if a ∈ ΣG

follow(F ∗, a) =
{

follow(F , a), if a ∈ ΣF − last(F )
follow(F , a) ∪ first(F ), if a ∈ last(F )

Lemma 17. For b ∈ ΣE, if follow(E, b) = ∅ then b ∈ last(E).

Lemma 18. For b ∈ ΣE, follow(E, b) = ∅ iff ∀w ∈ Σ∗
E
, (wb)−1(E) = ∅ or

(wb)−1(E) = ε.

Lemma 19. For E = F + G, a ∈ ΣF and b ∈ ΣG, a ≡f b ⇔ a =c b.
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Definition 20. For an expression E, the leftmost expression of E w.r.t. con-
catenation is le(E) = le(F ) if E = FG; E otherwise. We say an expression E
is leftmost ε-reduced if le(E) does not contain any subexpression F + ε or ε + F
where λ(F ) = ε. Obviously if E = FG then E is leftmost ε-reduced iff F is
leftmost ε-reduced.

The expressions a + ε, (a∗ + ε)∗, a + (a∗ + ε)b, b∗(a∗ + ε), (a + ε) + b∗ are
leftmost ε-reduced, while a∗ + ε, (a + ε) + ε, (a∗ + ε)b∗, (ε + a∗)b, (a + b∗) + ε
are not leftmost ε-reduced.

Definition 21. For an expression E, and b ∈ ΣE, we denote ψ1(E, b) the fol-
lowing condition: b ∈ last(E) ⇔ ε ∈ L(E); and denote ψ2(E, b) the following
condition: first(E) = follow(E, b).

Lemma 22. The following are equivalent statements.

(1) qE ≡f b;
(2) ψ1(E, b) and ψ2(E, b);
(3) ∀w ∈ Σ∗

E
, if (wb)−1(E) �= ∅ then L((wb)−1(E)) = L(E).

Definition 23. For an expression E, we call the following the emptiness con-
dition of E: If le(E) = F

∗
, b ∈ last(F ), and first(F

∗
) = follow(F

∗
, b), then

followlast(F ) ∩ first(F ) = ∅.

Lemma 24. For an expression E and b ∈ ΣE, if ψ1(E, b), ψ2(E, b), E is
leftmost ε-reduced, and satisfies the emptiness condition, then ∀w ∈ Σ∗

E
, if

(wb)−1(E) �= ∅ then (wb)−1(E) = E.

From the proof of the above lemma, it follows

Corollary 25. For an expression E and b ∈ ΣE, if ψ1(E, b), ψ2(E, b), E is
leftmost ε-reduced, and satisfies the emptiness condition, then E can be only of
the form F ∗ or T ∗

nGn . . . G0, n ≥ 0, where b ∈ ΣTn
, and T ∗

n satisfies the same
conditions as for E.

It is easy to see that qE =c b equals the statement: ∀w ∈ Σ∗
E

, if (wb)−1(E) �= ∅
then (wb)−1(E) = E. Then from Lemmas 11 and 22 we have the following:

Lemma 26. Given b ∈ ΣE, if ∀w ∈ Σ∗
E
, and whenever (wb)−1(E) �= ∅ we have

(wb)−1(E) = E, then ψ1(E, b) and ψ2(E, b).

Definition 27. For any starred subexpression F ∗ of an expression E, we call the
following the equivalence condition of E: If a, b ∈ last(F ) and follow(F

∗
, a) =

follow(F
∗
, b), then follow(F , a) = follow(F , b).

For an SNF expression, we have

Lemma 28. Suppose F ∗ is in SNF. If a, b ∈ last(F ) and follow(F
∗
, a) =

follow(F
∗
, b), then follow(F , a) = follow(F , b).
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Definition 29. For an expression E, we call the following the CONC (Con-
catenation) condition of E: If ψ1(E, b) and ψ2(E, b) for some b ∈ ΣE then E
is leftmost ε-reduced and satisfies the emptiness condition; For any subexpres-
sion FG of E, if follow(F , a) = ∅, ψ1(G, b) and ψ2(G, b) for some a ∈ ΣF and
b ∈ ΣG then G is leftmost ε-reduced and satisfies the emptiness condition.

The significance of the CONC condition can be seen from the following two
lemmas.

Lemma 30. For E = FG, a ∈ ΣF and b ∈ ΣG, a ≡f b iff follow(F , a) = ∅,
ψ1(G, b) and ψ2(G, b).

Lemma 31. For E = FG, a ∈ ΣF and b ∈ ΣG, if follow(F , a) = ∅, ψ1(G, b),
ψ2(G, b), G is leftmost ε-reduced and satisfies the emptiness condition, then
a =c b.

From Lemmas 11 and 30 it follows

Corollary 32. For E = FG, a ∈ ΣF and b ∈ ΣG, if a =c b then follow(F , a) =
∅, ψ1(G, b) and ψ2(G, b).

The following is a sufficient condition for =c = ≡f .

Theorem 33. For an expression E satisfying CONC and equivalence condi-
tions, we have =c = ≡f .

Note the restriction that final and non-final states cannot be ≡f -equivalent is
essential, as shown by the expression E = b∗a(b∗a)∗. Let E = b∗

1a2(b∗
3a4)∗. Then

Ca2(E) = Ca4(E) �= Cb3(E), follow(E, a2) = follow(E, b3) = follow(E, a4).
However, a2, a4 ∈ last(E) and b3 /∈ last(E).

According to Lemma 28, we have

Corollary 34. For an SNF expression E satisfying CONC condition, we have
=c = ≡f .

Corollary 35. For an expression E satisfying CONC and equivalence condi-
tions, Mpd(E) � Mf(E), and Mpd(E) is a quotient of Mf(E).

Corollary 36. For an SNF regular expression E satisfying CONC condition,
Mpd(E) � Mf(E), and Mpd(E) is a quotient of Mf(E).

Example 37. Let E1 = a∗(a∗ + ε)c∗, E2 = a(a∗ + ε + b), E3 = (a∗ + ε)b∗c∗ + d,
they all are in SNF and satisfy CONC condition. One can verify that for each
Ei, =c=≡f , and Mpd(Ei) is a quotient of Mf(Ei), i = 1, 2, 3.

Also, the expressions E1 in Example 1, E1 and E3 in Example 16 are in SNF
and satisfy CONC condition, and their partial derivative automata are quotients
of the follow automata.

Remark. Champarnaud et al. [6] has proposed a condition called “normalized”
regular expressions, which requires that in an SNF expression no subexpression
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F + ε with λ(F ) = ε should exist. For a “normalized” regular expression the
partial derivative automaton is a quotient of the follow automaton. A “normal-
ized” expression is of course leftmost ε-reduced, and trivially satisfies CONC
condition. Conversely, if an SNF expression satisfies CONC condition, it may
not necessarily be a “normalized” expression. For example, none of expressions
given in Example 37 are “normalized”, while they all satisfy CONC condition,
and for each of the expressions the partial derivative automaton is a quotient of
the follow automaton. As the above example hints, for many expressions that are
not “normalized”, the quotient relation between the partial derivative automa-
ton and the follow automaton still exists. Actually “normalized” expressions
simply forbid the occurrence of any subexpression F + ε where λ(F ) = ε, but
CONC condition only forbid the occurrence of the above subexpression in some
sensitive positions in an expression. Therefore “normalized” expressions impose
too strong restrictions on expressions to ensure the quotient. On the other hand,
CONC condition captures more adequately the nature of expressions for which
the partial derivative automaton is a quotient of the follow automaton.

We further present the following conditions for some special situations, con-
cerning also =c and ≡c.

Condition 1. Let E = F1F2 . . . Fn, Fr is of the form: a, a∗, a∗ + ε or ε+a∗, a ∈
Σ, r = 1, . . . , n, n ≥ 1.

(a) F1 is of the form a or a∗, and
(b) if Fr = a, then Fr+1 is of the form b or b∗.

Theorem 38. For a regular expression E satisfying Condition 1, we have =c =
≡f , =c = ≡c, and ≡c = ≡f .

Condition 2. Let E = F1F2 . . . Fn, n ≥ 1 the same as in Condition 1. The
following is satisfied at least once:

(a) F1 is of the form a∗ + ε or ε + a∗, or
(b) if Fr = a, then Fr+1 is of the form b∗ + ε or ε + b∗.

Note Condition 2 is the negated one of Condition 1 w.r.t E.

Theorem 39. For a regular expression E satisfying Condition 2, we have =c �=
≡f and =c = ≡c.

Corollary 40. For a regular expression E satisfying Condition 1, Mpd(E) �
Mf(E) � Mpd(E). For a regular expression E satisfying Condition 2, Mpd(E) ��
Mf(E),Mpd(E) � Mpd(E) and Mf(E) is a quotient of Mpd(E).

For example, the expressions E3 in Example 16 and E1 in Example 37 satisfy
Condition 1, and their partial derivative and follow automata are isomorphic.
The expression E2 in Example 16 satisfies Condition 2, and its follow automaton
is a quotient of the partial derivative automaton.

If an expression E is linear, there is a one-one correspondence between the
symbols in E and E. Then for Ca(E) �= Cb(E) it cannot be Ca(E) = Cb(E). So
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Theorem 41. For a linear expression E, we have =c = ≡c.

Corollary 42. For a linear expression E, Mpd(E) � Mpd(E), and Mf(E) is a
quotient of Mpd(E).

For example, the expression E1 in Example 1 is linear, so =c = ≡c. We also
know that for E1 we have =c = ≡f . Therefore ≡c = ≡f , that is, Mpd(E1) �
Mf(E1). Similarly, for the expression E3 in Example 37, we have Mpd(E3) �
Mf(E3) since it is linear and from Example 37 for E3 we have =c = ≡f .

So far we have presented some conditions for the relations among =c,≡c and
≡f , hence the relations between Mpd(E) and Mf(E). Since regular expressions
can be transformed to SNF in linear time [3], we can easily get the smaller
automaton when one of the above conditions is satisfied. Further, it would be
interesting to find some more conditions, which remains as a further research.

5 Concluding Remarks

The paper discussed derivatives and automata for expressions in SNF. It showed
that if an expression E is in SNF, then (wx)−1(E) is either ∅ or unique for all
words w, which is a stronger property than Berry and Sethi’s [2]. For a regular
expression in SNF it presented several conditions for the quotient or isomorphism
relation between the partial derivative and follow automata.

Several problems can be investigated as future work. For conditions based on
the structure of expressions, although CONC condition allows more expressions,
presently it is unclear whether it captures all expressions for which Mpd(E) is a
quotient of Mf(E). As mentioned above, whether there are some more conditions
for the relation between Mpd(E) and Mf(E) remains as a further research.
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Abstract. It was conjectured by Černý in 1964 that a synchronizing
DFA on n states always has a shortest synchronizing word of length at
most (n − 1)2, and he gave a sequence of DFAs for which this bound is
reached. In 2006 Trahtman conjectured that apart from Černý’s sequence
only 8 DFAs exist attaining the bound. He gave an investigation of all
DFAs up to certain size for which the bound is reached, and which do not
contain other synchronizing DFAs. Here we extend this analysis in two
ways: we drop this latter condition, and we drop limits on alphabet size.
For n ≤ 4 we do the full analysis yielding 19 new DFAs with smallest
synchronizing word length (n− 1)2, refuting Trahtman’s conjecture. All
these new DFAs are extensions of DFAs that were known before. For
n ≥ 5 we prove that none of the DFAs in Trahtman’s analysis can be
extended similarly. In particular, as a main result we prove that the
Černý examples Cn do not admit non-trivial extensions keeping the same
smallest synchronizing word length (n − 1)2.

1 Introduction

A deterministic finite automaton (DFA) over a finite alphabet Σ is called syn-
chronizing if it admits a synchronizing word. Here a word w ∈ Σ∗ is called
synchronizing (or directed, or reset) if starting in any state q, after processing
w one always ends in one particular state qs. So processing w acts as a reset
button: no matter in which state the system is, it always moves to the particular
state qs. Now Černý’s conjecture [4] states:

Every synchronizing DFA on n states admits a synchronizing word of
length ≤ (n − 1)2.

Surprisingly, despite extensive effort this conjecture is still open, and even the
best known upper bound is still cubic in n. Černý himself [4] provided an upper
bound of 2n − n − 1 for the length of the shortest synchronizing word. A sub-
stantial improvement was given by Starke [14], who was the first to give a cubic
upper bound. The best known upper bound is 1

6 (n3 − n), established by Pin in
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1983 [12], based on [10]. Since then for more than 30 years no progress for the
general case has been made.

The conjecture has been proved for some particular classes of automata. For
these results and some more partial answers, see [1,2,6,8,15]. For a survey on
synchronizing automata and Černý’s conjecture, we refer to [17].

In [4] Černý already gave DFAs for which the
bound of the conjecture is attained: for n ≥ 2 the
DFA Cn is defined to consist of n states 1, 2, . . . , n,
and two symbols a, b, acting by δ(i, a) = i + 1 for
i = 1, . . . , n − 1, δ(n, a) = 1, and δ(i, b) = i for
i = 2, . . . , n, δ(1, b) = 2. For n = 4 this is depicted
on the right.

For Cn the string w = b(an−1b)n−2 of length
|w| = (n − 1)2 satisfies qw = 2 for all q ∈ Q, so is
synchronizing. No shorter synchronizing word exists
for Cn as is shown in [4], showing that the bound in Černý’s conjecture is sharp.

The topic of this paper is to investigate all DFAs for which the bound is
reached; these DFAs are called critical. A DFA for which the bound is exceeded
is called super-critical, so Černý’s conjecture states that no super-critical DFA
exists. To exclude infinitely many trivial extensions, we only consider basic DFAs:
no two distinct symbols act in the same way in the automaton, and no symbol
acts as the identity. Obviously, adding the identity or copies of existing symbols
has no influence on synchronization.

An extensive investigation was already done by Trahtman in [16]: by com-
puter support and clever algorithms all critical DFAs on n states and q symbols
were investigated for 3 ≤ n ≤ 7 and q ≤ 4, and for n = 8, 9, 10 and q = 2. Here
a minimality requirement was added: examples were excluded if criticality may
be kept after removing one symbol. Then up to isomorphism there are exactly
8 of them, apart from the basic Černý examples: 3 with 3 states, 3 with 4, one
with 5 and one with 6. So apart from the basic Černý examples only 8 other
critical DFAs were known. It was conjectured in [16] that no more exist, which
is refuted in this paper by finding several more not satisfying the minimality
condition, all being extensions of known examples. As one main result we prove
that up to isomorphism for n = 3 there are exactly 15 basic critical DFAs and
for n = 4 there are exactly 12 basic critical DFAs, 19 more than the four for
n = 3 and the four for n = 4 that were known before.

Two typical exam-
ples are depicted on
the right. The left one
restricted to a, b is exactly
C3, while restricted to
a, c it is exactly a DFA
found in [16] that we
call T3-1 in Sect. 3. So
this example is a kind of
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union of C3 and T3-1. It has four distinct synchronizing words of the minimal
length 4 described by (b + c)aa(b + c), having two distinct synchronizing states.

The right one restricted to a, b is the example found in [5] that we call CPR
in Sect. 3. However, the extra non-trivial symbol c does not occur in any known
critical DFA on four states. It has eight distinct synchronizing words of the
minimal length 9 described by (b + c)aa(b + c)abaa(b + c), again having two
distinct synchronizing states.

For n ≥ 5, we wonder whether the minimal critical DFAs in Trahtman’s
analysis admit critical extensions just as for n ≤ 4. The answer is negative.
Apart from Cn these include only two minimal critical DFAs: one with 5 and
one with 6 states, for which a simple computer search applies. For Cn this boils
down to the main theorem stating that when adding an extra symbol to Cn not
acting as the identity or as one of the existing symbols, always a strictly shorter
synchronizing word can be obtained. The theorem is proved by a case analysis
in how this extra symbol acts on the states.

This paper is organized as follows. In Sect. 2 we give some preliminaries. In
Sect. 3 we consider DFAs of at most six states. First we give a self-contained
analysis of all critical DFAs on ≤ 4 states. Next, for the known critical DFAs on
five and six states we show that they do not admit critical extensions. The most
substantial part is Sect. 4, where we prove our property for Cn for arbitrary n:
Cn has no critical extension for n ≥ 5. An extensive case analysis on how an
extra non-trivial symbol c acts on the n states shows that this always yields
a shorter synchronizing word. For some parts of the proofs we refer to the full
version [7] of this paper. We conclude in Sect. 5.

2 Preliminaries

A deterministic finite automaton (DFA) over a finite alphabet Σ consists of a
finite set Q of states and a map δ : Q × Σ → Q.1 A DFA is called basic if
the mappings q �→ δ(a, q) are distinct for all a ∈ Σ, and are not the identity.
For w ∈ Σ∗ and q ∈ Q define qw inductively by qε = q and qwa = δ(qw, a) for
a ∈ Σ. So qw is the state where one ends when starting in q and applying δ-steps
for the symbols in w consecutively, and qa is a short hand notation for δ(q, a).
A word w ∈ Σ∗ is called synchronizing if a state qs ∈ Q exists such that qw = qs

for all q ∈ Q. Stated in words: starting in any state q, after processing w one
always ends in state qs. A DFA on n states is critical if its shortest synchronizing
word has length (n − 1)2; it is super-critical if its shortest synchronizing word
has length > (n − 1)2. A critical DFA is minimal if it is not the extension of
another critical DFA by one or more extra symbols; it is maximal if it does not
admit a basic critical extension.

The basic tool to analyze synchronization is by exploiting the power set
automaton. For any DFA (Q,Σ, δ) its power set automaton is the DFA (2Q,Σ, δ′)
where δ′ : 2Q × Σ → 2Q is defined by δ′(V, a) = {q ∈ Q | ∃p ∈ V :
1 For synchronization the initial state and the set of final states in the standard defi-

nition may be ignored.
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δ(p, a) = q}. For any V ⊆ Q,w ∈ Σ∗ we define V w as above, using δ′

instead of δ. From this definition one easily proves that V w = {qw | q ∈ V }
for any V ⊆ Q,w ∈ Σ∗. A set of the shape {q} for q ∈ Q is called a
singleton. So a word w is synchronizing if and only if Qw is a singleton.
Hence a DFA is syn-
chronizing if and only if
its power set automaton
admits a path from Q
to a singleton, and the
shortest length of such a
path corresponds to the
shortest length of a syn-
chronizing word.

The power set automa-
ton of C4 is depicted
on the right, in which
indeed the unique short-
est path from Q to a sin-
gleton (indicated by fat
arrows from 1234 to 2)
has length 9.

3 Small DFAs

3.1 Three States

First we give the minimal critical DFAs as presented in [16] on three states,
apart from C3:

We call them T3-1, T3-2 and T3-3, as they were found by Trahtman. They all
have a unique synchronizing word of length 4, being baab, acba, bacb, respectively.

They can be combined to a single DFA A3 on five symbols a, b, c, d, e, depicted
as follows.
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Observe that A3 restricted to a, b coincides with
C3, A3 restricted to a, d coincides with T3-1, A3
restricted to c, d, e coincides with T3-2 and A3
restricted to b, c, e coincides with T3-3, so exactly the
four minimal critical automata on three states from
[16]. On the other hand, as all minimal basic critical
DFAs on three states are contained in A3, A3 is the
only maximal basic critical DFA on three states. It
admits 16 synchronizing words of length 4, expressed
by the regular expression (b + d)(a+ c)(a+ e)(b + d),

where state 2 is the synchronizing state if the word ends in b and state 3 if the
word ends in d.

The relationship between A3 and critical DFAs is given in the following
theorem.

Theorem 1. No super-critical DFAs on three states exist, and a basic DFA
on three states is critical if and only if up to isomorphism it is one of the 15
automata that can be obtained from A3 by removing zero or more symbols and
keeping at least one of the sets {a, b}, {a, d}, {b, c, e}, {c, d, e} of symbols.

Proof. Let 1,2,3 be the three states. The automaton has a shortest synchronizing
word of length ≥ 4 if and only if the shortest path from {1, 2, 3} to a singleton
in the power set automaton has length ≥ 4. There is a step from {1, 2, 3} to a
smaller set. Since the length of the shortest path is ≥ 4, this smaller set is not a
singleton, so it is a pair; without loss of generality we may assume this is {2, 3}.
Let b be the first symbol of a shortest synchronizing word, so {1, 2, 3} b→ {2, 3}.
Since the shortest path from {2, 3} to a singleton consists of at least three steps,
it meets the other two pairs and consists of exactly three steps, yielding shortest
synchronizing word length 4. May be after swapping 2 and 3 we may assume
this shortest path is {1, 2, 3} b→ {2, 3} → {1, 3} → {1, 2} → singleton. As it is
the shortest path, we conclude that for every symbol a we have

– either {1, 2, 3} a→ {1, 2, 3} or {1, 2, 3} a→ {2, 3},
– either {2, 3} a→ {2, 3} or {2, 3} a→ {1, 3}, and
– not {1, 3} a→ singleton.

A small program investigates that among the 33 = 27 possible symbol actions
in a DFA on three states exactly 6 satisfy these properties: exactly the symbols
a, b, c, d, e in A3 and the identity. So for all DFAs being a sub-automaton of A3
it holds that if it is synchronizing, then the shortest synchronizing word length
is 4. Restricting A3 to either {a, b}, {a, d}, {b, c, e} or {c, d, e} yields one of the
known synchronizing DFAs, so every extension is synchronizing too. Conversely,
it is easily checked that all of these restrictions are minimal: all symbols are
required for synchronization. This concludes the proof. 	


As a consequence of Theorem 1 apart from the four minimal critical DFAs
that were known on three states, we obtain 11 more that are not minimal.
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3.2 Four States

First we give the minimal critical DFAs as presented in [16] on four states, apart
from C4. The first one is CPR, found by Černý, Piricka and Rosenauerova, [5],
and has unique synchronizing word of length 9, being baababaab. The next two
we call T4-1 and T4-2, as they were found by Trahtman. The DFA T4-1 has
a unique synchronizing word of length 9, being abcacabca; for T4-2 there are 4
synchronizing words of length 9 represented by acb(a + c)a(a + b)cba.

In order to investigate all
critical DFAs with four states,
we introduce the DFA A4 on
five symbols a, b, c, d, e, depicted
as follows.

Observe that A4 restricted
to a, b coincides with CPR and
A4 restricted to b, d, e coincides
with T4-1, so together with
C4 and T4-2 exactly the four
automata with four states from [16], being the minimal ones. On the other
hand, C4, T4-2 and A4 are the only maximal basic critical DFAs on four states.
We will prove this in Theorem 2. The DFA A4 admits 256 synchronizing words
of length 9, expressed by the regular expression (b + c)(a + d)(a + e)(b + c)
(a + e)b(a + d)(a + e)(b + c), where the synchronizing state is 1 or 3, depending
on the last symbol. The relationship between A4 and critical DFAs is given in
the following theorem.

Theorem 2. No super-critical DFAs on four states exist, and a basic DFA on
four states is critical if and only if up to isomorphism it is C4, T4-2, or one of
the 10 automata that can be obtained from A4 by removing zero or more symbols
and keeping at least one of the sets {a, b}, {b, d, e} of symbols.

Proof. Let 1,2,3,4 be the four states. We have to prove that the shortest path in
the power set automaton from {1, 2, 3, 4} to a singleton never has length > 9 (this
would be super-critical), and that length 9 only occurs in the cases indicated by
the theorem. So assume this length is ≥ 9. Since there is a step from {1, 2, 3, 4}
to a smaller set, and since the length is ≥ 9, it is not to a pair since there are only
6 distinct pairs. So after one step only one element is removed from {1, 2, 3, 4},
say, 4. By the same argument also the next step in a shortest path to a singleton
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is not to a pair; by possibly renaming we may assume it is to {2, 3, 4}, so a
shortest path is of the shape {1, 2, 3, 4} a1→ {1, 2, 3} a2→ {2, 3, 4} →≥7 singleton.

The approach is to generate all solutions by a computer program. In order
to reduce the search space, first we prove that for every symbol a we have

1. if {1, 2, 3, 4} a→ V then {1, 2, 3} ⊆ V ;
2. if {1, 2, 3} a→ V then either V = {1, 2, 3} or V = {2, 3, 4};
3. if {2, 3, 4} a→ V then |V | = 3.

We start by property 3. For the full version of the proof we refer to [7],
including justification of correctness of the SMT approach. The idea is that
if a symbol a exists such that {2, 3, 4} a→ {p1, q1}, then the shortest path to
a singleton meets all six possible unordered pairs. We collected a number of
properties that follow from this assumption in a formula. Next we applied the
SMT solver Yices [9] to this formula, that stated that this formula is unsatisfiable
in a fraction of a second. So this yields a contradiction, proving property 3.

In order to prove properties 1 and 2, observe that from a1({1, 2, 3, 4}) =
{1, 2, 3} we conclude that x �= y ∈ {1, 2, 3, 4} exist such that a1(x) = a1(y). Since
a1({2, 3, 4}) consists of three elements by property 3, we have {x, y} �⊆ {2, 3, 4},
so 1 ∈ {x, y}. If a1({1, 2, 3}) consists a two elements this gives rise to a shorter
synchronizing sequence, so {x, y} �⊆ {1, 2, 3}, hence 4 ∈ {x, y}. So a1(1) = a1(4).

For property 1 assume that {1, 2, 3} �⊆ V for V = a({1, 2, 3, 4}). Since
|V | = 3, the set V is one of the three sets {2, 3, 4}, {1, 2, 4}, {1, 3, 4}. If it is
{2, 3, 4}, we have a shorter synchronizing sequence; otherwise {1, 4} ⊆ V , by
which |a1(V )| = 2, and this pair a1(V ) can be reached in two steps a, a1 from
{1, 2, 3, 4}. Both cases yield a contradiction, proving property 1.

The proof of property 2 is similar: if V = a({1, 2, 3}) is not {1, 2, 3} or
{2, 3, 4}, then by |V | = 3 we have V is {1, 2, 4} or {1, 3, 4}, so |a1(V )| = 2 by
a1(1) = a1(4), and this pair a1(V ) can be reached in three steps a1, a, a1 from
{1, 2, 3, 4}, contradicting property 3 stating that no shortest path from {1, 2, 3, 4}
to a singleton reaches a pair in three steps.

It turns out that among the 256 functions from {1, 2, 3, 4} to itself exactly 18
satisfy properties 1, 2 and 3. This includes the identity that has to be excluded
since that is not allowed in a basic DFA, leaving 17 functions. A straightforward
computation in <10 s on the corresponding 217 = 131072 basic DFAs yields the
shortest path lengths from {1, 2, 3, 4} to a singleton. As expected, no shortest
path length longer than 9 is obtained, proving that no super-critical DFA on
4 states exists. Exactly 24 basic DFAs are obtained with shortest path length
9. These 24 automata exactly coincide with the 12 automata indicated in the
theorem; each occurring twice up to swapping 2 and 3. 	


As a consequence of Theorem 2 apart from the four minimal critical DFAs
that were known on four states, we obtain 8 more that are not minimal. An
alternative proof of Theorem 2 was given by de Bondt [3] by a direct computer
search exploiting bounds on path lengths in the power set automaton; his app-
roach also succeeded to prove that for n = 5 there are no more critical DFAs
than the two that were known before.
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3.3 Five and Six States

In Sect. 3 we saw that for n = 3, 4 a critical DFA may have a basic critical
extension. We now claim that for n ≥ 5 this does not occur any more for the
known critical DFAs. In Section 4 we will prove that this holds for Cn for all
n ≥ 5. By Trahtman’s investigation the only two more critical DFAs to consider
are one on five states from Roman [13] and one on six states from Kari [11],
depicted as follows.

For Roman’s DFA the shortest synchronizing word abcacacbcaacabca is
unique; for Kari’s DFA there are two shortest synchronizing words, described by
baabababaabbaba(baab + abaa)babaab.

For n = 5, 6 we wrote a program that takes a DFA on n states and computes
for all nn ways to add a fresh symbol, the shortest path length in the power
set automaton from the full set to a singleton. For both candidates it turns out
that the only extensions keeping this shortest path length to be (n − 1)2 is by
adding either a copy of one of the existing symbols, or a symbol that acts as the
identity. This proves our claim.

To check our results, we also applied this approach to n = 3, 4: all 19 new
critical DFAs from Theorems 1 and 2 were obtained as extensions of the earlier
known DFAs.

4 Extending Cn

In this section we show that for all n ≥ 5 the DFA Cn is maximal: it cannot be
extended to a basic critical DFA. The main result of this section is the following:

Theorem 3. Let n ≥ 5 and let Cc
n be a basic extension of Cn by a symbol c.

Then Cc
n admits a synchronizing word of length strictly less than (n − 1)2.

This section is organized as follows: first we collect properties of Cn and its
shortest synchronizing word. Then we assume that c is a permutation on Q. We
will give a typical example that shows how to construct a shorter synchronizing
word. Finally, in Lemma 6, we demonstrate how to generalize this.

4.1 Properties of Cn

Recall that Cn is defined by n states 1, 2, . . . , n, and two symbols a, b, acting by
qa = q + 1 for q = 1, . . . , n − 1, na = 1, and qb = q for q = 2, . . . , n, 1b = 2. It
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is well known that wn = b(an−1b)n−2 of length |wn| = (n − 1)2 is its shortest
synchronizing word. It is synchronizing since

Qb = {2, 3, . . . , n} (1)
{2, 3, . . . , k} an−1b = {2, 3, . . . , k − 1} , 3 ≤ k ≤ n. (2)

The first part of this word defines the path

Q
b−→ Q \ {1} a−→ Q \ {2} a−→ . . .

a−→ Q \ {n} . (3)

We now extend the alphabet of the automaton by a non-trivial new symbol c.
Here we will assume that c is a permutation, i.e. |Qc| = n, and show that in
this case a shorter synchronizing word exists. The other cases use similar ideas
and are covered in [7]. The general pattern in the arguments is as follows. The
shortest synchronizing word wn corresponds to a path from Q to a singleton in
the power automaton of Cn. Take two sets S, S′ ⊆ Q on this path which are
visited in this order. Let d be the distance from S to S′, i.e.

d := min
{
|w| : Sw = S′, w ∈ {a, b}�}

.

Now construct a word w ∈ {a, b, c}� in the automaton Cc
n for which Sw = S′ and

|w| < d. Then Cc
n admits a synchronizing word of length at most |wn|−d+ |w| <

(n − 1)2.

4.2 Construction of a Shorter Synchronizing Word

If c defines a permutation on Q, we may assume that c satisfies:

qc ≤ q + 1 for all q ∈ Q. (4)

Indeed, if qc = q + k for some q ∈ Q and k ≥ 2, then (Q \ {q})c = Q \ {q + k},
which in view of (3) would imply existence of a synchronizing word shorter than
(n − 1)2. The following lemma describes the structure of c.

Lemma 4. If |Q| = n ≥ 1 and c is a permutation on Q satisfying (4), then
there exist numbers L (number of c-loops) and 1 ≤ l1, . . . , lL ≤ n (lengths of
c-loops) with

∑L
i=1 li = n such that

qc =
{

q − li + 1 if q = l1 + . . . + li for some 1 ≤ i ≤ L
q + 1 otherwise (5)

The proof of this lemma is straightforward and can be found in [7]. An illustration
of the statement is given below.

Note that L = 1 and L = n are the trivial cases, because then c = a or c is
the identity. Before we give a general argument, we first give an example.
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Example 5. Consider the automaton Cc
10 = {Q,Σ, δ} with Q = {1, . . . , 10} and

Σ = {a, b, c}. The actions of the symbols a and b are from the definition of
Cn and c is the permutation shown above. Here we have four loops (L = 4)
with lengths l1 = 3, l2 = 4, l3 = 1 and l4 = 2. We will show how to use the
c-loop of length four to create a shorter synchronizing word. Consider the set
S = {2, . . . , 9}. We start by a greedy approach to reach a set of size 7:

Sa3b = ({1, 2} ∪ {5, . . . , 10}) b = {2} ∪ {5, . . . , 10} .

As a next step, we shift everything by using the symbol a until the isolated state
{2} ends up in the c-loop of length four:

({2} ∪ {5, . . . , 10}) a3 = {1, 2, 3} ∪ {5} ∪ {8, 9, 10}

Since {1, 2, 3} and {8, 9, 10} are (unions of) full c-loops, they are invariant under
c. Therefore, we can move the isolated state {5} to the desired position:

({1, 2, 3} ∪ {5} ∪ {8, 9, 10}) c3 = {1, 2, 3, 4} ∪ {8, 9, 10}

Finally, we shift again by a power of a and apply b to get rid of one more state:

({1, 2, 3, 4} ∪ {8, 9, 10}) a3b = {1, . . . , 7} b = {2, . . . , 7} := S′.

We conclude that the word w = a3ba3c3a3b has the property that Sw = S′.
In C10 both S and S′ are on the shortest path from Q to {2} and by (1) the
distance between them is equal to 2n = 20. The word w has length |w| = 14, so
in Cc

10 there exists a synchronizing word of length at most (10 − 1)2 − 6 = 75.

The idea of this example works in more generality if there is a c-loop of length
at least 3, as is proved in the next lemma. If the longest loop has length 2, then
basically we can do the same thing, but we need at least three c-loops to isolate
a state.

Lemma 6. Let n ≥ 5 and let Cc
n be an extension of the automaton Cn by a

symbol c as given in Lemma 4. If 2 ≤ L ≤ n−1, then Cc
n admits a synchronizing

word of length strictly less than (n − 1)2.

Proof. Assume that lk ≥ 3 for some k and write Λ− =
∑k−1

i=1 li, Λ+ =
∑L

i=k+1 li,
for the sum of the loop lengths before the kth loop and after the kth loop
respectively. These sums can be zero if k = 1 or k = L. Define Λ = Λ− + Λ+ =
n − lk ≤ n − 3. Since L ≥ 2, we have Λ ≥ 1. Take

S = {2, 3, . . . , n − lk + 3} , S′ = {2, 3, . . . , n − lk + 1} .

and define the word
w = alk−1baΛ−

clk−1aΛ+
b. (6)

We will show that Sw = S′. Write S = S1 ∪ S2 with
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S1 = {2, . . . , n − lk + 1} = {2, . . . , 1 + Λ} ,

S2 = {n − lk + 2, n − lk + 3} = {2 + Λ, 3 + Λ} .

Then

S1w = {2, . . . , 1 + Λ} alk−1baΛ−
clk−1aΛ+

b

= {lk + 1, . . . , n} baΛ−
clk−1aΛ+

b = {lk + 1, . . . , n} aΛ−
clk−1aΛ+

b

=
({

1, . . . ,Λ−}
∪

{
Λ− + lk + 1, . . . , n

})
clk−1aΛ+

b (7)

=
({

1, . . . ,Λ−}
∪

{
Λ− + lk + 1, . . . , n

})
aΛ+

b

= {1, . . . ,Λ} b =
{

{2} = {1 + Λ} if Λ = 1
{2, . . . ,Λ} if Λ ≥ 2,

where sets of the form {x, . . . , y} with x > y should be interpreted as being
empty. This occurs if Λ− = 0 or Λ+ = 0. Furthermore

S2w = {2 + Λ, 3 + Λ} alk−1baΛ−
clk−1aΛ+

b = {1, 2} baΛ−
clk−1aΛ+

b

= {2} aΛ−
clk−1aΛ+

b =
{
2 + Λ−}

clk−1aΛ+
b =

{
1 + Λ−}

aΛ+
b (8)

= {1 + Λ} b = {1 + Λ} .

It follows that the word w has the property

Sw = (S1 ∪ S2)w = S1w ∪ S2w = {2, . . . ,Λ + 1} = S′.

and its length is |w| = lk − 1+1+Λ− + lk − 1+Λ+ +1 = 2lk +Λ = lk +n < 2n.
In the automaton Cn the sets S and S′ are both on the shortest path from
Q to a singleton and the shortest path is defined by S(an−1b)2 = S′. Since
|(an−1b)2| = 2n > |w|, the statement of the lemma follows.

The above proof fails if all loops have length at most 2. Using quite similar
ideas, a proof for this case is given in the full version of this paper [7]. 	


Proof of Theorem 3. The results of this section prove that Cc
n is sub-critical if c

is a permutation. The case |Qc| ≤ n − 1 is covered in [7]. 	


5 Conclusions and Further Research

We investigated critical DFAs in two main ways: exploiting computer support
we did a full investigation for n = 3, 4, and for n ≥ 5 in classical mathematical
style we proved that Cn does not admit non-trivial critical extensions. Further
we showed that neither of two more known critical DFAs on 5 and 6 states
admit non-trivial critical extensions. If Trahtman’s investigation gives all mini-
mal critical DFAs (which is a weaker form of his conjecture), our results give a
full characterization of all critical DFAs. In contrast to what Trahtman expected,
several minimal critical DFAs on 3 and 4 states can be combined and/or extended
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to critical DFAs. For all of these the minimal synchronizing word is not unique,
and sometimes the synchronizing state is not unique.

Despite of extensive effort, Černý’s conjecture is still open after more than
half a century. Being a strengthening of this long standing open problem, a
full characterization of all critical DFAs may not be tractable. More feasible
challenges may include

– a full investigation for n = 6,
– proving or disproving that every non-minimal basic critical DFA admits mul-

tiple shortest synchronizing words,
– giving an upper bound on the number of symbols in a minimal critical DFA

(all known examples have at most three).
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Theor. Appl. 32, 21–34 (1998)
9. Dutertre, B., de Moura, L.: Yices: an SMT solver. http://yices.csl.sri.com/

10. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127
(1982)

11. Kari, J.: A counterexample to a conjecture concerning synchronizing word in finite
automata. EATCS Bull. 73, 146–147 (2001)

12. Pin, J.E.: On two combinatorial problems arising from automata theory. Ann.
Discret. Math. 17, 535–548 (1983)
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Abstract. We revisit the following lower bound methods for the size
of a nondeterministic finite automaton: the fooling set technique, the
extended fooling set technique, and the biclique edge cover technique,
presenting these methods in terms of quotients and atoms of regular
languages. Although the lower bounds obtained by these methods are not
necessarily tight, some classes of languages for which tight bounds can
be achieved, are known. We show that languages with maximal reversal
complexity belong to the class of languages for which the fooling set
technique provides a tight bound. We also show that the extended fooling
set technique is tight for a subclass of unary cyclic languages.

1 Introduction

We revisit the following lower bound methods for the number of states of a
nondeterministic finite automaton (NFA) of a regular language: the fooling set
technique [5], the extended fooling set technique [1], and the biclique edge cover
technique [7]. All these lower bound methods were considered by Gruber and
Holzer [7], who defined the dependency graph of a language and showed that
lower bounds obtained by these techniques can be achieved by inspecting this
graph. They also pointed out that the dependency graph was implicitly defined
already in the classical work on NFA minimization by Kameda and Weiner [10].

Atoms of regular languages are a recently introduced notion in language and
automata theory [3]. We express the dependency graph of a language in terms
of (left) quotients and atoms of the language, similarly to how the matrix used
by the Kameda-Weiner method was recently reinterpreted [17]. We present the
above-mentioned lower bound methods in terms of quotients and atoms. We
then consider certain subsets of the sets of quotients and atoms, so-called prime
quotients and prime atoms, and show that the lower bound methods can be
presented in terms of prime quotients and prime atoms. We also state simple
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necessary conditions for a language to have a fooling set or an extended fooling
set of some size, and derive upper bounds for the size of a fooling set and an
extended fooling set for a language.

Lower bounds obtained by the above methods are not necessarily tight, that
is, a minimal NFA of a language may have more states than the obtained bound.
Some classes of regular languages for which tight bounds can be achieved, have
been specified in [15]. Namely, it was shown in [15] that the lower bound provided
by the fooling set technique can be tight for and only for biseparable languages,
and the lower bound provided by the extended fooling set technique can be tight
for any biresidual language. Both of these language classes were studied in [11].
However, the class of languages for which the extended fooling set technique can
provide a tight bound, is larger than the class of biresidual languages.

We consider languages with maximal reversal complexity, studied in [13] and
[14]. Equivalently, these are languages with maximal number of atoms [3]. We
show that any such language is biseparable, and thus the fooling set technique
provides a tight bound for minimal NFAs of these languages.

Finally, we consider unary cyclic languages [9] and show that the extended
fooling set technique is tight for a subclass of this class of languages.

2 Automata, Quotients, and Atoms of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F ),
where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → 2Q is the transition function, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. We extend the transition function to functions
δ′ : Q×Σ∗ → 2Q and δ′′ : 2Q×Σ∗ → 2Q, using δ for all these functions. The left
language of a state q of N is the set of words w ∈ Σ∗ such that q ∈ δ(I, w), and
the right language of q is the set of words w ∈ Σ∗ such that δ(q, w) ∩ F �= ∅. An
NFA is trim if it does not have any state with the empty left or right language.
The language accepted by an NFA N is L(N ) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}.
Two NFAs are equivalent if they accept the same language. An NFA is minimal
if it has a minimum number of states among all equivalent NFAs. The reverse of
an NFA N = (Q,Σ, δ, I, F ) is the NFA NR = (Q,Σ, δR, F, I), where q ∈ δR(p, a)
if and only if p ∈ δ(q, a) for p, q ∈ Q and a ∈ Σ.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q, Σ, and F are as in an NFA, δ : Q × Σ → Q is the transition function,
and q0 is the initial state. It is well known that for every regular language there
is a unique minimal DFA.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the
language w−1L = {x ∈ Σ∗ | wx ∈ L}. There is one initial quotient, ε−1L = L.
A quotient is final if it contains ε. We note here the fact that left quotients of L
correspond to the states of the minimal DFA of L.

A residual finite state automaton (RFSA) is an NFA N such that for every
state q of N , the right language of q is a left quotient of L(N ).
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An atom of a regular language L with quotients K0, . . . ,Kn−1 is any non-
empty language of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and
Ki is the complement of Ki with respect to Σ∗. If K0 ∩ · · · ∩ Kn−1 is an atom,
then it is called the negative atom, all the other atoms are positive. Thus atoms
of L are regular languages uniquely determined by L; they define a partition
of Σ∗. It is easy to see that L has at most 2n atoms. Every quotient Ki is a
(possibly empty) union of atoms.

It is well known that quotients of L correspond to the equivalence classes
of the Nerode right congruence ≡L of L [12] defined as follows: for x, y ∈ Σ∗,
x ≡L y if for every v ∈ Σ∗, xv ∈ L if and only if yv ∈ L. That is, the equivalence
class [x]L of a word x with respect to ≡L is the set of all words y such that
x−1L = y−1L. Similarly, the left congruence L≡ of L can be defined as follows:
for x, y ∈ Σ∗, xL≡y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L. It has
been noticed that the left congruence classes are the atoms of L [8]. That is, the
equivalence class L[x] of a word x with respect to L≡ is an atom Ai of L, such
that x ∈ Ai. This idea was also used in [2], where this equivalence is called the
atom congruence. It was shown in [3] that atoms correspond to the states of an
NFA called the átomaton of L, and that the reverse NFA of the átomaton of L
is the minimal DFA of the reverse language LR of L. Thus, there is a one-to-one
correspondence between the atoms of L and the quotients of LR.

3 Lower Bound Methods for the Size of NFA

There are two simple lower bound methods for the number of states of an NFA:
the fooling set technique presented by Glaister and Shallit [5], and the extended
fooling set technique introduced by Birget [1]. These methods can be presented,
respectively, as the first and the second case of the following theorem:

Theorem 1. Let L ⊆ Σ∗ be a regular language, and suppose there exists a set
of pairs P = {(xi, wi) | 0 � i � p − 1} such that either

1. (a) xiwi ∈ L for 0 � i � p − 1,
(b) xjwi /∈ L for 0 � i, j � p − 1, i �= j,
or

2. (a) xiwi ∈ L for 0 � i � p − 1,
(b) xjwi /∈ L or xiwj /∈ L for 0 � i, j � p − 1, i �= j,

holds. Then any NFA accepting L has at least p states.

The set P satisfying the conditions (a) and (b) in case 1 of Theorem1 is
called a fooling set of L, in case 2 it is called an extended fooling set of L. One
can easily see that the fooling set technique is a special case of the extended
fooling set technique. In fact, the latter one can provide better lower bounds for
some languages. However, neither of these techniques nor the third technique
that we describe next, provides necessarily a tight bound.

The third lower bound method that we consider is the biclique edge cover
technique introduced by Gruber and Holzer [7]. Let G = (X,Y,E) be a bipartite
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graph, with two sets of vertices X and Y , and the set of edges E ⊆ X × Y . A
set C = {H0,H1, . . .} of bipartite subgraphs of G is an edge cover of G if every
edge e ∈ E is an edge of some Hi. An edge cover C of G is a biclique edge cover
if every Hi is a biclique, that is, if Hi = (Xi, Yi, Ei) with Ei = Xi × Yi. The
bipartite dimension of G, denoted by d(G), is the size of the smallest biclique
edge cover of G if it exists and is infinite otherwise.

Gruber and Holzer [7] associated to any language L ⊆ Σ∗ and sets X,Y ⊆
Σ∗, a bipartite graph G = (X,Y,EL), where for x ∈ X and y ∈ Y , (x, y) ∈ EL

if and only if xy ∈ L. They introduced the biclique edge cover technique by the
following theorem:

Theorem 2. Let L ⊆ Σ∗ be a regular language, and suppose there exists a
bipartite graph G = (X,Y,EL) with X,Y ⊆ Σ∗ for L. Then any NFA accepting
L has at least d(G) states.

4 Quotient-Atom Graph and Matrix of a Language

Gruber and Holzer [7] defined a canonical graph, the dependency graph of a
language L to be the bipartite graph GL = (X,Y,EL), where X is the set of
the Nerode right congruence classes of L, and Y is the set of the left congruence
classes of L, and ([x]L, L[y]) ∈ EL if and only if xy ∈ L.

Let L be a regular language. Let K = {K0, . . . ,Kn−1} be the set of quotients
of L, and let A = {A0, . . . , Am−1} be the set of atoms of L. Since the classes of
the Nerode equivalence of L correspond to the left quotients of L, and the classes
of the left congruence of L are the atoms of L, we can define the dependency
graph GL of L in terms of quotients and atoms of L. To see this, we will show
that the following proposition holds:

Proposition 1. For any x, y ∈ Σ∗, xy ∈ L if and only if Aj ⊆ Ki, where
Ki = x−1L and y ∈ Aj.

Proof. Let x ∈ Σ∗, and let Ki = x−1L. By definition, x−1L = {v ∈ Σ∗ | xv ∈
L}. That is, for any y ∈ Σ∗, xy ∈ L if and only if y ∈ x−1L. Since the atoms
of L partition Σ∗, we know that for every y ∈ Σ∗ there is exactly one atom Aj

of L such that y ∈ Aj . Because every quotient of L is a union of atoms, we get
that y ∈ x−1L if and only if Aj ⊆ x−1L. Thus, xy ∈ L if and only if Aj ⊆ Ki. 	


By Proposition 1, we observe that the dependency graph of L can be
expressed as the bipartite graph GL = (K,A,EL), with (Ki, Aj) ∈ EL if and
only if Aj ⊆ Ki. With this interpretation of the dependency graph, we can call
it the quotient-atom graph of the language.

Based on [7], maximal fooling sets and extended fooling sets, as well as
a smallest biclique edge cover for the language, can be found by inspect-
ing the graph GL. Especially, by [7] the bipartite dimension of the graph
G = (Σ∗, Σ∗, EL) associated with L is equal to the bipartite dimension of GL.
This bipartite dimension is also called the bipartite dimension of L. Then the
biclique edge cover technique can be presented by the following theorem:
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Theorem 3. Let L ⊆ Σ∗ be a regular language, and let the quotient-atom graph
of L be GL = (K,A,EL), with (Ki, Aj) ∈ EL if and only if Aj ⊆ Ki. Then any
NFA accepting L has at least d(GL) states.

Also, the fooling set technique and the extended fooling set technique can be
expressed as the first and the second case, respectively, of the following theorem:

Theorem 4. Let L ⊆ Σ∗ be a regular language, and suppose there exists a set
of quotient-atom pairs P = {(Ki, Ai) | 0 � i � p − 1} such that either

1. (a) Ai ⊆ Ki for 0 � i � p − 1,
(b) Ai �⊆ Kj for 0 � i, j � p − 1, and i �= j,
or

2. (a) Ai ⊆ Ki for 0 � i � p − 1,
(b) Ai �⊆ Kj or Aj �⊆ Ki for 0 � i, j � p − 1, and i �= j

holds. Then any NFA accepting L has at least p states.

Similarly to the classical definition of fooling sets, the set P satisfying the
conditions (a) and (b) in case 1 of Theorem4 can be called a fooling set in terms
of quotients and atoms of L, in case 2 it is an extended fooling set of L.

It was pointed out in [7] and also discussed in [6] that the dependency graph
of a language was implicitly defined already in the classical theory of NFA mini-
mization by Kameda and Weiner [10]. They used the states of the minimal DFAs
for a language L and its reverse LR, to form a matrix, and based on the grids
in this matrix, a minimal NFA was found.

The Kameda-Weiner method was reinterpreted recently in terms of quotients
and atoms [17], and it was shown that Kameda-Weiner matrix can be viewed
as the quotient-atom matrix, with the rows of the matrix corresponding to non-
empty quotients of L and columns, to positive atoms of L. Then an (i, j) entry
of the matrix is 1 if quotient Ki contains atom Aj as a subset, and 0 otherwise.
Any grid g = P × R of this matrix is a direct product of a subset P of quotients
with a subset R of atoms, such that every atom in R is a subset of every quotient
in P . A grid g = P ×R is maximal if for any grid g′ = P ′ ×R′ such that P ⊆ P ′

and R ⊆ R′, it holds that P = P ′ and R = R′. A cover C of the matrix is
a set C = {g0, . . . , gk−1} of grids, such that every 1-entry (Ki, Aj) belongs to
some grid gi in C. A minimal cover has the minimal number of grids. Based
on any grid cover C of the quotient-atom matrix, the Kameda-Weiner method
constructs an NFA NC which may or may not accept the language L. A cover C
is called legal if L(NC) = L. To find a minimal NFA of a language L, the covers
of the quotient-atom matrix of L are tested in the order of increasing size to see
if they are legal. The first legal NFA is a minimal one.

It is easy to see that the quotient-atom matrix is another representation
of the quotient-atom graph of the language, where the empty quotient and the
negative atom (if they exist) have been removed, and with 1-entries of the matrix
corresponding to the edges of the graph. For any grid g = P × R of the matrix,
there is a corresponding bipartite graph G = (P,R,E) with E = P × R, that
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is, a biclique. Therefore, given any grid cover of the quotient-atom matrix, the
set of corresponding bicliques forms a biclique edge cover of the quotient-atom
graph.

5 Prime Quotients and Prime Atoms

Let L be a regular language, K = {K0, . . . ,Kn−1} be the set of quotients, and
A = {A0, . . . , Am−1} be the set of atoms of L. A non-empty quotient Ki is prime
if Ki is not a union of other quotients [4].

We know by the definition of an atom that any atom Aj can be presented
as an intersection Aj =

⋂
i∈Sj

Ki ∩
⋂

i∈Sj
Ki, where Sj ⊆ {0, . . . , n − 1} and

Sj = {0, . . . , n − 1}\Sj . Thus, for an atom Aj , there is a corresponding set
{Ki | i ∈ Sj} of uncomplemented quotients in the intersection representing Aj ,
or equivalently, the set {Ki | Aj ⊆ Ki}. We say that any positive atom Aj is
prime if the set of uncomplemented quotients in the intersection representing Aj

is not a union of such sets of quotients corresponding to other atoms. Duality
between the definitions of a prime quotient and a prime atom becomes more
evident if we consider the quotient-atom matrix of L. Namely, prime quotients
correspond to the rows of the quotient-atom matrix which are not unions of
other rows, and prime atoms correspond to the columns of the matrix which are
not unions of other columns.

We now consider a submatrix of the quotient-atom matrix, consisting of the
rows and columns which correspond to the prime quotients and prime atoms,
respectively. We call this matrix the prime quotient-atom matrix. Similarly, we
can form a subgraph of the quotient-atom graph, with prime quotients and prime
atoms as sets of vertices and corresponding edges between these vertices. We call
this subgraph the prime quotient-atom graph.

Proposition 2. Let C = {g0, . . . , gk−1} be a minimal cover of the quotient-
atom matrix, with gi = Pi × Ri for i = 0, . . . , k − 1. For every grid gi = Pi × Ri

in C, there is some prime quotient in Pi and some prime atom in Ri.

Proof. Let C = {g0, . . . , gk−1} be a minimal cover of the quotient-atom matrix,
with gi = Pi×Ri for i = 0, . . . , k−1. Suppose that there is some grid gi = Pi×Ri

in C, such that every quotient in Pi is not prime. Let Kl ∈ Pi be any such
quotient. Then it is easy to see that Kl can be covered by vertically extending
those grids in C which involve prime quotients that are subsets of Kl. That is,
for every prime quotient Kp ⊆ Kl, we replace any grid gh = Ph × Rh such that
Kp ∈ Ph, by the grid g′

h = (Ph ∪ {Kl}) × Rh. In this way, all entries of the
grid gi will finally also belong to some other (modified) grid in C, implying that
we could remove gi from C. Thus, C is not a minimal cover, a contradiction. A
similar reasoning can be applied for the set Ri of atoms. 	


Proposition 3. There is a one-to-one correspondence between the sets of min-
imal covers of the quotient-atom matrix and the prime quotient-atom matrix,
consisting of maximal grids.
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Proof. Let C = {g0, . . . , gk−1} be a minimal cover of the quotient-atom matrix
consisting of maximal grids. By Proposition 2, every grid gi in C involves some
prime quotient and prime atom. Therefore, for every grid gi = Pi×Ri in C, there
is a corresponding grid g′

i = P ′
i ×R′

i of the prime quotient-atom matrix, where P ′
i

is the set of prime quotients in Pi and R′
i is the set of prime atoms in Ri, both P ′

i

and R′
i being non-empty. Clearly, the set C ′ = {g′

0, . . . , g
′
k−1} is a grid cover of

the prime quotient-atom matrix. We claim that C ′ is a minimal cover. Suppose
that there is a cover C ′′ of the prime quotient-atom matrix consisting of fewer
than k grids. Since any grid in C ′′ is also a grid of the quotient-atom matrix,
it can be made maximal by possibly extending it horizontally and vertically. In
this way, the quotient-atom matrix can be covered by the maximized versions of
grids in C ′′, implying that C is not a minimal cover, a contradiction. Conversely,
if we consider the set C ′ = {g′

0, . . . , g
′
k−1} as the set of grids of the quotient-atom

matrix, then by maximizing all grids g′
i, we obtain the original cover C.

Similarly, we can show that if C ′ = {g′
0, . . . , g

′
k−1} is a minimal cover of

the prime quotient-atom matrix, consisting of maximal grids, and if we consider
these grids as grids of the full matrix, then by maximizing all grids g′

i, we get a
minimal cover of the quotient-atom matrix. 	


By Proposition 3, instead of looking for minimal covers of the quotient-atom
matrix, one can search for minimal covers of the prime quotient-atom matrix.
The same reasoning applies to searching for a minimal biclique edge cover of the
quotient-atom graph and its prime version.

Let K ′ ⊆ K be the set of prime quotients of L, and let A′ ⊆ A be the set of
prime atoms of L. Then the biclique edge cover technique can be presented by
the following theorem:

Theorem 5. Let L ⊆ Σ∗ be a regular language, and let the prime quotient-atom
graph of L be G′

L = (K ′, A′, E′
L), with (Ki, Aj) ∈ E′

L if and only if Aj ⊆ Ki.
Then any NFA accepting L has at least d(G′

L) states, with d(G′
L) = d(GL).

Next theorem shows that both of the fooling set techniques can also be
expressed in terms of prime quotients and prime atoms:

Theorem 6. If P = {(Ki, Ai) | 0 � i � p − 1} is a fooling set (an extended
fooling set, respectively) for a regular language L, then there is a fooling set (an
extended fooling set, respectively) P ′ = {(K ′

i, A
′
i) | 0 � i � p−1} for L such that

all K ′
i’s and A′

i’s are prime.

Proof. Let L ⊆ Σ∗ be a regular language, with a fooling set or an extended
fooling set P = {(Ki, Ai) | 0 � i � p−1}. We show that every pair (Ki, Ai) ∈ P ,
where either Ki or Ai is not prime, can be replaced by a pair (K ′

i, A
′
i), such that

both K ′
i and A′

i are prime.
Consider any pair (Ki, Ai) in P . If Ki is not prime, then there is some prime

quotient K ′
i ⊆ Ki, such that Ai ⊆ K ′

i. If P is a fooling set, then Aj �⊆ Ki holds
for every j �= i, implying that Aj �⊆ K ′

i holds as well. If P is an extended fooling
set, then either Aj �⊆ Ki or Ai �⊆ Kj holds for every j �= i, implying that either
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Aj �⊆ K ′
i or Ai �⊆ Kj holds. We note that K ′

i is not equal to any Kh, where
h ∈ {0, . . . , p − 1}, because otherwise both Ai ⊆ Kh and Ah ⊆ Ki would hold
for some h �= i, implying that P could not be a (extended) fooling set. Thus
we can replace (Ki, Ai) by (K ′

i, Ai) in P , and P will still be a fooling set, or an
extended fooling set, respectively.

If Ai is not prime, then there is some prime atom A′
i, such that A′

i ⊆ Ki. A
similar reasoning as above will allow us to replace (Ki, Ai) by (Ki, A

′
i) in P , so

that P remains to be a fooling set, or an extended fooling set, respectively. 	


By Theorem 6, one can search for a fooling set or an extended fooling set for
a language, looking at the prime quotient-atom matrix/graph, instead of the full
version of the matrix/graph. Let a language L have np prime quotients and mp

prime atoms, and let min(np,mp) denote a minimum of np and mp. Clearly, the
size of any fooling set or an extended fooling set for L is at most min(np,mp). We
note that the canonical RFSA [4] of L has np states, every state corresponding
to some prime quotient of L, and symmetrically, the canonical RFSA of LR has
mp states. Therefore, it is obvious that a minimal NFA of L (as well as of LR)
has at most min(np,mp) states.

To conclude this section, we present simple necessary conditions for the prime
quotient-atom matrix of L so that L has a fooling set or an extended fooling set
of a certain size. As a corollary, upper bounds for the size of a fooling set and
an extended fooling set for L are derived.

Proposition 4. If L has a fooling set (an extended fooling set, respectively) of
size p, then the prime quotient-atom matrix of L has at least p(p − 1) (p(p−1)

2 ,
respectively) 0-entries.

Proof. Let L have a fooling set of size p. Then by Theorem 6, there is a fooling
set P = {(Ki, Ai) | 0 � i � p − 1}, such that all Ki’s and Aj ’s are prime. By
Theorem 4, Ai �⊆ Kj must hold for all 0 � i, j � p − 1, i �= j. Therefore, for
every pair of (Ki, Ai) and (Kj , Aj) such that i �= j, both entries of the prime
quotient-atom matrix corresponding to (Ki, Aj) and (Kj , Ai), must be 0. Since
there are

(
p
2

)
= p(p−1)

2 such pairs, the total number of 0-entries in the matrix is
at least 2

(
p
2

)
= p(p − 1).

By a similar reasoning we get that if L has an extended fooling set of size p,
then the prime quotient-atom matrix has at least p(p−1)

2 0-entries. 	


Corollary 1. The size of a fooling set of L is at most 1+
√
4r+1
2 and the size

of an extended fooling set of L is at most 1+
√
8r+1
2 , where r is the number of

0-entries in the prime quotient-atom matrix of L.

6 When Are the Lower Bounds Tight?

Lower bounds obtained by the fooling set techniques or the biclique edge cover
technique are not necessarily tight. Denoting the maximal lower bounds obtained
by the fooling set technique and the extended fooling set technique for L, by fst(L)



Lower Bound Methods for the Size of NFA Revisited 269

and efst(L), respectively, the bipartite dimension of L by d(L), and the nondeter-
ministic state complexity of L, that is, the size of a minimal NFA of L, by nsc(L),
it is clear that the inequalities fst(L) � efst(L) � d(L) � nsc(L) hold.

The subclass of regular languages for which the lower bound provided by the
fooling set technique is tight, was characterized in [15]. Namely, it was shown
that the fooling set technique can be tight for and only for languages accepted
by a biseparable NFA defined in [11] as follows: a trim NFA N = (Q,Σ, δ, I, F ) is
separable if for every state q ∈ Q there is a word u ∈ Σ∗ such that δ(I, u) = {q},
and N is biseparable if both N and NR are separable.

We note that a partial result of the above characterization was presented in
[6], where it was shown that tightness of the fooling set technique for a language
implies that the language is biseparable.

It was also shown in [15] that the lower bound provided by the extended
fooling set technique is tight for any language accepted by a biresidual automaton
(biRFSA), that is, an RFSA with its reverse automaton also being an RFSA.
Such languages are called biRFSA languages. However, there are other languages
for which the lower bound obtained by this technique is tight. We also note that
a biseparable automaton is a special case of a biRFSA. Both of these automata
and language classes were studied in [11], where it was shown that for a biRFSA
language L, the canonical RFSA is a biRFSA and a minimal NFA, and the
canonical RFSA of LR is the reverse of the canonical RFSA of L.

A factorization of a language L is a pair (X,Y ) of languages such that XY ⊆
L and such that for any pair (X ′, Y ′) with X ⊆ X ′ and Y ⊆ Y ′, the equalities
X = X ′ and Y = Y ′ hold.

We recall that there is a one-to-one correspondence between the atoms of L
and the quotients of LR (cf. the end of Sect. 2).

To show a relationship between biRFSAs and the prime quotients and prime
atoms of a language L, we will make use of the notion of a maximized atom [16]
which is defined for every atom Ai of L by max(Ai) =

⋂
Ai⊆Kj

Kj , where Kj ’s
are the quotients of L, and the following result from [16]:

Proposition 5 ([16], Proposition 4, Part 2). If Ai is an atom of a lan-
guage L and Qi is the corresponding quotient of LR, then (QR

i ,max(Ai)) is a
factorization of L.

Proposition 6. A language L is a biRFSA language if and only if there is a
one-to-one correspondence between the prime quotients Ki and the prime atoms
Ai of L such that Ki = max(Ai).

Proof. Let L be a biRFSA language and let C be the canonical RFSA of L. Then
C is a biRFSA such that for every state qi of C, the right language of qi is some
prime quotient Ki of L and the left language of qi is the reverse of some prime
quotient Qi of LR. Since by Proposition 5, (QR

i ,max(Ai)) is a factorization of
L, the equality Ki = max(Ai) holds.

Conversely, if there is a one-to-one correspondence between the prime quo-
tients Ki and the prime atoms Ai of L with Ki = max(Ai), then by Proposition 5,
(QR

i ,Ki) is a factorization of L, implying that L is a biRFSA language. 	
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Since a biseparable automaton is a canonical biRFSA and because the fooling
set technique is tight for and only for biseparable languages, we can state the
following proposition as a consequence of Theorem 6:

Proposition 7. The following statements are equivalent:

1. A language L is biseparable.
2. The fooling set technique is tight for L.
3. The prime quotient-atom matrix of L is the identity matrix (after ordering

quotients and atoms appropriately).

6.1 Languages with Maximal Reversal Complexity

In this subsection we consider an interesting subclass of biseparable languages.
Let L be a regular language such that the minimal DFA of L has n states and
the minimal DFA of LR has 2n states. Since it is well known that if the state
complexity of a given language is n, then the state complexity of the reverse
language is at most 2n, L is a language of maximal reversal complexity. It is also
known that L is a language with maximal number of atoms [3]. Such kind of
languages have been studied in [13,14], however, a complete characterization of
languages of maximal reversal complexity is still an interesting open problem.

Theorem 7. If the state complexity of a language L is n, and the state com-
plexity of LR is 2n, then L is biseparable.

Proof. Indeed, if the minimal DFA of a language L has n states and the minimal
DFA of LR has 2n states, then L has n quotients and 2n atoms. All the quotients
of L are prime, because for every quotient Ki there is an atom K0 ∩ · · · ∩ Ki−1 ∩
Ki ∩ Ki+1 ∩ · · · ∩ Kn−1 with only Ki uncomplemented and other quotients
complemented. The corresponding set of atoms forms the set of prime atoms of
L, and it is clear that every quotient of L contains exactly one prime atom as a
subset. By Proposition 7, L is biseparable. 	


By Proposition 7 and Theorem 7, the fooling set technique is tight for any
language with maximal reversal complexity. We also note that since by [11], any
biseparable NFA is a unique minimal NFA of a language, the minimal DFA of a
language with maximal reversal complexity is a unique minimal NFA.

6.2 Unary Cyclic Languages

Let L be a regular language over a unary alphabet Σ = {a}, and let the minimal
DFA of L be D = (Q,Σ, δ, q0, F ) with a state set Q = {q0, . . . , qn−1} such that
δ(qi, a) = qi+1 for i = 0, . . . , n − 2, and δ(qn−1, a) = q0. This kind of language
is called a unary cyclic language. Minimal NFAs of unary cyclic languages were
studied in [9], where also a lower bound for the size of an NFA of such a language
was presented.
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First, we note that any unary language L and its reverse LR are the same
languages. This fact implies that there is a one-to-one correspondence between
the quotients and the atoms of a unary language, such that if we order the rows
and columns of the quotient-atom matrix according to this correspondence, the
matrix will be symmetric. More specifically, for example, we can use the order
of rows corresponding to quotients, with the first row corresponding to K0 = L,
and the ith row corresponding to Ki−1 = a−1Ki−2, i = 2, . . . , n, and the order
of columns corresponding to a similar order of atoms, starting with the atom
A0 such that ε ∈ A0, and using the ith column for the atom Ai−1 such that
Ai−2 ⊆ a−1Ai−1, i = 2, . . . , n.

In the following we can assume that the quotient-atom matrix is symmetric,
with the rows and columns ordered as described above. We state some easily
verified properties of unary cyclic languages:

Proposition 8. Let L be a unary cyclic language. The following statements
hold:

1. The quotient-atom matrix of L and its prime version are the same matrices.
2. Every row and column of the quotient-atom matrix of L has k 1-entries and

n − k 0-entries, where n is the number of quotients and k is the number of
final quotients of L.

Let L be a unary cyclic language with the minimal DFA D = (Q,Σ, δ, q0, F )
as described above. The following statement holds:

Proposition 9. If there is a final state qi ∈ F of D such that for every qj ∈ F
with j �= i, the state q(2i−j) mod n is not final, then L has an extended fooling
set of size n.

Proof. Let there be a state qi ∈ F such that for every qj ∈ F with j �= i,
q(2i−j) mod n ∈ Q\F . We claim that the set P = {(Kk, Al) | (k + l) mod n =
i} = {(K0, Ai), (K1, Ai−1), . . . , (Ki, A0)} ∪ {(Ki+1, An−1), . . . , (Kn−1, Ai+1)} is
an extended fooling set for L. Indeed, it is not difficult to see that because
qi ∈ F , the inclusions Ai ⊆ K0, Ai−1 ⊆ K1, and other similar inclusions hold
for all quotient-atom pairs in P . We can also notice that since for every final
state qj with j �= i, the state q(2i−j) mod n is not final, for any two non-equal
quotient-atom pairs (Kk1 , Al1), (Kk2 , Al2) ∈ P , either Al1 �⊆ Kk2 or Al2 �⊆ Kk1

must hold. Thus, P is an extended fooling set. 	


Remark 1. We can use Proposition 9 to show that the bound for the size of an
extended fooling set given by Corollary 1 is tight. Indeed, let D = (Q,Σ, δ, q0, F )
be the minimal DFA of a unary cyclic language L with Q = {q0, . . . , qn−1}, where
n is odd, and with F = {q0, . . . , q(n−1)/2}. Using i = 0 in Proposition 9, we get
that L has an extended fooling set of size n. By Corollary 1, the size of an

extended fooling set of L is at most 1+
√

8n(n−1)/2+1

2 = n.

We note that if the condition of Proposition 9 holds for a unary cyclic lan-
guage L, then the extended fooling set technique is tight for L. Consequently,
the minimal DFA D of L is a minimal NFA for L.
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Proposition 10. If a unary cyclic language L with n quotients has an extended
fooling set of size n, then L has at most n

2 � final quotients.

Proof. Follows from Propositions 4 and 8. 	
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Abstract. PEGs were formalized by Ford in 2004, and have several
pragmatic operators (such as ordered choice and unlimited lookahead)
for better expressing modern programming language syntax. Since these
operators are not explicitly defined in the classic formal language theory,
it is significant and still challenging to argue PEGs’ expressiveness in the
context of formal language theory. Since PEGs are relatively new, there
are several unsolved problems. One of the problems is revealing a subclass
of PEGs that is equivalent to DFAs. This allows application of some
techniques from the theory of regular grammar to PEGs. In this paper,
we define Linear PEGs (LPEGs), a subclass of PEGs that is equivalent
to DFAs. Surprisingly, LPEGs are formalized by only excluding some
patterns of recursive nonterminal in PEGs, and include the full set of
ordered choice, unlimited lookahead, and greedy repetition, which are
characteristic of PEGs. Although the conversion judgement of parsing
expressions into DFAs is undecidable in general, the formalism of LPEGs
allows for a syntactical judgement of parsing expressions.

Keywords: Parsing expression grammars · Boolean finite automata ·
Packrat parsing

1 Introduction

Deterministic finite automata (DFAs) are a simple and fundamental theory in
the classic formal language, which allows pattern matching on the input without
backtracking. This positive aspect is applied to the implementation of many reg-
ular expression engines such as Google RE2 [8] and grep leading to significantly
improved performance.

Similarly, the DFA nature is used for faster parsing. For example, a par-
tial conversion of context-free grammars (CFGs) into DFAs is studied with
ANTLR3/4 by Parr et al. [15,16]. In this study, Parr et al. achieve better perfor-
mance of a parser based on CFG by using the conversion. Concretely, the parser
decides a nonterminal that should be expanded by using the DFA. That is, DFA
conversions remove backtracking while parsing.

In this way, DFAs are used for faster parsing. To the best of our knowledge,
however, DFAs are not used for parsing a parsing expression grammar (PEG)
[7] yet. PEGs are a relatively new and popular foundation for describing syntax,
formalized by Ford in 2004. PEGs look very similar to some of the EBNFs or
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 275–286, 2017.
DOI: 10.1007/978-3-319-53733-7 20
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CFG-based grammar specifications, but differ significantly in that they have
unlimited lookahead with syntactic predicates and deterministic behaviors with
greedy repetition and prioritized choice. Due to these extended operators, PEGs
can recognize highly nested languages such as {an bn cn | n > 0}, which is not
possible in a CFG.

These extended operators raise an interesting and open question on the con-
nection to the formal language theory. In particular, we have expected that a
partial DFA conversion brings better performance benefits to the PEG-based
parser generation as well as Parr et al. However, parsing expressions are obvi-
ously more expressive than DFAs, due to recursion which does not appear in
regular expressions. Therefore, we require a subclass of PEGs that is equivalent
to DFAs for applying DFA techniques to PEGs.

The main contribution of this paper is that we reveal a subclass of PEGs
that is equivalent to DFAs. We formalize the subclass as linear parsing expression
grammars (LPEGs). Surprisingly, LPEGs are formalized by excluding only some
patterns of recursive nonterminal in PEGs, and include the full set of prioritized
choice, unlimited lookahead, and greedy repetition, which are unique to PEGs.
Furthermore, the formalism of LPEGs allows a partial conversion of a PEG
into DFAs. Since converting into DFAs can eliminate backtracking, the partial
conversion would lead to further optimization of the parser generator.

The rest of this paper proceeds as follows. Section 2 describes the formalism of
LPEGs and shows the relationship between LPEGs and PEGs. Section 3 shows
a regularity of LPEGs. Section 4 briefly reviews related work. Section 5 is the
conclusion.

2 Linear PEG

In this section, we describe the formalism of linear parsing expression grammars
(LPEGs). LPEGs are a subclass of PEGs equivalent to DFAs, and LPEGs are
formalized by excluding patterns of recursive nonterminals that are followed by
expressions. By the exclusion, the syntax of an LPEG is limited to right-linear.
Thus, we can simply consider an LPEG as a PEG where the syntax is right-
linear.

To begin with, we describe PEG operators in Sect. 2.1. Then, we show the
formalism of LPEGs in Sect. 2.2. Finally, we describe language properties in
Sect. 2.3.

2.1 PEG Operators

Table 1 shows the summary of PEG operators used throughout this paper.
The string ‘abc’ exactly matches the same input, while [abc] matches one of

these terminals. The . operator matches any single terminal. The e?, e*, and
e+ expressions behave as in common regular expressions, except that they are
greedy and match until the longest position. The e1 e2 attempts two expressions
e1 and e2 sequentially, backtracking the starting position if either expression
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Table 1. PEG operators

PEG Type Proc. Description

’ ’ Primary 5 Matches text

[] Primary 5 Matches character class

. Primary 5 Any character

A Primary 5 Non-terminal application

(e) Primary 5 Grouping

e? Unary suffix 4 Option

e* Unary suffix 4 Zero-or-more repetitions

e+ Unary suffix 4 One-or-more repetitions

&e Unary prefix 3 And-predicate

!e Unary prefix 3 Not-predicate

e1e2 Binary 2 Sequence

e1/e2 Binary 1 Prioritized choice

fails. The choice e1/e2 first attempts e1 and then attempts e2 if e1 fails. The
expression &e attempts e without any terminal consuming. The expression !e
fails if e succeeds, but succeeds if e fails.

We consider the any character . expression to be a choice of all single termi-
nals (a/b/ . . . /c) in Σ. As long as any special cases are not noted, we treat the
any character as a syntax sugar of such a terminal choice.

Likewise, many convenient notations used in PEGs such as character class,
option, and one or more repetition are treated as syntax sugars:

[abc] = a/b/c character class
e+ = ee* one or more repetition
e? = e/ε option
&e = !!e and-predicate

2.2 Definition of LPEGs

Definition 1. A linear parsing expression grammar (LPEG) is defined by a 4-
tuple G = (NG, Σ, PG, es), where NG is a finite set of nonterminals, Σ is a
finite set of terminals, PG is a finite set of production rules, and es is a linear
parsing expression termed the start expression. A linear parsing expression e
is a parsing expression with the syntax according to BNF shown in Fig. 1. p
in Fig. 1 is a nonterminal-free parsing expression (n-free parsing expression).
An n-free parsing expression p is a parsing expression such that the expression
doesn’t contain nonterminals. Each rule in PG is a mapping from a nonterminal
A ∈ NG to a linear parsing expression e. We write PG(A) to denote an associated
expression e such that A ← e ∈ PG.



278 N. Chida and K. Kuramitsu

Fig. 1. Syntax of a linear parsing expression

We show two examples of an LPEG and an example of a PEG but not an
LPEG.

Example 2. G = ({A,B}, {a, b, c}, {A ← aA/bB/c,B ← aB/bA/c}, A) is an
LPEG.

Example 3. G = ({A}, {a, b}, {A ← !(aA)aA/b}, A) is an LPEG.

Example 4. G = ({A,B}, {a, b}, {A ← aAa/B*, B ← aB/b}, A) is not an
LPEG. Note that aAa and B* are not derived from the above syntax.

All subsequent use of the unqualified term “grammar” refers specifically to
linear parsing expression grammars as defined here, and the unqualified term
“expression” refers to linear parsing expressions. We use the variables a, b, c ∈ Σ,
A,B,C ∈ NG, x, y, z ∈ Σ∗, and e for linear parsing expressions.

2.3 Language Properties

In this section, we define a language recognized by LPEGs. We use a function
consume to define the language. consume(e, x) = y denotes that the expression
e succeeds on the input string x and consumes y. consume(e, x) = f denotes
that the expression e fails on the input string x.

Definition 5. Let G = (NG, Σ, PG, es) be an LPEG, let e be an expression. The
language generated by e is a set of all strings over Σ:

LG(e) = {x | x ∈ Σ∗, y is a prefix of x, consume(e, x) = y}.

Definition 6. Let G = (NG, Σ, PG, es) be an LPEG. The language generated
by a grammar G is a set of all strings over Σ:

L(G) = LG(es).



Linear Parsing Expression Grammars 279

3 Regularity

In this section, we prove that LPEGs are a class that is equivalent to DFAs.
To prove this, we show that for any LPEG G there exists a DFA D such that
L(G) = L(D) and for any DFA D there exists an LPEG G such that L(D) =
L(G). We show the former in Sect. 3.1 and the latter in Sect. 3.2.

3.1 From LPEGs to DFAs

We show that for any LPEG G there exists a DFA D such that L(G) = L(D).
This can be proved by translating LPEGs into boolean finite automata (BFAs) [4].

A BFA is a generalized nondeterministic finite automaton (NFA). The dif-
ference between NFAs and BFAs is a representation of a state under transition.
The state under transition on NFAs can be represented as a boolean function
consisting of logical OR and boolean variables. On the other hand, the state
under transition on BFAs can be represented as a boolean function consisting
of logical AND, logical OR, logical NOT, constant values (i.e. true and false),
and boolean variables.

There are two reasons for using BFAs. One is to handle not-predicates. We
can represent these predicates as a boolean function by using logical AND and
logical NOT. Another reason is that BFAs can be converted into DFAs ([4],
Theorem 2). Thus, LPEGs can be converted into DFAs if we can convert LPEGs
into BFAs.

In the next section we describe basic definitions and notations of BFAs. In
Sect. 3.1, we show that LPEGs can be converted into BFAs.

Boolean Finite Automata

Definition 7. A boolean finite automaton (BFA) is a 5-tuple B =
(Q,Σ, δ, f0, F ). Q = {q1, q2, . . . , qn} is a finite non-empty set of states. Σ is
a finite set of terminals. δ : Q × Σ → VQ is a transition function that maps a
state and a terminal into a boolean function of boolean variables that correspond
to the states q1, q2, . . . , qn in the set of boolean functions VQ. f0 ∈ VQ is an ini-
tial boolean function. F is a finite set of accepting states. We use qi as a boolean
variable that corresponds to a state qi ∈ Q.

Let f be a boolean function in VQ. The transition function δ is extended to
VQ × Σ∗ as follows:

δ(f, ε) = f

δ(f, a) = f(δ(q1, a), . . . , δ(qn, a))
δ(f, aw) = δ(δ(f, a), w)

A language accepted by a BFA is defined as follows:

Definition 8. Let B be a BFA and x ∈ Σ∗. x ∈ L(B) iff δ(f0, x)(c1, . . . , cn) =
true, where ci = true if qi ∈ F , otherwise false.
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From LPEGs to BFAs. We show a conversion from an LPEG into a BFA.
The conversion consists of three steps. In the first step, we modify an LPEG in
order to simplify the conversion. In the second step, we convert a modified LPEG
into a BFA. However, the BFA is incomplete in this step, since the conversion
handles nonterminals as temporary boolean variables to avoid an infinite loop
by recursions. In the final step, we replace the temporary boolean variables in a
BFA with initial functions of the nonterminals.

First, we modify an LPEG by applying a modification function CG shown
in Definition 9. By applying the modification, new production rules for nonter-
minals in not-predicates are added to the LPEG. We apply this modification to
LPEGs, because we consider a nonterminal A in a not-predicate and a nonter-
minal A that is not in a not-predicate as distinct.

Definition 9. Let G = (NG, Σ, PG, es) be an LPEG. CG(G) = (NG ∪
NG′ , Σ, PG1 ∪ PG2 , es′), where PG1 = {A ← Cn(eA) | eA ∈ PG}, PG2 = {A′ ←
eA′ | eA′ = copy(eA), eA ∈ PG}, NG′ = {A′ | eA′ ∈ PG2}, es′ = Cn(es).

In the modification function, we use an auxiliary function Cn. Cn is a func-
tion for modification of a production rule. We show the definition of Cn in
Definition 10. In the following definition, we use a function copy. copy(e) = e′

denotes that a nonterminal A is renamed as A′ if the nonterminal A is not
already A′ and the other expressions are same. We assume that there does not
exist A′ in an LPEG before the modification.

For example, copy(aA/!(bB)b/c) = aA′/!(bB′)b/c and copy(copy(!(aA))) =
copy(!(aA′)) = !(aA′).

Definition 10.
Cn(p) = p
Cn(p A) = p A
Cn(p e) = p Cn(e)
Cn(e/e) = Cn(e)/Cn(e)
Cn(!e e) = !(copy(e)) Cn(e)

We show an example of the modification as follows:

Example 11. G = ({A,B}, {a, b, c, d}, {A ← !(aA/bB/c)d,B ← aB/b}, A) is
an LPEG. Then, CG(G) = ({A,B,A′, B′}, {a, b, c, d}, PG1 ∪ PG2 , A), where PG1

consists of the following rules:

A ← !(aA′/bB′/c)d
B ← aB/b

PG2 consists of the following rules:

A′ ← !(aA′/bB′/c)d
B′ ← aB′/b
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Secondly, we describe the conversion from modified LPEGs to BFAs with
temporary boolean variables. This is inspired by [13].

In this function, a set of accepting states is divided into two sets, F and P , in
order to simplify the construction of BFAs. The set P is a set of accepting states
for not-predicates. We assume that the names of boolean variables are distinct
in the conversion. We write a temporary boolean variable of a nonterminal A as
ftmpA

. A function φ(f1, f2, F ) converts the boolean function f1 by replacing a
boolean variable s in f1 with s∨ f2 if s ∈ F . For example, let f1 = (q1 ∧ q2)∨ q3,
f2 = q4 and F = {q2, q3}, where q1, q2, q3 and q4 are boolean variables. Then,
φ(f1, f2, F ) = (q1 ∧ (q2 ∨ q4)) ∨ (q3 ∨ q4). A function copy used in TB(!e) is the
same definition as in Definition 10. Note that the BFA converted by the following
function accepts the full match of the expressions. A BFA that accepts the same
language with the LPEG is written as TB(es.*).

T (G) = (Q,Σ, δ′, f0, F ∪ P )
where (Q,Σ, δ, f0, F, P ) = TB(es)
and δ′ = {((s, .), s) | s ∈ P} ∪ δ

TB(ε) = ({s}, Σ, {}, s, {s}, {})
TB(a) = ({s, t}, Σ, {((s, a), t)}, s, {t}, {})

TB(!e) = (Q ∪ {s}, Σ, δ, s ∧ f0, {s}, F ∪ P )
where (Q,Σ, δ, f0, F, P ) = TB(copy(e))

TB(e1e2) = (Q1 ∪ Q2, Σ, δ, φ(f0
1 , f0

2 , F1), F2, P1 ∪ P2)
where (Q1, Σ, δ1, f

0
1 , F1, P1) = TB(e1),

(Q2, Σ, δ2, f
0
2 , F2, P2) = TB(e2)

and δ = {((s, a), φ(t, f0
2 , F1)) | ((s, a), t) ∈ δ1} ∪ δ2

TB(e1/e2) = TB(e1 | !e1e2)
TB(e1 | e2) = (Q1 ∪ Q2, Σ, δ1 ∪ δ2, f

0
1 ∨ f0

2 , F1 ∪ F2, P1 ∪ P2)
where (Q1, Σ, δ1, f

0
1 , F1, P1) = TB(e1)

and (Q2, Σ, δ2, f
0
2 , F2, P2) = TB(e2)

TB(e*) = TB(e�!e)
TB(e�) = (Q ∪ {s}, Σ, δ′, s ∨ f0, F ∪ {s}, P )

where (Q,Σ, δ, f0, F, P ) = TB(e)
and δ′ = {((s, a), φ(t, f0, F )) | ((s, a), t) ∈ δ}

TB(A) =

⎧
⎪⎪⎨

⎪⎪⎩

TB(PG(A))
(first time to apply the function to a nonterminal A)
({}, Σ, {}, ftmpA

, {}, {})
(otherwise)

Basically, this conversion is based on Thompson’s construction [17]. In this
conversion, the construction of prioritized choices / and zero-or-more repetitions
* is reduced to the construction of alternations | and zero-or-more repetitions �
in a regular expression. We rewrite them precisely as follows:
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e1/e2 ⇒ e1 | !e1e2
e* ⇒ e�!e

α ⇒ β denotes rewriting α as β. For example, a/aa is rewritten as a | (!a)aa
and a * a is rewritten as a � (!a)a.

In the rewriting of prioritized choices, the not-predicate !e1 is added to the
front of e2. By the rewriting, e2 does not match an input string when the input
string matches e1.

Furthermore, in the rewriting of zero-or-more repetitions, the not-predicate
!e is added to the back of e�. By this rewriting, we can eliminate the ambiguity
of e� and the repetition becomes a longest match.

The function T handles the nonterminals in the same way as a conversion
from a right-linear grammar to an NFA [11]. In the conversion from a right-linear
grammar to an NFA, a nonterminal is handled as an initial state of the NFA. In
the same way, in the function T , a nonterminal is handled as an initial function
of the BFA.

Finally, we replace temporary variables with the initial functions of the non-
terminals. We show the replacement in the following example of conversion from
an LPEG to a BFA.

Example 12. Let G = ({A}, {a, b}, {A ← aA/b}, A) be an LPEG. The language
of the LPEG L(G) = {aib | i ≥ 0}.

First, we modify the LPEG G as follows: G = CG(G), where CG(G) =
({A,A′}, {a, b}, {A ← aA/b, A′ ← aA′/b}, A).

Secondly, we convert the LPEG G to a BFA B with temporary boolean
variables. As a result of the conversion, we get the BFA B = (Q, {a, b}, δ, q0 ∨
((q11 ∨ q12) ∧ q2), {q10, q13}), where δ is shown in Table 2. For simplicity, we
consider transitions that are not in Table 2 return false.

Table 2. The transition function δ with temporary boolean variables

δ(state, terminal) Terminal

a b

State q0 q1 ∨ ftmpA false

q2 q3 ∨ (q4 ∨ ((q8 ∨ q9) ∧ q6)) false

q4 q5 ∨ ftmpA′ false

q6 q7 ∨ ftmpA′ false

q9 false q10

q10 q10 q10

q12 false q13

Finally, we replace temporary boolean variables with the initial functions. In
this BFA, there are two temporary boolean variables, ftmpA

and ftmpA′ . ftmpA

is replaced by q0 ∨ ((q11 ∨ q12) ∧ q2). ftmpA′ is replaced by q4 ∨ ((q8 ∨ q9) ∧ q6).
The transition function δ is shown in Table 3.
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Table 3. The transition function δ

δ(state, terminal) Terminal

a b

State q0 q1 ∨ q0 ∨ ((q11 ∨ q12) ∧ q2) false

q2 q3 ∨ (q4 ∨ ((q8 ∨ q9)∧q6)) false

q4 q5 ∨ q4 ∨ ((q8 ∨ q9) ∧ q6) false

q6 q7 ∨ q4 ∨ ((q8 ∨ q9) ∧ q6) false

q9 false q10

q10 q10 q10

q12 false q13

The BFA B accepts an input string b.

δ(q0 ∨ ((q11 ∨ q12) ∧ q2), b) = false ∨ ((false ∨ q13) ∧ false)
= false ∨ ((false ∨ true) ∧ false)
= true

In the same way, we can check that the BFA B rejects an input string a.
In order to define a function consume for BFAs, we define two evaluate

function, evalF and evalP . evalF takes a boolean function f and a set of accept-
ing state F and returns a boolean function f ′ that replaced boolean variables
qi ∈ F in f with true. For example, let f = q0 ∧ (q1 ∨ q2) and F = {q1}.
Then evalF (f, F ) = q0 ∧ (true ∨ q2) = q0 ∧ q2. evalP takes a boolean func-
tion f and a set of accepting state of not-predicates P and returns a boolean
value that is a result of a replacement of a boolean variables qi ∈ P in f
with true, otherwise false. For example, let f = q0 ∧ q1 and P = {q0}. Then,
evalP (f, P ) = true ∧ false = true.

We define a function consume for a BFA B. consume(B,w) = x denotes
that evalP (δ(evalF (δ(f0, x), F ), y), P ) = true for an input string w = xyz.
consume(B,w) = f if there is no such x.

Theorem 13. Let G = (NG, Σ, PG, es) be an LPEG modified by CG in
Definition 9. Let B = T ((NG, Σ, PG, es.*)) and B has already replaced the tem-
porary variables with initial functions. Then, L(G) = L(B).

Proof. The proof is by induction on the structure of linear parsing expression e.
We assume that TB(e) is a BFA such that consume(TB(e), x) = consume(e, x),
where x ∈ Σ∗.

Theorem 14. For any LPEG G there exists a DFA D such that L(G) = L(D).

Proof. By Theorem 13, LPEGs can be converted into BFAs. BFAs can be con-
verted into DFAs.
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3.2 From a DFA to an LPEG

An arbitrary regular expression can be converted into a PEG [12,14]. In this
section, we say that for any DFA D there exists an LPEG G such that
L(D) = L(G). To prove this, we show that a PEG converted from a regular
expression by [12] is an LPEG, since DFAs can be converted into equivalent
regular expressions [9].

Medeiros et al. studied the conversion and they showed the conversion
function as a function Π [12]. The definition of the function Π is shown in
Definition 15. The function Π(r,G) takes a regular expression r and a contin-
uation grammar G = (NG, Σ, PG, es), and returns a PEG. The continuation
grammar is defined by a PEG G0 = ({}, Σ, {}, ε) for the first application.

Definition 15 (in [12]).

Π(ε,G) = G

Π(a,G) = (NG, Σ, PG, aes)
Π(r1r2, G) = Π(r1,Π(r2, G))

Π(r1 | r2, G) = (NG
′′, Σ, PG

′′, es
′/es

′′)
where (NG

′′, Σ, PG
′′, es

′′) = Π(r2, (NG
′, Σ, PG

′, es))
and (NG

′, Σ, PG
′, es

′) = Π(r1, G)
Π(r�, G) = (NG

′, Σ, PG
′ ∪ {A ← es

′/es}, A) with A /∈ NG

and (NG
′, Σ, PG

′, es
′) = Π(r, (NG ∪ {A}, Σ, PG, A))

Theorem 16. Let r be a regular expression and Π(r,G0) = G. The PEG G is
an LPEG.

Proof. We assume that if G is an LPEG, then Π(r,G) is also an LPEG. For any
regular expression r, we check whether the assumption is correct. If so, Π(r,G0)
is an LPEG since G0 is obviously an LPEG.

1. Case r = ε
By induction hypothesis, G is an LPEG.

2. Case r = a
By induction hypothesis, es is a linear parsing expression. Since aes = pe,
(NG, Σ, PG, aes) is an LPEG.

3. Case r = r1r2
Since G is an LPEG, Π(r2, G) is an LPEG. Therefore, Π(r1,Π(r2, G)) is also
an LPEG.

4. Case r = r1 | r2
Π(r1, G) is an LPEG. Since es is a linear parsing expression,
Π(r2, (NG

′, Σ, PG
′, es)) is also an LPEG. Therefore, es

′ and es
′′ are a linear

parsing expression. Since es
′/es

′′ = e/e, (NG
′′, Σ, PG

′′, es
′/es

′′) is an LPEG.
5. Case r = r�

Since a nonterminal A(A = pA) is a linear parsing expression, (NG ∪
{A}, Σ, PG, A) is an LPEG and Π(r, (NG ∪{A}, Σ, PG, A)) is also an LPEG.
Since es

′/es = e/e, (NG
′, Σ, P ′

G ∪ {A ← es
′/es}, A) is an LPEG.
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Hence, Π(r,G0) is an LPEG.

Theorem 17. For any DFA D there exists an LPEG G such that L(D) = L(G).

Proof. A DFA D can be converted into a regular expression r. By Theorem 16,
r can be converted into an LPEG.

Consequently, we derive the following theorem.

Theorem 18. LPEGs are a class that is equivalent to DFAs.

Proof. By Theorem 14, for any LPEG G there exists a DFA D such that L(G) =
L(D). In addition, by Theorem17, for any DFA D there exists an LPEG G such
that L(D) = L(G). Hence, LPEGs are a class that is equivalent to DFAs.

4 Related Work

Birman and Ullman showed formalism of recognition schemes as TS and gTS
[2,3]. TS and gTS were introduced in [1] as TDPL and GTDPL, respectively.
A PEG is a development of GTDPL. In this paper, we showed a subclass of
PEGs that is equivalent to DFAs, which would lead to more optimized PEG-
based parser generator such as [10].

Morihata showed a translation of regular expression with positive and nega-
tive lookaheads into finite state automata [13]. He used a boolean finite automata
(BFAs) [4], that is, alternating finite automata [5,6], to represent positive and
negative lookaheads of regular expressions as finite automata. We showed that a
PEG excluding nonterminals can be converted into an equivalent regular expres-
sion with positive and negative lookaheads. Therefore, these PEGs can be con-
verted into a DFA by applying Morihata’s translation. However, nonterminals
were not covered. In this paper, we showed a translation to handle nonterminals
on Morihata’s translation.

5 Conclusion

In this study, we formalized a subclass of PEGs that is equivalent to DFAs. In
the process of proving the equivalence of the class and DFAs, we showed the
conversion from LPEGs into BFAs. Since BFAs can be converted into DFAs, we
can convert these LPEGs into DFAs.

One of our motivations is to achieve speed up of runtime by processing a part
of a PEG such that the part is regular by using DFAs. To achieve this, we have
to check whether the part of a PEG is regular. However, this is undecidable.
On the other hand, it is decidable whether a PEG is an LPEG. Thus, we can
check whether the part of a PEG is an LPEG and convert the part into DFAs.
Since DFAs eliminate backtracking, it would lead to further optimizations of the
parser generator.

As a future study, we aim to propose an algorithm for detecting a part of a
PEG such that backtracking becomes necessary.
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Abstract. The family, L(INDLIN), of languages generated by linear
indexed grammars has been studied in the literature. It is known that
the Parikh image of every language in L(INDLIN) is semi-linear. However,
there are bounded semi-linear languages that are not in L(INDLIN). Here,
we look at larger families of (restricted) indexed languages and study
their properties, their relationships, and their decidability properties.
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1 Introduction

Indexed grammars [1,2] are a natural generalization of context-free grammars,
where variables keep stacks of indices. Despite being all context-sensitive lan-
guages, the languages are still quite general as they can generate non-semi-linear
languages [1]. Several restrictions have been studied that have desirable compu-
tational properties. Linear indexed grammars were first created, restricting the
number of variables on the right hand side to be at most one [5]. Other restric-
tions include another system named exactly linear indexed grammars [6] (see
also [17]), which are different than the first formalisms, although both are suffi-
ciently restricted to only generate semi-linear languages. In this paper, we only
examine the first formalism of linear indexed grammars.
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We study indexed grammars that are restricted to be finite-index, which is
a generalization of linear indexed grammars [5]. Grammar systems that are k-
index are restricted so that, for every word generated by the grammar, there is
some successful derivation where at most k variables (or nonterminals) appear
in every sentential form of the derivation [13,15]. A system is finite-index if it is
k-index for some k. It has been found that that when restricting many different
types of grammar systems to be finite-index, their languages coincide. This is the
case for finite-index ET0L, EDT0L, context-free programmed grammars, ordered
grammars, and matrix grammars.

We introduce the family, L(INDFIN), of languages generated by finite-index
indexed grammars and study a sub-family, L(INDUFIN), of languages generated
by uncontrolled finite-index indexed grammars, where every successful derivation
has to be finite-index. These have been very recently studied under the name
breadth-bounded grammars, where it was shown that this family is a semi-linear
full trio. We also study a special case of the latter, called L(INDUFIN1) that
restricts branching productions. We then show the following:

1. All families are semi-linear full trios.
2. The following conditions are equivalent for a bounded language L:

– L ∈ L(INDUFIN1),
– L ∈ L(INDUFIN),
– L is bounded semi-linear,
– L can be generated by a finite-index ET0L system,
– L can be accepted by a DFA augmented with reversal-bounded counters,

3. Every finite-index ET0L language is in L(INDFIN).
4. L(CFL) ⊂ L(INDLIN) ⊂ L(INDUFIN1) ⊆ L(INDUFIN) ⊂ L(INDFIN).
5. Containment and equality are decidable for bounded languages in L(INDLIN)

and L(INDUFIN).

Due to space limitation, all proofs (except for the proofs of Lemma16 and
Proposition 23) are omitted. The full paper with all the proofs can be found at
arXiv:1610.06366.

2 Preliminaries

We assume a basic background in formal languages and automata theory [9].
Let N

k be the additive free commutative monoid of non negative integers. If
B is a subset of Nk, B⊕ denotes the submonoid of Nk generated by B.

An alphabet is a finite set of symbols, and given an alphabet A, A∗ is the free
monoid generated by A. An element w ∈ A∗ is called a word, the empty word
is denoted by λ, and any L ⊆ A∗ is a language. The length of a word w ∈ A∗ is
denoted by |w|, and the number of a’s, a ∈ A, in w is denoted by |w|a, extended
to subsets X of A by |w|X =

∑
a∈X |w|a.

Let A = {a1, . . . , at} be an alphabet of t letters, and let ψ : A∗ → N
t be the

corresponding Parikh morphism defined by ψ(w) = (|w|a1 , . . . , |w|at
) extended

to languages L ⊆ A∗.

http://arxiv.org/abs/1610.06366
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A set B ⊆ N
k is a linear set if there exists vectors b0,b1, . . . ,bn of N

k

such that B = b0 + {b1, . . . ,bn}⊕. Further, B is called a semi-linear set if B =⋃m
i=1 Bi,m ≥ 1, for linear sets B1, . . . , Bm. A language L ⊆ A∗ is said to be semi-

linear if the Parikh morphism applied to L gives a semi-linear set. A language
family is said to be semi-linear if all languages in the family are semi-linear.
Many known families are semi-linear, such as the regular languages, context-free
(denoted by L(CFL), see [9]), and finite-index ET0L languages (L(ET0LFIN)), see
[13,14].

A language L is termed bounded if there exist non-empty words u1, . . . , uk,
with k ≥ 1, such that L ⊆ u∗

1 · · · u∗
k. Let ϕ : Nk → u∗

1 · · · u∗
k be the map defined

as: for every tuple (�1, . . . , �k) ∈ N
k,

ϕ(�1, . . . , �k) = u�1
1 · · · u�k

k .

The map ϕ is called the Ginsburg map.

Definition 1. A bounded language L ⊆ u∗
1 · · · u∗

k is said to be bounded Ginsburg
semi-linear if there exists a semi-linear set B of Nk such that ϕ(B) = L.

In the literature, bounded Ginsburg semi-linear has also been called just
bounded semi-linear, but we will use the terminology bounded Ginsburg semi-
linear henceforth in this paper.

A full trio is a language family closed under morphism, inverse morphism,
and intersection with regular languages [3].

We will also relate our results to the languages accepted by one-way nonde-
terministic reversal-bounded multicounter machines (denoted by L(NCM)), and
to one-way deterministic reversal-bounded multicounter machines (denoted by
L(DCM)). These are NFAs (DFAs) augmented by a set of counters that can
switch between increasing and decreasing a fixed number of times [10].

3 Restrictions on Indexed Grammars

We first recall the definition of indexed grammar introduced in [1] by following
[9], Sect. 14.3 (see also [4] for a reference book on grammars).

Definition 2. An indexed grammar is a 5-tuple G = (V, T, I, P, S), where

– V, T, I are finite pairwise disjoint sets: the set of variables, terminals, and
indices, respectively;

– P is a finite set of productions of the forms

(1) A → ν, (2) A → Bf, or (3) Af → ν,

where A,B ∈ V, f ∈ I and ν ∈ (V ∪ T )∗;
– S ∈ V is the start variable.

Let us now define the derivation relation ⇒G of G. Let ν be an arbitrary senten-
tial form of G, u1A1α1u2A2α2 · · · ukAkαkuk+1, with Ai ∈ V, αi ∈ I∗, ui ∈ T ∗.
For a sentential form ν′ ∈ (V I∗ ∪ T )∗, we set ν ⇒G ν′ if one of the following
three conditions holds:
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(1) In P , there exists a production of the form (1) A → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ T ∗, such that in the sentential form ν, for some i with 1 ≤ i ≤
k, one has Ai = A and

ν′ = u1A1α1 · · · ui(w1C1αi · · · w�C�αiw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

(2) In P , there exists a production of the form (2) A → Bf such that in the
sentential form ν, for some i with 1 ≤ i ≤ k, one has Ai = A and ν′ =
u1A1α1 · · · ui(Bfαi)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

(3) In P , there exists a production of the form (3) Af → w1C1 · · · w�C�w�+1,
Cj ∈ V,wj ∈ T ∗, such that in the sentential form ν, for some i with 1 ≤ i ≤
k, one has Ai = A, αi = fα′

i, α
′
i ∈ I∗, and

ν′ = u1A1α1 · · · ui(w1C1α
′
i · · · w�C�α

′
iw�+1)ui+1Ai+1αi+1 · · · ukAkαkuk+1.

In this case, one says that the index f is consumed.

For every n ∈ N, ⇒n
G stands for the n-fold product of ⇒G and ⇒∗

G stands
for the reflexive and transitive closure of ⇒G. The language L(G) generated by
G is the set L(G) = {u ∈ T ∗ : S ⇒∗

G u}.

Notation and Convention. In the sequel we will adopt the following notation
and conventions for an indexed grammar G.

– capital letters as A,B, ...etc will denote variables of G.
– the small letters e, f , as well as fi, will be used to denote indices while α, β

and γ, as well as its indexed version (as for instance αi), will denote arbitrary
words over I.

– Small letters as a, b, c, ...etc (as well as its indexed version) will denote letters
of T and small letters as u, v, w, r..., etc (as well as its indexed version) will
denote words over T .

– ν and μ, as well as νi and μi, will denote arbitrary sentential forms of G.
– in order to shorten the notation, according to Definition 2, if p is a production

of G of the form (1) or (3), we will simply write Af → ν, f ∈ I ∪{λ}, where
it is understood that if f = λ, the production p has form (1) and if f ∈ I, the
production p has form (3).

– a derivation of G of the form ν0 ⇒p1 ν1 ⇒p2 · · · ⇒pn
νn will be also shortly

denoted as ⇒p1···pn
.

The following set of definitions defines the main objects studied in this draft.
Let G be an indexed grammar and let L(G) be the language generated by G.
The first definition is from [5].

Definition 3. We say that G is linear if the right side component of every
production of G has at most one variable. A language L is said to be linear
indexed if there exists a linear indexed grammar G such that L = L(G).

Definition 4. Given an integer k ≥ 1, a derivation ν0 ⇒ ν1 ⇒ · · · ⇒ νn of
G = (V, T, I, P, S), is said to be of index-k if |νi|V ≤ k, for all i, 0 ≤ i ≤ n.
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Definition 5. Given an integer k ≥ 1, G is said to be of index-k if, for every
word u ∈ L(G), there exists a derivation of u in G of index-k.

A language L is said to be an indexed language of index-k if there exists an
indexed grammar G of index-k such that L = L(G). An indexed language L is
said to be of finite-index if L is of index-k, for some k.

Definition 6. An indexed grammar G is said to be uncontrolled index-k if, for
every derivation ν0 ⇒ · · · ⇒ νn generating u ∈ L(G), |νi|V ≤ k, for all i,
0 ≤ i ≤ n. G is uncontrolled finite-index if G is uncontrolled index-k, for some
k. A language L is said to be an uncontrolled finite-index indexed language if
there exists an uncontrolled finite-index grammar G such that L = L(G).

Remark 7. If G is a grammar of index-k1, then G is a grammar of index-k2, for
every integer k1 ≤ k2.

Remark 8. Definition 6 corresponds, in the case of context-free grammars, to
the definition of nonterminal bounded grammar (cf [8], Sect. 5.7). We recall that
nonterminal bounded grammars are equivalent to ultralinear grammars and thus
provide a characterisation of the family of languages that are accepted by Finite-
Turn pushdown automata.

Finally let us denote by

– L(INDLIN) the family of linear indexed languages [5];
– L(INDUFIN) the family of uncontrolled finite-index indexed languages;
– L(INDFIN) the family of finite-index indexed languages.

A reminder that uncontrolled finite-index corresponds to breadth-bounded
indexed grammars [18]. Therefore, the following is implied from this paper.

Theorem 9. L(INDUFIN) is a semi-linear full trio.

The family L(INDLIN) has been introduced in [5] where results of algebraic and
combinatorial nature characterize the structure of its languages. Recall that a
linear indexed grammar G is said to be right linear indexed if, according to
Definition 2, in every production p of G of the form (1) or (3), the right hand
component ν of p has the form ν = u, or ν = uB, where u ∈ T ∗, B ∈ V . In [1]
(see also [5]), the following theorem has been proved:

Theorem 10. If L is an arbitrary language, L is context-free if and only if there
exists a right linear indexed grammar G such that L = L(G).

From this, the following is evident.

Proposition 11. L(CFL) ⊂ L(INDLIN) ⊂ L(INDUFIN) ⊆ L(INDFIN).

Indeed Theorem 10 provides the inclusion L(CFL) ⊆ L(INDLIN). The inclusions
L(INDLIN) ⊆ L(INDUFIN) ⊆ L(INDFIN) come immediately from the definitions
of the corresponding families. Now, for every k ≥ 1, let Lk = {wk : w ∈ A∗}.
It is easy to construct a linear indexed grammar that generates L2 so that
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L2 ∈ L(INDLIN) \ L(CFL) (cf, for instance, [5]). Moreover it is proved that L4 /∈
L(INDLIN) (see [5], Theorem 3.8). On the other hand, it is easily shown that
Lk ∈ L(INDUFIN), k ≥ 0.

Also, in [5], it is shown that for an alphabet T , $ /∈ T , and A,B ⊆ T ∗, if
L = A$B is a linear indexed language, then A or B is a context-free language.
Then, let T = {a, b, c}, A = {anbncn : n > 0}, and B = {anbncn : n > 0}. Then
L = {anbncn$ambmcm : n,m > 0}. But since both A and B are not context-free,
then L must not be linear indexed.

Next, closure under union is addressed with a straightforward adaptation of
the first part of the proof of Theorem 6.1 of [9].

Lemma 12. The families L(INDFIN) and L(INDUFIN) are closed under union.

Next, we show that L(INDFIN) is a full trio, and the result also holds for
L(INDUFIN) as well (shown in [18]). We will prove the more general fact that
they are closed under rational transductions. The proof is structured using a
chain of lemmas.

Lemma 13. L(INDUFIN) and L(INDFIN) are closed under morphisms.

Lemma 14. L(INDUFIN) and L(INDFIN) are closed under intersection with reg-
ular languages.

Next, we show closure under a inverse morphisms of a specific type.
Let T and T ′ be two alphabets with T ⊆ T ′ and let π̂T : (T ′)∗ → T ∗ be

the projection of (T ′)∗ onto T ∗, that is the epi-morphism from (T ′)∗ onto T ∗

generated by the mapping πT : T ′ → T ∪ {λ}

∀ σ ∈ T ′, πT (σ) =
{

λ if σ /∈ T,
σ if σ ∈ T

.

In the sequel, for the sake of simplicity, we denote the projection π̂T by πT . It is
useful to remark that, for every w ∈ T ∗ and w′ ∈ (T ′)∗, with w = a1 · · · an, n ≥
0, ai ∈ T ,

w′ ∈ π−1
T (w) ⇔ w′ = w1a1 · · · wnanwn+1, wi ∈ (T ′ \ T )∗. (1)

Lemma 15. If L ∈ L(INDUFIN) (resp. L(INDFIN)) with L ⊆ T ∗, then π−1
T (L) ∈

L(INDUFIN) (resp. L(INDFIN)).

Next, it is possible to show closure under rational transductions.

Lemma 16. Let T and T ′ be two alphabets. Let τ : T ∗ → (T ′)∗ be a ratio-
nal transduction from T ∗ into (T ′)∗. If L is a language of T ∗ in the family
L(INDUFIN) (resp. L(INDFIN)), then τ(L) ∈ L(INDUFIN) (resp. L(INDFIN)).

Proof. We will show it for L(INDUFIN). Let us first assume that T ∩ T ′ = ∅.
By a well known theorem for the representation of rational transductions
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(see [3], Chap. III, Theorem 4.1, see also [7]), there exists a regular set R over
the alphabet (T ∪ T ′) such that

τ = {(πT (u), πT ′(u)) : u ∈ R},

where πT and πT ′ are the projections of (T ∪ T ′)∗ onto T ∗ and T ′∗ respectively.
From the latter, one has that, for every u ∈ T ∗, τ(u) = πT ′(π−1

T (u) ∩ R), so
that

τ(L) =
⋃

u∈L

τ(u) = πT ′(π−1
T (L) ∩ R). (2)

Since, by hypothesis, L ∈ L(INDUFIN), the claim follows from (2), by applying
Lemmas 13, 14, and 15.

Let us finally treat the case where T and T ′ are not disjoint. Let T ′′ be a
copy of T with T ′′ ∩ T ′ = ∅ and let cT ′′ : (T ′)∗ → (T ′′)∗ be the corresponding
copying iso-morphism from (T ′)∗ onto (T ′′)∗. By applying the latter argument to
the rational transduction cT ′′τ : T ∗ → (T ′′)∗, one has (cT ′′τ)(L) ∈ L(INDUFIN).
Since c−1

T ′′(cT ′′τ)(L) = τ(L), then the claim follows from the latter by applying
Lemma 13. ��

Then the following is immediate:

Corollary 17. L(INDUFIN) and L(INDFIN) are closed under inverse morphisms.

By Lemmas 13, 14, and Corollary 17, we obtain:

Theorem 18. The families L(INDFIN) and L(INDUFIN) are full trios.

We now prove a result which extends the semi-linearity of a family of lan-
guages to a bigger family. If C is a full trio of semi-linear languages and L is the
family of languages accepted by NCMs, let C ∩ L = {L1 ∩ L2 : L1 ∈ C, L2 ∈ L}.

Proposition 19. Every language in C ∩ L has a semi-linear Parikh map.

Note that the above proposition does not depend on how the languages in C are
specified. It extends the semi-linearity of languages in C to a bigger family that
can do some “counting”. The proposition applies to all well-known full trios of
semi-linear languages, in particular, to C = L(INDUFIN).

Corollary 20. Let C be a full trio whose closures under homomorphism, inverse
homomorphism and intersection with regular sets are effective. Moreover, assume
that for each L in C, ψ(L) can effectively be constructed. Then C ∩ L has a
decidable emptiness problem.

Note that L is also a full trio of semi-linear languages. It is easy to see that the
proposition is not true if L is an arbitrary full trio of semi-linear languages. For
example suppose C = L is the family of languages accepted by 1-reversal NPDAs
(= linear context-free languages). Let

L1 = {an1 · · · ank$ank · · · an1 : k ≥ 4, ni ≥ 1},

L2 = {an1 · · · ank$amk · · · am1 : k ≥ 4, ni, mi ≥ 1, mj = nj+1, 1 ≤ j < k}.
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Clearly, L1 and L2 can be accepted by 1-reversal NPDAs. But ψ(L1 ∩ L2) is
{(an)k−1an$(an)k−1an : n ≥ 1, k ≥ 4} and it is not semi-linear.

Similarly, it is easy to show that the proposition does not hold when C = L
is the family of languages accepted by NFAs with one unrestricted counter (i.e.,
NPDAs with a unary stack alphabet in addition to a distinct bottom of the stack
symbol which is never altered).

Finally, let C1 and C2 be any full trios of semi-linear languages. It is clear
that C1 ∪ C2 = {L1 ∪ L2 : L1 ∈ C1, L2 ∈ C2} is a semi-linear family. One can
also show that C1 · C2 = {L1L2 : L1 ∈ C1, L2 ∈ C2} is a semi-linear family.

4 Bounded Languages and Hierarchy Results

The purpose of this section is to demonstrate that all bounded Ginsburg semi-
linear languages are in L(INDUFIN) (thus implying they are in L(INDFIN) as well),
but not in L(INDLIN).

Notice that the language L from Proposition 11 is a bounded Ginsburg semi-
linear language. Thus, the following is true:

Proposition 21. There are bounded Ginsburg semi-linear languages that are
not in L(INDLIN).

Furthermore, it has been shown that in every semi-linear full trio, all bounded
languages in the family are bounded Ginsburg semi-linear [12]. Further
L(INDLIN) is a semi-linear full trio [5]. Therefore, the bounded languages in
L(INDLIN) are strictly contained in the bounded languages contained in any
family containing all bounded Ginsburg semi-linear languages. We only mention
here three of the many such families mentioned in [12].

Corollary 22. The bounded languages in L(INDLIN) are strictly contained in
the bounded languages from L(NCM),L(DCM),L(ET0LFIN).

Proposition 23. L(INDUFIN) contains all bounded Ginsburg semi-linear
languages.

Proof. We now prove that if L is a bounded Ginsburg semi-linear language, with
L ⊆ u∗

1 · · · u∗
k, then L ∈ L(INDUFIN). Since L(INDUFIN) is closed under union by

Lemma 12, it is enough to show it for a linear set B. Let B be a set of the form
B = {b0 + x1b1 + · · · + x�b� : x1, . . . , x� ∈ N}, where b0,b1, . . . ,b�, are vectors
of Nk. By denoting the arbitrary vector bi as (bi1, . . . , bik), we write B as

{(b01 + x1b11 + · · · + x�b�1, . . . , b0k + x1b1k + · · · + x�b�k), : x1, . . . , x� ∈ N},

so that the language L = ϕ(B) becomes

ub01+x1b11+···+x�b�1
1 ub02+x1b12+···+x�b�2

2 · · · ub0k+x1b1k+···+x�b�k

k , (3)

where x1, . . . , x� ∈ N. Let us now define an indexed grammar G such that L =
L(G). Let G = (V, T, I, P, S), where

V = {S, Y,X1, . . . , Xk}, T = A, I = {e, f1, f2, . . . , f�},

and the set P of productions is the following:
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1. Pstart = (S → Y e)
2. For every j = 1, . . . , �, Pj = (Y → Y fj)
3. Q = (Y → X1X2 · · · Xk)
4. For every i = 1, . . . , k and for every j = 1, . . . , �,

Ri0 = (Xie → ub0i
i ), Rij = (Xifj → u

bji

i Xi).

Let us finally prove that L = L(G) and G is an uncontrolled grammar. Let
us first show that L ⊆ L(G). Let w ∈ L. By (3), there exist x1, . . . , x� ∈ N such
that

w = ub01+x1b11+···+x�b�1
1 ub02+x1b12+···+x�b�2

2 · · · ub0k+x1b1k+···+x�b�k

k .

Consider the derivation defined by the word over the alphabet P :

P = PstartP
x1
1 P x2

2 · · · P x�

� QQ1 · · · Qk,

where, for every i = 1, . . . , k, Qi = Rx�

i� · · · Rx2
i2 Rx1

i1 Ri0. It is easily checked that
S ⇒P w. Indeed,
S ⇒Pstart

Y e ⇒P
x1
1 P

x2
2 ···P x�

�
Y fx�

� · · · fx1
1 e ⇒Q

X1f
x�

� · · · fx1
1 e · · · Xkfx�

� · · · fx1
1 e ⇒Q1 ub01+x1b11+···+x�b�1

1 X2 · · · Xkfx�

� · · · fx1
1 e

⇒Q2 ub01+x1b11+···+x�b�1
1 ub02+x1b12+···+x�b�2

2 X3 · · · Xkfx�

� · · · fx1
1 e ⇒Q3···Qk

w,

so that w ∈ L(G). Similarly, it can be shown that L(G) ⊆ L. ��

Since it is known that in any semi-linear full trio, all bounded languages
in the family are bounded Ginsburg semi-linear, the bounded languages in
L(INDUFIN) coincide with several other families, including a deterministic
machine model [12].

Corollary 24. The bounded languages in L(INDUFIN) coincides with the bounded
Ginsburg semi-linear languages, which coincides with the bounded languages in
L(NCM),L(DCM),L(ET0LFIN) (and several other families listed in [12]).

Also, since L(INDLIN) does not contain all bounded Ginsburg semi-linear
languages by Proposition 21, but L(INDUFIN) does, the following is immediate:

Corollary 25. L(INDLIN) ⊂ L(INDUFIN).

Next, a restriction of L(INDUFIN) is studied and compared to the other fami-
lies. And indeed, this family is quite general as it contains all bounded Ginsburg
semi-linear languages in addition to some languages that are not in L(ET0LFIN).

Now let p = (Af → ν) ∈ P , with f ∈ I ∪ {λ}, be a production. Then p is
called special if the number of occurrences of variables of V in ν is at least 2, and
linear, otherwise. Denote by PS and PL the sets of special and linear productions
of P respectively. By Definition 6, a grammar G is uncontrolled finite-index if
and only if the number of times special productions appear in every successful
derivation of G is upper bounded by a given fixed integer.

Next, we will deal with uncontrolled grammars such that in every successful
derivation of G, at most one special production occurs. The languages generated
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by such grammars form a family denoted L(INDUFIN1). It is worth noticing that
a careful rereading of the proof of Theorem18 and Lemma 12 shows that they
hold for L(INDUFIN1) as well. Further, it is clear that only one special production
is used in every derivation of a word in the proof of Proposition 23. Therefore,
the following holds:

Proposition 26. The family L(INDUFIN1) is a union-closed full trio and it con-
tains all bounded Ginsburg semi-linear languages.

It is immediate from the definitions that L(INDLIN) ⊆ L(INDUFIN1) ⊆ L(INDUFIN).
Further, since L(INDUFIN1) contains all bounded Ginsburg semi-linear languages
by Proposition 26, but the linear indexed languages do not, by Proposition 21,
the following holds:

Proposition 27. L(INDLIN) ⊂ L(INDUFIN1) ⊆ L(INDUFIN).

Then the following is true from [12].

Corollary 28. L(INDUFIN1) is a semi-linear full trio containing all bounded
Ginsburg semi-linear languages. Further, the bounded languages in L(INDUFIN1)
coincides with the bounded languages in L(INDUFIN), L(NCM), L(DCM), and
L(ET0LFIN), and several others listed in [12].

5 Some Examples, Separation, and Decidability Results

We start this section by giving an example that clarifies previous results.

Example 29. Let L = {anbncn$anbncn : n ∈ N}. If ϕ : N7 → a∗b∗c∗$∗a∗b∗c∗,
then L = ϕ(B), where B = {b0 + nb1 : n ∈ N}, with b0 = (0, 0, 0, 1, 0, 0, 0)
and b1 = (1, 1, 1, 0, 1, 1, 1). It is worth noticing that, by the discussion pre-
ceding Proposition 21, L is not a linear indexed grammar. We define an uncon-
trolled finite-index grammar G = (V, T, I, P, S) where V = {S, Y,X1,X2,X3,X4,
X5,X6,X7}, T = {a, b, c, $}, I = {e, f}, and the set P of productions is:

Pstart = S → Y e, P = Y → Y f, Q = Y → X1X2 · · · X7

X1f → aX1 X2f → bX2 X3f → cX3 X4f → X4 X5f → aX5 X6f → bX6

X7f → cX7 X1e → ε X2e → ε X3e → ε X4e → $ X5e → ε
X6e → ε X7e → ε.

In general

S ⇒ Y e ⇒n Y fne ⇒ X1X2X3X4X5X6X7f
ne

= X1f
neX2f

neX3f
neX4f

neX5f
neX6f

neX7f
ne ⇒∗ anbncn$anbncn.

As the only freedom in derivations of G consists of how many times the rule P
is applied and of trivial variations in order to perform the rules Xif → σXi, σ ∈
T ∪ {ε}, it should be clear that L = L(G).

It is known that decidability of several properties holds for semi-linear trios
where the properties are effective [11]. This is the case for L(INDUFIN), and also
for L(INDLIN) [5].
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Corollary 30. Containment, equality, membership, and emptiness are decidable
for bounded languages in L(INDUFIN) and L(INDLIN).

Lastly, it is known that L(ET0LFIN) cannot generate some context-free lan-
guages [16], but all context-free languages can be generated by indexed linear
grammars by Theorem 10, which are all in L(INDUFIN1).

Corollary 31. There are languages in L(INDUFIN1) and L(INDLIN) that are not
in L(ET0LFIN).

We provide an example of language in L(INDFIN) whose Parikh image is not
a semi-linear set.

Example 32. We construct a grammar of index 3, which is not uncontrolled, that
generates the language L = {aba2b · · · anban+1 : n ≥ 1}. Let G = (V, T, I, P, S)
be the grammar where V = {S,A,B,X,X ′,X ′′}, T = {a, b}, I = {e, f, g}, and
the set of productions of G are defined as:

– p0 = S → Xe, p1 = X → ABX ′f, p2 = X ′ → X, p3 = X ′ → X ′′,
– p4 = X ′′f → aX ′′, p5 = X ′′e → a, p6 = Af → aA, p7 = Ae → ε,
– p8 = Bf → B, p9 = Be → ε.

One can check that G is not uncontrolled and L = L(G).

Corollary 33. There are languages in L(INDFIN) that are not semi-linear. Fur-
thermore, there are bounded (and unary) languages in L(INDFIN) that are not
bounded Ginsburg semi-linear.

This allows for the separation of L(INDUFIN) (which only contains semi-linear
languages) and L(INDFIN).

Corollary 34. The following holds:

L(CFL) ⊂ L(INDLIN) ⊂ L(INDUFIN1) ⊆ L(INDUFIN) ⊂ L(INDFIN).

Finally, we show that all finite-index ET0L languages are finite-index.

Proposition 35. L(ET0LFIN) ⊂ L(INDFIN).

It is an open question though as to how L(ET0LFIN) compares to L(INDUFIN).
For finite-index ET0L, uncontrolled systems, defined similarly to our definition
of uncontrolled, does not restrict languages accepted. Furthermore, it is known
that L(ET0LFIN) is closed under Kleene-∗ [14] and therefore contains {anbncn :
n > 0}∗. But we conjecture that this language is not in L(INDUFIN) despite
being in L(INDFIN) by the proposition above. This would imply that L(INDUFIN)
is incomparable with L(ET0LFIN) by Corollary 31.
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Abstract. The notion of latent-variable probabilistic context-free deri-
vation of syntactic structures is enhanced to allow heads and unrestricted
discontinuities. The chosen formalization covers both constituent pars-
ing and dependency parsing. The derivational model is accompanied by
an equivalent probabilistic automaton model. By the new framework,
one obtains a probability distribution over the space of all discontinuous
parses. This lends itself to intrinsic evaluation in terms of perplexity, as
shown in experiments.

Keywords: Parsing · Grammars · Weighted automata

1 Introduction

Much of traditional parsing theory considers a syntactic structure to be a tree in
which siblings are linearly ordered, and a sentence is formed by the labels of the
leaves from left to right. Whereas most English sentences can be given syntactic
analyses that satisfy these constraints, other languages, especially those with
more flexible word order such as German or Czech, do not let themselves be
described easily, if at all, by using trees of this form. At the very least, these
languages require types of syntactic trees with ‘crossing edges’, a phenomenon
which is known formally as discontinuity.

In the theory of constituent parsing, leaf nodes in a parse tree are commonly
words and punctuation tokens, and non-leaf nodes represent categories; one may
also assign a special role to the nodes one level above the words, to represent parts
of speech. In the theory of dependency parsing however, each node corresponds
to a word or punctuation token, and can also be tagged with a part of speech;
moreover, the parent-child edges are typically labeled by dependency relations.
Discontinuity in dependency parsing is more specifically called non-projectivity.

One approach to obtaining discontinuous structures is to use formalisms that
distinguish between derived trees and derivation trees, with discontinuity intro-
duced through the interaction between the two kinds of trees. This approach
has been explored in particular for tree adjoining grammars (TAGs) and linear
context-free rewriting systems (LCFRSs). For TAG, see [10]. For LCFRS applied
to dependency parsing see [12] and for LCFRS applied to constituent parsing
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see [5]. In all of these cases, probability models may remain attached to grammar
rules, as in the case of traditional probabilistic context-free parsing [8].

Another approach takes shift-reduce automata as starting point, with an
additional mechanism for swapping elements in the stack [13,18]. Typically, there
is a unique next parser action determined by a discriminative method, or there
may be a probability distribution over a set of possible next actions. In the
latter case, beam-search may be used to reduce the computational costs, by
restricting attention to a bounded number of partial parses that locally seem
most promising. In either case, parsing tends to be very fast.

However, it was shown for continuous parsing that models of syntax that rely
on a probability distribution over actions of a shift-reduce parser are incomplete,
in the sense that some probability distributions that can be expressed by prob-
abilistic grammars cannot be expressed in terms of the corresponding automata
[16]. Moreover, shift-reduce models tend to have many more parameters than
grammatical models. Under certain conditions, this may lead to more accurate
models [24] but when little training material is available, accurate estimation
of the larger number of parameters may be infeasible. One way to deal with
this is to derive the probabilities of parser actions directly from an underlying
grammatical model [15].

The purpose of the current paper is to explore avenues towards similar theory
for the discontinuous case. Concretely, we propose a grammatical, probabilis-
tic model of discontinuous syntax, and show how this relates to an automaton
model. This approach differs from an approach using TAG or LCFRS in that it
retains a notion of immediate dominance that is context-free. Added to this is
an independent model of discontinuity.

Our work has elements in common with, for example, [4,11,22], which also
investigated discontinuity through a redefinition of context-free derivations. An
important difference is that we aim to characterize ‘typical’ discontinuity in terms
of a probabilistic model rather than in terms of a system of boolean constraints.

Other approaches, such as hybrid parsing [17], pseudo-projectivity [9,14,20],
and the reversible splitting conversion of [2], are incomplete, in that allowed
discontinuity is bounded by properties of the trained grammar, whereas our
model provably allows for any discontinuity.

2 Trees

In the following, we define a type of trees that is able to represent both con-
stituent structures and dependency structures with discontinuities. We assume
that each substructure has a head. Heads are an inherent component of most
definitions of dependency structures [6,7]. Most older definitions of constituent
structures avoid the notion of heads altogether, whereas some more recent liter-
ature tends to at least involve heads in some way [3].

Let N
+ = {1, 2, . . . }, and let [n] = {1, 2, . . . , n} for n ∈ N

+. Let Σ be a finite
set of terminals and let N be a finite set of labels. Terminals correspond naively
to tokens, although in reality they can represent open classes of distributionally
similar tokens. Labels could represent categories, parts of speech, semantic roles,
or even a combination of these.
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⇒rm . . .

Fig. 1. Complete ph-tree for “a hearing is scheduled on the issue today” and corre-
sponding rightmost derivation, assuming π is the identity function. Thick edges lead
to heads and thin edges to dependents. Examples of headed rules used here are NP →
D〈N 〉PP and PP → ε〈P〉D N with ε here indicating absence of left dependents.

The set H(Σ,N) of headed trees over Σ and N is defined inductively as
follows. We have a leaf (a, i) ∈ H(Σ,N) for each a ∈ Σ and i ∈ N

+. We also have
A(s1 · · · sk, h, t1 · · · t�) ∈ H(Σ,N) for each A ∈ N and s1, . . . , sk, h, t1, . . . , t� ∈
H(Σ,N). Nothing else is in H(Σ,N).

In a leaf (a, i), the number i indicates an (input) position of the occurrence of
a in a string of terminals. The set of all positions in a headed tree t is denoted by
pos(t). All of s1, . . . , sk, h, t1, . . . , t� in a headed tree t = A(s1 · · · sk, h, t1 · · · t�)
will be referred to as immediate subtrees of t. We call subtree h the head of t,
we call s1, . . . , sk its left dependents and t1, . . . , t� its right dependents.

The head leaf of t = (a, i) is t itself and the head leaf of t = A(s1 · · · sk, h,
t1 · · · t�) is the head leaf of h. If (a, i) is the head leaf of t, then a is called the
head terminal of t and i is called the head position of t.

A headed tree is a positioned headed tree (ph-tree) if no two leaves share the
same position and if for every subtree t = A(s1 · · · sk, h, t1 · · · t�), the sequence
of the head positions of s1, . . . , sk, h, t1, . . . , t� is strictly increasing. A ph-tree t
is complete if pos(t) = [n] for some n ∈ N

+; see Fig. 1(a) for an example. The set
of ph-trees is denoted by P (Σ,N), and the set of complete ph-trees by C(Σ,N).
The yield of a ph-tree whose leaves are (a1, k1), . . . , (am, km), arranged such
that k1 < . . . < km, is the string a1 · · · am.

We call a ph-tree unilexical if each subtree is either a leaf or of the form
A(s1 · · · sk, h, t1 · · · t�), where h is a leaf and none of s1, . . . , sk, t1, . . . , t� are
leaves. A complete ph-tree that is unilexical would more commonly be called a
dependency structure.

3 Headed Context-Free Grammars

In this section, we give a formalization of headed grammars that differs somewhat
from related definitions in the literature, for example those of [1,3]. This is
motivated by the need for a streamlined presentation that allows formulation of
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both discontinuous constituent parsing and non-projective dependency parsing.
We also wish to incorporate the notion of latent variables, as this is an essential
component of some state-of-the-art parsers [21].

A headed context-free grammar (HCFG) is a 6-tuple (Σ,Q, qinit , R,N, π),
where Σ is a finite set of terminals as before, Q is a finite set of states, qinit ∈ Q
is the initial state, and R is a set of headed rules. Also as before, N is a finite set
of labels. The function π maps states to labels. Several states may be mapped to
the same label, to accommodate for latent variables. However, in the examples
and in the current experiments (Sect. 7), π is always the identity function.

A headed rule has the form q → α〈Z〉β, where q ∈ Q, Z ∈ Σ ∪ Q and
α, β ∈ (Σ ∪ Q)∗. Here q is called the left-hand side, and α〈Z〉β the right-hand
side, in which Z is the head, and the symbols in α and β are the left and right
dependents, respectively. The set R of headed rules is potentially infinite, in
which case we assume finite descriptions for the sets of strings α and β that may
appear in rules of the form q → α〈Z〉β, for given q and Z. Such descriptions
would typically be finite automata.

Assuming a fixed HCFG, the binary relation ⇒ has γ0γ1 · · · γkqδ0δ1 · · · δ�

⇒ γ0X1γ1X2 · · · XkγkZδ0Y1δ1Y2 · · · Y�δ� if q → X1 · · ·Xk〈Z〉Y1 · · · Y� is a rule.
Note that if we were to restrict γ1 · · · γk and δ0 · · · δ�−1 to be always ε, then we
obtain the familiar notion of (continuous) context-free derivation. The reflexive,
transitive closure of ⇒ is denoted by ⇒∗.

Where we speak of ‘a derivation qinit ⇒∗ w’, we implicitly assume a certain
sequence of rule applications that leads us from qinit to w, via intermediate
sentential forms. This includes not only the identity of each applied rule, but
also the occurrence of the state on which it is applied (a sentential form may
contain several occurrences of the same state), and the locations where the left
and right dependents are placed among the existing elements in the sentential
form.

A derivation qinit ⇒∗ w maps to a complete ph-tree as follows. First we
enhance w = a1 · · · an to w′ = (a1, 1) · · · (an, n), so that each terminal is cou-
pled to its position in the derived string. In the same way, we construct a set of
enhanced rules, on the basis of the rules that occur in the derivation. Concretely,
for a rule ρ of the form q → X1 · · · Xk〈Z〉Y1 · · · Y�, the set of enhanced rules con-
tains all rules of the form (q, i) → (X1, i1) · · · (Xk, ik)〈(Z, i)〉(Y1, j1) · · · (Y�, j�),
where 1 ≤ i1 < . . . < ik < i < j1 < . . . < j� ≤ n. The set of such enhanced rules
for given rule ρ will be denoted by ρ(n). Examples of enhanced rules relevant
for Fig. 1 are (S, 4) → (NP, 2)〈(VP, 4)〉ε and (D, 6) → ε〈(the, 6)〉ε. We can now
extend the derivation qinit ⇒∗ w in a unique way to a derivation (qinit , i0) ⇒∗ w′,
for some i0, where we replace an application of a rule ρ by some rule ρ′ ∈ ρ(n). In
the enhanced derivation, we have made explicit in which position each terminal
occurrence will end up, as well as made explicit the head position belonging to
each state occurrence.

Next, we interpret the enhanced derivation as a tree structure, with the right-
hand side elements of an enhanced rule being the children of the left-hand side.
On this tree structure, we apply π, which amounts to replacing each (q, i) by
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π(q). In particular, if π is the identity function, as in the case of Fig. 1, then each
(q, i) is simply replaced by q. Hereby, a derivation maps to a unique string w as
well as to a unique complete ph-tree. For a given HCFG G, the string language
SL(G) generated by G is the set of all strings that can be derived and the tree
language TL(G) is the corresponding set of complete ph-trees.

The permutation closure of a string language L ⊆ Σ∗ is defined to be the
language perm(L) of strings that are permutations of a string in L. We extend
permutation closure to rules as follows. If ρ is a rule q → α〈Z〉β, then perm(ρ) is
the set of rules of the form q → α′〈Z〉β′, where α′Zβ′ is a permutation of αZβ;
note that α′ and β′ need not be of the same length as α and β. The permutation
closure of a HCFG G, denoted by perm(G), is obtained by replacing its set of
rules by the union of their permutation closures. It is easy to see that a language
is a permutation closure of an epsilon-free context-free language (and thereby
of an epsilon-free regular language) if and only if it is SL(perm(G)) for some
HCFG G.

In practice, it is undesirable for a model of natural language syntax to allow
indiscriminate permutation of left dependents or of right dependents, let alone
indiscriminate swapping of left and right dependents. This motivates considering
the following weaker alternative to permutation closure. It involves shuffling
the descendents of a node with descendents of other nodes, while preserving
the relative order of immediate subtrees. Formally, a complete ph-tree u2 is a
shuffling of a complete ph-tree u1 if their yields, both of length n, are equal
under some permutation f of positions in [n] and if for every subtree of u1 of
the form A(s1 · · · sk, h, t1 · · · t�), whose immediate subtrees have head positions
i1, . . . , ik, i, j1, . . . , j�, there is a corresponding subtree of u2 of the form
A(s′

1 · · · s′
k, h′, t′1 · · · t′�), whose immediate subtrees have head positions f(i1), . . . ,

f(ik), f(i), f(j1), . . . , f(j�). The shuffle closure of a set T of complete ph-trees,
denoted by shuffle(T ), is obtained by replacing every tree t ∈ T by the set of its
shufflings. It is easy to see that TL(G) = shuffle(TLc(G)) for every HCFG G,
where TLc(G) is the tree language that results if ⇒ is restricted to continuous
derivation.

We have thus seen two ways of relating HCFG to continuous context-free
grammar, one in terms of string languages, using the permutation closure, and
one in terms of tree languages, using the shuffle closure.

4 Leftmost and Rightmost Derivations

Just as in established theory of context-free grammars, there can be several
derivations for the same string and the same tree that differ only in the order
in which states are rewritten. For the purpose of designing effective parsers
and formulating consistent probability distributions, one traditionally restricts
derivations to be either leftmost or rightmost. The behavior of top-down parsers
most closely matches leftmost derivations, whereas bottom-up parsers typically
match (reversed) rightmost derivations.

Restricting our discontinuous derivations to be either leftmost or rightmost
is more involved than in established theory, because of the potentially non-local
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behavior of derivation steps. Although we could define leftmost and rightmost
derivations for arbitrary HCFGs, the definitions become simpler if we restrict
ourselves to HCFGs that are separated; a HCFG is called separated if terminals
only occur in rules of the form q → ε〈a〉ε, where a ∈ Σ, and all other rules are
of the form q → α〈r〉β, where r ∈ Q and α, β ∈ Q∗. In a rightmost derivation,
every sentential form is then split into a prefix and a suffix. The suffix consists
entirely of terminals, whereas the prefix is in the set {ε} ∪ Q∗Q̂Q∗, where
Q̂ = {q̂ | q ∈ Q}. In words, if the prefix is not the empty string, then it contains
only states, of which exactly one has a hat.

The binary relation ⇒rm (‘rm’ for ‘rightmost’) has γq̂δw ⇒rm γ0q
′
1γ1q

′
2 · · ·

q′
kγkr′δ0s′

1δ1s
′
2 · · · s′

�δ�w if q → q1 · · · qk〈r〉s1 · · · s� is a rule, γ = γ0 · · · γk ∈ Q∗,
δ = δ0 · · · δ� ∈ Q∗, w ∈ Σ∗, q, q1, . . . , qk, r, s1, . . . , s� ∈ Q, and q′

1 · · · q′
kr′s′

1 · · · s′
�

is obtained from q1 · · · qkrs1 · · · s� by placing the hat on exactly one of these
states.

The relation ⇒rm further has γq̂w ⇒rm γ′aw if q → ε〈a〉ε is a rule, where
a ∈ Σ, and γ′ = γ if γ = ε and otherwise γ′ is obtained from γ by placing the
hat on exactly one of the states. A derivation starts from the sentential form
q̂init .

Perhaps counter-intuitively at first sight, our rightmost derivations do not
necessarily rewrite the rightmost state. Instead, a rightmost derivation can be
decomposed into several chains of rewrites, each of which ends in a step that
is rightmost in the sense of adding one more terminal at the front of the suffix
of terminals. After the first step in a single chain, each step rewrites a state
introduced by the previous step. This constraint is enforced by placing a hat on
a state to be rewritten next.

An example of a chain starts in the third line in Fig. 1(b), with ̂NP . In the
fourth line, NP has been rewritten to D N PP , of which the last obtains the
hat. The chain ends when issue is added at the front of the terminal suffix, upon
which another state from the sentential form obtains the hat, in this case the
rightmost D , which starts a new chain.

Leftmost derivations are analogous. We can define SLlm, TLlm, SLrm and
TLrm much as we defined SL and TL, now restricting the derivations to be
leftmost or rightmost, respectively. Of central importance to later sections is:

Theorem 1. For each HCFG G, we have SL(G) = SLlm(G) = SLrm(G), and
TL(G) = TLlm(G) = TLrm(G).

A proof can be given in terms of enhanced derivations, which can be rearranged
to become rightmost (or leftmost for the symmetric case). For a string of length
n, there are chains of rewrites, one for each i = n, . . . , 1. In the chain for a certain
i, only state occurrences are rewritten whose corresponding subtrees have yields
that include the i-th terminal but not the j-th terminal in the string, for any
j > i. Theorem 1 can be refined to formulate a surjective mapping from an
arbitrary derivation to a rightmost derivation for the same tree. Moreover, if
π is the identity function, then there is a bijective mapping from rightmost
derivations to TL(G).
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5 The Automaton Model

This section defines a discontinuous shift-reduce parser, which computes
(reversed) rightmost derivations of a separated HCFG. A configuration is a pair
consisting of a stack, which is a string in {ε} ∪ Q∗Q̂Q∗, and a remaining input,
which is a string in Σ∗.

The binary relation 
 is defined by two allowable steps. A shift is (γ, aw) 

(γ′q̂, w) if q → ε〈a〉ε is a rule, and γ′ results from γ by removing the occurrence
of the hat if there is one (if not, then γ = ε). A reduction is (γ0q′

1γ1q
′
2 · · · q′

kγkr′

δ0s
′
1δ1s

′
2 · · · s′

�δ�, w) 
 (γ0 · · · γk q̂δ0 · · · δ�, w) if q → q1 · · · qk〈r〉s1 · · · s� is a rule,
and q′

1 · · · q′
kr′s′

1 · · · s′
� contains exactly one hat, which is removed to give q1 · · · qkr

s1 · · · s�. It differs from the usual definition of reduction in continuous parsing
by the fact that the occurrences of symbols in the right-hand side of the used
rule can be arbitrarily deep in the stack (but in the same relative order as in the
rule). The location in the stack where the head is found determines the location
of the left-hand side of the rule after the reduction.

A computation recognizing a string w is a sequence of steps (ε, w) 
∗ (q̂init , ε).
As 
 can be seen as the reversal of ⇒rm , it is not difficult to see that a string
can be recognized if and only if it is in SL(G), using Theorem 1. Further, com-
putations can be enhanced to construct corresponding trees.

For the example from Fig. 1, the computation is:

(ε , a hearing is scheduled on the issue today) 

(̂D , hearing is scheduled on the issue today) 

(D ̂N , is scheduled on the issue today) 
 . . . 

(D N Aux V P ̂D , issue today) 

(D N Aux V P D ̂N , today) 

(D N Aux V ̂PP , today) 

(̂NP Aux V , today) 

(NP Aux V ÂDV , ε) 

(NP ̂VP , ε) 

(̂S , ε)

6 Probabilities

There may be many derivations for a given string, each of which determines
one tree. In order to disambiguate, and choose one out of those derivations,
and thereby one tree, one may impose a probability model, either on steps of
the automaton, or on derivation steps. For reasons explained in Sect. 1, we here
want to investigate the latter, as before for a fixed HCFG that is separated.

The task ahead is to define a probability distribution over the derivation steps
that are possible for a sentential form γq̂δw. A derivation step is characterized
first by a choice of a rule q → α〈r〉β or a rule q → ε〈a〉ε; the latter is only possible
if δ = ε. When a non-lexical rule q → α〈r〉β is applied, we also need to choose
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the way in which γ and δ are broken up, to accommodate for the placement of
the elements of α and β, and we need to choose the state among those in αrβ
that will have the hat next. When a lexical rule q → ε〈a〉ε is applied, we need to
choose the state among those in the sentential form that will have the hat next.

In order to be able to estimate parameters effectively, we need to make a
number of independence assumptions, which will become clear in the following.
The probability of obtaining α2 = γ0q

′
1γ1 · · · q′

kγkr′δ0s′
1δ1 · · · s′

�δ�w in one step
from α1 = γ0 · · · γk q̂δ0 · · · δ�w through application of q → q1 · · · qk〈r〉s1 · · · s�,
where the m-th state in q′

1 · · · q′
kr′s′

1 · · · s′
� is the one with the hat, and B denoting

the truth value of δ0 · · · δ� = ε, can be approximated by:

p(α2 | α1) ≈ prule(q → q1 · · · qk〈r〉s1 · · · s� | q,B) ·
pleft(|γ0|, . . . , |γk| | k, |γ0 · · · γk|) ·
pright(|δ0|, . . . , |δ�| | 
, |δ0 · · · δ�|) ·
prule hat(m | k, 
) (1)

The use of prule embodies the independence assumption that the probability of
applying a non-lexical rule for state q does not depend on the context, except
for the question whether q is the rightmost state in the sentential form. This is
because probability mass may be shared with application of a lexical rule in case
B = true, which is to be discussed later.

Further, pleft(i0, . . . , ik | k, i) is the probability that k left dependents
are distributed over i = i0 + . . . + ik states, leaving i0 states before the
first left dependent, ik after the last left dependent, and i1, . . ., ik−1 states
between the corresponding pairs of consecutive left dependents. The meaning
of pright(j0, . . . , j� | 
, j) is analogous. The assumption made here is that the
probability of how the left and right dependents are interspersed with the exist-
ing states of the sentential form is independent of the identities of the involved
states, and only their numbers matter. The motivation behind this assumption
is to keep the model simple. Investigation of more refined models is a matter for
future research.

Lastly, prule hat(m | k, 
) is the probability that with k left dependents, one
head, and 
 right dependents, the hat is placed on the m-th element, with m ∈
[k + 1 + 
]. Once more, there is the independence assumption that the identities
of the involved states do not matter.

The probability of obtaining α2 = γ′aw from α1 = γq̂w using a rule q →
ε〈a〉ε, where the m-th state in γ′ is the one with the hat, can be approximated
by:

p(α2 | α1) ≈ prule(q → ε〈a〉ε | q) · plex hat(m | |γ|) (2)

Here prule is implicitly conditional on B = true, as lexical rules can only rewrite
states that occur rightmost in the sentential form. Further, plex hat(m | k) is the
probability that the hat is placed on the m-th state of a string of k states. Once
again, there is the independence assumption that the identities of the involved
states do not matter.
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We define pleft and pright recursively, motivated by the assumption that the
probability decreases exponentially with the number of existing states from the
sentential form that are interspersed with the dependents. For i ≥ 0 and k ≥ 0:

pleft(i0 | 0, i) = pleft(i0, . . . , ik | k, 0) = 1 (3)
pleft(i0, . . . , ik, ik+1 + 1 | k + 1, i + 1) = Pleft · pleft(i0, . . . , ik, ik+1 | k + 1, i) (4)

pleft(i0, . . . , ik, 0 | k + 1, i + 1) = (1 − Pleft) · pleft(i0, . . . , ik | k, i + 1) (5)

Here Pleft is the probability that the next dependent is not placed rightmost
among the available existing states in the sentential form, provided there are
any. We have probability 1 if there are no more available states in the sentential
form that can be skipped, or no more dependents. We define pright in the same
way, with constant Pright . By the same reasoning, we define prule hat(m | k, 
) =
P k+�+1−m
rule hat · (1−Prule hat) for m > 1 and prule hat(m | k + 
+1) = P k+�+1−m

rule hat for
m = 1. Here Prule hat can be seen as the probability that the hat is not placed on
the next available state of a rule, from right to left, if there are at least two more
available states. We have probability 1 if there is only one more state. We define
plex hat similarly, with constant Plex hat , which can be seen as the probability
that the hat is not placed on the next available state in the sentential form, from
right to left.

With the usual assumption of absence of useless rules, a sufficient condition
for the above equations to specify a consistent probability model is that there
is at least one rule q → α〈r〉β with non-empty β for each q. To illustrate the
problem that is potentially caused if this requirement is not satisfied, assume
the hat is placed on a state q in the sentential form that is not rightmost, and
assume only lexical rules exist that have q as left-hand side. Then no rules at all
are applicable, and probability mass is lost.

Such a problem in fact had to be solved for our experiments in Sect. 7 with
dependency grammars, which are formalized in terms of rules qinit → ε〈A〉ε,
A → α〈A〉β, and A → ε〈a〉ε, where state A represents a part of speech and A
is an auxiliary state for the same part of speech, α and β are strings of such
auxiliary states for parts of speech, and a is a word. Dependency relations are
ignored. For each A there is one smoothed bigram model pld for possible choices
of left dependents α and one such model prd for right dependents β. To avoid
problems caused by out-of-vocabulary words and inflection, probabilities of rules
A → ε〈a〉ε are ignored, so that conceptually the input consists of a string of parts
of speech.

In order to then obtain a probability distribution over derivations, one needs
to ensure that the hat cannot be given to a part of speech that is non-rightmost
in the sentential form. This is achieved by adjusting the definitions of prule hat

and plex hat to ignore parts of speech unless they are right-most in the sentential
form. We further ensure that an auxiliary state A that occurs non-rightmost
in the sentential form can only be rewritten using A → α〈A〉β if αβ = ε,
with probability pld(α | A) · prd(β | A) ·Cnorm(A), with the normalization factor
Cnorm(A) = 1/(1 − pld(ε | A) · prd(ε | A)). For rightmost occurrences of A there
is no such restriction on α and β and the normalization factor is not needed.
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Table 1. Perplexity of the likelihood p, and some estimated parameters, for German,
Norwegian, English and Hindi, for leftmost and for rightmost derivations.

⇒lm ⇒rm

p Plex hat Prule hat Pleft Pright p Plex hat Prule hat Pleft Pright

Ge 1.88 4.0*10−3 2.0*10−3 1.3*10−1 4.2*10−2 1.89 6.0*10−4 1.1*10−2 1.0*10−2 2.8*10−1

No 1.96 5.8*10−4 3.4*10−3 5.0*10−1 8.5*10−2 1.97 2.1*10−3 1.7*10−2 5.1*10−3 2.1*10−1

En 1.99 4.8*10−4 3.8*10−3 5.2*10−1 3.7*10−2 2.00 1.1*10−3 6.5*10−3 4.5*10−3 2.3*10−1

Hi 1.72 2.3*10−3 3.6*10−3 5.7*10−1 4.1*10−2 1.71 3.9*10−4 2.6*10−2 9.6*10−3 4.6*10−1

7 Evaluation

The number of derivations is exponential in the length of a sentence. This makes
it infeasible to compute the most probable among all rightmost (or leftmost)
derivations. One may use beam search or related pruning techniques to reduce
running time. However, an extrinsic evaluation that determines the usual F1
score (combining precision and recall) would then say as much about the used
techniques of pruning as it does about the underlying model.

Because our model defines a probability distribution, one may instead per-
form an intrinsic evaluation in terms of perplexity, which is the negative log like-
lihood of a test corpus, normalized by the size of that corpus, i.e. −∑t∈T log2 p(t)

∑
t∈T |t| .

Here T is the set of trees for the test corpus, p is the trained probability model of
leftmost or rightmost derivations, and |t| is the number of nodes in t. Perplexity
was shown by [23] to be a good indicator of parsing accuracy.

An obvious question to investigate is whether there is a difference in per-
plexity between leftmost and rightmost derivations. For this, we considered four
corpora from the Universal Dependencies treebank [19], taking the first 13000
trees from each training section and the first 950 trees from each testing section.
All punctuation was removed and sentences consisting entirely of punctuation
were ignored altogether. Table 1 presents perplexity and some of the parameters
obtained by maximum likelihood estimation.

Note that the probabilities of prule , as determined by pld and prd and the
probabilities of rules qinit → ε〈A〉ε, are not affected by the direction of the
derivations. They make the biggest contribution to the perplexity, so that total
values for leftmost and right derivations become very similar. Table 2 therefore
looks at the decomposition of the perplexity, into the contributions from prule ,
plex hat , prule hat , from pleft and pright together, as well as the (negative) contri-
bution from the normalization factor Cnorm . Also this more detailed view does
not reveal a clear preference for leftmost or rightmost derivations.

Table 2. Perplexity of the likelihood p decomposed.

⇒lm ⇒rm

prule p plex hat prule hat pleft∗pright Cnorm p plex hat prule hat pleft∗pright Cnorm

Ge 1.86 1.88 5.4*10−3 2.9*10−3 1.5*10−2 -3.0*10−4 1.89 8.3*10−3 1.3*10−2 1.2*10−2 -1.6*10−3

No 1.92 1.96 4.6*10−3 7.0*10−3 2.9*10−2 -3.4*10−4 1.97 1.8*10−2 1.8*10−2 2.1*10−2 -5.5*10−3

En 1.98 1.99 1.7*10−3 1.1*10−3 8.9*10−3 -1.8*10−4 2.00 4.6*10−3 6.7*10−3 5.5*10−3 -1.4*10−3

Hi 1.67 1.72 1.1*10−2 6.4*10−3 3.4*10−2 -5.3*10−4 1.71 1.7*10−3 2.3*10−2 2.0*10−2 -1.7*10−3
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8 Conclusion

Motivated by the ultimate aim of developing more accurate and robust parsers
that can handle discontinuity, we have introduced a model of syntax that cap-
tures discontinuous derivation. Unlike previous models, it explicitly defines a
probability distribution over the space of all discontinuous parses. We have shown
that this allows evaluation in terms of perplexity.
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Abstract. We introduce a so-called cut language which contains the
representations of numbers in a rational base that are less than a given
threshold. The cut languages can be used to refine the analysis of neural
net models between integer and rational weights. We prove a necessary
and sufficient condition when a cut language is regular, which is based
on the concept of a quasi-periodic power series. For a nonnegative base
and digits, we achieve a dichotomy that a cut language is either regular
or non-context-free while examples of regular and non-context-free cut
languages are presented. We show that any cut language with a rational
threshold is context-sensitive.

Keywords: Grammars · Quasi-periodic power series · Cut language

1 Cut Languages

We study so-called cut languages which contain the representations of numbers in
a rational base [1,2,5–7,10,12–15] that are less than a given threshold. Hereafter,
let a be a rational number such that 0 < |a| < 1, which is the inverse of a base
(radix) 1/a where |1/a| > 1, and let B ⊂ Q be a finite set of rational digits.
We say that L ⊆ Σ∗ is a cut language over a finite alphabet Σ �= ∅ if there is
a bijection b : Σ −→ B and a real threshold c such that

L = L<c =

{

x1 . . . xn ∈ Σ∗

∣
∣
∣
∣
∣

n−1∑

i=0

b(xn−i)ai < c

}

. (1)

The cut languages can be used to refine the analysis of computational power
of neural network models [17,23]. This analysis is satisfactorily fine-grained
in terms of Kolmogorov complexity when changing from rational to arbitrary
real weights [4,18]. In contrast, there is still a gap between integer and ratio-
nal weights, which results in a jump from regular to recursively enumerable
languages in the Chomsky hierarchy. In particular, neural nets with integer
weights, corresponding to binary-state networks, coincide with finite automata
[3,8,9,11,16,20,25]. On the other hand, a neural network that contains two
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analog-state units with rational weights, can implement two stacks of pushdown
automata, a model equivalent to Turing machines [19]. A natural question arises:
what is the computational power of binary-state networks including one extra
analog unit with rational weights? Such a model is equivalent to finite automata
with a register [21], which accept languages that can be represented by some cut
languages combined in a certain way by usual operations (e.g. intersection with
a regular language, concatenation, union); see [22] for the exact representation.

In this paper we prove a necessary and sufficient condition when a given
cut language is regular (Sect. 3). For this purpose, we introduce and charac-
terize an a-quasi-periodic number within B whose all representations in basis
1/a using the digits from B, are eventually quasi-periodic power series (Sect. 2).
The concept of quasi-periodicity represents a natural generalization of period-
icity, allowing for different quasi-repetends even of unbounded length. There
are numbers with uncountably many representations, all of which are eventu-
ally quasi-periodic, although only countably many of them can be eventually
periodic. For a nonnegative base and digits, we achieve a dichotomy that a cut
language is either regular or non-context-free. In addition, we present examples
of cut languages that are not context-free and we show that any cut language
with a rational threshold is context-sensitive (Sect. 4). Finally, we summarize the
results and present some open problems (Sect. 5).

2 Quasi-Periodic Power Series

In this section, we introduce and analyze a notion of a-quasi-periodic numbers
within B which will be employed for characterizing the class of regular cut
languages in Sect. 3. We say that a power series

∑∞
k=0 bkak with coefficients

bk ∈ B for all k ≥ 0, is eventually quasi-periodic with period sum P if there is
an increasing infinite sequence of its term indices 0 ≤ k1 < k2 < · · · such that
for every i ≥ 1, ∑mi−1

k=0 bki+k ak

1 − ami
= P (2)

where mi = ki+1 − ki > 0 is the length of quasi-repetend bki
, . . . , bki+1−1, while

k1 is the length of preperiodic part b0, . . . , bk1−1. For k1 = 0, we call such a power
series quasi-periodic. One can calculate the sum of any eventually quasi-periodic
power series as

∞∑

k=0

bkak =
k1−1∑

k=0

bkak + ak1P (3)

since
∑∞

k=k1
bkak =

∑∞
i=1 aki

∑mi−1
k=0 bki+k ak = P ·

∑∞
i=1 aki(1 − ami) =

P ·
∑∞

i=1(a
ki − aki+1) = ak1P is an absolutely convergent series. It follows that

the sum (3) does not change if any quasi-repetend is removed from associated
sequence (bk)∞

k=0 or if it is inserted in between two other quasi-repetends, which
means that the quasi-repetends can be permuted arbitrarily.
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Example 1. A quasi-periodic power series can be composed of quasi-repetends
having unbounded length. For example, for any rational period sum P �= 0, we
define three rational digits as β1 = (1 − a2)P , β2 = a(1 − a)P , and β3 = 0,
that is, B = {β1, β2, β3}. Then β1, β

n
2 , β3 where βn

2 means β2 repeated n times,
creates a quasi-repetend of length n + 2 for every integer n ≥ 0, because
(β1 +

∑n
k=1 β2a

k + β3a
n+1)/(1 − an+2) = P whereas for any integer r such

that 0 ≤ r < n, it holds (β1 +
∑r

k=1 β2a
k)/(1 − ar+1) �= P .

Furthermore, given a power series
∑∞

k=0 bkak, we define its tail sequence
(dn)∞

n=0 as dn =
∑∞

k=0 bn+k ak for every n ≥ 0. Denote by D(
∑∞

k=0 bkak) =
{dn |n ≥ 0} the set of tail values.

Lemma 2. A power series
∑∞

k=0 bkak with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic with period sum P iff its tail sequence (dn)∞

n=0 contains a constant
infinite subsequence (dki

)∞
i=1 such that dki

= P for every i ≥ 1.

Proof. Let
∑∞

k=0 bkak be an eventually quasi-periodic power series with period
sum P, which means there is an increasing infinite sequence of its term indices
0 ≤ k1 < k2 < · · · such that Eq. (2) holds for every i ≥ 1. It follows that
aki dki

=
∑∞

k=ki
bk ak =

∑∞
j=i akj

∑mj−1
k=0 bkj+k ak = P ·

∑∞
j=i akj (1 − amj ) =

P ·
∑∞

j=i(a
kj − akj+1) = akiP , which implies dki

= P for every i ≥ 1.
Conversely, assume that (dn)∞

n=0 contains a constant subsequence (dki
)∞
i=1

such that dki
= P for every i ≥ 1. We have

∑mi−1
k=0 bki+k ak = dki

− amidki+1 =
(1 − ami)P where mi = ki+1 − ki > 0 , which implies (2) for every i ≥ 1. 
�

Theorem 3. A power series
∑∞

k=0 bkak with bk ∈ B for all k ≥ 0, is eventually
quasi-periodic iff the set of its tail values, D = D(

∑∞
k=0 bkak), is finite.

Proof. Assume that D is a finite set, which means there must be a real number
P ∈ D such that dki

= P for infinitely many indices 0 ≤ k1 < k2 < · · · ,
that is, (dki

)∞
i=1 creates a constant infinite subsequence of tail sequence (dn)∞

n=0 .
According to Lemma 2, this ensures that

∑∞
k=0 bkak is eventually quasi-periodic.

Conversely, let
∑∞

k=0 bkak with bk ∈ B for all k ≥ 0, be an eventually quasi-
periodic power series with period sum P . Since a ∈ Q and B ⊂ Q is finite, P
is a rational number by (2) and there exists a natural number β > 0 such that
B′ = {β(b − (1 − a)P )/a | b ∈ B} ⊂ Z is a finite set of integers. According to
Lemma 2, the tail sequence (dn)∞

n=0 of
∑∞

k=0 bkak contains a constant infinite
subsequence (dki

)∞
i=1 such that dki

= P for every i ≥ 1. Assume to the contrary
that D = {dn |n ≥ 0} is an infinite set.

We define a modified sequence (d′
n)∞

n=0 as d′
n = β(dk1+n − P ) for all n ≥ 0,

which satisfies d′
k′

i
= 0 where k′

i = ki −k1, for every i ≥ 1, and D′ = {d′
n |n ≥ 0}

is an infinite set. Furthermore, for each n ≥ 0,

d′
n

a
− d′

n+1 =
β(dk1+n − P )

a
− β(dk1+n+1 − P ) = β

bk1+n − (1 − a)P
a

∈ B′ (4)

is an integer by the definition of B′. In addition, denote 1/a = α/q ∈ Q where
natural number α > 0 and integer q �= 0 are coprime.
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Lemma 4. For every n ≥ 0, there exists an integer δ and a natural number
p ≥ 0 such that d′

n = δ/qp.

Proof. We proceed by induction on n. The assertion is obvious for n = 0 when
d′
0 = 0. Assume that d′

n = δ/qp for some δ ∈ Z and p ≥ 0. Then d′
n+1 = d′

n/a−b′

for some integer b′ ∈ B′ ⊂ Z according to (4), which can be rewritten as d′
n+1 =

(α/q) · (δ/qp) − b′ = (αδ − b′qp+1)/qp+1 = δ1/qp+1 where δ1 = αδ − b′qp+1 ∈ Z,
completing the proof of Lemma 4. 
�

Lemma 5. If d′
n+1 ∈ Z, then d′

n ∈ Z.

Proof. Let d′
n+1 ∈ Z . By (4) there is b′ ∈ B′ ⊂ Z such that d′

n/a = d′
n+1+b′ ∈ Z.

According to Lemma 4, d′
n = δ/qp for some δ ∈ Z and p ≥ 0, which gives

d′
n/a = αδ/qp+1 ∈ Z. Since α and q are coprime, qp+1 must be a factor of δ,

which means δ = δ′qp+1 for some δ′ ∈ Z, and hence d′
n = δ/qp = δ′q ∈ Z,

completing the proof of Lemma 5. 
�

We will show for each n ≥ 0 that d′
n ∈ Z. Let i ≥ 1 be the least index such

that k′
i ≥ n for which we know d′

k′
i
= 0 ∈ Z. By applying Lemma 5 (k′

i −n) times
we obtain d′

k′
i−1, d

′
k′

i−2, . . . , d
′
n ∈ Z.

Thus, D′ ⊂ Z and since D′ is infinite, there exists an index m ≥ 0 such
that |d′

m| ≥ (|a| · M)/(1 − |a|) > 0 where M = maxb′∈B′ |b′| . Note that M > 0
since for M = 0, we would have B = {(1 − a)P} implying D = {P} which
contradicts that D is infinite. According to (4), |d′

m+1| ≥ |d′
m|/|a| − M which

implies |d′
m+1| − |d′

m| ≥ (1/|a| − 1)|d′
m| − M ≥ 0 by the definition of m. Hence,

|d′
m+1| ≥ |d′

m| , and by induction we obtain |d′
n| ≥ (|a|·M)/(1−|a|) > 0 for every

n ≥ m . On the other hand, we know that there is an index i such that k′
i ≥ m

for which d′
k′

i
= 0, which is a contradiction completing the proof of Theorem3.
�

We say that a real number c is a-quasi-periodic within B if any power series∑∞
k=0 bkak = c with bk ∈ B for all k ≥ 0, is eventually quasi-periodic. Note that

c that cannot be written as a respective power series at all, or can, in addition,
be expressed as a finite sum

∑h
k=0 bkak = c whereas 0 /∈ B, is also considered

formally to be a-quasi-periodic. For example, the numbers from the complement
of the Cantor set are formally (1/3)-quasi-periodic within {0, 2}.

Example 6. Example 1 can be extended to provide a nontrivial instance of an
a-quasi-periodic number that has infinitely many different quasi-periodic rep-
resentations composed of quasi-repetends of arbitrary length (greater than 1).
This includes ordinarily periodic representations composed of one of these quasi-
repetends and uncountably many non-periodic ones. Let a ∈ Q meet 0 < a < 1

2 .
We show that any positive rational number c is a-quasi-periodic within B
where B = {β1, β2, β3} is defined in Example 1 so that P = c. Obviously,
β1 > β2 > β3 = 0. Assume that c =

∑∞
k=0 bkak for some sequence (bk)∞

k=0

where bk ∈ B for all k ≥ 0. Observe first that it must be b0 = β1 since otherwise
c =

∑∞
k=0 bkak ≤ β2 +

∑∞
k=1 β1a

k = a(1 − a)c + (1 − a2)c · a/(1 − a) = 2ac < c
due to a < 1

2 . Moreover, for any n ≥ 0 such that bk = β2 for every k = 1, . . . , n,
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it holds bn+1 �= β1 since otherwise c =
∑∞

k=0 bkak ≥ β1 +
∑n

k=1 β2a
k +β1a

n+1 =
(1−a2)c+a(1−a)c ·a(1−an)/(1−a)+(1−a2)c ·an+1 = c−an+1(a2+a−1)c > c
due to a2 + a − 1 < 0 for 0 < a < 1

2 .
First consider the case when there is r ≥ 1 such that bk = β2 for all k ≥ r.

Then b0, . . . , br−1 is a preperiodic part and bk = β2 for k ≥ r represents a repe-
tend of length mk = 1, which proves

∑∞
k=0 bkak to be eventually quasi-periodic.

Further assume there is no such r, and thus bk = β2 for every k = 1, . . . , n1 and
bn1+1 = β3, for some n1 ≥ 0. It follows that series

∑∞
k=0 bkak = c starts with a

quasi-repetend β1, β
n1
2 , β3 of length n1+2 (cf. Example 1) which can be omitted as

∑∞
k=0 bn1+2+kak = (c−

∑n1+1
k=0 bkak)/an1+2 = cdue to

∑n1+1
k=0 bkak = c(1−an1+2)

by (2), and the argument can be repeated for its tail
∑∞

k=0 bn1+2+kak = c to reveal
the next quasi-repetend β1, β

n2
2 , β3 for some n2 ≥ 0 etc. Hence,

∑∞
k=0 bkak is quasi-

periodic, which completes the proof that c is a-quasi-periodic within B.

Example 7. On the other hand, we present an example of an eventually quasi-
periodic series

∑∞
k=0 bkak = c with bk ∈ B for all k ≥ 0, such that c is not

a-quasi-periodic within B. Let a = 2
3 , B = {0, 1}, and define an eventually

quasi-periodic series
∑∞

k=0 bkak with a preperiodic part b0 = b1 = 0 and a
repetend b2+3k = 0, b3+3k = b4+3k = 1 for every k ≥ 0, which sums to c =
((23 )3 + (23 )4) ·

∑∞
k=0(

2
3 )3k = 40

57 .
Furthermore, we employ a greedy approach to generate a series

∑∞
k=0 b′

kak =
c with b′

k ∈ {0, 1} for all k ≥ 0, which is not eventually quasi-periodic. In
particular, find minimal k1 ≥ 0 such that ak1 < c which gives b′

0 = · · · =
b′
k1−1 = 0, b′

k1
= 1, and remainder c1 = c/ak1 − 1. For n > 1, let b′

0, . . . , b
′
kn−1

be
0s except for b′

k1
= b′

k2
= · · · = b′

kn−1
= 1. Then find minimal kn > kn−1 such

that akn−kn−1 < cn−1 which produces b′
kn−1+1 = · · · = b′

kn−1 = 0, b′
kn

= 1, and
remainder cn = cn−1/akn−kn−1 − 1. It follows that cn =

∑∞
k=0 b′

kn+kak − 1 =
(c −

∑n
i=1 aki)/akn for n ≥ 1. By plugging a = 2

3 and c = 40
57 into this formula,

for which k1 = 1 and k2 = 9, we obtain

cn =
20
19

(
3
2

)kn−1

−
n∑

i=1

(
3
2

)kn−ki

=
3kn−1 − 19 · 2 ·

∑n
i=2 2ki−2 · 3kn−ki

19 · 2kn−1
(5)

which is an irreducible fraction since both 19 and 2 are not factors of 3kn−1.
Hence, for any natural n1, n2 such that 0 < n1 < n2 we know cn1 �= cn2 . It
follows that the tail sequence (d′

n)∞
n=0 of

∑∞
k=0 b′

kak = c contains infinitely many
different values d′

kn
= cn + 1 for n ≥ 1, which implies that

∑∞
k=0 b′

kak is not an
eventually quasi-periodic series, according to Theorem 3.

Theorem 8. A real number c is a-quasi-periodic within B iff the tail sequences
of all the power series satisfying

∑∞
k=0 bkak = c with bk ∈ B for all k ≥ 0,

contain altogether only finitely many values, that is,

D =
⋃

∑∞
k=0 bkak=c

forall k≥0, bk∈B

D

( ∞∑

k=0

bkak

)

(6)
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is a finite set. In addition, if c is not a-quasi-periodic within B, then there exists
a power series

∑∞
k=0 bkak = c with bk ∈ B for all k ≥ 0, whose tail sequence

contains pair-wise different values.

Proof. Let D be a finite set. Then the tail sequence of any power series
∑∞

k=0 bkak

= c with bk ∈ B for all k ≥ 0, contains only finitely many values and thus
includes a constant infinite subsequence. According to Lemma2, this implies
that any

∑∞
k=0 bkak = c is eventually quasi-periodic, and hence, c is a-quasi-

periodic within B.
Conversely, assume that D is infinite. Consider a directed tree T = (V,E)

with vertex set V ⊆ B∗ such that b0 · · · bn−1 ∈ V if its tail meets t(b0 · · · bn−1) =
(c −

∑n−1
k=0 bkak)/an ∈ D, which includes the empty string ε as a root satisfying

t(ε) = c. Define a set of directed edges as

E = {(b0 · · · bn−1, b0 · · · bn−1bn) | b0 · · · bn−1, b0 · · · bn−1bn ∈ V } , (7)

which guarantees the outdegree of T is bounded by |B|. Let T ′ = (V ′, E′) be
a subtree of T with a maximal vertex subset V ′ ⊆ V so that ε ∈ V ′ and
t(v1) �= t(v2) for any two different vertices v1, v2 ∈ V ′.

We show that for any d ∈ D there is v ∈ V ′ such that t(v) = d. On the
contrary, suppose b0 · · · bn−1 ∈ V \ V ′ is a vertex with minimal n, satisfying
t(v) �= t(b0 · · · bn−1) = d ∈ D for every v ∈ V ′. Clearly, b0 · · · bn−2 ∈ V \ V ′

since otherwise vertex b0 · · · bn−1 could be included into V ′ which contradicts
the maximality of V ′. By the minimality of n, we know there is b′

0 · · · b′
m−1 ∈ V ′

such that t(b′
0 · · · b′

m−1) = t(b0 · · · bn−2). Thus, we have t(b′
0 · · · b′

m−1bn−1) = d
and the maximality of V ′ implies b′

0 · · · b′
m−1bn−1 ∈ V ′, which is in contradiction

with the definition of b0 · · · bn−1.
It follows that {t(v) | v ∈ V ′} = D implying T ′ is infinite. According to

König’s lemma, there exists an infinite directed path in T ′ corresponding to
a power series

∑∞
k=0 bkak = c whose tail sequence contains pair-wise different

values. By Lemma 2, this series is not eventually quasi-periodic and hence, c is
not a-quasi-periodic within B. 
�

3 Regular Cut Languages

In this section we formulate a necessary and sufficient condition for a cut lan-
guage L<c to be regular (Theorem 11), which is based on a-quasi-periodic thresh-
olds c within B. The following Lemma 9 provides a technical characterization of
the regular cut languages, which is proven by Myhill-Nerode theorem, while sub-
sequent Lemma 10 separates the cases when threshold c is represented by a finite
sum or when c has no representation in base 1/a using the digits from B.
Lemma 9. Let Σ be a finite alphabet, b : Σ −→ B be a bijection, and c be a real
number. Then the cut language L<c = {x1 · · · xn ∈ Σ∗ |

∑n−1
i=0 b(xn−i)ai < c} is

regular iff the set

C =

{

c(b0, . . . , bκ−1)

∣
∣
∣
∣
∣
Iκ ≤ c −

κ−1∑

k=0

bkak ≤ Sκ ; b0, . . . , bκ−1 ∈ B ; κ ≥ 0

}

(8)

is finite, where
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Iκ = inf
bκ,...,bh−1∈B

h≥κ

h−1∑

k=κ

bkak , Sκ = sup
bκ,...,bh−1∈B

h≥κ

h−1∑

k=κ

bkak , (9)

c(b0, . . . , bκ−1) =
{

inf C(b0, . . . , bκ−1) if aκ > 0
supC(b0, . . . , bκ−1) if aκ < 0 ,

(10)

C(b0, . . . , bκ−1) =

{
h−κ−1∑

k=0

bκ+kak

∣
∣
∣
∣
∣

h−1∑

k=0

bkak ≥ c ; bκ, . . . , bh−1 ∈ B ; h ≥ κ

}

.

(11)

Proof. Let C = {c1, . . . , cp} in (8) be a finite set such that c1 < c2 < · · · <
cp. We introduce an equivalence relation ∼ on Σ∗ as follows. For any x, y ∈
Σ∗ of length nx = |x| and ny = |y|, respectively, we define x ∼ y iff both
zx =

∑nx−1
i=0 b(xnx−i)ai and zy =

∑ny−1
i=0 b(ynx−i)ai belong either to one of the

p + 1 open intervals (−∞, c1), (c1, c2), . . . , (cp−1, cp), (cp,∞), or to one of the p
singletons {c1}, {c2}, . . . , {cp} . Obviously, we have 2p+1 equivalence classes. In
order to prove that language L<c is regular we employ Myhill-Nerode theorem
by showing that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗, xw ∈ L<c

iff yw ∈ L<c . Thus, consider x, y ∈ Σ∗ such that x ∼ y, and on the contrary,
suppose there is w ∈ Σ∗ of length κ = |w| with zw =

∑κ−1
i=0 b(wκ−i)ai, such that

xw ∈ L<c and yw /∈ L<c. This means zw+Iκ ≤ zw+aκzx < c ≤ zw+aκzy ≤ zw+
Sκ by (9), implying Iκ < c−zw ≤ Sκ which ensures cj = c(b(wκ), . . . , b(w1)) ∈ C
for some j ∈ {1, . . . , p}, according to (8). It follows from (10) and (11) that
zw + aκzx < c ≤ zw + aκcj ≤ zw + aκzy which gives aκzx < aκcj ≤ aκzy

contradicting x ∼ y.
Conversely, let L<c be a regular languages. According to Myhill-Nerode the-

orem, there is an equivalence relation ∼ on Σ∗ with a finite number p of equiv-
alence classes such that for any x, y ∈ Σ∗, if x ∼ y, then for every w ∈ Σ∗,
xw ∈ L<c iff yw ∈ L<c . Assume to the contrary that C in (8) is infinite.
Choose c0, c1, . . . , c2p+2 ∈ C so that c0 < c1 < · · · < c2p+2, and for each
j ∈ {0, . . . , 2p + 2}, let cj = c(bj0, . . . , bj,κj−1) for some bj0, . . . , bj,κj−1 ∈ B
and κj ≥ 0, according to (8). Definition’s (10) and (11) ensure that for each odd
j ∈ {1, 3, . . . , 2p + 1}, there exists hj ≥ κj and bj,κj

, . . . , bj,hj−1 ∈ B such that
c′
j =

∑hj−κj−1
k=0 bjκj+kak is sufficiently close to cj so that cj−1 < c′

j < cj+1 .
Since there are only p equivalence classes, there must be two odd indices jx, jy ∈
{1, 3, . . . , 2p + 1}, say jx < jy, determining x, y ∈ Σ∗ of length nx = |x| =
hjx

− κjx
and ny = |y| = hjy

− κjy
, respectively, by b(xnx−i) = bjx,κjx+i for

i = 0, . . . , nx − 1 and b(yny−i) = bjy,κjy+i for i = 0, . . . , ny − 1, such that

x ∼ y. Thus, c′
jx

=
∑nx−1

i=0 b(xnx−i)ai and c′
jy

=
∑ny−1

i=0 b(yny−i)ai. For aκ > 0,
choose w ∈ Σ∗ of length κ = |w| = κjx+1 so that cjx+1 = c(b(wκ), . . . , b(w1)),
and denote zw =

∑κ−1
i=0 b(wκ−i)ai. We know c′

jx
< cjx+1 < c′

jy
. It follows that

zw + aκc′
jx

< c ≤ zw + aκcjx+1 < zw + aκc′
jy

since zw + aκc′
jx

≥ c would contra-
dict that cjx+1 is the infimum according to (10) and (11). Hence, xw ∈ L<c and
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yw /∈ L<c, which gives the contradiction. Similarly for aκ < 0, choose w ∈ Σ∗ so
that cjy−1 = c(b(wκ), . . . , b(w1)), which gives zw + aκc′

jy
< c ≤ zw + aκcjy−1 <

zw + aκc′
jx

, leading to the contradiction xw /∈ L<c and yw ∈ L<c . 
�

Lemma 10. Assume the notation as in Lemma 9. Then the two subsets of
C,C1 = {c(b0, . . . , bκ−1) ∈ C |

∑κ−1
k=0 bkak + aκc(b0, . . . , bκ−1) > c} and C2 =

{c(b0, . . . , bκ−1) ∈ C | (∃ bκ, . . . , bh−1 ∈ B , h ≥ κ)
∑h−1

k=0 bkak = c & (∀ b ∈ B)
c(b0, . . . , bh−1, b) ∈ C1} are finite.

Proof. We define a directed rooted tree T = (V,E) with vertex set V =
{b0 · · · bk−1 ∈ B∗ | (∃ bk, . . . , bκ−1 ∈ B) c(b0, . . . , bk−1, bk . . . , bκ−1) ∈ C1}, includ-
ing an empty string as a root, and a set of directed edges (7). Clearly, T covers all
the directed paths starting at the root and leading to b0 · · · bκ−1 ∈ V such that
c(b0, . . . , bκ−1) ∈ C1. This also guarantees that T includes all b0 · · · bκ−1 ∈ V such
that c(b0, . . . , bκ−1) ∈ C2, by the definition of C2. For each vertex b0 · · · bk−1 ∈ V

we define a closed interval I(b0, . . . , bk−1) = [
∑k−1

i=0 bia
i + Ik ,

∑k−1
i=0 bia

i + Sk]
by using (9). Obviously, I(b0, . . . , bk−1, bk) ⊂ I(b0, . . . , bk−1) for any edge
(b0 · · · bk−1, b0 · · · bk−1bk) ∈ E. Hence, c ∈ I(b0, . . . , bk−1) for every vertex
b0 · · · bk−1 ∈ V since b0 · · · bk−1 · · · bκ−1 ∈ V such that c(b0, . . . , bκ−1) ∈ C1

satisfies c ∈ I(b0, . . . , bκ−1) ⊂ I(b0, . . . , bk−1) according to (8).
On the contrary, suppose that tree T whose outdegree is bounded by |B|,

is infinite. According to König’s lemma, there exists an infinite directed path
corresponding to an infinite sequence (b∗

k)∞
k=0 with b∗

k ∈ B for all k ≥ 0, which
contains infinitely many vertices b∗

0 · · · b∗
κ−1 ∈ V such that c(b∗

0, . . . , b
∗
κ−1) ∈ C1.

On the other hand, interval I(b∗
0, . . . , b

∗
k−1) is a nonempty compact set satis-

fying c ∈ I(b∗
0, . . . , b

∗
k−1) ⊃ I(b∗

0, . . . , b
∗
k) for every k ≥ 1, which yields c ∈

⋂
k≥0 I(b∗

0, . . . , b
∗
k−1) �= ∅ by Cantor’s intersection theorem. Hence,

∑∞
k=0 b∗

kak =
c which implies

∑κ−1
k=0 b∗

kak + aκc(b∗
0, . . . , b

∗
κ−1) = c for any b∗

0 · · · b∗
κ−1 ∈ V such

that c(b∗
0, . . . , b

∗
κ−1) ∈ C1, according to (10) and (11), which contradicts the

definition of C1. It follows that T is finite which implies that C1, C2 are finite.
�

Theorem 11. A cut language L<c is regular iff c is a-quasi-periodic within B.

Proof. According to Lemma 9, language L<c is regular iff set C is finite which
is equivalent to the condition that C \ (C1 ∪ C2) is finite, by Lemma 10. It
follows from (8)–(11) that for any b0, . . . , bκ−1 ∈ B and κ ≥ 0, c(b0, . . . , bκ−1) ∈
C \(C1∪C2) iff there exists sequence (bk)∞

k=κ with bk ∈ B for all k ≥ 0, such that
∑κ−1

k=0 bkak + aκc(b0, . . . , bκ−1) = c (c(b0, . . . , bκ−1) /∈ C1) and
∑∞

k=0 bkak = c
(c(b0, . . . , bκ−1) /∈ C2), which yields c(b0, . . . , bκ−1) =

∑∞
k=0 bκ+kak . It follows

that C \ (C1 ∪ C2) = D by the definition of D, which is finite iff c is a-quasi-
periodic within B, according to Theorem 8. 
�

4 Non-Context-Free Cut Languages

In this section we show in Theorem 13 that for 0 < a < 1 and any set of non-
negative digits B, a cut language L<c is not context-free if threshold c is not
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a-quasi-periodic within B, which is proven by a pumping technique introduced in
Lemma 12. According to Theorem 11, we thus achieve a dichotomy that, at least
for these parameters, a cut language is either regular or non-context-free. We
present explicit instances of rational numbers with no eventually quasi-periodic
representations in Example 14. On the other hand, the cut languages with ratio-
nal thresholds are shown to be context-sensitive in Theorem 15.

We say that an infinite word x ∈ Σω is approximable in a language L ⊆ Σ∗,
if for every finite prefix u ∈ Σ∗ of x, there is y ∈ Σ∗ such that uy ∈ L.

Lemma 12. Let x ∈ Σω be approximable in a context-free language L ⊆ Σ∗.
Then there is a decomposition x = uvw where u, v ∈ Σ∗ and w ∈ Σω, such that
|v| > 0 and for every integer i ≥ 0, infinite word uviw is approximable in L.

Proof. Consider a context-free grammar G for L in Greibach normal form such
that for every nonterminal A of G, there is a derivation of a terminal word from A.
Since x is approximable in L = L(G), there is a left derivation S ⇒ . . . ⇒ unαn

for every n, such that un ∈ Σ∗ is the prefix of x of length n, and αn is a sequence
of nonterminal symbols. These derivations form an infinite directed rooted tree
with the root S, whose vertices are the left sentential forms uα such that u is
a prefix of x, and the edges outcoming from uα correspond to an application of
one production rule to the left-most nonterminal in α. The degree of each vertex
is bounded by the number of production rules. According to König’s lemma,
there is an infinite left derivation S ⇒ . . . ⇒ unαn ⇒ . . . such that for every n,
un is the prefix of x of length n,and αn is a non-empty sequence of nonterminal
symbols.

Let us call an occurrence of a nonterminal in αn temporary, if it is sub-
stituted by a production rule of G in some of the following steps, and stable
otherwise. We prove that for every n, there is m ≥ n such that αm contains
exactly one temporary nonterminal. We know the left-most nonterminal A1 in
αn = A1 . . . Ai . . . Ak is temporary, and let Ai be the right-most temporary non-
terminal in αn. If i = 1, then choose m = n. For i ≥ 2, there is an index m,
such that all the temporary nonterminals A1, . . . , Ai−1 in αn are transformed
into terminal words in um. If m is the smallest such index, then Ai is the first
and the only temporary nonterminal of αm. It follows that there is an infinite
number of indices n such that αn contains exactly one temporary nonterminal.

Since there are only finitely many nonterminals in G, there exist two indices
n1, n2 where n1 < n2, such that αn1 = Aβ1, αn2 = Aβ2β1, and |un1 | < |un2 | for
some nonterminal A, whereas β1 and β2 consist of stable nonterminals in both
αn1 and αn2 . Thus, there are two words u, v ∈ Σ∗ such that un1αn1 = uAβ1,
un2αn2 = uvAβ2β1, and |v| > 0, where A

∗⇒ vAβ2. For every m ≥ n2, we have
umαm = uvγmβ2β1 where γm is such that A

∗⇒ γm. Hence, an infinite word
w ∈ Σω is produced from A, such that x = uvw. Clearly, every finite prefix of
w is the terminal part of γm for some m ≥ n2.

For every i ≥ 0, we can construct an infinite left derivation whose sentential
forms contain arbitrarily long prefixes of the sequence uviw by combining the
above derivations similarly as in the proof of the pumping lemma. The derivation
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starts as the original derivation until un1αn1 = uAβ1. Then, the derivation
A

∗⇒ vAβ2 is used i times. Finally, the derivations A
∗⇒ γm are used in an

infinite sequence for all m > n2. Altogether, we obtain

S
∗⇒ uAβ1

∗⇒ uviAβi
2β1 ⇒ . . . ⇒ uviγmβi

2β1 ⇒ . . . for allm > n2 . (12)

We show that for every i ≥ 0, the infinite sequence uviw is approximable
in L. For any prefix u′ ∈ Σ∗ of uviw, we employ the derivation (12) until u′ is
derived. Then, we include any finite derivation of a terminal word from each of
the remaining nonterminals. We obtain a word in L = L(G) with prefix u′. 
�
Theorem 13. Assume that 0 < a < 1, B contains only nonnegative rationals,
Σ is a finite alphabet, and b : Σ −→ B is a bijection. If c is not a-quasi-periodic
within B (see Examples 7 and 14 for instances of such c ∈ Q), then the cut
language L<c is not context-free.

Proof. For any string x = x1 . . . xn ∈ Σ∗ of length n = |x|, denote zx =
∑n−1

k=0 b(xk+1)ak, whereas zx =
∑∞

k=0 b(xk+1)ak for an infinite word x ∈ Σω.
Assume for a contradiction that L<c is a context-free language, and hence the
same holds for its reversal L = LR

<c = {x ∈ Σ∗ | zx < c}.
Since c is not eventually a-quasi-periodic within B, Theorem 8 provides

an infinite word x ∈ Σω such that the tail sequence of a power series zx =∑∞
k=0 b(xk+1)ak = c is composed of pair-wise different values. Moreover, x con-

tains infinitely many non-zero (and thus positive) digits, which ensures that
for every prefix u of x, it holds zu < zx = c, that is, u ∈ L. Hence, x is
approximable in L. Let x = uvw where |v| > 0, be a decomposition guaran-
teed by Lemma 12. In particular, uw and uvvw are also approximable in L.
We know the tails zw and zvw are different. If zw > zvw, then define y = uw
which meets zy = zuw = zu + a|u|zw > zu + a|u|zvw = zuvw = zx = c, due to
a > 0. On the other hand, if zvw > zw, then define y = uvvw which satisfies
zy = zuvvw = zuv + a|uv|zvw > zuv + a|uv|zw = zuvw = zx = c.

Thus, we have y ∈ Σω which is approximable in L and zy > c. This means
that for every integer n ≥ 0, there is yn ∈ L implying zyn

< c, such that y and
yn share the same prefix of length at least n. Hence, |zy − zyn

| ≤ βan/(1 − a)
where β = max{|b1 − b2| ; b1 ∈ B, b2 ∈ B ∪ {0}}. It follows that zyn

converges
to zy as n tends to infinity, which contradicts zyn

< c < zy. 
�
Example 14. We generalize Example 7 to provide instances of rational numbers
c such that any power series

∑∞
k=0 b′

kak = c with b′
k ∈ B for all k ≥ 0, is not

eventually quasi-periodic. Let B = {0, 1} and a = α1/α2, c = γ1/γ2 ∈ Q be
irreducible fractions where α1, γ1 ∈ Z and α2, γ2 ∈ N, such that α1γ2 and α2γ1
are coprime. Denote by 0 < k1 < k2 < · · · all the indices of a (not necessarily
greedy) representation of c =

∑∞
k=0 b′

kak such that b′
ki

= 1 for i ≥ 1. Then
formula (5) can be rewritten as

cn =
γ1α

kn
2 − γ2α1

∑n
i=1 αki−1

1 αkn−ki
2

γ2α
kn
1

(13)

which is still an irreducible fraction.
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Theorem 15. Every cut language L<c with threshold c ∈ Q is context-sensitive.

Proof. A corresponding (deterministic) linear bounded automaton M that
accepts a given cut language L<c = L(M), evaluates (and stores) the sum
sn =

∑n−1
i=0 b(xn−i)ai step by step when reading an input word x1 . . . xn ∈ Σ∗

from left to right. In particular, M starts with s0 = 0 which updates to
si = asi−1 + b(xi) every time after M reads the next input symbol xi ∈ Σ,
for i = 1, . . . , n. As the numbers a, b(x1), . . . , b(xn), c ∈ Q can be represented
within constant space, M needs only linear space in terms of input length n, for
computing sn and testing whether sn < c. 
�

5 Conclusion

In this paper we have introduced the cut languages in rational bases and classified
them within the Chomsky hierarchy, among others, by using the quasi-periodic
power series. A natural direction for future research is to generalize the results
to arbitrary real bases.

We have already strengthened Theorem 8 whose proof is now based on
Lemma 2 which does not require rational bases as opposed to stronger
Theorem 3 that was used for the proof in a preliminary version [24]. As a con-
sequence of this improvement, the characterization of regular cut languages in
Theorem 11 remains valid for arbitrary real bases. For example, for the only
real root a ≈ 0.6823278 of algebraic equation a3 + a − 1 = 0, which is the
inverse of a Pisot number, the number c = 1 (similarly for c = 1/a) is a-
quasi-periodic within B = {0, 1} and has uncountably many different quasi-
periodic representations (including the non-periodic ones) whose tail values form
D = {0, a, 1, 1/a, 1+a, a/(1−a), (1+a)/a, 1/(1−a)} (cf. Theorem 8). It is an open
question of whether the inverse of the minimal Pisot number (i.e. the inverse of
the plastic constant), a ≈ 0.7548777 which is the unique real solution of the
cubic equation a3 + a2 − 1 = 0, is the greatest such a.

Nevertheless, the generalization of Theorem 3 to arbitrary real bases is still
an open problem which can be formulated elementarily as follows. Let a be
a real number such that 0 < |a| < 1, and (dn)∞

n=0 be a sequence of real
numbers, containing a constant infinite subsequence (cf. Lemma2), such that
B = {dn − adn+1 |n ≥ 0} is finite. Is D = {dn |n ≥ 0} a finite set?
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4. Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural
networks: a characterization in terms of Kolmogorov complexity. IEEE Trans. Inf.
Theory 43(4), 1175–1183 (1997)

5. Chunarom, D., Laohakosol, V.: Expansions of real numbers in non-integer bases.
J. Korean Math. Soc. 47(4), 861–877 (2010)

6. Glendinning, P., Sidorov, N.: Unique representations of real numbers in non-integer
bases. Math. Res. Lett. 8(4), 535–543 (2001)

7. Hare, K.G.: Beta-expansions of Pisot and Salem numbers. In: Proceedings of the
Waterloo Workshop in Computer Algebra 2006: Latest Advances in Symbolic Algo-
rithms, pp. 67–84. World Scientic (2007)

8. Horne, B.G., Hush, D.R.: Bounds on the complexity of recurrent neural network
implementations of finite state machines. Neural Netw. 9(2), 243–252 (1996)

9. Indyk, P.: Optimal simulation of automata by neural nets. In: Mayr, E.W., Puech,
C. (eds.) STACS 1995. LNCS, vol. 900, pp. 337–348. Springer, Heidelberg (1995).
doi:10.1007/3-540-59042-0 85

10. Komornik, V., Loreti, P.: Subexpansions, superexpansions and uniqueness proper-
ties in non-integer bases. Periodica Mathematica Hungarica 44(2), 197–218 (2002)

11. Minsky, M.: Computations: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

12. Parry, W.: On the β-expansions of real numbers. Acta Math. Hung. 11(3), 401–416
(1960)
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Abstract. Compacting Petri nets behaviors means to develop a more
succinct representation of all the possible executions of a net, still giving
the capability to reason on properties fulfilled by the computations of the
net. To do so suitable equivalences on alternative executions have to be
engineered. We introduce a general notion of merging relation covering
the existing approaches to compact behaviors and we discuss how to
enforce that the more succinct net is an unravel net, namely a net where
dependencies can be identified (almost) syntactically.

Keywords: Petri nets · Data structure compression · Event structures

1 Introduction

The non sequential behavior of a Petri net [2,10] can be described in many ways,
e.g using traces [8], but probably the most popular and used one is the notion
of unfolding [3,14]. The unfolding of a net N is particularly relevant as it allows
to record conflicts and dependencies among the activities modeled with N , and
the possibility of finding a finite representation of it (the prefix), has given prof-
itability to the notion, otherwise confined to the purely theoretical modeling
realm [4,9]. However the size of a finite unfolding, even of the prefix, can be too
large, hence manageable only with big efforts. Several approaches to reduce it
have been proposed, based on the idea of identifying suitable conflicting condi-
tions of the unfolding. In the case of merged process [6] the criterion is that the
conditions must be equally labeled and have the same token occurrence (i.e. they
represent the same token, in the collective token philosophy of [12]) whereas in
the case of trellis processes [5] the criterion is the distance of the equally labeled
conditions from the initial condition of its component (measuring the time).
Once conditions have been identified, isomorphic futures are identified as well.

The identification of conflicting conditions seems to be a good starting point
for compacting nets’ behaviors. We pursue this idea further, casting it in a
general framework. We first define a notion of incompatibility among places of
the behavior that it is not based on the syntax, as in causal nets, but on the
semantics; and then we introduce an equivalence relation on places with some
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minimal requirements: it should respect the notion of incompatibility and it
should respect the labeling (which is, in the case of the non sequential behavior
of a net, the folding morphism). The incompatibility relation should capture the
idea that, assuming that a place is identified with a resource, two resources are
never used together in a computation. This equivalence relation is the basis for
compacting behaviours that, following the classic motto, are nets [11,13].

Some of the definable equivalences may give a rather compact net, where
executions have to be recovered with some efforts, and causality and conflicts
may be deduced only after all the executions have been exploited. To ease the
task of finding causality and conflict we propose the notion of unravel net which
allows to capture easily and syntactically dependencies in each computation,
whereas conflict is deduced in a semantic way. Indeed, unravel nets are such
that each execution gives an acyclic net, hence causality is easily traceable.
Furthermore we believe that this notion is robust enough for representing the
non sequential behaviors of nets as it is closely related to a brand of event
structures, namely bundle event structure [7]. Steps towards this direction have
already been done in [1], and here we present this attempt in the more general
framework. Our approach is rather flexible. The merging relation may be induced
by a measure on the places of the net to be compacted and, depending on the
kind of measure adopted, the result is an unravel net or there are ways to enrich
the net in such a way that the behaviors are preserved and reflected, and the
result of the compaction is still an unravel net. Thus the problem of finding the
proper merging relation is moved to the search of the useful measure on the places
of the net. Clearly a measure which is injective gives the trivial merging relation.

In Sect. 2 we introduce unravel nets and relate them to bundle event struc-
tures, then, in Sect. 3, we propose our general framework, which we show ade-
quate in Sect. 4 by casting in it the classic approaches to behaviors compaction.
In Sect. 5 we discuss how to ensure that the result of the compaction is still an
unravel net.

2 Nets and Bundle Event Structures

With N we denote the set of natural numbers. Let A be a set, a multiset of A
is a function m : A → N. The set of multisets of A is denoted by μA. The usual
operations on multisets, like multiset union + or multiset difference −, are used.
We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. If m ∈ μA, we denote with [[m]]
the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise; and
we use supp(m) as the denotation of the set {a ∈ A | m(a) ≥ 1}. Finally, when
a multiset m of A is a set, i.e. m = [[m]] (hence m = supp(m)), we write a ∈ m
to denote that m(a) �= 0, and often confuse the multiset m with supp(m).

A Petri net is a 4-tuple N = 〈S, T, F,m〉, where S is a set of places and T is
a set of transitions (with S ∩ T = ∅), F ⊆ (S × T ) ∪ (T × S) is the flow relation,
and m ∈ μS is called the initial marking. Petri nets are depicted as usual.

Given a net N = 〈S, T, F,m〉 and x ∈ S∪T , we define the following multisets:
•x = F (−, x) and x• = F (x,−). If x ∈ S then •x (x•) is in μT and if x ∈ T
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then •x (x•) is in μS A transition t ∈ T is enabled at a marking m ∈ μS,
denoted with m [t〉 , whenever •t ⊆ m. A transition t enabled at a marking m
can fire and its firing produces the marking m′ = m − •t + t•. The firing of
a transitions t at a marking m is denoted with m [t〉m′. We assume that each
transition t of a net N is such that •t �= ∅ (which means that no transition may
fire spontaneously). Given a generic marking m (not necessarily equal to the
initial one), the firing sequence (fs) starting at m of the net N = 〈S, T, F,m〉,
is defined as usually: (a) m is a fs, and (b) if m [t1〉m1 · · · mn−1 [tn〉mn is a fs
and mn [t〉m′ then also m [t1〉m1 · · · mn−1 [tn〉mn [t〉m′ is a fs. The set of firing
sequences of a net N starting at a marking m is denoted with ΣN

m and it is ranged
over by σ. Given fs σ = m [t1〉σ′ [tn〉mn, with start(σ) we denote the marking
m, with lead(σ) the marking mn and with tail(σ) the fs σ′ [tn〉mn. Given a net
N = 〈S, T, F,m〉, a marking m is reachable iff there exists a fs σ ∈ ΣN

m such
that lead(σ) is m; the set of reachable markings of N is MN =

⋃
σ∈ΣN

m
lead(σ).

Given a fs σ = m [t1〉m1 · · · mn−1 [tn〉m′, with Xσ =
∑n

i=1{ti} we denote the
multiset of transitions associated to this fs. We call this multiset a state of the
net. The set of states of a Petri net is then St(N) = {Xσ ∈ μT | σ ∈ ΣN

m }.
Given a set of markings M , with P(M) we denote the set of places that are

marked at some marking in M , namely {s ∈ S | ∃m ∈ M. m(s) > 0}, and given
a fs σ, M(σ) are the markings associated to the fs σ, where M(σ) is M(σ) = {m}
if σ = m and M(σ) = {start(σ)} ∪ M(tail(σ)) otherwise.

A net N = 〈S, T, F,m〉 is said safe if each marking m ∈ MN is such that
m = [[m]]. In this paper we consider safe nets N = 〈S, T, F,m〉 where each
transition can be fired, i.e. ∀t ∈ T ∃m ∈ MN . m [t〉 , and each place is marked
in a computation, i.e. ∀s ∈ S ∃m ∈ MN . m(s) = 1. A subnet of a net is
a net obtained restricting places and transitions, and correspondingly also the
relation F and the initial marking. Let N = 〈S, T, F,m〉 be a Petri net and let
T ′ ⊆ T . Then the subnet generated by T ′ is the net N |T ′ = 〈S′, T ′, F ′,m′〉,
where S′ =

⋃
t∈T ′

(
[[ •t]] ∪ [[t•]]

)
∪ supp(m), F ′ is the restriction of F to S′ and

T ′, and m′ is the obvious restriction of m to places in S′. Analogously we can
restrict to a subset of places. Let S′ ⊆ S, then the subnet generated by S′ is the
net N |S′ = 〈S′, T ′, F ′,m′〉, where T ′ =

⋃
s∈S′

(
[[ •s]] ∪ [[s•]]

)
,F ′ is the restriction

of F to S′ and T ′, and m′ is the restriction of m to places in S′.
A net N = 〈S, T, F,m〉 is said to be acyclic with respect to a subset of places

S′ whenever, given N |S′ = 〈S′, T ′, F ′,m′〉, the transitive and reflexive closure of
[[F ]] is a partial order on S′ ∪ T ′.

An 1-occurrence net O = 〈S, T, F,m〉 is a Petri net where each state is a set,
i.e. ∀X ∈ St(O) it holds that X = [[X]]. The notion of occurrence net we use
here is the one called 1-occurrence net in [13] and the intuition behind it is the
following: regardless how tokens are produced or consumed, an occurrence net
guarantees that each transition can occur only once.

The notion of occurrence net is a semantical one, whereas the one of causal
net is more syntax oriented. Given a net N , we define x <N y iff (x, y) ∈ F ,
and ≤N is the transitive and reflexive closure of this relation. For denoting
places and transitions of a causal net we use B and E (see [14]) and call them
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conditions and events respectively. A causal net is acyclic, when the whole set of
conditions is considered, and equipped with a conflict relation. Thus, a causal net
C = 〈B,E, F,m〉 is a safe net satisfying thefollowing restrictions:(1) ∀b ∈ [[m]],
•b = ∅, (2)∀b ∈ B. ∃b′ ∈ [[m]] such that b′ ≤C b, (3) ∀b ∈ B. •b is either empty
or a singleton, (4) for all e ∈ E the set {e′ ∈ E | e′ ≤C e} is finite, and(5)# is
an irreflexive and symmetric relation defined as follows:(5.a) e#re

′ iff e, e′ ∈ E,
e �= e′ and •e ∩ •e′ �= ∅,(5.b)x#x′ iff ∃y, y′ ∈ E such that y#ry

′ and y ≤C x
and y′ ≤C x′. The intuition behind this notion is the following: each condition b
represents the occurrence of a token, which is produced by the unique event in
•b, unless b belongs to the initial marking, and it is used by only one transition
(hence if e, e′ ∈ b•, then e#e′). On causal nets it is natural to define a notion of
causality among elements of the net: we say that x is causally dependent from
y iff y ≤C x. Given a causal net C = 〈B,E, F,m〉, if ∀b ∈ B it holds that b• is
at most a singleton, we say that it is a conflict-free causal net (the relation # is
empty). Observe that each causal net C = 〈B,E, F,m〉 is also an 1-occurrence
net. Causal nets capture dependencies (and conflicts) whereas 1-occurrence nets
capture the unique occurrence property of each transition. We define a net which
will turn out to be, so to say, in between 1-occurrence and causal nets. Like in
1-occurrence nets we assure that each transition happens just once, and we are
still able to retrieve dependencies among the firings of transitions, though in a
more semantical way.

Definition 1. An unravel netR = 〈B,E, F,m〉 is a safe occurrence net such
that for each state X ∈ St(R) the net R|[[X]] is a conflict-free causal net.

It is straightforward to observe that if
C = 〈B,E, F,m〉 is a causal net then it is
an unravel net as well. The contrary does
not hold (see the nets on the side). The net
on the right is an unravel net which is not a causal net, whereas the net on the
left is a safe 1-occurrence net which is not an unravel one. We state some simple
facts on unravel nets. First, as we consider nets where each transition can be
executed at some marking, if s ∈ m then •s = ∅. Furthermore if two different
transitions t and t′ are such that •t ∩ •t′ �= ∅ or t• ∩ t′• �= ∅, then the two
transitions cannot appear in the same state of the net.

Unravel nets are closely related to bundle event structures [7]. In this brand
of event structure causality among events is represented by pairs (X, e), the
bundles, where X is a non empty set of events and e an event. The meaning
of a bundle (X, e) is that if e happens then one (and only one) event of X has
to have happened before (events in X are pairwise conflicting). An event e can
be caused by several bundles, and for each bundle an event in it should have
happened.

Definition 2. A bundle event structure is a triple β = (E, �→,#), where (a) E
is a set of events, (b) # is an irreflexive and symmetric binary relation on E
(the conflict relation), (c) �→ ⊆ 2E

fin × E is the enabling relation such that if
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X �→ e then for all e1, e2 ∈ X. e1 �= e2 implies e1 # e2, and (d) for each e ∈ E
the set {X ⊆ E | X �→ e} is finite.

The configurations of a bes β = (E, �→,#) are defined as usual. Let X ⊆ E
be a set of events. Then X is a configuration or β iff (a) it is conflict free,
i.e. ∀e, e′ ∈ X. ¬(e #e′), and (b) there exists a linearization {e1, . . . , en, . . . }
of the events in X such that ∀i ∈ N and for all bundles Xi �→ ei it holds that
Xi ∩ {e1, . . . , ei−1} �= ∅. With Conf(β) we denote the set of configurations of β.

Given an unravel net R = 〈B,E, F,m〉, the associated bes is the triple
Ebes(R) = (E, �→,#) where �→ is defined taking, for each b ∈ •e, the set of
events •b (thus •b �→ e) and the conflict relation # is defined as e # e′ iff ∀X ∈
St(R). {e, e′} �⊆ [[X]]. The configurations of the bes associated to an unravel net
are precisely the states of the unravel net: Conf(Ebes(R)) = St(R). Furthermore,
given a bes β = (E, �→,#), we can associate an unravel net N (β) = 〈B,E,F,m〉
where B = {(e, i) | e ∈ E} ∪ {(e, e′) | e # e′} ∪ {(Y, e) | Y �→ e}, (s, e) ∈ F if
s = (e, i) or s = (e, e′) or s = (e′, e) or s = (Y, e); and (e, s) ∈ F if (s = (Y, e′)
and e ∈ Y ) or s = (e, o), and m = {(e, i) | e ∈ E} ∪ {{e, e′ | e # e′} and, as
before Conf(β) = St(N (β)). Thus among unravel nets andbes there is a similar
relationship as the one we have among causal nets and prime event structure.

We introduce now labeled nets. Let Λ be a set of labels, a labeled net N is
the pair (N, l), where N = 〈S, T, F,m〉 is a Petri net and l : S ∪ T → Λ a total
mapping such that l(T ) ∩ l(S) = ∅. Given a labeled net N = (N, l) and a fs
σ = m [t1〉m1 [t2〉m2 · · · mn−1 [tn〉mn, with run(σ) we denote the word on l(T )∗

defined as l(t1t2 · · · tn), and we call it trace. To the fs σ = m the empty trace is
associated, i.e. run(σ) = ε. The length of a fs σ is the length of run(σ).

Let N = (N, l) be a labeled net where N = 〈S, T, F,m〉 and let t, t′ ∈ T be
two transitions. We say that t and t′ are identifiable whenever •t = •t′, t• = t′•

and l(t) = l(t′). Thus on T it is possible to define an equivalence relation � such
that t � t′ iff t and t′ are identifiable. The set of transitions can be quotiented
through this equivalence relation obtaining the set {[t]� | t ∈ T}. Observe that
the transitions in [t]� are pairwise conflicting.

Definition 3. Let (N, l) = (〈S, T, F,m〉, l) be a labeled net and let � be the
equivalence relation induced by transitions identifiability. Then we can construct
the labeled net N̂ = (N̂ , l̂) where N̂ is the Petri net 〈S, T̂ , F̂ ,m〉 with T̂ = {[t]� |
t ∈ T}, F̂ (s, [t]�) = F (s, t) and F̂ ([t]�, s) = F (t, s), and l̂ is the mapping defined
as l̂(s) = l(s) and l̂([t]�) = l(t).

Let σ ∈ ΣN
m , then σ̂ is constructed as follows: σ̂ = m if σ = m and σ̂ = σ̂′ [[t]�〉m

if σ = σ′ [t〉m. The firing sequences of N and of N̂ are clearly related, as the
following proposition shows. Observe that run(σ̂) = l([t1]�· · ·[tn]�) = run(σ).

Proposition 4. Let (N, l) = (〈S, T, F,m〉, l) be a labeled net, and let � be the
equivalence relation induced by transitions identifiability. Let σ ∈ ΣN

m be a fs,
then σ̂ ∈ ΣN̂

m .
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3 Merging Relation

In this section we propose a simple and general framework to compact labeled
nets. We first introduce a semantical notion of incompatibility on places, captur-
ing the idea that, if a place is akin to a resource, two resources are incompatible
if they never appear in the same computation, even at different stages. Then we
show that, given a suitable equivalence relation, related to places incompatibil-
ity, a more succinct version of the net we started with can be obtained, whose
behaviors are still related to the original one.

Given a net N = 〈S, T, F,m〉, we say that two different places s, s′ ∈ S are
incompatible iff for each firing sequence σ ∈ ΣN

m it holds that {s, s′} �⊆ P(M(σ)),
and we denote it with s �� s′ (observe that this notion is quite similar to the
one of conflict we introduced on unravel nets). Clearly �� is a symmetric and
irreflexive relation and if s ∈ [[m]] and s �� s′ then ∀σ ∈ ΣN

m. s′ �∈ P(M(σ)).

Example 5. Consider the labeled net N = (N, l) in Fig. 1(a), with initial marking
m = {c0}. The relation �� contains the pairs (ci, cj) such that i, j > 0 and if i is
odd then j is even and vice versa as well. Thus c4 �� c7 and c9 �� c6 but c6 ��� c4.

We introduce now the notion of merging relation.

Definition 6. Let N = (N, l) be a labeled net where N = 〈S, T, F,m〉, let � ⊆
��, and let ∼ be an equivalence relation such that s ∼ s′ ⇔ (s � s′ ∨ s =
s′) ∧ l(s) = l(s′). Then ∼ is a merging relation for N.

A merging relation is any equivalence relation respecting labeling and incompat-
ibility (better, a relation included into the one of incompatibility). Observe that
the identity on places is a trivial merging relation. Furthermore if s is initially
marked then [s]∼ = {s}.

The merging relation is used to compact the net. Similarly to what is done in
[6], we first merge places by identifying equivalent ones, thus the merged places
will be S′ = {[s]∼ | s ∈ S}. Then, when needed, we may identify also transitions.
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Fig. 1. A labeled net N (a) and its compact representation (b)
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Definition 7. Let N = (N, l) be a labeled unravel net where N = 〈S, T, F,m〉,
and let ∼ be a merging relation. Then we construct the labeled net Ñ = (Ñ , l̃),
where Ñ is the Petri net 〈S̃, T, F̃ , m̃〉 defined as S̃ = {[s]∼ | s ∈ S}, F̃ ([s]∼, t) =
F (s, t), F̃ (t, [s]∼) = F (t, s) and m̃([s]∼) =

∑
s∈[s]∼ m(s), and l̃ is the labeling

mapping defined as l̃([s]∼) = l(s) and l̃(t) = l(t).

The flow relation is well defined, as ∀t ∈ T. |[[ •t]] ∩ [s]∼| ≤ 1 and ∀t ∈ T. |[[t•]] ∩
[s]∼| ≤ 1 as well, and the same for the initial marking, as the equivalence class
of each place in the initial marking contains just that place.

Example 8. Consider the net of the Example 5. A suitable merging relation can
be c1 ∼ c4, c2 ∼ c3, c6 ∼ c7 and c5 ∼ c8 and the result of the merging of
these places is the net in Fig. 1(b). Another merging relations could be c1 ∼′ c8,
c2 ∼′ c3, c6 ∼′ c7 and c5 ∼′ c4, or simply c1 ∼′′ c4.

The construction can be lifted to the reachable markings and firing sequence.
Let m ∈ MN , then m̃ ∈ μS̃ is defined as m̃([s]∼) =

∑
s∈[s]∼ m(s). Observe that,

as places in [s]∼ are in conflict, at most one may contain tokens. Consider then
σ ∈ ΣN

m , then σ̃ is obtained as follows: if σ = m then σ̃ = m̃, if σ = σ′ [t〉m then
σ̃ = σ̃′ [t〉 m̃. The following proposition points out the obvious relation among
the firing sequences of both nets.

Proposition 9. Let N = (N, l) be a labeled net, let ∼ be a merging relation and
(Ñ , l̃) be the labeled net of Definition 7. Then ∀σ ∈ ΣN

m ∃σ′ ∈ ΣÑ
m̃ . σ̃ = σ′.

By merging places it may happen that two equally labeled transitions have
the same preset and the same postset. Hence the equivalence relation � induced
by transition identifiability may be non trivial, i.e. different from the identity.
We can then apply the construction of Definition 3.

Proposition 10. Let N = (N, l) be a labeled net and let ∼ be a merging relation.
Let (N, l) be the labeled net obtained applying first the construction of Definition 7
and then the one of Definition 3. Then ∀σ ∈ ΣN

m ∃σ′ ∈ ΣN
m . run(σ) = run(σ′).

By merging places and transitions we do not lose any behavior, but the
obtained net may have more behaviors with respect to the one we started with,
as the net in Fig. 1(b) shows.

4 Compacting Causal Behaviors of Safe Nets

The framework we have devised in the previous section can be applied to any kind
of labeled net representing the behavior of a Petri net. Here we test it by focussing
on the causal behaviors of safe nets, represented as branching processes.

Given a Petri net N = 〈S, T, F,m〉, a branching process of N (see [3,14]) is a
labeled causal net C = (C, p) with C = 〈B,E, F,m0〉 and p : B∪E → S∪T is such
that (a) p(B) = S, p(E) = T , (b) the initial markings m0 and m are bijectively
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related and (c) there are bijections between p( •e) and •p(e), and between p(e•)
and p(e)•. Such kind of labeling mapping is called folding morphism. We apply
our framework to merged processes (see [6] for details). The idea behind merged
processes is the following: the conditions representing the same occurrence of a
token in the original net can be identified. The consequence of this identification
is that all the computations producing the same set of tokens can be considered
as equivalent with respect to their possible futures, i.e. all these computations
share equivalent futures that can be identified. A conflict relation is easily and
structurally identifiable on causal nets, without resorting to the semantics, thus
we do need some more information to identify conditions in the causal net. Let
C = (C, p) be a branching process of N . Given a condition b ∈ B, the occurrence
depth of b is |{b′ ∈ B | b′ ≤C b and p(b) = p(b′)}| and it is denoted with tok(b).
We are now ready to introduce the merging relation for merged processes: two
conditions b and b′ are equivalent if (a) they are in conflict, (b) they have the
same labeling, and (c) they have the same occurrence depth. The fact that our
unifying framework covers the notion of merged process is summarized by the
following theorem.

Theorem 11. Let C = (C, p) be branching process of N , and let ∼tok be the
merging relation defined as follows: b ∼tok b′ iff b � b′, p(b) = p(b′) and tok(b) =
tok(b′), where � is the reflexive closure of the conflict relation # of the causal
net C restricted to conditions only. Then C = (C, p) is a merged process of N .

Example 12. Consider the net N in Fig. 2(a). A branching process for N is the
labeled net C = (C, p) in Fig. 2(b) and the merging relation is c4 ∼ c7 (both
conditions have token occurrence equal to 1 and they are labeled with p4) and
c5 ∼ c6 (both conditions have token occurrence equal to 1 and they are labeled
with p5). The result of the identification of these conditions gives the net C =
(C, p) (c), depicted in Fig. 2. Observe that the last step is irrelevant in this case
as no transitions have to be identified. The net C is acyclic whereas the C is
not. Furthermore C is not an unravel net.

Instead of the token occurrence, the time can be taken into account. We iden-
tify conditions when they have been produced at the same time, still provided
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Fig. 2. A net N (a), one of its branching process (b) and the merged process (c)
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that they bear the same label. To formalize this idea, on which the notion of trel-
lis process is based (see [5]), we do need to guarantee that the proper time can be
identified for each condition. To do so we resort to multi-clock nets. A multi-clock
net is a safe net N = 〈S, T, F,m〉 equipped with a partition mapping ν : S → [[m]]
such that ν([[m]]) is the identity and ∀s, s′ ∈ [[m]] ν−1(s)∩ν−1(s′) �= ∅ ⇒ s = s′.
Thus a net can be partitioned in a number of components (which are identified
using the partition mapping) which synchronize on some common transitions,
and each component is a finite state automata which has just a place initially
marked. A trellis process of the multi-clock net N = 〈S, T, F,m〉 with ν as par-
tition mapping, is a labeled net R = (R, p), where (a) R = 〈B,E, F ′,m′〉 is an
unravel net, (b) p is a folding morphism, and (c) R is a multi-clock net under the
partition mapping νR defined as νR(b) = ν(p(b)); furthermore for each s ∈ [[m]]
any subnet R|[p−1(s)]ν is acyclic, where [p−1(s)]νR

= {b ∈ B | νR(b) = ν(s)}. For
further details on trellises and multi-clock nets we refer to [5].

Let C = (C, p) be a branching process of the multi-clock N , with ν as parti-
tion mapping. Given a condition b of C, the height of b, denoted with height(b),
is |{b′ ∈ B | b′ ≤C b and ν(p(b)) = ν(p(b′))}|, where B are the conditions of C.
The height of a condition is well defined in a casual net which is a multi-clock
as well, as in the case of branching processes arising from multi-clock nets.

Theorem 13. Let C = (C, p) be branching process of N , and let ∼tr be the
merging relation defined as follows: b ∼tr b′ iff b � b′, p(b) = p(b′) and height(b) =
height(b′), where � is the reflexive closure of the conflict relation # of the causal
net C restricted to conditions only. Then C = (C, p) is a trellis process of N .

Example 14. Consider the net N in Fig. 3(a). It is a multi-clock net considering
ν(p3) = p1 and ν(p4) = p2. The equivalence induced by the height of the con-
ditions in the branching process in Fig. 3(b) is b7 ∼ b8 and b9 ∼ b10, whereas
b5 �∼ b8 as they have a different height though they have the same label. The
merging can be applied and the result, which is depicted in Fig. 3(c), is the trellis
process associated to this specific branching process. This is an unravel net.

We conclude this section observing that the merging relation is induced
assigning to each place a measure, and stipulating that two equally labeled and
incompatible places are equivalent whenever they have the same measure.
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Fig. 3. A multi-clock net (a), one of its branching processes (b) and the corresponding
trellis process (c)
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5 Enriching to Obtain Unravel Nets

When compacting behaviors we usually start from a labeled unravel net, but the
produced net is not necessarily an unravel one, and in the compaction we may
lose the tight correspondence among nets and event structures. In fact cycles
may be introduced when merging places and transitions, and in some case the
cycles may be executable (thus the associated event structure would have a
configuration where dependencies are not a partial order).

The possibility of obtaining an unravel net is connected with the measure,
associated to places, the merging relation is based upon. Consider a labeled
unravel net R = (R, l), with R = 〈S, T, F,m〉, and a locality mapping loc : S →
Loc, where Loc is a finite set of localities, and take any measure δ : S → N such
that δ(s) = δ(s′) implies s �� s′. We say that δ is strictly increasing if for each
state X ∈ St(R), and each pair of places s, s′ of the net R|[[X]], it holds that
s ≤ s′ ∧ loc(s) = loc(s′) ⇒ δ(s) < δ(s′).

We can prove the following theorem, stating that the property of being an
unravel net is preserved when strictly increasing measure are considered.

Theorem 15. Let R = (R, l) where R = 〈S, T, F,m〉 be a labeled unravel net
and loc : S → Loc a locality mapping, let δ : S → N be strictly increasing and
let ∼ be the equivalence relation induced by δ, i.e. s ∼ s′ iff (δ(s) = δ(s′) and
l(s) = l(s′)) or s = s′. Then the resulting compact labeled net R = (R, l) is a
labeled unravel net.

The measure defined for trellis processes is a strictly increasing one, the
locality mapping being the one induced by the partition mapping. Hence we
can consider Theorem 13 as a special case of the Theorem 15 above. When the
measure is not of this kind we may still obtain an unravel net, but sometimes
at the price of enriching it in order to forbid certain unwanted executions in the
compact version.

Given a labeled unravel net R = (R, l) with R = 〈S, T, F,m〉, we say that a
measure δ : S → N is homogeneous iff for each X ∈ St(R) and each subset of
places Ŝ of R|[[X]] = 〈S′, [[X]], F ′,m〉 such that there exists a label a such that
l−1(a) ∩ S′ = Ŝ, it holds that Ŝ′ can be totally ordered with respect to the
reflexive and transitive closure of F ′, δ(Ŝ′) = {1, . . . , |Ŝ′|} and s ≤ s′ ⇒ δ(s) ≤
δ(s′). An homogeneous measure on causal nets is the token count of merged
process. Again, as done before, we may introduce an equivalence relation which
is based on an homogeneous measure δ by stipulating that s ∼ s′ iff either s = s′

or (l(s) = l(s′) ∧ δ(s) = δ(s′)). As the measure is an homogenous one, we do
not have to require that the two places are incompatible as it is implied by the
definition of the measure itself. When compacting using this merging relation
the result may be not an unravel net. However this net may be turned into an
unravel one without losing behaviors of the original net by adding some places
which solely purpose is to forbid unwanted executions.

Take an unravel net R = (〈S, T, F,m〉, l) and an homogeneous measure δ on
S. We can add to the net R = 〈S, T, F,m〉 a set of places Sng = {(l(s), δ(s),ng) |
s ∈ S}∪{(l(s), 0,ng) | s ∈ S \ [[m]]}, and connect them to the transitions in T as
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follows: Fng((l(s), n,ng), t) = 1 whenever ∃s′ ∈ t•. l(s) = l(s′) and δ(s′) = n+1,
and Fng(t, (l(s), n,ng)) = 1 whenever ∃s′ ∈ t•. l(s) = l(s′) and δ(s′) = n; finally
the places (l(s), 0,ng) are initially marked as well as (l(s), 1,ng) if b ∈ m (and
are the multiset mng). We call these places no-gap as in the case that the δ is
precisely the token count and R = (R, l) is a branching process of a safe net N ,
they assure that the tokens in a place of the original net N are produced in the
proper sequence.

The net obtained adding these new places Sng , namely Ng(R) = 〈S ∪
Sng , T, F ∪ Fng ,m + mng〉, is an unravel net such that to each fs σ of Ng(R)
a fs σ′ of R corresponds and they are such that run(σ) = run(σ′) but also the
vice versa holds, thus to each fs σ̂ ∈ ΣR

m a fs σ̂′ ∈ ΣNg(R)
m+mng

corresponds such that
run(σ̂) = run(σ̂′), hence both unravel nets have exactly the same states, which
means that this enriching does not change the behaviors of the net.

Theorem 16. Let R = (R, l) be a labeled unravel net, where R = 〈S, T, F,m〉.
Let Ng(R) = (Ng(R),Ng(l)) where Ng(l)(s) = l(s) if s ∈ S and l((s, n,ng)) =
l(n) obtained with respect to an homogeneous measure δ. Let ∼ be the equivalence
relation induced by this measure on the places in S. Then Ng(R) = (Ng(R),Ng(l))
is an unravel net.

As a corollary of this theorem we have the following.

Corollary 17. Let C = (C, p) be a branching process of the safe net N , where
C = 〈B,E, F,m〉. Let Ng(C) = (Ng(C),Ng(p)) be the unravel net obtained apply-
ing Ng to C and p and consider the equivalence relation ∼ induced by ∼tok , where
∼tok is defined on conditions in B. Ng(C) = (Ng(C),Ng(p)) in a labeled unravel
net and furthermore Ng(C)|B∼tok

is a merging process of N , where B∼tok
are the

merged resource conditions.

Example 18. The causal net in Fig. 1(a), with the appropriate labeling, is a
branching process of the net N in Fig. 4. The net Ng(C) in Fig. 4 is the result of
enriching this causal net with no-gap conditions (the black ones). For instance,
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Fig. 4. A labeled net N and one of its enriched branching process Ng(C)
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the no-gap condition png
1 is (p, 1,ng) and the transitions (events) putting a token

in it are e2 and e3, whereas the events e6 and e7 consume the token in it. Clearly
e2 # e3 and e6 # e7 The conditions with the same color have the same token
count (the number depicted in the conditions) and are equally labeled. The result
of its compaction is the unravel net in Fig. 5.
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Fig. 5. The resulting unravel net of the compaction of Ng(C) in Fig. 4
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Abstract. We study the Partition into H problem from the parame-
trized complexity point of view. In the Partition into H problem the
task is to partition the vertices of a graph G into sets V1, . . . , Vr such
that the graph H is isomorphic to the subgraph of G induced by each
set Vi for i = 1, . . . , r. The pattern graph H is fixed.

For the parametrization we consider three distinct structural parame-
ters of the graph G – namely the tree-width, the neighborhood diversity,
and the modular-width. For the parametrization by the neighborhood
diversity we obtain an FPT algorithm for every graph H. For the para-
metrization by the tree-width we obtain an FPT algorithm for every con-
nected graph H. Thus resolving an open question of Gajarský et al. from
IPEC 2013 [9]. Finally, for the parametrization by the modular-width we
derive an FPT algorithm for every prime graph H.

Keywords: Generalized matching · Parametrized complexity

1 Introduction

We begin with the definition of the Partition into H problem. We will then
present the problem in the light of some well-known problems from compu-
tational complexity – for example Perfect Matching or Equitable Col-
oring – thus demonstrating it as a natural generalization of these and other
problems. Finally, we give the summary of our results presented in this paper.

The Partition into H Problem. For graphs G = (V,E),H = (W,F ) with
|V | = |W | · r, we say that it is possible to partition G into copies of H if there
exist disjoint sets V1, V2, . . . , Vr such that

–
⋃r

i=1 Vi = V, and
– G[Vi] � H for every i = 1, 2, . . . , r,

where by G[Vi] we mean the subgraph of G induced by the set of vertices Vi.
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Problem 1 (Partition into H).

FIXED: Pattern graph H = (W,F ).
INPUT: Graph G = (V,E) with |V | = r · |W | for an integer r.

QUESTION: Is there a partition of G into copies of H?

The complexity of the Partition into H problem has been studied by
Hell and Kirkpatrick [15] and has been proven to be NP-complete for any fixed
graph H with at least 3 vertices – they have studied the problem under a different
name as the Generalized Matching problem. There are applications in the
printed wiring board design [12] and code optimization [3].

Some variants of this problem are studied extensively in graph theory. For
example when H � K2 the problem Partition into K2 is the well known
Perfect Matching problem, which can be solved in polynomial time due to
Edmonds [7] – the algorithm works even for the optimization version, when one
tries to maximize the number of copies of K2 in G. The characterization theorem
for H � K2, that is a characterization of graphs admitting a perfect matching
is known due to Tutte [20].

Another frequently studied case of our problem is the Partition into K3

problem – also known as the Triangle Partition problem. The Triangle
Partition problem arises as a special case of the Set Partition problem
(also known to be NP-complete [10]). Gajarský et al. [9] pointed out that the
parametrized complexity of the Triangle Partition problem parametrized by
the tree-width of the input graph was not resolved so far.

The last, but not least, example of a well known problem which can be viewed
as a special case of the Partition into H problem is the Equitable Coloring
problem. The task is to color the vertices of an n vertex graph with exactly k
colors such that vertices connected by an edge receive different colors and the
resulting color classes have equal sizes. It is easy to see that the Equitable
Coloring problem is the Partition into H problem with the edgeless graph
on n/k vertices (it is possible to add a clique of appropriate size so that n
becomes a multiple of k as it is demanded in our setting).

Very similar application can be found as the so called �-bounded vertex
colorings, where the task is to find a coloring of a graph G with prescribed
number of colors such that each color is used at most �-times. This problem
allows a straightforward reduction to the Equitable Coloring by inserting a
suitable number of isolated vertices. The connection between these two problems
was also studied from the parametrized complexity point of view [2] – an XP
algorithm is obtained for parametrization by the tree-width of graph G. Here
a special case of this problem is again equivalent to the Partition into H
problem with H being the edgeless graph on � vertices. For this problem a
polynomial time algorithm is known for trees [13]. Upper and lower bounds on
the number of colors are known for general graphs [11].

Very recently van Bevern et al. [21] studied computational complexity of
related problem, where for a fixed graph H = (W,F ) the task is to partition the
set of vertices of an input graph G = (V,E) into sets V1, V2, . . . , Vr such that
|Vi| = |W | and G[Vi] contains subgraph isomorphic to H.
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Parametrized Complexity Results. When dealing with an NP-hard problem
it is usual to study the problem in the framework of parametrized complexity.
While in the previous section we have introduced several problems of the classical
complexity, here we give references to parametrized results for these problems.

A similar but more general problem (called the MSOL Partitioning prob-
lem) was studied by Rao [18]. Here the task is to partition the vertices of
the graph G into several sets A1, A2, . . . , Ar such that ϕ(Ai) holds for every
i = 1, 2, . . . , r, where ϕ(·) is an MSO1 formula with one free set variable. If
the number r and the clique-width cw(G) are fixed then the algorithm runs in
polynomial time and hence the problem is in XP parametrized by clique-width.

Our Contribution. Our first algorithm is based on the celebrated theorem
of Courcelle [4] – a usual starting point for parametrized algorithm design. We
would like to point out, that even though the result follows easily, the application
is not straightforward.

Theorem 2. For any fixed connected graph H the Partition into H problem
is expressible by an MSO2 formula.

As the first algorithm is for graphs with bounded tree-width and thus a
sparse class of graphs, we also analyse some variants of the Partition into H
problem for a particular class of dense graphs. Many parameters are suitable for
dense graph classes, such as neighborhood diversity and modular-width (we give
formal definitions in Sect. 3).

Definition 3 (Prime Graph). We say that a graph G = (V,E) is prime graph
if for every subset of vertices U � V with at least two vertices there exist v ∈ V \U
such that v is adjacent to at least one vertex in U and v is not adjacent to at
least one vertex in U.

Theorem 4. For any fixed prime graph H and a graph G the Partition
into H problem belongs to the FPT class when parametrized by modular width
of graph G.

We derive the result using integer linear programming in a fixed dimension,
which can be solved by a parametrized routine [8,14]. It is worth to mention
that even though the condition on prime graphs may seem very restrictive this
class of graphs contains for example paths Pk on k ≥ 4 vertices and cycles Ck on
k ≥ 5 vertices. Applications of the Partition into H problem with H being a
path may be found in code optimization [3].

When it is shown that there is an FPT-algorithm for some problem, it is
natural to ask, whether the problem admits a polynomial kernel – that is a
preprocessing routine running in polynomial time which outputs an equivalent
instance of size polynomially bounded in the assumed parameter. We prove that
the Partition into H problem does not have polynomial kernel parametrized
by modular-width for any reasonable graph H, that is when H has at least 3
vertices and thus the Partition into H problem is NP-hard. More precisely,
we prove the following.
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Theorem 5. For any fixed graph H with at least 3 vertices. There is no poly-
nomial kernel routine for the Partition into H problem when parametrized by
modular width of graph G unless NP⊆ coNP/poly.

Using techniques similar to those of proof of Theorem 4 we can prove that
for every fixed H the Partition into H problem can be solved efficiently on
graphs with bounded neighborhood diversity.

Theorem 6. For any fixed graph H there is an FPT-algorithm for the Parti-
tion into H problem parametrized by neighborhood diversity of graph G.

2 Preliminaries

For a graph G = (V,E) we denote by |G| the number of vertices of G. For
a set U we denote by

(
U
2

)
the set of all two element subsets of U, that is

(
U
2

)
= {{u, v} : u, v ∈ U, u �= v}. Let G = (V,E) be a graph and let U ⊆ V

the graph induced by U is denoted by G[U ] and it is the graph (U,E ∩
(
U
2

)
).

Let G = (V,E),H = (W,F ) be graphs, we say that G is isomorphic to H, we
denote this by G � H, if there exists a bijective mapping f : V → W such that
{u, v} ∈ E if and only if {f(u), f(v)} ∈ F. For a set of vertices U we denote the
set of incident edges as δ(U) that is the set of edges {{u, v} : u ∈ U, v ∈ V \ U}.
Finally a complement of a graph G = (V,E) is denoted by Ḡ is a graph on the
same vertex set V with edge set

(
V
2

)
\ E. We say that a graph G is connected if

there is a uv path in G for every two distinct vertices of G. For more notation
on graphs, we refer reader to a monograph by Diestel [5].

We say that a relation R is an equivalence relation on a set X if R is reflexive,
symmetric and transitive. An equivalence class determined by an element x ∈ X
is the set {y ∈ X : x ≡R y}.

2.1 Preliminaries on Refuting Polynomial Kernels

In the following we denote by Σ a finite alphabet, by Σ∗ we denote the set of
all words over Σ and by Σ≤n we denote the set of all words over Σ and length
at most n.

Definition 7 (Polynomial Equivalence Relation). An equivalence relation
R on the set Σ∗ is called polynomial equivalence relation if the following condi-
tions are satisfied:

1. There exists an algorithm such that, given strings x, y ∈ Σ∗, resolves whether
x ≡R y in time polynomial in |x| + |y|.

2. Relation R restricted to the set Σ≤n has at most p(n) equivalence classes for
some polynomial p(·).

Definition 8 (AND-Cross-Composition). Let L ⊆ Σ∗ be an unparame-
trized language and Q ⊆ Σ∗ × N be a parametrized language. We say that L
cross-composes into Q if there exists a polynomial equivalence relation R and an
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algorithm A, called the AND-cross-composition, satisfying the following condi-
tions. The algorithm A takes on input a sequence of strings x1, x2, . . . , xr ∈ Σ∗

that are equivalent with respect to R, runs in polynomial time in
∑r

i=1 |xi|, and
outputs one instance (y, k) ∈ Σ∗ × N such that:

1. k ≤ p(maxr
i=1 |xi|, log r) for some polynomial p(·, ·), and

2. (y, k) ∈ Q if and only if xi ∈ L for all i.

We say that language L has a polynomial kernel if there is a kernelization
algorithm that takes on input an instance (x, k) ∈ Σ∗ × N, runs in polynomial
time in |x| and k, and outputs an equivalent instance (x′, k′) ∈ Σ∗ × N with
|x′| ≤ p(k′) and k′ ≤ q(k), where p(·), q(·) are polynomials. With this framework,
it is possible to refute even stronger data reduction techniques.

Definition 9 (Polynomial Compression). A polynomial compression of a
parametrized language Q ⊆ Σ∗ × N into an unparametrized language R ⊆ Σ∗ is
an algorithm that takes as input an instance (x, k) ∈ Σ∗×N, works in polynomial
time in |x| + k, and returns a string y such that:

1. |y| ≤ p(k) for some polynomial p(·), and
2. y ∈ R if and only if (x, k) ∈ Q.

It is easy to see that the polynomial kernelization is a special case of the poly-
nomial compression. It is possible to refute existence of polynomial compression
(and polynomial kernel) using AND-cross-composition with the help of use of
the following theorem and a complexity assumption that is unlikely to hold.

Theorem 10 ([1,6]). Assume that an NP-hard language L AND-cross-compo-
ses to a parametrized language Q. Then Q does not admit a polynomial com-
pression, unless NP ⊆ coNP/poly.

3 Preliminaries on Structural Graph Parameters

We give a formal definition of several graph parameters used in this work. For a
better acquaint with these parameters, we provide a map of assumed parameters
in Fig. 1.

We say that two (distinct) vertices u, v are of the same neighborhood type if they
share their respective neighborhoods, that is when N(u) \ {v} = N(v) \ {u}.

cw

twmw

ndtc
pw

vc

Fig. 1. A map of assumed parameters. A full arrow stands for a linear upper bound,
while a dashed arrow stands for an exponential upper bound. For example if a graph
G has vc(G) ≤ k then nd(G) ≤ 2k + k.
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Definition 11 (Neighborhood Diversity [16]). A graph G = (V,E) has
neighborhood diversity at most w (nd(G) ≤ w), if there exists a partition of
V into at most w sets (we call these sets types) such that all the vertices in each
set have the same neighborhood type.

Note that every type induces either a clique or an independent set in G and
two types are either joined by a complete bipartite graph or no edge between
vertices of the two types is present in G. Thus, we use the notion of a type
graph – that is a graph TG representing the graph G and its neighborhood
diversity decomposition in the following way. The vertices of type graph TG are
the neighborhood types of the graph G and two such vertices are joined by an
edge if all the vertices of corresponding types are joined by an edge. Note that
any optimal type graph is a prime graph. We would like to point out that it is
possible to compute the neighborhood diversity of a graph in linear time [16].

Both previous approaches are generalized by a modular-width, defined by
Gajarský et al. [9]. Here we deal with graphs created by an algebraic expression
that uses four following operations:

1. create an isolated vertex,
2. the disjoint union of two graphs, that is from graphs G = (V,E),H = (W,F )

create a graph (V ∪ W,E ∪ F ),
3. the complete join of two graphs, that is from graphs G = (V,E),H = (W,F )

create a graph (V ∪ W,E ∪ F ∪ {{v, w} : v ∈ V,w ∈ W}), note that the edge
set of the resulting graph can be also written as E ∪ F ∪ V × W.

4. The substitution operation with respect to a template graph T (for an exam-
ple see Fig. 2) with vertex set {v1, v2, . . . , vk} and graphs G1, G2, . . . , Gk

created by algebraic expression. The substitution operation, denoted by
T (G1, G2, . . . , Gk), results in the graph on vertex set V = V1 ∪ V2 ∪ · · · ∪ Vk

and edge set E = E1 ∪ E2 ∪ · · · ∪ Ek ∪
⋃

{vi,vj}∈E(T ){{u, v} : u ∈ Vi, v ∈ Vj},

where Gi = (Vi, Ei) for all i = 1, 2, . . . , k.

Definition 12 (Modular-Width [9]). Let A be an algebraic expression that
uses only operations 1–4. The width of expression A is the maximum number of
operands used by any occurrence of operation 4 in A.

T

Fig. 2. An illustration of the modular-width decomposition of a graph. A schema of a
decomposition is depicted in the left part of the picture. In the right part of the picture
there is the resulting graph – gray edges represent edges from the previous step of the
decomposition (with template graph T ).
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The modular-width of a graph G, denoted as mw(G), is the least positive
integer k such that G can be obtained from such an algebraic expression of width
at most k.

When a graph H is constructed by the fourth operation, that is G =
T (G1, G2, . . . , Gk), we call the graph T the template graph. An algebraic expres-
sion of width mw(G) can be computed in linear time [19].

4 Graphs with Bounded Modular-Width

In this section we give a proof of the Theorem 4. We begin with a techni-
cal Lemma 13 that demonstrates the limited possibilities of embedding the
(fixed) prime graph H into the input graph G with bounded modular-width.
This exploits a close connection of the parameters neighborhood diversity and
modular-width.

We then formulate the problem as a mixed integer linear problem, where we
can bound the number of integer variables by a function in the modular-width
mw(G) of the input graph and thus proving the theorem.

By an embedding of graph H = (W,F ) in graph G = (V,E) we mean a
function h : W → V such that G[h(W )] � H, to which we refer as an induced
copy of H in G.

Recall that by Definition 3 for a prime graph H = (W,F ) it holds that
∀U � W with at least two vertices there exists vertex w ∈ W \ U such that it is
adjacent and non-adjacent to at least one vertex in U .

Embedding of H inside G. The following lemma shows that restricting H
to be prime graph leads to only two possibilities of an embedding of H on a
particular level of a modular decomposition of the graph G.

Lemma 13. Let G = T (G1, G2, . . . , Gk) be a graph and let H = (W,F ) be a
prime graph. For an induced subgraph G′ � H of G holds either

1. G′ ⊆ Gi for some i ∈ {1, 2, . . . , k}, or
2. G′ contains at most one vertex in every Gi for i = 1, 2, . . . , k.

Proof. Assume that G′ � Gi for any i as otherwise we are done. If there are at
least two vertices of G′ in some Gi, – we will show (using Definition 3) that this
cannot be valid embedding of H inside G.

Let us rearrange vertices of a template graph T (and corresponding
graphs Gi) so that G′ contains vertices of graphs G1, G2, . . . , G� (with � < |H|).
Let T ′ ⊆ T be the restriction of T to vertices v1, v2, . . . , v�. From our assumption
on � < |H| it follows that there exists a set U � W that is embedded inside one
graph Gi. By the definition of prime graphs for this set U there exists vertex
w ∈ W \ U and two (different) vertices u1, u2 ∈ U such that {u1, w} ∈ F and
{u2, w} /∈ F . But this contradicts the fact that G′ is an embedding of H inside
G as by the definition of modular decomposition for all v ∈ Gj with j �= i either
v is adjacent to every vertex in U , or v is non-adjacent to all vertices in U . Thus,
G′ cannot be an embedding of H inside G.
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By Lemma 13 for the most complex operation follows that the structure
inside graphs G1, G2, . . . , Gk is not important when we try to find graphs of the
partition that contains vertices from more than one graph Gi.

Note that when deciding the Partition into H problem on graph G with
mw(G) < |H|, it follows from Lemma 13 that the answer is clearly No – thus this
case is trivial. So the task is to design an algorithm when |H| = nd(H) ≤ mw(G).

4.1 Mixed Integer Linear Program Routine

We solve the Partition into H problem by a recursive algorithm. For each
occurrence of operation 4 in the decomposition we design an integer linear pro-
gram that computes the optimal solution, that is the solution in which there are
as many induced copies of H in G as possible. The integer program uses previous
solution thus we proceed (recursively) from leaves of the decomposition tree of
G towards the root.

In the following mixed integer linear program for the Partition into H
problem on the graph G = T (G1, G2, . . . , Gk) the set S is the set of all |H|-tuples
of vertices of the graph T that form an induced copy of H inside T and thus,
inside the graph G. An alternative point of view is that S is the set of all possible
copies of H in T. Let U be the vertex set of the graph T, moreover, as graphs
G1, G2, . . . , Gk correspond to vertices of T, we will denote these as Gv for v ∈ U.

The Solution, Constants and Variables. The constants wv represent the
number of vertices of the graph Gv that are not covered by a copies of H found
by the previous (recursive) solution. The constants pv represent the number of
copies of H in the recursive solution. Thus, the (recursive) solution is represented
by pairs (pv, wv) for all v ∈ U . It may be wise to unlink some previously made
copies of H’s (computed by the recursive procedure) – this is why we introduce
the variable yv, which expresses how many previously constructed copies shall by
unlinked. An example of a situation in which this is necessary is show on Fig. 3.
The ILP tries to cover as many vertices as possible – this is done by minimizing
the number of uncovered vertices expressed by rv for a graph Gv.

G2

G1

G5

G3

G4

v1 v2

v3

v4
v5

The template graph

Fig. 3. An example of a graph created by a modular decomposition. Template graph
is given on the right. Paths inside blocks (precomputed by an induction) are shown as
dotted, while an optimal solution for this graph is drawn with solid edges. The graph
shows that it is essential to allow unlinking of previously (recursively) constructed
solution.
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Mixed Integer Linear Program

minimize
∑

v∈U

ri subject to rv = wv + |H| · yv −
∑

S∈S:S�v

xS ∀v ∈ U

yv ≤ pv ∀v ∈ U

where xS ∈ N ∀S ∈ S
yv ∈ N ∀v ∈ U

rv ≥ 0 ∀v ∈ U

The total number of integral variables may be upper-bounded by |T |+ |T ||H|,
so if we denote by k the size of the template graph (and thus the modular-width
of an input graph) the upper bound can be expressed as k + kk. We can apply
the following result of Lenstra [14] (with an enhancement due to Frank and
Tardos [8]) to derive Theorem 4.

Proposition 14 ([8,14]). Let p be the number of integral variables in a Mixed
integer linear program and let L be the number of bits needed to encode the
program. Then it is possible to find an optimal solution in time O(p2.5ppoly(L))
and a space polynomial in L.

4.2 Refuting Polynomial Kernels

In this section we prove Theorem 5. First observe that it suffices to prove the
theorem only for connected graph H. This is trivial as for every graph G it holds
that mw(G) = mw(Ḡ) (the complement of graph G) – and thus we can ask the
question in complementary setting.

As a polynomial equivalence relation we take the following relation. Two
instances (G1,H1), (G2,H2) are equivalent if |G1| = |G2| (that is they have the
same number of vertices) and H1 � H2. As H is fixed this defines a polynomial
equivalence relation (together with the class of malformed instances – instances
that do not encode a pair of graphs).

Observe that if we take a disjoint union of two graphs G,G′ then mw(G ∪̇
G′) ≤ max{|G|, |G′|}. This is not hard to see as we can take G to be a type graph
for G and similarly G′ to be a type graph for G′. Then the disjoint union does not
change the modular-width as the second operation of modular decomposition is
exactly the disjoint union and does not change the width of the decomposition.
By an inductive argument for graphs G1, G2, . . . , Gt it holds that

mw(G1 ∪̇ G2 ∪̇ · · · ∪̇ Gt) ≤ max
1≤i≤t

{|Gi|}.

As the designed polynomial equivalence relation assures that for all i and j
the graphs Hi � Hj we write H to be the common graph for all instances. An
AND-cross-composition of equivalent instances (G1,H), (G2,H), . . . , (Gt,H) we
take as instance (G,H) – the disjoint union of all graphs. Because H is connected
the new instance (G,H) admits a partition into copies of H if and only if all
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instances (Gi,H) admit such a partition. The previous paragraph shows that
mw(G) ≤ max1≤i≤t{|Gi|}. This finishes the design of an AND-distillation and
the proof of Theorem 5 for all graphs H for which the Partition into H
problem is NP-hard.

4.3 Graphs with Bounded Neighborhood Diversity

In this section we will present a proof of Theorem 6. The proof is based on a
bound of the number of possibilities of embedding a graph H into G.

Note that for the Partition into H problem parametrized by nd(G) it
is possible that an embedding of a graph H in G does not have to obey the
neighborhood diversity decomposition – it is possible that for example a clique
type of H may be embedded among several clique (or even independent) types of
G. For an example of such a situation see Fig. 4. On the contrary the embedding
of H in G has to obey the neighborhood diversity decomposition of graph H.
We formalize this in Lemma 15.

The proof of the following lemma is very similar to the proof of Lemma 13.
The proof is omitted here (it is possible to find the proof in the Appendix).

Lemma 15. Let G,H be graphs such that it is possible to partition G into copies
of H. Then nd(H) ≤ nd(G).

By Lemma 15 the algorithm for the Partition into H problem we may
assume that nd(H) ≤ nd(G) and that H is a connected graph (we can take the
complementary instance of the problem, see Sect. 4.2).

As the graph H is fixed in our setting the number |H| is not a part of the
input. Thus an embedding of H in G can be described by specifying a type to
which a particular vertex of H is mapped (i.e. by a ϕ : V (H) → V (TG)). There
are at most nd(G)|H| possibilities of embedding H into G. It is not hard to see
that it is possible to compactly describe an embedding of H in G by a vector
p = (p1, p2, . . . , pnd(G)) of length nd(G), where pi is the number of vertices used
for this embedding inside the i-th type in the neighborhood diversity decomposi-
tion of graph G. In this case, we say that the embedding corresponds to vector p.

H

G1

2

3
4

5

31

2

4

5

Fig. 4. An example of embedding of a graph H in G – vertices are labeled 1, 2, . . . , 5
in both to show the embedding. The types in graphs are indicated by dashed circles
around a group of vertices. Bold edges between types represent a complete bipartite
graph.
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A vector p = (p1, p2, . . . , pnd(G)) is admissible if there exists an embedding of
H in G which correspond to vector p. Furthermore, note that it is possible to
find the set P of all admissible vectors in time O(nd(G)|H||H|2) by searching
through all embeddings and checking that edges of graph H are preserved.

The rest is to find a non-negative integral combination of vectors contained
in set P that gives vector (n1, n2, . . . , nnd(G)), where ni is the number of vertices
contained in the i-th type in the neighborhood diversity decomposition of graph
G. It is straightforward to do this using integer linear programming (Lenstra’s
algorithm) as we are asking for non-negative integral combination of vectors in
P of size bounded by |H| and nd(G). This finishes the proof of Theorem 6.

5 Connected Partition Problem is MSO2 Definable

In this section we show that for a fixed connected graph H the Partition
into H problem can be described by an MSO2 formula. Even though this is not
obvious at the first sight. The straightforward expression by a formula seems to
operate with copies of H inside G – but the number of such copies is function
of the number of vertices of G and thus cannot be bounded in terms of tw(G)
and |H|.

MSO2 Formula Idea. We will proceed as follows. We will describe the solution
to the Partition into H problem as a property of a set of edges which are in
the solution. This approach is not expressible in MSO1. We describe the property
of being a solution to the Partition into H problem as “every connected part
of the solution is an induced subgraph of G isomorphic to H”. We express this
by describing that a set of edges S is a solution if

– every vertex of the host graph G is in some connected component of G[S],
– every connected component G[S] is an induced graph (it contains exactly edges

present in G between vertices of that particular component) and
– every connected component of G[S] is a graph isomorphic to H (we do this

by discovering a copy of H from a particular (fixed in advance) vertex in H).

It is clear that if every vertex of G is in some connected component which form
an induced subgraph of G isomorphic to H, then we have the solution to the
Partition into H problem.

MSO1 Inexpressibility. Before we proceed to the formula defining the solution
set S, we would like to give an evidence that it is not possible to express the
Partition into H problem by an MSO1 formula on an example of H � K3.
Roughly speaking about the expressive power of MSO1 logic it is impossible
to distinguish between two large cliques [17] – namely for every MSO1 formula
ϕ there is a positive integer N such that it is impossible to distinguish two
cliques KN and KN+1. If we build two graphs G1, G2 as G1 = KN−1 ∪ KN+1

and G2 = KN ∪ KN for large enough N that is divisible by 3 the framework
of Ehrenfeucht–Frass games [17] graphs G1 and G2 give that the Triangle
Partition problem is not expressible in MSO1 logic. It is possible to generalize
this idea to other graphs as well.
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6 Conclusions

We have studied the Partition into H problem from the parametrized com-
plexity point of view. We would like to enclose the paper with several open
problems to which we would like to give a brief description.

We would like to ask a question related to the tree-depth, is there a discon-
nected graph H such that the Partition into H problem is FPT with respect
to the tree-depth (of course, different from the edgeless graph on two vertices)?

We have presented in Sect. 4 an algorithm for a fixed graph H from a certain
class of graphs. Is it possible to extend this result to a broader class of graphs H?
Most important form this point of view seem graphs on 3 vertices – a path P3 and
a triangle K3 (the rest of 3 vertex graphs would be resolved using complements).

Another important task in this area is to understand the boundary (viewed
from the parametrized complexity perspective) between modular-width and
neighborhood diversity, twin-cover and clique-width. We hope that our knowl-
edge in this area can be extended in the highlight of the Partition into H
problem – namely we should identify graphs H with the property that on one
parameter the problem is fixed parameter tractable while it is W[1]-hard on some
other parameter (higher in the parameter hierarchy).

Finally, our techniques from Lemma 15 showed that the Partition into H
problem admits an FPT algorithm when the graph H is a prime graph even when
the graph H is a part of the input. More generally, there is an FPT algorithm, if
we extend the graph class by allowing constant number of vertices inside every
type of the graph H. Is it possible to show an FPT algorithm parametrized by
neighborhood diversity of graph G that takes the graph H as input?

Our results give possibilities for parametrized algorithms with respect to
clique-width – namely for the class of prime graphs. Here we would like to propose
a concrete question for the Partition into P4 (the smallest prime graph) – is
there an FPT algorithm for this problem with respect to clique-width?
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Abstract. Fix an algebraic structure (A, ∗). Given a graph G = (V, E)
and the labelling function φ (φ : E → A) for the edges, two nodes s,
t ∈ V , and a subset F ⊆ A, the A-Reach problem asks if there is a path
p (need not be simple) from s to t whose yield (result of the operation
in the ordered set of the labels of the edges constituting the path) is in
F . On the complexity frontier of this problem, we show the following
results.
– When A is a group whose size is polynomially bounded in the size of

the graph (hence equivalently presented as a multiplication table at
the input), and the graph is undirected, the A-Reach problem is in
L. Building on this, using a decomposition in [4], we show that, when
A is a fixed quasi-group, and the graph is undirected, the A-Reach
problem is in L. In contrast, we show NL-hardness of the problem over
bidirected graphs, when A is a matrix group over Q. When A is a
fixed aperiodic monoid, we show that the problem is NL-complete.

– As our main theorem, we prove a dichotomy for graphs labelled with
fixed aperiodic monoids by showing that for every fixed aperiodic
monoid A, A-Reach problem is either in L or is NL-complete.

– We show that there exists a monoid M , such that the reachability
problem in general DAGs can be reduced to A-Reach problem for
planar non-bipartite DAGs labelled with M . In contrast, we show that
if the planar DAGs that we obtain above are bipartite, the problem
can be further reduced to reachability testing in planar DAGs and
hence is in UL.

1 Introduction

The reachability problem on combinatorial structures has been fundamental and
well studied in complexity theory. A most striking example of this is the graph
reachability problem which asks, given a directed graph G and two special ver-
tices s and t whether there is a path from s to t in G or not. The problem
is known to be NL-complete for directed acyclic graphs. Deterministic logspace
algorithms are known for restricted classes of graphs - when each component of
the directed graph is Eulerian [19], or the graph has bounded treewidth [10].
Reachability for planar graphs is in unambiguous1 logspace [7]. See [1] for a
survey.
1 A language is said to be in unambiguous logspace if there exists a non-deterministic
logspace Turing machine M such that ∀x, M has at most one accepting computation.
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Word problems over algebraic structures also play a fundamental role in
complexity theoretic characterizations. Fix an algebraic structure A with an
associated binary operation, and a subset F ⊆ A. Given a w ∈ A∗, test if the
sequences of elements and operations among them is in F or not. An important
milestone in this direction is the dichotomy result due to Barrington and Thérein
[3] classifying the complexity of the word problems over a fixed monoid structure:
if the monoid M contains at least one non-solvable group, then the word problem
can be shown to be complete for NC1 (under AC0 projections) and if all groups
are solvable then it characterizes ACC0. Chandra et al. [9] showed that if there
are no non-trivial groups then it characterizes the class AC0. It is also known that
word problems over groupoids characterize LogCFL [6]. Beaudry et al. [5] showed
dichotomy theorem for the complexity of circuit evaluation problem defined over
monoids, based on precise algebraic properties of the monoids.

Reachability on labelled graphs is a natural generalization of the graph reach-
ability problem and the word problem on algebraic structures. A graph G is said
to be labelled if the edges are assigned labels from an underlying set S. When
this set also equipped a binary operation ∗ : S×S → S, the reachability problem
asks to test, given the graph G and two vertices s and t and an element a ∈ S,
if there is a path (need not be simple) from s to t whose yield (result of the
operation in the ordered set of the labels of the edges constituting the path) is
a or not. A closely related problem is that of the L-Reach problem where a
language L over the alphabet Σ, given a graph G(V,E), two vertices s and t
and a labelling function φ : E → Σ, test if there is a path from s to t whose
yield (the concatenation of the labels in the ordered set of edges constituting
the path) belongs to the language L. In [15], characterizations of the language
reachability problem with respect to languages classes and graph classes were
obtained.

In this work, we study the problem when the labels come from richer algebraic
structures. When the structure A is a groupoid (equivalently a case of L-Reach
problem when the language is restricted to be a context-free language) this
problem has been used in inter-procedural slicing and inter-procedural data flow
analysis [12,20,21]. On the complexity frontier, it is easy to observe that the
A-Reach problem is always harder than the word problem over A, and is harder
than the graph reachability problem (under logspace many-one reductions).

Our Results: We start with an observation that the problem of testing reacha-
bility on labelled graphs over semigroups can be reduced to testing reachability
on an associated directed graph (called product graphs - see Sect. 3). From a
complexity-theoretic view point, this motivates the study of the labelled reach-
ability problem. More specifically, in order to show that for a graph class the
reachability problem is in L, it is sufficient to reduce it to the reachability prob-
lem in a labelled graph such that reachability in the product graph can be solved
in L. We prove several properties of this directed graph and explore graph classes
and algebraic structures for which the A-Reach problem is in L. In particular,
we study this for undirected graphs (for which reachability problem is in L [18])
and show:
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Logspace Upper Bounds for Polynomially Growing Groups: We show that when A
is a group, such that |A| = O(nc), where n is the size of the graph, and c
is a constant (hence equivalently presented as a multiplication table at the
input), and the graph is undirected, the A-Reach problem is L-complete.

NL-hardness for Monoids and Matrix Groups: In contrast, we observe that there
exists a fixed monoid A such that A-Reach problem for undirected graphs
is NL-complete. Working over a more structured labelling set, we show NL-
hardness of the problem over bidirected graphs2, when A is a finitely gener-
ated subgroup of GLk(Q) (for k ≥ 2)- the group of invertible k × k matrices
with rational entries.

(NL vs L) Dichotomy for Aperiodic Monoids: We show a dichotomy for aperiodic
monoids: for any fixed aperiodic monoid A, the A-Reach problem for undi-
rected graphs is either NL-complete or is in L.

Logspace Upper Bounds for Quasigroups: When A is a fixed quasigroup, the
A-Reach problem is L-complete.

Logspace Upper Bounds for Treewidth k Graphs labelled with Monoids: When the
graph has bounded treewidth, for any fixed monoid A the A-Reach problem
for undirected graphs is L-complete.

While the general DAGReach problem is complete for NL, the reachability
problem over planar DAGs is known to be in UL [7]. We show that DAGReach
can be reduced to A-Reach over planar DAGs when A is a specific monoid
M . Tightly complementing this, we show that the instances of labelled graph
reachability problem obtained in this reduction, with the additional restriction
that the graph is bipartite, can be solved in deterministic log-space. Moving
towards groups, we show that DAGReach can be reduced to A-Reach over
planar graph when A is a specific exponentially growing group.

Related Work: Group labelled graphs have been extensively studied in the
literature as a generalization of signed graphs (see [11]) with the aim to extend
the graph minor theory to group labelled graphs over a fixed finite Abelian
group. An important comparison that we make is with the results by Kawase
et al. [14], where they consider the reachability problem in group labelled graphs:
to check if there is a simple path from s to t in the given group labelled graph
so that the yield of the path is a given element α. It is observed in [14] that the
problem is NP-complete over Z, since the undirected Hamiltonian path problem
reduces to this problem by replacing each edge with a pair of two arcs of opposite
directions with label 1 and letting α = n − 1. Huynh [13] showed the problem is
polynomial time solvable if the group is a fixed Abelian group.

However, we point out two important differences in our setting. Firstly, in
our setting, the problem does not look for simple paths from s to t, and hence

2 Directed graph (G(V, E)) such that ∀vi, vj ∈ V, (vi, vj) ∈ E =⇒ (vj , vi) ∈ E.
However, φ(vi, vj) need not be equal to φ(vj , vi). To complement this, we observe (see
Corollary 1) that the log-space upper bound for groups whose size is polynomially
bounded in terms of input, holds even for bidirected graphs.
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the NP-completeness result does not apply. Secondly, for the case of undirected
graphs with labelling from a group, the above mentioned results (including [14])
assume that if an edge (u, v) in the graph is labelled with g, the edge (v, u) is
labelled with g−1. In our setting, this is not the case - if an edge in the undirected
graph is labelled g ∈ G, then the edge contributes to the final product as g itself
irrespective of the direction that is taken by the path through the edge. Thus,
the above results of the problem do not apply in our case.

2 Preliminaries

In this section, we list notations and preliminaries used in the paper. For stan-
dard notations and definitions of complexity classes, we refer the reader to the
textbook [2]. We now define some graph theoretic terminologies required. A tree
decomposition of a graph G = (V,E) is a tree T = (I, F ) where each vertex
i ∈ I has a label Xi ⊆ V with

⋃
i∈I Xi = V such that: for any edge (u, v) ∈ E,

there exists an i ∈ I with u, v ∈ Xi and, for any v ∈ V , the vertices contain-
ing v in their label form a connected subtree of T . Given a tree decomposition
T = (I, F ), the width of the decomposition is maxi∈I(|Xi|)−1. The treewidth of
a graph G is the minimum k such that G has a tree decomposition of width k.

We define the algebraic structures that we refer to in the paper. Let A be an
algebraic structure where ∗ is the binary operator. If ∗ has the closure property,
A is said to be a groupoid. Groupoids for which ∗ is associative are called semi-
groups. Semi-groups which have an identity element e (that is, ∀a ∈ A, ae =
ea = a)3 are called monoids. Groups are monoids for which every element has
an inverse with respect to ∗. That is, ∀a ∈ A,∃ b ∈ A such that ab = ba = e. In
general, a monoid M is said to be divided by another monoid N if there exists
a surjective morphism from a submonoid of M to N [22]. Quasigroups are a
generalization of groups in a different direction; the operation in a quasigroup
need not be associative but they are left and right cancellative (that is, ab =
ac ⇒ b = c and ab = cb ⇒ a = c).

A-Reach Problem: Let A = {(A,∗ )} be an infinite collection of algebraic
structures where each (A,∗ ) is the algebraic structure with set of elements [k] =
{1, 2, . . . , k} and the binary operation ∗ defined over A. Let F be a subset of A.
Consider a graph G = (V,E) and a function φ : E → A. We extend the definition
of φ to the yield of a path p = v0, v1, . . . , vm, as φ(p) =

∏m−1
i=0 φ((vi, vi+1)) where

product is the operation ∗ on the concatenated labels of p.

Definition 1. (A-Reach) Fix an algebraic structure A. The A-Reach problem
asks: given a graph G on n vertices and the labelling function φ for the edges,
two nodes s, t and accepting set4 F ⊆ A, test whether there is a path p (need
not be simple) from s to t such that φ(p) ∈ F .
3 We do not use the operator, whenever it is clear from the context. We use 1 and e
interchangeably for the identity element.

4 If the size of A is fixed (or even polynomially bounded) we will assume that |F | = 1.
We also assume that the accepting element a is given as a part of the input. All our
results except Theorem7 hold even if a is fixed apriori.
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For studying the variants of the problem, we introduce the following notation:
A-GReach refers to the A-Reach problem defined over the algebraic structure
A(Monoid, Aperiodic Monoid, Commutative Aperiodic Monoid, Group, Quasi-
group and Semigroup) and the input graphs are restricted to the class G(Tree,
Planar, DAG, k-Treewidth, Undirected(U) and Bidirected(B)).

Aperiodic Monoids and Quasigroups: The monoid class DA is defined as
the class of monoids that satisfy (stu)nt(stu)n = (stu)n, for some n, for all s, t, u
in the monoid. A language L = A∗

0a1A
∗
1a2 · · · akA∗

k is said to be unambiguous if
for all w ∈ L, there is a unique factorization w = w0a1w1a2 · · · akwk, such that
wi ∈ A∗

i for i = 0, 1, . . . , k. Pin et al. [16] showed the following characterization:

Proposition 1. [16] L ⊆ A∗ is recognized by a monoid in DA if and only if
L is a disjoint, finite union of unambiguous products A∗

0a1A
∗
1 · · · akA∗

k, where
Ai ⊆ A, ai ∈ A, for i ∈ [k].

The following was proved by Raymond et al. [17,22].

Proposition 2. [17,22] Let M be a finite, non-commutative monoid. Then M
is divided by one of the following aperiodic monoids. (1) BA2, the syntactic
monoid5 of (c∗ac∗bc∗)∗. (2) U , the syntactic monoid of ((b + c)∗a(b + c)∗b(b +
c)∗)∗. (3) The syntactic monoid of A∗aA∗bA∗. (4) The syntactic monoid of
c∗aA∗ or A∗ac∗. Moreover, if M 
∈ DA, M is divided by either BA2 or U .

In [4], Beaudry et al. define a comb as a left to right bracketing over a word,
and claim that any bracketing over the word, for a quasigroup, can be viewed
as a finite tree with each leaf as a comb. We state this as the following:

Proposition 3. [4] Let q1q2 · · · qn be a word over a quasigroup Q. If there is a
bracketing such that q1q2 · · · qn evaluates to q under that bracketing, then there
is a bracketing with at most 8|Q| combs which yields q.

3 Logspace Upper Bounds

In this section, we explore the algebraic structure of the label set and graphs
which enable us to solve the problem in L. As our main tool, we introduce the
product graph, which is inspired by that of product graphs defined in the context
of L-Reach problem by Yannakakis [23].

Product Graph and Properties: Let G = (V,E) be a labelled graph, with
a labelling φ : E → M , where M is a semigroup. We construct a new directed
graph G′ = (V ′, E′) as follows. We set V ′ = V ×M , and define the edge set E′ as
{((v1,m1), (v2,m2))|(v1, v2) ∈ E and m1φ(v1, v2) = m2}. We show the following
proposition. The proof is given in the full version.

Proposition 4. For s, t ∈ V , m ∈ M , there is a path p from s to t in G such
that φ(p) = m ⇐⇒ there is a path from (s, e) to (t,m) in G′.
5 We denote the elements of this monoid by {1, α, β, αβ, βα, 0}.
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Similarly, we can argue that a path from (s,m1) to (t,m2) in G′ exists if and
only if there is a path from s to t in G, yielding m such that m1m = m2.

NL Upper Bounds: Since the above proposition holds even if G has cycles
in it, this implies that SemiGroupReach is in NL. In later sections, we show
more properties of the product graph. The product graph of an undirected graph
labelled with a group is Eulerian. See Theorem2. Also, the product graph of a
graph with a bounded treewidth (labelled with a finite monoid) also has bounded
treewidth. See Theorem 1.

If the algebraic structure is non-associative, we have to deal with all possible
bracketings. Let us denote the set of all elements obtained by different bracket-
ings of a word w by Yield(w). Caussinus and Lemieux [8] showed that languages
recognized by finite quasigroups are regular. Hence, there exists a morphism ψ
from any quasigroup Q to a monoid M , and subsets Q′ ⊆ Q,M ′ ⊆ M such
that for any word w ∈ Q∗, Yield(w) ∩ Q′ 
= φ if and only if ψ(w) ∈ M ′. Hence,
the product graph construction shows that QuasigroupReach can be solved
in NL.

Original Graph vs Product Graph While Group Labelling: It is a natural
question to ask when the original graph appears as a subgraph in the product
graph. We answer this for group labelled graphs.

Let G = (V,E) be a directed acyclic graph, labelled with a group H, via
labelling φ. Let the product graph be G′. Suppose G is a tree. We show that
G′ contains a copy of G. Let us start with any vertex v. For any g ∈ H, (v, g)
is in G′. Now, consider all neighbors of v in G. If (v, u) is an edge in G, we
have a corresponding edge ((v, g), (u, gφ(v, u))) in G′. Similarly, if (u, v) is an
edge in G, ((u, gφ(u, v)−1)(v, g)) is an edge in G′. Continuing in a breadth first
search manner, we get a copy of G in G′. Hence, it is easy to see that if G is a
tree, G′ contains G as a subgraph. To extend this to general DAGs, we need to
understand when (undirected) cycles of G appear in G′. If all cycles (undirected)
of G appear in the product graph, G also appears in the product graph.

Let C = v1, v2, . . . vk be an undirected cycle in G. We define ψ(vi, vj) as
follows: ψ(vi, vj) = φ(vi, vj) if (vi, vj) ∈ E and φ(vj , vi)−1 if (vj , vi) ∈ E. A
proof of the following proposition is given in the full version.

Proposition 5. G appears as a subgraph in G′ if and only if for each cycle
C = v1, v2, . . . vk in G,

∏k
i=1 ψ(vi, vi+1) = ψ(vkv1)−1.

Bounded Treewidth and Monoid Labelling: Das et al. [10] showed that
reachability in bounded treewidth graphs can be tested in L. We show that,
when a bounded treewidth graph G is labelled with a constant sized monoid M ,
the product graph of G still has constant treewidth, and hence, reachability in
the labelled graph is also in L. The full version contains a detailed proof.

Theorem 1. Monoid-k-TreewidthReach is in L.

Group Labelled Graphs: Now we show that the A-Reach problem can be
solved in L, when the graph is undirected, and labelled with elements of a group,
when the group size is polynomial in the size of the graph.
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Theorem 2. Group-UReach is L-complete.

Proof. To show that Group-UReach is in L, we reduce the problem to Reach
on Eulerian graphs, by showing that the product graph G′ is Eulerian. From [19]
we know that this problem can be solved in L and hence, this is sufficient.
To solve this in L, Reingold et al. [19] observed (without proof) that, when
each component of the given directed graph is Eulerian, a directed edge can
be replaced by an undirected edge, and this does not alter connectivity of the
graph. A proof can be found in the full version of this paper.

To show that G′ is Eulerian, consider an edge (vi, vj) in G. Let φ((vi, vj)) = g.
Each vertex (vi, gk), is hence connected to (vj , gkg). We notice that for each k,
gkg defines a different element in H. Similarly, each vertex (vj , g�) is adjacent
to (vi, g�g). Hence, the edge (vi, vj) in G corresponds to 2|H| edges in G′, and
these edges are such that each vertex of the form (vi, gk) and (vj , g�) each have an
indegree of 1 and an outdegree of 1. Since each edge in G increases the indegree
and outdegree of any vertex in G′ by the same amount, G′ is Eulerian. Using
the result from [19] we see that Group-UReach is in L. To show hardness,
we see that Group-UReach is the undirected reachability problem when the
underlying group is trivial. Hence, Group-UReach is complete for L. �

Observing that, for any g ∈ G, gkg, is a different element for all k, and that
each edge (vi, vj) in G gives rise to one incoming and one outgoing edge for
each (vi, gk) holds even when the graph is bidirected. Hence, we conclude the
following corollary.

Corollary 1. Group-BReach is L-complete.

Logspace Algorithm for Quasigroup-UReach: We notice from the proof
of Theorem 2, that the product graph G′ is Eulerian if the H has right cancel-
lation, that is, if ab = cb ⇒ a = c. Since this holds for quasigroups as well, the
constructed graph is Eulerian when H is a quasigroup. However, since evalua-
tion of a word is over all possible bracketings, checking for a path from (s, e) to
(t, h) is no longer sufficient (since this would correspond to only checking a left
to right bracketing). Proposition 3 is used to prove the following theorem. The
full version of this paper contains the proof.

Theorem 3. Quasigroup-UReach is L-complete.

4 Symmetrizing by Labelling

In this section, we explore the question of whether we can reduce (in logspace)
reachability over directed acyclic graphs to labelled reachability over undirected
paths. We call this task as symmetrization by labelling. We first observe that
symmetrization can be done when the algebraic structure is a specific aperiodic
monoid or a specific, finitely generated, matrix group over Q.

Labelling with Aperiodic Monoids: We give a labelling with a non-
commutative aperiodic monoid, which makes the A-Reach problem NL-hard.
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In [15], Komarath et al. give a labelling with (ab)∗, for all directed acyclic graphs.
We show that the syntactic monoid of this language is aperiodic. To see that it
is aperiodic, we verify that for all a in the monoid, a3 = a2. Hence, this monoid
is aperiodic with index 2. We also observe that the monoid is non-commutative.

Labelling with a Finitely Presented Group: In this subsection, we show
that for matrix groups (even of size 2) with entries from Q, symmetrization can
be done. In Sect. 3, we saw that if symmetrization is done when the algebraic
structure is either a polynomially growing group or a fixed size quasigroup, it
implies that NL = L.

Theorem 4. A is the group of invertible k × k matrices with rational entries.
A-BReach is NL-hard.

Proof. We first show this for k = 2. We work over the following subgroup,

H =
{[

1 α
0 1

]

: α ∈ Z

}

. This group is finitely generated, since
[
1 1
0 1

]

and
[
1 −1
0 1

]

generate H. We define element a =
[
1 1
0 1

]

. Given an instance (G(V,E), s, t) of

Reach we construct an instance (G′(V ′, E′),H, s, t, e) of Group-BReach as
follows. For every edge (vi, vj) ∈ E, we add 2 edges (vi, vj) and (vj , vi) to E′.
We label edge (vi, vj) with e, and edge (vj , vi) with a.

We now argue correctness of this construction. Suppose there was a directed
path from s to t in G. Let this path be v0 = s, v1, v2, . . . , vk = t. Now, in G′, we
have the same path. Moreover, since each edge within the path is labelled with
e, the entire path multiplies out to the identity element. Thus, we have a path
from s to t in G′ whose yield is identity.

Suppose there is no path from s to t in G, but there is a path from s to t in
G′ which yields identity. Let this path be s = v0, v1, v2, . . . , vm = t. Since this
path does not exist in G, there must be an i such that (vi, vi+1) 
∈ E. Hence, the
label on this edge must be a. We can have several edges like this in the path.
Thus, the yield of the path is ak, for some k ≥ 1. Since the path yields identity,
we have [

1 1
0 1

]k

=
[
1 0
0 1

]

However, we see that ak =
[
1 k
0 1

]

. Hence, the yield cannot be identity, and there

is no path from s to t in G′ yielding identity.
To extend this to k × k matrices, we notice that we can embed a into a k × k

matrix b by setting

b[i, j] =

⎧
⎨

⎩

a[i, j], if i ≤ 2, j ≤ 2
1, if i, j > 2, and i = j
0, if i, j > 2, and i 
= j

The forward direction of the proof is easy to see. The reverse direction follows
from the fact that bk can never be identity, for k > 1. �
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5 A Dichotomy Theorem for Aperiodic Labelling

In this section, we prove the main result of the paper, which is the dichotomy
theorem for finite aperiodic monoids with respect to the reachability in labelled
graphs. We first settle the complexity in the case of commutative monoids. For
non-commutative monoids, we show the dichotomy using the classification of
aperiodic monoids by [17,22] (see Proposition 2). We show deterministic logspace
algorithms when the monoid is in DA and for the other cases (when the monoids
are divided by U or BA2), we show that the reachability is complete for NL.

Logspace Algorithm for CommutativeAperiodic-UReach:
Let M = {1, α1, α2, . . . , αk} be a commutative aperiodic monoid.

Theorem 5. Let G be an undirected graph labelled with elements from M , a
commutative aperiodic monoid. Checking if there is a path from s to t which
evaluates to an element α can be done in L.

Proof. We notice that any element α in M can be thought of as several tuples
of integers (n1, n2, . . . , nk), such that α = αn1

1 αn2
2 · · · αnk

k . Hence, checking if a
path evaluates to particular element is equivalent to checking if the the number of
occurrences of each element in each path is one of the tuples associated with the
element. We also know that M is aperiodic with index q (∀α ∈ M,αq+1 = αq).
This implies that, if α = αn1

1 αn2
2 · · · αq

i · · · αnk

k , then α = αn1
1 αn2

2 · · · αq+1
i · · · αnk

k .
Hence, checking for tuples where each value is bounded by q is sufficient.

Let G = (V,E) be the given graph, labelled with a commutative aperiodic
monoid M , via a mapping φ. Let s, t ∈ V and (n1, n2, . . . , nk) be a tuple, where
ni ≤ q,∀i. Let N =

∑
i ni. The algorithm does the following.

Repeat the following for each (u1, v1), (u2, v2), . . . , (uN , vN ) ∈ EN , such that
the labels of (u1, v1), (u2, v2), . . . , (uN , vN ) form the tuple (n1, n2, . . . , nk). Set
v0 = s, uN+1 = t. Let P = {e}∪{αi| ni = q}. Let G′ be G without edges labelled
with any element from M\P . We accept if there is a path from vi to ui+1, in G
for all i.

We see that the algorithm uses only logspace, since N is at most qk.

Correctness: The algorithm iterates over all possible edges, such that the labels
of the edges give the tuple. For each set of edges, it verifies if there is a path
between these edges, which uses only those labels which have crossed the index
(captured by set P ). This ensures that the resulting path also evaluates to the
same element.

For the reverse direction, since every graph accepted by this algorithm has
a path whose tuple is of the form (n′

1, n
′
2, . . . , n

′
k), where n′

i = ni if ni < q, and
n′

i ≥ ni if ni = q. Hence, the elements that both these tuples evaluate to must
be the same. �
Logspace Algorithm for DA-Ureach: We give a logspace algorithm to solve
DA-UReach, when the graph is labelled with letters from an unambiguous
concatenation L = A∗

0a1A
∗
1a2 · · · akA∗

k, where A is the alphabet, Ai ⊆ A, ai ∈
A,∀i. From Proposition 1, this is sufficient to show that DA-UReach can be
solved in logspace.
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Theorem 6. Let G be an undirected graph labelled with elements from an alpha-
bet A. Let s and t be given vertices in G. Let L = A∗

0a1A1a2A
∗
2 · · · akA∗

k be an
unambiguous concatenation, where Ai ⊆ A, ai ∈ A,∀i. Checking if there is a
path from s to t, whose yield is in L can be done in logspace.

Proof. Let G = (V,E) be the given graph, labelled with an alphabet A, via
a mapping φ. Let L = A∗

0a1A
∗
1a2 · · · akA∗

k. Let s, t ∈ V . The algorithm does
the following: Repeat the following for (u1, v1), (u2, v2), . . . , (uk, vk) ∈ Ek, such
that ∀i, φ(ui, vi) = ai. Set v0 = s, uk+1 = t. For each i, let Gi be G without
edges labelled with any element from A\Ai. We accept if there is a path from
vi to ui+1, in Gi for all i. Since k is finite, we see that the algorithm chooses
all possible edges for the ai’s, and check if paths between these edges are in A∗

i .
The algorithm uses only logspace. The correctness of this algorithm is easy to
see - if there exists a path from s to t in L, the algorithm will eventually find it,
since it runs over all possible edges. For the other direction, we notice that the
algorithm only accepts paths in L. �

Labelling with Non-commutative Aperiodic Monoids not in DA: We
show that labelling an undirected graph with either BA2 or U makes the
A-Reach problem NL-hard. Komarath et al. [15] give a labelling with (ab)∗,
for all directed acyclic graphs. This immediately gives us a labelling with BA2.
We give a similar labelling with U . We know that any non-commutative ape-
riodic monoid M not in DA is divisible by either U or BA2. Hence, we have
a surjective morphism from a submonoid of M to either U or BA2. We show
that labelling an undirected graph with BA2 or U makes the A-Reach problem
NL-hard. By using the morphism, we can get instances of A-Reach problem
over undirected graphs, labelled with M , which are NL-hard.

Theorem 7. A-Reach for undirected graphs is NL-complete when the graph is
labelled with U .

Proof. We give a labelling from L = (b∗ab∗bb∗)∗ (whose syntactic monoid is U)
similar to that in [15]. Let G = (V,E) be a directed acyclic graph, with vertices s
and t. Without loss of generality, we assume that s is a source (that is, it has only
outgoing edges). We create a labelled, undirected graph G′ = (V ′, E′) as follows.
Each vertex in V is copied to V ′. Additionally, for each directed edge (vi, vj), we
add a vertex mij to V ′. Edges and labels are constructed as follows. If (vi, vj)
is an edge in G, (vi,mij), (mij , vj) are edges in G′, with (vi,mij) being labelled
with b, and (mij , vj) is labelled with a. That is, we split each edge, labelling the
first half with b, and the second half with a. We also add a new vertex t′, and
add an edge (t, t′), labelled with b. We claim that there is a path from s to t in
G if and only if there is a path from s to t′ in G′, whose yield is in L.

The forward direction is easy to see. Suppose there is a path from s to t
in G. Let the path be s = vi1 , vi2 , . . . , vim

= t. We claim that the path s =
vi1 ,mi1i2 , vi2 ,mi2i3 , vi3 , . . . ,mim−1im

, vim
= t, t′ exists in G′ and the yield of the

path is in L. By our construction, each of these edges exist in G′. To see the
yield, we notice that since (vi�

, vi�+1) is in E, (vi�
,mi�i�+1) is labelled with b,
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whereas (mi�i�+1 , vi�+1) is labelled with a, for all �. Hence, the yield is (ba)mb
which is in L.

Suppose we do not have a path from s to t in G, but there is a path from s
to t′ in G′ with a yield in L. Since there is no path in G, the path in G′ must
have taken some edges incorrectly. Let (u, v) be the first incorrect edge taken.
That is, suppose (vi, vj) ∈ E. The edge taken is either of the form (vj ,mij) or
(mij , vi). For the first, the yield up to this point is (ba)�, for some �, and the edge
is labelled with a. This results in two consecutive a’s, which cannot be in the
language, and the path in G′ cannot have any edge of this form. For the second,
we see that since (mij , ai) is the first incorrect edge taken, the edge taken before
this is (ai,mij), and both these edges can be ignored. Thus, if all incorrect edges
taken are of the second form, we can create a path from s to t in G, contradicting
our initial assumption. �

6 Planarizing by Labelling

We now present a reduction from the reachability problem to A-Reach over pla-
nar DAGs when A is the fixed monoid BA2. The same reduction can be achieved
with group labelling when the size of the groups is allowed to be exponentially
growing. We give a reduction from Reach to Monoid-PlanarReach and
hence it is NL-hard.

Theorem 8. Let G = (V,E) be a graph. Let φ : E → BA2 be a labelling
function. Then Reach reduces to Monoid-PlanarReach.

A proof of this theorem is present in the full version. We make an observation
that the hard instances to Monoid-PlanarReach have the property that the
underlying undirected graph can be bipartite. In a close contrast to the results
in the previous section, we show that if the labels are coming from BA2, and
in particular from the set {α, β} and the graph is bipartite, then NL = UL.
That is, if the labelling had preserved bipartiteness of the graph (which we can
ensure in the reachability instances by subdividing every edge into two edges by
introducing an intermediate vertex), then NL = UL. The proof of the following
theorem is present in the full version.

Theorem 9. Let G = (V,E) be a planar graph whose underlying undirected
graph is bipartite, and labelled with BA2 with φ : E → {α, β}. The A-Reach
problem (between any two vertices) in G can be reduced (in log-space) to testing
reachability in planar DAGs and hence is in UL.

Following the quest for more structure in the labelling set, we now give a
reduction from Reach to Group-PlanarReach, when labelled with a group
having size exponential in the size of the graph, thus showing that it is NL-hard.
A proof for the following theorem is present in the full version.

Theorem 10. Group-PlanarReach is NL-hard when the group size is
Ω(2n4

) where n is the size of the graph.
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Abstract. Systems need to be updated to last for a long time in a
dynamic environment, and to cope with changing requirements. It is
important for updates to preserve the desirable properties of the system
under update, while possibly enforcing new ones.

Here we consider a simple yet general update mechanism, which
replaces a component of the system with a new one. The context, i.e.,
the rest of the system, remains unchanged. We define contexts and com-
ponents as Constraint Automata interacting via either asynchronous or
synchronous communication, and we express properties using Constraint
Automata too. Then we build most general updates which preserve spe-
cific properties, considering both a single property and all the properties
satisfied by the original system, in a given context or in all possible
contexts.

1 Introduction

Update is a relevant topic [19], both for automatic updates, as in the context
of adaptive systems [17] or autonomic computing [15], and for manual updates.
A main reason is that one wants systems to last for a long time in a changing
environment and to satisfy changing user requirements. However, a main point,
namely correctness of the system after update, has received scarce attention till
now, as remarked also in [14].

In this paper we consider a very simple yet general update mechanism, which
replaces a part of the system with a new one. Formally, the system is seen as
a context C containing the component to be updated A, i.e., the system has
the form C[A]. An update replaces A with B, thus the system upon update has
the shape C[B]. A basic question is: how to build a most general B such that if
C[A] satisfies a given property Φ, then also C[B] satisfies the same property? This
question is answered in Sect. 3. Note that C[B] may satisfy further properties that
C[A] does not satisfy. The answer to the question above, which relates A and
B, depends both on the context C and on the property Φ. From this observation
two generalizations emerge naturally. On one side, one may ask how to build a
most general B such that for a given context C, all the properties satisfied by
C[A] are also satisfied by C[B] (Sect. 3). We call such an update correct for a
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given context w.r.t. any property. On the other side, one may ask how to build
a most general B such that for each context C if C[A] satisfies property Φ, then
C[B] satisfies the same property (Sect. 4). We say that this is a correct update
(w.r.t. the property Φ) that can be applied in any context. Finally, one may
combine the two generalizations asking how to build a most general B to ensure
correctness of update in any context and w.r.t. any property (Sect. 4).

The questions above are very general, and the detailed answer depends on the
choice of the model for components and contexts, of the composition operators,
and of the formalism for expressing properties. We consider here components,
contexts and properties represented as Constraint Automata [5,6], which have
been used in the literature, e.g., to give a formal semantics to REO connectors [3]
and Rebeca actors [20]. We consider both asynchronous and synchronous compo-
sition for components and contexts. We leave the systematic exploration of the
research space above to future work. We illustrate the results of our approach by
means of a simple running example. All the operations on Constraint Automata
were computed using the tool GOAL [21], an interactive tool for defining and
manipulating automata, which we extended to deal with Constraint Automata.
Technical details not included in the paper for space reasons can be found in [9].

2 Constraint Automata

We model components, contexts and properties as Constraint Automata (CAs)
[6], defined below. Throughout the paper we assume a finite set Data of data
values which can be communicated and a finite set of states for the CAs. As in [6],
the finiteness assumption is needed for the effectiveness of our constructions.

Definition 1 (Constraint Automata). A constraint automaton A is a tuple
〈Q,N, q0,−→〉 where:

1. Q is a finite set of states;
2. N is a finite set of node names representing the interface between the CA

and the outside world;
3. q0 ∈ Q is the initial state;
4. −→⊆ Q × CIO(N) × Q is the transition relation, where CIO(N) is the set of

concurrent I/O operations c : N �→ Data ∪ {⊥} mapping every node in N to
an element of Data, or to ⊥ if no data is written/read. We assume that c is
never the constant function with value ⊥.

Transitions of a CA are of the form q
c−→ p, where c is a concurrent I/O operation.

A run of a CA is a finite/infinite sequence ρ = q0
c0−→ q1

c1−→ . . . such that q0 is
the initial state and, for every i, qi

ci−→ qi+1 is a transition of the CA. In this case,
we say that ρ accepts the trace w = c0c1 . . . . The language of a CA A, denoted
L (A), is the set of traces accepted by A. Since a prefix of a run is again a run,
languages are closed under prefix.

Given c ∈ CIO(N), we define Nodes(c) as the set of nodes through which
data flow, formally Nodes(c) = {n ∈ N | c(n) 
= ⊥}. The domain restriction
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0 1

ra = 0

wa = 0

wa = 1

wa = 0

ra = 1

wa = 1

a

s0 s1
s = a

s = b

q0

s = a; ra = 0; r = 0
s = a; ra = 1; r = 1
s = a;wa = 0;w = 0
s = a;wa = 1;w = 1
s = b; rb = 0; r = 0
s = b; rb = 1; r = 1
s = b;wb = 0;w = 0
s = b;wb = 1;w = 1

Fig. 1. The CAs for Example 1.

of a concurrent I/O operation c on a subset of nodes N ′ ⊆ N is written c ↓N ′ .
Given two disjoint sets of nodes N1 and N2, and two CIOs c1 ∈ CIO(N1) and
c2 ∈ CIO(N2), we define their union as the unique CIO c1 ∪ c2 ∈ CIO(N1 ∪ N2)
such that (c1 ∪ c2) ↓N1 = c1 and (c1 ∪ c2) ↓N2 = c2.

Example 1. We introduce here our running example.
We consider a system which allows one to read and write information from/to

two one-bit registers, denoted as a and b. The system is the composition of four
components represented in Fig. 1: two registers (only register a is shown, b is
analogous), a scheduler that determines which register is active, and a synchro-
nizer that communicates with the registers and the scheduler and proposes to
the outside world the nodes r (read) and w (write) to access the active register.
Labels on edges represent CIOs, written as semicolon-separated sets of assign-
ments. Each assignment n = d specifies that the data value d is communicated
on node n. No communication occurs on nodes that do not appear in the label.

Registers are two-state CAs communicating with the synchronizer on nodes
ra (read a) and wa (write a) for register a, and on nodes rb and wb for register
b. The scheduler interacts with the synchronizer on node s. Essentially, the two
registers are scheduled in round-robin order a, b. The synchronizer is a one-state
CA that forwards the external operations to the currently active register.

We use CAs also to describe properties, which are prefix-closed sets of (finite
or infinite) traces. We represent a property as a CA Φ accepting the correspond-
ing set of traces. We say that a CA A satisfies the property Φ, written A |= Φ,
iff L (A) ⊆ L (Φ). CAs are as expressive as the safety linear μ-calculus [16] and,
as a consequence, more expressive of the safety fragment of temporal logics like
LTL and CTL.

2.1 Composition of CAs

We consider here a particular type of composition, where a component is embed-
ded in a context. We examine two forms of synchronization between the context
and the component: synchronous and asynchronous. Formally, we assume to have
two CAs: A (the component) and C (the context). We also assume two disjoint
finite sets of node names U and O. Communication between the component and
the context goes through U , while communication between the context and the
external world goes through O.
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In the asynchronous case, at every step the context communicates either with
the component via nodes in U , or with the external world via nodes in O, or
with both at the same time. In the synchronous case, at every step the context
communicates with both the component and the external world.

The embedding of A in C is defined by means of two operations on CAs [5]:
projection and (synchronous or asynchronous) join.

Definition 2 (Asynchronous Join). The asynchronous join of two CAs A =
〈QA, U, qA

0 ,−→A〉 and C = 〈QC , U ∪ O, qC
0 ,−→C〉 is defined as the CA A ��a C =

〈QA × QC , U ∪ O, (qA
0 , qC

0 ),−→a〉 such that:

– (q, p) c−→a (q′, p′) if Nodes(c) ∩ U 
= ∅, q
c ↓U−−−→A q′ and p

c−→C p′;
– (q, p) c−→a (q, p′) if Nodes(c) ∩ U = ∅ and p

c−→C p′.

Definition 3 (Synchronous Join). The synchronous join of two CAs A =
〈QA, U, qA

0 ,−→A〉 and C = 〈QC , U ∪ O, qC
0 ,−→C〉 is defined as the CA A ��s C =

〈QA × QC , U ∪ O, (qA
0 , qC

0 ),−→s〉 such that:

– (q, p) c−→s (q′, p′) if Nodes(c) ∩ U 
= ∅, Nodes(c) ∩ O 
= ∅, q
c ↓U−−−→A q′ and

p
c−→C p′.

Given a CA B with node names from a set U∪O, the projection on O removes
the nodes in U from the interface of B and hides the communications occurring
at those nodes. To define the projection, we need the relation �∗

O⊆ Q×Q, which
is the smallest relation such that:

– q �∗
O q for each q ∈ Q;

– if q �∗
O p and p

c−→ r with Nodes(c) ∩ O = ∅, then q �∗
O r.

Definition 4 (Projection). The projection of a CA B = 〈Q,U ∪ O, q0,−→〉 on
O is defined as the CA B ↓O = 〈Q,O, q0,−→∗〉 such that q

c−→∗ p iff there exists
d ∈ CIO(U ∪ O), r ∈ Q such that d ↓O = c and q �∗

O r
d−→ p.

The asynchronous embedding C[A]a and the synchronous embedding C[A]s of
the component A = 〈QA, U, qA

0 ,−→A〉 in the context C = 〈QC , U ∪ O, qC
0 ,−→C〉

are defined as

C[A]a = (A ��a C) ↓O C[A]s = (A ��s C) ↓O

The above definitions hide all nodes of the component and expose only the nodes
from O. We will drop the subscript a or s to refer to both kinds of embedding.

Example 2. We can now build the system outlined in Example 1 by embedding
the scheduler into the context, which is obtained by embedding the two registers
(in any order) into the synchronizer. All the embeddings are asynchronous.

The states of the whole system, represented in Fig. 2, are tuples (si, va, vb)
where si is the state of the scheduler and va and vb are the values of the registers
a and b, respectively.
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(s0, 0, 0)

(s1, 1, 0)(s1, 0, 0)

(s0, 1, 1)

(s0, 1, 0)

(s0, 0, 1)

(s1, 0, 1)

(s1, 1, 1)

w = 1

r = 0
w = 0

w = 1

r = 0
w = 0

r = 0
w = 0

w = 1

w = 0

r = 1
w = 1

r = 1
w = 1

w = 0

r = 0
w = 0

w = 1

w = 0

r = 1
w = 1

r = 1
w = 1

w = 0

Fig. 2. Embedding of the scheduler in the context.

2.2 Determinization and Complementation of CAs

In the next sections, we will need to complement CAs. Unfortunately, CAs are
not closed under complementation. We solve the problem following the approach
in [5], reported below.

Given a nondeterministic CA A, by using the standard subset construction
for finite word automata it is possible to obtain an equivalent deterministic CA
Subset(A) that, in the worst case, is exponentially larger than A.

We can complement Subset(A) by enriching it with a set of final states F ⊆ Q
and a Büchi acceptance condition. We say that a finite run is accepting whenever
the last state of the run is final, while an infinite run is accepting if the set
of final states F is visited infinitely often. Formally, given a deterministic CA
A = 〈Q,N, q0,−→A〉 we can build a CA with final states A = 〈Q⊥, N, q0,−→A, F 〉
accepting the complement language as follows:

– Q⊥ = Q ∪ {q⊥} where q⊥ is a distinguished sink state not included in Q;
– F = {q⊥} (only the sink state is final);
– q

c−→A q′ iff q
c−→A q′;

– q
c−→A q⊥ for all q ∈ Q and c ∈ CIO(N) such that there is no q′ such that

q
c−→A q′;

– q⊥
c−→A q⊥ for all c ∈ CIO(N).

In the following we will need to compute expressions of the form C[A]. This
can be done by using the construction for standard CAs, and by choosing as
final states of the result the set QC × {q⊥}, where QC is the set of states of C
and q⊥ is the sink state of A.1

1 This construction is not correct for general CAs with final states, but it is correct
in this restricted case [5].
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We will also use the following operations on deterministic CAs with final
states. Prefix(A) is the CA obtained by removing all non-final states from
A and taking the connected component including the initial state. Notably,
L (Prefix(A)) is the maximal prefix-closed language included in L (A). Switch(A)
is the CA with final states obtained from A by selecting as final states the non-
final states of A, and vice versa.

3 Updates Correct for a Given Context

Given a system C[A], an update replacing A with B is correct w.r.t. a property
Φ iff whenever C[A] |= Φ also C[B] |= Φ. We assume that A and B have the same
interface, that is, the same set of node names. This is not restrictive since one
can always add node names that are never used.

This section considers both the cases “all properties, given context” and
“given property, given context”. We show that they can be both reduced to
instances of the following problem: given a context C and a specification S repre-
senting the correct behavior of the whole system, find the Bs such that C[B] |= S.
By definition of |=, these are the solutions of the following language inequation:

L (C[B]) ⊆ L (S) (1)

Among all such Bs we select one generating the largest language, and we call it a
most general solution of the inequation. Such a solution is unique up to language
equivalence.

Lemma 1. For each context C and specification S, Inequation (1) has a unique
most general solution, up to language equivalence.

In Inequation (1), when S is the system before the update C[A] we are in
the setting “all properties, given context”, while when S is a CA representing a
given property Φ we are in the setting “given property, given context”.

Inequation (1) has been studied by the logic synthesis and controller design
communities, where it is known as the “unknown component problem” [22]. The
following result is part of the theory developed in [22].

Theorem 1. B is a solution of Inequation (1) iff L (B) ⊆ L (C[S]).

The literature does not provide, for our setting, a constructive way of building
a most general CA satisfying the constraint above. We propose one below. One
would expect that a most general CA is C[S]. However, since CAs are not closed
under complementation, such a CA in general cannot be built. We show that
Prefix(Switch(Subset(C[S]))) is the best possibile approximation which is a CA.

Theorem 2. B = Prefix(Switch(Subset(C[S]))) is a most general CA such that
L (B) ⊆ L (C[S]).
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Theorems 3 and 5 below show that B is a most general update correct for a
given context C. The former considers a given property Φ, the latter any property
representable as a CA.

Theorem 3. Given a system C[A]x with x ∈ {a, s} and a property Φ such that
C[A]x |= Φ, B = Prefix(Switch(Subset(C[Φ]x))) is a most general CA such that
replacing A with B is a correct update w.r.t. Φ.

Note that the above characterization does not depend on A. However, if
C[A] does not satisfy the property Φ then every update is correct. Indeed the
construction works for any property Φ, which may or may not hold for C[A].
Thus the approach can also be applied to ensure that new safety properties will
hold after the update, e.g., to fix a bug or close a security vulnerability.

Theorem 4. Given a system C[A]x with x ∈ {a, s} and a property Φ, B =
Prefix(Switch(Subset(C[Φ]x))) is a most general CA such that replacing A with
B ensures that Φ holds in C[B]x.

Theorem 5. Given a system C[A]x with x ∈ {a, s}, B = Prefix(Switch(Subset
(C[C[A]x]x))) is a most general CA such that replacing A with B is a correct
update w.r.t. any property.

Example 3. We can apply Theorem 5 to obtain a most general update for the
case “given context, all properties” of the system in Example 1. By minimizing
the result (up to language equivalence) we obtain the CA in Fig. 3, where s0 is
the initial state. The solution recognizes the traces where one of the sequences
abababa . . . and bababab . . . is communicated on node s. This implies that, e.g.,
replacing the original scheduler with a new one activating the registers in round-
robin order b, a is a correct update. This matches the intuition, since the two
registers are identical and swapping when they are accessible has no visible effect.
Instead, using a scheduler that, e.g., always activates a and never activates b is
not. A property falsified by this incorrect update is, for instance, P1 = “if w=1
is executed at the first step, then at the third step r=0 cannot be executed”.

Example 4. Consider the property P1 above. It can be formalized by the CA Φ
in Fig. 4a. There, we use ? to denote 0, 1 or ⊥, and we assume that at least one
node in each constraint has non ⊥ value. The system of Example 1 satisfies Φ.
We want to characterize the updates that preserve Φ.

We can apply Theorem 3 to obtain the most general scheduler depicted in
Fig. 4b. Notice that it accepts the following computations:

s0

s1

s2

s = a

s = b

s = b

s = a

Fig. 3. Most general scheduler of Example 3.
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q0

q1

q2

q3

w = 1; r =?

r = 0
r = 1

w = 0; r =?

r =?;w =?

r =?;w =?

r = 1;w =?
w = 0
w = 1

Φ

r0

r1

r2 r3

r4 r5

r6

s = a

s = b

s = a

s = b

s = a

s = b s = b

s = a
s = b

s = a

Fig. 4. CAs of Example 4.

– any computation of length at most 2: in this case the third step is never
reached, and the property is trivially satisfied;

– any computation that starts with s = a, s = b, s = a or s = b, s = a, s = b: in
this case the value 1 written in the register at the first step is not changed in
the second step, and made available in the third step.

We now move to the study of the complexity of our construction.

Theorem 6. Given a system C[A]x with x ∈ {a, s} finding a most general B
such that replacing A with B is a correct update for a given property Φ or for
any property, or an update that makes Φ hold is in 2-EXPTIME.

The 2-EXPTIME complexity arises from a double subset construction.

Theorem 7. Given a system C[A]x with x ∈ {a, s} and a property Φ such that
C[A]x |= Φ, finding a most general B such that replacing A with B is a correct
update w.r.t. Φ, or that makes Φ hold is EXPSPACE-hard.

The lower bound is proved by reducing a suitable three-player game to
Inequation (1). The game is played on a finite-state graph, with the first player
(the component) and the third player (the specification) in a coalition against
the second player (the context). At every round of the game, given the current
state, the successor state is determined by the choice of moves of the players. A
suitable safety condition establishes who wins the game. The reduction shows
that a winning strategy for Player 1 corresponds to a correct update of the sys-
tem, if C[A]x |= Φ, and to an update that makes Φ hold otherwise. The problem
of finding a winning strategy in this game is EXPSPACE-complete [10]. The
details of the reduction can be found in [9].

Theorem 7 deals with the case “given property, given context”. It seems not
easy to adapt the reduction to the case “all properties, given context”. Finding
a lower bound for the latter case is an open problem.

4 Updates Correct for All Contexts

In this section we study both the cases “given property, all contexts” and “all
properties, all contexts”. Similarly to the previous section, we can assume w.l.o.g.
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that A and B have the same interface U , and that all the contexts we consider
have U as internal interface.

Let us start from the case of a given property. The property defines a mini-
mum set of node names O required for the external interface of the context. For
some properties, replacing A with B is a correct update iff the traces of B are
included in the traces of A. However, this is not the case for all the properties. For
instance, all the updates are correct w.r.t. the properties tt = CIO(O)∗∪CIO(O)ω

or ff = ∅. Indeed, in the asynchronous case these are the only possibilities.

Theorem 8. Let Φ be a property and A a CA. For the asynchronous embedding,
the most general CA such that replacing A with B is a correct update w.r.t. Φ
in all the contexts is tt if Φ is either tt or ff , A otherwise.

In the synchronous case the context and the component progress in lock-step.
Given a property Φ, there are steps i in the computation on which Φ does not
pose any restriction: if a trace z of length i − 1 is in L (Φ), then all the traces of
length i having z as prefix are also in L (Φ). Conversely, there are steps where Φ
observes the system and whether a trace of length i is in L (Φ) or not depends
on the last action of the system. The observation-point language contains all
the traces whose length identifies an observation point. Since the component
A communicates on the internal interface U , the observation-point language is
defined on the alphabet CIO(U).

Definition 5. Let Φ be a property. The observation-point language of Φ is:

R(Φ) = {u ∈ CIO(U)∗ | ∃z ·c′ ∈ CIO(O)∗.z ∈ L (Φ) ∧z ·c′ 
∈ L (Φ)∧|u| = |z ·c′|}

To compute a CA with final states accepting R(Φ) one takes the complement
Φ of Φ. The CA Φ has one final state qR

⊥ which is a sink. The CA with final states
R accepting R(Φ) is obtained from Φ by removing the self loops in the sink state
qR
⊥ and by replacing every transition of Φ with a transition between the same

pair of states for every label c ∈ CIO(U). Then, to build a most general CA
MGU(A, Φ) such that replacing A with MGU(A, Φ) is a correct update w.r.t. Φ
for all contexts, one can proceed as follows.

1. Determinize R using the subset construction.
2. Complete A by adding a sink state qA

⊥ and obtaining A⊥.
3. Compute the product of A⊥ with Subset(R) using the synchronous join

operator to obtain A⊥ ��s Subset(R).
4. Remove observation states, that is all states (qA

⊥, QR) such that qR
⊥ ∈ QR,

and take the connected component including the initial state.
5. Transform the result into a CA without final states by dropping the

distinction between final and non-final states.

MGU(A, Φ) can be computed in time which is a double exponential in the
size of Φ and polynomial in the size of A, where the two exponentials are due to
the subset constructions.
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R(ϕ)
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q3 q⊥
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s0 s1

s2 s3 s4
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s = b s = a
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s = a
s = b

s = a

Fig. 5. CAs of Example 5.

Theorem 9. Let Φ be a property and A a CA. For the synchronous embedding,
the most general CA such that replacing A with B is a correct update w.r.t. Φ
and for all contexts is MGU(A, Φ).

Example 5. Consider the property P1 represented by the CA Φ back in Fig. 4a.
By the above procedure we can first obtain the CA with final states for R(Φ) in
Fig. 5a, and then the most general scheduler MGU(A, Φ) in Fig. 5b, which makes
the update correct in the synchronous case for every context and for the property
Φ. We are left with two kinds of traces: traces with prefix r = a, r = b, r = a that
behave as A for the first 3 steps, and traces of length less than 3 that behave
differently w.r.t. A. This corresponds to the intuition that the property can only
reject traces at step 3.

We now characterize the updates correct w.r.t. all the properties and all
contexts. In this case there are strong requirements on the updates. To be correct
for all contexts, the update needs to be correct for the context that reports every
communication to the outside world. Since properties are sets of traces, the new
component B should have at most the traces of A. Indeed, this condition is
necessary and sufficient, for both the synchronous and asynchronous embedding.

Theorem 10. Let A be a CA. Any B such that L (B) = L (A) is a most general
update such that replacing A with B is correct for all properties and all contexts.

5 Conclusion and Related Work

We studied the problem of finding out whether an update replacing a component
A with a component B in a given context C is correct w.r.t. a safety property Φ.
We also characterized the updates correct in any context (for a given property),
for any property (in a given context), and for any property in any context. In
all the cases, we considered both synchronous and asynchronous composition.

While many approaches tackle system update [19], the problem of ensuring
correctness of a system upon update has received scarce attention till now.
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Approaches based on behavioral congruences, such as [8], allow one to prove
the correctness of updates when a component is replaced by a syntactically dif-
ferent, but semantically equivalent one. Our approach is more general, allowing
one to replace a component with a semantically different one.

Some approaches, such as [13], focus exclusively on type safety, that rules
out obviously wrong behaviors, but is insufficient for establishing that given
properties are preserved. In [14], instead, a program transformation to com-
bine a program and an update into a new program presenting all the behav-
iors corresponding to applying the update at any allowed point is presented.
The key advantage of our approach is that we can deal with many updates at
once by comparing them with the most general one. In [23], a modular model
checking approach to verify adaptive programs is proposed. They decompose the
model checking problem following the temporal evolution of the system, while
we decompose the verification problem following the structure of the system.

A line of work [2,11] uses choreographic descriptions to obtain correctness of
the updates by construction. However, this kind of approach can only deal with a
few fixed properties such as deadlock freedom, race freedom and orphan-message
freedom. Another related approach is presented in [12], where behavioral types
are used to ensure that running sessions are not interrupted, and that provided
services are preserved. Our approach is much more flexible than the two last
approaches since it considers any property expressible as a CA.

The work in [18] categorizes different kinds of reconfigurations in the context
of Reo connectors. Our updates correct for any property (in a given context) are
called contractive in [18], and a property for which an update is correct (in a
given context) is called an invariant for the update. However, in [18], nothing is
said about the requirements that an update must satisfy to be contractive or to
have a given invariant: these problems have been solved by the present paper.

The work in [22] is related to ours from the technical point of view. In par-
ticular, it provides us the framework to solve Inequation (1). However, [22] does
not provide a construction for building an actual automaton in our case, namely,
for CAs with both finite and infinite traces. Also, [22] has a different aim, since
it does not consider update at all. It highlights, however, a connection between
update and another challenging problem: the automatic synthesis of systems
from logical specifications. Polynomial algorithms for restricted classes of spec-
ifications have been identified [1,7]. These results could be exploited both to
make our approach more efficient and to extend it to properties that go beyond
safety, like liveness and deadlock freedom. Another problem related to ours is
supervisory control of discrete event systems (see, e.g., [4]). The main difference
is in the composition mechanism, which features a feedback control loop and
introduces latency, while this does not happen in our case.

The problem of characterizing correct updates can also be studied in other
settings, and indeed we plan to consider some of them in future work. For
instance one may consider more complex properties, as hinted at above, or more
complex automata, like timed automata or general CAs where the set of data
values can be infinite. Finally, we want to apply our technique to more abstract
models, starting from the ones based on CAs, such as REO [3] and Rebeca [20].
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Abstract. The input determinization of a finite-state transducer for
constructing an equivalent subsequential transducer is performed by
the well-known inductive transducer determinization procedure. This
procedure has been shown to complete for rational functions with the
bounded variation property. The result has been obtained for functions
f : Σ∗ → M, where M is a free monoid, the monoid of non-negative real
numbers with addition or a Cartesian product of those monoids. In this
paper we generalize this result and define and prove sufficient conditions
for a monoid M and a rational function f : Σ∗ → M, under which the
transducer determinization procedure is applicable and terminates.

Keywords: Transducers · Rational functions · Twinning property

1 Introduction

Finite-state automata and transducer are widely used in many areas and appli-
cations of computer science [4]. Subsequential finite-state transducers are highly
computationally efficient for language modelling and text processing tasks, and
thus provide a very desirable technique in computational linguistics [6–8].

The transducer determinization procedure [6] is the natural method for con-
structing subsequential transducer. In [2] Choffrut proved that a rational func-
tion f : Σ∗ → Σ′∗ can be represented as a subsequential transducer iff f has the
bounded variation property. In [7] Mohri showed that the inductive transducer
determinization procedure can be applied to rational functions f : Σ∗ → R+

where R+ is the monoid of non-negative real numbers with addition (weighted
transducers) and proved that the procedure completes iff the target function has
the bounded variation property. In [5] an overview of those results is presented.
Recently, a generalization for cost register automata was presented in [3].

In this paper we first introduce the sequentiable structures, which character-
ize the class of monoids over which the inductive transducer determinization pro-
cedure is applicable. Further, we prove that any rational function f : Σ∗ → M,
c© Springer International Publishing AG 2017
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where M is a sequentiable structure, can be represented as a subsequential trans-
ducer iff f has the bounded variation property. We prove also the decidability of
the functionality and the bounded variation property for functions into sequen-
tiable structures. Finally, we generalize our results for the Cartesian product of
sequentiable structures.

2 Formal Preliminaries

Definition 1. A semi-group N is a pair 〈N, ◦〉, where N is a non-empty set of
semi-group elements and ◦ : N × N → N is the semi-group operation (used with
infix notation), which is associative, i.e. ∀a, b, c ∈ M : a ◦ (b ◦ c) = (a ◦ b) ◦ c.

A semi-group N = 〈N, ◦〉 is commutative if ∀a, b ∈ M : a ◦ b = b ◦ a.
A monoid M is a triple 〈M, ◦, e〉, where 〈M, ◦〉 is a semi-group and e ∈ M

is the unit element, i.e. ∀a ∈ M : a ◦ e = e ◦ a = a. With ab we denote a ◦ b.
The monoid M supports left cancelation if ∀a, b, c ∈ M : c◦a = c◦b → a = b.
The Cartesian product of monoids M1 = 〈M1, ◦1, e1〉 and M2 = 〈M2, ◦2, e2〉

is the monoid M1 ×M2 := 〈M1 × M2, ◦̄, 〈e1, e2〉〉, where ◦̄ : (M1 ×M2)× (M1 ×
M2) → M1 × M2 denotes the function 〈u1, u2〉◦̄〈v1, v2〉 := 〈u1 ◦1 v1, u2 ◦2 v2〉.

The function φ : M1 → M2 is a monoidal homomorphism between the
monoids M1 = 〈M1, ◦1, e1〉 and M2 = 〈M2, ◦2, e2〉 if φ(e1) = e2 and ∀a, b ∈
M1 : φ(a ◦1 b) = φ(a) ◦2 φ(b).

An alphabet Σ is a set of symbols. Alphabets are assumed to be finite.
A word w over an alphabet Σ is an n-tuple w = 〈a1, . . . , an〉 where n ≥ 0

and ai ∈ Σ for i = 1, . . . , n. The integer n is the length of w and denoted |w|.
We may denote the word w as w = a1a2 . . . an.

The (unique) tuple of length 0, written ε, is called the empty word. Σ∗ denotes
the set of all words over Σ.

The concatenation of two words u = 〈a1, . . . , an〉 and v = 〈b1, . . . , bm〉 ∈ Σ∗

is u · v = 〈a1, . . . , an, b1, . . . , bm〉.
The set Σ∗ with concatenation as monoid operation and the empty word ε as

unit element is called the free monoid 〈Σ∗, ·, ε〉 for alphabet Σ.
Let u, v, t ∈ Σ∗. The expression u−1t denotes the word v if u is a prefix of

t = u · v, otherwise u−1t is undefined.
The word w = u ∧ v denotes the longest common prefix of u and v.

Definition 2. A monoidal finite-state automaton is a tuple of the form A =
〈M, Q, I, F,Δ〉 where

– M = 〈M, ◦, e〉 is a monoid,
– Q is a finite set called the set of states,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states, and
– Δ ⊆ Q × M × Q is a finite set of transitions called the transition relation.

A proper path in A is a finite sequence of k > 0 transitions

π = 〈q0, a1, q1〉〈q1, a2, q2〉 . . . 〈qk−1, ak, qk〉
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where 〈qi−1, ai, qi〉 ∈ Δ for i = 1 . . . k. The number k is called the length of π,
we say that π starts in q0 and ends in qk. States q0, . . . , qk are the states on the
path π. The monoid element w = a1 ◦ . . . ◦ ak is called the label of π. We may
denote the path π as π = q0 →a1 q1 . . . →ak qk. The null path of q ∈ Q is 0q

starting and ending in q with label e. A successful path is a path starting in an
initial state and ending in a final state.

The generalized transition relation Δ∗ is defined as the smallest subset of
Q × M × Q with the following closure properties:

– for all q ∈ Q we have 〈q, e, q〉 ∈ Δ∗.
– For all q1, q2, q3 ∈ Q and w, a ∈ M : if 〈q1, w, q2〉 ∈ Δ∗ and 〈q2, a, q3〉 ∈ Δ,

then also 〈q1, w ◦ a, q3〉 ∈ Δ∗.

The monoidal language accepted (or recognized) by A is defined as
L(A):={w ∈ M | ∃p ∈ I ∃q ∈ F : 〈p,w, q〉 ∈ Δ∗}.

A state q ∈ Q is accessible if q is the ending of a path of A starting from
an initial state. A state q ∈ Q is co-accessible if q is the starting of a path of A
ending in a final state.

A monoidal finite-state automaton A is trimmed iff each state q ∈ Q is
accessible and co-accessible.

A monoidal finite-state automaton A is a monoidal finite-state transducer iff
its underlying monoid M can be represented as the Cartesian product of a free
monoid Σ∗ with another monoid M′ i.e. M = Σ∗ × M′.

A monoidal finite-state transducer A = 〈Σ∗ × M′, Q, I, F,Δ〉 is said to be
real-time if Δ ⊆ Q × (Σ × M ′) × Q.

Let M be a monoid. A language L ⊂ M is rational iff it is accepted by
a monoidal finite-state automaton. A rational function is a rational language,
which is a function.

Definition 3. A monoidal subsequential finite-state transducer is a tuple T =
〈Σ,M, Q, q0, F, δ, λ, Ψ〉 where:

– Σ is a finite alphabet,
– M = 〈M, ◦, e〉 is a monoid,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– F ⊆ Q is the set of final states,
– δ : Q × Σ → Q is (possibly partial) function called transition function,
– λ : Q × Σ → M is a function with domain, dom (λ) = dom (δ), called the

transition output function, and
– Ψ : F → M is the state output function.

The generalized transition function δ∗ is defined as the inclusion-wise least
function on Q × Σ∗ → Q with the following closure properties:

– for all q ∈ Q we have δ∗(q, ε) = q.
– For all q ∈ Q,α ∈ Σ∗ and a ∈ Σ: δ∗(q, αa) = δ(δ∗(q, α), a).
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The generalized transition output function function λ∗ is the inclusion-wise least
function on Q × Σ∗ → M with the following closure properties:

– for all q ∈ Q we have λ∗(q, ε) = e.
– For all q ∈ Q,α ∈ Σ∗ and a ∈ Σ: λ∗(q, αa) = λ∗(q, α) ◦ λ(δ∗(q, α), a).

The output function represented by the subsequential finite-state transducer
T is OT : Σ∗ → M defined as: OT (α) = λ∗(q0, α)◦Ψ(δ∗(q0, α)) if δ∗(q0, α) ∈ F .

3 Sequentiable Structures

Definition 4. A tuple M = 〈M, ◦, e,, ‖.‖〉 is a pre-sequentiable structure if

1. 〈M, ◦, e〉 is a monoid, which supports left cancelation,
2. 〈M,〉 is a commutative semi-group,
3. The operations ◦ and  fulfil the following properties:

– ∀a, b, c ∈ M : a ◦ (b  c) = (a ◦ b)  (a ◦ c) (left distributivity),
– ∀a, b ∈ M ∃c ∈ M : a = (a  b) ◦ c,

4. The function ‖.‖ : M → R
+ called norm is a homomorphism of the monoids

〈M, ◦, e〉 and 〈R+,+, 0〉, which maps only e to 0. I.e. ‖a‖ = 0 → a = e.

Next proposition lists some simple properties of the pre-sequentiable structures.

Proposition 1. Let M = 〈M, ◦, e,, ‖.‖〉 be a pre-sequentiable structure.

1. For any a, b ∈ M , a ◦ b = e → a = b = e.
2. For any a ∈ M , e  a = e and a  a = a.
3. For any a, b ∈ M , a  (a ◦ b) = a.
4. For any a, b, c ∈ M , a  b = c iff there exist a′, b′ ∈ M such that: a = c ◦ a′,

b = c ◦ b′ and a′  b′ = e.

Definition 5. A pre-sequentiable structure M = 〈M, ◦, e,, ‖.‖〉 is called
sequentiable structure if it additionally satisfies the condition:

∀a, b, c, d ∈ M : a  b = e & a �= e & b �= e → (a ◦ c)  (b ◦ d) = e (1)

In case of sequentiable structures we additionally get the right cancellation prop-
erty and Levy-like lemma:

Proposition 2. Let M = 〈M, ◦, e,, ‖.‖〉 be a sequentiable structure.

1. ∀a, b, c ∈ M(a ◦ c = b ◦ c → a = b) (right cancellation property),
2. ∀a1, a2, b1, b2 ∈ M : a1 ◦ a2 = b1 ◦ b2 & ‖b1‖ ≥ ‖a1‖ →

∃c ∈ M : (b1 = a1 ◦ c & a2 = c ◦ b2).

The product of structures is a standard technique starting from intuitively sim-
pler structures to obtain more complex ones. Formally, we have:

Definition 6. For Mi = 〈Mi, ◦i, ei,i, ‖.‖i〉 pre-sequentiable structures for i ∈
{1, 2} we define the Cartesian product as: M = 〈M1 × M2, ◦, 〈e1, e2〉,, ‖.‖〉,
where
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– for all a1, b1 ∈ M1 and a2, b2 ∈ M2: 〈a1, a2〉 ◦ 〈b1, b2〉 = 〈a1 ◦1 b1, a2 ◦2 b2〉,
– for all a1, b1 ∈ M1 and a2, b2 ∈ M2: 〈a1, a2〉  〈b1, b2〉 = 〈a1 1 b1, a2 2 b2〉,
– for all a1 ∈ M1 and a2 ∈ M2, ‖〈a1, a2〉‖ = ‖a1‖1 + ‖a2‖2.

Remark 1. The pre-sequentiable structures are closed under Cartesian product.
In contrast, the Cartesian product of sequentiable structures is in general not a
sequentiable structure.

The following two examples show that the sequentiable structures naturally
generalize structures of practical importance, [7]:

Example 1.

1. For any finite alphabet Σ, Σ∗ = 〈Σ∗, ·, ε,∧, |.|〉 is a sequentiable structure.
2. The tuple R+ = 〈R+,+, 0,min, idR+〉 is a sequentiable structure.

Next, we present an example for a more complex sequentiable structure con-
struction, which justifies our abstract notion.

The Shuffle Structure. We start with an example. Let us consider Σ∗ and R+.
We define a structure consisting of interleaved sequences of nonempty words and
positive real numbers, e.g. m1 = 〈abc, 0.5, abc, 0.3〉, m2 = 〈abc, 0.5, abc, 0.2, ad〉,
m3 = 〈abc, 0.5, abd〉, m4 = 〈0.24, ab〉. On this structure we can define a monoid
operation as concatenation of sequences. For instance:

m1 ◦ m2 = 〈aba, 0.5, abc, 0.3, abc, 0.5, abc, 0.2, ad〉but
m2 ◦ m3 = 〈abc, 0.5, abc, 0.2, adabc, 0.5, abd〉 and
m1 ◦ m4 = 〈abc, 0.5, abc, 0.3 + 0.24, ab〉 = 〈abc, 0.5, abc, 0.54, ab〉.

Following a similar intuition, we can define a maximal common beginning as:

m1  m2 = 〈abc, 0.5, abc,min(0.3, 0.2)〉 = 〈abc, 0.5, abc, 0.2〉,
m1  m3 = 〈abc, 0.5, abc ∧ abd〉 = 〈abc, 0.5, ab〉.

We define a norm on this structure by assigning the sum of lengths of the words
plus the sum of the numbers, e.g.: ‖m1‖ = |abc| + 0.5 + |abc| + 0.3 = 6.8. Below
we formalize the general shuffle construction:

Example 2. Let Mi = 〈Mi, ◦i, ei,i, ‖.‖i〉 for i = 1, 2 with M1 ∩ M2 = ∅ be
sequentiable structures. Let M ′

i = Mi \ {ei}. Then, we define the shuffle of M1

and M2 as M = 〈M, ◦, ε,, ‖.‖〉:

1. M = {〈m1,m2, . . . ,mk〉 | k ≥ 0 and mi ∈ M ′
1 ↔ mi+1 ∈ M ′

2 for all i < k}.
2. If m′ = 〈m′

1,m
′
2, . . . ,m

′
k〉 ∈ M and m′′ = 〈m′′

1 ,m′′
2 , . . . ,m′′

k〉 ∈ M , then:

m′ ◦ m′′ =

{
〈m′

1,m
′
2, . . . ,m

′
k ◦j m′′

1 ,m′′
2 , . . . ,m′′

l 〉 if m′
k,m′′

1 ∈ M ′
j

〈m′
1,m

′
2, . . . ,m

′
k,m′′

1 ,m′′
2 , . . . ,m′′

l 〉 else.
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3. Let i be the largest s.t. m′
s = m′′

s for all s < i. We set m′  m′′ = m where:

m =

{
〈m′

1, . . . ,m
′
i−1,m

′
i j m′′

i 〉 if m′
i,m

′′
i ∈ M ′

j and m′
i j m′′

i �= ej

〈m′
1,m

′
2, . . . ,m

′
i−1〉, else.

4. If m = 〈m1,m2, . . . ,mk〉 ∈ M , then: ‖m‖ =
∑2

j=1

∑
i:mi∈Mj

‖mi‖j .

Remark 2. The shuffle of sequentiable structures is a sequentiable structure.

Definition 7. Let M = 〈M, ◦, e,, ‖.‖〉 be a pre-sequentiable structure. Let
u, t ∈ M . The expression u−1t denotes the element v ∈ M if u is a beginning of
t i.e. if t can be presented as t = u ◦ v, otherwise u−1t is undefined.

Clearly, by the left cancellation property, if u−1t is defined then it is unique.

Definition 8. Let M = 〈M, ◦, e,, ‖.‖〉 be a pre-sequentiable structure. Then
the function dM : M × M → R defined as dM(u, v) := ‖u‖ + ‖v‖ − 2‖u  v‖ is
the sequential distance1 in M.

The following definitions generalize the bounded variation property in the case
of pre-sequentiable structures.

Definition 9. A function f : Σ∗ → M , where M = 〈M, ◦, e,, ‖.‖〉 is a pre-
sequentiable structure has the bounded variation property iff for all k ≥ 0 there
is K ≥ 0 s.t. for all u, v ∈ dom (f), dΣ∗(u, v) ≤ k implies dM(f(u), f(v)) ≤ K.

Definition 10. A functional monoidal finite-state transducer T over a pre-
sequentiable structure has the bounded variation property iff the rational func-
tion represented by T has the bounded variation property.

4 Sequentialization Procedure

In this section we generalize the input determinization procedure (cf. [6]). For-
mally, we consider a functional trimmed real-time monoidal finite-state trans-
ducer A = 〈Σ∗ × M, Q, I, F,Δ〉 over Σ∗ × M, where M = 〈M, ◦, e,, ‖.‖〉 is
a pre-sequentiable structure. Moreover, we assume2 that if 〈ε, α〉 ∈ L(A) then
α = e. The subsequential transducer T ′ = 〈Σ,M, Q′, q′

0, F
′, δ′, λ′, Ψ ′〉 equivalent

to A is built by induction. At each step we extend the current set of states Q′,
the set of final states F ′, the transition function δ′ and the output functions λ′

and Ψ ′. The base of the induction is:

T ′(0) = 〈Σ,M, {q′
0}, q′

0, ∅, ∅, ∅, ∅〉, where q′
0 = I × {e}.

Let us assume that we have constructed T ′(n) = 〈Σ,M, Q′
n, q′

0, F
′
n, δ′

n, λ′
n, Ψ ′

n〉.
We define T ′(n+1) = 〈Σ,M, Q′

n+1, q
′
0, F

′
n+1, δ

′
n+1, λ

′
n+1, Ψ

′
n+1〉 as follows:

1 It can be easily shown that dM is a distance.
2 This assumption is not a significant limitation since if it is not the case we can

modify the state output function to output the desired word α for the starting state
on the resulting subsequential transducer.
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– The transition functions λ′
n+1, δ

′
n+1 extend λ′

n, δ′
n s.t. for S ∈ Q′

n and σ ∈ Σ

λ′
n+1(S, σ) = ⊔

〈q,u〉∈S

⊔

〈q,〈σ,v〉,q′〉∈Δ

u ◦ v.

δ′
n+1(S, σ) =

⋃

〈q,u〉∈S

⋃

〈q,〈σ,v〉,q′〉∈Δ

{〈q′, w−1(u ◦ v)〉}, where w = λ′
n+1(S, σ)

– Q′
n+1 = Q′

n ∪ codom (δ′
n+1),

– F ′
n+1 = {S ∈ Q′

n+1 | ∃〈q, β〉 ∈ S : q ∈ F},
– Ψ ′

n+1 = {〈S, β〉 |S ∈ F ′
n+1,∃〈q, β〉 ∈ S : q ∈ F}.

At each step the transducer is extended with a finite number of states reach-
able with one symbol from the set of states of the current transducer. Lemma 1
shows that at each step n that Ψ ′

n is always a well-defined function. Hence after
each step we obtain a proper subsequential transducer.

Lemma 1. Let A be as above. Let T ′(n) = 〈Σ,M, Q′, q′
0, F

′, δ′, λ′, Ψ ′〉 be con-
structed by the induction given above in n steps. Then:

1. for each word w ∈ Σ∗ such that λ′∗(q′
0, w) and δ′∗(q′

0, w) are defined it holds:

λ′∗(q′
0, w) = ⊔

q0∈I,〈q0,〈w,u〉,q〉∈Δ∗
u

δ′∗(q′
0, w) = {〈q, γ〉 | ∃q0 ∈ I ∃〈q0, 〈w, u〉, q〉 ∈ Δ∗ : γ = λ′∗(q′

0, w)−1u};

2. for each state S ∈ Q′ and q ∈ Q we have |{v ∈ M | ∃〈q, v〉 ∈ S}| ≤ 1;
3. for each state S ∈ Q′ and 〈q1, v1〉, 〈q2, v2〉 ∈ S we have q1 ∈ F & q2 ∈ F →

v1 = v2.

The following result is also straightforward:

Proposition 3. Assume that the inductive construction of T ′ presented above
terminates, i.e. there is k0 ∈ N such that for all k ≥ k0, T ′(k) = T ′(k0) = T ′.
Then OT ′ = L(A) and in this case A has the bounded variation property.

5 Sequentialability Conditions

Our proofs of the sequentialability conditions make use of the squaring trans-
ducer method presented in [1]. Throughout this section we assume that A =
〈Σ∗ × M, Q, I, F,Δ〉 is a trimmed monoidal transducer over an effective pre-
sequentiable structure M.

Proposition 4.

1. If A contains a cycle 〈p, 〈ε,m〉, p〉 ∈ Δ∗ with m �= e, then A is not functional.
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2. If A does not contain any cycles of the form 〈p, 〈ε,m〉, p〉 ∈ Δ∗ with m �= e,
then A can be effectively transformed into a real-time transducer A′ such that
L(A) ∩ (Σ+ × M) = L(A′) ∩ (Σ+ × M). Furthermore, we can effectively
compute the set {m | 〈ε,m〉 ∈ L(A)}.

Theorem 1. Let M be a sequentiable structures or Cartesian product of sequen-
tiable structures. Then it is decidable whether a real-time monoidal finite-state
transducer A = 〈Σ∗ × M,Q, I, F,Δ〉 is functional or not.

The proof is a generalization of the proof in [5].
From now on we assume that A = 〈Σ∗ × M, Q, I, F,Δ〉 is a trimmed real-

time functional monoidal transducer over a pre-sequentiable structure M. The
next two theorems are the main results in the paper and will be proved through-
out this section.

Theorem 2. If M is sequentiable structure and A has the bounded variation
property, then the inductive construction of T ′ presented above terminates in the
sense that there exists a number k0 ∈ N s. t. for all k ≥ k0, T ′(k) = T ′(k0) = T ′.

Theorem 3. If M is sequentiable structure, then it is decidable whether L(A)
has the bounded variation property or not.

Definition 11. The square automaton of A is A2 = 〈M × M, Q2, I2,Δ2, F
2〉

where the transition relation is given by:

Δ2 = {〈〈p1, p2〉, 〈m1,m2〉, 〈q1, q2〉〉 | ∃a ∈ Σ ∀i ∈ {1, 2}〈pi, a,mi, qi〉 ∈ Δ}.

Definition 12. For m1,m2 ∈ M we define the reduct of m1 w.r.t. m2 (cf.
Proposition 1 p. 4):

ρ(m1,m2) = (m1  m2)−1m1.

Definition 13. We say that a pair 〈u1, u2〉 ∈ M × M is an admissible pair of
reducts for a pair of states p = 〈p1, p2〉 ∈ Q × Q if there exist a word w ∈ Σ∗,
initial states s1, s2 ∈ I, and elements m1,m2 ∈ M such that:

∀i ∈ {1, 2}(〈si, w,mi, pi〉 ∈ Δ∗ and 〈u1, u2〉 = 〈ρ(m1,m2), ρ(m2,m1)〉), i.e.

〈s, 〈m1,m2〉, p〉 ∈ Δ∗
2 and 〈u1, u2〉 = 〈ρ(m1,m2), ρ(m2,m1)〉).

We denote with Adm(p) ⊆ M × M the set of admissible reducts for p.
The set of admissible reducts Red(A) and its first projection Red1(A) are:

Red(A) =
⋃

p∈Q×Q

Adm(p) and Red1(A) = {u1 ∈ M | ∃u2〈u1, u2〉 ∈ Red(A)}.

The imbalance of A is the set Imb(A) = {‖u1‖ − ‖u2‖ | 〈u1, u2〉 ∈ Red(A)}.

Obviously, if 〈u1, u2〉 ∈ Adm(p) then u1  u2 = e and 〈u2, u1〉 ∈ Adm(p).
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Definition 14. We say that state p ∈ Q × Q satisfies the Twinning Property
if for any admissible reduct x = 〈x1, x2〉 ∈ Adm(p) and any m = 〈m1,m2〉 ∈
M × M such that m �= 〈e, e〉 and 〈p,m, p〉 ∈ Δ∗

2 the following conditions hold:

1. there are u, v ∈ M such that m1 = uv and m2 = vu,
2. ρ(x1m1, x2m2) = x1 and ρ(x2m2, x1m1) = x2,
3. x1 = e or x2 = e.

The automaton A is said to have the Twinning Property if any state p ∈ Q × Q
with Adm(p) �= ∅ has the Twinning Property.

We note that in the special cases where M = Σ∗ or M = R+ the above definition
generalizes the definition of Twinning Property in [5].

We prove the following lemma which extends the results of Choffrut [2] and
Mohri [7] to the case of sequentiable structures, and which implies Theorem 2:

Lemma 2. Let M be sequentiable structure. Then the following are equivalent:

1. A is of bounded variation.
2. A has the Twinning Property.
3. Red(A) is finite.
4. The inductive construction of T ′ terminates.

Proof. 3 ⇒ 4) Since Red(A) is finite, we get that Red1(A) is finite. Next, each
state q ∈ Q′

k generated by the inductive construction of T ′ has the property
q ⊆ Q × Red1(A). Indeed by Lemma 1 we have that q = {〈qi, ui〉}l

i=1 such that
there exist a word w ∈ Σ∗, initial states si ∈ I, and monoid elements z,mi ∈ M
with:

∀i ≤ l(〈si, w,mi, qi〉 ∈ Δ∗) and z =
l

⊔

i=1

mi and ui = ρ(mi, z).

Thus, as it can be shown by induction on l,it follows that for every i there is
an appropriate j with ui = ρ(mi,mj). Therefore, ui ∈ Red1(A). Thus, Q′ ⊆
2Q×Red1(A) can be extended only finitely many times and the construction will
eventually terminate.
4 ⇒ 1) This follows by Proposition 3.
1 ⇒ 2) Assume that A is of bounded variation. Using similar ideas to the ones
in [7] if p ∈ Q × Q with Adm(p) �= ∅, then for every cycle 〈p, 〈m1,m2〉, p〉 ∈ Δ∗

2

it holds that ‖m1‖ = ‖m2‖.
Now, assume that p = 〈p1, p2〉, x = 〈x1, x2〉 ∈ Adm(p), and m = 〈m1,m2〉 are

such that 〈p,m, p〉 ∈ Δ∗
2 and m �= 〈e, e〉. By the above remark we get that ‖m1‖ =

‖m2‖ > 0. Thus, since A is of bounded variation and p1 and p2 are co-accessible
in A and using Proposition 2 one can show: x1m1  x2m2 ∈ {x1m1, x2m2}.

First we show that x1 = e or x2 = e. From the definition of a reduct we
have that x1  x2 = e. If we assume that x1 �= e and x2 �= e by Condition 1
we get that x1m1  x2m2 = e �∈ {x1m1, x2m2}. Therefore x1 = e or x2 = e.
Without loss of generality, in the sequel we assume that x2 = e and therefore
x1m1  x2m2 = x2m2 = m2.
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We now show that there are u, v ∈ M such that m1 = uv and m2 = vu.
Let r

(n)
1 = ρ(x1m

n
1 , x2m

n
2 ) and r

(n)
2 = ρ(x2m

n
2 , x1m

n
1 ). Clearly, for every n ∈ N

we have that 〈r(n)1 , r
(n)
2 〉 ∈ Adm(p) and therefore r

(n)
1 = e or r

(n)
2 = e. Since

xim
n
i = (x1m

n
1  x2m

n
2 )r(n)i for i ∈ {1, 2}

using that ‖m1‖ = ‖m2‖, we obtain that ‖r
(n)
1 ‖−‖r(n)2 ‖ = ‖x1‖−‖x2‖. Therefore

r
(n)
2 = e and x1m

n
1  x2m

n
2 = x2m

n
2 . Hence x1m

n
1 = (x1m

n
1  x2m

n
2 )r(n)1 =

x2m
n
2 r

(n)
1 . Since x2 = e we get x2m

n
2 r

(n)
1 = mn

2 r
(n)
1 . In this way we obtain:

x1m
n
1 = mn

2 r
(n)
1 .

Let n′ be the least integer such that n′‖m2‖ > ‖x1‖ ≥ (n′ − 1)‖m2‖. Such
an n′ exists since ‖m2‖ = ‖m1‖ > 0. From the equality x1m

n′
1 = mn′

2 r
(n′)
1

using Proposition 2 Point 2 we get mn′
2 = x1u. On the other hand x1m

n′−1
1 =

mn′−1
2 r

(n′−1)
1 and from Proposition 2 we get x1 = mn′−1

2 v. Now using the left
cancellation property for M we subsequently get:

mn′
2 = x1u = mn′−1

2 vu ⇒ m2 = vu and

x1m
n′+1
1 = mn′+1

2 r
(n′+1)
1 = x1um2r

(n′+1)
1 = x1uvur

(n′+1)
1

Therefore m1m
n′
1 = uvur

(n′+1)
1 and since ‖m1‖ = ‖m2‖ = ‖u‖ + ‖v‖,

Proposition 2 Point 2 implies that m1 = uv.
Now we prove that r

(n)
1 = x1 from which follows that r

(1)
1 = x1.

Using that x1 = mn′−1
2 v, m1 = uv, and m2 = vu we obtain:

x1m
n
1 = mn′−1

2 vmn
1 = (vu)n′−1v(uv)n = (vu)n′+n−1v = mn′+n−1

2 v = mn
2x1.

Now from the equality x1m
n
1 = mn

2x1 = mn
2 r

(n)
1 by the left cancellation property

it follows that r
(n)
1 = x1 as required.

2⇒ 3) Observe, that by the Twinning Property we have that for every cycle
〈p, 〈m1,m2〉, p〉 ∈ Δ∗

2 with Adm(p) �= ∅ ‖m1‖ = ‖m2‖. Hence, the set Imb(A) is
finite. Let:

1. Qc = {p ∈ Q × Q | ∃〈m1,m2〉 �= 〈e, e〉(〈p, 〈m1,m2〉, p〉 ∈ Δ∗
2)}.

2. Qr = {p ∈ (Q × Q) \ Qc | ∃〈m1,m2〉∃q ∈ Qc(〈p, 〈m1,m2〉, q〉 ∈ Δ∗
2)}.

3. Q− = (Q × Q) \ (Qc ∪ Qr).

For each state, p ∈ Qc ∪Qr we prove that |Adm(p)| ≤ |Imb(A)|. To this end, we
first consider a state p ∈ Qc ∪ Qr and show that for 〈x1, x2〉, 〈y1, y2〉 ∈ Adm(p):

‖x1‖ − ‖x2‖ = ‖y1‖ − ‖y2‖ ⇒ 〈x1, x2〉 = 〈y1, y2〉. (2)

First consider the case p ∈ Qc. Let 〈p, 〈m1,m2〉, p〉 ∈ Δ∗
2 with 〈m1,m2〉 �=

〈e, e〉. Therefore by the Twinning Property we have that x1 = e or x2 = e and
further for every n:

〈x1, x2〉 = 〈ρ(x1m
n
1 , x2m

n
2 ), ρ(x2m

n
2 , x1m

n
1 )〉.
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W.l.o.g. we assume x2 = e. Thus x2m
n
2 = mn

2 and x1m
n
1 = mn

2ρ(x1u
n
1 ,mn

2 ). Now
for n big enough we have that ‖x1‖ ≤ n‖m2‖ and by Proposition 2 Point 2 we
get that mn

2 = x1c for some c. Since ‖y1‖ − ‖y2‖ = ‖x1‖ − ‖x2‖ and ‖x2‖ = 0,
we get y2 = e and ‖y1‖ = ‖x1‖ and as above we get that mn

2 = y1d for some d.
Hence, x1c = y1d and by ‖x1‖ = ‖y1‖ and Proposition 2 Point 2 we get x1 = y1.
Next, let p ∈ Qr, q ∈ Qc and 〈p, 〈u1, u2〉, q〉 ∈ Δ∗

2. By the above discussion:

z1 = ρ(x1u1, x2u2) = ρ(y1u1, y2u2) and z2 = ρ(x2u2, x1u1) = ρ(y2u2, y1u1).

Now, since 〈z1, z2〉 ∈ Adm(q) and q ∈ Qc we deduce that z1 = e or z2 = e.
Since x1  x2 = e, by Condition 1 we get x1 = e or x2 = e and similarly,
y1 = e or y2 = e. W.l.o.g. assume that x2 = e. Therefore x1u1z1 = u2z2.
‖y1‖ − ‖y2‖ = ‖x1‖ − ‖x2‖ we deduce that y2 = e and ‖y1‖ = ‖x1‖. Hence,
x1u1z1 = u2z2 = y1u1z1 and by Proposition 2, Point 1 we get that x1 = y1.

1. If p ∈ Qc ∪Qr, since ‖x1‖−‖x2‖ ∈ Imb(A) for any admissible pair 〈x1, x2〉 ∈
Adm(p), Eq. 2 we get that |Adm(p)| ≤ |Imb(A)|.

2. Let p ∈ Q−. Let Π(p) be the set of paths in A2 that start in Q × Q, use only
states from Q− as inner states, and terminate in p. We prove that:

Λ(p) = {label(π) |π ∈ Π(p)}

is finite. Indeed, consider an arbitrary path π ∈ Π(p). Clearly, if π contains
a cycle 〈q, 〈m1,m2〉, q〉 ∈ Δ+

2 then m1 = e = m2. Thus, removing the cycle
〈q, 〈m1,m2〉, q〉 ∈ Δ+

2 from π would not change the label of π. Therefore, the
label of π is the same as the label of some path in Π(p) without cycles. We
conclude that Λ(p) is finite. Now, it is easy to see that:

Adm(p) ⊆ {〈ρ(u1, u2), ρ(u2, u1)〉 | 〈u1, u2〉 ∈ Λ(p)} ∪
⋃

〈v1,v2〉∈Λ(p)
q∈Qc∪Qr

{〈ρ(u1v1, u2v2), ρ(u2v2, u1v1)〉 | 〈u1, u2〉 ∈ Adm(q)}

Now Λ(p) and Adm(q) for q ∈ Qc ∪ Qr are finite. Hence Adm(p) is finite.

Since Red(A) = ∪p∈Q×QAdm(p) we obtain that Red(A) is finite. �

Proof (of Theorem 3 (Idea)). We can test the accessible states p in A for cycles
〈p, 〈m1,m2〉, p〉 with ‖m1‖ − ‖m2‖ �= 0. If some state fails the test, then A is
not of bounded variation. Else we compute Imb(A), Qc, and Qr. Now A is of
bounded variation iff |Adm(p)| ≤ |Imb(A)| for p ∈ Qc ∪ Qr which is decidable.

Theorems 2 and 3 can be extended to the case of Cartesian product of finitely
many sequentiable structures. To this end, we use the following technical lemma:

Lemma 3 Let M =
∏n

i=1 Mi be the Cartesian product of the sequentiable
structures Mi. Let Ai denote the restriction3 of A to Σ × Mi. Then:
3 That is we ignore the output produced by Mj for j �= i.
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1. A is of bounded variation iff each Ai is of bounded variation.
2. A has the Twinning Property iff each Ai has the Twinning Property.
3. Red1(A) ⊆

∏l
i=1 Red1(Ai).

Corollary 1. If M =
∏n

i=1 Mi is Cartesian product of sequentiable structures,
then A has the bounded variation property iff the construction of T ′ terminates.

Proof. The states of T ′ are subsets of Q×
∏n

i=1 Red1(Ai). Now, if A is of bounded
variation, so are Ai and by Lemma 2 Red1(Ai) are finite. Thus, the construction
of T ′ terminates. The reverse implication follows by Proposition 3.

Corollary 2. Let M =
∏n

i=1 Mi be a Cartesian product of sequentiable struc-
tures. Then, it is decidable whether A has the bounded variation property.

Proof. This follows immediately by Corollary 1, Theorem 3 and Lemma 3. �

6 Discussion and Conclusion

In the paper we have introduced the sequentiable and pre-sequentiable struc-
tures, for which the transducer determinization procedure is applicable. Fur-
thermore we have generalized and formally proved the results of Choffrut [2] for
characterizing the rational functions, which permit input determinization and
shown the decidability of this characterization for the general case of functions
over sequentiable structures. At the end we have formally proved the statement
of Mohri [7] about input determinization for the more general case of rational
functions over the Cartesian product of sequentiable structures.

The shuffle structure shown in Example 2 illustrates a non-trivial sequentiable
structure for which the results can be used.

Two questions remain: can the results be obtained for a pre-sequentiable
structure, which does not satisfy the condition in Definition 5 and how does the
presented generalization relates to the one presented in [3]?
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Abstract. Consider a graph G = (V,E) and a random initial vertex-
coloring such that each vertex is blue independently with probability
pb ≤ 1/2, and red otherwise. In each step, all vertices change their current
color synchronously to the most frequent color in their neighborhood (in
the case of a tie, a vertex conserves its current color). We are interested
in the behavior of this very natural process, especially in 2-dimensional
grids and tori (cellular automata with majority rule). In the present
paper, as a main result we prove that a grid Gn,n or a torus Tn,n with 4-
neighborhood (8-neighborhood) exhibits a threshold behavior: with high
probability, it reaches a red monochromatic configuration in a constant

number of steps if pb � n− 1
2 (pb � n− 1

6 ), but pb � n− 1
2 (pb � n− 1

6 )
results in a bichromatic period of configurations of length one or two,
after at most 2n2 (4n2) steps with high probability.

Keywords: Cellular automata · Majority rule · Color war

1 Introduction

Suppose that in a community, people have different opinions on a topic of com-
mon interest. Through social interactions, individuals learn about the opinions of
others, and as a result may change their own opinion. The goal is to understand
and possibly predict how opinions spread in the community. There are numerous
mathematical models for such a situation; a very simple deterministic one is the
following: the community is modeled as a graph, with edges corresponding to
possible interactions between individuals. Opinions spread in rounds, where in
each round, each individual adopts the most frequent opinion in its neighbor-
hood, and stays with its opinion in case of a tie. This natural updating rule
is called the majority rule and has various applications, for example in data
redundancy [18], distributed computing [19], modeling biological interactions
[3], resource allocation for ensuring mutual exclusion [18], distributed fault-local
mending [18], and modeling diffusion of two competing technologies over a social
network [5].

Scientists from different fields, from Spitzer [24] to a recent paper by Mitsche et
al. [13], have attempted to study the behavior of this natural updating rule, espe-
cially on two-dimensional grids and tori where the majority rule can be interpreted
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 393–404, 2017.
DOI: 10.1007/978-3-319-53733-7 29
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as a cellular automaton. Some theoretical and experimental results concerning its
behavior have been obtained (we discuss them in detail in Sect. 1.2); of particular
interest is the consensus time, the time after which the process reaches a periodic
sequence of states (which must eventually happen, as the process is deterministic
and has finite state space). Also, one would like to understand how these “final”
states looks like, depending on the initial distribution of opinions. For example,
what are conditions under which some opinion is eventually taken up by all the
individuals?

In this paper, we first present some results in general graphs G = (V,E),
regarding consensus time and robust sets (sets of nodes that will never change
an opinion that they have in common). Building on them, our main contribution
is for the cases where G is an n×n grid or torus, with 4-neighborhoods, or with
8-neighborhoods.

We study the case of two opinions (modeled by vertex colors blue and red),
with an initial coloring that assigns blue (the minority opinion) to every vertex
independently with a fixed probability pb = pb(n) ≤ 1/2. We prove that there
exists a threshold p = p(n) satisfying the following with high probability: (i) if
pb � p, all vertices will become red within a constant number of steps; (ii) if
pb � p, the process becomes periodic (of period one or two) within O(n2) steps,
and with bichromatic colorings. The bound of O(n2) is best possible, and both
periods one or two may occur. We also determine the threshold p and find that
it is of the form p(n) = n−2/r, where r is the size of the smallest robust set.

We therefore have a classification of the following form (with high probabil-
ity): If the minority opinion (blue) has initial popularity asymptotically less than
p, it will quickly disappear completely. However, if its initial popularity asymp-
totically exceeds p, then both opinions will survive in the long run. In most cases,
the majority rule will therefore not eliminate the minority opinion. However, it
does so when the minority opinion is sufficiently unpopular to begin with.

As we discuss in Sect. 1.2, prior empirical research [12,14,16,17,23] suggest
that majority cellular automata should show a threshold behavior, and the main
contribution of the present paper is proving these empirical observations are true
and determining the threshold, periodicity, and consensus time of the process
precisely. But, the more surprising part is changing the tie breaking rule can
change the behavior of the majority model considerably. As we will discuss later
on, Schonmann [22] proved that in biased majority cellular automata (the same
as a majority cellular automata except in the case of a tie, a vertex always adopts
blue color) in a torus Tn,n with 4-neighborhood pb � 1/

√
log n results in final

complete occupancy by blue color with high probability. Therefore, in majority
cellular automata, pb should be very close to 1 (pr � n−1/2) to guarantee a
high chance of final complete occupancy by blue, but by just changing the tie
breaking rule in favor of blue, the process ends up in a blue monochromatic
configuration with high probability even for initial concentration very close to 0
(pb � 1/

√
log n). Hence, it not only a kind of shows the power and significant

impact of tie breaking rule, but also demonstrates how very minor alternations
in local behavior can result in considerable changes in global behaviors.
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To prove that majority cellular automaton has a threshold behavior, we show
there exists a blue and a red robust set (a robust set whose all vertices are blue
(red)) in starting configuration with high probability for pb � n−1/2 (pb � n−1/6

in Moore neighborhood) which result in the survival of both colors, but proving
pb � n−1/2 (similarly pb � n−1/6 in Moore) results in a red monochromatic
configuration is more difficult. We show in this situation in one of the first a
few generations of the process, the blue cells can be classified such that all blue
cells in a cluster behave independently of all other blue cells, and the number
of blue cells in none of these cluster is sufficient for survival and they will die
eventually (actually, after some constant number of steps). As we will discuss
in more detail, this proof technique requires more technical arguments in the
case of Moore neighborhood because of switching from 4-neighborhood model
to 8-neighborhood model.

The layout of the paper is as follows. In the rest of this section, first we intro-
duce our majority model (which we call color war) formally. Then, in Sect. 1.2 we
briefly discuss relevant prior research works. In Sect. 2, we discuss the consensus
time and periodicity of color war on an arbitrary graph G(V,E) and present
sufficient condition for a graph to reach a cycle of bichromatic generations in
color war with high probability. Then, in Sect. 3, we focus on two-dimensional
grids and tori (majority cellular automata), and it is proved there is a phase
transition.

1.1 Notation, Preliminaries, and Color War Model

Let G = (V,E) be a graph that we keep fixed throughout. For a vertex v ∈
V , N(v) := {u ∈ V : {v, u} ∈ E} is the neighborhood of v. We also define
N̂(v) := N(v) ∪ {v}. Furthermore, for a set S ⊆ V , NS(v) := N(v) ∩ S and
N(S) :=

⋃
v∈S N(v).

A generation is a function g : V → {b, r} (b and r represent blue and red,
respectively). If g is a constant function, g is called a monochromatic generation
otherwise it is called a bichromatic generation. S ⊆ V is a c-community in
generation g if ∀v ∈ S g(v) = c for color c. For a generation g, vertex v ∈ V and
color c ∈ {b, r}, Ng

c (v) := {u ∈ N(v) : g(u) = c} is the set of neighbors of v of
color c in generation g. We also define N̂g

c (v) := {u ∈ N̂(v) : g(u) = c}. For a
set S ⊆ V , we define Ng

c (S) := {v ∈ N(S) : g(u) = c}.
In addition to g(v) = c for a vertex v ∈ V and c ∈ {b, r}, sometimes we also

write g|S = c for a set S ⊆ V which means ∀v ∈ S, g(v) = c.
Given an initial generation g0 such that ∀v ∈ V , Pr[g0(v) = b] = pb and

Pr[g0(v) = r] = pr independently of all other vertices, and pb + pr = 1. Assume
∀i ≥ 1 and v ∈ V , gi(v) is equal to the color that occurs most frequently in
v’s neighborhood in gi−1, and in the case of a tie, v conserves its current color.
More formally:

gi(v) =
{

gi−1(v), if |Ngi−1
b (v)| = |Ngi−1

r (v)|,
argminc∈{b,r}|Ngi−1

c (v)|, otherwise
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In the present paper, we discuss the behavior of this deterministic process with
a random initial coloring which is called Color War.

Remark 1. For a graph G(V,E), we say an event happens with high probability
if its probability is at least 1 − o(1) as a function of |V |.

1.2 Prior Works

As mentioned, Majority-voting rule has been studied in different literatures
because of its importance and applications. Therefore, based on different moti-
vations and from a wide spectrum of approaches, various definitions of majority
rule have been presented, but in general we may classify them into the three
following categories.

The first class is the r-monotone model in which, at each step a vertex
becomes blue if at least r of its neighbors are blue, and once blue no cell
ever becomes red (in the literature this is also known as bootstrap percolation).
For example, in [2,7], the authors discussed the case of r = d(v)

2 (such that
d(v) is the degree of vertex v) on hypercubes and planar graphs, respectively.
Recently, Koch and Lengler [11] mathematically analyzed the role of geometry
on bootstrap percolation for geometric scale-free networks. Einarsson et al. [4]
also showed that tiny changes in the size of the starting blue set can dramatically
influence the size of the final blue set.

The second one is the r-threshold model in which, at each step, a vertex
becomes blue if at least r of its neighbors are blue, otherwise it becomes red.
For instance, Schonmann [22] considered the state of r = d(v)

2 (tie is in the favor
of blue), and he showed that for any initial density of blue vertices in a grid,
the probability of final complete occupancy by blue converges to 1 as the grid
grows. Fazli et al. [5] also discussed the same model while it seems they were not
aware that this model was presented (probably for the first time) in [22]. They
presented some thresholds regarding the minimum-cardinality of an initial set of
blue nodes which would eventually converge to the steady state where all nodes
are blue. In addition, Moore [15] surprisingly showed that in d-dimensional grid
for d ≥ 3 this model can simulate Boolean circuits of AND and OR gates.

Another model is the random r-threshold model such that a vertex takes
the value that the r-threshold model would give with probability 1 − p and its
complement with probability p. For instance, Balister et al. [1] considered the
case of r = d(v)

2 on 2-dimensional grids. They showed that if p is sufficiently
small, then the process spends almost half of its time in each of two generations
(all vertices blue or all red).

Color war is a subcategory of r-threshold model, and a main idea of that
was considered by Gray [10] while similar models were considered much ear-
lier (Spitzer [24] in 1970). Most of the research regarding color war, especially
majority cellular automata are by physicists [12,14,16,17,23], and they mostly
do computer simulations (i.e., Monte-Carlo methods) and as discussed, their
computer simulations show a phase transition behavior characterized by a large
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connected component of vertices holding the same color appearing when the con-
centrations of vertices holding the same color (even minority) is above a certain
threshold.

It seems the lack of strong mathematical results in this case probably is due
to the inherent difficulty of proving anything about them. However, Poljak and
Turzik [21] presented an upper bound on the consensus time for a graph G(V,E)
and color war W . For instance, this bound implies a 2-dimensional grid G(V,E)
needs O(|V |) steps to stabilize. Furthermore, Frischknecht et al. [8] proved there
exists graph G(V,E) which needs Ω( |V |2

(log |V |)2 ) steps to stabilize for some initial
colorings in color war.

Different versions of majority updating rule have been discussed in different
literatures and from various aspects for diverse aims, but as mentioned there are
just few concrete mathematical results regarding the most natural version (color
war). In the present paper, we study some essential and interesting aspects of the
behavior of this process and present some strong results regarding its stability.
More precisely, we focus on asymptotic behavior of a graph (especially a 2-
dimensional grid or torus) with a random initial coloring under color war. As a
main result we show that color war is a threshold model (as prior experimental
research (for instance see [23]) conjecture). Furthermore, we present sufficient
condition (see Theorems 1) for a graph G(V,E) to get bichromatic with high
probability in color war W . By utilizing the aforementioned results by Poljak
and Turizk [21] and results by Poljak and Sura [20], we present tight bounds on
the consensus time and periodicity of the process for an arbitrary graph G.

2 Color War

In this section, first we introduce the basic concept of robustness. Then, by using
this concept, we present sufficient condition for a graph G(V,E) to stabilize at
a bichromatic configuration in color war with high probability. Furthermore, in
Sect. 2.2 we discuss the number of steps which a graph G(V,E) needs to stabilize.

2.1 Bichromatic Stability

As we know, if generation g is a constant function, g is called a monochromatic
generation, and a set S ⊆ V is a c-community in generation g for color c if
g|S = c. We are interested in sets of vertices that will keep a common color
forever when they create a community, regardless of the colors of the other
vertices in color war W .

Definition 1. Let S ⊆ V in a graph G(V,E). S is called robust in color war
W whenever the following holds: if S forms a c-community for a color c and in
some generation gi for i ≥ 0, then gj |S = gi|S = c for all generations gj ∀j ≥ i
that might arise using the rules of W .

It follows that once a robust set forms a c-community, it will remain a c-
community forever.
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Definition 2. A blue (red) robust set in a generation g means a robust set which
is a b-community (r-community) in g.

Obviously, the definition of a blue (red) robust set S in generation gi implies
that gj |S is blue (red) for all generations gj ∀j ≥ i that might arise using the
rules of color war W .

Now, we discuss an interesting theorem which present sufficient condition for
an arbitrary graph G(V,E) to get bichromatic with high probability in color
war W . We exploit this proposition just for grid and torus in this article, but
obviously it is applicable to every arbitrary graph.

Definition 3. For a graph G(V,E), an induced subgraph G′(V ′, E′) is called a
robust subgraph in color war if V ′ is a robust set.

Assume for a graph G(V = {vi : 1 ≤ i ≤ n}, E), G′
j(V

′
j , E′

j) ∀ 1 ≤ j ≤ k are k
robust subgraphs; then, we define s := max1≤j≤k(|V ′

j |). Theorem 1 says if there
are k = ω(p−s

b ) disjoint robust subgraphs in a graph G(V,E), then with high
probability color war reaches a cycle of bichromatic generations.

Theorem 1. For a graph G(V,E), if G′
j(V

′
j , E′

j) ∀ 1 ≤ j ≤ k are disjoint robust
subgraphs, then Pr[Bichromatic] ≥ 1 − 2 exp(−kps

b/2).

Proof. We define k random variables xj such that for 1 ≤ j ≤ k/2, xj is 1 if and
only if g0|V ′

j
= b and for k

2 + 1 ≤ j ≤ k, xj is 1 if and only if g0|V ′
j

= r such

that Pr[xj = 1] = p
|V ′

j |
b for 1 ≤ j ≤ k

2 and Pr[xj = 1] = p
|V ′

j |
r for k

2 + 1 ≤ j ≤ k.

Therefore, if X1 ≥ 1 and X2 ≥ 1 such that X1 =
∑ k

2
i=1 xi and X2 =

∑k
j= k

2+1 xj ,
then color war does not get monochromatic because there is at least a blue
robust set and a red robust set in g0. We show Pr[X1 = 0] ≤ exp(−ps

bk/2) and
Pr[X2 = 0] ≤ exp(−ps

rk/2), then by considering pb ≤ pr, Pr[Bichromatic] ≥
1 − 2 exp(−ps

bk/2).
X1 is the summation of k

2 independent Bernoulli random variables, then
Pr[X1 = 0] ≤ (1 − ps

b)
k
2 ≤ e−ps

bk/2, and similarly Pr[X2 = 0] ≤ (1 − ps
r)

k
2 ≤

e−ps
rk/2. �

2.2 Periodicity and Consensus Time

As we know, for a graph G(V,E) and color war W , the number of possible
generations is 2|V |, and color war is a deterministic process; therefore, the process
always reaches a cycle of generations after a finite number of steps and stays there
forever, but there are two natural questions which may come up. What is the
length of the cycle and how long it takes to reach it?

Goles and Olivos [9], and independently, Poljak and Sura [20] proved that a
large class of majority-based models, including color war, always reach a cycle of
period one or two. Formally, a specialized version of their result can be presented
as Theorem 2.
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Theorem 2. In color war, an arbitrary graph G(V,E) (from any initial color-
ing) always reaches a cycle of generations of length one or two.

As mentioned, we are also interested in the consensus time of the process, and
it is trivial that it is at most 2|V |. However, Poljak and Turzik [21] proved a
very strong proposition in the literature of cyclically monotonous mappings and
symmetric matrices such that a specialized version (restated for our situation)
of their result can be presented as Theorem 3.

Theorem 3. For a graph G(V,E) and color war W , consensus time is at most
1
2 (

∑
v∈V d(v) + 3s) such that s is the number of vertices with odd degree. (d(v)

is the degree of vertex v ∈ V )

Corollary 1. For a graph G(V,E) with all degrees even, the consensus time is
at most 1

2

∑
v∈V d(v).

Corollary 2. For an arbitrary graph G(V,E), the consensus time is at most
Δ+3
2 |V |. (Δ := maxv∈V d(v))

3 Color War in Grid and Torus: Majority Cellular
Automaton

In this section, by utilizing some results from Sects. 2.1 and 2.2, it is proved that
color war on a torus and a two-dimensional grid is a threshold model.

3.1 Preliminaries

Definition 4. The Grid Gn,n is a graph G(V,E) with V = {(i, j) : 1 ≤ i, j ≤ n}
and E = {((i, j), (i′, j′)) : |i − i′| + |j − j′| = 1}.

Definition 5. Torus Tn,n is a graph G(V,E) with V = {(i, j) : 1 ≤ i, j ≤ n}
and E = {((i, j), (i′, j′)) : |i − i′| + |j − j′| = 1} ∪ {((1, i), (n, i)), ((j, 1), (j, n))}.

A Torus Tn,n is a wrap-around version of a grid Gn,n which can be visualized
as taping the left and right edges of the rectangle to form a tube, then taping
the top and bottom edges of the tube to form a torus (See Fig. 1(b)). The
aforementioned definitions of grid and torus follow a neighborhood model which
is called Neumann neighborhood or 4-neighborhoods (see Fig. 1(a)). On the other
hand, there is another common neighborhood model which is called Moore model
(see Fig. 1(a)), and in a torus or grid (by skipping the borders), each cell (we
sometimes use the term of cell instead of vertex in grids and tori) instead of four
neighbors has eight neighbors.

In Fig. 1(c) and (d), you can see a robust set in a torus Tn,n respectively with
Moore and Neumann neighborhood. Actually, they are the smallest robust sets
i.e. the size of the smallest roust set in Moore and Neumann neighborhood are
equal to 12 and 4, respectively. One can show in a torus Tn,n, pb = n−1/r, where
r is the size of the smallest robust set, is a threshold for having a constant-size
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Fig. 1. (a) Neumann and Moore neighborhoods in a grid G8×8 (b) a torus (c) the
smallest robust set: Moore (d) Neumann (Color figure inline)

blue robust set. Surprisingly, in the rest of the paper we prove that it is also
a threshold value for getting monochromatic or bichromatic. Therefore, as we
discussed briefly before, the size of the smallest robust plays a key role in the
behavior of the process.

3.2 Threshold Model

In this section, we prove in color war a torus Tn,n with both Moore and Neumann
neighborhood shows a threshold behavior.

Definition 6. For a grid Gn,n or torus Tn,n, Lj,b (Lj,r) is the size of the largest
blue (red) cluster in generation gj for j ≥ 0 such that a cluster is a connected
subgraph by considering Moore neighborhood.

Notice Lj,b (Lj,r) is defined based on Moore neighborhood even in the case which
it is applied to a proposition regarding Neumann neighborhood. In other words,
in contrast to Moore neighborhood, in Neumann neighborhood a cluster is not
necessarily a connected component.

Lemma 1. In color war, a torus Tn,n, Neumann neighborhood, and for a gen-
eration gj j ≥ 0, if Lj,b ≤ 3, then Lj+2,b = 0.

Proof. Assume Lj := Lj,b and Lj+1 := Lj+1,b (notice Lj,b is defined based on
Moore neighborhood). First we prove if Lj = 1, then Lj+1 = 0. To prove, assume
Lj = 1 can result in Lj+1 = 1 i.e. there exists a cell c1 such that gj+1(c1) = b. We
show Lj+1 = 1 contradicts Lj = 1. gj(c1) = r because a blue cell for staying blue
in gj+1 needs at least two blue cells in its neighborhood in gj which contradicts
Lj = 1. gj(c1) = r implies that |Ngj

b (c1)| ≥ 3, and |Ngj

b (c1)| ≥ 3 results in the
existence of at least a blue cluster of size 2 in c1’s neighborhood in gj which
contradicts Lj = 1.

Now, it is proved that if Lj = 2 or 3, then Lj+1 ≤ 1 i.e. blue clusters of size
3 or smaller cannot create a blue cluster of size larger than 1. It is enough to
prove Lj+1 = 2 implies Lj ≥ 4. Assume, there exits a blue cluster S of size 2 in
generation gj+1. S can have two different structures which are shown in Fig. 2
(notice a torus is symmetric).

For the first structure S = {c6, c7}, we have three states:
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Fig. 2. Two possible structures for a cluster of size 2 (Color figure inline)

(i) if gj(c6) = gj(c7) = b, then c6 for staying blue in gj+1 needs at least a
blue cell among {c2, c5, c10} in gj and c7 needs at least a blue cell among
{c3, c8, c11} which result in Lj ≥ 4.

(ii) if gj(c6) = b and gj(c7) = r (or similarly gj(c6) = r and gj(c7) = b), then
c7 for getting blue in gj+1 needs at least two blue cells among {c3, c8, c11}
in gj , and c6 needs at least one blue cell among {c2, c5, c10} which imply
Lj ≥ 4.

(iii) if gj(c6) = gj(c7) = r, then gj+1|{c6,c7} = b implies gj |{c2,c3,c5,c8,c10,c11} = b
which means Lj ≥ 4.

For the second structure, also there are three possibilities:

(i) if gj(c6) = gj(c11) = b, then c6, for staying blue in gj+1, needs at least two
blue cells among {c2, c5, c7, c10} in gj which implies Lj ≥ 4.

(ii) if gj(c6) = b and gj(c11) = r (or similarly gj(c6) = r and gj(c11) = b),
then c11, for getting blue in gj+1, needs at least three blue cells among its
neighbors ({c7, c10, c12, c15}) in gj which implies Lj ≥ 4 again.

(iii) if gj(c6) = gj(c11) = r, then gj+1|{c6,c11} = b implies that three cells in
{c2, c5, c7, c10} and three cells in {c7, c10, c12, c15} are blue in gj which mean
that Lj ≥ 4.

Therefore, Lj+1 = 2 implies Lj ≥ 4 which means Lj ≤ 3 results in Lj+1 ≤ 1.
Furthermore, we proved Lj = 1 outputs Lj+1 = 0. Then, Lj ≤ 3 provides
Lj+2 = 0. �

Corollary 3. In a torus Tn,n(V,E) with Neumann neighborhoods and a gener-
ation gj, if Lj,b ≤ 3, then generation gj+2 is red monochromatic.

Theorem 4. In color war and a torus Tn,n(V,E) with Neumann neighborhood,
pb � n− 1

2 results in a red monochromatic generation in at most 2 steps, but
pb � n− 1

2 outputs a cycle of bichromatic generations of size one or two in at
most 2n2 steps with high probability.

Proof. First consider the case of pb � n− 1
2 in torus Tn,n with Neumann neigh-

borhood. Let random variable X be the number of blue clusters of size 4. We
claim E[X] = o(1), then by Markov’s inequality [6] with the probability of
1 − o(1), L0,b ≤ 3. Based on Corollary 3, g2|V = r i.e. g2 is red monochromatic.
Then, it is enough to show that E[X] = o(1). Since the number of clusters of
size 4 in T is θ(n2), E[X] = θ(n2).p4b = o(1).
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Now, we discuss the state of pb � n− 1
2 . Consider ∀1 ≤ i′ ≤ n

2 � and ∀1 ≤
j′ ≤ n

2 � we have Si′,j′ = {(i, j)|2i′ − 1 ≤ i ≤ 2i′ ∧ 2j′ − 1 ≤ j ≤ 2j′} (see
Fig. 1(d)) as n

2 �2 disjoint robust sets in Neumann neighborhood and torus Tn,n.
Based on Theorem 1, color war in this state with high probability reaches a cycle
of bichromatic generations. Actually, by utilizing Theorem2 and Corollary 1, we
can say it reaches a cycle of bichromatic generations of size one or two in at
most 2n2 steps. �
Theorem 5. In color war and a torus Tn,n(V,E) with Moore neighborhood,
pb � n− 1

6 results in a red monochromatic generation in constant number of
steps, but pb � n− 1

6 outputs a cycle of bichromatic generations of size one or
two in at most 4n2 steps with high probability.

Proof. First, we discuss the case of pb � n− 1
6 . Consider ∀1 ≤ i′ ≤ n

4 � and
∀1 ≤ j′ ≤ n

4 � we have Si′,j′ = {(i, j)|4(i′ − 1)+1 ≤ i ≤ 4i′ ∧ 4(j′ − 1)+1 ≤ j ≤
4j′} \ {(i, j)|i ∈ {4i′, 4i′ − 3} ∧ j ∈ {4j′, 4j′ − 3}} (see Fig. 1(c)) as n

4 �2 disjoint
robust sets in Moore neighborhood and torus Tn,n. Based on Theorem 1, color
war in this state reaches a cycle of bichromatic generations with high probability.
Actually, by utilizing Theorem2 and Corollary 1, we can say it reaches a cycle
of bichromatic generations of size one or two in at most 4n2 steps.

Now, we prove pb � n− 1
6 outputs a red monochromatic generation in con-

stant number of steps with high probability. Assume for 1 ≤ i′, j′, l1, l2 ≤ n, set
R(i′, j′, l1, l2) := {(i, j) : i′ ≤ i < i′ + l1 ∧ j′ ≤ j < j′ + l2} is a rectangle of size
l1× l2 in torus Tn×n (notice for i, j ≥ n, we consider i and j mod n). Let random
variable X denote the number of squares of size 23 × 23 (squares R(i, j, 23, 23)
for 1 ≤ i, j ≤ n) in torus Tn×n which include more than 11 blue vertices in g0.
Therefore:

E[X] ≤ θ(n2).
232∑

i=12

(
232

i

)

pi
b = θ(n2)p12b

232∑

i=12

(
232

i

)

pi−12
b = o(1)

E[X] = o(1) and Markov’s Inequality imply that with high probability X = 0
i.e. with high probability there is no square of size 23×23 in Tn,n which contains
more than 11 blue cells in g0.

Assume for a set S ⊂ V , Rs := {R(i, j, l1, l2) : 1 ≤ i, j, l1, l2 ≤ n ∧ S ⊆
R(i, j, l1, l2))}, then we define that rectangle R ⊂ V is the smallest cover-
ing rectangle of S if R is the smallest rectangle which covers S i.e. R :=
argminR′(i,j,l1,l2)∈Rs

|l1 ∗ l2|. Based on the definition, obviously the smallest cov-
ering rectangle for a set S is not necessarily unique. Furthermore, if for two
vertices (cells) u, v ∈ V , d(u, v) is the size of the shortest path between u
and v in torus Tn,n(V,E) with Moore neighborhood, then for two rectangles
R1, R2 ⊂ V , d(R1, R2) := minu∈R1,v∈R2 d(u, v). Consider the following process
for torus Tn,n with initial generation g0 (pb � n− 1

6 ) such that M is the set of the
smallest covering rectangles (as we mentioned, the smallest covering rectangle
for a set is not necessarily unique, but in this proof considering any smallest cov-
ering rectangle for a set works) for all connected blue components in g0, and for
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two rectangles R and R′, Combine(R,R′) denotes the smallest rectangle which
covers all blue cells in both R and R′. Now consider the following process which
starts with M ′ = M , and while there exist R,R′ ∈ M ′ such that d(R,R′) ≤ 1,
it sets M ′ = M ′ \ {R,R′} ∪ {Combine(R,R′)}.

After the aforementioned process, for every rectangle R ∈ M ′ of size l1 × l2,
we have l1, l2 ≤ 23 with high probability because based on the process, l1 > 23 or
l2 > 23 implies that there exists a rectangle of size 23 × 23 which includes more
than 11 blue cells in g0. More precisely, one can show by induction that every
rectangle in M ′ contains at least a blue cell in every two consecutive columns and
a blue cell in every two consecutive rows for rows and columns which intersect the
rectangle. On the other hand as we proved, with high probability for pb � n− 1

6 ,
there is no rectangle of size 23 × 23 which contains more than 11 blue cells.
Therefore, after this process, ∀R,R′ ∈ M ′, the number of blue cells in R is at
most 11 and d(R,R′) ≥ 2 i.e. M ′ covers blue cells in g0 with rectangles which
have at most 11 blue cells inside and the shortest distance between each pair of
rectangles is more than 1. Since the distance between each two rectangles is at
least two, all cells out of these rectangles stay red in all upcoming generations.
Therefore, if we show that 11 blue cells in a rectangle disappear (rectangle gets
completely red) after a constant number of steps, then the proof is complete.
Because of the page limitation, we do not present the complete proof of this
proposition, but the sketch of the proof is as follows. One can show i blue cells
are reduced to at most i − 1 blue cells in one or two steps for 5 ≤ i ≤ 11,
and i blue cells disappear in one step for i = 1, 2, 3, 4. Therefore, 11 blue cells
disappear in a constant number of steps. The proof of i blue cells disappear in
one step for i = 1, 2, 3, 4 is straightforward, and for the proof of i blue cells are
reduced to at most i−1 blue cells in one or two steps for 5 ≤ i ≤ 11, we assume i
blue cells can create a set S of size more than i−1 blue cells in the next step and
consider the smallest covering rectangle around this blue set, which implies the
leftmost (rightmost) column and highest (lowest) row of the rectangle contain
at least one blue cell in S. Now, depending on the size of the rectangle, one can
check that always there are some blue cells in S which need at least i + 1 blue
cells in previous step to become blue which contradicts the assumption. �

We claim that all aforementioned results also can be extended into the case
of a grid Gn,n instead of a torus Tn,n and also the case of N̂(v) neighborhood
model instead of N(v).
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Abstract. We investigate the computational power of affine automata
(AfAs) introduced in [4]. In particular, we present a simpler proof for
how to change the cutpoint for any affine language and a method how to
reduce error in bounded error case. Moreover, we address to the question
of [4] by showing that any affine language can be recognized by an AfA
with certain limitation on the entries of affine states and transition matri-
ces. Lastly, we present the first languages shown to be not recognized by
AfAs with bounded-error.
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1 Introduction

Finite automata are interesting computational models because of their simplicity,
compared to more complex models like pushdown automata or Turing machines.
They also represent a very concrete restriction on computation: they only have
a finite memory. A lot of different automata models have been studied during
the years, such as deterministic [10], probabilistic [8] and quantum [2] ones. All
these models share two common features: the state vector set is compact and
the acceptance function can be interpreted as linear. The linearity is desirable
because of mathematical simplicity, but on the other hand, it may represent a
limitation on the computational power.
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Jeandel [5] demonstrated that in the bounded-error acceptance model the
finite automata with compact state set accept only regular languages. Hence the
compactness property of the state set may be one very important limiting the
computational power, but since most known models have a compact state set, it
remains open how much the compactness of the state set actually contributes.

Recently, A. Dı́az-Caro and A. Yakaryılmaz introduced a new model, called
affine automata [4], also investigated in [3,13]. It is a purely theoretical model,
which means that it cannot be implemented by a physical device like quantum
automata. But it allows us to investigate on the power of interference caused by
negatives amplitudes in the computation, like in the quantum case. Moreover,
this model allows us to study the effect of state set compactness, since unlike
quantum automata, affine ones have an unbounded state set. In addition, the
final operation corresponding to quantum measurement cannot be interpreted
as linear, but it is analogous to renormalization in Kondacs and Watrous [6] and
Latvian [1] quantum automata models.

In this paper, we present some stability results (Sect. 3): we show how to
obtain a new AfA from two AfAs by tensoring and direct sum. Then, we present
a simpler proof for how to change the cutpoint for any affine language and an
error reduction method in bounded error case.

Any entry of an affine state or a transition matrix can be arbitrarily away
from zero. Here, by addressing to the question of [4], we show that (Sect. 4) any
affine language can be recognized by an AfA with the restriction that all the
entries of transition matrices are in the interval [−1, 1]. We also show that by an
additional state we can guarantee that any AfA can start its computation from
the first deterministic state.

Finally, we present (Sect. 5) the first languages shown not to be recognized
by any bounded-error AfA.

2 Preliminaries

We denote the input alphabet Σ and the empty string ε.
Probabilistic automata are a generalization of deterministic finite automata

that can make random choices [9]. Formally, a probabilistic finite automaton
(PFA) P is a 5-tuple P = (E,Σ, {Mx | x ∈ Σ}, es, Ea), where E = {e1, . . . , ek}
is the finite set of states of P , {Mx | x ∈ Σ} is the set of stochastic transition
matrices (all their coefficients are real numbers in [0, 1] and their columns sums
up to 1), v0 is the initial probabilistic state (the probability distribution on the
states), and Ea ⊆ E is the set of accepting states. The computation starts in
v0, and then the given input, say w = w1 · · · wn ∈ Σ∗ for some n > 0, is read
once from left to right symbol by symbol. For each symbol the corresponding
transition matrix is applied: vf = Mwv0 = Mwn

· · · Mw1v0. Remark that if
w = ε, vf = v0. The accepting probability of P on w is given by

fP (w) = pMwv0, (1)

where p =
(
δ1 · · · δk

)
and δi = 1 if ei ∈ Ea and 0 if ei /∈ Ea.
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Affine automata are a generalization of PFAs allowing negative transition
values. Only allowing negative values in the transition matrices does not add any
power (generalized probabilistic automata are equivalent to usual ones [11]), but
affine automata introduces also a non-linear behaviour. The automaton acts like
usual generalized probabilistic automaton until the last operation, a non-linear
operation called weighting.

A vector v ∈ Rn is an affine vector if and only if its coordinates sums up to
1. A matrix M is an affine matrix if and only if all its columns are affine vectors.
Remark that if M and N are affine matrices, then MN is also an affine matrix.
In particular, if v is an affine vector, then Mv is also an affine vector.

Formally, an affine finite automaton (AfA) A is a 5-tuple

A = (E,Σ, {Mx | x ∈ Σ},v0, Ea)

where all components exactly the same as for probabilistic automata by replacing
stochastic property with affine one in the initial state and transition matrices.

As in PFAs, after reading a word w = w1 · · · wn, the final state of A is
vf = Mwv0 like in the probabilistic case, but the function fA : Σ∗ → [0, 1]
computed by A is defined as

fA(w) =

∑
ei∈Ea

|(vf )i|
∑

ei∈E |(vf )i|
, (2)

and referred as the accepting value of A on w. Similar to projective measure-
ments, we can rewrite Eq. (2) as given below. First, we define a projection matrix

based on Ea: PA = P =

⎛

⎜
⎜
⎜
⎝

δ1
δ2

. . .

δn

⎞

⎟
⎟
⎟
⎠

, where δi =

{
1 if ei ∈ Ea

0 otherwise
.

Then, we can denote fA(·) as

fA(w) =
|PMwv0|
|Mwv0|

. (3)

Notice that the final value for PFA P (1) is defined as matrix product vf �→ p.vf ,
which is a linear operation on vf . On the other hand, computing final value from

vf as in (3) involves nonlinear operations vf �→ |Pvf |
|vf | due to absolute value and

normalization of affine states having length greater than 1.
Given a function f : Σ∗ → [0, 1] computed by an automaton (stochastic or

affine), there are different ways of defining the language of an automaton. The
natural one is as follows: A language L ⊆ Σ∗ is recognized by an automaton A
with cutpoint λ if and only if

L = {w ∈ Σ∗ | fA(w) > λ}.

These languages are called cutpoint languages. In the case of probabilistic (resp.
affine automata), the set of cut-point languages are called stochastic languages
(resp. affine languages) and denoted by SL (resp. AfL).
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A stronger condition is to impose that accepted and rejected words are sep-
arated by a gap: the cutpoint is said to be isolated: A language L is recognized
by an automaton A with isolated cutpoint λ if and only if there exist δ > 0 such
that ∀w ∈ L, fA(w) ≥ λ + δ, and ∀w /∈ L, fA(w) ≤ λ − δ.

As we shall see, for affine automata it is always possible to shift the cutpoint
λ ∈ (0, 1) to λ = 1

2 , and hence this notion of isolated cutpoint becomes equivalent
to the bounded error recognition: Language L ⊆ Σ∗ is said to be recognized by
an automaton A with bounded error if and only if there exists ε > 0 such that
∀w ∈ L, fA(w) ≥ 1 − ε, and ∀w /∈ L, fA(w) ≤ ε.

The set of languages recognized with bounded error (or isolated cutpoint)
affine automata is denoted by BAfL.

A classical result by Rabin [9] shows that isolated cutpoint stochastic lan-
guages are regular (denoted REG). Rabin’s proof essentially relies on two facts:
(1) the function mapping the final vector into [0, 1] is a contraction, and (2) the
state vector set is bounded.

By modifying Rabin’s proof, it is possible to show that also many quan-
tum variants of stochastic automata obey the same principle [7] bounded-error
property implies the regularity of the accepted languages. In fact, E. Jeandel
generalized Rabin’s proof by demonstrating that the compactness of the state
vector set together with the continuity of the final function are sufficient to
guarantee the regularity of the accepted language if the cutpoint is isolated [5].

In the affine case however, the vector states do not lie in a compact set, we
cannot prove that BAfL = REG like in the probabilistic (or even quantum) case
[5]. In fact, it is even the contrary: REG � BAfL [4].

We close this section by three basic facts. The following three operations on
the state sets will be useful, when constructing new automata from the existing
ones:

– E = {ei | ei /∈ E} the complement of E,
– Ea × Eb = {(ei, ej) | ei ∈ Ea, ej ∈ Eb} the Cartesian product of Ea and Eb,
– Ea ∪ Eb = {ei | ei ∈ Ea or ei ∈ Eb} the union of Ea and Eb.

The following lemma shows how to formulate the above operations by using the
formalism of projection matrices.

Lemma 1. Let E be the set of all states, Ea, Eb ⊆ E and Pa, Pb be the projec-
tions associated to them. Then

– P is the projection associated to the complement Ea if and only if P = I −Pa,
and,

– P is the projection associated to Ea × Eb if and only if P = Pa ⊗ Pb.

Lemma 2. Let E be the set of all states, Ea, Eb ⊆ E, such that Ea ∩ Eb = ∅.
Let Pa and Pb be the projections associated to them. Then,

– P is the projection associated to Ea ∪ Eb if and only if P = Pa + Pb, and,
– for any matrix M and vector v, |PMv| = |PaMv| + |PbMv|.
Lemma 3. If A and B are affine matrices, then A⊗B is also affine. Moreover,
|A ⊗ B| = |A||B|.



On the Computational Power of Affine Automata 409

3 Stability Results

The main results of this section are stability results. The first are about the
functions of affine automata. They provide a way to prove an error reduction
theorem. We then use this theorem to show the stability of bounded-error affine
languages under intersection and union.

Proposition 4. Let f , g be functions computed by affine automata, then there
exists an affine automaton C such that fC = f × g.

Proof. The proof is the same as the stochastic case and essentially relies on the
property of tensor product of Lemma 3. �

It is easy to design a 2-state PFA P such that fP : Σ∗ → α for α ∈ [0, 1].
Thus:

Corollary 5. Let f be a function computed by an AfA and α ∈ [0, 1], then there
exists an AfA C such that fC = αf .

Proposition 6. Let f , g be functions computed by some AfAs and α, β ≥ 0
such that α + β = 1, then there exists an AfA C such that fC = αf + βg.

Proof. Let A = (EA, Σ, {Ax},vA
0 , EA

a ) and B = (EB , Σ, {Bx},vB
0 , EB

a ) two
automata such that f = fA and g = fB. The idea here is to make two copies of
A ⊗ B working in parallel, one having the final states of A, the other the final
states of B. We define C = (EC , Σ, {Cx},vC

0 , EC
a ) by:

Cx =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ax ⊗ Bx 0

0 Ax ⊗ Bx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, vC
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α(vA
0 ⊗ vB

0 )

β(vA
0 ⊗ vB

0 )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, PC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

PA ⊗ In 0

0 Ik ⊗ PB

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with PA, PB and PC be the projections on EA
a , EB

a and EC
a . Thus,

fC(w) =
α|(PA ⊗ In)(Ax ⊗ Bx)(vA

0 ⊗ vB
0 )| + β|(Ik ⊗ PB)(Ax ⊗ Bx)(vA

0 ⊗ vB
0 )|

(α + β)|(Ax ⊗ Bx)(vA
0 ⊗ vB

0 )|

= α
|PAAwv

A
0 |

|AwvA
0 | + β

|PBBwv
B
0 |

|BwvB
0 | = αf(w) + βg(w).

�

The first consequence of these stability results is a really short proof for shift-
ing the cutpoint of an affine automaton. Although the construction in [4] gives
a much more compact automata in term of number of states, our construction
is simpler, and does not require as many specific cases.

Proposition 7. Let A be an affine automaton and λ1, λ2 ∈ [0, 1]. There exists
an affine automaton B such that
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– fA(w) > λ1 ⇔ fB(w) > λ2 and
– fA(w) = λ1 ⇔ fB(w) = λ2.

Proof. First we suppose λ1 �= 1. Let B the automaton such that fB = αfA +
(1 − α)1, with α = 1−λ2

1−λ1
. Then fA > λ1 ⇒ fB > (1−λ2)λ1+λ2−λ1

1−λ1
= λ2. And one

has the same with = or <.
For λ1 = 1 it is even simpler, one has just to “resize” the function by taking

B such that fB = λ2fA. And then, fA = 1 ⇒ fB = λ2, and same for <. �

Using the same kind of construction we can prove that bounded-error mode,
it is always possible to reduce the error. Reducing the error means increasing
the gap between accepted and rejected words. The error probability could even
be made as close to zero as one wants.

Lemma 8. Let f be a function computed by affine automaton, then there exists
an affine automaton B such that fB = f2(3 − 2f).

Proof. Let A = (E,Σ, {Ax},v0, Ea) such that f = fA. The automaton B will
run 3 copies of A in parallel, and its final states are made to accept if 2 or
3 copies of A accept and reject otherwise (i.e. taking the majority answer).
Formally, B = (E ⊗ E ⊗ E,Σ, {Bx},v′

0, E
′
a) with

Bx = Ax ⊗ Ax ⊗ Ax,

v′
0 = v0 ⊗ v0 ⊗ v0,

E′
a = (Ea × Ea × Ea) ∪

(
Ea × Ea × Ea

)
∪

(
Ea × Ea × Ea

)
∪

(
Ea × Ea × Ea

)
.

Note that the four sets in parenthesis are all pairwise disjoints. Let P and P ′ be
the projections associated to Ea and E′

a. Then,

P ′ = P ⊗ P ⊗ P + (I − P ) ⊗ P ⊗ P + P ⊗ (I − P ) ⊗ P + P ⊗ P ⊗ (I − P ).

And by Lemma 1,

fB(w) =
|P ′Bwv

′
0|

|Bwv′
0|

=
|PAwv0|3 + 3|PAwv0| (|Awv0| − |PAwv0|)

|Awv0|3
= f(w)3 + 3f(w)2(1 − f(w))

= f(w)2(3 − 2f(w)).

�

Proposition 9 (error reduction). Let L ∈ BAfL. There exists an affine
automaton A such that:

– ∀w ∈ L, fA(w) ≥ 3
4

– ∀w /∈ L, fA(w) ≤ 1
4
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Proof. We do not detail the proof, but the idea is simple: mapping x → x2(3−2x)
has attracting points at x = 0 and x = 1. Iterating the mapping, any point �= 1

2
will tend to 0 or 1. �

This technique could be applied to get any constant instead of 1
4 , to have an

error bound as small as one wants.
This error reduction theorem also applies to probabilistic automata, but is

not very interesting because in the probabilistic case it is known that bounded-
error languages are exactly regular languages [5], and hence the error probability
could always be 0. In our case, bounded-error languages are more complex than
regular languages. But thanks to this error reduction, they are stable under
union, intersection, and complement, just like regular languages.

Proposition 10. Let LA, LB ∈ BAfL. Then

– LA ∪ LB ∈ BAfL,
– LA ∩ LB ∈ BAfL,
– LA ∈ BAfL.

Proof. Let A and B be automata recognizing LA and LB with error bound ε at
most 1

4 (thanks to Theorem 9). We define C and D such that fC = 1
2 (fA + fB)

and fD = fAfB. Let w ∈ Σ∗. We study the 4 possible options depending on the
membership of w to LA and LB .

– w ∈ LA, w ∈ LB (i.e. w ∈ LA ∪ LB , w ∈ LA ∩ LB) ⇒ fC ≥ 3
4 and fD ≥ 9

16 ,

– w ∈ LA, w /∈ LB (i.e. w ∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≥ 3
8 and fD ≤ 1

4 ,

– w /∈ LA, w ∈ LB (i.e. w ∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≥ 3
8 and fD ≤ 1

4 ,

– w /∈ LA, w /∈ LB (i.e. w /∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≤ 1
4 and fD ≤ 1

16 .

Because 3
8 > 1

4 and 9
16 > 1

4 , C and D are deciding LA ∪ LB and LA ∩ LB with
bounded error.

For the complement one has just to make a copy of A with accepting states
Ea. The resulting function will be 1 − fA, leading to accept the rejected words
of A and vice-versa. �

4 Equivalent Forms of Affine Automata

General affine automata are hard to study because of the lack of structure of
their transition matrices and state vectors. We provide here some equivalent
forms which have more restrictive properties. These equivalent forms are useful
not only because it provides simpler equivalent models but also because they
provide a way understand the power of affine computation.

The first result is that assuming the initial affine (probabilistic) state as the
first deterministic state does not change the power of AfAs (PFAs).

Proposition 11. Let A be an affine automaton with n states, there exist B with
n + 1 states with the initial state (1, 0, . . . , 0) and such that fA = fB.
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Proof. Let A = (E,Σ, {Ax},v0, Ea). Then, B = (E∪{e′}, Σ, {Bx},v′
0, Ea), with

v′
0 = (1, 0, . . . , 0)T and Bx =

⎛

⎜
⎜
⎝

0 0 · · · 0

Axv0 Ax

⎞

⎟
⎟
⎠ . Thus we can deduce fB = fA

from Bwv
′
0 = Bwn

. . . Bw2Bw1v
′
0 =

⎛

⎜
⎜
⎝

0 0 · · · 0

Awv0 Aw

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0

Awv0

⎞

⎟
⎟
⎠ . �

Then we prove that one could also assume that all state vectors and transition
matrices have coefficients only in [−1, 1].

Proposition 12. Any language in AfL can be recognized by a AfA B with cut-
point 1

2 such that each entry of affine states during the computation is always in
[−1, 1].

Proof. Let A = (E = {e1, . . . , ek}, Σ, {Ax}, v0 = (1, 0, . . . , 0)T , Ea) be an AfA
such that w ∈ L ⇔ fA(w) > 1

2 , and C = maxx,i,j |(Ax)i,j |. Then, B is as follows:

B = (E ∪ {en+1, en+2}, Σ, {Bx},v′
0, Ea ∪ {en+1}) with

Bx =
1

2kC

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0

2Ax

...
...

0 0
kC − 1 . . . kC − 1 2kC 0
kC − 1 . . . kC − 1 0 2kC

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and v′
0 = (1, 0, . . . , 0)T .

Then, with w = w1 · · · wn, we can deduce that

Bw = Bwn · · · Bw2Bw1 =
1

2(kC)n

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0

2Aw

...
...

0 0

(kC)n − 1 . . . (kC)n − 1 2(kC)n 0
(kC)n − 1 . . . (kC)n − 1 0 2(kC)n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

which gives the final values of the states:

v′
f = Bwv

′
0 =

1
(kC)n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

...
vf

...
(kC)n−1

2
(kC)n−1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since |(vf )i| ≤ kn−1Cn, it is clear that |(v′
f )i| ≤ [−1, 1]: the values of the states

are bounded. Now, one has

fB =
|PAwv0| + (kC)n−1

2

|Awv0| + (kC)n − 1,
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and so,

w ∈ L ⇔ fA >
1
2

⇔ |PAwv0| >
1
2
|Awv0|

⇔ |PAwv0| +
(kC)n − 1

2
>

1
2

(|Awv0| + (kC)n − 1)

⇔ fB >
1
2
.

�

5 The First Languages Shown to Be Not in BAfL

This part is dedicated to prove that some languages are not recognizable by affine
automata. This is an adaptation of the proof of Turakainen [12] for non-stochastic
languages. All the difficulty of exhibiting a non-affine language relies in the fact
that a large majority of non-stochasticity proof are based on the linearity of the
automaton, which is not the case in the affine case. This proof however, is more
based on some “regularity” induced by the matrix-based operations, and number
theoretic properties of languages like Prime. Hence it was possible to adapt it
for the affine case, where the only non-linear operation is the final projection.

Let L ⊆ a∗ be a unary language. We call lower density of L the limit

dens(L) = lim inf
n→∞

∣
∣{ak ∈ L | k ≤ n}

∣
∣

n + 1
.

Let (xn) be a sequence of vectors in Rk and I = [a1, b1) × · · · × [ak, bk) be an
“interval”. We define C(I, n) as C(I, n) = |{xi mod 1 ∈ I | 1 ≤ i ≤ n}|.

We say that (xn) is uniformly distributed mod 1 if and only if for any
I of such type,

lim
n→∞

C(I, n)
n

= (b1 − a1) · · · (bk − ak).

Proposition 13. If L ⊆ a∗ satisfies the following conditions:

1. dens(L) = 0.
2. For all Q ∈ N∗, there exist h ∈ N and an infinite sequence (ni) ∈ NN such that

ah+niQ ⊆ L and for any irrational number α, the sequence ((h + niQ)α)i∈N

is uniformly distributed mod 1.

Then L is non-affine (L /∈ BAfL).

Proof. Let’s assume for contradiction that L ∈ BAfL. Then there exists an affine
automaton A with s states such that

fA(an) =
|PMnv|
|Mnv|

and there exists ε > 0 such that
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– ∀w ∈ L, fA(w) ≥ 1 − ε,
– ∀w /∈ L, fA(w) ≤ ε.

Note that

|Mnv| =
s∑

i=1

|(Mnv)i| ≥
∣
∣
∣
∣
∣

s∑

i=1

(Mnv)i

∣
∣
∣
∣
∣
= 1 (triangle inequality).

Hence the denominator of fA is never 0, and so fA is continuous.
Using the Jordan decomposition M = PJP−1, one has Mn = PJnP−1. So

the coordinates vi of Mnv have the form

vi =
s∑

k=1

pik(n)λn
k (4)

where λi are the eigenvalues of M and pik are polynomials of degree less than
the degree of the corresponding eigenvalue. Let λi = |λi|e2iπθi , we assume |λ1| =
· · · = |λs′ | > |λs′+1| · · · . Let λ = |λ1| be the largest module of all eigenvalues
and r be the maximum degree of all polynomials pik, where k ≤ s′. Then, one
can use (4) to write

|Mnv| =
∑

i∈E

|vi| = λnnr

⎛

⎝
∑

i∈E

∣
∣
∣
∣
∣
∣

s′
∑

k=1

aike2iπnθk

∣
∣
∣
∣
∣
∣
+ gE(n)

⎞

⎠

where aik is the coefficient of degree r of pik (note that one can have aik = 0 for
some a, k), and gE a function such that limn→∞ gE(n) = 0. Similarly,

|PMnv| =
∑

i∈Ea

|vi| = λnnr

⎛

⎝
∑

i∈Ea

∣
∣
∣
∣
∣
∣

s′
∑

k=1

aike2iπnθk

∣
∣
∣
∣
∣
∣
+ gEa

(n)

⎞

⎠ .

Now let F (n) = f(an). Using the previous equations, one has

F (n) =
|PMnv|
|Mnv|

=
λnnr

(∑
i∈Ea

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣ + gEa

(n)
)

λnnr
(∑

i∈E

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣ + gE(n)

)

=

∑
i∈Ea

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣ + gEa

(n)
∑

i∈E

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣ + gE(n)

.

We define

G(n) =

∑
i∈Ea

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣

∑
i∈E

∣
∣
∣
∑s′

k=1 aike2iπnθk

∣
∣
∣
.
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As limn→∞ gEa
(n) = 0 and limn→∞ gE(n) = 0, one has G(n) ∼ F (n), and so,

lim
n→∞

|F (n) − G(n)| = 0. (5)

We define A = {k | 1 ≤ k ≤ s′, θk /∈ Q} the indices of the “first” eigenvalue
angles that are not rational. Let Q, h and the sequence (ni) be as in the state-
ment. Using the periodic behaviour induced by rational angle of eigenvalues, and
by taking a subsequence of the initial one, one can also assume that (ni) is such
that

G(h + niQ) =

∑
i∈Ea

∣
∣∑

k∈A aike2iπ(h+niQ)θk + c
∣
∣

∑
i∈E

∣
∣
∑

k∈A aike2iπ(h+niQ)θk + d
∣
∣

with c, d some constants.
By assumption, for all k ∈ A, the sequence ((h + niQ)θk)i is uniformly dis-

tributed modulo 1. The consequence is that the values e2iπ(h+niQ)θk are dense
in the unit circle. If for some n, G(h + nQ) < 1

2 , there exists ε > 0 such that
G(h + nQ) ≤ 1

2 − ε. Then, thanks to the density argument, there are arbitrarily
large values of i for which G(h + niQ) ≤ 1

2 − ε
2 . Since for i sufficiently large,

|F (h + niQ) − G(h + niQ)| ≤ ε
2 (using (5)), one has F (h + niQ) ≤ 1

2 , and so
ah+niQ /∈ L, contradicting condition 2 of the statement.

Therefore, G(h + nQ) ≥ 1
2 for large enough n. Because G is not identically

equal to 1
2 (if it is the case, F would be as close to 1

2 as one wants, which is
impossible since L ∈ BAfL), again using density, there must be some ε > 0 and
k0 such that G(h + k0Q) ≥ 1

2 + ε.
First if A = ∅, it means that all the angles of the eigenvalues θ1, . . . , θs′

are rational. We can then write them as θk = lk
mk

. Then G(n) takes a
finite number of values, and these values only depend on (n mod m1), . . . , (n
mod ms′). Let’s call k1 = h + k0Q the number where G is larger than
1
2 : G(n1) > 1

2 . G has the same value for all n ∈ Z = {k1 +
km1 · · · ms′ |k ∈ N} (because for n in this set, the values of all (n mod m1), . . . ,
(n mod ms′) are the same). Then, thanks to (5), one has, for n ∈ Z suf-
ficiently large, F (n) > 1

2 , so {an | n ∈ Z, n ≥ n1} ⊆ L. And because
|{an | n ∈ Z, n ≥ n1}| ∼ n

m1···ms′ , one has dens(L) > 0, which contradicts con-
dition 1 of the statement.

Next, if A �= ∅. Let

R((xk)k∈A) =

∑
i∈Ea

∣
∣
∑

k∈A aikxk + c
∣
∣

∑
i∈E

∣
∣
∑

k∈A aikxk + d
∣
∣ .

Note that G(h + niQ) = R((e2iπ(h+niQ)θk)k∈A). Then, because the sequences
((h + niQ)θk)i are uniformly distributed modulo 1, it follows that any value
obtained by the function R((e2iπyk)k∈A) can be approximated by some G(h +
niQ) with arbitrary precision. The function R is continuous, therefore there
exists an interval I = (x1, y1, ...) = ((xk, yk))k∈A on which R((xk)) > 1

2 + ε
2 . So,

if ni is large enough and satisfies

((h + niQ)θ1 mod 1, . . . ) = ((h + niQ)θk mod 1)k∈A ∈ I,
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then G(h+niQ) > 1
2 + ε

2 , which implies F (h+niQ) > 1
2 and hence ah+niQ ∈ L.

Now we just have to prove that the sequence (h + niQ) is “dense enough” to
have dens(L) > 0, contradicting again condition 1.
Because of uniform distribution imposed by condition 2, one has

d = lim
i→∞

C(I, h + niQ)
h + niQ

=
∏

k∈A

(yk − xk)

And so for i large enough, C(I,h+niQ)
h+niQ

≥ d
2 , with ah+niQ ∈ L, implying dens(L) >

0. We have proved that L cannot be affine. �

Turakainen [12] proved that Prime = {ap | p is prime} and Poly(q) =
{aq(n) | n ∈ N, q(n) ≥ 0} (where q is any polynomial of degree > 2 with non-
negative coefficients) both satisfy the two conditions of Theorem 13. Hence they
are not in BAfL .

Corollary 14. Prime /∈ BAfL and Poly(q) /∈ BAfL.

6 Conclusion

In this paper we demonstrated that even if they are strictly more powerful,
bounded-error languages of affine automata share stability properties with reg-
ular languages (which are bounded-error languages of stochastic automata).

We also showed that the computational power of affine automata does not
come alone from the unboundedness state vector set: the general model of
unbounded state vector set can always be simulated with a bounded state vector
set. Hence some of the computational power of affine automata comes from the
nonlinear nature of the final projection, at least in the case of unbounded-error
computation.
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Abstract. Pushdown automata may contain transitions that are never
used in any accepting run of the automaton. We present an algorithm
for detecting such useless transitions. A finite automaton that captures
the possible stack content during runs of the pushdown automaton, is
first constructed in a forward procedure to determine which transitions
are reachable, and then employed in a backward procedure to determine
which of these transitions can lead to a final state. An implementation
of the algorithm is shown to exhibit a favorable performance.

1 Introduction

Context-free languages are used in language specification, parsing, and code opti-
mization. They are defined by means of a context-free grammar or a pushdown
automaton (PDA). Some languages can be specified more efficiently by a PDA
than by a context-free grammar, as shown by Goldstine, Price, and Wotschke [6].
PDAs are at the root of deterministic parsers for context-free languages (notably
LL, LR), see e.g. [1,10]. We consider PDAs in which any number of symbols can
be popped from as well as pushed onto the stack in one transition. Popping zero
or multiple symbols is useful in bottom-up parsing, and facilitates the reversal
of a PDA.

For context-free grammars, it is rather straightforward to determine whether
a production is useless, i.e., cannot occur in a derivation from the start variable
to a string of terminal symbols; such a method is discussed in many textbooks
on formal languages (e.g., [9, Theorem 6.2]). It consists of two parts: detect
which variables are reachable from the start variable, and which variables can
be transformed into a string of terminal symbols. Productions that contain a
useless variable, not satisfying these two properties, can be removed from the
grammar without changing the associated language. A grammar generated from
a program sometimes consists almost entirely of useless productions, such as in
case of “parsing by intersection” [8].

This paper addresses the research question posed in [8] to develop an efficient
algorithm for determining the useless transitions in a PDA, meaning that no run
of the PDA from the initial configuration to a final state includes this transition.

c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 421–434, 2017.
DOI: 10.1007/978-3-319-53733-7 31
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Such a transition can be removed from the PDA without changing the language
accepted by the PDA, and improves the performance of running the PDA. This
is especially sensible if the PDA has been generated automatically, because then
there tend to be a substantial number of useless transitions. Similar to detecting
useless variables in context-free grammars, our algorithm for detecting useless
transitions in a PDA consists of two parts. It stays entirely in the realm of
automata. The first part finds which transitions are not reachable from the initial
configuration. Here we exploit an algorithm by Finkel et al. [5] to construct a
finite automaton (NFA) that captures exactly all possible stacks in the reachable
configurations of a PDA. Their approach is modified slightly to take into account
that multiple symbols may be popped from the stack at once. The second part
of our algorithm, which to the best of our knowledge is novel, finds after which
transitions it is impossible to reach a final state. Here we use the NFA constructed
in the first part to compute in a backward fashion which transitions can lead to
a final state in the PDA.

We prove that the algorithm marks exactly the useless transitions. The worst-
case time complexity of the algorithm is O(Q4T ), with Q the number of states
and T the number of transitions of the PDA. This worst case actually only occurs
in the unlikely case that the NFA is constructed over a large number of iterations,
is saturated with ε-transitions, and contains a lot of backward nondeterminism.
A prototype implementation of the algorithm exhibits a good performance.

An alternative approach is to use the functions post∗ and pre∗, to compute
the reachable configurations as well as the configurations from which a final
state can be reached. This alternative approach was also implemented [3], and
it was shown on a large test set of randomly generated PDAs that the algorithm
presented in this paper has a much better performance that this alternative
approach.

Related Work. Bouajjani et al. [2] employed a method similar to the one in
[5] to capture the reachable configurations of a PDA via an NFA, in the con-
text of model checking infinite-state systems. Griffin [7] showed how to detect
which transitions are reachable from the initial configuration in a determinis-
tic pushdown automaton (DPDA). For each transition, the algorithm creates a
temporary DPDA in which the successive state of the transition is set to a new,
final state; all other states in the temporary DPDA are made non-final. Then
it is checked whether the language generated by the DPDA is empty; if it is,
the transition is unreachable. This algorithm determines which transitions are
reachable from the initial configuration, but not which transitions can lead to a
final state.

2 Preliminaries

A nondeterministic pushdown automaton (PDA) consists of a finite set of states
Q, a finite input alphabet Σ, a finite stack alphabet Γ , a finite transition relation
δ : Q × (Σ ∪ {ε}) × Γ ∗ → 2Q×Γ ∗

, an initial state q0, and a set F of final states.
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Here ε denotes the empty string. Note that zero or multiple symbols can be
popped from the stack in one transition. It is assumed that the initial stack is
empty. (An arbitrary initial stack σ can be constructed by adding a new initial
state q̂0 and a transition δ(q̂0, ε, ε) = {(q0, σ)}.)

A configuration consists of a state from Q together with a stack from Γ ∗. We
let a, b, c, d denote elements in Γ , and ρ, σ, τ, υ, ζ strings in Γ ∗, where the left-
most element represents the top of the stack. The reverse of a string σ is denoted
by σR. A transition (r, τ) ∈ δ(q, α, σ) with α ∈ Σ ∪ {ε} gives rise to moves
(q, σρ) α→ (r, τρ) between configurations, for any ρ ∈ Γ ∗. The language accepted
by a PDA consists of the strings in Σ∗ that give rise to a run of the PDA from
the initial configuration (q0, ε) to a configuration (r, σ) with r ∈ F . A transition
of a PDA is useless if no run of the PDA from the initial configuration (q0, ε) to a
configuration (r, σ) with r ∈ F , for any input string from Σ∗, includes this tran-
sition. To determine the useless transitions, input strings from Σ∗ are irrelevant.
The point is that, since a run for any input string suffices to make a transition
useful, we can assume that any desired terminal symbol from Σ is available as
input at any time. Input strings from Σ are therefore disregarded in our algo-
rithm to detect useless transitions. (In the context of model-checking infinite-
state systems, PDAs in which input strings are disregarded are called “pushdown
systems” or “pushdown processes” [11].) A transition (r, τ) ∈ δ(q, σ) is written

as q
σ/τ→ r. It gives rise to moves (q, σρ) → (r, τρ). We write (s, υ) →∗ (t, ζ) if

there is a run from (s, υ) to (t, ζ) of the PDA, consisting of zero or more moves.
A nondeterministic finite automaton (NFA) consists of a finite set of states

Q, a finite input alphabet Σ, a transition relation δ : Q × (Σ ∪ {ε}) → 2Q,
an initial state q0, and a set F of final states. In our application of NFAs, the
input alphabet is the stack alphabet Γ from the PDA. A transition r ∈ δ(q, a)
is written as q

a→ r. We write q
a1...ak� r if there is a path from q to r in the NFA

with consecutive labels a1, ..., ak ∈ Γ . We write q
a1...ak=⇒ r if there is such a path

from q to r, possibly intertwined with transitions labeled by ε. The language
accepted by an NFA consists of the strings a1...ak in Σ∗ for which there exists
a path q0

a1...ak=⇒ r with r ∈ F .

3 Detecting the Useless Transitions in a PDA

Our algorithm for detecting useless transitions in a PDA summarizes all reach-
able configurations of the PDA in an NFA. As a first step, an NFA is constructed
that accepts the stacks that can occur during any run of the PDA. A second
step determines which transitions can lead to a configuration from which a final
state can be reached. Transitions that cannot be reached from the initial state
(as determined in step 1) or that cannot lead to a final state (as determined in
step 2) are useless.

3.1 Detecting the Unreachable Transitions

A configuration or transition of a PDA P is reachable if it is employed in a run of
P , starting from the initial configuration. The reachable configurations of P are
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captured by means of an NFA N . The stacks in Γ ∗ that can occur at a state q in
P are accepted at the state q in N , in reverse order. During the construction of
N , intermediate non-final states are created when multiple symbols are pushed
onto the stack in one transition. They are denoted by n,m, to distinguish them
from the states q, r, s, t that are inherited from P and which are taken to be final
in N . A state in N that may be either final or non-final is denoted by x, y, z.

Fix a PDA P = (Q,Σ, Γ, δ, q0, F ); as said, we will disregard Σ. To achieve a
single final state without outgoing transitions that is only reached with an empty
stack, we perform a standard transformation on P . A fresh stack symbol b0 is
added to Γ , and the initial stack is b0 (instead of ε). In each run of the PDA,
b0 is always at the bottom of the stack. Fresh states qe and qf are added to Q,

and δ is extended with transitions q
ε/ε→ qe for every q ∈ F , qe

a/ε→ qe for every

a ∈ Γ\{b0}, and qe
b0/ε→ qf . We change F to {qf}. The resulting PDA is called P0.

Initially the NFA N under construction consists only of the transition m0
b0→

q0; the fresh state m0 is non-final and q0 final. Intuitively, this transition builds
the initial stack of P0. The set U1 of unreachable transitions in P0 initially, as
an overapproximation, contains all transitions in P0. The NFA N and the set U1

are constructed as follows.

Algorithm 1. Procedure forward to detect the unreachable transitions in a
PDA P0.

For each transition θ = q
σ/τ→ r in P0 do:

1. If q is not a state in N , then stop this iteration step.
2. Determine the set Sq,σ, which either consists only of q, if σ = ε, or of the (non-final)

states n for which there exists a path n
a→ y

σ′R
=⇒ q in N , if σ = σ′a.

3. If Sq,σ = ∅, then stop this iteration step.

4. If θ ∈ U1, then delete θ from U1, and establish a path
τR

� r in N (see below); the
state r in N is final.

5. Let y be the first state in the path
τR

� r. For each state x ∈ Sq,σ, if the transition
x

ε→ y is not yet present in N , then add this transition to N .

If N changed during this run, then perform forward again, over all transitions in P0.
Else, stop, and return the constructed NFA N and the set U1 of unreachable transitions
in P0. These transitions are then culled from P0, producing the PDA P1.

The sets Sq,σ need to be recomputed in every run of the forward procedure.
The sets Sq,σ computed in the last run of the forward procedure are stored, as
they will be used in the backward procedure in the next section.

The idea behind the construction of N is as follows. Given a transition θ =
q

σ/τ→ r in P0, pushing τ onto the stack and moving to state r corresponds to

a path y
τR

� r in N . A state x in N can jump to the first state in this path if

there is a path x
σR

⇒ q in N , because then we can reach q from x by pushing σ
onto the stack. By executing θ, we pop σ from the stack, leading back to x, then
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Algorithm 2. Procedure, called in step 4 of forward, which establishes a path
a1...ak� z in the NFA N and returns the first state in this path.
4.1 If k = 0, then stop and return z.

4.2 If there is a transition n
ak→ z in N with n non-final (there is at most one such transition),

then establish a path
a1...ak−1� n in N .

4.3 Else add non-final states n1, ..., nk and transitions n1
a1→· · · nk

ak→z to N , stop, and return
n1.

jump to y, and push τ onto the stack via the path y
τR

� r. This jump is captured
in N by an ε-transition from (every possible) x to y. To reduce the number of

ε-transitions in N , we only consider those x with a path x
σR

⇒ q in N that does
not start with an ε-transition.

For each transition of P0 at most one path is established in N , and for the rest
N consists of ε-transitions (between states in such a path), so the construction
of N always terminates. The set U1 returned at the end contains exactly the
unreachable transitions in P0. A proof of this fact is presented at the end of this
section.

We give an example construction of NFA N from a PDA. It will serve as
running example in the remainder of this paper. As usual, the initial state in
PDAs and NFAs is drawn with an incoming arrow, and final states with a double
circle.

Example 1. Consider the following PDA P0.

q0

q1

ε/da

ε/d
ε/a

ε/b

q2
db/ε

ca/ε

ε/c

b0/ε
q3 qf

We have taken the liberty to omit the state qe from P0, to keep the example
small, and since the state q3 is always reached with the stack b0.

To determine the reachable transitions in P0, the following NFA N is
constructed.

q0

ε a
n3

ε

n4

ε

q2

c

d

n5

ε

n2

εε

q1

a

b

n1

ε

q3
b0m0

ε

qf
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– Initially N consists of m0
b0→ q0.

– First the paths q0
ε→ n1

a→ q1 and q0
ε→ n2

b→ q1 and q0
ε→ n3

a→ n4
d→ q2

are added to N , by the transitions q0
ε/a→ q1 and q0

ε/b→ q1 and q0
ε/da→ q2,

respectively, in P0. These transitions are deleted from U1.
– Next the paths q1

ε→ n5
c→ q2 and q1

ε→ n4 are added to N , by the transitions

q1
ε/c→ q2 and q1

ε/d→ q2, respectively, in P0, which are deleted from U1.
– Next the transitions n1

ε→ q3 and n2
ε→ q3 are added to N , by the transitions

q2
ca/ε→ q3 and q2

db/ε→ q3, respectively, in P0, which are deleted from U1.
– Finally the transition m0

ε→ qf is added to N , by the transition q3
b0/ε→ qf in

P0, which is deleted from U1.

Since all transitions in P0 are applied in the construction of N , they are all
reachable. That is, at the end U1 = ∅, and P1 coincides with P0.

Correctness Proof. The following two properties of N , which follow immediately
from its construction, give insight into the structure of N . In particular, Lemma 3
implies that in N , the outgoing transitions of a final state always carry the label
ε, while each non-final state has exactly one outgoing transition with a label
from Γ .

The following two lemmas can be proved by induction on the construction
of N .

Lemma 2. For each state x in N there is a path m0
σ⇒ x in N , for some σ.

Lemma 3. For each state x in N there is exactly one path x
σ� q in N , for

some σ, q.

Example 4. Lemma 3 holds for all states in the NFA N from Example 1.

x m0 n1 n2 n3 n4 n5 q0 q1 q2 q3 qf

σ b0 a b ad d c ε ε ε ε ε
q q0 q1 q1 q2 q2 q2 q0 q1 q2 q3 qf

Lemma 5. If there are paths x
σR

� q and x
τR

⇒ r in N , then there is a run
(q, σ) →∗ (r, τ) of P1.

Example 6. m0
b0� q0 and m0

b0ad⇒ q2 in the NFA N from Example 1. We have
(q0, b0) → (q1, ab0) → (q2, dab0) in the corresponding PDA P1 = P0.

The following proposition is a corner stone in the correctness proof.

Proposition 7. There is a path m0
σR

⇒ r in N if, and only if, (r, σ) is reachable
in P0.

Example 8. In the NFA N from Example 1, the paths from m0 to a final state
are m0

b0⇒ q0, m0
b0a⇒ q1, m0

b0b⇒ q1, m0
b0ac⇒ q2, m0

b0ad⇒ q2, m0
b0bc⇒ q2, m0

b0bd⇒ q2,
m0

b0ad⇒ q2, m0
b0⇒ q3, and m0

ε⇒ qf . In the corresponding PDA P0 the reach-
able configurations are (q0, b0), (q1, ab0), (q1, bb0), (q2, cab0), (q2, dab0), (q2, cbb0),
(q2, dbb0), (q2, dab0), (q3, b0), and (qf , ε).
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Theorem 9. The returned set U1 consists of the unreachable transitions in P0.

Proof. Suppose θ = q
σ/τ→ r in P0 is not in U1. Then during the construction

of N , θ was used in the creation of a path y
τR

� r, together with one or more
transitions x

ε→ y. We choose one such x. The construction requires that there is

a path x
σR

⇒ q in N . And by Lemma 2, m0
υR

⇒ x for some υ. So by Proposition 7,
(q, συ) is reachable in P0. In this configuration, θ can be applied, to reach (r, τυ).
So θ is reachable in P0.

Vice versa, suppose θ is reachable in P0. Then a configuration (q, σρ) is

reachable in P0, for some ρ. So by Proposition 7 there is a path m0
(σρ)R⇒ q in N .

This path splits into m0
ρR

⇒ x
σR

⇒ q in N , where we choose x such that x
σR

⇒ q

does not start with an ε-transition. In view of θ, a path y
τR

� r and a transition
x

ε→ y were added to N . And as a result, θ was deleted from U1. �	

Example 10. In Example 1, the fact that U1 = ∅ means that the PDA P0 does
not contain unreachable transitions.

Complexity Analysis. Let Q be the number of states and T the number of tran-
sitions in the PDA P0. For simplicity, in the analysis of the worst-case time
complexity of the algorithm we assume that the number of elements popped
from and pushed onto the stack in one transition, as well as the size of the stack
alphabet, are bounded by some constant. Then the NFA N contains at most
O(Q) states.

The worst-case time complexity of the forward procedure is O(Q4T ). Firstly,
the body of this procedure is run at most O(Q2) times (because N contains
at most O(Q2) transitions). Secondly, in each run at most T times (once for
each transition of P0), in step 2 a backward scan over ε-transitions is performed,
which takes at most O(Q2) (because there are at most O(Q2) ε-transitions).

3.2 Detecting Which Transitions Can Lead to the Final State

If the transition m0
ε→ qf is not in N , then by Proposition 7 the language

accepted by P0 is empty. So then all transitions in P0 can be reported as useless
and we are done.

So we can suppose that the transition m0
ε→ qf is in N . Recall that the PDA

P1 is obtained by culling the set U1 of unreachable transitions, computed by the
forward procedure, from the input PDA P0. The set U2 of useless transitions in
P1 is constructed by running the following backward procedure over ε-transitions
in N that are in a set E\G; at the start of such a run an ε-transition from E\G
is copied to the set G, while on the other hand during the run ε-transitions from
N may be added to E.

Initially U2, as an overapproximation, contains all transitions in P1, E =
{m0

ε→ qf} and G = ∅. We recall from step 2 of the forward procedure that
the set Sq,σ equals {q} if σ = ε, or the states n for which there exists a path
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n
a→ y

σ′R
=⇒ q in N if σ = σ′a. These sets have already been computed in (the

last run of) the forward procedure.

Algorithm 3. Procedure backward to compute the transitions in the PDA P1

via which the final state cannot be reached.
While E\G �= ∅ do:

1. Pick an x
ε→ y ∈ E\G and add it to G.

2. Find the path y
τR

� r in N (for some τ , r); since r denotes a final state, according to
Lem. 3, exactly one such path exists.

3. For each transition θ = q
σ/τ→ r in P1 (for any q, σ) do:

3.1 If x �∈ Sq,σ , then stop this iteration step (i.e., return to step 3).
3.2 If θ ∈ U2, then delete θ from U2.

3.3 If σ = σ′a (i.e., σ �= ε), then add to E the ε-transitions that occur in any path x
a→ z

σ′R
⇒ q

in N .

Stop, and return the set U2 of useless transitions in P1.

The transitions in U1 ∪ U2 that stem from the original PDA P (i.e., not
those from the preprocessing step in which qe and qf were added) are the useless
transitions in P , so can be culled without changing the associated language.

The idea behind the backward procedure is that a transition x
ε→ y in N

is added to E when we are certain that, for some ρ, υ and s, there is a path

m0
ρR

⇒ x
ε→ y

υR

⇒ s in N and a run (s, υρ) →∗ (qf , ε) of P1. Each transition x
ε→ y

in E may in turn give rise to adding ε-transitions in N to E, and removing

transitions from U2. Namely, by Lemma 3 there is exactly one path y
τR

� r in

N (for some τ , r). For each transition θ = q
σ/τ→ r (for any q, σ) in P1, all

ε-transitions in any path x
σR

⇒ q in N can be added to E. The reason is that

there is a path m0
ρR

⇒ x
σR

⇒ q in N , as well as a run (q, σρ) →∗ (qf , ε) of P1.
The transition θ gives rise to the move (q, σρ) → (r, τρ); in view of the paths

y
τR

� r and y
υR

⇒ s in N , by Lemma 5 there is a run (r, τρ) →∗ (s, υρ) of P1;
and by assumption there is a run (s, υρ) →∗ (qf , ε) of P1. So if there is a path

x
σR

⇒ q in N , then θ is useful: in view of the path m0
ρR

⇒ x
σR

⇒ q in N , by
Proposition 7, the configuration (q, σρ) is reachable in P0; and we argued there
is a run (q, σρ) →∗ (qf , ε) of P1, which starts with an application of θ. Hence θ
can be removed from U2. To try and avoid adding the same ε-transition to E

more than once, we only consider those paths x
σR

⇒ q in N that do not start with
an ε-transition.

The backward procedure is executed only a finite number of times, as it is
performed at most once for each ε-transition of N . The set U2 returned at the
end contains exactly the useless transitions in P1. The corresponding theorem
is presented at the end of this section, together with two propositions needed in
its proof.
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Example 11. We perform the backward procedure on the NFA N from
Example 1.

– Initially E = {m0
ε→ qf} and G = ∅.

– m0
ε→ qf is added to G; then τ = ε and r = qf . Since Sq3,b0 = {m0},

the transition q3
b0/ε→ qf is deleted from U2, and the ε-transitions in paths

m0
b0→ z

ε⇒ q3 in N are added to E: q0
ε→ n1

ε→ q3 and q0
ε→ n2

ε→ q3.
– q0

ε→ n1 is added to G; then τ = a and r = q1. Since Sq0,ε = {q0}, the

transition q0
ε/a→ q1 is deleted from U2.

– q0
ε→ n2 is added to G; then τ = b and r = q1. Since Sq0,ε = {q0}, the

transition q0
ε/b→ q1 is deleted from U2.

– n1
ε→ q3 is added to G; then τ = ε and r = q3. Since Sq2,ca = {n1}, the

transition q2
ca/ε→ q3 is deleted from U2, and the ε-transitions in paths n1

a→
z

c⇒ q2 in N are added to E: q1
ε→ n5.

– n2
ε→ q3 is added to G; then τ = ε and r = q3. Since Sq2,db = {n2}, the

transition q2
db/ε→ q3 is deleted from U2, and the ε-transitions in paths n2

b→
z

d⇒ q2 in N are added to E: q1
ε→ n4.

– q1
ε→ n5 is added to G; then τ = c and r = q2. Since Sq1,ε = {q1}, the

transition q1
ε/c→ q2 is deleted from U2.

– q1
ε→ n4 is added to G; then τ = d and r = q2. Since Sq1,ε = {q1}, the

transition q1
ε/d→ q2 is deleted from U2.

At the end, U2 consists of q0
ε/da→ q2. So this transition is useless in P1.

Example 11 shows that in step 2 of the backward procedure, the path y
τR

� r

cannot be replaced by all paths y
τR

⇒ r in N . Else q0
ε/da→ q2 would be erroneously

deleted from U2, in view of the transition q0
ε→ n1 in E and the path n1

a→ q1
ε→

n4
d→ q2 in N .

Correctness Proof. The following proposition is needed to show that only useful
transitions in P1 are deleted from U2 during runs of the backward procedure.

Proposition 12. Let x
ε→ y be a transition in E, and y

τR

� r a path in N . Then

there is a path m0
ρR

⇒ x in N , for some ρ, such that there is a run (r, τρ) →∗

(qf , ε) of P1.

Example 13. We revisit Example 1. According to Example 11, q1
ε→ n5 ∈ E.

Moreover, n5
c� q2 is a path in N . The only run of P1 from q2 with c on

the top of the stack to (qf , ε) is (q2, cab0) →∗ (qf , ε). Indeed, as predicted by

Proposition 12, there is a path m0
b0a⇒ q1 in N .

The following proposition is needed to show that all useful transitions in P1

are eventually deleted from U2.
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Proposition 14. Let (r, τρ) →∗ (qf , ε) be a run of P1 and m0
ρR

⇒ x
ε→ y

τR

⇒ r a
path in N . Then x

ε→ y is in E when the backward procedure terminates.

Example 15. Again we revisit Example 1. Consider the run (q1, ab0) →∗ (qf , ε)

of P1 and the path m0
b0⇒ q0

ε→ n1
a⇒ q1 in N . As predicted by Proposition 14,

q0
ε→ n1 is in E when the backward procedure terminates in Example 11.

Theorem 16. The returned set U2 consists of the useless transitions in P1.

Proof. Suppose the transition θ = q
σ/τ→ r in P1 is not in U2. Since θ is in P1, by

the forward procedure, there is a path y
τR

� r in N . Since θ 
∈ U2, while running
the backward procedure, for some x, the transition x

ε→ y was found to be in

E, and a path x
σR

⇒ q was found to be in N . In view of the transition x
ε→ y

in E and the path y
τR

� r in N , by Proposition 12, there is a path m0
ρR

⇒ x
in N , for some ρ, such that there is a run (r, τρ) →∗ (qf , ε) of P1. In view of

the path m0
ρR

⇒ x
σR

⇒ q in N , by Proposition 7, (q, σρ) is reachable in P1. By
applying θ to this configuration, (r, τρ) is reached. Since moreover there is a run
(r, τρ) →∗ (qf , ε) of P1, θ is useful in P1.

Vice versa, suppose θ is useful in P1. Then there is a run (q0, b0) →∗ (q, σρ) →
(r, τρ) →∗ (qf , ε) of P1. In view of the run (q0, b0) →∗ (q, σρ), by Proposition 7,

there is a path m0
ρR

⇒ x
σR

⇒ q in N , where we choose x such that x
σR

⇒ q does not
start with an ε-transition. Since θ is in P1, by the forward procedure, there is a

path x
ε→ y

τR

� r in N . In view of the run (r, τρ) →∗ (qf , ε), by Proposition 14,

x
ε→ y is eventually in E. In view of the paths y

τR

� r and x
σR

⇒ q in N , during the
iteration of the backward procedure in which x

ε→ y is added to G, θ is deleted
from U2. �	

Example 17. In Example 11, the fact that U2 = {q0
ε/da→ q2} means that this is

the only useless transition of the PDA P1.

Complexity Analysis. Computing U2 takes at most O(Q4T ): for each of the at
most O(Q2) ε-transitions in E, and for at most T transitions in P1, in step 3.3
a forward scan is performed over the ε-transitions in N , which takes at most
O(Q2).

4 Alternative Approaches

We discuss three alternative approaches to detect useless transitions in PDAs.
One approach is to transform the PDA under consideration into an equivalent

context-free grammar, and then determine the useless productions. Disadvantage
here is that the resulting grammar tends to be much larger than the original
PDA.
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A second approach is to check for each transition separately whether it is
useless: provide the transition with a special input symbol ξ, all other transitions
in the PDA with empty input ε, and check whether the language accepted by
the resulting PDA intersected with the regular language ξ+ is empty. Emptiness
of a PDA can be checked by getting rid of ε-transitions, determining an upper
bound on the length of the shortest string in the language (if any), and checking
all strings up to this length. This approach however is much more expensive than
the one put forward in the current paper.

The most interesting alternative is to use the algorithms from [2,4] to com-
pute post∗(C) and pre∗(C), with C a set of configurations of the PDA under
consideration: post∗(C) contains the configurations reachable in the PDA from
a configuration in C, while pre∗(C) contains the configurations from which a
configuration in C can be reached in the PDA. The idea is as follows. To check

whether a transition θ = q
σ/τ→ r of the PDA is useless, introduce a fresh state

qθ, and replace θ in the PDA by two transitions: q
ε/ε→ qθ and qθ

σ/τ→ r. Then θ is
useless if and only if

post∗({(q0, ε)}) ∩ ({qθ} × Γ ∗) ∩ pre∗(F × Γ ∗) = ∅ .

The post∗ set captures the reachable configurations, while the pre∗ set captures
the configurations from which a final state can be reached. The set {qθ} × Γ ∗

checks whether θ is used on a path from initial configuration to final state.

5 Implementation and Performance Comparison

We assessed an implementation of our algorithm with a test suite of randomly
generated PDAs. The only real-world PDA, with 294 transitions, was obtained
from the grammar of the programming language C. This resulted in an NFA
with 339 states and 1030 transitions, of which 695 ε-transitions, and took 3.56 s
on a 2 GHz processor.

Achieving this performance required two optimizations, both limiting the
influence of ε-transitions. The first concerns determining the set of states leading
to q in step 2 of the forward procedure. This set is constructed by following
paths backwards from q, which may lead through webs of ε-transitions, causing a
considerable slow-down. These ε-transitions were created in step 5 of the forward
procedure. The optimization consists of computing for each state s, in step 5,
the set B(s) of states that can reach s through ε-transitions only. If more ε-
transitions are added in step 5 during a next iteration, B is updated. The second
optimization concerns memoization of ε-transitions as they are encountered on
paths to q in step 3.3 of the backward procedure.

Furthermore, the third alternative approach described in Sect. 4 was imple-
mented, and its performance was compared with the implementation of our
algorithm. Actually four versions of that approach were implemented. In the
first version, transitions in the input PDA that pop more than one element from
the stack or push more than two elements onto the stack are first broken up into
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multiple transitions that pop one element from the stack and push at most two
elements onto the stack. In the second version, the computations of pre∗ and
post∗ have been redesigned to avoid this preprocessing step; and unlike the first
version, the second version can cope with PDA transitions that pop no elements
from the stack. The third and fourth versions make use of the fact that the
redesigned pre∗ and post∗ procedures are each other’s duals and can be defined
in terms of each other. The first three versions exhibit a worst-case time com-
plexity of O(S3T 4) and the fourth version O(S2T 4), with S the maximum stack
string length in the PDA transitions. (We take S into account here because of
this small distinction.)

It should be noted that the last three versions of the alternative approach do
not terminate for certain input PDAs. This is due to the fact that the redesigned
pre∗ and post∗ procedures, which eliminate the need for input preprocessing,
result in an infinite loop whenever the input PDA contains certain loops. PDAs
on which at least one of these algorithms did not terminate have been excluded
from the comparison in Table 1.

The prototype implementations of the alternative approach have certain
drawbacks, which are described in [3]. The most relevant to the performance
comparison is the maximum allowed set size (L SIZE ). For each transition in
the PDA, the alternative approach computes the intersection of two NFAs in
order to determine whether the transition is useless. As a result, the set of states
overflows fairly quickly even for small inputs. L SIZE has to be adjusted for each
input PDA at compile time. This posed a limit on the size of the PDAs that
could be tested. An additional parameter, M SIZE, exists and serves a similar
purpose to that of L SIZE. For certain inputs this parameter has to be adjusted
as well. To keep the comparison fair, all implementations were tested using the
same M SIZE and L SIZE for a particular input. Some indicative results are
presented in Table 1. Q denotes the number of states, T the number of tran-
sitions, and S the maximum stack string length in the PDA. The PDAs were
generated using the PDAgen tool. The number of useless transitions they con-
tain, which ranges from none to all transitions, appears to have no impact on
the running time of the algorithms.

In Table 1, entries have been sorted on the basis of the S3T 4 size of the
input PDA. This performance analysis shows that the algorithm presented in the
current paper clearly outperforms the four implementations based on the third
approach in Sect. 4. Our algorithm’s running time shows a favorable running time
when the size of the input PDA is increased, owing to the fact that its worst-
case time complexity O(Q4T ) only occurs in the unlikely case that the NFA is
constructed over a large number of iterations, is saturated with ε-transitions,
and contains a lot of backward nondeterminism. Rather its efficiency is affected
by an increase of L SIZE, while increasing this parameter is actually only needed
for the implementation of the alternative approach in the above test cases. To
illustrate this and indicate how our algorithm performs when PDA size increases,
Table 2 shows the performance of our algorithm on different-sized inputs. For
larger input PDAs M SIZE and L SIZE have been adjusted as necessary.
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Table 1. Performance of our algorithm against the alternative approach

Input PDA Algorithm (sec)

Q T S M SIZE L SIZE Ours Alt. 1 Alt. 2 Alt. 3 Alt. 4

4 5 5 600 1200 0.38 1.33 1.08 1.29 1.00

6 6 9 600 2000 0.66 3.14 2.16 2.32 2.12

11 10 5 600 1200 0.32 2.82 2.13 2.55 1.89

7 10 7 600 1200 0.38 3.59 2.36 2.56 2.18

8 10 8 600 2000 0.66 4.84 3.36 3.77 3.23

7 10 12 600 2800 1.02 16.86 11.57 6.29 11.17

16 20 6 600 2000 0.65 18.21 12.68 11.58 7.69

6 10 17 600 5000 2.06 34.48 25.56 11.15 26.14

22 31 5 600 3000 1.04 26.35 22.86 26.61 19.20

9 20 10 600 6000 2.50 78.33 159.49 45.00 99.24

8 20 13 600 8000 3.83 156.01 108.35 90.24 116.95

8 20 13 600 10000 5.96 274.46 325.94 141.99 376.41

A detailed account of the implementation of the alternative approach and
the performance comparison is presented in [3].

Table 2. Scalability of our algorithm

Input PDA Algorithm (sec)

Q T M SIZE L SIZE Our alg.

16 20 600 1200 0.38

26 40 600 1200 0.45

30 50 600 1200 0.47

29 60 600 1200 0.50

33 70 600 1200 0.68

44 80 600 1200 0.68

60 120 600 1200 1.39

86 140 600 1200 1.33

3 294 600 1200 3.56

107 200 1200 2000 5.54

128 300 1200 2000 5.58

155 400 2000 3000 31.02

170 500 2000 3000 39.12

185 600 3000 4000 75.26

250 600 3000 4000 74.77

Acknowledgments. Javier Esparza proposed the alternative approach using pre∗
and post∗. Jörg Endrullis provided a useful suggestion for the efficient implementation
of this alternative approach.
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Abstract. Well-Structured Pushdown Systems (WSPDSs) are push-
down systems extended with states and stack alphabet to be vectors, for
modeling (restricted) recursive concurrent programs. It has been consid-
ered to be “very close to the border of undecidability”. In this paper,
we prove some hardness results for the coverability problem of WSPDSs.
We show that for WSPDS with three dimensional vectors as states and
WSPDS with three dimensional vectors as stack alphabet, the coverabil-
ity problem becomes Ackermann-hard.

Keywords: Automata and logic · Coverability · Lower bounds

1 Introduction

A Well-Structured Pushdown System (WSPDS) [4] has been proposed to combine
Pushdown Systems (PDS) [2] and Well-Structured Transition System (WSTS) [1],
for modeling multi-threaded recursive programs. Simply speaking, WSPDSs are
PDSs with well-quasi-ordered (potentially infinite) sets as states or stack alpha-
bet. WSPDSs have powerful expressiveness and are considered as “being close
to the border of undecidability” [8], which can be illustrated by the following
example.

Example 1. The program in Fig. 1 weakly computes the Ackermann function
A(2, n) (see Eq. 1) with only one global variable. Note that since we do not allow
zero-tests, the expression ∗ nondeterministically evaluates to true or false. It
can not exactly evaluate A(2, n), but the largest value of x is A(2, n).

This program can be formalized as the WSPDS on the right of Fig. 1, where
states are pairs of current value of global variable x and the line number in the
codes, and stack symbols correspond to names of procedures. The transitions
between states tell how to manipulate the global variable and the stack. For
example the cyclic transition −1, push A1 on state 5 means x = x−1 for global
x and push symbol A1 to the stack. The transition pop A0 from state 22 to 20
means (checking and) popping the top element A0 from the stack.

Recursive nonnegative integer programs can be modeled as WSPDSs where
either the states are vectors (global nonnegative integer variables) or the stack
c© Springer International Publishing AG 2017
F. Drewes et al. (Eds.): LATA 2017, LNCS 10168, pp. 435–446, 2017.
DOI: 10.1007/978-3-319-53733-7 32
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Fig. 1. The program that computes Ackermann function with only one global variable,
and its corresponding WSPDS

alphabets are vectors (local nonnegative integer variables). Recursive concurrent
programs also can be modeled as WSPDSs where the stack symbols are vectors
representing the number of active threads [3]. So the coverability problem of
WSPDS can be applied to recursive program analysis. However, the results in
this paper indicate these problems are very hard.

In this paper, we investigate the coverability of two subclasses of WSPDSs:
one is WSPDS with vectors as states but finite stack alphabet, and another is
with finite states but vectors as stack symbols. Our contributions include:

– We show a general framework to prove hardness results of the coverability
problem, inspired by the elegant work by Schnoebelen et al. [5,11]. We proved
that once a model can weakly compute and weakly reversely compute some
function f , then its coverability problem is f -hard.

– We prove that for WSPDSs with 3-dimensional vector as states but finite
stack alphabet, and those with finite states but 3-dimensional vectors as stack
alphabet, the coverability problems are Ackermann-hard.

Related Work. There are a few hardness results for models such as Vector Addi-
tion Systems (VAS), Reset VAS, Pushdown VASS, ect.

– The best known lowerbounds for VAS was given by Lipton in his seminal
work [9]. He proved that the lowerbounds of coverability and reachability of
VAS are EXPSPACE, which has never been improved in the last 40 years.

– With the same technique as Lipton’s, Laźıc [6] proved that the lower bound
of coverability for pushdown systems with vectors as states is TOWER-hard.

– Schnoebelen et al. [5,11] proved that the coverability problem of reset Petri
Nets is Ackermann-hard by using another brilliant technique especially worked
for models with reset-zeros.

We use techniques proposed by Schnoebelen et al.. The main idea is sub-
stituting zero-tests on bounded counters with resettings. If you reset non-zeros
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to zeros, then you will get “punished” afterwards. The simulation forces and
guarantees a correct run which is similar to real zero-tests.

Reset Petri Nets are special cases of WSPDS. However, in their result, the
dimension of Reset Petri Nets is related to m in the value A(m,n). In WSPDSs,
with the help of stack, the reductions are independent from the value of either
m or n.

Leroux et al. [8] proved the decidability of termination problem of Pushdown
VASS, and they also give a Hyper-Ackermannian lower bound of the reachabil-
ity tree algorithm for termination. Note their lower bounds are established for
specific algorithms, not for the problem.

2 Preliminary

Throughout the paper, we use p, q to range over states, α, β over stack symbols,
and w, v over stack words. We write N (resp. Z) for the set of natural numbers
(resp. integers), and N

k (resp. Z
k) is the set of k-dimensional vectors over N

(resp. Z). We use �n, �m to range over vectors in N
k, and �a,�a′ for vectors in Z

k.
We write �n[j] to denote the j-th element of �n. ε is an empty word.

2.1 Well-Structured Pushdown System

Definition 2. A Well-Structured Pushdown System (WSPDS) is a triplet
〈P, Γ,Δ〉 where
– P , the set of states is finite or P = N

k for some k,
– Γ , the stack alphabet is finite, or Γ = N

d for some d, and
– Δ is a finite set of monotonic partial functions: P × Γ≤2 → P × Γ≤2.

Monotonicity means if f(p,w) = (q, v) for p, q ∈ P and w, v ∈ Γ≤2, then
for any p′ ≥ p,w′�w we have f(p′, w′) = (q′, v′) and q′ ≥ q, v′�v. Here � is
an element-wise extension of ≥ on Γ ∗. The termination problem for WSPDSs
is decidable [7]. However, if we remove monotonicity, Well-Structured Pushdown
System becomes Turing complete.

A configuration 〈p,w〉 is a pair of a state p and a stack content (word) w.
One step transition ↪→ between configurations can be seen as the configuration
rewriting, and ↪→∗ is the reflexive transitive closure of ↪→.

(p,w → q, v) ∈ Δ

〈p,ww′〉 ↪→ 〈q, vw′〉
Given an initial configuration c0 and final configuration cf = 〈q, v〉, the reacha-
bility problem asks whether c0 ↪→∗ cf , and the coverability problem determines
whether there exist q′ ≥ q and v′�v such that c0 ↪→∗ 〈q′, v′〉.
Example 3. Let M = 〈(N,≤), (N,≤),Δ〉 be a WSPDS where

Δ =
{

r1 : p, α → p + 2, (α − 2)(α − 2), if α ≥ 2
r2 : p, ε → p − 2, 2, if p ≥ 2

The configuration c0 = 〈2, 0〉 can reach 〈2, 000〉. It can not reach 〈1, 000〉,
which can be covered however.
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2.2 Two-Counter Machine

Definition 4. A counter machine is a triplet M = 〈P,C,Δ〉, where P is a
finite set of states, C is a finite set of counters and Δ ⊆ P ×op(C)×P are finite
transition rules. The instruction set op(C) is a set of rules which are defined
below and Ci is the i-th counter of M .

op :: = Ci = 0? | Ci++ | Ci > 0?Ci−−

A configuration is a tuple (p, �n) with p ∈ P and �n ∈ N
|C|, representing the

current contents of each counter.
The transition between configurations (p, �n) ↪→ (q, �m) is defined as follows.

– If (p,Ci = 0?, q) ∈ Δ and �n[i] = 0, then �m = �n;
– If (p,Ci++, q) ∈ Δ, then �m[i] = �n[i] + 1 and �m[j] = �n[j] for j �= i;
– If (p,Ci > 0?Ci−−, q) ∈ Δ and �n[i] > 0, then �m[i] = �n[i] − 1 and �m[j] = �n[j]

for j �= i;

Given an initial configuration (p0,�0) and a final configuration (pf ,�0), the
reachability problem asks whether there exists a run (p0,�0) ↪→∗ (pf ,�0).

Two-counter machines (counter machines with |C| = 2) are Turing com-
plete [10]. However, we can restrict their computing power by applying a bound
for counters. For example, if the bound is 22

n

where n is the input size, then the
reachability problem is EXPSPACE-hard. Similarly, if the bound is Ackermann
function, then the reachability problem is Ackermann-hard.

We write (p, �n)
B
↪→ (q, �m) to denote the run bounded by B, i.e., the sum of

all counters does not exceed B during the run. We write
B
↪→

∗
for the reflexive

and transitive closure of
B
↪→.

We recall the definition of Ackermann function here, and note that Acker-
mann function is strictly monotonic.

A(m,n) =

⎧
⎨

⎩

n + 1 if m = 0
A(m − 1, 1) if n = 0
A(m − 1, A(m,n − 1)) otherwise

(1)

Lemma 5. Ackermann function is strictly monotonic: For any m′ > m,
A(m′, n) > A(m,n), and for any n′ > n, A(m,n′) > A(m,n).

3 General Reduction Framework

We apply techniques proposed by Schnoebelen et al. [5,11], in which they reduce
the reachability problem of Ackermann-bound two counter machines to the cov-
erability of Reset Petri Nets. In this section, we give a general framework of the
reduction from the reachability problem of f -bound two-counter machine to the
coverability problem of some model, where f is a strictly monotonic function.

Briefly speaking, the reduction consists of three parts:
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1. MA computes the value f(�n) given the input �n;
2. M b simulates a two-counter machine with f(�n)-bounds;
3. M−1

A reversely computes f(�n).

Given some �n, the first part MA computes the bound for M b. This bound is at
most f(�n). After the simulation, M b will decrease (wrong simulation) or keep
(correct simulation) the value of the bound. Then this value is passed to the third
part M−1

A for reverse computation. The strict monotonicity guarantees that if
the passed value is smaller than f(�n), we can not cover �n in the third part. Only
a correct simulation run can lead to the coverability of �n. We depict the idea in
Fig. 2.

Fig. 2. Reduction from the reachability problem of two-counter machine with f(�n)-
bounds to the coverability problem of M

3.1 Simulation of Two-Counter Machines with Bounds

In this part, we explain the construction of M b in Fig. 2. Assume M = 〈P,C,Δ〉
be a counter machine. We use M b = 〈P ′, C ∪ {b},Δ′〉 to simulate M under
the bound of value b. Starting from P ′ = P and Δ′ = ∅, we construct M b by
considering each rule (p, op(C), q) in Δ:

– If op(C) is Ci++, then P ′ = P ′ ∪ {s} where fresh state s �∈ P ′, and Δ′ =
Δ′ ∪ {(p, b > 0?b−−, s), (s, Ci++, q)};

– If op(C) is Ci > 0?Ci−−, then P ′ = P ′ ∪ {s} where fresh state s �∈ P ′, and
Δ′ = Δ′ ∪ {(p,Ci > 0?Ci−−, s), (s, b++, q)};

– If op(C) is Ci = 0?, then Δ′ = Δ′ ∪ {(p, reset Ci, q)}

Note that different models might have different syntax for the operation
reset Ci, which resets counter Ci to 0. The idea is depicted in Fig. 3. It is
easy to have the following two observations:

1. During the run of M b, if reset Ci for any i never happens, the summation
of counters will keep unchanged.

2. During the run of M b, if reset Ci for some i happens, the summation of
counters might decrease. Once we reset Ci �= 0 to 0, we decrease Ci without
increasing b, which makes the summation shrink.
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Fig. 3. The construction of Mb

If the summation of counters does not change during the run of M b, we can
conclude that every reset exactly simulates zero-test. Therefore, we have the
following lemma describing the correspondence between M and M b.

Lemma 6. Let M be a two-counter machine, and M b is constructed as above.

– If (p, (i1, i2))
b

↪→
∗

(q, (i′1, i
′
2)) in M , then there exists a run (p, (i1, i2, b)) ↪→∗

(q, (i′1, i
′
2, b

′)) in M b such that i1 + i2 + b = i′1 + i′2 + b′.
– If (p, (i1, i2, b)) ↪→∗ (q, (i′1, i

′
2, b

′)) in M b, then i′1+i′2+b′ ≤ i1+i2+b. Moreover,

if i′1 + i′2 + b′ = i1 + i2 + b, then there exists a run (p, (i1, i2))
b

↪→
∗

(q, (i′1, i
′
2))

in M .

3.2 Computing and Reversely Computing Function f(�n)

Let f be a k-ary function on natural numbers and �n = (n1, ..., nk). We say f
is strictly monotonic if for all i ∈ [1..k] n′

i > ni implies f(n1, ..., n
′
i, ..., nk) >

f(n1, ..., ni, ..., nk).
The computation and reverse computation of f(�n) could not be exact if our

model is not Turing complete. But fortunately, we do not need an exact value
of f(�n) for the simulation because M b will not increase this value. Therefore, if
the value computed by MA is no larger than f(�n), then after the simulation of
M b, this value will still be no larger than f(�n). In the third part, M−1

A reversely
compute �n′. If the computation is monotonic, it always holds that �n′ �> �n. We
call this kind of non-exact but monotonic computation “weak computation”.

Definition 7. The model MA weakly computes function f if the largest output
of MA is exactly f(�n) given the input �n.

The model M−1
A weakly reversely computes function f if given the input b,

and let S denote the set of all the outputs of M−1
A . It satisfies: a) If f(�n) = b,

then �n ∈ S; b) If �n ∈ S, then f(�n) ≤ b.
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There is still one more detail needed to be clarify: How to connect MA with
M b and M b with M−1

A ? After MA finishes the computation, it triggers p0 in M b,
and only when M b is in state pf can it trigger M−1

A . So the final state of MA

connects to p0, and pf connects the initial state of M−1
A . Note that MA,M b and

M−1
A share same counters. We conclude this section by following theorem which

will be used in next two sections.

Theorem 8. Let f be a strictly monotonic k-ary function, MA weakly computes
f and M−1

A weakly reversely computes f . Assume M is a two-counter machine,
and M b is the simulation model of bounded M as shown in Fig. 3. Given the
input of MA is �n.

– If (p0, (0, 0))
f(�n)
↪→

∗
(pf , (0, 0)) in M , then the largest output of M−1

A is �n;

– If M−1
A can output �n′ ≥ �n, then there exists a run (p0, (0, 0))

f(�n)
↪→

∗
(pf , (0, 0))

in M .

Proof. The proof is mainly by Lemma6.

– If (p0, (0, 0))
f(�n)
↪→

∗
(pf , (0, 0)) in M , then there must exist

(p0, (0, 0, f(�n)))↪→∗(pf , (0, 0, f(�n)))

in M b by Lemma 6. Since MA weakly computes f , the largest value passed to
M b is f(�n). Since M−1

A weakly reversely computes f , hence the largest output
of M−1

A is �n.
– If M−1

A outputs �n′ ≥ �n, then firstly there exists a run in M b such that
(p0, (0, 0, b)) ↪→∗ (pf , (i1, i2, b′)) with b′ ≥ f(�n′) ≥ f(�n). Also by Lemma 6,
b ≥ i1 + i2 + b′ ≥ f(�n). Since MA weakly computes f , so the only possibility is
b = i1 + i2 + b′ = b′ = f(�n′) = f(�n), i.e., (p0, (0, 0, f(�n))) ↪→∗ (pf , (0, 0, f(�n))),

which implies the run (p0, (0, 0))
f(�n)
↪→

∗
(pf , (0, 0)) in M . �

4 Lower Bounds for the Coverability Problem of WSPDS

In this part, we consider two subclasses of WSPDSs, i.e. vectors as states (P =
N

3, |Γ | < ∞), and vectors as stack symbols (|P | < ∞, Γ = N
3). Both can

weakly compute and reversely compute the Ackermann function which is strictly
monotonic. Therefore by Theorem 8, the coverability problems of both models
are Ackermann-hard.

4.1 Vectors as States

For simplicity, we define a WSPDS Mw = 〈N2,N,Δ〉 with 2-dimensional vectors
as states and 1-dimensional vectors as stack symbols to weakly compute A(m,n),
where

Δ =

⎧
⎨

⎩

r1 : ((m,n), ε) → ((m,n − 1),m − 1)
r2 : ((m, 0), ε) → ((m − 1, 1), ε)
r3 : ((0, n), b) → ((b, n + 1), ε)
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r1 changes state from (m,n) to (m,n−1) and push m−1 into the stack. r3 pops
an element b from stack and turns the state (0, n) to (b, n + 1). Note that each
rule denotes a monotonic function, such as ((m, 0), ε) → ((m−1, 1), ε) means for
any m′, n′ ≥ 0 we have transitions ((m′, n′), ε) → ((m′ − 1, 1), ε). Here we write
(m, 0) for readability.

Lemma 9. Ackermann function A(m,n) can be weakly computed by Mw in the
sense that:

A(m,n) = max{ b + 1 | 〈(m,n), ε〉 ↪→∗ 〈(0, b), ε〉}.
Proof. The configuration 〈(m,n), ε〉 is corresponding to A(m,n) defined as

– if m = 0, A(m,n) = n + 1. In Mw, 〈(m,n), ε〉 = 〈(0, n), ε〉, A(m,n) = n + 1.
– if m > 0, A(m,n) = A(m − 1, A(m − 1, ..., A(m − 1

︸ ︷︷ ︸
n+1

, 1))). Correspondingly in

Mw, the configuration run is 〈(m,n), ε〉 r1
↪→

∗ r2
↪→ 〈(m − 1, 1), (m − 1)n〉. By

induction hypothesis, A(m−1, 1) = max{b
′
+1 |〈(m−1, 1), ε〉 ↪→∗ 〈(0, b

′
), ε〉}.

After that, the configuration is 〈(0, b
′
), (m−1)n〉. Using r3, we get 〈(m−1, b

′
+

1), (m − 1)n−1〉. Then the state (m − 1, b
′
+ 1) is treated as (m,n) as before

to compute until the configuration becomes 〈(0, b
′′
), (m − 1)n−1〉. Repeat this

process until the configuration is 〈(0, b), ε〉.
However, because of the monotonicity, comparing with the correct transitions
there may exist data loss due to some wrong transitions:

– if m > 0, n > 0,use r2 rather than r1, i.e. A(m,n) is regarded as A(m, 0).
– if m > 0, n > 0,use r3 rather than r1, i.e. A(m,n) is seen as A(0, n).
– if m > 0, n = 0,use r3 rather than r2, i.e. A(m, 0) is taken as A(0, 0).

If no wrong transition happens, we are sure that b + 1 is the right result. �

Construction of MA. With a careful analysis of Mw, we can put the values
in stack into states and weakly compute Ackermann function with finite stack
alphabet as follows: Mp = 〈N3, {⊥, λ0, λ1},Δ〉, where

Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r11 : ((0, x, y),⊥) → ((x − 1, x, y − 1), λ0⊥)
r12 : ((0, x, y), λ1) → ((x − 1, x, y − 1), λ0λ1)
r13 : ((0, x, y), λ0) → ((x − 1, x, y − 1), λ1λ0)
r14 : ((t, x, y), λ0) → ((t − 1, x, y), λ0λ0)
r15 : ((t, x, y), λ1) → ((t − 1, x, y), λ1λ1)
r2 : ((0, x, 0), ε) → ((0, x − 1, 1), ε)

r31 : ((0, 0, y), λ0) → ((1, 0, y + 1), ε)
r32 : ((0, 0, y), λ1) → ((1, 1, y + 1), ε)
r33 : ((t, 0, y), λ1) → ((0, t − 1, y), λ1)
r34 : ((t, 0, y), λ0) → ((t + 1, 0, y), ε)
r35 : ((t, 1, y), λ1) → ((t + 1, 1, y), ε)
r36 : ((t, 1, y), λ0) → ((0, t − 1, y), λ0)
r37 : ((t, 0, y),⊥) → ((0, t − 1, y),⊥)
r38 : ((t, 1, y),⊥) → ((0, t − 1, y),⊥)
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Lemma 10. Ackermann function A(m,n) can be weakly computed by Mp in the
sense that:

A(m,n) = max{ b + 1 | 〈(0,m, n),⊥〉 ↪→∗ 〈(0, 0, b),⊥〉}.

Proof. The transition rules in Mp have the same effects with those in Mw.

– Rules r11 - r15 simulate r1 in Mw.
– Rule r2 imitates r2 in Mw.
– Rules r31 - r38 simulate r3 in Mw.

Concretely, in rules r11 - r15, t control the number of elements which are pushed
into the stack. And the run of λ0 or λ1 express different numbers, which appear in
the stack alternatively. Note that the number t of sequential λ0 or λ1 represents
the natural number t − 1. In rule r31, the state (1, 0, y + 1) stands for the top
of the stack is λ0 before pop. Similarly, in rule r32, the state (1, 1, y + 1) stands
for the top of the stack is λ1 before pop. Then rule r34 and rule r35 are used to
count the number of sequential λ0 or λ1. Rule r33,rules r36- r38 mean that t − 1
has been b in r3 in Mw. So the transitions in Mp is equivalent to the transitions
in Mw. We obtain Lemma 10 directly from Lemma 9. �

Construction of M−1
A . Conversely, if given an Ackermann value b, we con-

struct the initial configuration 〈(0, 0, b − 1),⊥〉. Because A(0, b − 1) = b. Then,
if all transition rules in Mp are reversed, each time when the configuration is
〈(0,m, n), ε〉, the pair (m,n) happens to be an argument pair. It will reach every
possible pair (m,n) such that A(m,n) = b from the smallest m = 0 to the largest
m.

We define the WSPDS associating to reverse-Ackermann function computa-
tion as Mp−1 .

Lemma 11. M−1
p weakly reversely computes Ackermann function.

Since reset operation is monotonic, 3-dimensional WSPDS M = 〈P =
N

3, |Γ | < ∞,Δ〉 can easily simulate M b. By Theorem 8, we obtain one of our
main results:

Theorem 12. For WSPDSs with 3-dimensional well-quasi-ordered states but
finite stack alphabet, the lower bounds of coverability problem are Ackermann-
hard.

4.2 Vectors as Stack Symbols

In this section we prove the hardness result for WSPDS M = 〈|P | < ∞, Γ =
N

3,Δ〉 : the coverability of it is Ackermann-hard. We will compute A(m,n) with
the model, whose size is independent of the m,n.
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Construction of MA. The idea is just liking program Ackermann function with
functional programming languages. We define a 3-dimensional WSPDS Mr =
({•}, (N ∪ ∗) × (N ∪ {∗}) × (N),Δ), where

Δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 : (∗,m, n) → (m − 1,m, n − 1)(∗,m, n)
r2 : (∗,m, 0) → (∗,m − 1, 1)(∗,m, 0)
r3 : (∗, 0, n) → (∗, ∗, n + 1)
r4 : (r,m, n) → (m − 1,m, n − 1)(r,m, n)
r5 : (r, 0, n) → (∗, ∗, n + 1)(r, 0, n)
r6 : (r,m, 0) → (∗,m − 1, 1)(r,m, 0)
r7 : (∗, ∗, n)(r,m, n′) → (∗, r, n)
r8 : (∗, ∗, n)(∗,m, n′) → (∗, ∗, n)

Here we just remove states in transitions since there is only one state •.

Lemma 13. For each configuration in the run of Mr, if the stack has two ele-
ments at least, the stack must belong to one of these conditions:

– (∗,m, n)(∗,m
′
, n

′
)w or (∗,m, n)(r

′
,m

′
, n′)w, then A(m,n) = A(m

′
, n

′
).

– (r,m, n)(∗,m
′
, n

′
)w or (r,m, n)(r

′
,m

′
, n′)w, then A(r,A(m,n)) = A(m

′
, n

′
).

– (∗, ∗, n)(∗,m
′
, n

′
)w or (∗, ∗, n)(r

′
,m

′
, n′)w, then A(m

′
, n

′
) = n.

Proof. Firstly, the form of the second element from the top of the stack must be
(∗,m

′
, n

′
) or (r

′
,m

′
, n

′
) because of five push rules (r1, r2, r4, r5, r6).

– If the top element is (∗,m, n), which is from r2, r6 or r7. No matter r2 or r6,
A(m,n) = A(m

′ − 1, 1) = A(m
′
, 0) = A(m

′
, n

′
).

Before r7, the stack is (∗, ∗, n)(r,m
′′
, n

′′
)(∗,m

′
, n

′
)ω or

(∗, ∗, n)(r,m
′′
, n

′′
)(r

′
,m

′
, n

′
)ω(by r1 and r4).

By induction hypothesis, we have A(m
′′
, n

′′
) = n and A(r,A(m

′′
, n

′′
)) =

A(m
′
, n

′
). So A(r, n) = A(m

′
, n

′
).

– If the top element is (r,m, n), which is from r1 or r4.
A(r,A(m,n)) = A(m

′ − 1, A(m
′
, n

′ − 1)) = A(m
′
, n

′
).

– If the top element is (∗, ∗, n), which is from r3, r5, r8. For r3 and r5, A(0, n
′
) =

n
′
+ 1 = n. Before r8, the stack is (∗, ∗, n)(∗,m

′′
, n

′′
)(∗,m

′
, n

′
)ω

or (∗, ∗, n)(∗,m
′′
, n

′′
)(r

′
,m

′
, n

′
)ω (by r2 and r6). By induction hypothesis, we

have A(m
′′
, n

′′
) = A(m

′
, n

′
) and A(m

′′
, n

′′
) = n. So A(m

′
, n

′
) = n. �

Lemma 14. Ackermann function A(m,n) can be weakly computed by Mr in the
sense that:

A(m,n) = max{ b | 〈•, (∗,m, n)〉 ↪→∗ 〈•, (∗, ∗, b)〉}.

Proof. A(m,n) is computed in Mr like these conditions.

– m = 0: to compute A(0, n) and the initial configuration of Mr is 〈•, (∗, 0, n)〉.
By r3 of Mr, we get the ackermann value b = n + 1 = A(0, n).

– m > 0: to compute A(m,n). From the analysis of the proof for Lemma13, we
can deduce that in the run, the final configuration must be 〈•, (∗, ∗, b)〉 after
using r8. So we can get the final ackermann value b.
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Similarly to Mw in Sect. 4.1, there may exist data loss in the run because of
nondeterminacy. If the stack is (0, 3, 3)w, use r2 and get A(2, 1) rather than the
right one A(2, A(3, 2)). So, the result computed by Mr is A(m,n) at most. �

Construction of M−1
A . Different from the last case, if we just reverse the

transition rules in Mr, the transition rules are not monotonic any more. So We
define a new 3-dimensional WSPDS Mr−1 = 〈{•}, (N3 ∪ {⊥},�),Δ〉, where

Δ =

⎧
⎨

⎩

r1 : (1,m, 1) → (1,m + 1, 0)
r2 : (1,m, n)(1,m − 1, n′) → (1,m, n + 1)
r3 : (1,m, n)) → (1, 0, n − 1)(1,m, n)

Here we just omit states in the transition rules since there is only one state •.
We can prove that every time we reach the bottom of the stack, we get a pair
(m,n) such that A(m,n) ≤ b.

Lemma 15. For any value b, let S be the set of all the pairs of (m,n) that can
reached from the initial configuration 〈•, (1, 0, b − 1)⊥〉, i.e.,

S = {(m,n) | 〈•, (1, 0, b − 1)⊥〉 ↪→∗ 〈•, (1,m, n)⊥〉}.

For any m,n, if A(m,n) = b then (m,n) ∈ S. For any (m,n) ∈ S, A(m,n) ≤ b.

Proof. r1 constructs (m+1, 0) from (m, 1) since their same ackermann value.
r2, r3 are to search whether n in (m, n) can be the ackermann value relating to
the pair (m + 1, n

′
). The transition rules above is mapped one-to-one from the

reverse Ackermann computation rules. So each time the configuration whose form
is 〈•, (1,m, n)⊥〉, (m,n) must be a proper argument pair corresponding to the
Ackermann value b. But our rules are monotonic, we might do wrong computa-
tion. Similar to the proof of Lemma9, we can show that every wrong computation
lead to a smaller (m,n) such that A(m,n) < b. And we are done. �

Corollary 16. M−1
r weakly reversely computes Ackermann function.

Since reset operation is monotonic, 3-dimensional WSPDS M = 〈|P | <
∞, Γ = N

3,Δ〉 can simulate M b. By Theorem 8, we obtain our another main
result:

Theorem 17. For WSPDSs with finite states but 3-dimensional well-quasi-
ordered stack alphabet, the lower bounds of coverability problem are Ackermann-
hard.

5 Summary

In this paper, we prove Ackermann-hard results for the coverability problems
of two subclasses of Well-Structured Pushdown Systems, by reductions from
the reachability problem of Ackermann-bounded two-counter machines. Further,
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because of the close relation between recursive natural numbers programs and
these two models, we can conclude that it is very hard to analyze recursive
nonnegative integer programs.

The techniques applied in this paper heavily rely on reset operations. How-
ever, some interesting subclasses of WSPDS do not allow resets, such as push-
down VASS. For these models, Lipton’s technique will be more suitable, how-
ever, we observe that Lipton’s methodology works for proving f -hardness results
where f is primitively recursive. We still do not know how to get higher lower-
bounds for nonprimitive functions without resets.

Acknowledgements. This research is partially supported by NSFC project 61472238,
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Abstract. Pushdown systems (PDSs) are a natural model for sequential
programs, but they can fail to accurately represent the way an assembly
stack actually operates. Indeed, one may want to access the part of the
memory that is below the current stack or base pointer, hence the need
for a model that keeps track of this part of the memory. To this end, we
introduce pushdown systems with an upper stack (UPDSs), an exten-
sion of PDSs where symbols popped from the stack are not destroyed
but instead remain just above its top, and may be overwritten by later
push rules. We prove that the sets of successors post∗ and predecessors
pre∗ of a regular set of configurations of such a system are not always reg-
ular, but that post∗ is context-sensitive, so that we can decide whether a
single configuration is forward reachable or not. In order to underapprox-
imate pre∗ in a regular fashion, we consider a bounded-phase analysis
of UPDSs, where a phase is a part of a run during which either push or
pop rules are forbidden. We then present a method to overapproximate
post∗ that relies on regular abstractions of runs of UPDSs. Finally, we
show how these approximations can be used to detect stack overflows
and stack pointer manipulations with malicious intent.

Keywords: Pushdown systems · Reachability analysis · Stack pointer ·
Finite automata

1 Introduction

Pushdown systems (PDSs) were introduced to accurately model the call stack of
a program. A call stack is a stack data structure that stores information about
the active procedures of a program such as return addresses, passed parameters
and local variables. It is usually implemented using a stack pointer (sp) register
that indicates the head of the stack. Thus, assuming the stack grows downwards,
when data is pushed onto the stack, sp is decremented before the item is placed
on the stack. For instance, in x86 architecture sp is decremented by 4 (pushing
4 bytes). When data is popped from the stack, sp is incremented. For instance,
in x86 architecture sp is incremented by 4 (popping 4 bytes).

This work was partially funded by the FUI project Freenivi.
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DOI: 10.1007/978-3-319-53733-7 33
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However, in a PDS, neither push nor pop rules are truthful to the assembly
stack. During an actual pop operation on the stack, the item remains in memory
and the stack pointer is increased, as shown in Figs. 1 and 2, whereas a PDS
deletes the item on the top of the stack, as shown in Figs. 3 and 4.

. . . a b c d . . .

sp

Fig. 1. The original
stack

. . . a b c d . . .

sp

Fig. 2. The stack
after one pop

b c d . . .

Fig. 3. The
original PDS
stack

c d . . .

Fig. 4. The PDS
stack after one
pop

This subtle difference becomes important when we want to analyze programs
that directly manipulate the stack pointer and use assembly code. Indeed, in
most assembly languages, sp can be used like any other register. As an example,
the instruction mov eax [sp − 4] will put the value pointed to at address sp − 4
in the register eax (one of the general registers). Since sp − 4 is an address above
the stack pointer, we do not know what is being copied into the register eax,
unless we have a way to record the elements that had previously been popped
from the stack and not overwritten yet. Such instructions may happen in mali-
cious assembly programs: malware writers tend to do unusual things in order to
obfuscate their payload and thwart static analysis.

. . . a b c d . . .

Fig. 5. The original UPDS stacks

. . . a b c d . . .

Fig. 6. The UPDS stacks after one pop

Thus, it is important to record the part of the memory that is just above the
stack pointer. To this end, we extend PDSs in order to keep track of this upper
stack : we introduce in this paper a new model called pushdown system with an
upper stack (UPDS) that extends the semantics of PDSs. In a UPDS, when a
letter is popped from the top of the stack (lower stack from now on), it is added
to the bottom of a write-only upper stack, effectively simulating the decrement
of the stack pointer. This is shown in Figs. 5 and 6, where after being popped, b
is removed from the lower stack (on the right) and added to the upper stack (on
the left) instead of being destroyed. The top of the lower stack and the bottom
of the upper stack meet at the stack pointer.

Paper Outline. The first contribution of this paper is a more precise model of
the stack of a program as outlined above and defined in Sect. 2.

We then investigate the sets of predecessors and successors of a regular set
of regular configurations of an UPDS. Unfortunately, in Sect. 3 we prove that
neither of them are regular. However, we show that the set of successors is
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context-sensitive. As a consequence, we can decide whether a single configuration
is forward reachable or not in an UPDS.

Then, in Sect. 4, we prove that the set of predecessors of an UPDS is regular
given a limit of k phases, where a phase is a part of a run during which either
pop or push rules are forbidden. Bounded phase reachability is an underapprox-
imation of the actual reachability relation on UPDSs that we can use to detect
some incorrect behaviours.

In Sect. 5, we give an algorithm to compute an overapproximation of the set
of successors. Overapproximation algorithms are often used while proving safety
properties since a set of bad configurations not reachable in the overapproxima-
tion is not reachable in the original model either. Our idea is to first overapproxi-
mate the runs of the UPDS, then compute an overapproximation of the reachable
upper stack configuration from this abstraction of runs and consider its product
with the regular, accurate and computable set of lower stack configurations.

Finally, in Sect. 6, we use these approximations on programs to detect stack
overflow errors and malicious attacks that rely on stack pointer manipulations.

Related Work. In [2,5,6], the pre∗ and post∗ of a regular set of configurations
on a pushdown system are shown to be regular. UPDSs are more expressive than
PDSs, since they feature both an upper stack and a lower stack, the latter being
equivalent to the single stack of PDSs.

One way to improve the expressiveness of pushdown automata is to change
the way transition rules interact with the stack. Ginsburg et al. introduced in
[7] stack automata that can read the inside of their own stack using a moving
stack pointer but can only modify the top. As shown in [8], stack automata are
equivalent to linear bounded automata (LBA). A LBA is a non-deterministic
Turing machine whose tape is bounded between two end markers that cannot
be overwritten. This model cannot simulate a UPDS whose lower stack is of
unbounded height.

Uezato et al. defined in [13] pushdown systems with transductions: in such
a model, a finite transducer is applied to the whole stack after each transition.
However, this model is Turing powerful unless the transducers used have a finite
closure, in which case it is equivalent to a simple pushdown system. When the set
of transducers has a finite closure, this class cannot be used to simulate UPDSs.

Multi-stack automata have two or more stacks that can be read and modified,
but are unfortunately Turing powerful. Following the work of Qadeer et al. in
[10], La Torre et al. introduced in [12] multi-stack pushdown systems with bounded
phases: in each phase of a run, there is at most one stack that is popped from.
Anil Seth later proved in [11] that the pre∗ of a regular set of configurations of
a multi-pushdown system with bounded phases is regular; we use this result to
perform a bounded phase analysis of our model.

2-visibly pushdown automata (2-VPDA) were defined by Carotenuto et all.
in [4] as a variant of two-stack automata where the stack operations are driven
by the input word. Reachability is decidable for a subclass of 2-VPDA with an
ordering constraint on stack operations. However, these ordered 2-VPDA cannot
simulate UPDSs.
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2 Pushdown Systems with an Upper Stack

Definition 1 (Pushdown system with an upper stack). A pushdown sys-
tem with an upper stack (UPDS) is a triplet P = (P, Γ,Δ) where P is a finite set
of control states, Γ is a finite stack alphabet, and Δ ⊆ P ×Γ ×P ×

(
{ε} ∪ Γ ∪ Γ 2

)

a finite set of transition rules.

We further note Δpop = Δ∩P ×Γ ×P ×{ε}, Δswitch = Δ∩P ×Γ ×P ×Γ ,
and Δpush = Δ ∩ P × Γ × P × Γ 2. If δ = (p,w, p′, w′) ∈ Δ, we write δ =
(p,w) → (p′, w′). In a UPDS, a write-only upper stack is maintained above the
stack used for computations (from then on called the lower stack), and modified
accordingly during a transition.

For x ∈ Γ and w ∈ Γ ∗, |w|x stands for the number of times the letter x
appears in the word w, and wR for the mirror image of w. Let Γ̄ be a disjoint
copy (bijection) of the stack alphabet Γ . If x ∈ Γ (resp. Γ ∗), then its associated
letter (resp. word) in Γ̄ (resp. Γ̄ ∗) is written x̄.

A configuration of P is a triplet 〈p,wu, wl〉 where p ∈ P is a control state,
wu ∈ Γ ∗ an upper stack content, and wl ∈ Γ ∗ a lower stack content. A set
of configurations C of a UPDS P is said to be regular if for all p ∈ P , there
exists a finite-state automaton Ap on the alphabet Γ̄ ∪ Γ such that L (Ap) =
{w̄uwl | 〈p,wu, wl〉 ∈ C}, where L (A) stands for the language recognized by an
automaton A.

From the set of transition rules Δ, we can infer an immediate successor

relation ⇒P=
(

⋃

δ∈Δ

δ⇒
)

on configurations of P, which is defined as follows:

Switch rules: if δ = (p, a) → (p′, b) ∈ Δswitch, then ∀wu ∈ Γ ∗ and ∀wl ∈ Γ ∗,
〈p,wu, awl〉 δ⇒ 〈p′, wu, bwl〉. The top letter a of the lower stack is replaced by
b, but the upper stack is left untouched (the stack pointer doesn’t move).

Pop rules: if δ = (p, a) → (p′, ε) ∈ Δpop, then ∀wu ∈ Γ ∗ and ∀wl ∈ Γ ∗,

〈p,wu, awl〉 δ⇒ 〈p′, wua,wl〉. The top letter a popped from the lower stack
is added to the bottom of the upper stack (the stack pointer moves to the
right).

Push rules: if δ = (p, a) → (p′, bc) ∈ Δpush, then ∀wl ∈ Γ ∗, 〈p, ε, awl〉 δ⇒
〈p′, ε, bcwl〉 and ∀wu ∈ Γ ∗, ∀x ∈ Γ , 〈p,wux, awl〉 δ⇒ 〈p′, wu, bcwl〉. A new
letter b is pushed on the lower stack, and a single letter is deleted from the
bottom of the upper stack in order to make room for it, unless the upper
stack was empty (the stack pointer moves to the left).

The reachability relation ⇒∗
P is the reflexive and transitive closure of the

immediate successor relation ⇒P . If C is a set of configurations, we introduce
its set of successors post∗ (P, C) = {c ∈ P × Γ ∗ × Γ ∗ | ∃c′ ∈ C, c′ ⇒∗

P c} and its
set of predecessors pre∗ (P, C) = {c ∈ P × Γ ∗ × Γ ∗ | ∃c′ ∈ C, c ⇒∗

P c′}. We may
omit the variable P when only a single UPDS is being considered.
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For a set of configurations C, let Clow = {〈p,wl〉 | ∃wu ∈ Γ ∗, 〈p,wu, wl〉 ∈ C},
Cup = {〈p,wu〉 | ∃wl ∈ Γ ∗, 〈p,wu, wl〉 ∈ C}, and post∗up (P, C) = (post∗ (P, C))up.
We define post∗low (P, C), pre∗

up (P, C) and pre∗
low (P, C) in a similar fashion.

A run r of P from a configuration c0 is a sequence r = (δi)i=1,...,n ∈ Δ∗ such

that c0
δ1⇒ c1

δ2⇒ c2 . . .
δn⇒ cn, where (ci)i=1,...,n is a sequence of configurations of

P. We then write c0
r⇒ cn. We say that r is a run of P from a set of configurations

C if and only if ∃c ∈ C such that r is a run of P from c.
These definitions are related to similar concepts on simple PDSs detailed in

[2,6]. A UPDS and a PDS indeed share the same definition, but the semantics of
the former expand the latter’s. For a set C ⊆ P ×Γ ∗ of lower stack configurations
(the upper stack is ignored) and a UPDS P, let post∗PDS (P, C) and pre∗

PDS (P, C)
be the set of forward and backward reachable configurations from C using the
PDS semantics. The following lemmas hold:

Lemma 2. For a UPDS P = (P, Γ,Δ), r in Δ∗, and a set of configurations C,
r is a run from C with respect to the UPDS semantics if and only if r is a run
from Clow with respect to the standard PDS semantics.

Lemma 3. post∗low (P, C)=post∗PDS (P, Clow), pre∗
low (P, C)=pre∗

PDS (P, Clow).

3 Reachability Properties

As shown in [2,5,6], we know that pre∗
PDS and post∗PDS are regular for a regular

set of starting configurations. We prove that these results cannot be extended to
UPDSs, but that post∗ is still context-sensitive. This implies that reachability
of a single configuration is decidable for UPDSs.

3.1 post∗ Is Not Regular

The following counterexample proves that, unfortunately, post∗ (P, C) is not
always regular for a given regular set of configurations C and a UPDS P. The
intuition behind this statement is that the upper stack can be used to store sym-
bols in a non-regular fashion. The counter-example should be carefully designed
in order to prevent later push operations from overwriting these symbols.

Let P = (P, Γ,Δ) be a UPDS with P = {p, p′} , Γ = {a, b, x, y,⊥}, and Δ
the following set of pushdown transitions:

(Sx) (p, x) → (p, a) (Ra) (p, a) → (p, ε)
(Sy) (p, y) → (p, b) (Rb) (p, b) → (p, ε)
(C) (p, a) → (p, ab) (E) (p,⊥) → (p′,⊥)

Let C = {p}×{ε}×x (yx)∗ ⊥ be a regular set of configurations. We can compute
a relevant subset L of post∗ (C):

Lemma 4. L =
{〈

p′, an+1bn,⊥
〉
, n ∈ N

}
⊆ post∗ (C).
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Then, we prove an inequality that holds for any configuration in post∗:

Lemma 5. ∀ 〈p,wu, wl〉 ∈ post∗ (C), w = w̄uwl, |w|b + |w|b̄ + 1 ≥ |w|a + |w|ā.

If we suppose that post∗ (C) is regular, then so is the language Lp′
, where

Lp′
= {w̄uwl | 〈p′, wu, wl〉 ∈ post∗ (C)}, and by the pumping lemma, it admits a

pumping length k. We want to apply the pumping lemma to an element of L in
order to generate a configuration that should be in post∗ but does not comply
with the previous inequality.

According to Lemma 4, L ⊆ post∗ (C) and as a consequence w = ak+1bk⊥ ∈
Lp′

. Hence, if we apply the pumping lemma to w, there exist x, y, z ∈
(
Γ ∪ Γ̄

)∗

such that w = xyz, |xy| ≤ k and xyiz ∈ post∗ (C), ∀i ≥ 1. As a consequence of
w’s definition, x, y ∈ ā∗, |y| ≥ 1, and z ∈

(
ā + b̄

)∗.
Hence, for i large enough, wi = xyiz ∈ Lp′

and |wi|ā > |wi|b̄+1. By Lemma 5,
this cannot happen and therefore neither Lp′

nor post∗ (C) are regular.
It should be noted that Lp′

up is not regular either. Indeed, from the definition
of P and C, it is clear that ∀ 〈p′, wu, wl〉 ∈ post∗ (C) , wl = ⊥, so Lp′

up and Lp′
are

in bijection. We have therefore proven the following theorem:

Theorem 6. There exist a UPDS P and a regular set of configurations C for
which neither post∗ (C) nor post∗up (C) are regular.

3.2 pre∗ Is Not Regular

We now prove that pre∗ is not regular either. Let P = (P, Γ,Δ) be a UPDS with
P = {p} , Γ = {a, b, c}, and Δ the following set of pushdown transitions:

(C0) (p, c) → (p, ab) (Ra) (p, a) → (p, ε)
(C1) (p, c) → (p, cb) (Rb) (p, b) → (p, ε)

We define the regular set of configurations C = {p} × (ab)∗ × {c} and again,
compute a relevant subset of pre∗ (C):

Lemma 7. L = {〈p, bn, cnc〉 , n ∈ N} ⊆ pre∗ (C).

Given the rules of P, the following lemma is verified:

Lemma 8. If 〈p, bm, cn〉 ⇒∗ 〈p,wu, wl〉, then |wu|a + |wl|a ≤ n.

If pre∗ (C) is regular, then so is Lp = {w̄uwl | 〈p,wu, wl〉 ∈ pre∗ (C)}, and
by the pumping lemma, it admits a pumping length k. Moreover, by Lemma 7,
w = b̄kckc ∈ Lp.

If we apply the pumping lemma to w, there exist x, y, z ∈
(
Γ ∪ Γ̄

)∗ such that
w = xyz, |xy| ≤ k and wi = xyiz ∈ pre∗ (C), ∀i ≥ 1. As a consequence of w’s
definition, x, y ∈ b̄∗ and z ∈ b̄∗ckc.

Since wi ∈ Lp, ∀i ≥ 1, there exists an integer ni such that wi ⇒∗ ci =
(ab)nic. Moreover, the size of the stack must grow or remain constant during



Reachability Analysis of Pushdown Systems with an Upper Stack 453

a computation, hence |ci| ≥ |wi| and ni ≥ |wi|−1
2 . Since words in the sequence

(wi)i are unbounded in length, the sequence (ni)i must be unbounded as well.
However, by Lemma 8, ni = |ci|ā ≤ |wi|c = k + 1.

Hence, there is a contradiction and pre∗ (C) is not regular.

Theorem 9. There exist a UPDS P and a regular set of configurations C for
which pre∗ (C) is not regular.

3.3 post∗ Is Context-Sensitive

We prove that, if C is a regular set of configurations of a UPDS P, then
post∗ (P, C) is context-sensitive. This implies that we can decide whether a single
configuration is reachable from C or not.

We first show that the problem of computing post∗ (P, C) can be reduced
w.l.o.g. to the case where C contains a single configuration. To do so, we define
a new UPDS P ′ by adding new states and rules to P such that any configura-
tion c in C can be reached from a single configuration c$ = 〈p$, ε, $〉. Once a
configuration in C is reached, P ′ follow the same behaviour as P.

Theorem 10. For each UPDS P = (P, Γ,Δ) and each regular set of configu-
rations C on P, there exists a UPDS P ′ =

(
P ′, Γ ∪ Γ̄ ∪ {$} ,Δ′), P ⊆ P ′, and

p$ ∈ P ′ \ P such that post∗ (P, C) = post∗ (P ′, {〈p$, ε, $〉}) ∩ (P × Γ ∗ × Γ ∗).

We can compute a context-sensitive grammar recognizing post∗. Our intu-
ition is to represent a configuration 〈p,wu, wl〉 of P by a word �wupwl⊥ of a
grammar G. We use Theorem 10 so that the single start symbol of G can be
matched to a single configuration c$. The context-sensitive rules of G mimic the
transitions of the UPDS. As an example, a rule δ = (p, a) → (p′, ε) ∈ Δpop can
be modelled by three rules pa ���G pgδ, pgδ ���G agδ, and agδ ���G ap′ such
that pa ���∗

G ap′, where ���G stands for the one-step derivation relation and gδ

is a nonterminal symbol of G.

Theorem 11. Given a UPDS P and a regular set of configurations C, we can
compute a context-sensitive grammar G such that 〈p,wu, wl〉 ∈ post∗ (P, C) if
and only if �wupwl⊥ ∈ L (G)

Since the membership problem is decidable for context-sensitive grammars,
the following theorem holds:

Theorem 12. Given a UPDS P, a regular set of configurations C, and a con-
figuration c of P, we can decide whether c ∈ post∗ (P, C) or not.

Unfortunately, this method cannot be extended to pre∗, as the backward
reachability relation does not comply with the monotony condition of context-
sensitive grammars (a word can only grow or keep the same length during a
computation).
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4 Underapproximating pre∗

Underapproximations of reachability sets can be used to discover errors in pro-
grams: if X is a regular set of forbidden configurations of a UPDS P, C a regular
set of starting configurations, and U ⊆ pre∗ (X ) a regular underapproximation,
then U ∩ C �= ∅ implies that a forbidden configuration can be reached from the
starting set. The emptiness of the above intersection has to be decidable, hence,
the need for a regular approximation.

In this section, we use results on multi-stack pushdown automata to define
an underapproximation of pre∗ for UPDSs. Multi-stack pushdown systems
(MPDSs) are pushdown systems with multiple stacks where, for a given transi-
tion, in a given control state, only one stack is read and modified: a rule of the
form (p,w, n) → (p′, w′) is applied to the n-th stack with semantics similar to
those of common pushdown systems.

Multi-stack automata are unfortunately Turing powerful even with only
two stacks. Thus, La Torre et al. introduced in [12] a restriction called phase-
bounding : runs are divided into phases during which only a single stack can be
popped from, and only the runs that have a number of phases lower than a cho-
sen bound k are allowed. Let pre∗

MPDS (M, C, k) be the set of backward reachable
configurations from C using only runs with k phases. A theorem has been proven
in [11]:

Theorem 13. Given a MPDS M and a regular set of configurations C, the set
pre∗

MPDS (M, C, k) is regular and effectively computable.

The notion of bounded-phase computations can be extended to UPDSs.
A run r of P is said to be k-phased if it is of the form: r = r1 · r2 . . . rk where
∀i ∈ {1, . . . , k}, ri ∈ (ΔPush ∪ ΔSwitch)∗ ∪ (ΔPop ∪ ΔSwitch)∗. During a phase,
one can either push or pop, but can’t do both. Such a run has therefore at most
k alternations between push and pop rules.

The k-bounded reachability relation ⇒∗
k is defined as follows: c0 ⇒∗

k c1 if
there exists a k-phased run r on P such that c0

r⇒ c1. Using this new reachability
relation, given a set of configurations C, we can define pre∗ (P, C, k).

We can show that a UPDS P can be simulated by a MPDS M with two
stacks, the second stack of M being equivalent to the lower stack, and the first
one, to a mirrored upper stack followed by a symbol ⊥ that can’t be popped
and is used to know when the end of the stack has been reached. Elements of
P ×Γ ∗ ×Γ ∗ can equally be considered as configurations of P or M, assuming in
the latter case that we consider the mirror of the first stack and add a ⊥ symbol
to its bottom. Thus:

Lemma 14. For a given UPDS P = (P, Γ,Δ) and a regular set of configura-
tions C, there exists a MPDS M, a regular set of configurations C′, and ⊥ /∈ Γ
such that

〈
p,wR

u ⊥, wl

〉
∈ pre∗

MPDS (M, C′, k) ∩ (P × Γ ∗ × Γ ∗) if and only if
〈p,wu, wl〉 ∈ pre∗ (P, C, k).

From Theorem 13, we get:
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Theorem 15. Given a UPDS P and a regular set of configurations C, the set
pre∗ (P, C, k) is regular and effectively computable.

pre∗ (P, C, k) is obviously an underapproximation of pre∗ (P, C).

5 Overapproximating post∗

While underapproximations of reachability sets can be used to show that an error
can occur, overapproximations can, on the other hand, prove that a program is
safe from a particular error. If X is a regular set of forbidden configurations on an
UPDS P, C a regular set of starting configurations, and O ⊇ post∗ (C) a regular
overapproximation, then O ∩ X = ∅ implies that no forbidden configuration can
be reached from the starting set and that the program is therefore safe. The
emptiness of the above intersection has to be decidable, hence, the need for a
regular approximation.

5.1 A Relationship Between Runs and the Upper Stack

We prove here that from a regular set of runs of a given UPDS, a regular set
of corresponding upper stacks can be computed. A subclass of programs whose
UPDS model has a regular set of runs are programs with finite recursion (hence,
with a stack of finite height).

Theorem 16. For a UPDS P = (P, Γ,Δ), a regular set of configurations C,
and a regular set of runs R of P from C, the set of upper stack configurations
reachable using runs in R, T (R) =

{
〈p,wu〉 | ∃c ∈ C,∃r ∈ R, c

r⇒ 〈p,wu, wl〉
}
,

is regular and effectively computable.

Thanks to Theorem 10, we consider the single configuration case where C =
{c$} w.l.o.g. Let AR = (Δ,Q,E, I, F ) be a finite state automaton such that
L (AR) = R. We can assume that Q = ∪

p∈P
Qp where ∀q ∈ Qp, if there is an

edge q′ δ→E q, then the pushdown rule δ is of the form (p′, a) → (p,w). We write
Fp = Qp ∩ F .

We introduce the finite automaton AT = (Γ,Q,E′, I, F ) whose set of transi-
tions E′ is defined by applying the following rules until saturation:

(Spop) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, ε),

then we add the edge q0
a→ q1 to E′.

(Sswitch) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, b),

then we add the edge q0
ε→ q1 to E′.

(Spush) if there is an edge q0
δ→E q1 in AR and δ is of the form (p, a) → (p′, bc),

then for each state q such that either q ∈ Q and q
x→∗

E′ q0 for x ∈ Γ or q ∈ I

and q
ε→∗

E′ q0, we add an edge q
ε→ q1 to E′.
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Our intuition behind the above construction is to create a new automaton
that follows the structure of the run automaton but accepts upper stack words

instead: an upper stack word w is accepted by AT with the path qi

w

→∗
E′ qf ,

qi ∈ I, qf ∈ Fp, if AR accepts a run r with the path qi

r

→∗
E qf and r starts

from c$, ends in state p and produces the upper stack word w. This property is
preserved at every step of the saturation procedure.

Consider a run r and its associated upper stack word w. Suppose that r

and w satisfy the property above: there is a path qi

r

→∗
E q0 in AR and a path

qi

w

→∗
E′ q0 in AT . Let q0

δ→E q1 be a transition of AR, q1 ∈ Q and δ ∈ Δ. rδ is

also a run of P with a labelled path qi

rδ

→∗
E q1 in AR, and in order to satisfy the

above property, a path qi

w′

→∗
E′ q1 labelled by its associated upper stack word w′

should exist in AT as well.
We show that the saturation rules above ensure such a path exists. If δ ∈

Δpop, the run rδ produces an upper stack word of the form w′ = wa, a ∈ Γ . Rule

(Spop) creates an edge q0
a→ q1 to AT such that there is a path qi

w

→∗
E′ q0

a→E′ q1
labelled by w′. Rules (Sswitch) and (Spush) follow in a similar fashion.

Following this intuition, we can prove that AT only accepts reachable upper
stack configurations:

Lemma 17. At any step of the saturation procedure, if qi

wu

→∗
E′ q′, qi ∈ I,

q′ ∈ Qp, then there exists a run r of P and wl ∈ Γ ∗ such that qi

r

→∗
E q′ and

c$
r⇒ 〈p,wu, wl〉. Moreover, if q′ ∈ Fp, then r ∈ R.

On the other hand, AT accepts every reachable upper stack configuration:

Lemma 18. For every run r such that ∃qi ∈ I, ∃q ∈ Qp, qi

r

→∗
E q, then there

exists a path qi

wu

→∗
E′ q in AT and wl ∈ Γ ∗ such that c$

r⇒ 〈p,wu, wl〉. Moreover,
if q′ ∈ Fp, then AT accepts wu.

Let Lp (AT ) =
{

w | ∃i ∈ I,∃f ∈ Fp, i
w

→∗
E′ f

}

be the set of paths in AT

ending in a final node related to a state p of P. By Lemmas 18 and 17, T (R) =
{〈p,wu〉 | wu ∈ Lp (AT )}. Since the languages Lp are regular and there is a finite
number of them, T (R) is regular as well and can be computed using AT .

5.2 Computing an Overapproximation

The set of runs of a UPDS P = (P, Γ,Δ) from a regular set of configurations C
is not always regular. By Lemma 2, runs of P are the same for the UPDS and
PDS semantics. Thus, we can apply methods originally designed for PDSs to
overapproximate runs of a UPDS in a regular fashion, such as [1,3,9].
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With one of these methods, we can compute a regular overapproximation
R (P, C) of the set of runs of P from C. Using the saturation procedure under-
lying Theorem 16, we can then compute the set T (R (P, C)) of upper stack
configurations reachable using overapproximated runs of P, hence, an overap-
proximation of the actual set of reachable upper stack configurations. However,
we still lack the lower stack component of the reachability set. As shown in [6],
post∗PDS (P, C) is regular and computable, and we can determine the exact set of
reachable lower stack configurations.

With O = {〈p,wu, wt〉 | 〈p,wu〉 ∈ T (R (P, C)) , 〈p,wt〉 ∈ post∗PDS (P, C)}, we
get a regular overapproximation of post∗ (P, C).

6 Applications

The UPDS model can be used to detect stack behaviours that cannot be found
using a simple pushdown system. In this section, we present three such examples.

6.1 Stack Overflow Detection

A stack overflow is a programming malfunction occurring when the call stack
pointer exceeds the stack bound. In order to analyze a program’s vulnerability to
stack overflow errors, we compute its representation as a UPDS P = (P, Γ,Δ),
using the control flow model outlined in [6].

Let C = P ×�#m ×L be the set of starting configurations, where � ∈ Γ is a
top stack symbol that does not appear in any rule in Δ, # ∈ Γ a filler symbol, m
an integer depending on the maximal size of the stack, and L a regular language
of lower stack initial words. Overwriting the top symbol would represent a stack
overflow malfunction. Since there is no such thing as an upper stack in a simple
pushdown automaton, we need a UPDS to detect this error.

Let X = P ×(Γ\ {�})∗ ×Γ ∗ be the set of forbidden configurations where the
top stack symbol has been overwritten. If the intersection of the underapprox-
imation U of pre∗ (X ) with C is not empty, then a stack overflow does happen
in the program. On the other hand, if the intersection of the overapproximation
O of post∗ (C) with the set X of forbidden configurations is empty, then we are
sure that a stack overflow will not happen in the program

6.2 Reading the Upper Stack

Let us consider the piece of code 1.1. In line 1, the bottom symbol of the upper
stack sp − 4, just above the stack pointer, is copied into the register eax. In line
2, the content of eax is compared to a given value a. In line 3, if the two values
are equal, the program jumps to an error state err.

Listing 1.1. Reading the upper stack

1 mov eax , [ sp − 4 ]
2 cmp eax , a
3 je e r r



458 A. Pommellet et al.

Using a simple PDS model, it is not possible to know what is being read.
However, our UPDS model and the previous algorithms provide us with rea-
sonable approximations which can be used to examine possible values stored in
eax.

To check whether this program reaches the error state err or not, we define
the regular set X = P ×Γ ∗a×Γ ∗ of forbidden configurations where a is present
on the upper stack just above the stack pointer. If the intersection of the underap-
proximation of pre∗ (X ) with the set of starting configurations C of the program
is not empty, then eax can contain a critical value, and the program is unsafe.
On the other hand, if the intersection of the overapproximation of post∗ (C) with
the set X is empty, then the program can be considered safe.

6.3 Changing the Stack Pointer

Another malicious use of the stack pointer sp would be to change the starting
point of the stack. As an example, the instruction mov sp, sp - 12 changes the
stack pointer in such a manner that, from the configuration of Fig. 7, the top
three elements above it now belong to the stack, as shown in Fig. 8.

. . . a b c d e f g . . .

sp

Fig. 7. Original stack

. . . a b c d e f g . . .

sp

Fig. 8. After changing sp

If we model a program as a UPDS, then using our previous algorithms to
compute approximations of the reachability set would allow us to have an approx-
imation of the content of the new stack after the stack pointer change.
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