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Preface: Misha Rabinovich and Nonlinear
Dynamics in the Last Half-Century

ПОЗНАНИЕ
Узлами скручены спирали,
А между ними судеб путь.
Скопленья звезд спираль порвали,
Хотя б вполглаза мне взглянуть,
Потрогать грань меж Раем - Адом,
Порядок в хаосе понять,
Услышать рев галактик рядом
И... Богом все это назвать.

Михаил Рабинович

COGNITION
Spirals are wrung into knots.
Between them lies the way of the Fates.
Star clusters once tore the spirals.
Oh, if I could glimpse even half of this,
Touch the thin between Heaven and Hell,
Perceive Order in Chaos,
Hear the roar of galaxies next door,
And – to call it God: all of it.

Mikhail Rabinovich
(English translation by Olga Livshin)

This book is comprised of contributions by just a few of a very large cohort
of friends, colleagues, and former students of Misha Rabinovich or, as he is
often affectionally called after his initials, MIR.1 In the last half-century, Misha

1The word mir means both peace and world in Russian.
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viii Preface: Misha Rabinovich and Nonlinear Dynamics in the Last Half-Century

Rabinovich has been at the forefront of most major developments in nonlinear
dynamics, starting from the development of asymptotic methods for the analysis
of nonlinear waves in non-equilibrium media to the present days when he is using
nonlinear dynamics to advance the theory of cognition. In these brief introductory
notes, we will attempt to sketch Misha’s portrait both as a scientist and as a human
being and connect it with the contents of this book.

Mikhail Izrailevich Rabinovich was born on April 20, 1941, in Nizhny Novgorod
(then Gorky) in the family of Israel Rabinovich, a professor of chemistry at Gorky
State University. In his teenage years, Misha was an avid cross-country skier and
only got serious about science toward the second half of his university studies. But
in science, just as earlier in sports, he was very fast and not only quickly caught up
with his peers but left them far behind.

MIR got his first taste of doing research around 1960 during his sophomore
university year in the field which now is called robotics. His first scientific mentor
Tyoma Alekseev suggested to him a student project to improve the efficiency of
a conveyor at Gorky Automobile Plant (GAZ). Before long, Misha developed an
automation algorithm and implemented it at one of the plant conveyors. That work
not only led to increased efficiency of the conveyor operation and caused some
layoffs, but it also became his first published paper. However, MIR decided not to
pursue his scientific career in robotics and switched to the nonlinear dynamics and
theoretical physics. Nevertheless, this short stint at GAZ possibly played a big role
in his future scientific development.2 While MIR has always been a theorist, he is
also known for deep understanding of experiment, often suggesting original ideas
to his experimental colleagues.

He was only 26 when in 1967 he defended his candidate of physical and mathe-
matical sciences’ dissertation (an analog of Ph.D. thesis in the West), and at 33 he
already obtained the doctor of science degree (an analog of habilitation in Germany,
exceptionally early by Soviet standards). In 1991, he was elected the corresponding
member of the Russian Academy of Sciences. The general direction of his scientific
studies from those very early days has remained the theory of nonlinear oscillations
and waves. This was quite natural for him, perhaps even unavoidable, because he
belongs to the illustrious school of nonlinear dynamicists established by Leonid
Mandelshtam and his students Alexander Andronov, Gabriel Gorelik, and Mikhail
Leontovich, followed among others by Misha’s Ph.D. adviser Andrey Gaponov-
Grekhov. This scientific dynasty is widely known not only for their fundamental
discoveries in physics of oscillations and waves but also for applying them in
practice, ranging from clocks to powerful generators of electromagnetic or acoustic
radiation.

One of Misha Rabinovich’s first significant contributions to nonlinear dynamics
was the theoretical discovery of stable stationary waves in active nonlinear media
in the late 1960s. The first experimental studies were performed with the chains of

2This early phase of MIR’s scientific career is not well documented, and our account of it is mostly
based on our many friendly evening conversations.
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coupled electronic self-sustained oscillators [6]. These stable nonlinear structures
were later found in plasma physics and fluid dynamics and were used in lasers and
networks of radio frequency oscillators. At about the same time, he with his Ph.D.
student Alexander Rosenblum (who was 15 years older than MIR) proposed an
asymptotic method for theoretical analysis of self-sustained oscillations which was
a nontrivial extension of the classical Krylov-Bogolyubov asymptotic method to the
distributed nonlinear systems [16].

Perhaps it is Misha’s extremely active persona that always attracted him to
non-equilibrium systems and nonlinear dynamics. In 1972, he discovered a novel
phenomenon of explosive instability in the nonlinear interaction of waves in
non-equilibrium media. In this situation the amplitudes of all three ways grow super-
exponentially and become infinite in a finite time unless higher-order nonlinearities
limit their growth [15]. When the new Institute of Applied Physics of the Soviet
Academy of Sciences opened its doors in 1977, MIR became the head of the
Laboratory for Nonlinear Dynamics and Chaos which quickly became one of the
centers of nonlinear dynamics in the Soviet Union. Many of his students and junior
collaborators (including editors and a large fraction of authors of this volume)
worked in this laboratory and benefited from daily interactions with MIR. However,
his role in grooming generations of “nonlinear dynamicists” is even greater. Misha
has always been a wonderful teacher and mentor. As a professor of the Gorky State
University, he established a yearlong lecture course on the theory of oscillations and
waves and taught it himself every year for 30 years. This class was the highlight
of our own years at the radiophysics department of the Gorky State University
in the 1970s. This nonlinear dynamics course laid the foundation of the popular
textbook written by him in collaboration with Dmitry Trubetskov [18]. His another
crown achievement was establishing and running famous “Schools on Nonlinear
Oscillations and Waves” that were held biannually in a beautiful countryside some
200 km from Gorky. These 2-week-long springtime gatherings brought together
famous physicists and mathematicians (V.I. Arnold, B.B. Kadomtsev, Ya.I. Sinai,
Ya.B. Zeldovich, and many others) and hundreds of young researchers in a very
informal and stimulating atmosphere. This tradition survived even the demise of the
Soviet Union and continues to this day; the next school is planned for 2018.

In the 1970–1980s, Misha Rabinovich turned his attention to deterministic chaos
and pattern formation. They were nascent fields at the time, and Misha was one
of the early pioneers. In his 1979 paper with his former student Anatoly Fabrikant
[13], they demonstrated the emergence of low-dimensional deterministic chaos in
a spatiotemporal system describing modulational instability of nonlinear waves in
dissipative media. They reduced this infinite-dimensional problem to a set of three
ordinary differential equations now known as “Rabinovich-Fabrikant equations.”
In 1980, MIR with Sergey Kiyashko and one of us demonstrated deterministic
chaos in a simple electronic circuit [7]. His influential 1978 review in “Soviet
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Physics-Uspekhi” called “Stochastic Self-Oscillations and Turbulence” [10]3 and
two chapters on chaos and turbulence written for the classic Landau-Lifshitz
textbook series on theoretical physics [8] opened up this field and set the agenda
for generations of Soviet physicists. One of the most important discoveries made
in that field was synchronization of chaos. Misha and his group were the first to
experimentally observe this new phenomenon by coupling two electronic chaotic
oscillators [2]. This early work heralded the beginning of a new rich field with thou-
sands of scientific publications to date. Other significant scientific achievements of
that time were the discoveries of stable particle-like localized solutions of nonlinear
field equations [4] and the spatiotemporal chaos in the Ginzburg-Landau equation
[3]. Very deep studies of turbulence and pattern formation (see his review article [17]
and book [12]) followed.

By the mid-1980s, Misha Rabinovich became well known in the West, but only
by name and by his influential papers. Soviet authorities never allowed him to
leave the country, not even to the “brotherly” socialist countries of the Soviet bloc.
The Institute of Applied Physics and the whole city of Gorky were off limits for
foreigners as well. However, as soon as the Iron Curtain began to rust, crack, and
crumble during the perestroika years, Misha was able to finally meet his Western
colleagues in person. It was during this time that Misha established a long-term
collaboration with the Institute for Nonlinear Science at UCSD that in a few years
became his new scientific home.

At about the same time as MIR made UCSD his home base, he became interested
in neuroscience. Early on he sensed that this field and the biology as a whole were
becoming new frontiers for applications of nonlinear dynamics. He quickly realized
that deterministic chaos must play a major role in complexity and plasticity of neural
systems. His pioneering work on deterministic chaos in stomatogastric ganglia of
lobsters in collaboration with Henry Abarbanel, Allen Selverston, and others [11]
produced not only fresh new insights into the role of nonlinearity in neuroscience
but also tasty leftovers that were enthusiastically consumed at INLS parties.

Observing very complex but often reproducible patterns of neural activity,
Misha came to the realization that this complexity must have somewhat different
origins from by-now-familiar deterministic chaos. Using a simple Lotka-Volterra
system as the paradigmatic model, he introduced a new dynamic concept that
governs such complex but stable transient phenomenon which is now known as
winnerless competition [1]. The geometrical image of such dynamics is the so-
called stable heteroclinic channel which connects a unique sequence of saddle fixed
points in the phase space of the corresponding dynamical system [5]. While the
original motivation for this work was the olfactory system in locust, Misha and
his collaborators uncovered evidence that this principle governs visual and spatial
memory, as well as many other neural systems. In the last several years, Misha
has been thinking about the role of nonlinear dynamics in cognition [14]. He is

3At that time, the word stochastic was commonly used in Soviet scientific literature to describe
deterministic chaos as opposed to noise that was labeled by the word random.
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not deterred by the enormous complexity of human brain. Misha’s main idea is
that different modalities of brain function also represent the saddle points of the
global phase space, and brain activity from this vantage point can be represented as
sequential switching from one modality to the next, akin to winnerless competition
in smaller neural circuits.

Our portrait of Misha would be grossly incomplete if we did not mention his love
of poetry. Although he wrote poems since a young age, it became a real passion in
the last 15–20 years. He published seven books of poetry to date (December 2016),
and by the time this book is in print, this number could well be greater. His poems are
often reflections on the philosophy of science and the creative process in general;
in his worldview, the creativity does not know the boundaries between exact and
ephemeral and science and art.

We already mentioned that Misha’s unique personality makes him contagious,
in the good sense of the word. Many of his ideas fertilized scores of his junior
colleagues which followed his lead into new fields. In this book, we assembled
papers of Misha’s former students and his past and present colleagues.

Misha Rabinovich’s best scientific insights were borne of his physical intuition
and experience, but then he often recruits mathematicians to help put his ideas on
firm theoretical foundation. On the other hand, his deep insight into the nonlinear
phenomena inspired many experimental physicists and biologists. Therefore, in this
book, the reader will find quite a broad coverage of modern topics in nonlinear
theory of complex systems, from mathematics to experiments. We have organized
the contributions into four parts, highlighting also the main milestones in the
scientific life of Misha Rabinovich.

Part I “Chaos and Dynamics” is devoted to the field where Misha Rabinovich
made seminal contributions. In one of his now classical works published in 1978,
he introduced a low-dimensional model for three parametrically coupled waves that
exhibited chaotic behavior, now called the Rabinovich system [9]. Two chapters,
by Kuznetsov and by Pusuluri et al., report on recent progress in studies of this
simple model. Pusuluri with collaborators describe the global organization of the
chaotic attractor of that system using a combination of novel analytical and com-
putational techniques. Kuznetsov addresses possible experimental implementation
of the Rabinovich system; he demonstrates that this three-wave system can be
implemented as a simple electrical circuit. He further shows that this circuit indeed
generates chaotic trajectories described by a Lorenz-type quasi-hyperbolic attractor.
Three other chapters in this part are devoted to the dynamics on the border of
chaos and regularity. The contribution by Pesin et al. introduces a new class of
scaled Lyapunov exponents, suitable for quantitative characterization of systems
with sub-exponential separation of trajectories. These exponents are used in the
chapter by Afraimovich and Neiman for the description of weak transient chaos
in the switching dynamics. Another example of dynamics between order and chaos
is presented in a chapter by Zaks and Nepomnyashchy, where anomalously slow
dynamically generated diffusion is described.
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Part II “Synchronization and Networks” reflects Misha’s long-term interest in
spatially organized models such as coupled map lattices and in synchronization
phenomena. It opens with the contribution by Anishchenko et al. devoted to complex
states, including chimera-like configurations, in networks of nonlocally coupled
chaotic maps. Two chapters deal with phase oscillator networks. V. Belykh et al.
consider star networks of phase oscillators and describe regular and chaotic tran-
sitions to synchrony. The chapter by Bick describes possible Lotka-Volterra-type
dynamics in phase oscillator networks. Effect of symmetry in the network on the
appearance of synchronous clusters is analyzed in the contribution by Pecora et al.
The chapter by Bunimovich and Webb describes the stability analysis of networks
with time delays. Finally, Reimayev and collaborators analyze synchronous states in
coupled bursting neurons. This contribution makes a bridge to the following Part III.

The opening chapter of the Part III “Brain” deals with the subject of large-scale
brain dynamics, which is the focus of Misha’s current interest that has emerged
from his previous work on neural dynamics. It is written by Karl Friston, his
collaborator and co-editor of the recent book Principles of Brain Dynamics: Global
State Interactions [14]. In this chapter, Friston proposes a variational principle
that casts motor and sensory activity of the brain as an optimization strategy to
minimize a particular free energy functional. Chapters by Mangin and Courbage
and Rubchinsky et al. deal with synchronization of electrical activity in various
biological neural networks. In related contributions, Komarov et al. and Nowotny
and Szyszka describe coding of odors in neural activity of olfactory systems.

The final part of the book, “Waves,” is devoted to the topic with which MIR
started his scientific career. Krinsky and collaborators in their chapter describe how
vortices of electrical activity in cardiac tissues can be controlled. Two other chapters
deal with conservative problems. Pelinovsky and Shurgalina demonstrate that
complexity can emerge even in integrable systems by analyzing statistical properties
of a gas of solitons in the classical Korteweg-de Vries (KdV) equation. Stepanyants
describes complex patterns emerging in the two-dimensional generalization of the
KdV equation, the Kadomtsev-Petviashvili model. This final chapter of the book
also contains some personal remarks based on the long-term friendship between the
author and Misha Rabinovich.

Acknowledgments: We owe the original idea of this volume to Valentin
Afraimovich and Vitaly Vugalter. We are also very grateful to Albert Luo for
support at all stages of manuscript preparation.

University Park, PA, USA Igor S. Aranson
Potsdam, Germany Arkady Pikovsky
La Jolla, CA, USA Nikolai F. Rulkov
La Jolla, CA, USA Lev S. Tsimring
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Chapter 1
Weak Transient Chaos

Valentin S. Afraimovich and Alexander B. Neiman

1.1 Introduction

Once a new scientific direction arises it influences not only its immediate area, but
also is accompanied by the appearance of new ideas and notions in neighboring
fields. Our article here can be treated as a manifestation of this general principle.
About 15 years ago Mikhail Rabinovich with co-authors started considering specific
models with the so-called sequential dynamics, based on the winnerless competition
principle [22] (see also [3, 6] and the references therein). It turned out that by using
such models one can describe and explain important features of dynamics of neural
and cognitive systems. A collection of works of M. Rabinovich in this direction set
up a new area in nonlinear dynamics [20, 21]. Mathematically, the key point of these
works was the understanding of the important role of heteroclinic networks and
heteroclinic channels for sequential dynamics [4, 7]. Trajectories following paths
determined by heteroclinic networks may demonstrate behavior that could not be
quantitatively described in terms of conventional notions of complexity. Here we
describe a regime of weak transient chaos in a model with sequential dynamics and
propose a new measure for its quantitative characterization.

There are processes in nature that have adequate mathematical models in the form
of dynamical systems (DS) but these models are applicable only for finite intervals
of time. For example, a neural network with parameters determined by a given
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stimulus behaves as a specific DS until the instant when another stimulus arrives.
For such systems one should be interested in both attractors and transient motions.
In the seminal works [11, 12] C. Grebogi, E. Ott, and J.A. Yorke have discovered the
phenomenon of transient chaos, explained its origin, and studied its main features
(see [15] for the current state of the transient chaos theory). Roughly speaking, if
an initial point belongs to the basin of a regular attractor (e.g., fixed point or a
periodic trajectory) and the boundary of the basin contains a chaotic set (e.g., the
Smale horseshoe), then the trajectory going through this point behaves chaotically
provided that the initial point is close enough to the chaotic set. Of course, if an
attractor is chaotic, then almost all trajectories in its basin behave chaotically.

Another type of transient motions is observed in systems operating according to
the winnerless competition principle. Such motions can be treated as a sequential
switching among metastable sets. In the corresponding phase space metastable sets
are represented by invariant sets of the saddle type. For example, saddle equilibrium
points or saddle limit cycles may represent metastable sets, while switching is
governed by heteroclinic trajectories joining these sets. In this way a heteroclinic
network arises and transient motions follow heteroclinic channels around this
network’s edges. Importantly, such motions can be chaotic during finite intervals
of time [5]. However, in contrast to “conventional” transient chaos described by
Grebogi–Ott–Yorke [11, 12], this chaotic behavior is not caused by the existence
of an unstable chaotic set in the boundary of the basin of an attractor. Hence, this
transient dynamics was given the name “finite time chaos” in [5].

The heteroclinic network considered in [5] was not an attractor. That is, each
representative point in the heteroclinic channel (that did not belong to the stable
manifolds of limit cycles) spent just a finite amount of time inside the channel
and then moved away. To make chaotic features of motions more pronounced we
consider here the case when a heteroclinic network is an attractor. We consider
a master–slave system whereby the master, represented by fxg-coordinates, has a
stable heteroclinic cycle, an attractor in the x-space. Such an attractor consists of a
set of saddle equilibrium points with one-dimensional unstable manifolds; saddles
are joined by heteroclinic trajectories. The slave, represented by fyg-coordinates,
possesses a stable limit cycle in the absence of the master’s drive.

1.2 Detection of Weak Transient Chaos

It turns out that the finite time chaos [5] is weaker than usual chaos since the largest
Lyapunov exponent vanishes. To expose such a behavior one could perturb the
master by a weak noise, which would bring its sequential heteroclinic dynamics
to a steady state, calculate the Lyapunov exponent of the slave and be convinced
in chaos, if the Lyapunov exponent is positive. Here we propose an alternative
approach: instead of adding noise to the master, we introducing a novel definition
of the Lyapunov exponent, which indicates weak transient chaos.
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The largest Lyapunov exponent is defined as

�T WD lim sup
t!1

ln jjDf t.p/jj

t
; (1.1)

where p is an initial point in the basin and f t is the flow generated by our
master–slave system. �T D 0, if the divergence of trajectories is subexponential
in time. In our situation we have exactly such a case because a trajectory of
the master tends to the heteroclinic cycle and spends progressively more time in
neighborhoods of saddle equilibrium points. While the representative point is near
a saddle the dynamics is regular: trajectories in the full phase space do not diverge.
The divergence may occur only when the representative point makes transition from
one saddle to another.

If one would calculate the topological or the Kolmogorov-Sinai entropy in the
case under consideration, one obtains 0. The entropy is defined as the limit of a
fraction with time t in the denominator, as t ! 1. The numerator measures an
amount of instability accumulated in the system up to time t. If the numerator grows
subexponentially, the entropy will be equal to 0. For such situation the so-called
sequence entropy was introduced by replacing the time t in the denominator by some
function of t which increases slower than t [8, 10, 14, 23]. Similar replacement can
be probably done for the Lyapunov exponent, resulting in

�new WD lim sup
t!1

ln jjDf t.p/jj

�.t/
; (1.2)

see, for instance, [13]. However, the disadvantage of this definition is that the
denominator �.t/ will be the same for all initial points p, while in reality behavior
in time for different p can be different.

We propose here another approach based on the works of G.M. Zaslavsky with
coauthors [1, 16–18, 24]. It was suggested there to replace (in calculations of
complexity functions) time t by the length of a piece of trajectory of temporal length
t, or some function of it. It was shown that such a replacement allows to obtain an
additional useful information in several interesting situations. Following this lead
we introduce here a new Lyapunov exponent,

�S WD lim sup
t!1

ln jjDf t.p/jj

S.p; t/
; (1.3)

where S.p; t/ is a function of the length of the piece of the trajectory of temporal
length t going through an initial point p such that S ! 1 as t ! 1. Let us
call �S the S-Lyapunov exponent. It shows how the instability evolves according to
the lengths of trajectories. Let us remark that some general theory for S-Lyapunov
exponents for points, typical for an invariant measure, is presented by Ya. Pesin, A.
Zelerowicz, and Y. Zhao in Chap. 3 of this volume [19].
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1.3 Master–Slave Model System

We consider a master–slave system in which the master possesses a heteroclinic
cycle and drives the slave, Duffing–Van der Pol oscillator. In the absence of noise
the system under consideration has the following form:

Pxi D xi

0
@�i � xi �

X
j¤i

rijxj

1
A ; i; j D 1; 2; 3; (1.4)

Ry � kPy.1 � y2/C ˛y3 C �.x/y D 0; (1.5)

where parameters �i; rij; ˛; k are positive numbers. The master (1.4) drives the slave
(1.5) via the coupling function, �.x/,

�.x/ D 1C
"

2
Œ1C tanh .z.x/ ��/� ;

z.x/ D Œ.x1 � x2/
2 C .x1 � x3/

2 C .x3 � x2/
2�; (1.6)

where " > 0 is the coupling strength and � > 0 is a threshold parameter. The
master system (1.4) has a heteroclinic cycle consisting of three saddle equilibrium
points O1 D .�1; 0; 0/;O2 D .0; �2; 0/, and O3 D .0; 0; �3/ having one-dimensional
unstable manifolds, connected by heteroclinic trajectories �12; �23, and �31. The
following conditions [2]:

�2 � r21�1 > 0; �3 � r31�1 < 0;

�3 � r32�2 > 0; �1 � r12�2 < 0;

�1 � r13�3 > 0; �2 � r23�3 < 0; (1.7)

guarantee that O1;O2, and O3 are saddles with one-dimensional unstable manifolds.
Furthermore, we assume that

��1 < �3 � r31�1;

��2 < �1 � r12�2;

��3 < �2 � r23�3:

These inequalities imply that the separatrices �ij approach saddles Oj along the
leading direction transversal to the xj- axis, j D 1; 2; 3: Finally, let

	1 WD �
�3 � r31�1
�2 � r21�1

> 1;
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	2 WD �
�1 � r12�2
�3 � r32�2

> 1;

	3 WD �
�2 � r23�3
�1 � r13�3

> 1: (1.8)

Under these assumptions each saddle Oj is dissipative, and the heteroclinic cycle
� WD [3

jD1Oj [ .�12 [ �23 [ �31/ is an attractor for the master (1.4).
We will use the length of the projection onto the x-space of the piece of the

trajectory of the system (1.4), (1.5) of duration t for calculation of the length
function S.p; t/ in the definition of S-Lyapunov exponent, �S (2). Let us remark
that the coupling is effective when the representative point of the master (1.4) is far
from the saddles, Oj. In the full phase space of the system (1.4), (1.5) there are three
limit cycles fOig � fLig, i D 1; 2; 3, where Li is the limit cycle of the slave (1.5)
for which the coordinates of Oi are substituted into the coupling function, �.x/, i.e.
z D 2�2i . Each of these cycles is of the saddle type and has two-dimensional unstable
manifolds. While the representative point of the master moves from Oi to OiC1,
the trajectories on the unstable manifold of the cycle move from one limit cycle
fOig � fLig to the next one. These trajectories thus form a “heteroclinic tube” that
for vanishing coupling, " D 0 is topologically equivalent (even smoothly equivalent,
in fact) to the direct product � � S0, where S0 is a circle. However, as the coupling
strength increases, the shape of the tube changes. Its intersection with a section
xi D ai > 0; ai � 1, might look as the one in Fig. 1.3b and so the tube is not a
topological manifold anymore. Such a tube was called a bizarre tube in [5] and it
was shown that a complexity function grows faster for the case of the bizarre tube
compared to piece-wise smooth tubes.

1.4 Numerical Results

We set the following parameters for the master, �1 D 5; �2 D 7; �3 D 9; �12 D

1:2243; �13 D 0:0556; �21 D 0:9; �23 D 2:31; �32 D 0:7857, which satisfy the
conditions (1.7)–(1.8) and so the master system possesses a heteroclinic cycle. The
slave Duffing–Van der Pol oscillator (1.5) shows chaotic behavior with positive
conventional Lyapunov exponent if perturbed by additive white noise [9]. Instead,
here it is driven by the master which possesses a heteroclinic cycle. In the following
we set k D 0:5, ˛ D 2:5 for the slave Duffing–Van der Pol oscillator and � D 8 for
the coupling function, �.x/.

We compared deterministic dynamics of the full system with the case when the
master was perturbed by weak additive Gaussian white noise. In this case the master
was governed by stochastic differential equations,

Pxi D xi

0
@�i � xi �

X
j¤i

rijxj

1
AC

p
2D 
i.t/; i; j D 1; 2; 3; (1.9)
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where 
i.t/ are uncorrelated white Gaussian processes and D is their intensity. In the
following we set D D 10�6.

The length of the phase trajectories was calculated separately for the master, SM ,
and for the slave, SS, as

SM D

Z T

0

 
3X

iD1

Pxi.t/
2

!1=2
dt; SS D

Z T

0

�
Py.t/2 C Ry.t/2

�1=2
dt (1.10)

Numerical simulations were performed with quadruple precision using 4-th order
Runge–Kutta method. To avoid negative values for the master variables we set
a reflecting boundary conditions, so that if xi.t/ < 0, xi.t/ was replaced by
�xi.t/. The largest Lyapunov exponents were calculated for the slave system only
over the time span of 105 and additionally averaged over a set of 100 randomly
chosen initial conditions of the master and slave systems. We then calculated
the standard deviation from this mean, which allows putting “errorbars” on the
Lyapunov exponent for indication of its dependence on initial conditions. Both,
the conventional Lyapunov exponent, �T (1.1) and the proposed S-exponent with
normalization over the length of the projection of the trajectory on master system,
�S (1.3), were calculated.

In the absence of noise, D D 0, the master shows heteroclinic cycle, slowing
down as time progresses. That is, the master system generates long transient motions
as Fig. 1.1 (upper trace) indicates. Weak noise accelerates the master when its phase
trajectory passes near saddles and results in steady stochastic oscillations shown in
Fig. 1.1 (lower trace). As a result, the trajectory length of deterministic slave system
shows a limited growth with time, while the length of stochastic slave trajectory
exhibits a linear growth, shown in Fig. 1.2a. From this graph it is easy to see that the
average speed of the master (i.e., the slope of SM.T/ on Fig. 1.2a) decreases for the
deterministic case and is virtually constant for stochastic case.

0
1
2
3
4
5

t
0 100 200 300 400 500 600

x 1
x 1

0
1
2
3
4
5

Fig. 1.1 Time series of the master system. Upper trace: heteroclinic cycle in the intrinsic case.
Lower trace: noise perturbed case showing steady state stochastic oscillations
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Fig. 1.2 Trajectory lengths vs integration time. Length of the projection on the master system, SM

(a), and on the slave Duffing–Van der Pol oscillator, SS (b), are shown for the deterministic case,
D D 0 (solid lines) and for weak noise, D D 10�6 (dashed line)
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Fig. 1.3 Effect of drive from heteroclinic cycle of the deterministic master system on the ensemble
of 104 identical Duffing–Van der Pol oscillators. (a) Initial distribution of the ensemble. (b)
Distorted distribution after the heteroclinic drive during time T D 104 for " D 8

Figure 1.3 shows results of simulations of an ensemble of 104 identical Duffing–
Van der Pol slave oscillators subjected to the common drive from the master system.
The ensemble was started with random initial condition, so that before the drive
from the master was turned on, the slave oscillators were randomly distributed on
the stable limit cycle as Fig. 1.3a shows. Under the influence of the heteroclinic
sequence in the master system, the slave’s limit cycle can be distorted exhibiting
multiple folding as shown in Fig. 1.3b. In both, deterministic and stochastic cases,
the slave’s trajectory length grows linearly with integration time, T , as indicated in
Fig. 1.2b.
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Fig. 1.4 Largest Lyapunov exponents of the slave system normalized to time, �T (blue lines and
symbols), and to the length of the master system, �S (red lines and symbols) vs the coupling
p parameter, ". Errorbars indicate standard deviation of the Lyapunov exponent from the mean
obtained by averaging over 100 random initial conditions. (a) Randomly perturbed master system,
D D 10�6. (b) Deterministic master system, D D 0

The results of calculation of the largest Lyapunov exponent are shown in Fig. 1.4.
We begin with the noise-perturbed system which reaches a steady state, Fig. 1.4a.
In this case both the conventional and S-Lyapunov exponents show qualitatively
similar dependence on the coupling parameter, ": starting with " � 2 both
exponents are positive. Noise-induced chaos in this Duffing–Van der Pol oscillator
was indeed reported earlier in [9]. Importantly, we notice small errorbars, indicating
that the Lyapunov exponents are invariant with respect to initial conditions.
The deterministic case shown in Fig. 1.4b is different. The conventional Lyapunov
exponent is 0, as expected. However, the S exponent shows positive values for " > 5,
indicating transient chaos. Large errorbars point out the dependence on the initial
conditions.

1.5 Concluding Remarks

We studied weak transient chaos in the master–slave system whereby the slave,
possessing a stable limit cycle, is driven by the master’s heteroclinic cycle. We have
shown that if the coupling strength is large enough, then the system manifests a
weak transient chaos indicated by positive values of newly introduced S-Lyapunov
exponent. We stress that such chaotic behavior is caused neither by the presence of
a chaotic unstable set in the boundary of the basin of the attractor (the heteroclinic
tube in our case) nor by the chaoticity of the attractor itself. Instead, it is caused by
the instability of trajectories in the directions “parallel” to the attractor. Furthermore,
on the attractor all trajectories (except for the limit cycles) go from one limit cycle
to the next one manifesting trivial non-chaotic behavior. Thus, a weak chaotic
behavior is caused by divergence of trajectories going through wandering (transient)
points. One can say that the chaos is supported on a subset of wandering points.
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This phenomenon, in slightly different interpretations, was discovered in [23] for the
sequence entropy. Probabilistic distributions of such initial points and/or measures
with supports on the set of these points could not be invariant. From the physical
viewpoint these distributions do not correspond to equilibrium or steady-state states.
So, in the study of weak transient chaos one should learn how to deal with non-
invariant states.
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Chapter 2
Lorenz Type Attractor in Electronic Parametric
Generator and Its Transformation Outside
the Parametric Resonance

Sergey P. Kuznetsov

2.1 Introduction

This chapter is inspired by seminal works of M.I. Rabinovich and his collaborators
in 70-th devoted to complex dynamics of parametric oscillators [34, 36, 42], mainly,
by the article of Pikovsky et al. [34].

It was shown in [34] that in a case of parametric excitation of two modes by the
pump at the sum frequency and with the energy transfer to decaying third mode
at the difference frequency, chaotic dynamics can occur. Particularly, the authors
of [34] considered the situation in application to waves in magnetized plasma.
Assuming a quadratic nonlinearity, they formulated amplitude equations, which in
the case of a fixed phase relation were reduced to a set of three differential equations
of the first order possessing the Lorenz type attractor. The same mechanism of
chaos generation can be implemented with the parametric interaction of waves
or oscillatory modes in various physical objects, such as mechanical, electronic,
optical, acoustic systems [2, 3, 21, 28, 32].

Lorenz attractor is a popular example of a strange chaotic attractor [20, 27, 40],
which was originally discovered in a model system of three first order differential
equations for the problem of fluid convection in a layer heated from below.
It belongs to a class of singular hyperbolic (quasi-hyperbolic) attractors [4, 7] and
generates robust chaos [5, 11] in the sense that the chaotic behavior is not destroyed
by a small variation of the system parameters. In the years after the Lorenz publi-
cation it became clear that this type of attractor may be related to many different
natural systems, including laser dynamics [15, 30, 31], mechanical systems based
on the rigid body rotations [8, 10, 14, 18], and others [1, 9, 13, 16, 29, 33, 35, 38].
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Some aspects of the dynamics of the model of Pikovsky, Rabinovich, and
Trakhtengerts were analyzed later by other authors [23–25, 43]. In particular,
it concerns the dynamics, accompanied by violation of the phase locking [43],
comparison of the model with a ten-dimensional system for the problem of the
interaction of waves in plasma [24], and mathematical analysis of global dynamics
[26]. In [23] an electronic parametric oscillator was considered based on three
resonant LC circuits, where the parametric excitation and the interaction of modes
take place due to the presence of a varactor diode. It has been found that with
accurate description of the nonlinear characteristic of the diode, the equations for
slow amplitudes are essentially represented in complex variables, so that in the
dynamics of the excited oscillatory modes the phases are relevant, and the attractor
ceases to be quasi-hyperbolic. In particular, this is expressed by appearance of
windows of regularity in the parameter space, where the periodic dynamics occur
instead of chaos, and attractors are represented by limit cycles.

Here we analyze the parametric oscillator circuit similar to that in [23], but
using a specially designed nonlinear reactance element composed on a basis of an
operational amplifier and an analog multiplier, with the characteristic exactly given
by a quadratic function. Because of this it is possible to realize the dynamics of
the Pikovsky–Rabinovich–Trakhtengerts model in pure form. With exact parametric
resonance conditions it manifests the Lorenz type attractor. In the case of violation
of the exact frequency relations a situation occurs similar to that observed in [23].
Namely, the phase dynamics becomes relevant; the attractor ceases to be quasi-
hyperbolic, and windows of regular dynamics appear in the parameter space besides
the chaotic regions.

2.2 Parametric Oscillator Circuit Diagram
and the Basic Equations

Consider the circuit diagram of Fig. 2.1a. It is composed of three resonant circuits:
L1–C1, L2–C2, and L3–C3. Parametric excitation is provided by the pump from the
AC voltage source V1 in presence of the quadratic nonlinear reactance QC.

The nonlinear element circuit diagram is shown separately in panel (b). When
a voltage U is applied to the input of the element with respect to the ground, the
potential U takes place on the both input terminals of the operational amplifier
OA. Since the input impedance of the operational amplifier ideally is infinite, the
presence of the current U=R through the resistor R, which has a grounded outlet,
implies the same current through the second resistor R connected to the previous
one, and thus the voltage at the input of the analog multiplier AM must be equal
to 2U. Hence we have the voltage 4KU2 at its output. The currents through the
one and the other capacitors C0 are C0

dU
dt and d

dt

�
4KU2 � C0U

�
; in amount, they

comprise the current through the nonlinear element d
dt

�
4KU2

�
.
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Fig. 2.1 The circuit diagram of the chaotic parametric oscillator (a). The pumping is provided
by the voltage source V1. The symbol QC denotes a two-pole reactance element with quadratic
nonlinearity, the scheme of which is shown separately on the panel (b)

The natural frequencies of the LC resonant circuits (without taking into account
the dissipation) will be assumed to satisfy, at least approximately, the parametric
resonance conditions

˝0 � ˝1 C˝2; ˝3 � ˝1 �˝2: (2.1)

Figure 2.2 shows plots of voltages on the capacitors C1;C2, and C3 obtained from
the virtual oscilloscope in the course of simulation using the Multisim environment
of the circuit with the component values indicated in the figure caption. After the
transient decay, a sustained regime of nonlinear oscillations persists. In the scale of
the figure, the high-frequency filling is indistinguishable, but one can observe clearly
the irregular, apparently chaotic behavior of the amplitudes.

In a framework of the circuit simulation in Multisim it is difficult to get
information concerning some of the essential features of the dynamics including
the expected presence of the Lorenz type attractor and to determine relevant
characteristics such as the Lyapunov exponents. Therefore, in the following sections
we will discuss the equations describing the system, and analyze some results of
their numerical integration.
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Fig. 2.2 Typical waveforms for the voltages across the capacitors C1, C2, C3 obtained
by simulation of the circuit of Fig. 2.1 using the Multisim environment. The component
values: C1 D C2 D C3 D 40 nF, L1 D 1.583 mH, L2 D 4.398 mH, L3 D 9.895 mH, R1 D 250 k�,
R2 D 62.5 k�, R3 D 250 k�. The natural frequencies of the LC circuits are f1 D 20 kHz,
f2 D 12 kHz, f3 D 8 kHz. Pumping is carried out by the voltage source V1 with amplitude of 0.245 V
at the frequency f0 D 32 kHz. The capacitors in the circuit diagram of the nonlinear reactance
element are of capacitance C0 D 2 nF; the transmission coefficient of the analog multiplier AM is
K = 1=8V�1

2.3 Basic Equations of the Parametric Oscillator

Suppose that U1;U2;U3 are voltages on the capacitors C1, C2, C3, and I1; I2; I3 are
currents through the inductors L1, L2, L3. Assuming equality of the capacities C D

C1 D C2 D C3 for simplicity, write down the Kirchhoff equations as follows:

L1PI1 D U1;

L2PI2 D U2;

L3PI3 D U3;

C PU1 C U1=R1 C I1 D �I;

C PU2 C U2=R2 C I2 D �I;

C PU3 C U3=R3 C I3 D �I: (2.2)

Here I is the current through the non-linear element defined by the expression

I D
d

dt
4KC0U

2 D C"
d

dt

U2

2
; (2.3)
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where

" D 8KC0=C; U D U1 C U2 C U3 C U0; U0 D �� sin!0t; (2.4)

and the values of � and !0 designate the amplitude and frequency of the pump
signal. Using the normalized dimensionless time t0 D t=.2R3C/, the equation can
be rewritten as

RXk C 2	k PUk C˝2
k Uk D 0; Xk D Uk C

1

2
"U2; k D 1; 2; 3; (2.5)

where

	1;2 D
R3

R1;2
; 	3 D 1; ˝1;2;3 D 2R3

s
C

L1;2;3
: (2.6)

For the numerical integration it is convenient to reformulate the problem
representing it by the set of the first order differential equations

PYk D �˝k.Xk �
1

2
"U2/; PXk D ˝kYk � 2	k; k D 1; 2; 3;

U D
�1C

p
6".X1 C X2 C X3 � � sin˝0t0/C 1

3"
; Ui D Xk �

1

2
"U2: (2.7)

Figure 2.3 shows the time dependences for the quantities U1, U2, U3, obtained
by numerical integration of the equations (2.7) with component values indicated

Fig. 2.3 Typical waveforms of voltages across the capacitors C1, C2, C3, obtained from numerical
integration of the equations (2.7) for the circuit shown in Fig. 2.1, with component values indicated
in the caption of Fig. 2.2
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in the caption of Fig. 2.2. Comparing the plots in Figs. 2.2 and 2.3, we can see a
good agreement between the observed dynamics. In both cases we have chaotic
waveforms containing similar fragments, and compliance in characteristic scales
of times and voltages. (One should not expect to see exact correspondence of the
waveforms because of the inherent sensitivity of the chaotic dynamics to small
perturbations of the initial conditions.)

2.4 Equations for Slow Amplitudes

To obtain equations in a form that allows comparison with the Lorenz and Pikovsky–
Rabinovich–Trakhtengerts models, it is necessary to apply the method of slow
varying amplitudes. First, it is convenient to rewrite the equations considering
only those terms, which can contribute to the resonant interaction of the modes
corresponding to the relation of the frequencies (2.1). In the first, the second, and
the third equations (2.5) one can set, respectively,

1

2
U2 � U0U2 C U2U3;

1

2
U2 � U0U1 C U1U3;

1

2
U2 � U1U2: (2.8)

In addition, replace the operation of the second derivative of the nonlinear terms
in the equations by the multiplier .�˝2

k /. The result is

RU1 C 2	1 PU1 C˝2
1U1 D "˝2

1 .U0U2 C U2U3/;

RU2 C 2	2 PU2 C˝2
2U2 D "˝2

2 .U0U1 C U1U3/;

RU3 C 2 PU3 C˝2
3U3 D "˝2

3U1U2: (2.9)

Omitting for brevity the prime at the time variable, we seek a solution in the form

U1 D A1e
i!1t C A�

1 e�i!1t; PU1 D i!1A1e
i!1t � i!1A

�
1 e�i!1t;

U2 D A2e
i!2t C A�

2 e�i!2t; PU2 D i!2A2e
i!2t � i!2A

�
2 e�i!2t;

U3 D �iA3e
i!3t C iA�

3 e�i!3t; PU3 D !3A3e
i!3t C !3A

�
3 e�i!3t; (2.10)

where the reference frequencies !1;2;3 are defined as

!1 D
˝1 �˝2 C˝0

2
; !2 D

�˝1 C˝2 C˝0

2
; !3 D ˝1 �˝2: (2.11)

Being close to the values ˝1;2;3 they satisfy the resonance conditions precisely:

!3 D !1 � !2; ˝0 D !1 C !2: (2.12)
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Use of (2.10) implies fulfillment of the additional equalities for the amplitudes:

PA1e
i!1t C PA�

1 e�i!1t D 0; PA2e
i!2t C PA�

2 e�i!2t D 0; PA3e
i!3t � PA�

3 e�i!3t D 0:

(2.13)

Next, according to (2.4), we have

U0 D �� sin˝0t D
1

2
i�ei˝0t �

1

2
i�e�i˝0t: (2.14)

Substitution of (2.10) into Eqs. (2.9) yields

PA1 C 	1A1 � i�A1 D
1

2
"˝1.

1

2
�A�

2 � A2A3/;

PA2 C 	2A2 � i�A2 D
1

2
"˝2.

1

2
�A�

1 C A1A
�
3 /;

PA3 C A3 � iıA3 D
1

2
"˝3A1A

�
2 ; (2.15)

where

� � ˝1 � !1 D ˝2 � !2 D
˝1 C˝2 �˝0

2
; ı � ˝3 � !3 D ˝3 �˝1 C˝2:

With normalization

A1 D
2

"
p
˝2˝3

a1; A2 D
2

"
p
˝3˝1

a2; A3 D
2

"
p
˝1˝2

a3; h D
"�

p
˝1˝2

4
;

(2.16)

we obtain the equations exactly corresponding to [34]:

Pa1 C 	1a1 � i�a1 D ha�

2 � a2a3; Pa2 C 	2a2 � i�a2 D ha�

1 C a1a
�

3 ; Pa3 C a3 � iıa3 D a1a
�

2 :

(2.17)

Here � is the dimensionless parameter of the pumping amplitude, the value of� can
be adjusted by varying the pumping frequency, and ı by varying the inductance L3.

2.5 Precise Parametric Resonance: Lorenz Type Attractor

In the absence of detuning, �D 0, ıD 0, using the substitution

a1 D xei'; a2 D ye�i'; a3 D ze2i' (2.18)

with ' D const we arrive at the equations

Px D hy � 	1x � yz; Py D hx � 	2y C xz; Pz D �z C xy; (2.19)

which may be considered in domain of real variables.
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Fig. 2.4 Attractor in the three-dimensional state space of system (2.19) (a) and plot of the map
for successive maxima of the variable z in the course of temporal evolution (b); parameters are
	1 D 1; 	2 D 4; h D 5:962

According to [34], the model (2.19) has attractor of Lorenz type in the three-
dimensional phase space of the variables x, y, z, which is true, particularly, in the
case 	1 D 1; 	2 D 4; h D 5:962. Figure 2.4 shows a portrait of the attractor
according to the results of numerical integration of the equations (2.19). Also, the
plot is shown obtained with the procedure applied by Lorenz in his work [27]: on
the axes are the values of the maxima of the variable z achieved sequentially during
the time evolution of the system. The view of the plot with a sharp peak, which
resembles a classic “saw tooth” map [20, 27, 34, 40], indicates that the attractor is
quasi-hyperbolic, just like the classic Lorenz attractor.

The Lyapunov exponents calculation by joint numerical solution of equations
(2.19) and the corresponding variational equations is based on a known algorithm
with Gram–Schmidt orthonormalization of perturbation vectors [6, 20] and yields1

�1 D 0:394˙ 0:001; �2 D 0:0000˙ 0:0001; �3 D �6:394˙ 0:001: (2.20)

The presence of a positive Lyapunov exponent indicates occurrence of chaos,
characterized by the exponential growth of the deviation from the reference
trajectory on the attractor under small perturbations of the initial conditions. The
second exponent is zero up to a calculation error; it is associated with a perturbation
of a shift along the reference phase trajectory. The third exponent is negative

1 Lyapunov exponents’ calculations were performed on time intervals of duration of 50,000 with
the counting of the average values and standard deviations on 20 samples. As an error, the standard
deviations are indicated.
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Fig. 2.5 Dependence of Lyapunov exponents on the parameter h. The exponents of the model
(2.19) are marked as �1�3 on the left side of the diagram, and those for the model (2.17) at�D 0,
ıD 0 are labeled as �1�6 in the right part of the figure. Other parameters: 	1 D 1, 	2 D 4

and is responsible for the approach of the trajectories to the attractor. The fact
that the sum of the exponents is negative indicates the volume compression in
the three-dimensional phase space. It is consistent with the analytical calculation
of the divergence of the vector field defined by the right sides of the equations
(2.19): divF D @xfx C @yfy C @zfz D �	1 � 	2 � 1 D �6. Estimate of the
dimension of the attractor from the well-known formula of Kaplan–Yorke provides
D D 2C �1=j�3j � 2:06.

Figure 2.5 shows the three Lyapunov exponents of the model (2.19) versus the
parameter h. The smooth nature of the dependence and the lack of notable dips
(regularity windows) for the senior exponent in the graph indicate the robustness of
chaos in the three-dimensional system (2.19) and correspond to the conclusion that
the nature of the attractor is quasi-hyperbolic as motivated by the view of the graph
displayed in Fig. 2.5b.

It is interesting to compare the Lyapunov exponents calculated at the same
parameters for equations in real and complex amplitudes. For the system (2.17)
at � D 0, ı D 0 we have

�1 D 0:394˙ 0:001; �2 D 0:0000˙ 0:0002; �3 D 0:0000˙ 0:0003;

�4 D �0:618˙ 0:05; �5 D �5:381˙ 0:05; �6 D �6:394˙ 0:003:
(2.21)
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In this list, there are two zero exponents, one of which is associated with the shift
perturbation along the reference phase trajectory, the second with the phase shift in
the variable  [see (2.18)]. The exponents �1;2;6 are in agreement with the exponents
�1;2;3 from the list (2.20). Additional exponents �4;5 correspond obviously to the
relaxation of phases to the situation described by equations for real amplitudes.
Figure 2.5 shows the plot for six Lyapunov exponents of the model (2.17), three of
which are indistinguishable from those of the model (2.19).

If we talk about the system without reduction to the slow amplitudes (2.7)
and about the model with complex amplitudes (2.17), it would be incorrect to
relate to them the conclusion concerning robustness of the Lorenz type attractor
from the three-dimensional real model (2.19). A formal sign pointing to a possible
violation of the robustness in this sense is occurrence of an additional zero Lyapunov
exponent in the complex system (2.17). In particular, introduction of the frequency
detuning leads to a disruption of the phase relations (2.18) and to a change in the
nature of the attractor.

2.6 Chaotic and Regular Dynamics in the Parametric
Oscillator in Presence of Frequency Detuning

We now turn to the situation when the conditions of parametric resonance are not
accurately fulfilled, and one has to take into account the frequency detuning of the
pump from the sum of natural frequencies of the first and second oscillators, and
detuning of the difference frequency from the frequency of the third oscillator. This
corresponds to non-zero parameters�, ı in the complex amplitude equations (2.17),
which cannot be reduced now to a three-dimensional system for real amplitudes.

In this situation, there is a problem of graphical presentation of attractors
allowing a visual comparison with the Lorenz attractor. We proceed with assumption
that the approximate correspondence of instantaneous phases of the complex
variables a1 and a2 to the formulas (2.18) roughly persists for the most part, although
the value of ', generally speaking, will not be constant in time. For graphical
representation it is natural to use the variables x D Re.a1e�i'/, y D Re.a2ei'/,
where  is chosen each time to minimize the value ŒIm.a1e�i'/�2C ŒIm.a2ei'/�2. As
the third variable we use z D ja3j.

Note that the same method is applicable to processing numerical data for the
original Kirchhoff equations (2.7) if we convert the vectors defined by the voltages
U = (U1, U2, U3/

T to complex amplitudes as

a1;2;3 D
1

2
.U1;2;3 � i!�1

1;2;3
PU1;2;3/: (2.22)

Figure 2.6a shows a portrait of the attractor, drawn using the results of the
numerical integration of equations (2.17) in a mode corresponding to a slight shift
of the pump frequency from the exact parametric resonance at h D 5:962, 	1 D 1,
	2 D 4, �D 0.3, ıD 0. (In the original system, this corresponds to the pumping
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Fig. 2.6 Three-dimensional portrait of the attractor drawn using the techniques described in the
text (a), and a plot of the map for successive maxima of the variable z D ja3j (b) for the system
(2.17) at h D 5:962, 	1 D 1, 	2 D 4, �D 0.3, ıD 0

frequency of 31998.8 Hz at amplitude of 62.25 mV setting resistances R1 D 1 M�,
R2 D 250 k�, R3 D 1 M�, and the remaining components correspond to the caption
of Fig. 2.2.) The phase portrait looks like Lorenz type attractor: it has two “wings,”
each of which corresponds to orbits spiraling from the central blank area, with
successive transitions from one wing to the other, and the committed numbers of
turns vary from once again chaotically.

Figure 2.6b shows a plot of the map, where the axes correspond to successive
maxima of the variable z D jA3j achieved in the course of the temporal evolution
of the system. The picture is significantly different from the map corresponding
to the Lorenz type attractor in Fig. 2.4. Firstly, the graph looks composed not of
a single curve, but a set of curves, i.e. it possesses a transverse fractal structure
expressed much stronger than that for the Lorenz type attractor, where it is visually
indistinguishable. Secondly, the curves representing the mapping manifest smooth
quadratic maxima instead of a sharp tip at the top. In this connection, in this case one
cannot speak of robust quasi-hyperbolic attractor. Rather, the properties of chaotic
dynamics should be similar to attractors in the Hénon map [17] and Rössler model
[37], which in mathematical works are interpreted within the concept of quasi-
attractor [1, 39].

Figure 2.7 shows the dependence of six Lyapunov exponents of the model (2.17)
on parameters of the frequency detuning � and ı. Note the symmetry of one and
the other graph in Fig. 2.7; it occurs due to the fact that the equations transform into
themselves under complex conjugation together with the sign change of � and ı.

Unlike the case of exact resonance, the graph for the senior Lyapunov exponent
manifests dips (the regularity windows), which are also accompanied by tips or dips
in the graphs of other exponents. As one can verify by the numerical integration of
the equations, these windows correspond to the emergence of attracting limit cycles
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Fig. 2.7 Lyapunov exponents of the model (2.17) versus parameter � at ıD 0 (a) and versus
parameter ı at � D 0. (b) Other parameters: 	1 D 1, 	2 D 4

of (2.17), i.e., instead of chaos periodic oscillations of the amplitude variables arise.
It is this kind of the plots for Lyapunov exponents intrinsic particularly to one-
dimensional maps with quadratic extremum and for many other dissipative systems,
including the Hénon map and the Rössler model, which are associated with the
concept of quasi-attractor [1, 17, 37, 39].

Let us turn to the chart of dynamical regimes in the parameter plane �, ı. The
procedure consists of scanning parameter space area in two dimensions over the
grid nodes with some small step. At each point about 103 iterations are performed
for the Poincaré map defined for the system (2.17) via the section surface S D

ja3j � h C
p
	1	2 D 0 in the phase space (in the direction of passage of the orbits

with decreasing S/. According to the latest recorded data of iterations, the analysis
is carried out for the presence or absence of a repetition period of the states in the
Poincaré section from 1 to 14 (with some accepted small level of errors). When
the periodicity is detected, the corresponding pixel in the chart is indicated by some
color depending on the period, and the procedure proceeds with analyzing next point
in the parameter plane. At the new point, as the initial conditions it is reasonable to
assign the state resulting in the end of iterations at the previous point (“scanning
with inheritance”) to accelerate the convergence to the steady state dynamics.

In the center of Fig. 2.8 the parameter plane chart is shown for the system (2.17),
and on the periphery the portraits of attractors are depicted corresponding to some
representative points of the parameter plane (�, ı/. Attractors in panels (a), (c),
(h), (e) are limit cycles of the amplitude equations, i.e. relate to periodic modes
for oscillations of amplitudes in the colored parameter plane areas. On the other
hand, attractors in the diagrams (b), (g), (f) are chaotic corresponding to not colored
regions where the periodicity is not detected. Diagram (f) relates to the origin
on the chart where the Lorenz type attractor occurs, which was discussed in the
previous section. Dark blue areas in “north-west” and “south-east” parts of the chart
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Fig. 2.8 A chart for the system (2.17) in the plane of parameters� and ı and portraits of attractors
corresponding to representative points of the parameter plane. Other parameters: h D 5:962, 	1 D
1, 	2 D 4. For explanation of the method of the graphical presentation see in the text

correspond to the fixed point attractor of the Poincaré map [panel (d)] associated
with a stable regime of stationary oscillations of constant amplitude in the initial
equations.

Similar regimes are observed in numerical simulations of the original system of
Kirchhoff’s equations (2.7). Figure 2.9 shows attractors related to the system with
the pump of amplitude of 62.25 mV, and the resistances R1 D 1 M�, R2 D 250 k�,
R3 D 1 M�. The frequency of the pump and inductance L3 were selected to provide
the parameters � and ı indicated in the inscriptions, and the other parameter values
correspond to the caption of Fig. 2.2. The pictures clearly resemble those on the
periphery of Fig. 2.8 with the difference that the trajectories on the attractors look
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Fig. 2.9 Portraits of attractors of the original Kirchhoff’s equations (2.3) at the resistances
R1 D 1 M�, R2 D 250 k�, R3 D 1 M� and the pumping amplitude 62.25 mV. The pump frequency
and the inductance L3 were set to provide the parameter values � and ı: �0:64, 1.92 (a); 0, 0.96
(b); 0.6, 0.96 (c); 0, 0 (d); 0.8, �1:92 (e); 0.8, �0:96 (f). The remaining parameters correspond to
the caption of Fig. 2.2

a little “fluffed,” which is obviously connected with the presence of non-resonant
components of relatively low amplitude contributing to the instantaneous values of
dynamic variables, which were excluded in the amplitude equations.2

2.7 Conclusion

In this chapter we presented the analysis of the chaotic parametric oscillator
composed of three resonant circuits with pumping provided by periodic variation
in voltage on a quadratic nonlinear element. The methodological value of this
model is that it allows a pure realization and exploration of the mechanism of
parametric generation of chaos when two modes are excited due to the pump at
the sum frequency, and the energy extraction is carried out by the mode at the
difference frequency [34]. This circuit may serve as an analog simulator for systems
of different nature where the same mechanism of parametric oscillations takes place,
or, more widely, for systems where similar equations occur on some reason [19, 22].

2 The lack of a perfect match in the parameters for Fig. 2.9 in comparison to Fig. 2.8 is due to the
approximate nature of description in terms of slow amplitudes.
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In the case of deviation from the exact parametric resonance, instead of the quasi-
hyperbolic Lorenz type attractor, one obtains the dynamics although resembling
those of Lorenz, but lacking robustness: by varying parameters destruction of
chaos is possible with the emergence of regular motions. This conclusion has
been illustrated particularly by the chart of the plane of the detuning frequency
parameters, which gives a visual representation of location of areas of chaotic and
regular dynamics.
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Chapter 3
Time Rescaling of Lyapunov Exponents

Yakov Pesin, Agnieszka Zelerowicz, and Yun Zhao

3.1 Introduction

Lyapunov exponents are classical characteristics of instability of trajectories and
in the presence of nonzero Lyapunov exponents the system is expected to exhibit
a certain level of chaotic behavior. This is indeed the case if the system preserves
a smooth measure or more generally a Sinai–Ruelle–Bowen (SRB) measure. This
is one of the manifestations of the classical non-uniform hyperbolicity theory (see
[1]). For system preserving SRB measures the Kolmogorov–Sinai (metric) entropy
of the system can be computed using Pesin’s entropy formula: the entropy is the
mean over the phase space of the system of the sum of positive Lyapunov exponents.
In particular, the entropy of the system is positive.

On the other hand, if a measure invariant under the system has all its Lyapunov
exponent zero, then by the Margulis–Ruelle inequality, the entropy of the measure
is zero. When entropy of the measure is positive it characterizes the complexity of
the system (with respect to this measure) but in the case when entropy is zero little
if any meaningful information about the complexity can be recovered.

This observation is crucial, since there are many examples of physical systems
which exhibit sub-exponential instability of trajectories and hence, have zero
Lyapunov exponents with respect to some “natural” invariant measures. Such
systems include some models with sequential dynamics studied by Rabinovich [9]

Y. Pesin (�) • A. Zelerowicz
Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
e-mail: pesin@math.psu.edu; axz157@psu.edu

Y. Zhao
Department of Mathematics, Soochow University, Suzhou, Jiangsu 215006,
People’s Republic of China
e-mail: zhaoyun@suda.edu.cn

© Springer International Publishing AG 2017
I.S. Aranson et al. (eds.), Advances in Dynamics, Patterns, Cognition,
Nonlinear Systems and Complexity 20, DOI 10.1007/978-3-319-53673-6_3

29

mailto:pesin@math.psu.edu
mailto:axz157@psu.edu
mailto:zhaoyun@suda.edu.cn


30 Y. Pesin et al.

in connection to his work on dynamics of neural and cognitive systems, see [10, 11].
It also includes a model of weak transient chaos considered by V. Afraimovich and
A. Neiman (see their paper in this volume).

To study models with sub-exponential instability of trajectories, one may
introduce a more appropriate sub-exponential scale in which Lyapunov exponents
should be computed. This is a “better adapted” or “internal” scale of the system.
The classical notion of Lyapunov exponent is based on the exponential scale and if
it happens to be the “internal” scale of the system which has positive entropy, one
obtains positive Lyapunov exponents. Otherwise, one should switch to a different
scale (e.g., the polynomial scale) with respect to which the Lyapunov exponents
and entropy may become positive. This would allow one to evaluate the level of
complexity of the system.

Finding an internal scale for a given system or proving that it exists may be
difficult if at all possible. However, if such a scale is found one hopes to use the
corresponding scaled Lyapunov exponents to recover at least some part of non-
uniform hyperbolicity theory. In particular, one hopes to establish a version of
the Margulis-Ruelle inequality (or in some cases even Pesin’s entropy formula) to
connect an appropriately rescaled metric entropy with scaled Lyapunov exponents.

In [8] using the general Carathéodory construction as described in [7], the
concept of scaled entropy was introduced in both topological and metric settings.
While the standard approach to topological entropy defines it as the exponential
growth rate of the number of periodic points, the definition of the scaled topological
entropy allows asymptotic rates of the general form e˛a.n/, where ˛ > 0 is a
parameter and a.n/ is a scaled sequence. Similar idea was used in [8] in defining
scaled metric entropy.

Measures with zero Lyapunov exponents often appear as infinite invariant
measures for dynamical systems on compact phase spaces. A classical example is
the Manneville–Pomeau map x ! xCx1C˛. .mod 1//, where ˛ controls the degree
of intermittency at the neutral fixed point. If ˛ 2 .0; 1/, then the systems preserve a
finite measure which is absolutely continuous with respect to the Lebesgue measure.
However, for ˛ > 1 this measure becomes infinite and the corresponding Lyapunov
exponents are zero. After the rescaling t ! t˛ the scaled Lyapunov exponent
becomes positive and one recovers the “rescaled” version of Pesin’s entropy formula
as well, see [3, 4].

The goal of this article is to examine the dependence of Lyapunov exponents
on the scale in which they are computed and to outline the abstract theory of
scaled Lyapunov exponents. We will do this in the general setting of cocycles over
dynamical systems.
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3.2 Scaled Lyapunov Exponents for Cocycles

In this section, we describe the general theory of scaled Lyapunov exponents for
cocycles over dynamical systems. Consider an invertible measurable transformation
f of a measure space X.

3.2.1 Linear Multiplicative Cocycles

Let f W X ! X be an invertible measurable transformation of a measure space X.
We call the function A W X � Z ! GL.d;R/ a linear multiplicative cocycle over f
or simply a cocycle if it has the following properties:

(1) A.x; 0/ D Id for every x 2 X and A.x;m C n/ D A.f n.x/;m/A.x; n/ for all
m; n 2 Z;

(2) the function A.�; n/ W X ! GL.d;R/ is measurable for each n 2 Z.

Every cocycle is generated by a measurable function A W X ! GL.d;R/, which
is called the generator. In fact, every such function determines a cocycle by the
formula

A.x; n/ D

8̂
<̂
ˆ̂:

A.f n�1.x// � � � A.f .x//A.x/ if n > 0;

Id if m D 0;

A.f n.x//�1 � � � A.f �2.x//�1A.f �1x/�1 if n < 0:

On the other hand, a cocycle A is generated by the matrix function A D A.�; 1/.
A simpler way to describe a cocycle A over f is by considering a linear extension

F W X � R
d ! X � R

d of f that is induced by the cocycle (for simplicity of
presentation we only consider the trivial bundle in this paper). It is given by

F.x; v/ D .f .x/;A.x/v/:

If � W X � R
d ! X is the projection defined by �.x; v/ D x, then it is easy to see

that � ı F D f ı � .
If f is a differentiable map of a compact phase space M, then f generates a

differential cocycle A.x; n/ over f whose generator is A.x/ D dfx and it acts on
the tangent bundle TM of M. Therefore, the results in this and next sections are
applicable to smooth maps.
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3.2.2 Definition of Scaled Lyapunov Exponents

Let A be a cocycle over an invertible measurable transformation f of a measure
space X. Using the notion of the standard Lyapunov exponent (see [1] for details),
we introduce the notion of the scaled Lyapunov exponent for the cocycle.

Given x 2 X, we call a sequence of positive numbers a D fa.x; n/gn�1 a scaled
sequence if

1. it is monotonically increasing to infinity, e.g., a.n/ D n˛ , log n, etc.;
2. for each n the function a.x; n/ is Borel;
3. a.f .x/; n/ D a.x; nC1/, in other words the function a.x; n/ depends on the entire

trajectory of the point x.

Given a point x 2 X, a scaled sequence a D fa.x; n/g and a vector v 2 R
d, we call

the following quantity

�.x; v; a/ D lim sup
n!C1

1

a.x; n/
log kA.x; n/.v/k

the scaled Lyapunov exponent of .x; v/ (with respect to the scaled sequence a and
the cocycle A). With the convention that log 0 D �1 this extends the definition of
the standard Lyapunov exponent corresponding to the scaled sequence a.n/ D n for
each n.

3.2.3 Choices of Scaled Sequences

The above definition of the scaled Lyapunov exponent allows any scaled sequence
a D fa.x; n/gn�1, which grows slower than n. Depending on the choice of a the
value of the scaled Lyapunov exponent can be positive, negative, or zero. It can also
be ˙1.

Given a point x 2 X, consider the sequence of positive numbers

b D

�
b.x; n/ D max

0�k�n
j log kA.x; k/k j

�
:

This sequence is non-decreasing and if it is bounded, then for any scaled sequence
a the corresponding values of the Lyapunov exponent are all zero. However, if the
sequence b is unbounded, then the corresponding values of the Lyapunov exponent
are all finite (except for v D 0).

Consider the collection of vectors for which �.x; v;b/ D 0. By the properties
of the scaled Lyapunov exponents described in the next section, this collection is a
linear subspace of Rd, which we denote by R

d1 . Consider the “restricted” cocycle
A1.x; n/ with values in GL.d1;R/. Repeating the above argument we find the non-
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decreasing sequence of positive numbers b1 and if this sequence is unbounded then
we can use it to rescale the Lyapunov exponents for vectors v 2 R

d1 . The above
procedure produces a filtration

R
d D R

d0 � R
d1 � � � � � R

dk ;

a collection of scaled sequences bi and the corresponding collection of scaled
Lyapunov exponents �.x; v;bi/, i D 1; : : : ; k � 1 such that �.x; v;bi/ ¤ 0 for
every v 2 R

di�1 n R
di and i D 1; : : : ; k � 1. If the sequence bk is unbounded, then

R
dk D 0.

3.3 Basic Properties of Scaled Lyapunov Exponents

The function � has the following basic properties of a Lyapunov exponent, see [1,
Chap. 2] or [2, Proposition 1] for detailed proofs.

Proposition 3.1 For each x 2 X, v;w 2 R
d and c 2 R n f0g,

(1) �.x; cv; a/ D �.x; v; a/;
(2) �.x; 0; a/ D �1;
(3) �.x; v C w; a/ � maxf�.x; v; a/; �.x;w; a/g.

It follows from the abstract theory of Lyapunov exponents (see [1, Theorem 2.1])
that:

1. �.x; v C w; a/ D maxf�.x; v; a/; �.x;w; a/g for any v;w 2 R
d whenever

�.x; v; a/ ¤ �.x;w; a/;
2. if for some nonzero vectors v1; : : : ; vm 2 R

d, the numbers �.x; v1; a/, : : : ,
�.x; vm; a/ are distinct, then these vectors are linearly independent;

3. the function �.x; �; a/ attains only finitely many values on R
d n f0g, which we

denote by �1.x; a/ < � � � < �s.x;a/.x; a/, where s.x; a/ � d; note that, in general,
�1 may be �1 and �s.x;a/ may be C1.

Further we denote by Va.x/ the filtration of Rd associated with �.x; �; a/:

f0g D V0
a .x/ ¦ V1

a .x/ ¦ � � � ¦ Vs.x;a/
a .x/ D R

d;

where Vi
a.x/ D

˚
v 2 R

dW�.x; v; a/ � �i.x; a/
�

for i D 1; : : : ; s.x; a/. It is easy to
see that

�i.x; v; a/ D �i.x; a/ for all v 2 Vi
a.x/ n Vi�1

a .x/:

The number ki.x; a/ D dim Vi
a.x/ � dim Vi�1

a .x/ is the multiplicity of the value
�i.x; a/. We have that

s.x;a/X
iD1

ki.x; a/ D d:
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The collection of pairs

Sp�a.x/ D
˚
.�i.x; a/; ki.x; a//W 1 � i � s.x; a/

�

forms the Lyapunov spectrum of the scaled Lyapunov exponent � at the point x 2 X
with respect to the scaled sequence a D fa.x; n/g.

Definition 3.1 A basis v D .v1; � � � ; vd/ of R
d is said to be subordinate to the

filtration Va.x/ if for every 1 � i � s.x; a/ there exists a basis of Vi
a.x/ composed of

di vectors from .v1; : : : ; vd/. A subordinate basis v is ordered if for every 1 � i �

s.x; a/ the vectors v1; : : : ; vdi form a basis of Vi
a.x/.

Using the same arguments in [1, Chap. 12], we can find that there always exists
a subordinate basis for a filtration.

Proposition 3.2 Given a filtration Va.x/ of R
d, there exists a basis w D

.w1; : : : ;wd/ of Rd such that

inf

(
dX

jD1

�.x; vj; a/W v D .v1; : : : ; vd/ is a basis of Rd

)
D

dX
jD1

�.x;wj; a/:

3.4 The Lyapunov and Perron Regularity Coefficients

Consider the dual matrix B.x/ D .A.x/�/�1 at each point x 2 X. Given a scaled
sequence a D fa.x; n/gn�1 and a point .x; v�/ 2 X � R

d, the dual scaled Lyapunov
exponent is given by the formula:

e�.x; v�; a/ D lim sup
m!C1

1

a.x;m/
log kB.x;m/v�k

where B.x;m/ D B.f m�1.x// � � � B.f .x//B.x/ for m > 0. In fact, choose dual bases
.v1; : : : ; vd/ and .v�

1 ; : : : ; v
�
d /, i.e., hvi; v

�
j i D ıij for each i and j (here ıij is the

Kronecker symbol), and set vi;m D A.x;m/vi and v�
i;m D B.x;m/v�

i . For each m 2 N

we have

hvi;m; v
�
i;mi D hA.x;m/vi; .A.x;m/�/�1v�

i i D 1:

Hence, 1 � kA.x;m/vik � kB.x;m/v�
i k and the exponents � and e� are dual at the

point x, i.e., �.x; vi; a/Ce�.x; v�
i ; a/ 	 0 for each 1 � i � d.

Arguing as above one can show that for each v� 2 R
d, the Lyapunov exponent

e� can only attain finitely many values on R
d n f0g. We denote them bye�r.x;a/.x; a/

< � � � < e�1.x; a/ for some integer r.x; a/ � d. Let eV a.x/ D feVi
a.x/ W i D

1; : : : ; r.x; a/g be the filtration associated with e�. Note that, in general, e�r.x;a/ may
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be �1 and e�1 may be C1 and therefore, from now on we assume that the sums
�1 Ce�1 and �s.x;a/ Ce�r.x;a/ are well defined, that is j�1j ande�1 are not both C1

and similar for �s.x;a/ and je�r.x;a/j.
We call the quantity

�a.x; �;e�/ D min max
n
�.x; vi; a/Ce�.x; v�

i ; a/W 1 � i � d
o

the regularity coefficient of the pair of scaled Lyapunov exponents � and e� at the
point x (with respect to the scaled sequence a D fa.x; n/g). Here the minimum is
taken over all pairs of dual bases .v1; : : : ; vd/ and .v�

1 ; : : : ; v
�
d / of Rd. We say that a

point x 2 X is regular (with respect to the pair of scaled Lyapunov exponents .�;e�/)
if �a.x; �;e�/ D 0.

Now we let

�0
1.x; a/ � � � � � �0

d.x; a/ ande�0
1.x; a/ 	 � � � 	e�0

d.x; a/

be, respectively, the values of � ande� at the point x counted with their multiplicities.
Define the Perron coefficient of the pair � ande� at x 2 X (with respect to the scaled
sequence a D fa.x; n/g) by

�a.x; �;e�/ D maxf�0
i.x; a/Ce�0

i.x; a/W 1 � i � dg:

The following theorem can be proven by the same arguments as in the proof of
Theorem 2.8 in [1].

Theorem 4.1 For a point x 2 X, if �1 Ce�1 and �s.x;a/ Ce�r.x;a/ are well defined,
then

0 � �a.x; �;e�/ � �a.x; �;e�/ � d�a.x; �;e�/:

It follows that a point x 2 X is regular if and only if �a.x; �;e�/ D 0 and also if and
only if �0

i.x; a/ D �e�0
i.x; a/ for i D 1; : : : ; d.

Theorem 4.2 If a point x 2 X is regular, then the filtrations Va.x/ and eV a.x/
are orthogonal, that is, s.x; a/ D r.x; a/ WD s, dim Vi

a.x/ C dimeVs�i
a .x/ D d and

hv; v�i D 0 for every v 2 Vi
a.x/ and v� 2 eVs�i

a .x/.

Reversing the time, we can introduce the scaled Lyapunov exponents for negative
time. The above result provides a basis to study Lyapunov–Perron regularity for
scaled Lyapunov exponents. The ultimate goal is to find out whether various
regularity criteria that hold in the case of the standard scale can be extended to
general scaled sequences and to what extent the Multiplicative Ergodic theorem
may hold for scaled Lyapunov exponents.
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3.5 Examples

In this section we present two examples that illustrate that there are systems for
which the Lyapunov exponents can be rescaled to achieve non-zero values but that
in general this should not be expected.

3.5.1 Existence of Scaled Lyapunov Exponents

Consider the elliptic matrix A D

�
1 1

0 1

�
whose only eigenvalue is 1. Hence, the two

Lyapunov exponents for the constant cocycle generated by A are zero. In addition,

the vector v D

�
1

0

�
is the eigenvector for A, so that kAnvk D 1 for all integers n

where k � k is the Euclidean norm. Consequently, the scaled Lyapunov exponent,
�.v; a/ is zero for any scaled sequence a. On the other hand, taking the vector w D�
0

1

�
we observe that Anw D

�
n
1

�
so that the norm jjAnwjj grows linearly with jnj.

Choosing a.n/ D log n we obtain that

�.w; a/ D lim
n!C1

1

a.n/
log kA.n/.w/k D 1;

and the limit exists. Similar observation can be made for any non-diagonalizable
elliptic matrix. In fact, the following is true:

Proposition 5.1 ([6]) Suppose all eigenvalues of a linear map A W Rn ! R
n have

absolute value one. Then there exist an invariant subspace C D C.A/ 
 R
n and a

norm in R
n such that A acts in C as an isometry and for every vector v 2 R

n n C the
norm kAnvk grows polynomially as jnj ! 1.

To see how nonzero scaled Lyapunov exponents can be obtained consider a
diffeomorphism f W S2 ! S2 of the unit sphere in R

3 which fixes the South and
North poles and moves every other point along the meridian from the North pole
toward the South pole. In the spherical coordinates we may write f .�; '; r/ D

.f1.�; '/; '; r/, where for every fixed angle ' 2 Œ��; �/, the function g'.�/ WD

f1.�; '/ satisfies: (1) g'.
�
2
/ D �

2
and g'.�

�
2
/ D ��

2
; (2) g'.�/ < � for all

��
2
< � < �

2
.

We have that f n.�; '; r/ D .fn.�; '/; '; r/; where fn.�; '/ D gn
'.�/. Conse-

quently,

df n D

2
64

dgn
'

d�
dfn
d' 0

0 1 0

0 0 1

3
75 : (3.1)
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Observe that:

• the direction spanned by the vector vs D

2
4
1

0

0

3
5 is df -invariant,

• the subspace spanned by ws D

2
4
0

1

0

3
5 is not df -invariant,

• the vector v0 D

2
4
0

0

1

3
5 is df -invariant, that is df nv0 D v0 for all n.

Consider the special case, when g'.�/ has the following form on the interval
Œ��

2
;��

2
C ı� for some small ı > 0:

g'.�/ D

(	
1C .� C �

2
/�

1
˛


�˛

� �
2

for � ¤ ��
2

g'.�
�
2
/ D ��

2
for � D ��

2
;

where ˛ D ˛.'/ > 0 is a smooth function such that ˛0.'/ > 0.
One can see that g0

'.�
�
2
/ D 1 and hence all Lyapunov exponents (in the standard

scale) for all points (except maybe for the North pole) are zero. On the other hand,
for ��

2
< � < ��

2
C ı we can see that

gn
'.�/ D

�
n C

	
� C

�

2


� 1
˛

��˛

�
�

2
:

Having an explicit formula for gn
'.�/ allows us to compute

dgn
'

d� and dfn
d' in (3.1) and

conclude that:

• The norm jjdf nvsjj decays polynomially with exponent �.1C ˛.'// as n grows
to infinity.

• The norm jjdf nwsjj decays polynomially with exponent �˛.'/ as n grows to
infinity.

• The angle †.df n.ws/;ws/ goes to zero as n grows to infinity.

Consequently taking the scaled sequence a D log n, we obtain the following values
of the corresponding scaled Lyapunov exponents:

• �.x; vs; a/ D �.1C ˛.'.x///
• �.x;ws; a/ D �˛.'.x//
• �.x; v0; a/ D 0:

We therefore obtained two distinct non-zero values of the scaled Lyapunov expo-
nents that vary with x.
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3.5.2 Non-existence of the Scaled Limit

In general, one cannot expect the existence of the limit in the definition of scaled
Lyapunov exponents. To see this consider a diffeomorphism f for which there exists
an invariant family of one dimensional subspaces E.x/. Denoting by vx a unit vector
in E.x/ we have that

log jjdf n.x/.vx/jj D

n�1X
kD0

log jjdf .f k.x//.vf k.x//jj:

Considering a function '.x/ WD log jjdf .x/.vx/jj we can rewrite the above sum asPn�1
kD0 'ıf k.x/. Assume that the standard Lyapunov exponent, �.x; vx/ is zero almost

everywhere with respect to some ergodic measure �. It means that

lim
n!C1

1

n

n�1X
kD0

' ı f k D 0 � � a:e: (3.2)

In that case one cannot obtain a nonzero finite limit by rescaling as the following
result shows.

Theorem 5.1 ([5, 12]) Let .X;B; �/ be a probability space, f W X ! X a measure
preserving ergodic transformation, and let ' 2 L1.X;B; �/ be such that (3.2) holds.
If g 2 L1.X;B; �/ is such that for some scaled sequence fa.x; n/gn�1

1

a.x; n/

n�1X
mD0

.' ı f m/ .x/!g.x/ a:e:

as n ! 1, then g D 0 a.e.

This result is an immediate corollary of the following stronger and more general
statement.

Theorem 5.2 ([5, 12]) Let .X;B; �/ be a probability space, f W X ! X a measure
preserving ergodic transformation, and let ' 2 L1.X;B; �/ be such that (3.2) holds.
Then for any scaled sequence fa.x; n/gn�1 and almost every x 2 X,

lim inf
n!1

1

a.x; n/

n�1X
kD0

�
' ı f k

�
.x/ � 0

while

lim sup
n!1

1

a.x; n/

n�1X
kD0

�
' ı f k

�
.x/ 	 0:
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We finish this section with a positive result on shift spaces which can be easily
extended to hyperbolic diffeomorphisms using their symbolic representations.
Under some additional assumptions on the shift space and the function ' one can
construct a set of positive Hausdorff dimension dimH on which the scaled sum
converges to an arbitrary real number a.

Theorem 5.3 ([12]) Let .X; �/ be the full shift on the space of double sided infinite
sequences on a finite alphabet. Let also ' be a Hölder continuous potential not
cohomologous to a constant and such that (3.2) holds for f D � . Finally, let � be
the unique equilibrium state for ', then the Hausdorff dimension

dimH

(
x 2 Xj lim

n!1

1

b.n/

n�1X
mD1

'.�m.x// D a

)
	 dimH �

for any a 2 R and for any invertible, strictly increasing, continuous, positive
function b.R/ satisfying:

1. limR!1 b.R/ D 1;
2. limR!1

b.R/
R D 0;

3. ˛n=ˇn ! 1 implies that b.˛n/=b.ˇn/ ! 1 for any two sequences f˛ng; fˇng 
 N.
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Chapter 4
Unraveling the Chaos-Land and Its
Organization in the Rabinovich System

Krishna Pusuluri, Arkady Pikovsky, and Andrey Shilnikov

4.1 Introduction

Nonlinear wave and mode interactions often result in complex dynamics. Remark-
ably, already elementary systems of two and three weakly interacting waves can
demonstrate chaotic behavior [6, 12, 16, 28, 29, 39, 41]. One such simple model
is the so-called Rabinovich system, describing wave interaction with complex
dynamics in a system of three resonantly coupled waves, comprised of two
parametrically excited waves, and another wave that is in synchronism with this
pair [27]. It can exhibit the following states while remaining phase locked:

• the trivial static stabilization of parametric instability at low pump fields, which
corresponds to a fixed point with zero wave amplitudes in the phase space;

• the static and cyclic stabilizations of parametric instability elimination, cor-
responding to stable fixed points with non-zero wave amplitudes, and cyclic
oscillations of wave amplitudes, respectively;

• eventually, Lorenz like chaotic behavior with a stochastic stabilization region of
self-oscillations of wave amplitudes, at higher pump fields.
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The physical motivation for the Rabinovich system proposed in [27] is as follows.
A whistler wave with wave vector q and frequency !q propagates along a magnetic
field H in a non-isothermal magnetoactive plasma. This wave parametrically excites
a plasma wave (k, !k) and an ion sound (�, !�), provided that the resonance
conditions k C � D q, !k C !� D !q are fulfilled. These two parametrically
excited waves are resonant with the plasma wave (k1, !k1 ) where k1 D k � �,
!k1 D !k � !� , which is synchronous to the produced pair. As a result, one obtains
a closed set of amplitude equations for the three waves !k; !� , and !k1 , where the
energy that comes from the constant pump !q is distributed between the waves due
to nonlinear resonant coupling, and eventually is dissipated due to linear damping.

The simplified set of equations governing this resonantly coupled wave triplet
system—the Rabinovich system—is given by the following equations:

Px D hy � 	1x � yz

Py D hx � 	2y C xz

Pz D �z C xy : (4.1)

Here, x; y and z correspond to the amplitudes of the three resonantly coupled
waves—the parametrically excited plasma wave k, the parametrically excited ion
sound � and the synchronous plasma wave k1, respectively. Quantities h; 	1, and 	2
are the parameters of the system: the value of h is proportional to the pump field,
whereas 	1 and 	2 are the normalized damping decrements in the parametrically ex-
cited waves k and �, respectively. After the original investigation in [27], the studies
of this system have further been continued in [9–11, 15, 17, 18, 20–26, 37, 38, 40],
see also the contribution by S. Kuznetsov in this volume [19].

Although initial numerical simulations have revealed the presence of a Lorenz-
like chaotic behavior in the Rabinovich system, the exact boundaries of static,
periodic, and chaotic dynamics in the parametric space have not been identified. The
underlying structures governing the organization of chaos in the system, such as the
various homoclinic and heteroclinic connections, and codimension two bifurcation
points called the Bykov terminal points (T-points), with characteristic spirals typical
for Lorenz-like systems [2, 4, 8, 13, 34, 35], have not been disclosed either. Even as
of now, there is only a limited set of computational tools that can be employed to
detect such structures in the parametric space of a system, and especially, in Lorenz-
like models. In particular, tools based on Lyapunov exponents are computationally
effective to sweep, and find regions of stationary (equilibria states), periodic, and
chaotic dynamics. However, they fail to reveal details of fine or any constructions
of homoclinic and heteroclinic structures in the parametric spaces, that are the basic
and imperative building blocks of structurally unstable, deterministic chaos in most
systems. While parameter continuation techniques let some such structures to be
revealed, one has to possess specific skills and enormous patience to perform a
painstaking reconstruction of the bifurcation unfolding of the system in question, in
its 2D parameter plane, by separately following a few dozens of principal bifurcation
curves, one after the other [34, 35].
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One of the aims of the current study is to discuss and demonstrate a recent
advance in the field that became possible with the development of a suite of
computational tools utilizing symbolic representations of simple and chaotic dy-
namics. This allows for fast and effective identification of bifurcation structures
underlying, and governing, deterministic chaos in systems with the Lorenz strange
attractors, as well as those with spiral chaos with the Shilnikov saddle-focus [5, 42–
44]. Moreover, the latest advances in GPU and parallel computing techniques have
empowered us to achieve a tremendous degree of parallelization to reconstruct bi-
parametric sweeps, at a fraction of the time taken for traditional serial computational
approaches, for a comparable analysis. In this paper, we employ this computational
toolkit to disclose the bifurcation features of complex dynamics in the Rabinovich
system.

In the following sections, we will analytically describe, and numerically simu-
late, the solutions of the Rabinovich system. We will then describe the symbolic
apparatus and the computational techniques, and apply them to study this system.
Next, we will present our results and identify various important structures that
provide a framework to organize the complex dynamics arising in the system. A
brief description of the methods used in the study is presented towards the end.

4.2 Solutions of the Rabinovich System

The system (1) is Z2-symmetric—i.e., invariant under the involution .x; y; z/ $

.�x;�y; z/. All of its trajectories are confined within an ellipsoid given by u �

9h2k�1, where

u D 2x2 C y2 C .z � 3h/2

Pu � �ku C 9h2 (4.2)

At low pump amplitudes h < .	1	2/
1
2 , the system has just a single equilibrium

state O.0; 0; 0/, which is a global attractor of the system, pulling all trajectories
inwards. In this state, the system is below the threshold of parametric instability.
This equilibrium state O undergoes a pitchfork bifurcation at h D .	1	2/

1
2 , that gives

rise to two more equilibrium states C˙ .˙.z0l/
1
2 ;˙.z0l/

1
2 ; z0/ for larger pump fields

h > .	1	2/
1
2 , where z0 D .h2�	1	2/

1
2 and l D .h�z0/	�1

1 . After the bifurcation, i.e.,
beyond the parametric instability threshold, the zero equilibrium state O becomes
unstable, resulting in parametric instability elimination. The fixed points C˙ can
be either stable or unstable, depending upon the parameters of the system h; 	1 and
	2. Stable equilibria C˙ correspond to a static stabilization of parametric instability
elimination (Fig. 4.1a, b and d). Equilibria C˙ lose stability through an Andronov–
Hopf bifurcation that gives rise to a pair of stable periodic orbits, corresponding
to stable cyclic self-oscillations of wave amplitudes (Fig. 4.1f). Besides periodic
oscillations, the Rabinovich system may possess a Lorenz-like strange attractor
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Fig. 4.1 Snapshots of the dynamics of the right unstable separatrix �1 of the saddle O (black dot)
in the Rabinovich system, in the .x; y/-projection. Sections of �1 are color-coded in red when
y > 0, and in blue when y < 0, for the sake of clarity. Symbolic representations are as described in
Sect. 4.3. A bar in the symbolic representation denotes a repetitive sequence. The parameters are
set as 	1 D 1; 	2 D 4. At h D 3, �1 converges to the stable focus CC in (a), and comes close
to the saddle O at h D 3:95 in (b), generating a persistent sequence f111 : : : 1g. After the primary
homoclinic orbit of the saddle at the origin at h ' 3:9998 in (c), �1 converges to the stable focus
C� at h D 4:1 to generate the sequence f100 : : : 0g in (d). Chaotic attractor is seen in the system
at h D 8 in (e), and convergence to the periodic attractor f10g at h D 18 in (f).

within the finite-size ellipsoid, with stochastic variations of wave amplitudes,
which is associated with chaotic saturation of the parametric instability (Fig. 4.1e).
Here, the origin is a saddle with a two-dimensional stable manifold and a pair of
one-dimensional unstable separatrices, while the equilibrium states C˙ are saddle-
foci with one-dimensional incoming separatrices and two-dimensional unstable
manifolds. In addition, like the original Lorenz model, the Rabinovich system can
be bi-stable with coexisting stable equilibrium states C˙ and the strange attractor,
see [27]. Also, note that the three resonating waves remain phase locked while their
amplitudes exhibit the above-mentioned complex behaviors (see [40] for a further
exploration of this phase locking).

A homoclinic bifurcation occurs in the system when both outgoing separatrices
of the saddle (or of either saddle-focus) come back to it along the 2D stable
manifold. Figure 4.1c illustrates a single “right” separatrix of the saddle at the
homoclinic bifurcation. Before and after the primary homoclinic bifurcation, the
separatrix spirals converge towards either CC or C� (Fig. 4.1b, d). Similarly, a
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one-way heteroclinic connection occurs when the outgoing separatrix of the saddle
O connects with either of the saddle-foci C˙ by merging with a 1D incoming
separatrix (see Fig. 4.6). Note that such connections always come in pairs, due to
Z2-symmetry.

4.3 Symbolic Representation

The fundamental feature of the Lorenz attractor is that it is both dynamically and
structurally unstable [3, 14]. A trademark of any Lorenz-like system is the strange
attractor of the iconic butterfly shape, as the one shown in Fig. 4.1e. The “wings” of
the butterfly are marked with two symmetric “eyes” containing equilibrium states
CC and C�, stable or not, isolated from the trajectories of the Lorenz attractor.
This attractor is structurally unstable as it bifurcates constantly as the parameters
are varied. The primary cause of structural and dynamic instability of chaos in
the Lorenz equations and similar models is the singularity at the origin—a saddle
with two one-dimensional outgoing separatrices. Both separatrices densely fill the
two spatially symmetric wings of the Lorenz attractor in the phase space [2].
The Lorenz attractor undergoes a homoclinic bifurcation when the separatrices
of the saddle change the alternating pattern of switching between the butterfly
wings centered around two other symmetric equilibria, which can be stable foci or
saddle-foci depending on the parameter values. At such a change, the separatrices
come back to the saddle, thereby causing a homoclinic explosion in phase space.
The computational approach that we employ for studying Lorenz-like and similar
systems capitalizes on the key property of deterministic chaos—the sensitive
dependence of solutions on variations of control parameters. In particular, for the
Lorenz-type attractors, chaotic dynamics are characterized by unpredictable flip-
flop switching between the two spatial wings of the strange attractor, separated by
the saddle singularity at the origin. This is the main reason why the saddle O is the
primary source of instability in such systems, including the Rabinovich system. The
ideas of this computational research are greatly inspired by, and deeply rooted in,
the pioneering studies of L.P. Shilnikov [30, 31, 36]. His extensive knowledge of
homoclinic bifurcations helped to transform the theory of strange attractors into a
mathematical marvel [1, 2, 32, 33]. The reader may find more detailed information
about the Lorenz-like systems and symbolic computations in the original papers
[5, 42–44].

In order to identify regions with topologically identical dynamics in the paramet-
ric space, we follow the time progression of a single trajectory—the right outgoing
separatrix �1 of the saddle at the origin. We convert the flip-flopping patterns of this
trajectory around C˙ (see Fig. 4.2) into a binary symbolic sequence fkng obeying
the following rule:

kn D

(
1; when the separatrix �1 turns around CC,

0; when the separatrix �1 turns around C�.
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Fig. 4.2 Symbolic representation of the right separatrix �1 at the parameter values 	1 D 1, 	2 D
4, and h D 9. (a) Evolution of the trajectory in the phase space, projected onto the (xy)-plane. (b)
Time evolution of the y-variable. The principle of symbolic encoding: each portion of the trajectory
turning around the equilibrium state CC (red section) is represented by 1, whereas each portion
looping around C� (blue section) is represented by 0. The trajectory shown is thus converted into
the symbolic sequence f1011110011 : : :g

Alternatively, one can detect releva00nt events of dy
dt D 0, provided that d2y

dt2
is

negative or positive for 1 or 0, respectively, see the sampled trace y.t/ in Fig. 4.2b.
We use an overbar symbol to represent repetitive sequences. For example, the
periodic orbit turning once around CC, then once around C� and so on, generates
an infinite repetitive sequence f1010101010 : : :g, or f10g for short.

For a sequence fkng of length N, starting with some .j C 1/-th symbol (the very
first j-transients are skipped), we define a formal power series as follows:

P.N/ D

jCNX
nDjC1

kn

2.NCjC1/�n
(4.3)

This series is convergent, with its limit ranging between 0 and 1. Whenever
the followed separatrix, or any other such trajectory, after some initial transient
dynamics, orbits only around CC, so that its y.t/-coordinate always remains
positive, the corresponding binary symbolic sequence contains only 1s, i.e. kn D 1,
and therefore, P.N/ D 1 in the limit as N ! 1. In the case where the trajectory
continuously orbits only around C� after some transient, so that y.t/ < 0, kn D 0

and P.N/ D 0. Otherwise, periodic or aperiodic flip-flopping between and around
equilibria CC and C� generate either regular or chaotic sequences of 1s and 0s,
so that 0 � P � 1. This power series provides a way to uniquely quantify
the dynamics of the system for a given set of parameters, making it a dynamic
invariant. Two different sets of parameters with the same dynamic invariant value
show topologically identical behavior. The way we define this power series is
slightly different from how it was previously defined, with the current definition
giving increasingly higher weights to symbols towards the end of the sequence,
rather than the beginning, see [5, 42, 43]. This lets us achieve a greater contrast in
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the bi-parametric scans, and thereby, revealing greater dynamical details, between
neighboring regions of largely similar dynamics, that differ only in the last symbol
in their binary sequences due to homoclinic curves separating such regions (see
Sect. 4.5). Alternatively, one can also convert the binary sequences into a decimal
representation.

4.4 Bi-parametric Scans with Symbolic Computations

In order to obtain bi-parametric scans, we keep one of the three parameters of
the system—	1, 	2, or h, constant, while varying the other two. For each set
of parameters in the bifurcation plane, we always follow the positive unstable
separatrix �1 of the saddle at the origin in the Rabinovich system (1). Note that,
as the system is Z2-symmetric, our results stay the same even if the left separatrix
of the saddle is followed, provided there is the swapping of the symbols 0 • 1,
resulting in the same symbolic sequence fkng, and the corresponding invariant P.N/
values ranging within Œ0; 1�, by the above construction. These invariant values are
then projected on to the 2D parametric space, using a colormap that can uniquely
identify up to 224 different values of P.N/, via the whole spectrum of colors. This
results in the desired bi-parametric scans, such as the ones sampled in Figs. 4.3, 4.5,
4.7, 4.8, 4.9, and 4.10. Regions corresponding to similar dynamics, that generate
identical symbolic sequences of a given length, and therefore, carry the same
dynamic invariant values P.N/, are identified by the same colors in the bi-parametric
bifurcation sweep of appropriate resolution.

4.4.1 Emergence of Chaos via Homoclinic Explosion

In this section, we demonstrate how the symbolic computations technique can
gradually reveal the complex organization of dynamics, and the underlying non-
local bifurcations in the system. Figure 4.3 presents a series of .	2; h/-bi-parametric
sweeps, 	2 2 Œ2; 10� and h 2 Œ7; 12� and at fixed 	1 = 1, with increasing length/depth
of symbolic sequences, from 3 through 8, along with the case of nW 105–128 range.
As such, at every point in the given region, the symbolic dynamics remain identical
up to the first two symbols f10g, because the right separatrix always makes its
first loop around CC with y > 0, followed by a loop around C� with y < 0.
As the length of the trajectories, and therefore, of the sequences generated, is
increased, initially up to three symbols, i.e. nW 1; 2; 3, the scan detects a secondary
homoclinic bifurcation curve that separates the two sub-regions shown in blue and
red in Fig. 4.3a. In the red sub-region, the separatrix makes the third loop around C�

(Fig. 4.4a), whereas in the blue sub-region, its third loop is around CC (Fig. 4.4c).
The borderline separating these two sub-regions is a bifurcation curve (arguably of
codimension-1), corresponding to the secondary homoclinic orbit of the saddle at
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Fig. 4.3 Emergent chaos via homoclinic explosion in bi-parametric .	2; h/-scans with a fixed
	1 D 1. (a) Bi-parametric scan of length 3, nW 1–3. The secondary homoclinic curve encoded
as f10g (see Fig. 4.4b) divides the parametric space into two distinct subregions: f100g (red) (see
Fig. 4.4a) and f101g (blue) (see Fig. 4.4c); (b) a longer scan with the first four symbols, nW 1–4,
reveals an additional homoclinic curve, f100g, dividing the red region f100g (red) of (a) into
two subregions: f1000g and f1001g, while the blue region f101g of (a) is partitioned into two
subregions f1010g and f1011g by the homoclinic curve f101g; sweeps with (c) nW 1–5, (d) nW 1–6,
and (e) nW 1–8 gradually disclose finer underlying structures of homoclinic bifurcation unfolding;
(f) multi-colored, “noisy” sweep with a long sequence of nW 105–128 is indicative of a region with
structurally unstable, chaotic dynamics in the system (see Sect. 4.4.3.1)

Fig. 4.4 Progressive snapshots of the right 1D separatrix of the saddle in different sub-regions of
Fig. 4.3a with a fixed 	1 D 1, decoded with the first three symbols. (a) Dynamical and symbolic
representation f100g at 	2 D 4, h D 7:5; (b) secondary homoclinic orbit f10g at 	2 = 4, h ' 7:6;
(c) at 	2 D 4, h D 7:7, the trajectory corresponds to the symbolic sequence f101g
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the origin (Fig. 4.4b). This homoclinic bifurcation curve, marked by f10g, divides
the parametric space in Fig. 4.3a into two distinct sub-regions corresponding to the
sequences starting with f100 : : :g and f101 : : :g, respectively. Note that both the
homoclinic curve and the entire region of Fig. 4.3a are identified with the same
symbolic sequence. As we include one more symbol, i.e., as n runs from 1 to
4 in the computation of P.N/, both sub-regions of Fig. 4.3a, red and blue, are
further subdivided by bifurcation curves representing longer homoclinic orbits of
the saddle, see Fig. 4.3b. The homoclinic curve f100g divides the red sub-region
f100g of Fig. 4.3a into two sub-regions coded by f1000g and f1001g in Fig. 4.3b.
Similarly, the blue sub-region f101g in Fig. 4.3a is subdivided into two sub-regions
coded by f1010g and f1011g in Fig. 4.3b, by the homoclinic bifurcation curve f101g.
Adding more symbols to the computation of the bi-parametric sweep increases its
depth, lets us detect more complex homoclinic bifurcations, and gradually reveals
the underlying structures that result in the complexity of the system (Fig. 4.3c–e).
In this case, the complexity is organized around a central point called a terminal
point (T-point) (Fig. 4.3e), which will be discussed further in the next section. For
very long sequences with nW 105–128 range, the bi-parametric scan indicates that
the system continuously undergoes a plethora of homoclinic bifurcations as the
parameters are varied, and exhibits structurally unstable dynamics due to these
uncontrollable homoclinic explosions (Fig. 4.3f).

4.4.2 Heteroclinic Connections and Bykov T-Points

Fine organization of the structure of the chaotic region with the primary T-point
is revealed in greater detail in Fig. 4.5. It demonstrates the complex universality
and self-similarity of characteristic spirals typical for most Lorenz-like systems.
Here, the primary T-point is marked T1. At this codimension-2 point, the 1D
outgoing (unstable) separatrix of the saddle, after the first two loops f10g (common
to the entire parametric space under consideration here), merges with the 1D
incoming (stable) separatrix of the saddle-focus CC, thus forming a one-way
heteroclinic connection (Fig. 4.6a, e). Note that both the saddle and the saddle-
focus have stable and unstable manifolds that transversally intersect in the 3D phase
space of the Rabinovich system. This makes the heteroclinic connection closed as
t ! ˙1. Thus, at the T-point T1, the separatrix makes an infinite number of
revolutions around CC before it comes back to the saddle. As such, its symbolic
representation is given by the sequence f101g, where the overbar represents a
repetitive subsequence. As we move away from T1 along the adjacent spiral in
the parameter space, the number of revolutions of the separatrix around CC keeps
decreasing, and becomes finite. It is known that a Lorenz-like system, near a T-point,
exhibits a multiplicity of secondary T-points with increasing complexity, called as
Bykov T-points [2, 4, 7, 8, 13, 34, 35]. The short parametric scan in Fig. 4.5 detects
several notable secondary T-points marked as T2, T20, T3, T30, T4, and T40, and
the spiral structures associated with them. At T4, the outgoing separatrix of the



50 K. Pusuluri et al.

Fig. 4.5 Self-similar organization of Bykov T-Points and heteroclinic connections: bi-parametric
(	2; h)-sweep at 	1 D 1, with nW 5–12 range, detects—primary T-point: T1—f101g; secondary
T-points: T2—f101101g, T20—f101110g, T3—f10110g, T30—f10101g, T4—f1010g, and T40—
f1001g. A primary saddle in the parametric space is marked with the symbol S. Heteroclinic
connections with corresponding y-progressions at some of these T-points are presented in Fig. 4.6

saddle O, after the initial two loops f10g, makes one more loop towards CC and
then merges with the 1D incoming, stable separatrix of the other saddle-focus C�.
That is why, this heteroclinic connection is symbolically represented as f1010g

(Fig. 4.6b, f). Similarly at T40, the outgoing separatrix, after the initial two loops
f10g, makes a loop towards C�, and then hits CC. Thus, this heteroclinic connection
is represented as f1001g (Fig. 4.6c, g). At T2, the complexity of the heteroclinic
connection further increases: after the two initial loops f10g, the next two loops are
around CC, followed by one loop around C�, and then the separatrix comes back to
CC; its coding is given by f101101g (Fig. 4.6d, h). The T-points depicted in Fig. 4.5
can be summarized as follows:

• T1: f10 1g—Two loops followed by heteroclinic connection to CC

• T4: f101 0g—Three loops followed by heteroclinic connection to C�

• T40: f100 1g—Three loops followed by heteroclinic connection to CC
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Fig. 4.6 T-point configurations (a)–(d) and matching time progressions (e)–(h): heteroclinic
connections and the y-variable time evolutions at: (a), (e) T1—f101g; (b), (f) T4—f1010g; (c),
(g) T40—f1001g; and (d), (h) T2—f101101g, as depicted in the bifurcation diagram in Fig. 4.5

• T3: f1011 0g—Four loops followed by heteroclinic connection to C�

• T30: f1010 1g—Four loops followed by heteroclinic connection to CC

• T2: f10110 1g—Five loops followed by heteroclinic connection to CC

• T20: f10111 0g—Five loops followed by heteroclinic connection to C�

4.4.3 Global Bifurcations and Organization of Chaos

In this section, we study the global organization of chaos using bi-parametric sweeps
of the .	2; h/-parameter plane (Figs. 4.7 and 4.8) and of the .	1; 	2/-parameter plane
(Figs. 4.9 and 4.10). We begin this discussion with Fig. 4.7, showing the .	2; h/-
sweep with nW 5–12 range, at 	1 D 1. It detects several low-order T-point-like
structures, labeled by T1 through T7, as well as characteristic spirals—bifurcation
curves of homoclinic orbits and separating saddles. A small sub-region of this
diagram nearby T1 is magnified in Fig. 4.5 of Sect. 4.4.2. Figure 4.8a presents a
deeper/longer bi-parametric sweep with nW 105–128 range. Here, we skip a relatively
long initial transient of the separatrix, to reveal the long-term dynamics of the
Rabinovich system. The underlying idea here is a sweep utilizing a typical trajectory
of the Rabinovich system, which does not necessarily have to be the separatrix
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Fig. 4.7 Bi-parametric (	2; h)-sweep at 	1 D 1, with nW 5–12 range, discloses a recursive series
of Bykov T-point-like structures marked as T1–T7, saddles, as well as regions of stable periodic
dynamics (solid colors) of the system, in the bifurcation diagram

that is employed for the purpose of homoclinic structures. With this new approach,
we can reveal the occurrence of chaotic, structurally unstable dynamics emerging
through homoclinic explosions, and detect these regions in the parameter space.
Such a region in the parameter plane appears to look like a noisy region, due
to the interference of multiple colors corresponding to constantly changing P.N/,
due to homoclinic bifurcations that densely fill in, as the control parameters are
varied. On the other hand, regions, corresponding to structurally stable (normally
hyperbolic) dynamics due to Lyapunov stable equilibria and periodic orbits, i.e.,
the so-called Morse-Smale systems, are coded with solid colors. Note that the same
color throughout a region or across regions, corresponds to topologically identical
dynamics, by construction.
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Fig. 4.8 Deterministic Chaos Prospector in action: bi-parametric (	2; h)-sweep at 	1 D 1 with
nW 105–128 to study long-term dynamics of the system: (a) sweep without periodicity correction
reveals spiraling artifacts, pseudo T-points, as well as Bykov T-points (labeled by T1–T7). (b)
Sweep enhanced with periodicity correction eliminates spiraling artifacts due to transient dynamics
in the existence region of stable periodic orbits. It also detects multiple stability windows (parallel
bands of solid colors) representing stable dynamics within the otherwise chaotic regions
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Fig. 4.9 Bi-parametric .	1; 	2/-sweeps with nW 5–12 range at (a) h D 35, and (b) h D 15, reveal
universality and organization of the chaos-land, featuring characteristic spirals and saddles that are
embedded into the solid-color regions of stable dynamics
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Fig. 4.10 Deterministic Chaos Prospector in action: bi-parametric .	1; 	2/-sweeps with nW 105–
128 range at h D 35 in panels (a), (c) and at h D 15 in panels (b), (d), detect regions of chaotic,
structurally unstable dynamics, and simple, Morse-Smale dynamics due to the existence of stable
equilibria and periodic orbits, in the “noisy” and solid-colored regions in the parameter plane,
respectively. Artificial spiral structures appearing in (a), (b) are eliminated with the periodicity
correction technique used in (c), (d). Panels (c), (d) reveal multiple stability windows of simple
dynamics in the otherwise chaotic—“noisy” regions

4.4.3.1 Deterministic Chaos Prospector Using Periodicity Correction

A discernible problem of consequence with the symbolic representation of stable
periodic orbits of complex configurations existing in the Morse-Smale systems is
their shift-symmetry or shift-circularity feature. For example, the following four
sequences: f0110g, f0011g, f1001g, and f1100g represent the same [stable] periodic
orbit, which can be either symmetric or asymmetric in the phase space. To compare
whether two such orbits are topologically conjugate or not, at least in their symbolic
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representation, one has to come up with a consistent rule to sort out and normalize
all of their corresponding binary sequences. This issue becomes principal when one
deals with skipping arbitrarily long initial transient of typical trajectories converging
to a periodic attractor of the system, at the given parameter values.

Let us re-iterate: the transient history of two orbits, before they settle down on the
same, or topologically same, periodic orbit can be quite different. Consider a tran-
sient trajectory converging to a figure-8 periodic orbit that alternatively loops around
CC and C� back and forth. This orbit admits two symbolic descriptions: f10g and
f01g, which are differently color-mapped on to the parameter space. The existence
of such an orbit is detected by the 105–128-range sweep shown in Fig. 4.8a; here,
we skip 104 initial symbols. Depending on the transient behavior and whether the
following 105th symbol is either “0” or “1”, the point in the corresponding region
is color-coded differently, even though the global attractor is the same figure-8
periodic orbit. As a result, this sweep detects faulty spiral structures, representing
f10g or f01g sequences, shown in blue and light green colors, respectively, around
centers labeled as T5;T6, and T7 in Fig. 4.8a, along with some faulty saddles, which
happen to be artifacts of the implemented simulation approach.

In order to overcome this issue, we developed the technique of “Periodicity
Correction” to detect periodic orbits, and to determine their periods using a circular
permutation approach. This allows us to consistently choose the same symbolic
representations for similar periodic orbits, correctly compute the corresponding
P.N/-value, and colormap it to the parameter plane. As with the above example,
identical periodic sequences f10g and f01g are normalized to f01g to determine
its P-value. Similarly, the three representations—f101g, f110g, and f011g for the
same (or topologically similar) periodic orbit(s) of periodicity 3, are normalized
to the smallest valued binary sequence f011g to evaluate the P.N/-value, and the
corresponding color-code (see Sect. 4.5).

Figure 4.8b presents the sweep of the same resolution and depth as Fig. 4.8a,
but using periodicity correction. One can see that, with this technique, the diagram
is free of the aforementioned spiral artifacts in the region (dark blue) of existence
of the stable figure-8 periodic orbit corresponding to the sequences f10g or f01g.
Nevertheless, the presence of those spirals in the scan without periodicity correction
(Fig. 4.8a) indicates the existence of heteroclinic connections close to the centers
of those pseudo T-point spirals—T5;T6, and T7. Indeed, the points labeled by
T1 and T2 appear to be genuine T-points with quite complex long-term dynamics,
whereas the points labeled by T3, T5, T6, and T7 correspond to stable heteroclinic
connections between the saddle-foci CC and C�, that the transitioning figure-
8 periodic orbit approaches in the limiting case. The point T4 is located next
to the boundary between stable and chaotic regions, and it is rather difficult to
evaluate its contribution at this resolution. In addition, Fig. 4.8b reveals multiple
parallel bands of constant colors with gradually decreasing widths, within the
otherwise noisy regions. This is indicative of the presence of stability windows
corresponding to regular, periodic dynamics alternating with chaotic behaviors.
Bands of such constant colors are not detected in Fig. 4.8a, which suggests that, in
these regions, though the long-term dynamics are ultimately identical, convergence
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along distinct paths creates a “masquerading” effect that the developed technique of
periodicity correction exposes. Overall, we call this technique “Deterministic Chaos
Prospector,” since it readily identifies regions of simple (Morse-Smale) and chaotic
structurally unstable dynamics in the parametric plane.

Figure 4.9 presents the (	1; 	2)-parametric sweeps of the Rabinovich system
for two different values of h: h D 35 in panel (a) and h D 15 in panel (b); in
both cases, a short symbolic scanning is done with nW 5–12 range. Both sweeps
disclose a stunning complexity of the organization of the bifurcation unfolding
of the system, with a plethora of Bykov T-points with characteristic spirals, and
separating saddles in the chaotic region, that greatly stand in contrast to the Morse-
Smale regions of simple and stable dynamics. To conclude, long sweeps with the
scanning range nW 105–128 to expose the long-term dynamics of the Rabinovich
system at h D 35 and at h D 15 are presented in Fig. 4.10a and b, respectively. Both
indicate the occurrence of chaotic, structurally unstable dynamics, clearly depicted
by the seemingly noisy regions. As seen above, periodicity correction gets rid of
some of the spiral structures around the pseudo T-points (Fig. 4.10c, d). With the
enhanced technique, we can also easily identify multiple bands or stability windows
corresponding to periodic attractors, within the chaos-land of the system under
consideration.

4.5 Methods

Computations of bi-parametric sweeps are performed on a workstation with Intel
Xeon(R) 3.5 GHz 12-core CPU and 32 GB RAM, with an NVidia Tesla K40 GPU
for parallelization using CUDA. A bi-parametric sweep over a grid of 5000 � 5000

mesh points, with a scanning depth nW 5–12 (Fig. 4.5) takes about 4.45 s, whereas, for
long-term dynamics with nW 105–128 (Fig. 4.3f), it is about 42 s. With the periodicity
correction algorithm employed, these numbers increase to approximately 4.68 s
and 43.7 s, respectively. Visualizations of the sweeps and trajectories are done
using Python. The colormap is constructed by discretizing the range of computed
P-values, i.e., [0,1], into 224 distinct levels and assigning them RGB (Red-Green-
Blue)-color values which are arranged in the following order—increasing values
of Blue color from 0 through 1, decreasing values of Red color from 1 through 0,
and randomly assigned values of Green color between 0 and 1. As such, P D 1

is associated with a bluish color, while P D 0 with a reddish color. With this
colormap, we can identify distinct topological dynamics of up to 24 symbols long.
As seen in Fig. 4.3, since two neighboring regions differ in the last symbol, the
corresponding P-value is defined in such a way that the weight of the last symbol is
the highest, so that the two neighboring regions fall in either half of the color map
range Œ0; 1�, and thus, have the greatest contrast. In regions where the equilibrium
state at the origin is stable, and is the only global attractor of the system, the P
value is complementarily set to �0:1, which is outside the normalized range of all
computed P-values. Similarly, adjacent regions in the parametric space close to the
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pitch-fork bifurcation, through which the stable origin becomes a saddle with 2D
stable and 1D unstable manifold, and also gives rise to a couple of saddle foci C˙,
are assigned a P value �0:05, which is also outside the normalized computed range.
In both cases, this is done due to monotone convergence to the steady state or slow
transients, which do not admit proper partitioning of the phase space of the system
to generate symbolic representation of its solutions.

In order to construct sweeps with periodicity correction, we first detect periodic
orbits in each sequence. For a sequence of length N, we check for periodic orbits of
periodicity up to N

2
, starting from 2. If a periodic orbit is detected, it is normalized to

the principal cyclic permutation with the lowest numerical value in the sorted list of
all of its cyclic permutations. For example, the periodic orbits f110g, f101g, f011g

are all normalized to f011g, which is then used to fill up the symbolic sequence of
length N for the computation of the corresponding P.N/-value.

4.6 Conclusions

In this study we have shown that

• Symbolic representation is an effective tool to reveal the bifurcation origins
of complex, chaotic dynamics in the Rabinovich system, and in other similar
systems.

• Bi-parametric scans disclose fine organizational features of deterministic chaos
due to complex, self-similar assemblies of homoclinic and heteroclinic bifurca-
tions with a plethora of accompanying T-points, spiral structures, and separating
saddles in the fractal, self-similar regions in the parameter plane, that correspond
to complex chaotic dynamics. There is no other current computational technique
that can reveal the complexity of chaos in the parameter plane with such stunning
clarity and completeness.

• The technique of periodicity correction gets rid of a variety of artifacts due to
shift-cycling in symbolic representation of complex periodic orbits, in addition
to effectively detecting stability windows of regular dynamics that are embedded
within the chaotic regions.

• We developed “Deterministic Chaos Prospector”—the paradigm based on the
concept of structural and dynamic instability, which presents a novel and highly
efficient approach to identify the regions of chaotic and stable dynamics in the
parameter space of a system under consideration.

• Massively parallel multi-parametric sweeping based on symbolic representation,
using general purpose GPU-computing, presents the new generation, optimal
time computational method to study a chaotic system that admits a proper
partition of its phase space.
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Chapter 5
Anomalous Transport in Steady Plane Viscous
Flows: Simple Models

Michael A. Zaks and Alexander Nepomnyashchy

5.1 Introduction

Traditionally, the enhancement of particle transport by advection is described in
terms of an effective diffusivity: the mean square displacement of a particle satisfies
the relation

hr2.t/i D 2dDeff t; (5.1)

where d is the spatial dimension of the flow region, and the effective diffusion
coefficient Deff can be significantly larger than the molecular diffusion coefficient D.
Relation (5.1) stays valid for a wide class of flows, from a slow laminar flow in
a channel [18] to turbulent flows [17]; for review, see [9]. Deviations from the
relation (5.1), called “anomalous diffusion,” usually originate in the geometry of
certain flow patterns, and can be observed within the restricted time range, as
transient phenomena [2, 13, 20]. Permanent anomalous diffusion is known to be
a characteristic feature of fractals and disordered systems [5].

The seminal paper of M.I. Rabinovich and his collaborators [1], for the first
time, predicted the possibility of a permanent multifractal anomalous diffusion,
characterized by the law

hrq.t/i � tq�.q/=2; �.q/ ¤ 1; (5.2)
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for the particle transport in a regular two-dimensional velocity field, periodic in
space and time. For that kind of periodic flows, the transport anomaly is caused by
the complexity of the underlying Poincaré map, which includes regions of mixing
(“Lagrangian chaos”) and stability islands (“traps”) with no mixing. Disclosure
of the dynamical mechanism standing behind the transport properties allowed the
authors of [1] to call this phenomenon “anomalous dynamic diffusion.” Later,
anomalous diffusion was found also for random but correlated flows [9].

Is persistent anomalous transport possible in steady spatially periodic flows,
where there is no Lagrangian chaos? A bit surprisingly, the answer is positive.
In [23], the advection of particles was considered for a class of two-dimensional
steady flows that were spatially periodic and contained isolated stagnation points.
In its motion along the streamline of the flow, each tracer repeatedly visited the
neighborhoods of stagnation points, coming arbitrarily close to them. The primary
interest to that kind of flows was caused by the unusual, singular continuous,
power spectrum of their Lagrangian observables. Due to interrelation between
the spectral characteristics and the transport properties, evolution of ensembles
of tracers, carried by such flows, turned out to be unconventional as well. In the
deterministic context (absence of molecular diffusion) the particle dispersion at
large time showed a subdiffusive asymptotics. Similar transport properties were
disclosed in steady plane viscous flows past periodic arrays of solid obstacles
[22]. In both cases, the origin of the anomalous transport is the unboundedness
of the time required for a passage across a basic cell of the flow pattern (“return
time”), caused by presence of stagnation points or zones [21]. Because of the low
velocity of particles near the stagnation points, a direct numerical computation
of the particle dispersion law is rather costly; in any case, extensive simulations
of partial (or, at best, ordinary) differential equations over long time intervals are
required. A significant acceleration of computations can be reached using the model
of “special flow” [3] (for details, see Sect. 5.2 below).

In this paper, we present a systematic description of the anomalous transport
in steady plane flows modeled by means of the special flow approach. We start
in Sect. 5.2 with description of exemplary steady flow patterns with stagnation
points that arise in incompressible fluids under the action of spatially periodic
time-independent forcing. In Sect. 5.3, we explain the origin of logarithmic and
power law-like singularities in the distributions of passage times for tracers carried
along the streamlines of such flows; qualitatively, effects of those singularities
upon transport are described in Sect. 5.4. In Sect. 5.5 we introduce the main tool
of our research: the special flow, based on circle maps with irrational rotation
numbers. In Sect. 5.6, results of numerical analysis are presented. We show that the
monotonic (power-law or logarithmic) temporal evolution of dispersion, common
for all rotation numbers, is “decorated” by a non-monotonic pattern determined
by the particularities of the continued fraction representation of the given rotation
number. In the case of power-law singularities, the numerically obtained estimates
of the growth rate of dispersion match well the theoretical predictions. Furthermore,
presence of singularities in the distributions of passage times makes the transport
not only anomalous, but also multifractal.
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5.2 Enforced Flow Patterns with Stagnation Points

We confine ourselves to the simple setup of steady two-dimensional flow patterns
of incompressible fluids. Since in every point of the physical space the velocity is
constant, the Eulerian observables are static. In contrast, the Lagrangian observ-
ables, like the velocity components of tracers carried along the streamlines, are, in
general, time-dependent; epochs of slow drift can alternate with epochs of relatively
fast motion. In a steady plane flow, incompressibility implies that the motion of
a tracer obeys the Hamiltonian system with one degree of freedom in which the
velocity components are canonical conjugate variables. The system is integrable: In
the two-dimensional geometry there are no chaotic streamlines, and both Lyapunov
exponents vanish identically.

To obtain nontrivial transport characteristics, we need the cumulative effect of
repeated passages of tracers through the regions of fast and slow motion. The flow
pattern should ensure infinitely many returns to those regions. A simple realization
of this mechanism is delivered by a forced flow on the 2-torus with irrational rotation
number, provided that the vector field on the torus turns into zero in certain points
or along certain curves. In conventional hydrodynamical terms, this is a flow on a
square with periodic boundary conditions and non-zero mean components. Due to
irrational rotation number, the tracers repeatedly visit the stagnation region(s).

We start with the flow of the incompressible fluid with density �0 and kinematic
viscosity 	 on the 2-torus (0� x � 2� , 0� y � 2�), governed by the forced Navier–
Stokes equation

@

@t
v C .v � r/v D �

rP

�0
C 	 r2v C F; r � v D 0 (5.3)

with v and P being, respectively, the velocity and the pressure. The force F D

.f sin y; f sin x; 0/, parameterized by the amplitude f , is spatially periodic and
time-independent; physically, such forces can be generated in thin layers of elec-
troconducting fluids by regular arrays of electrodes positioned at the bottom [16].
The structure of the forcing term is reminiscent of the Kolmogorov flow [10]. In
contrast to the latter, we impose periodic boundary conditions:

v.x; y/ D v.x C 2�; y/ D v.x; y C 2�/ (5.4)

and introduce along both coordinates the fixed non-zero mean flow across the square
domain, parameterizing it by the flow rates ˛ and ˇ, respectively:

Z 2�

0

vxdy

ˇ̌
ˇ̌
xD0;2�

D 2�˛;

Z 2�

0

vydx

ˇ̌
ˇ̌
yD0;2�

D 2�ˇ (5.5)
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Introducing the stream function �.x; y/ W vx D @�=@y; vy D �@�=@x, we obtain
the steady solution of the Navier–Stokes equation (5.3)

�.x; y/ D ˛y � ˇx C
f sin.x � 1/

p
˛2 C 	2

�
f sin.y � 2/p

ˇ2 C 	2
(5.6)

1 D arctan
	

˛
; 2 D arctan

	

ˇ
;

and, thereby, the components of time-independent velocity field:

Px D vx D ˛ �
f cos.y � 2/p

ˇ2 C 	2
; Py D vy D ˇ �

f cos.x � 1/
p
˛2 C 	2

(5.7)

In the absence of forcing (f D 0) this is the linear flow on the 2-torus with the
rotation number ˛=ˇ: the streamlines are straight, and the velocity is the same in
every point. If ˛ and ˇ are commensurate, all streamlines are eventually closed.
Below we focus on the generic case: irrational values of ˛=ˇ; there, every streamline
is dense on the torus, hence a passive tracer carried by the flow repeatedly passes
arbitrarily close to any given position. Transport at f D 0 is the trivial translation:
an ensemble of tracers, carried away from its original location, preserves its size and
shape. Introduction of weak force deforms the streamlines (Fig. 5.1a) and makes the
velocity field non-uniform. However, at sufficiently small jf j the qualitative picture
persists: due to local variations of velocity, the distance between the neighboring
tracers mildly oscillates, but on the average there is no spreading of the ensemble.

The picture changes when the forcing amplitude reaches the critical value

jfcrj D
p
˛2ˇ2 C 	2 max.˛2; ˇ2/ W
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0

π

−π 0

(b)

πx

y

−π

0

π

−π 0 πx

y

(c)

Fig. 5.1 Transformation of the flow pattern (5.6) under the increase of the forcing amplitude f .
Solid curves: global component; dashed curves: nested closed streamlines inside the vortices.
Displayed patterns correspond to (a) jf j < fcr, (b) jf j D fcr and (c) jf j > fcr
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cusp points appear upon two symmetric streamlines (Fig. 5.1b). In these points both
components of velocity vanish. When jf j is increased beyond fcr, each cusp splits
into a pair of stagnation points: the elliptic point and the saddle. Two counter-
rotating vortices (eddies) appear on the torus. Each vortex is centered around one
of the elliptic points, is filled by nested closed streamlines, and is encircled by
the separatrix of one of the saddles. For jf j > fcr the phase space is mixed, with
simple periodic motions inside the eddies, and the global component, populated by
aperiodic motions with rotation number ˛=ˇ.

Each trajectory outside the eddies is dense in the global component, hence a
tracer repeatedly traverses the vicinities of the saddle points, where its velocity
becomes arbitrarily small. Now, consider two initially close tracers that enter
the region near the saddle point. The particle whose path lies closer to the saddle
experiences a stronger slowdown; as a result, the former neighbors leave the
stagnation region non-simultaneously and move apart. This decorrelating action
is at the strongest when two tracers approach the saddle along opposite sides of
the incoming separatrix: on passing the saddle, one of the particles departs from
the slow region along the “non-closed” outgoing separatrix, whereas the other one
is carried around the eddy and returns back to the stagnation zone where it slows
down again. Although the tracers remain on the neighboring trajectories, the average
distance between them grows in the course of many such events. Decorrelation, in
its turn, is reflected in the spectral properties: the Fourier spectra of Lagrangian
observables in Eq. (5.3) are neither discrete nor absolutely continuous with respect
to the Lebesgue measure, but are supported by the fractal sets [23]. In a pattern like
one in Fig. 5.1c with symmetric counter-rotating vortices, the relative accelerations
and slowdowns roughly balance in the long run, and the autocorrelation of a
Lagrangian observable (say, of a velocity component) does not ultimately decay.
A more elaborate geometry of forcing allows to generate a flow with just one eddy
inside a square-shaped cell; an example for the stream function

�.x; y/ D ˛y � ˇx C sin x � cos y C sin x cos y (5.8)

is shown in Fig. 5.2. This configuration lacks balance, and the autocorrelation of
velocity displays algebraic decay [23].

5.3 Singularities of Passage Time

Spatial periodicity of the flow pattern prompts a reduction of dynamics in continu-
ous time to the discrete Poincaré map, with boundaries of the square cell (e.g., any of
the horizontal borders in Figs. 5.1 and 5.2) serving as natural secants. Remarkably,
the one-dimensional Poincaré mapping induced by the flow is equivalent to the
circle shift 
 ! .
 C ˛=ˇ/mod 1 with rotation number ˛=ˇ. Dynamics of such
mappings is ordered, correlations do not decay along their orbits, and power spectra
are discrete (pure point). In contrast, the spectra of the underlying flows include



66 M.A. Zaks and A. Nepomnyashchy

Fig. 5.2 Pattern with golden
mean rotation number,
generated by stream function
(5.8) at ˛ D 3=2;

ˇ D 3.
p
5� 1/=4

(2� 2 elementary cells).
Solid curves: global
component; dashed curves:
nested closed streamlines
inside the vortices
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(singular) continuous component whose presence owes to singularities of temporal
characteristics [12]. Indeed, in some sense an iteration of the map lasts “as long”
as a trajectory of the flow requires for a passage from the secant onto the next
secant—in other words, for a passage through the basic cell of the flow pattern.
As long as stagnation points are absent, this time is obviously bounded, and there
is no qualitative difference between the dynamics of the map and the dynamics
of the underlying flow. Birth of vortices does not change the mapping but marks
an important transition for the timescale: the return (passage) time �ret.x/ diverges
when the initial position x of a tracer approaches the path which exactly hits the
saddle stagnation point (the incoming separatrix of the saddle). Straightforward
linearization shows that this divergence follows the law �ret.x/ � Cl;r log jx � x0j,
with x0 being the coordinate of intersection of the separatrix with the Poincaré
secant. The prefactors Cl and Cr refer to orbits which start on the Poincaré secant,
respectively, to the left and to the right from x0. Since trajectories on one side of
x0 make an excursion around the vortex, the tracers on them hover near the saddle
twice before returning onto the secant, whereas the tracers from the opposite side
of x0 depart from the saddle and go directly to the secant. Therefore the prefactors
Cl and Cr differ by the factor of 2. Since the flow pattern from Fig. 5.1 contains two
vortices per basic cell, the passage time �ret.x/ diverges in two points; due to the
symmetry the sum of both Cl equals the sum of both Cr. The passage time for the
pattern from Fig. 5.2 has just one asymmetric (Cr D 2Cl) logarithmic singularity
per basic cell.

Character of singularities of return time is reflected by dynamical properties of
the flows. Recall a few mathematical results, relevant to this context. Flows on 2-
tori without singular points (in our case, this is the flow (5.7) at f < fcrit) have
discrete spectrum and do not possess the property of mixing [8]. Flows on 2-tori
with symmetric logarithmic singularities of return time (e.g., (5.7) at f > fcrit) do
not mix [7]. Flows on 2-tori with asymmetric logarithmic singularities of return
time mix [15]. Finally, the flows on 2-tori with power-law singularities of return
time mix [6].
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In generic flows with vortices bounded by separatrices of hyperbolic stagnation
points, the singularities of passage time are logarithmic. Power-law singularities
are typical for non-hyperbolic equilibria, hence they occur at the criticality: at
the bifurcation that marks the transition from the flow pattern without points of
equilibrium to the pattern with equilibria. In this situation the departure from
the newborn stagnation point is algebraic in time. In Eq. (5.7) at f D fcrit, as
well as in Eq. (5.8) and in similar flows without additional local degeneracies,
the Hamiltonian saddle-center bifurcation takes place. Dynamics near the linearly
neutral equilibrium can be brought to the form Rz � z2 D 0, and the return time
diverges near the separatrix as jx � x0j�1=6. If the velocity field near the neutral
stagnation point has additional degeneracies, the quadratic term (as well as some of
the higher-order terms) in the equation of motion can be missing. Altogether, for the
appropriate normal form

Rz C zn D 0; n 	 2; (5.9)

the time of passage near the neutral point diverges as jx � x0j�� with

� D
n � 1

2n C 2
(5.10)

For example, in the case of the local mirror symmetry n D 3, the “Hamiltonian
pitchfork bifurcation” takes place, with �D1/4.

For all these bifurcations of isolated equilibria in plane Hamiltonian flows the
singularities of passage time, although stronger than logarithmic ones, are relatively
weak: � < 1=2. A stronger anomaly occurs in the hydrodynamically different
situation, in which there is neither a forcing (except for the homogeneous pressure
gradient which ensures the flow across the cells) nor a bifurcation: motion of a
viscous flow past a regular array of solid obstacles. The flow pattern is shown
in Fig. 5.3.

When viscosity is high enough, nonlinear terms in the equation of motion can be
discarded; the resulting Stokes flow obeys, in terms of the stream function  .x; y/,
the biharmonic equation

�� D 0: (5.11)

Due to no-slip boundary conditions, both components of velocity vanish not in
isolated stagnation points, but along the entire border of each obstacle. From the
point of view of dynamics, borders are continua of fixed points, and the motion
along these continua is rather slow. In local coordinates, near the circular obstacle
of radius R the solution of the biharmonic equation centered at the origin is

 .x; y/ D
.˛y � ˇx/.x2 C y2 � R2/2

x2 C y2
C h:o:t: (5.12)
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Fig. 5.3 Streamlines of the time-independent Stokes flow past the regular lattice of solid circular
cylinders. For the description of the flow, see, e.g., [4, 14]

The time, required for a passage near the obstacle scales as �ret � jx � x0j�1=2

where x0, as above, is the coordinate of the intersection of the Poincaré secant
with the separatrix that ends on the cylinder. This singularity of return time is
strong enough to ensure the power-law decay of the autocorrelation of Lagrangian
observables [22].

5.4 Transport of Tracers Past Arrays of Obstacles

In all these examples of flow patterns, in spite of integrability of the underlying
dynamical system, the fractal component is present in the spectra. Since transport
properties are related to spectral characteristics, it is only natural that ensembles of
tracers carried by such patterns display not quite conventional behavior. A compact
cloud of passive tracers gets elongated and distorted with every new passage past
a stagnation point or a solid obstacle. Figure 5.4 demonstrates the typical picture:
after a sufficiently long time interval, the tracers from the initially small cloud can
be found everywhere (outside the vortex) in the basic cell: an example of mixing in
the integrable system.

The rate of the mixing process depends on the kind of singularity of passage
time: mixing is slower in presence of logarithmic singularities and much faster for
the power law-like ones. Vicinities of stagnation points/obstacles serve as a kind of
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Fig. 5.4 Temporal evolution of the ensemble of 104 tracers transported by the pattern (5.8),
projected upon the basic cell of the flow. Dark region: the eddy. Values of t indicate the time
values at which the snapshots have been made

traps: when the ensemble moves past the trap, some of its elements get captured
and spend a noticeable amount of time in the trap whilst the bulk of the ensemble
is being carried further. One by one the tracers leave the trap, but in the meantime
the new tracers get caught by further traps downstream, and the ensemble becomes
stretched in the stream direction. As long as no molecular diffusion is allowed
and the equations of motion stay completely deterministic, transport across the
streamlines is absent. It is convenient to characterize stretching along the streamlines
in terms of the time-dependent variance: we “unwrap” the torus onto the plane and
consider the mean square elongation in the co-moving reference frame which drifts
along with the center of the ensemble:


2.t/ D h.x.� C t/ � x.�/ � vxt/2i� (5.13)

where vx is the mean velocity in the direction x and averaging is performed over the
values of time � .

Numerical estimates in [22, 23] have disclosed that the squared elongation is, on
the average, growing in the course of time t, but the dependence on t was not a linear
one: growth of 
2.t/ turned out to be strongly sublinear for flows past ensembles of
vortices and mildly superlinear for the flow past a lattice of circular solid obstacles.
This means that isolated stagnation points result in subdiffusion whereas repeated
close passages along the no-slip boundaries produce superdiffusion. Since the effect
is purely deterministic, we conclude that presence of either “hard” (solid bodies)
or “soft” (vortices) obstacles in the flow pattern can be a source of “anomalous
dynamic diffusion” in the sense of [1].



70 M.A. Zaks and A. Nepomnyashchy

5.5 Special Flow Construction: Flow Over the Mapping

Direct numerical estimates of the transport characteristics through simulations of
the hydrodynamical equations are cumbersome. In absence of positive Lyapunov
exponents the process of mixing is remarkably slow, especially in the case of rela-
tively weak logarithmic singularities of the passage time. Therefore, convergence
of averages in Eq. (5.13) at non-small values of t requires billions of passages
through basic cells, making such estimates rather expensive and time-consuming.
Here, we draw conclusions on the character of transport from simulations of a much
simpler model that preserves the essential properties of dynamics: repeated passages
arbitrarily close to any given point and presence of singularities of the required
character in the times of the passage.

This model is, in a sense, a modification of the mapping that allows its iterations
to possess “duration.” In expressions for average characteristics of conventional
mappings, all iterations have the same weight. Account of duration allows us to
assign higher weights to long slow passages from the secant to the next secant,
and, respectively, lower weights to relatively short fast passages. This construction,
suggested by von Neumann in [19], is known in ergodic theory as the “special
flow” [3]; it is a flow built over the mapping. As sketched in Fig. 5.5, the phase
space of the flow is the segment of the plane between the abscissa, parameterized
by x, and the given function T.x/; the latter corresponds to the passage time �ret.x/.
The variable x (the variable of the circle mapping) changes its value in discrete
events. The variable y mimics the passage time; it piecewise-continuously depends
on time. Dynamics starts at some abscissa point and evolves as follows: The value
of x remains fixed whereas the value of the coordinate y increases with unit speed
(Py D 1) until reaching the value T.x/; from there, the point instantaneously jumps
into the position

�
.xC�/mod1; 0

�
, starts the next epoch of vertical motion with unit

speed, and so on.

0
0 1

y

x

T(x)

0
0 1

y

x

T(x)

Fig. 5.5 Special flow over the circle map. Trajectory moves from the abscissa upwards with
unit velocity, until hitting the curve T.x/. Solid blue curve: continuous evolution. Dashed curve:
instantaneous iteration of the circle map. Left panel: passage time without singularities. Right
panel: special flow with a singularity of passage time
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Already von Neumann noted in [19] the role of singularities in T.x/: he showed
that presence of a discontinuity disrupts the purely discrete spectrum and gives rise
to the continuous spectral component. Later, special flows with different kinds of
singularities were employed in studies of the mixing properties of flows on 2-tori
with points of equilibrium [6, 15].

5.6 Results of Numerical Studies

To compute the transport characteristics, we took the special flow over the circle
map x ! .x C �/mod1 with golden mean rotation number � D .

p
5 � 1/=2. To

study the effects of logarithmic divergence of passage times, the functions

T.x/ D 1 � log jx � 1=2j

and

T.x/ D

�
1 � log j1=2 � xj; x < 1=2
1 � log 2 � 2 log.x � 1=2/; x > 1=2

were employed for, respectively, symmetric and asymmetric singularities. For power
law singularities, the functions T.x/ D 2jx � 1=2j�� with 0 < � < 1 were taken.
As an observable we have chosen the “phase”  of the flow, defined for a point
with coordinates x.t/; y.t/ as the ratio y=T.x/;  varies between 0 and 1. For the lift
of  onto the infinite line we calculated, in accordance with (5.13), the variance
(mean squared elongation) 
2.t/. Trajectories of the special flow until t D 1011 were
computed numerically; this has allowed us to obtain good convergence of 
2.t/ in
the range 0 < t < 105.

5.6.1 Logarithmic Singularities of Passage Time

Figure 5.6 presents temporal evolution of variance 
2.t/ for two types of logarithmic
singularities. Essential feature of both plots is remarkable non-monotonicity of 
2.t/
that owes to the properties of dynamics on the torus with the irrational rotation
number. A trajectory on such torus never closes completely, but from time to time
it returns arbitrarily close to any given point. Local minima of 
2.t/ correspond to
the values of t at which the points on the average come especially close to their
initial positions: the ensemble of tracers vaguely recalls its past. Rotation number �
rigidly prescribes the ordering of returns; the closest returns occur at the values of t,
proportional to denominators of the best rational approximations to �. For the golden
mean � the times of closest returns are proportional to the terms Fn of the Fibonacci
sequence of integers; since limn!1 Fn=FnC1 D � , the positions of local minima of
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Fig. 5.6 Temporal evolution of variance in special flows with logarithmic singularities of passage
time. Left panel: symmetric singularity. Right panel: asymmetric singularity


2.t/ form the log-periodic sequence, well recognizable in logarithmic coordinates.
In the case of a different irrational rotation number �, the sequence of local minima
is log-periodic whenever � is the quadratic irrational (i.e., its expansion into the
continued fraction is periodic), otherwise that sequence looks disordered.

As seen in the plot, every next minimum lies higher than the previous one: the
system gradually forgets its past, and the ensemble does not really contract to its
initial size. Nevertheless, in the case of the symmetric singularity shown in the left
panel, when the passages on different sides of the separatrix roughly compensate
each other, dispersion along the streamline grows rather slowly: within the time,
required for hundreds of thousands of turnovers on the torus, the mean deviation
does not exceed 1: the size of just one basic cell. This is an example of the very
slow subdiffusive process; on the average 
2.t/ � log t.

In the case of the asymmetric logarithmic singularity (right panel), the process
goes noticeably faster. Again, we observe the general growing tendency, decorated
by the log-periodic Fibonacci pattern. Fitting these results yields 
2.t/ � t0:1 log t

5.6.2 Power-Law Singularities of Passage Time

A faster subdiffusion is observed in special flows with singularities of the return time
of the kind T.x/ � jx�x0j

�� with 0< � <1/2. In Sect. 5.3 we have shown that in the
forced viscous flows the singularities of this kind correspond to critical situations:
bifurcations of isolated points of equilibrium. In the left and right panels of Fig. 5.7
we present numerical results, respectively, for the cases � D 1=6 (recall that this
singularity occurs at the saddle-center bifurcation) and � D 1=4 (pitchfork).

In both cases, a short initial segment with ballistic growth is followed by
subdiffusion: the variance follows the power law with the exponent 2�. The value
of the exponent as well as the estimate for the corresponding global prefactor can
be derived explicitly via the evaluation of the dispersion of the time that a special
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Fig. 5.7 Temporal growth of variance in special flows with power-law singularities of passage
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flow with this kind of power-law singularity requires for carrying out n � 1

iterations of the circle map; details of the derivation, based on the assumption of
the equidistant distribution of the map iterations, will be published elsewhere [11].
The law of average growth 
2.t/ � t2� is common for irrational values of rotation
numbers �; individual features of � prescribe the sequences of closest returns and
invoke oscillations of the local prefactor before t2� . Since for the golden mean
rotation number the return times form the geometric progression, these oscillations
are log-periodic; unlike the case of logarithmic singularities, here they are masked
by relatively fast growth of 
2.t/, but are well visible in plots of 
2.t/=t2� vs. log t.

As � approaches 1/2 from below, the subdiffusive process gets closer to normal
diffusion. Recall that the singularity T.x/ � jx�x0j

�1=2 does not occur in flows with
isolated stagnation points, but is typical for flows past arrays of solid obstacles with
no-slip borders. Remarkably, exactly at the value � D 1=2 the transport turns to be
slightly superdiffusive: numerical results in Fig. 5.8 indicate that the mean square
elongation follows the law 
2.t/ � t log t. As a result, within the relatively short
time the initially compact ensemble of tracers spreads in longitudinal direction along
hundreds and thousand basic cells of the flow.

We performed analogous simulations for special flows with other values of �
in the range 1=2 � � < 1, invariably detecting superdiffusive transport. In this
range the singularities are too strong for the estimates based on the equidistant
distribution. Instead, we have considered the special flow based on the random
circle map: on reaching T.x/, the point jumps to the position, randomly chosen
from the uniform distribution on the unit interval. Describing this process as an
unidirectional continuous time random walk (CTRW), we calculated the leading

terms in the distribution of the number of jumps within the fixed time t (see [11] for
details). For the marginal case � D 1=2 this yields the estimate


2.t/ D

p
2

16
t log t �

5C log 2

16
p
2

t C � � �

which well matches the numerical results.
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Fig. 5.8 Temporal growth of variance in the special flow with the singularity of passage time
T.x/ � jx � x0j

�1=2. Solid line: numerical data. Dotted line: dependence t log t

For � > 1=2 the CTRW approach predicts superdiffusion with the leading term
in the evolution of 
2.t/, proportional to t3�1=� ; this prediction was corroborated by
comparison with numerics.

Remarkably, transport in these special flows is not only superdiffusive but
also multifractal. According to the CTRW calculation of the higher order central
moments

mn.t/ D h.x.t/ � hx.t/i/ni;

the dominating term for 1=2 < � < 1= is given by mn.t/ � tnC1�1=� [11]. In
Fig. 5.9 we demonstrate the effect of multifractality for the case of the special flow

with � D 2=3 by comparing the values of rn.t/ D
�
mn.t/

�1=n
.

5.7 Conclusions

Summarizing, we observe that plane steady laminar viscous flows past periodic
arrays of liquid or solid obstacles can display anomalous transport properties:
depending on the geometry of the flow pattern, motion of tracers can be subdiffusive
or superdiffusive. Using the construction of special flow over the circle map with
appropriate singularities of return time, we have obtained explicit estimates for
the transport characteristics that well match the results of extensive numerical
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superdiffusive transport in the special flow with singularity T.x/ � jx � x0j
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simulations. Being deeply enrooted in deterministic dynamics of the flows, this
kind of transport delivers yet another example of anomalous dynamic diffusion:
the remarkable phenomenon, brought to our attention by the authors of [1].
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Synchronization and Networks



Chapter 6
Coherence–Incoherence Transition
and Properties of Different Types of Chimeras
in a Network of Nonlocally Coupled Chaotic
Maps

Vadim S. Anishchenko, Tatiana E. Vadivasova, and Galina I. Strelkova

6.1 Introduction

Effects of synchronization, desynchronization, and different pattern formation in
oscillatory ensembles, extended systems, and media are still the most important
research directions in nonlinear dynamics and its applications, which has remained
relevant (of significance) for many years. This is related to a large variety and
complexity of the behavior of multicomponent systems, even in the case of a rather
simple type of dynamics of individual elements [3, 11, 13, 15, 17, 18, 20, 21, 30, 32].
New effects are constantly discovered, new problems and challenges arise, and new
models and methods are being developed. Recently a special type of cluster struc-
tures, which is observed in oscillatory networks and called chimera state [28], has
attracted great interest. The distinctive feature of these patterns is that they consist of
clearly identified spatial clusters of two types, i.e., parts with coherent behavior of
oscillators (coherent clusters) and regions with inconsistent dynamics of elements
(incoherent clusters). Chimera states appear in networks of identical oscillators with
homogeneous interaction. This coupling is typically nonlocal, i.e., each oscillator is
coupled with a group of others. Chimera states were first described in [1, 2, 14] for
ensembles of phase oscillators, which are the simplest model of multicomponent
oscillatory systems. Later on, similar structures were also found in a variety of
one- and two-dimensional networks whose elements are represented by different
oscillators, for example, Stuart-Landau harmonic self-sustained oscillators [35],
oscillators with periodic unharmonic oscillations [24–26, 34]; discrete-time systems
(maps) and differential systems in the regime of dynamical chaos [9, 22, 23, 33].
Several types of chimera states have been distinguished, e.g., phase and amplitude
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chimeras and “chimera death” [9, 10, 24–26, 28, 35]. The peculiarities of chimera
states and mechanisms of their formation with parameter variation depend largely
on the type of network elements.

Chimeras which appear in ensembles of nonlocally coupled chaotic oscillators
and discrete-time maps comprise a special type of chimera structures and their
formation is closely related to the transition from complete chaotic synchronization
to asynchronous dynamics (incoherent chaos) with decreasing coupling strength
[9, 22, 23, 33]. Besides, chimera states can be observed when a partial element of a
network exhibits a nonhyperbolic chaotic attractor [33]. More particularly, this must
be a system in which a chaotic attractor results from a cascade of period doubling
bifurcations of a periodic cycle. In such systems, the peculiarities of chimera
formation are related to the fact that there are different combinations of phase shifts
between interacting oscillators in the regime of 2-periodic (4-periodic, etc.) cycles
as well as in the regime of multi-band chaotic attractors. This phenomenon is known
as phase multistability [5, 7, 9, 10].

Chimera state is a nontrivial pattern with complex spatial and temporal behavior.
They can be analyzed by using a number of different methods and characteristics. In
this work we apply new methods and approach for studying spatial patterns which
appear at the transition from complete chaotic synchronization to full incoherent
chaos in an ensemble of chaotic oscillators with nonlocal coupling. Among these
methods, the analysis of coupling characteristics of the ensemble elements and
their cross-correlations can be distinguished. The use of these and other methods
has significantly deepened the understanding of the bifurcation mechanisms of
the transition, including the mechanisms of chimera structure formation, and has
provided a more accurate classification of chimeras which appear in ensembles of
chaotic oscillators.

We are very pleased to contribute to a collective monograph dedicated to the 75th
birthday of the famous scientist, professor M.I. Rabinovich. We would like to note
that 30 years ago one of the first (pioneering) papers on the study of dynamics in an
ensemble of chaotic oscillators was published in co-authorship with Rabinovich [4].

6.2 Model and Problem Statement

We study a one-dimensional ring of nonlocally coupled identical chaotic oscillators,
which is given by

xtC1
i D f .xt

i/C
�

2P

iCPX
jDi�P


f .xt

j/ � f .xt
i/
�
; (6.1)

where i D 1; 2; : : : ;N is the serial number of an individual oscillator, which can
be considered to be a discrete spatial coordinate; N is the number of oscillators in
the ensemble; t denotes the discrete time (iteration number); P defines the number
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of neighbors on each side of the ith oscillator, and � is the coupling strength.
The dynamics of all the oscillators in (6.1) is described by the well-known logistic
map f .x/ D ˛x.1 � x/. The latter is one of the fundamental models of nonlinear
dynamics [12, 31]. The bifurcation parameter ˛ of the logistic map is fixed at
the value ˛ D 3:8 which yields developed chaotic behavior in the individual
element. We study numerically the model (6.1) for N D 1000 elements. The
number of neighbors is set to be P D 320 that corresponds to the coupling radius
r D P=N D 0:32.

The second term in (6.1) describes the overall effect of neighbors on the
particular ith element of the ensemble

F.�; r; xt
i/ D

�

2P

iCPX
jDi�P


f .xt

j/ � f .xt
i/
�
: (6.2)

We will call F.�; r; xt
i/ the coupling function.

The dynamics of the system (6.1) was studied and described in many works, e.g.,
[9, 22, 23, 33], where the appearance of chimera-like states was mainly analyzed.
Figure 6.1 shows a fragment of the numerically obtained bifurcation diagram for
the model (6.1) in the (r; � ) plane. This diagram depicts regions of complete chaotic
synchronization (1), periodic dynamics (2), and fully developed spatio-temporal
chaos (fully incoherent oscillations) (3). Region 1 is bounded by the blowout
bifurcation line [23]. When � decreases inside region 2, the period-2, period-4,
and period-8 oscillations emerge successively and exist in the regions separated by
bifurcation lines. In the white regions shown in Fig. 6.1 complex oscillatory regimes
and their bifurcations can be observed, including the appearance of chimera states
(see also Fig. 6.2).

In terms of the notations introduced in [22, 23], regions 1 and 2 depicted in
Fig. 6.1 correspond to coherence regions with wave numbers k D 0 and k D 1,
respectively. The corresponding coherent states xi in the system (6.1) are shown
as snapshots (wave-like profiles) in the insets of Fig. 6.1. A wave-like profile or
a snapshot is understood as a spatial distribution of the instantaneous values of
dynamical variables xi, which define the states of partial elements at a fixed time t.
According to [22, 23], a network state is considered coherent if the following
condition holds:

jxt
i � xt

iC1j < ı; ı � 1; t D const � 1;

i D 1; 2; : : : ;N: (6.3)

Thus, if the instantaneous distribution of dynamical variable values along the ring
(instantaneous spatial profile or snapshot) can be described by a smooth, slowly
changing function in space, then the network state is coherent. The regime of strong
coherence corresponds to the condition jxt

i � xt
iC1j D 0 for any fixed t (see the upper

right inset in Fig. 6.1). As can be seen from Fig. 6.1, when the coupling strength
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Fig. 6.1 Fragment of the numerically obtained bifurcation diagram for the system (6.1) in the
(r; �) parameter plane. Completely synchronized chaotic states exist in region 1 with wave number
k D 0. Region 2 of coherent dynamics relates to 2l periodic oscillations (l D 1; 2; 3) of the
elements with k D 1. The corresponding snapshots are shown in the insets. Asynchronous
(incoherent) dynamics is observed in region 3. The white areas correspond to different oscillatory
regimes in the ring (6.1) and their bifurcations. Parameters: a D 3:8 and N D 1000

decreases from � D 1 to � < 0:1, a global transition from the fully coherent
dynamics (complete chaotic synchronization) to the incoherence regime is realized
in the system (6.1).

Let us consider in detail this transition using the different characteristic of the
regimes. We will analyze numerically the behavior of the coupling function (6.2)
and the dynamics of the network (6.1) with the parameter values given above
and changing coupling strength � . In contrast to the papers [22, 23, 33], where
instantaneous values of the coordinate xt

i (t D const) for all the network elements
(snapshots) are mainly analyzed, we will use the so named space-time profiles
[9]. For each element the accumulated 100 last iterations will be shown on the
plots for xt

i and F.xt
i/. This method enables us to diagnose the type of oscillations

(periodic or chaotic), to define the oscillation period and regimes of synchronization
or desynchronization of the ensemble elements. If necessary, we will also display
snapshots of the network states at a fixed iteration number t D const.

Besides these, a spatial coherence in the ensemble (6.1) will be analyzed using
the cross-correlation coefficient (CCC) of the oscillations of different elements. We
consider the first and the ith elements at the same time and the CCC for them is
defined as follows:
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�1;i D
hQx1.t/Qxi.t/iq
hQx21.t/ihQx2i .t/i

; (6.4)

where Qx.t/ D x.t/ � hx.t/i is a deviation from the mean value. The brackets
h: : :i denote the time averaging. Oscillations in the regime of chaotic dynamics are
characterized by mixing and are ergodic. In this case the time averaging is equivalent
to the ensemble averaging.

6.3 Evolution of the System Dynamics with Decreasing
Coupling Strength

The evolution of the ensemble (6.1) dynamics was explored in [22, 23] when the
coupling strength � is varied and the coupling radius is fixed at r D 0:32. We
reproduce those results for the ring of N D 1000 coupled logistic maps and
analyze in more detail various spatio-temporal structures which appear in (6.1). For
this purpose we consider the evolution of the coupling function and study spatial
distributions of cross-correlations.

In order to obtain more detailed insight into the coherence–incoherence transition
Fig. 6.2 illustrates a phase-parametric diagram for the coupling radius r D 0:32, i.e.,
a dependence of the variable xi on the coupling strength � . For each value of � , the

Fig. 6.2 Dependence of the xi values on the coupling strength � for i D 500 and r D 0:32. For
each value of � , the last 100 iterations of the system (6.1) are shown after discarding the transient
of 30,000 iterations
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Fig. 6.3 Illustration of complete chaotic synchronization for � D 0:64. (a) Space-time profile for
the variables xi, (b) temporal waveform of oscillations (time series) for the i D 500 oscillator of
the system (6.1), (c) space-time profile for the coupling function F.xi/, and (d) cross-correlation
coefficient for the first and ith oscillators

last 100 iterations of the system (6.1) are shown in Fig. 6.2 for the chosen element
i D 500. The initial conditions are chosen to be randomly distributed in the interval
0 < x0i < 1 and this realization is fixed for all numerical calculations.

Let us consider in detail the regimes which are typical for different regions
marked in the diagram in Fig. 6.2. We start with analyzing region H which
corresponds to complete chaotic synchronization (� 	 0:63). Numerical results
for this regime are shown in Fig. 6.3.

As can be seen from Fig. 6.3, the regime of complete chaotic synchronization
is observed in region H. Thus, although the oscillations of the network elements
are chaotic (Fig. 6.3b), the instantaneous values of all the variables xi coincide at
any discrete time t (Fig. 6.3a). The values of the coupling function turn to zero
(Fig. 6.3c), so that the dynamics of all the ensemble elements matches the oscillation
mode of an individual element. The cross-correlation coefficient �1;i is equal to
unity for all i D 2; 3; : : : ;N (Fig. 6.3d).

When the coupling coefficient � decreases (� < 0:63), the complete chaotic
synchronization loses its stability in a blowout bifurcation. This bifurcation and
related phenomena were studied for systems of two interacting identical oscillators
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Fig. 6.4 Illustration of the regime of oscillating (partial) chaotic synchronization in the model
(6.1) for � D 0:55. (a) Space-time profile of the network dynamics, (b) space-time profile of
the coupling function, (c) cross-correlation coefficient for the first and ith oscillators, and (d)
projection of the phase trajectory on the (x1; x500) plane. System parameters: r D 0:32, a D 3:8,
and N D 1000

in [6, 8, 16, 19, 27, 29] and for extended ensembles with nonlocal interaction only
in [23]. It is interesting to note the following fact. When the coupling strength
deviates slightly from the blowout bifurcation line, � < �cr � 0:63, a regime is
realized with snapshots which are different from straight horizontal lines. However,
similarly to the regions with regular dynamics (for example, region 2 in Fig. 6.1),
this wave-like profile can be still described by a smooth function of the spatial
coordinate. Such a space-time profile for the variables xi is exemplified in Fig. 6.4a.
Following [22, 23], it corresponds to the coherence regime. The corresponding
space-time profile for the coupling function is shown in Fig. 6.4b. As can be seen, it
is similar to the xi profile. As follows from Fig. 6.4c, the CCC now depends on
the oscillator number i and decreases when the distance between the oscillators
increases. The CCC achieves its minimal value � 0:84 for i D 500. This means
that there is no full correlation of the oscillations of the network elements. Phase
trajectories no longer lie in the symmetric subspace U and this is illustrated by a
projection on the plane of (x1; x500) variables in Fig. 6.4d.
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The regime described above is observed in region G of Fig. 6.2. Up to now,
nothing has been reported regarding this regime. Its peculiarities are as follows.
Despite the fact that snapshots have smooth profiles, i.e., they correspond to the
coherence regime, the cross-correlation coefficient along the ensemble (6.1) is not
equal to 1. This implies that the complete chaotic synchronization no longer exists.
This special regime of chaotic synchronization can be called oscillating (or partial)
chaotic synchronization.

When 0:4 < � < 0:5 in regions E and F of Fig. 6.2 (region 2 in Fig. 6.1), the
oscillations in the network (6.1) are periodic. As the coupling strength decreases,
a cascade of period doubling bifurcations is realized. Quasiperiodic oscillations
can also be observed for certain values of � . Naturally, the CCC �1;i for all
i D 2; 3; : : : ;N is equal to 1 in the regimes of regular (periodic and quasiperiodic)
oscillations of the network elements.

It is established that for � � 0:4, the wave front of the profile xi becomes vertical,
i.e., the spatial derivative tends to infinity. In [22, 23] it has been stated that it is the
infinite derivative that causes the emergence of incoherent states. As follows from
our calculations and the numerical results in [22, 23] chimera states are observed in
numerical simulation when � � �cr D 0:35.

Figure 6.5 shows space-time profiles for F.xt
i/ (left column) and snapshots of the

states xt
i (right column) for the system (6.1). It is seen that as � decreases from 0:43

to 0:35, the coupling function behaves periodically and undergoes period-doubling
bifurcations: period-2, period-4 cycles (Fig. 6.5a, b, respectively). When � D 0:35,
a weak chaos emerges in the system (Fig. 6.5d).

The snapshots displayed in Fig. 6.5a, b (right column) indicate the regime of
coherence and the ensemble dynamics is periodic. At the critical point � Š 0:35 the
situation changes dramatically (see Fig. 6.5c). The coupling function demonstrates
the transition to the chaotic regime and the snapshot of the states xi reveals the
appearance of two regions of incoherent dynamics, i.e., a chimera-like state is
born [22, 23]. Our calculations indicate that the temporal dynamics of the partial
elements, as well as the coupling function, is characterized by a cascade of period-
doubling bifurcation as � decreases.

Therefore, the transition from coherent dynamics of the whole ensemble to the
birth of incoherent regions (chimera-like states) results from chaos arising. The
chimera-like states appear when � reaches its critical value �cr ' 0:35 at which
the transition to the chaotic oscillation regime occurs for all the partial elements
and the coupling function. As can be seen from Fig. 6.5b, the coupling function
is periodic and the solution profiles xt

i are characterized by an infinite derivative.
However, no chimera-like states appear. They arise when the coupling function and
the whole ensemble begin operating in the chaotic regime.

When one moves to region D in Fig. 6.2, two different kinds of chimeras can be
distinguished, namely phase and amplitude chimera states [9, 10]. The regime of
phase chimera state is related to the appearance of regions with spatially nonregular
alternations of elements with in-phase and anti-phase oscillations. If a discrete map
demonstrates 2-periodic oscillations (the oscillation period is equal to two iterations
of the map), then the latter are considered to be anti-phase if oscillations in two
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Fig. 6.5 Space-time profiles for the coupling function F.xi/ (left column) and snapshots (right
column) of the dynamics of the system (6.1) for different values of the coupling strength: (a)
� D 0:43, (b) � D 0:38, and (c) � D 0:35

neighboring oscillators are shifted by one iteration. Regions with alternations of
phase shifts were called incoherence regions in [22, 23] and phase chimera states in
[9, 10]. Inside these domains the phase shift between the oscillators occurs randomly
in space, is defined by initial conditions, and is constant in time.

Figure 6.6 shows numerical results for the regime of phase chimera state obtained
for � D 0:29 and randomly chosen initial conditions. In coherence regions 1 and 2,
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Fig. 6.6 Illustration of the regime of phase chimera state in the system (6.1) for � D 0:29

and r D 0:32. (a) Snapshot of the network dynamics, (b) the cross-correlation coefficient �1;i,
(c) projections of phase trajectories on the (x319; x320) plane (these oscillators belong to the
phase chimera region and oscillate in-phase) and (d) on the (x318; x319) plane (these oscillators
demonstrate anti-phase oscillations). The initial conditions are chosen randomly

which are indicated in Fig. 6.6a, the oscillations of the network elements differ only
in phase and the CCC is close to 1 in absolute value, i.e., �1;i D C1 in region 1 and
�1;i D �1 in region 2 (Fig. 6.6b). The difference in the�1;i sign simply distinguishes
between in-phase oscillations (region 1) and anti-phase oscillations (region 2) of the
ith oscillator with respect to the first one. Figure 6.6c, d illustrates in-phase and
anti-phase oscillations in the projections of relevant variables, respectively. In the
spatial incoherence regions (phase chimeras) the cross-correlation coefficient �1;i
switches between the values ˙1 (Fig. 6.6b). This fact corroborates once again a
random alternation between the in-phase and anti-phase oscillations. We note that
although the CCC value is close to unity in its absolute value, there is no strong
equality j�1;ij D 1. Actually, as our calculations have shown, j�1;ij � 1 for the phase
chimera state. This finding can be explained by the fact that the transition to the
regime of phase chimera is accompanied by the emergence of chaotic oscillations
in the network elements in time. The degree of chaoticity is still low for � D 0:29

but it is just the temporal chaotic dynamics that can lead to the situation when the
absolute value of the CCC becomes slightly less than unity [9, 10].
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The phase change occurs before the chimera states appear. As can be seen from
Fig. 6.5a, the coupling function F.xt

i/ ' 0 for the oscillators i ' 298 and i ' 798.
The period-2 oscillations in these elements degenerate into 1-period points and their
values become equal to xt

302 ' 0:73 D const. As follows from Eq. (6.1), when
F.xi/ D 0 we can obtain

xtC1
i D axt

i.1 � xt
i/ D const; i D 302: (6.5)

Map (6.5) realizes the unstable equilibrium point x0 D ax0.1 � x0/ with coordinate
x0 D 0:7368 and this agrees with the data shown in Fig. 6.5a. This fixed point x0 is
saddle and separates the basins of attraction of in-phase and anti-phase oscillations,
that is described in detail in [10, 23].

When the coupling strength � decreases further in interval D (Fig. 6.2), 0:25 <
� < 0:29, the regions of phase shifts increase, as mentioned in [22, 23]. Moreover, a
different type of chimera clusters, which have been referred to as amplitude chimera
states [9, 10], appears in the network (6.1) simultaneously with phase chimera states.
The incoherence region corresponding to the amplitude chimera is characterized
by developed chaotic dynamics of all the elements in the incoherence cluster. The
amplitudes of the oscillators in this incoherence region are highly chaotic and
their behavior becomes completely asynchronous, while the neighboring oscillators
oscillate almost periodically and are synchronized [9, 10]. It should be noted that in
region D (Fig. 6.2), there can coexist a set of different chimera structures which are
observed for different initial conditions. This effect is known as a huge multistability
and is described in [22, 23].

An amplitude chimera regime is exemplified in Fig. 6.7 for � D 0:28. As can
be seen from the snapshot in Fig. 6.7a, the amplitude chimera cluster (region 2 in
Fig. 6.7a) includes oscillators from i D 120 to i D 290. In addition, the whole
spatial structure of the network dynamics also contains two phase chimera states
(Fig. 6.7a, region 1). Within region 2, the partial units together with the coupling
function display more developed chaotic dynamics (Fig. 6.7b, c, respectively). The
partial elements in the amplitude incoherent cluster are characterized by completely
asynchronous chaotic dynamics as shown in Fig. 6.7d.

The cross-correlation coefficient �1;i for the regime at � D 0:28 is still close
to ˙1 for the phase chimera clusters (Fig. 6.8a) but decreases slightly in modulus
for the amplitude chimera. As follows from Fig. 6.7b there are two domains of
the chaotic set in the considered space region. The trajectory visits both of them
regularly in one time moment (iteration). Thus, the time series xi.t/ includes two
components, 2-periodic and chaotic. It is the presence of periodic component that
is the reason for a very slow decay of the CCC in the amplitude chimera domain
(�1;i � 0:9; 120 < i < 290). This regular (2-periodic) component can be
excluded if every second point from the time series xi.t/ is taken into account. In this
case the resulting CCC �

.2/
1;i (Fig. 6.8b) is considerably reduced (up to the value of

�0:68). The minimal correlation corresponds to the center of the amplitude chimera
cluster where a more developed chaos is observed. The spatial correlation decay is
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Fig. 6.7 Coexistence of phase (cluster 1) and amplitude (cluster 2) chimera states in the model
(6.1) for � D 0:28: (a) Snapshot of the network dynamics, (b) space-time profiles for variables
xi, (c) space-time profiles for the coupling function F.xi/, and (d) time series xt

i for i D 194 (solid
line) and i D 195 (dotted red line) in the amplitude chimera cluster

related to asynchronous chaotic behavior of the oscillators in the amplitude chimera.
Hence, in contrast to the phase chimera, the amplitude chimera state enables one to
demonstrate “truly” incoherent oscillations which become incoherent both in space
and in time.

If the coupling strength decreases further (� < 0:25), 4-period oscillations can
be observed in the ensemble (6.1) in time (region C in Fig. 6.2). They undergo a
cascade of period doubling bifurcations in region B of Fig. 6.2. Despite the complete
regularity in time, the spatial behavior in regions C and B is absolutely irregular.
Similar regimes were observed in ensembles with local coupling [20]. The network
dynamics are similar to those for the phase chimera regime described above. This
means that the spatially incoherence regions, which appear in the phase chimera
regime, expand and occupy the whole ring with decreasing � . Due to the time
periodicity the cross-correlation coefficient �1;i is strictly equal to unity in absolute
value for all i and its sign is changed randomly in space following the phases of the
partial oscillators. A similar behavior also persists in the region of longer periodic
oscillations (region B in Fig. 6.2) up to the point of emergence of spatio-temporal
chaos.
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Fig. 6.8 (a) Cross-correlation coefficient �1;i and (b) cross-correlation coefficient �.2/
1;i for the

amplitude chimera when the time series contains every second point

When � < 0:13, a transition to temporal chaos is observed (region 3 in Fig. 6.1
and region A in Fig. 6.2). Oscillations xt

i in this region correspond to the regime
of spatio-temporal chaos, i.e., the partial oscillators behave chaotically in time and
are completely desynchronized. The spatial behavior is fully irregular (incoherent).
With decreasing coupling strength the chaotic dynamics develops as a result of
merging bifurcations. They consist in merging parts of a chaotic set, which occurs
in all the ensemble oscillators. The points corresponding to the instantaneous states
of the oscillators form horizontal stripes of different width in the snapshots of the
network dynamics. So, a two-band chaotic set can be seen for � D 0:1 (Fig. 6.9a)
and a developed chaos with a combined region of variable values is observed at
� D 0:05 (Fig. 6.9c). Since the temporal dynamics is chaotic and there is mixing
in the system, the cross-correlation coefficient for various oscillators becomes
significantly less than 1 in absolute value. Moreover, in contrast to the regime
of oscillating chaotic synchronization, �1;i decays instantaneously in space with
increasing i (Fig. 6.8d). In the case of the two-band chaotic set, when the phase
trajectory switches between the bands regularly in time, the CCC does not decrease
to zero and oscillates at the level ˙0:87 (Fig. 6.9b). When a single-band (developed)
chaotic set is realized, the CCC almost vanishes (Fig. 6.9d).

6.4 Mechanism of the Coherence–Incoherence Transition

As follows from the results presented above, the transition from completely coherent
dynamics to the regime of complete incoherence occurs as the coupling strength
decreases, 0:64 > � > 0:05. First, when 0:35 < � < 0:45, both the partial oscil-
lators and the coupling function undergo a cascade of period-doubling bifurcations.
At the critical point �cr ' 0:35 they all demonstrate weak chaotic oscillations and,
finally, a phase chimera-like state appears. Further on, when � < 0:35, amplitude
chimera states arise and the number of incoherent clusters increases. As a result, the
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Fig. 6.9 Regime of incoherent chaos. (a) Snapshot of the network dynamics and (b) cross-
correlation coefficient �1;i for a two-band chaotic set at � D 0:1; (c) snapshot and (d) �1;i for
a single-band chaotic set at � D 0:05. The points in (a) and (c) plots are not connected by lines so
that the structure of the chaotic sets can be better visualized and distinguished

whole ensemble displays asynchronous chaotic dynamics (region 3 in Fig. 6.1). To
order to establish the mechanism of coherence–incoherence transition we turn to the
original equation (6.1) which can be rewritten in the following form:

xtC1
i D a.1 � �/xt

i.1 � xt
i/C

�

2P

iCPX
jDi�P; j¤i

axt
j.1 � xt

j/: (6.6)

Equation (6.6) includes two bifurcation parameters, the coupling strength � and the
number of neighbors P (the coupling radius). In our paper, the coupling strength
� can be considered as most important because its values govern the dynamics of
the first and second terms in (6.6) and enables one to understand the mechanism of
the bifurcation transitions. The first term characterizes the ensemble of oscillators
without coupling between neighbors. The coupling coefficient � , as seen from
Eq. (6.6), reduces the effective parameter of the logistic map f .xt

i/ as the nonlinearity
parameter is now set to be a.1��/. The second term takes into account the effect of
nonlocal coupling of P neighbors and here � also changes the effective parameter a
that is now � � a. Two limit values of � can be distinguished. In the first case, when
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� ! 1, the first term in Eq. (6.6) vanishes and the second term is characterized by
a larger parameter �a, that can result in the transition to chaotic dynamics in all
the elements. Increasing the coupling strength (� ! 1) gives rise to the regime of
completely synchronous chaotic oscillations in the ring (region 1 in Fig. 6.1).

When � ! 0, that is another limit case for � , the first term in Eq. (6.6) describes
chaotic oscillations in each partial element (a D 3:8) while the second term can
be neglected due to its smallness. The ring demonstrates the regime of incoherent
chaotic oscillations, that corresponds to region 3 in Fig. 6.1. Bifurcation effects in
the ring can occur only in a certain parameter range �1 < � < �2 where both terms
in Eq. (6.6) play a significant role. As the numerical results above have shown, the
bifurcations can be observed in the range 0:05 < � < 0:63.

The influence of coupling leads to a decrease of the control parameter in the
logistic map and the partial elements of the ensemble oscillate periodically. The
periodic oscillations in each element experience the impact of P neighboring
oscillators, which is given by the second term in Eq. (6.6). Thus, the coupling
causes two effects, namely, (1) a decrease of the nonlinearity parameter of the partial
oscillators [the first term in Eq. (6.6)] and (2) an effective increase of the parameter
due to nonlocal coupling [the second term in Eq. (6.6)].

With decreasing coupling strength � the effective nonlinearity parameter of the
logistic map grows and thus, causes a cascade of period-doubling bifurcations in the
ensemble elements. When the critical point of chaos birth in the partial elements is
reached, clusters of incoherent oscillations appear in certain parts of the ring. With
further decrease of � (with increasing subcriticality in the partial oscillators) the
whole ring demonstrates incoherent chaotic oscillations. Thus, the appearance of
a finite number of incoherence clusters (a chimera-like state) is nothing more than
an intermediate state of the ensemble in the global transition from the coherence
regime, when all the elements in the ring demonstrate in-phase chaotic oscillations
(� ! 1), to the completely incoherent dynamics of the whole ring (� ! 0). The
appearance of a finite number of incoherent intervals depends on different initial
conditions randomly distributed over the network. Our studies have shown that the
described transition does not change qualitatively when the initial conditions x0i vary
randomly in the interval Œ0I 1�.

6.5 Temporally Intermittent Chimera Structure

We have considered the evolution of spatio-temporal dynamics of the network (6.1)
in a selected cross-section of the bifurcation diagram (Fig. 6.1) and have found that
it is sufficiently complicated. The especially complex behavior which manifests
itself in the formation of various clusters and high multistability is typical for the
region of chimera state existence. Chimera states can be observed in a wide range
of the coupling radius r variation. For certain values of r < 0:32, more specific
regimes of the ensemble (6.1) dynamics can be realized, for example, a regime
of temporally intermittent chimera states. In this case the phase shift between the
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Fig. 6.10 Example of an intermittent chimera for r D 0:08 and � D 0:25. (a) Snapshot of
the variables xi, (b) cross-correlation coefficient �1;i, (c) part of the time series for the oscillators
i D 350 and i D 351, and (d) projection of the phase trajectory on the (x350; x351) plane

oscillators belonging to the incoherence cluster may vary over time. A temporally
intermittent chimera state is exemplified in Fig. 6.10 for r D 0:08 and � D 0:25.
As can be seen from the snapshot (Fig. 6.10a), this chimera structure includes
several incoherence clusters which are typical for the phase chimera and one cluster
(300 < i < 390) with special intermittent behavior. The cross-correlation coefficient
(Fig. 6.10b) is close to 1 in modulus for some oscillators, while at the same time,
there are oscillators for which 0 < �1;i < 1 that indicates the presence of
weak chaos. Figure 6.10c shows a fragment of the time series for the oscillators
i D 350 and i D 351. It is seen that these elements demonstrate almost anti-
phase oscillations on the time interval 30;810 � t � 30;828 (this is typical for
the phase chimera) and in-phase but different in amplitude oscillations on another
time interval 30;828 � t � 30;850 (amplitude chimera). The intermittent behavior
can also be observed on the projection of the phase trajectory on the plane of
(x350; x351) variables, which is shown in Fig. 6.10d. A part of the points is located on
the bisectrix (in-phase behavior) and another part is found in the region away from
the bisectrix. We note that the lifetime of the intermittent chimera states strongly
depends on the initial conditions and may be finite. In this case, as our calculations
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have shown, when the time of observation (number of iterations) of the system
dynamics t 	 40;000, the regime of intermittency can change (switch) to the regime
of phase or amplitude chimera.

6.6 Discussion and Conclusion

In the present paper we have described numerical results for the bifurcation
phenomena which are observed at the transition from complete chaotic synchroniza-
tion (complete coherence) to fully asynchronous spatio-temporal chaos (complete
incoherence) in the one-dimensional ensemble of nonlocally coupled chaotic maps
(6.1). A complex set of bifurcations which are realized in the system (6.1) by varying
the parameters � and r (Fig. 6.2) has been known in the scientific literature [22, 23].
However, many of the details of these effects are not sufficiently studied. In our
opinion, this is due to the fact that the indicated transitions have been basically
analyzed using qualitative characteristics without applying any quantitative criteria.
In our research we have used different characteristics of the dynamical regimes,
both qualitative and quantitative. We have considered both instantaneous spatial
profiles (snapshots) of dynamical variables and space-time profiles which combine
a set of snapshots at different time moments. We have also analyzed space-time
profiles for the coupling function in order to understand the mechanisms of mutual
influence of the ensemble elements inside various clusters and to explain the reasons
for the bifurcation phenomena. Besides this, as one of the important quantitative
characteristics of dynamical regimes, we have used the cross-correlation coefficient
(CCC) of different elements of the ensemble. Such an approach has enabled us to
reveal a number of important details and clarify the considered mechanism. The
following main results can be formulated.

We have described in detail the transition from complete chaotic synchronization
(region 1 in Fig. 6.1) to oscillating (partial) chaotic synchronization (transition from
region H to region G in Fig. 6.2). It has been shown that whereas the CCC is strictly
equal to 1 in region H, it is less than 1 in region G. This indicates the destruction of
complete chaotic synchronization (Figs. 6.3b and 6.4c). However, the regimes which
are characterized by the snapshots like in Fig. 6.4a can be treated to be coherent in
the sense of the definition (6.2).

We have shown that the vertical front formation in the wave-like solution profile
xt

i is indeed an important factor which precedes the appearance of a chimera-like
state. In terms of the ensemble (6.1) dynamics, the infinite spatial derivative is
caused by the fact that the phase in neighboring oscillators is shifted by one iteration.
This shift is realized when the difference between the maximal and minimal
oscillation amplitudes of a 2-period cycle becomes the largest. This condition is
necessary but not sufficient for the appearance of chimera states. When the solution
profile xt

i becomes discontinuous, chimera states emerge only in the case when the
coupling strength � corresponds to the chaos birth in both the ensemble elements
and the coupling function. It is the chaotic dynamics of the network that leads to
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the effect of phase synchronization loss and induces the intermittency between the
in-phase and anti-phase oscillations of a localized cluster of oscillators. A chimera
state appears which can be naturally called a phase chimera state. Thus, the vertical
front formation and slightly chaotic dynamics in all the elements of the ensemble
are the necessary and sufficient conditions for realizing phase chimera states.

It has been found that in the phase chimera mode (Fig. 6.6), the CCC is close to 1
in modulus and randomly changes its sign from C to � for the elements belonging to
this incoherence cluster, where the oscillations xt

i are shifted in time by one iteration.
From the standpoint of the correlation analysis, the phase chimera is not strictly an
incoherence regime although it is characterized by a random spatial distribution of
the phase shifts of oscillations in the partial elements in the incoherence cluster.

Development of chaotic temporal behavior in the ensemble leads to the appear-
ance of new chimera states (see Fig. 6.7) which are characterized by a random
distribution of the instantaneous oscillation amplitudes of the elements within the
incoherent interval. This type of chimera states can be naturally called an amplitude
chimera state. As the calculations have shown, amplitude and phase chimera states
may coexist in the ensemble of coupled chaotic maps (Fig. 6.7). The appearance of
amplitude chimera states is related to the loss of stability of chaotic synchronization
in the network elements included in the coherent cluster. This is manifested by the
fact that the intensity of chaotic oscillations of the elements in this cluster increases
significantly.

We have revealed the differences in cross-correlations for phase and amplitude
chimera states. The CCC is less than 1 in modulus (Fig. 6.8) for all the elements
belonging to the amplitude chimera (cluster 2 in Fig. 6.7a). The decrease of the
CCC in this case shows that the oscillations of different elements in the amplitude
chimera are truly incoherent (non-synchronous) and fully comply to the definition
of chimera state [1, 14].

The effect of intermittency between phase and amplitude chimera states has been
established. In this case the time series of the ith oscillator xt

i demonstrates a random
alternation (switching) between phase and amplitude chimeras (Fig. 6.10).

We have explored the transition to the region of fully incoherent chaos which is
observed for weak coupling (transition from C to A in Fig. 6.2). It has been shown
that the appearance of fully asynchronous spatio-temporal chaos is preceded by
temporal periodic oscillations of oscillators whose phase differences are completely
random in space. When moving to region A in Fig. 6.2, a completely incoherent
spatiotemporal chaotic regime is realized in all the network elements (Fig. 6.9).
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Chapter 7
Regular and Chaotic Transition to Synchrony
in a Star Configuration of Phase Oscillators

Vladimir N. Belykh, Maxim I. Bolotov, and Grigory V. Osipov

M.I. Rabinovich is one of the pioneers in the field of
synchronization in complex networks of oscillators [1]. We
dedicate the present piece of work to Misha’s 75th birthday.

7.1 Introduction

Synchronous behavior is one of the ubiquitous collective phenomena in ensembles
of oscillatory systems [2–5]. Among different phase oscillators the Kuramoto model
is arguably the most studied model that describes synchronization [6–8]. This model
captures essential features of synchronization, observed in science and applications.
Examples are arrays of coupled Josephson junctions [9], semiconductor laser
arrays [10], the ensembles of the cells in the heart [11], Hodgkin–Huxley neurons
[12], central pattern generator for animal locomotion [13], rhythmic applause
[14], pedestrian crowd synchrony on London’s Millennium bridge [15], microwave
oscillator arrays [16], etc. For other examples, see [17, 18] and [19]. Another popular
example of phase oscillators is the networks of coupled phase-locked loops (PLL)
[20–22]. In this paper, an analytical study of a star motif of phase oscillators is
presented. The system consists of a central node, the hub, connected to an arbitrary
number of peripheral nodes. The star configuration of ensemble of oscillators for
the different models has been studied. In [23], starting from the analysis of the
topological properties of the star configuration, some analytical considerations have
been applied to derive the bifurcation diagram of the system with respect to the
parameter mismatch between peripheral oscillators and hub and to the coupling
strength. The analysis revealed that the system may become fully synchronized
(more precisely, the peripheral oscillators are completely synchronized among each
other and phase synchronized with the hub). In the case of star-coupled ensemble of
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phase oscillators the analytical description of the parameter regions of existence
of different synchronous regimes has been obtained in [24]. It was shown that
peripheral oscillators compete for the synchronization with the hub and only a given
number of peripheral oscillators can win this competition.

7.2 Models Under Study

In this paper we consider two examples of phase oscillators connected in a star
configuration, when one leading oscillator controls a network of noncoupled slave
oscillators.

7.2.1 Phase-Locked Loops (PLLs) with a Parallel Coupling

Consider a network of coupled PLLs with block diagram depicted in Fig. 7.1. The
leading oscillator (LO) drives the identical voltage controlled oscillators (VCO) via
the sum of outputs of similar phase detectors (PDi) passing through the similar low-
pass filters (LPF).

The equations of this system can be written in the form [22]

pi C
1

ˇp C 1

nX
jD1

aijF.j/ D �i; (7.1)

p
d

dt
, F.i/ D sini, i D 1; 2; : : : ; n, where i is the phase difference of VCOi and

LO phases, �i is the frequency difference between the VCOi and LO frequencies,
ai are the coefficients of the weighted sum.

LO ∑

PD1 LPF1 VCO1

VCOi

VCOn

LPFi

LPFn

PDi

PDn

...

...

...

...

...

...

Fig. 7.1 The block diagram of the network of coupled PLLs
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The system (7.1) is equivalent to the following system

ˇ Ri C Pi D �

nX
jD1

aij sinj C�i; (7.2)

i D 1; 2; : : : ; n.
The same system can be obtained for the star-like topology of the Kuramoto

model with inertia.

7.2.2 Kuramoto Phase Model with Inertia

Consider the Kuramoto phase model with inertia of N coupled phase oscillators
[25, 26]

ˇ R�i C P�i D !i C
1

N

NX
jD1

Kij sin.�j � �i/;

i D 1; 2; : : : ;N; (7.3)

where �i is the instantaneous phase, !i is the natural frequency of the ith oscillator,
Ki;j are the entries of a coupling symmetric matrix K D fKijg

N
N , ˇ is a positive

parameter representing an inertia of oscillators. In the case ˇ D 0 and Kij D K,
i; j D 1; 2; : : : ;N the system (7.3) becomes the original paradigmatic Kuramoto
model [6–8].

We consider the star configuration of coupling [27–29] when the matrix K has
the form

K D

0
BBB@

0 K12 � � � K1N

K21 0 � � � 0
:::

:::
: : :

:::

KN1 0 � � � 0

1
CCCA ;

i.e., the first element is the hub of the configuration, and the system (7.3) reads

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

ˇ R�1 C P�1 D !1 C
1

N

NX
jD2

K1j sin.�j � �1/;

ˇ R�2 C P�2 D !2 C
1

N

	
K21 sin.�1 � �2/



;

: : : ;

ˇ R�N C P�N D !N C
1

N

	
KN1 sin.�1 � �N/



:

(7.4)
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We introduce new variables and new parameters

i D �iC1 � �1;�i D !iC1 � !1;
KiC1;1

N
D ai;

K1;iC1
N

D bi; (7.5)

i D 1; 2; : : : ; n D N � 1;

where i is the phase difference between the hub and each another peripheral
oscillator, �i is the frequency mismatch of .i C 1/’s peripheral oscillator and the
first hub oscillator. Using (7.5) we rewrite the system (7.4) in the form

8̂
<̂
ˆ̂:

ˇ R1 C P1 D �1 � ..a1 C b1/ sin1 C b2 sin2 C � � � C bn sinn/;

ˇ R2 C P2 D �2 � .b1 sin1 C .a2 C b2/ sin2 C � � � C bn sinn/;

: : : ;

ˇ Rn C Pn D �n � .b1 sin1 C b2 sin2 C � � � C .an C bb/ sinn/:

(7.6)

The phase synchronization of oscillators in the model (7.3) is defined as an
attractor of the system (7.6) which trajectories .s

i .t/; Ps
i .t// satisfy the conditions

js
i .t/j < "; h Ps

i .t/i D 0; i D 1; 2; : : : ; n; (7.7)

where h�i denotes the mean value, and parameter " < �=2 is a measure of
synchronization.

Respectively, the steady trajectories .a
i .t/; Pa

i .t// of the system (7.6) defining
asynchronous mode of the oscillators in (7.3) satisfy the condition

h Pa
i .t/i ¤ 0; i D 1; 2; : : : ; n: (7.8)

The mutual synchronization of the peripheral oscillators is characterized by the
rotation numbers

rij D lim
t!1

a
i .t/

a
j .t/

; i; j D 1; 2; : : : ; n: (7.9)

Below we consider both the PLL and Kuramoto similar models (7.2), (7.3) in the
form of the system (7.6).

7.2.3 Regular Transition to Synchrony

In this section for simplicity we put ai D bi. The main candidate for synchronous
state is the stable equilibrium point of the system (7.6).

The phase space of the system (7.6) written in Cauchy form with coordinates
.i; yi D Pi/, i D 1; 2; : : : ; n, is the cylinder G D fRn � T

ng.
From the boundedness of the right parts in (7.6) follows the next.
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Proposition 2.1 The solid torus G0 D fi 2 S
1; jyij < �i C Na; i D 1; 2; : : : ; ng,

G0 
 G, where a D max
i2f1;2;:::;ng

ai, is the absorbing domain of the system (7.6).

Equilibria of the system (7.6) are the solutions of the system

MS D �; (7.10)

where

M D

0
BBB@

2 1 � � � 1

1 2 � � � 1
:::
:::
: : :

:::

1 1 � � � 2

1
CCCA ;

S D column.a1 sin1; a2 sin2; : : : ; an sinn/, � D column.�1;�2; : : : ; �n/.
Since det M D n C 1 D N the system (7.10) has a unique solution

ai sini D Q�i; i D 1; 2; : : : ; n; (7.11)

where Q�i are the entries of the column M�1� , and (7.11) reads

sini D
1

ai

nX
jD1

�
�i

n
�
�j

N

�
: (7.12)

The system (7.11) for j Q�ij < ai has 2n equilibria in G. The principal equilibrium
corresponding to the synchronous mode is the point O.C

1 ; 
C
2 ; : : : ; 

C
n /, 

C
i D

arcsin Q�ia�1
i . All the rest equilibria coordinates are obtained from O by changing

C
ik

to �
ik

D � � C
ik

, k D 1; 2; : : : ; n.
The stability of the equilibria is defined by the variational linear system of ODE

(i D C
i C xi)

8̂
<̂
ˆ̂:

ˇRx1 C Px1 C 2˛1x1 C ˛2x2 C � � � C ˛nxn D 0;

ˇRx2 C Px2 C ˛1x1 C 2˛2x2 C � � � C ˛nxn D 0;

: : : ;

ˇRxn C Pxn C ˛1x1 C ˛2x2 C � � � C 2˛nxn D 0;

(7.13)

where ˛i D ai cosC
i D

q
a2i � Q�2

i (or ˛i D ai cos�
i D �

q
a2i � Q�2

i /.
We seek a solution of the system (7.13) in the form xi D ciept and obtain the next

characteristic equation for the system (7.13)

det

0
BBB@

�1 1 � � � 1

1 �2 � � � 1
:::
:::
: : :

:::

1 1 � � � �n

1
CCCA D 0; (7.14)

where �i D .ˇp2 C p C 2˛i/˛
�1
i .
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Hence, the equilibrium O is stable, i.e. the complete synchronization regime is

stable, when the real parts of 2n roots of Eq. (7.14) for ˛i D

q
a2i � Q�2

i are negative.
Let us consider the particular case of the system (7.6)

˛i D

q
a2i � Q�2

i D ˛ D const; i D 1; 2; : : : ; n: (7.15)

We study the case for ˛i D
q

a2i � .�=N/2 D ˛, and �i D � . In this case Eq. (7.14)
takes the form

.� � 1/n�1.� C n � 1/ D 0: (7.16)

Then � � 1 D 0 gives the equation

ˇp2 C p C ˛ D 0; (7.17)

and � C n � 1 D 0 leads to the equation

ˇp2 C p C N˛ D 0: (7.18)

From (7.17) repeated .n�1/ times and (7.18) we conclude that the real parts of all
the roots of Eq. (7.14) are negative and therefore the equilibrium O is asymptotically
stable. In this case from Eq. (7.4) we obtain the following expression for frequency
of complete synchronization

!G
s D N�1

NX
iD1

!i: (7.19)

It’s easy to verify that in homogeneous case (7.15) all the rest equilibria are saddles
with different dimensions of unstable manifolds.

Hence, we proved the next statement

Theorem 2.1 Let for �i D �, ai D a the following condition holds

j�j < Na: (7.20)

Then the system (7.6) has the stable equilibrium point O, corresponding to the
synchronous mode of the system (7.3) when the hub oscillator synchronizes the
enclosing ones.

Corollary 2.1 The stability of the equilibrium point O is preserved for small
mismatch j˛i �˛j < � due to its structural stability. For large mismatch the stability
conditions one can derive using (7.14).



7 Regular and Chaotic Transition to Synchrony in a Star Configuration... 105

Corollary 2.2 The system (7.6) has no equilibrium points if j Q�ij > ai at least for
one i D i1 2 f1; 2; : : : ; ng.

Indeed, in this case the system (7.11) has no solution, and the synchronization loss
occurs due to disappearance of the stable equilibrium O via saddle-node bifurcation.

Corollary 2.3 The emergence of synchrony in the system (7.6) is defined by the
regular transition via saddle-node bifurcation.

This statement follows from Corollaries 2.1, 2.2.

7.3 The Uniform Coupling in Star Configuration

Consider the case of uniform coupling when ai D a D const, �i D � D const, but
rewrite the system (7.6) in another form

ˇ Ri C Pi D � � a sini � b
nX

jD1

sinj; i D 1; 2; : : : ; n; (7.21)

where new parameter b > 0 is not necessarily equal to a.

Lemma 3.1 The system (7.21) has the invariant manifold M W fu1 D u2 D � � � D

un D ug where ui D .i; Pi D yi/, dim M D 2. The dynamics in the manifold M is
determined by the pendulum equation

ˇ R C P D � � ˛ sin; (7.22)

where ˛ D a C bn.

Indeed, each equation (7.21) after substitution ui D u becomes one and the
same equation (7.22), and any trajectory of the system (7.21) with uniform initial
condition ui D u0 2 M does not leave M.

The local stability of the manifold M is defined by the variational equation

ˇ R
i C P
i D cos

2
4�a
i � b

nX
jD1


j

3
5 ; (7.23)

where 
i D i �  and  is driven by the system (7.22).
First we present the well-known [30–32] bifurcational diagram and qualitative

phase pictures of the pendulum equation (7.22) which for new time t0 D

r
˛

ˇ
t and

new parameters � D .˛ˇ/�1=2, � D �=˛ takes the form

R C � P C sin D �: (7.24)
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For � > 0 the bifurcations in this equation are saddle-node for j� j D 1 and the
homoclinic loop encircling the cylinder .; y D P/ at j� j D �h.�/, where �h.�/ is
the Tricomi curve satisfying the conditions

�h.0/ D 0I � 0
h.0/ D

4

�
I � 0

h.�/ > 0; 0 < � < �snI (7.25)

�h.�/ D 0; � 	 �sn; (7.26)

where the value �sn � 1:2 corresponds to the homoclinic loop of the saddle-

node. The condition � 0
h.0/ D

4

�
one can obtain using averaging method for small

parameters � and � in (7.24). The property � 0
h.�/ > 0 follows from clockwise

rotation of the vector field . P D y; Py/ given by Eq. (7.24).
For the parameters ˇ, ˛, � of Eq. (7.22) the bifurcations read

j�j D ˛�h..ˇ˛/
�1=2/ (7.27)

is the homoclinic bifurcation, and

j�j D ˛ (7.28)

is the saddle-node bifurcation.

Lemma 3.2 The system given by Eq. (7.22)

P D y; ˇPy C y C ˛ sin D � (7.29)

in the phase cylinder G D f 2 S
1; y 2 R

1g has the following phase portraits:

1) In the parameter domain

d1 W fj�j < ˛�h..ˇ˛/
�1=2/g (7.30)

the system (7.29) is globally asymptotically stable (Fig. 7.2, S) such that the

stable focus (or node) Of .f D arcsin
�

˛
; yf D 0/ attracts the whole cylinder

besides the stable separatrices of the saddle Os.s D � � f ; ys D 0/.
2) In the parameter domain

d2 W f˛�h..ˇ˛/
�1=2/ < j�j < ˛; .ˇ˛/�1=2 < �sng (7.31)

the system (7.29) is bistable: it has the stable focus (node) and the unique
stable limit cycle lc. D c.t/; y D yc.t// encircling the cylinder; the basins
of the focus and the cycle are separated by the stable separatrices of the saddle
(Fig. 7.2, B).
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Fig. 7.2 Phase portraits of the system (7.22) for different value of parameters

3) In the parameter domain

d3 W fj�j > ˛g (7.32)

the system (7.29) has the unique limit cycle attracting the whole cylinder
(Fig. 7.2, R).

Figure 7.2 corresponds to� > 0. For� < 0 the phase portraits are the same for the
reverse coordinates .; y/ ! .�;�y/.

Consider the local stability of the trajectories l�.�.t/; y�.t// in the invariant
manifolds M, especially of the limiting set, which consist of the stable focus (node)
Of .; 0/, the saddle Os.s; 0/, and limit cycle lc.c; yc/.

Obviously, the stability along the manifold M is defined by the variational
equation of Eq. (7.22) ( D � C 
)

ˇ R
 C P
 C ˛ cos�.t/
 D 0; ˛ D a C nb; (7.33)

which obviously determines, type of the equilibria stability and for the limit cycle,
� D c, gives one zero and one negative (div. P; Py/ D �.ˇ˛/�1=2 < 0) Lyapunov
exponents.

The variational equation (7.23) for original system (7.21) along the manifold M,
i.e. along the vector .1; 1; : : : ; 1/ gives the same equation (7.33).

In the transverse direction to the manifold (transversally to the vector
.1; 1; : : : ; 1/) the system (7.23) takes the form

ˇ R�i C P�i C a cos�.t/�i D 0; (7.34)
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where �i D 
i � 
iC1, i D 1; 2; : : : ; n � 1, and �.t/ is driven by Eq. (7.22).
Equation (7.34) similarly to (7.14) determines the stability of the focus (node) Of in
the transverse direction and unstability of the saddle Os in the transverse direction.
Equation (7.34) for the trajectories �.t/ from the basin of node Of lying in the band

jj <
�

2
, providing cos�.t/ > 0, at least for .ˇa/�1=2 	 �sn guarantees the local

stability of this part of the manifold M. The transverse stability of the limit cycle is
defined by Eq. (7.34) for � D c.t/. Since Pc.t/ D yc.t/ > 0 the phase c.t/ rotates
and the term cosc.t/ in (7.34) changes the sign thereby creating a problem of the
cycle transverse stability. We solve it in the case when j�j D .ˇa/�1=2C", for small
enough " > 0. In this case the cycle just appearing from the homoclinic loop of the
system (7.29) passes a small neighborhood of the saddle Os and therefore spends
the most time (of order 1=") in the neighborhood j � sj < ". Since coss < 0,
due to (7.34) the limit cycle lc is born being unstable.

From the above reasoning we conclude

Proposition 3.1 1) If the Lyapunov–Floquet exponents from (7.34) for �.t/ D

c.t/ are negative, then the asynchronous mode is such that the peripheral
oscillators are synchronized with rotation numbers equaled 1.

2) The homoclinic bifurcation of the system (7.21) leads to an asynchronous mode
of the peripheral oscillators.

For sufficiently large inertia such that .ˇa/�1=2 < �sn, the transition from
coherence to incoherence of oscillators is hysteretic. When the frequency difference
� increases the transition from the stable equilibrium Of (coherence) to the rotation
mode in the solid torus G0 (incoherence) occurs via the saddle-node bifurcation
j�j D a. Obviously, this rotation mode can be the stable cycle lc D .c.t/; Pc.t//
in the manifold M. In this case one observes the transition from complete phase
synchronization to the synchronous state of the peripheral oscillators being asyn-
chronous to the hub oscillator with mean frequency difference h Pc.t/i. When the
frequency difference � decreases from large values corresponding to the rotation
mode at the bifurcation of homoclinic orbit of the saddle j�j D a�h..ˇa/�1=2/ the
reverse transition to the complete synchronization due to Proposition 3.1 occurs
only from the asynchronous mode of the peripheral oscillators. Note that this
hysteretic behavior being similar to the transitions in the Josephson junction model
[33] was discussed in the recent paper [34].

7.4 Nonsymmetric Coupling

We consider the general case of nonsymmetric coupling but, as an example, for
three oscillators in the star configuration. Similarly to symmetrical case (7.4), (7.6)
we obtain the system

�
ˇ1 R1 C P1 C a1 sin1 D �1 � b1 sin2;
ˇ2 R2 C P2 C a2 sin2 D �2 � b2 sin1;

(7.35)
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where ˇ1;2 are the different inertias of peripheral oscillators, a1;2, b1;2 are the
coupling matrix entries, and �1;2 are the frequency differences. Our goal is to
introduce several parameter domains exhibiting different simple and complicated
dynamics of the system (7.35).

7.4.1 Equilibria

The system (7.35) has four equilibria in the region

Q�1;2 < ı; (7.36)

where Q�1;2 D a2;1�1;2 � b1;2�2;1, ı D a1a2 � b1b2, defined by the equation

sin1;2 D Q�1;2ı
�1; (7.37)

giving solutions C.�/
1;2 similarly to (7.11). For ˇ1 D ˇ2 D ˇ the stability of the

equilibria in this case is defined by the equation

�2 C r� C ˛1˛2ı D 0; (7.38)

where r D a1˛1C a2˛2, ˛1;2 D cosC.�/
1;2 , � D ˇp2C p. Due to (7.38) the principal

equilibrium Of .
C
1 ; 

C
2 / is stable and three other equilibria are saddles.

7.4.2 Comparison Systems

We rewrite Eq. (7.35) in the form of the systems

�
P1;2 D y1;2;
ˇ1;2 Py1;2 D �1;2 � y1;2 � a1;2 sin1;2 � b1;2 sin2;1:

(7.39)

Introduce two comparison 2D systems (see [35] and reference within) for each
subsystem in (7.39) AC.�/

i :

�
Pi D yi;

ˇi Pyi D �i ˙ bi � yi � ai sini;
(7.40)

i D 1; 2, acting in 2D-cylinder G D R
1 � S

1. The systems AC.�/
i are the

system (7.29) with Q�i D �i ˙ bi, i D 1; 2, standing for �.
The vector projection of the system (7.40) on the cylinder .; y/ is rotated

clockwise (counterclockwise) relatively to the vector of AC
i (A�

i , respectively) in
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g+

gs

g0

gu
gs

g+

K S

-
g0

K S

−π −π

−π

π

π

π

(a) (b) (c)

Fig. 7.3 Illustration of the comparison system (7.40)

the half-cylinder .; y > 0/ and vice versa in the half-cylinder .; y < 0/. Now we
depict the separatrices of the saddles and cycles simultaneously for the systems AC

i
and A�

i . The unstable (stable) separatrices form the strips between them—separatrix
channels gu

i (gs
i , respectively). Introduce the intersection go

i D gu
i \ gs

i , called the
saddle cell [35], the annulus Ks

i bounded by the stable cycles of the system AC
i and

A�
i , and the absorbing domain gC

i bounded by unstable separatrices of the systems
AC

i and A�
i , and segments  D const (see Fig. 7.3), i D 1; 2. We select three pairs of

parameter domains dki D dC
ki [ d�

ki , where dC.�/
ki , k D 1; 2; 3, i D 1; 2, are domains

dk, k D 1; 2; 3 from Lemma 3.2 with Q�i D �i ˙ bi, ai and ˇi, i D 1; 2, standing for
�, a and ˇ, respectively. Both systems AC

i and A�
i have the same qualitative phase

portraits in each of these domains dki, k D 1; 2; 3, forming mutual arrangement of
the saddle channels, annulus and absorbing domain depicted in Fig. 7.3. Using the
above geometric structures we obtain the following findings.

Theorem 4.1 Let the parameters of the system (7.39) be in the domain d1 D

d11 [ d12 when the comparison systems AC.�/
1 and AC.�/

2 form the same structure of
Fig. 7.3a. Then the equilibrium point Of .

C
1 ; 

C
2 / is globally asymptotically stable.

Herewith three oscillators are globally synchronized.

Proof The system (7.39) has no entire trajectories besides the saddles in the
domains go

1 � go
2, go

1;2 � go
1;2. It follows from Lyapunov–Chetaev function for

monotone functions sin1;2 at the intervals of 1;2 for go.C/
1;2 in the system (7.39).

The domain gC D gC
1 [ gC

2 is the attracting domain of the trajectories of the
system (7.39) (besides the stable manifolds of the saddles) for the parameter region
d11[d12 due to the directing property of the comparison systems (see Fig. 7.3a). The
stability of the locally stable point Of in the globally attracting domain gC can be
derived with the Lyapunov function using the monotonicity of sin1;2 in the square
j1;2 � C

1;2j < " corresponding to gC.

Theorem 4.2 Let the parameters of the system (7.39) be in the domain d3 D d31 [

d32, when the comparison systems AC.�/
1 and AC.�/

2 form the same structures of
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Fig. 7.3c. Then the solid torus K
C

D Ks
1 � Ks

2 attracts all the trajectories of the

system (7.39). The nonwandering set of trajectories in K
C

is rotating and defines
the asynchronous mode of the oscillators.

This statement immediately follows from the simple structure of Fig. 7.3c forcing

all trajectories of the system (7.39) to enter K
C

.

Theorem 4.3 Let the parameters of the system (7.39) be in the domain d2 D

d21 [ d22 with the same structures of comparison systems (Fig. 7.3b). Then the
system (7.39) is fourfold-stable, that is, it has four separate components of limiting

set in four absorbing domains gC, K
C

, MC
1 D gC

1 � Ks
2, MC

2 D gC
2 � Ks

1.

Proof In the parameter domain d2 a trajectory of the system (7.39) given by a
solution i D Qi.t; o

1 ; y
o
1; 

o
2 ; y

o
2/, yi D Qyi.t; o

1 ; y
o
1; 

o
2 ; y

o
2/, i D 1; 2, with initial

conditions .o
i ; y

o
i / 2 gC

i .K
s
i /, i D 1; 2, is such that due to the comparison principal

the coordinates of the first (second, respectively) subsystem remain in the first
(second, respectively) absorbing domain, . Qi; Qyi/ 2 gC

i .K
s
i /, i D 1; 2, for any t > 0.

This implies that in R
2 �T

2 the trajectory of the system (7.39) with any initial point

in the domain gC (K
C

, M
C

1 , M
C

2 , respectively), stays in these domains for any t > 0.

7.4.3 Chaotic Transitions to Synchrony

First we note that in all cases of system the bifurcations of equilibria are simple
and occur via the saddle-node when the frequency differences increase. In order to
exhibit the complicated bifurcations leading to emergence of chaos we consider the
reduced system (7.35) for b2 D 0 corresponding to the unidirectional coupling of
one of the peripheral oscillators. The second (“master”) equation in (7.35) has the
pendulum dynamics and in the simple case j�2j > a2 which we consider has the
unique rotating limit cycle c.t/ D c.t C T/ (see Lemma 3.2). The first (“slave”)
equation is the pendulum one as well but it is driven by periodic force �b1 sinc.t/.
Using the results from [33, 35] we obtain the next

Theorem 4.4 1) In the parameter region b2 D 0, j�2j > a2, j�1j < a1 � b1 the
system (7.35) in the solid torus go

1 � Ks
2 has a unique saddle cycle ls which stable

Ws
1 and unstable Wu

1 manifolds lie in the channels Ws
1 
 gs

1 � Ks
2, Wu

1 
 gu
1 � Ks

2

and have mutual arrangement corresponding for d11 to Fig. 7.3a and for d12 to
Fig. 7.3b.

2) There exists an interval j�1 � a1�h..ˇ1a1/�1=2/j < " corresponding to a
structurally stable homoclinic orbit to the cycle ls providing a chaotic component
of the system (7.35) limiting set containing infinite numbers of saddle cycles.

3) There exists an interval linking to the bifurcational point�1 D a1�h..ˇ1a1/�1=2/
C " for which the system (7.35) has a quasi-strange rotating attractor which
defines the chaotic transition to synchrony.
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The proof of the theorem is based [33, 35] on the fact that when the parameter
�1 increases from the values from the domain d11 (corresponding to Fig. 7.3a) up
to the values from the domain d12 (corresponding to Fig. 7.3b) the channels gs

1 and
gu
1 as well as the manifolds Ws

1 and Wu
1 change their mutual arrangement causing

the birth, existence and death of the homoclinic orbits H1 D Ws
1 \ Wu

1 . Omitting the
details we note the important property of the hysteretic bifurcational transition in the
system (7.35). When the parameter �1 decreases the transition from asynchronous
rotation to the synchrony occurs at random values of the parameter �1 from
the interval corresponding to the quasi-attractor existence. This complexity of the
system (7.35) dynamics is similar to that of the shunted Josephson junction [35].

Hence, the example of three oscillators exhibits the complexity of the system
dynamics which obviously is typical for the general system (7.3).

Finally we emphasize that the main reason of the complicated dynamics is
relatively large inertia of oscillators. Indeed, in the limiting case ˇ1;2 ! 1

(�1;2 ! 1 for rescaled system (7.24)) the system (7.35) reduces to the divergence-
free nonintegrable system

�
R1 C a1 sin1 C b1 sin2 D �1;
R2 C a2 sin2 C b2 sin1 D �2:

(7.41)

In this system due to KAM theory the invariant tori breakdowns with increase of
b1;2 from zero.
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Chapter 8
Lotka–Volterra Like Dynamics in Phase
Oscillator Networks

Christian Bick

8.1 Introduction

The human brain as a complex network consists of many individual neural oscil-
lators whose activities are coordinated on multiple scales. Such coordination is,
for example, given by metastable dynamics that show transient switching between
different patterns of activity [1, 12, 39]. Misha Rabinovich and coworkers pioneered
the idea that to obtain in-depth understanding of brain dynamics one has to focus on
understanding the dynamical principles that underly the generation of reproducible
sequential activity of metastable states [33, 35, 36]. This applies to both small cir-
cuits [26, 34] and cognitive functions involving many neurons [10, 36] that involve
many neurons. In particular in the latter case, generalized Lotka–Volterra equations
have provided suitable mathematical models to generate sequential switching
behavior, exhibited by trajectories close to heteroclinic structures involving saddle
equilibria (or more general sets). However, as coarse-grained models for higher
order brain functions these Lotka–Volterra type equations neglect the microscopic
dynamics of individual neural oscillators.

At the same time, phase oscillator networks provide paradigmatic models to
describe the collective dynamics of weakly interacting oscillators [3, 15]. Consider
a network of M populations with N oscillator each where the phase ��k 2 T WD

R=2�Z of the kth oscillator in population � evolves according to

P��k D !�k C

MX
�D1

K��
N

NX
jD1

sin .��j � ��k � ˛�� /: (8.1)
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where !�k is the intrinsic frequency of the oscillator and the coupling is given by
phase lags ˛�� and strengths K�� . For globally and identically coupled oscillators,
that is, K�� D K, ˛�� D ˛ for all �; � , we recover the original Kuramoto–
Sakaguchi equations [37, 38]. In the continuum limit of N ! 1 oscillators, there
is an invariant manifold on which the dynamics are fully determined by a closed
set of equations for the local Kuramoto order parameter of each population [28].
This reduction has been particularly useful to analyze networks with identical fre-
quencies, (8.1) with !�k sampled from a single distribution, that supports particular
solutions where one population is desynchronized while the rest is fully phase
synchronized. These solutions are commonly known as chimeras [2, 16, 31].

In this chapter, we point out possible links between the dynamics of the
mean field equations of (8.1) in the continuum limit and generalized Lotka–
Volterra systems. Such similarities have been observed before for oscillators with
nonresonant interaction [14], but here we are primarily interested in populations
with identical frequency distributions that support chimeras. While the global
dynamics for two populations [25] of identical oscillators—where chimeras were
originally studied [2]—are now fairly well understood [21, 22], for three populations
the attention has been limited to certain invariant subspaces [20] and global results
are lacking. Here we observe that the dynamics of (8.1) in the continuum limit bears
similarity to a generalized Lotka–Volterra system with a restricted set of parameters.
This provides a first attempt to characterize the global dynamics of a network of an
arbitrary number of identical phase oscillator populations bridging both microscopic
dynamics on the level of a single oscillator and macroscopic mean field dynamics.

The remainder of this chapter is organized as follows. In Sect. 8.2 we discuss
sequential switching dynamics in Lotka–Volterra type equations: we review results
how Lotka–Volterra dynamics can be used to model cognitive functions and derive
limit on cognitive processing capabilities. In Sect. 8.3 we derive general mean field
equations for coupled populations of sinusoidally coupled phase oscillators in the
continuum limit explicitly. Finally, in Sect. 8.4, we look at the dynamics of the
oscillator populations in the continuum limit which resemble a Lotka–Volterra type
system close to a cluster state before giving some concluding remarks.

8.2 Lotka–Volterra Type Equations in Neural Dynamics

Generalized Lotka–Volterra equations describe the dynamics of a network of M 2

N competitively interacting agents where the state a� 	 0 of node � evolves
according to

Pa� D a�

 
s� � p�a� �

X
�¤�

r��a�

!
: (8.2)
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These equations provide a classical model for the interaction of different species
[23] where ak corresponds to the population size of population � which has some
growth s� , a nonlinear term leading to saturation, and interaction given by r�� .
More recently, generalized Lotka–Volterra have been employed to model sequential
neural information processing in the brain [33, 35]: winnerless competition dynam-
ics yield switching dynamics between subsequent temporary winners induced, for
example, through heteroclinic structures in phase space. In this section assume that
the self-inhibition is normalized, i.e., p� D 1.

Robust heteroclinic sequences can arise in Lotka–Volterra type equations (8.2)
in the invariant subspaces given by A� WD f .a1; : : : ; aM/ j a� D 0g. More pre-
cisely, a heteroclinic sequence is a sequence of distinct saddle equilibria with a
one-dimensional unstable manifold together with heteroclinic orbits that connect
consecutive saddles. For (8.2) we have equilibria A� WD .0; : : : ; 0; s� ; 0; : : : ; 0/
where s� is the � th entry of A� . The saddle A� is dissipative if 	.A� / D

� Re.�2� /=Re.�1� / > 1 where �j� are the eigenvalues of the linearization
around A� ordered monotonically decreasing by real part. Let � D .�1; : : : ; �q/,
q � M, be a sequence of distinct indices and for n 2 N write Œn� D f1; : : : ; ng.

As shown in [5], for given � there are parameters that give rise to a heteroclinic
sequence with saddles A�k , k 2 ŒM�, where the heteroclinic connections between
saddles A�k and A�kC1

lie in
T
� 62f�k ;�kC1g A� . In fact, parameters can be chosen

such that the heteroclinic sequence is stable, that is all saddles are dissipative.
Stable heteroclinic sequences give rise to a stable heteroclinic channel, which is a
suitable "-neighborhood V.�; "/ of the stable heteroclinic sequence so trajectories
that have their initial point in the vicinity of A1 stay in V.�; "/ for some finite
time as they traverse neighborhoods of A�k sequentially according to �; cf. [11].
In the context below, it makes sense to consider networks where the parameters are
sampled randomly. In joint work with Misha Rabinovich, we build upon [5] to prove
the following theorem.

Theorem 2.1 (Bick and Rabinovich [11]) Let � be a sequence of equilibria of
length q 2 N and suppose that the entries of s corresponding to indices in � form a
Fibonacci sequence, i.e., s�1 D a; s�2 D ac; s�kC1

D s�k C s�k�1 with s�k < 2s�kC1
,

k D 1; : : : ; q and the remaining entries are sufficiently small.
Then there are intervals J; J0 on the positive real axis and � > 0 large enough

such that for any c 2 J; a > 0 and sufficiently small " > 0 the system (8.2)
with a coupling matrix r with coefficients r�k�1�k ; r�kC1�k sampled randomly from J0

and r��k ; � 62 f�k�1; �k; �kC1g sampled randomly from .�;1/ has a robust stable
heteroclinic channel in V.�; "/.

We subsequently applied this result to a model of sequential working memory
based on winnerless competition dynamics [10]. Let a� .t/ 	 0 denote the activity
of a neural cluster or pattern of an informational item � whose dynamics are
given by (8.2). Here r�� 	 0 describe the inhibitory connections between the � th
and � th clusters and s� represent the level of self-excitation. In a neural setting,
these parameters depend on additional effects, are determined by the sequence to
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be stored and modulated by attention and other cognitive processing capabilities.
Working memory recall is now given by winnerless competition dynamics between
informational items induced by a heteroclinic sequence of length q.

Assuming that the model parameters are bounded, Theorem 2.1 now gives a
bound on the length q of the memory sequence—the number of items that can be
recalled in sequence. Both � and the interval J0 depend on the mutual inhibition r�� .
This relationship can be expressed by a “scaling function” �.q/ depending only
on the length of the sequence q—see [10] for a more detailed definition—which
satisfies

�.q/ �
r��k

r�k�1�k

(8.3)

with � 62 f�k�1; �k; �kC1g. The scaling function provides a lower bound on
the strength of the inhibitory connections relative to lateral connections that impose
order on the heteroclinic sequence. This function grows like a geometric sequence
with increasing q. Given an upper bound on the relative connection strengths, this
implies that there is an upper bound on the length of the sequence. Experimental
neurobiological data suggests that an upper bound for � of about 10–20 is realistic.
The resulting limit of the sequence length adequately matches the “magical number
seven” [24] for working memory which provides a purely dynamical explanation
for the limitation of sequential working memory.

8.3 Mean Field Equations for Populations of Phase
Oscillators

Now consider the Kuramoto–Sakaguchi equations (8.1) with non-local coupling
between M populations of N oscillators where the intrinsic frequencies !�k of the
oscillators are sampled from a Lorentzian distribution with density g� . Let i D

p
�1

and Nz denote the complex conjugate of z 2 C. In the continuum limit of N ! 1 the
dynamics can be described by the probability density f� .!� ; �� ; t/ of the oscillators
in population � D 1; : : : ;M [38] which must satisfy the continuity equation

@f�
@t

C
@

@�
.f�v� / D 0 (8.4)

where v�.!� ; �� ; t/ is their velocity

v� D !� C

MX
�D1

K��

Z 1

�1

Z 2�

0

f� .!
� ; �� ; t/ sin.�� � �� � ˛�� / d�� d!� (8.5)

D !� C

MX
�D1

K��
2i

.z� exp.�i.�� C ˛�� // � Nz� exp.i.�� C ˛�� /// : (8.6)
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Here we allow for general interaction between populations given by a coupling
strength K�� and a phase lag ˛�� . The dynamics for M D 2 populations were studied
in detail in [22].

The reduction by Ott and Antonsen [28, 29] to mean field dynamics has become
standard: there is an invariant manifold of probability densities on which the
dynamics can be expressed by dynamical equations for the order parameters

z� .t/ D

Z 1

�1

Z 2�

0

exp.i��/f� .!
� ; �� ; t/ d�� d!� (8.7)

of population � D 1; : : : ;M. More specifically, considering probability densities

f� .!
� ; �� ; t/ D

g� .!�/

2�

 
1C

1X
nD1

.a� .!
� ; t/ exp.i�� //n C c.c.

!
; (8.8)

where c.c. denotes the complex conjugate, we find that

0 D
@a�
@t

C i!�a� �
1

2

2X
�D1

K��
�

exp.i˛�� /Nz� � exp.�i˛�� /z�a
2
�

�
(8.9)

where

z� .t/ D

Z 1

�1

Na� .!
� ; t/g� .!

�/ d!� : (8.10)

With density

g� .!
�/ D

��=�

.!� �˝�/C�2
�

; (8.11)

where ˝� gives the center and �� the width (half width at half maximum) of the
Lorentzian, the last integral can be solved. We have z� .t/ D Na� .˝� � i��; t/ and
evaluating (8.9) and (8.10) at the poles !� D ˝� � i�� , we obtain

@Nz�
@t

D �.�� C i˝�/Nz� C
1

2

MX
�D1

K��
�
exp.i˛�� /Nz� � exp.�i˛�� /z� Nz

2
�

�
(8.12)

D �.�� C i˝�/Nz� C
1

2

MX
�D1

�
Nc�� Nz� � c�� z� Nz

2
�

�
(8.13)

where c�� D K�� exp.i˛�� / describe the interaction between the populations.
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Equation (8.13) describes the mean field dynamics on the invariant manifold—
the Ott–Antonsen (OA) manifold—given by the family of probability densities f
whose Fourier coefficients fn.t/ satisfy fn.t/ D a.t/n. We will consider identical
frequency distributions ˝� D ˝, �� D � in the limit � ! 0; while the manifold
is globally attracting for distributions with nonzero �� [29, 30] the limit has been
discussed, for example, in [17, 19, 22, 32]. Thus, z� .t/ D Na� .t/, and the equations
for the mean field dynamics are given by

@Nz�
@t

D �i˝Nz� C
1

2

MX
�D1

�
Nc�� Nz� � c�� z� Nz

2
�

�
; (8.14)

on C
M . Writing zk D �k exp.ik/ with �k 2 RC; k 2 T for the complex order

parameter yields polar coordinates for (8.14) on .C X f0g/M: angles and amplitudes
.�; / D .�1; : : : ; �M; 1; : : : ; M/ 2 R

M
C � TM evolve according to

P�� D
1

2
.1 � �2� /

MX
�D1

K���� sin.� � � C ˛�� /; (8.15a)

P� D ˝ �
1C �2�
2��

MX
�D1

K���� cos.� � � C ˛�� /: (8.15b)

Note that the “amplitude” �� D jzkj contains information about the synchronization
of populations � : if �� D 1, then the population is phase synchronized.

Equations (8.15) have a phase shift symmetry T which acts by shifting all phases
by a constant angle. Thus, by going into a suitable co-rotating frame we may
assume ˝ D 0. Reducing the phase shift symmetry—for example by introducing
coordinates  k D k � M—yields a dynamical system on R

M
C � TM�1.

Additional permutational symmetries of the coupling between the populations in-
duce dynamically invariant subspaces [13]. Let SM denote the group of permutations
of M symbols. Suppose that � 
 SM acts on the indices of the populations and the
system (8.15) is � -equivariant—if � acts transitively, the populations are identical;
cf. [6–8]. Then the fixed point subspaces of � are dynamically invariant. For M D 2

symmetrically coupled populations (� D Z=2Z) we have K11 D K22;K12 D K21
and ˛11 D ˛22; ˛12 D ˛21 [22]. Reduce the continuous T symmetry by writing
a single equation for  D 1 � 2. The nontrivial element t 2 Z=2Z acts by
t.�1; �2;  / D .�2; �1;� /. Thus we have

Fix.t/ D f .�; �;  / j � 2 T;  2 f0; �gg (8.16)

which corresponds to the invariant ray described in [21, 22]. Note that for M > 2

there will be more general invariant subspaces which depend on � 
 SM .
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8.4 Lotka–Volterra Like Dynamics Close to Cluster States

Observe that (8.15) has dynamically invariant subspaces that are not induced by
symmetry. Let S �� D

˚
� 2 R

M
C j �� D 1

�
, D�

� D
˚
� 2 R

M
C j �� D 1 8� ¤ �

�
and

S� D S �� � TM , D� D D�
� � TM . Now for any set I 
 ŒM� the sets SI D

T
�2I S�

and DI D
T
�2ŒM�XI S� are dynamically invariant. On S WD SŒM� all populations are

phase synchronized, that is, �k D 1 for all k D 1; : : : ;M, and the dynamics of the
phases are given by

P� D ˝ �

MX
�D1

K�� cos.� � � C ˛�� /: (8.17)

Definition 4.1 A cluster state .˚�� / is an equilibrium of (8.15) on SŒM� relative to
the phase shift symmetry, that is, there are constants ˚�� , ˝eq such that

˝eq D

MX
�D1

K�� cos.˚�� C ˛�� /: (8.18)

for all � D 1; : : : ;M. The cluster state is hyperbolic if it is a hyperbolic equilibrium
in the reduced system on R

M
C � TM�1.

For given K�� ; ˛�� cluster states can be found by solving a linear equation.
Existence and stability of cluster states in a system with full permutational symmetry
has been considered in [27] in a more generalized setting; linearizing around these
points in the full system (8.15) yields stability in the transversal directions. The
number of cluster states depends on the number of populations. For M D 2

symmetrically coupled populations, there are either two isolated cluster states with
phase differences ˚12 D 0 or ˚12 D � [22] or S is a continuum of cluster states. By
contrast, for M D 3 symmetrically coupled populations there are additional cluster
states; cf. Fig. 2 in [20].

Considering the dynamics of (8.15a) while keeping � � � fixed suggests that
the order parameter dynamics relate to a generalized Lotka–Volterra system. Set
Y�� D K�� sin.� � � C ˛�� / and write R� D 1 � �� where R� describes the
deviation from phase synchrony. We have

PR� D R�

 
MX
�D1

�
�1C R� C

1

2
R� �

1

2
R�R�

�
Y��

!
(8.19)

for � 2 ŒM�. WithbY 0
� D

P
�¤� Y�� we obtain the system

PR� D R�

 
�
	bY 0

� C Y��



C
1

2

	bY 0
� C 3Y��



R� C

X
�¤�

R�Y��

!
�
1

2

MX
�D1

R�R
2
�Y��

(8.20)
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Note that—up to a higher order correction term which respects the invariant
subspace structure—this is a Lotka–Volterra type equation (8.2) with s� D �

�bY 0
� C

Y��
�
, p� D � 1

2

�bY 0
� C 3Y��

�
, r�� D �Y�� .

In the full system (8.15) the phase dynamics close to a cluster state .˚�� / will be
influenced by the dynamics of R� . Consider the dynamics on the invariant subspace
D� , � 2 ŒM�, where each population � ¤ � is fully synchronized. For the cluster
state .˚�� / define X�� WD K�� cos.˚��C˛�� / D Re.c�� / and Y�� WD K�� sin.˚��C
˛�� / D Im.c�� /. Let�˚�� D .� ��/�˚�� denote the deviation from the cluster
state .˚�� /. The dynamics of (8.15) on D� are given by

P� D ˝ �

MX
�D1

K�� cos.� � � C ˛�� / � R�X�� �
R2�
2

MX
�D1

X��

C O
	
k.R�; �˚�� /k

3


; (8.21a)

P� D ˝ �

MX
�D1

K�� cos.� � � C ˛�� /C R�X�� � R��˚��Y��

C O
	
k.R�; �˚�� /k

3


; (8.21b)

PR� D R�

 
�

 
bY 0
� C Y�� C

MX
�D1

�˚��X��

!
C
1

2

	bY 0
� C 3Y��



R�

!

C O
	
k.R�; �˚�� /k

3


; (8.21c)

PR� D 1; (8.21d)

with the Landau O notation.
Note that up to third order, the influence of R� to the phase dynamics is solely

by X�� ;X�� , � 2 ŒM�. A relation of the phase shift parameters ˛�� and the phase
differences ˚�� of ˛�� C ˚�� D �

2
mod � imply that close to the cluster state

the interactions are effectively small. In fact, these nontrivial chimera equilibria
have been found in M D 2; 3 populations close to the cluster state with phase
differences ˚�� D 0 for phase shift parameters ˛�� � �

2
[2, 20, 22]. We will make

this observation more rigorous elsewhere.

8.5 Discussion

While the invariant subspace structure close to a cluster state in the continuum limit
mean field equations of populations of phase oscillators (8.15) resembles that of a
generalized Lotka–Volterra system (8.2) there are some important differences. The
appearance of higher order terms suggests a more generic bifurcation behavior.
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In fact, chimera equilibria for (8.15) and M D 2; 3 populations arise as a pair
in a saddle node bifurcation [2, 20] whereas (8.2) only has a single nontrivial
equilibrium A� on the invariant subspace A� . Moreover, there is typically bistability
between the cluster state and chimera equilibria [21]. Note that the invariant
subspace structure in (8.15) only exists if the intrinsic frequencies of all oscillators
are identical. If the distribution of the intrinsic frequencies has nonzero width [18],
the cylinder Œ0; 1�M � TM is still dynamically invariant.

At the same time, the similarity between generalized Lotka–Volterra equations
and the dynamics of the absolute value of the local order parameter (8.15) suggests
that there may be parameter values that give rise to heteroclinic connections which
join a sequence of saddle equilibria. Such heteroclinic connections would yield tran-
sient synchronization and desynchronization of individual oscillator populations—
an effect observed in interacting populations of oscillators whose mean frequencies
are well separated [14]—in networks of identical oscillators which support chimera
states. While an attempt to directly use the same argument as in [4] for (8.15) is
likely to fail if additional equilibria are present in the invariant subspaces, a suitable
approximation result (given elsewhere) may be a way to prove the existence of
heteroclinic connections.

Thus, understanding the global dynamics of M 	 3 provides exciting new
directions. In future research we anticipate to find parameter values such that there
are heteroclinic connections between chimera equilibria. The resulting dynamics
will exhibit transitions between localized synchronization that are organized by the
network structure rather than by control [9]. Such dynamical transitions between
chimeras would also bridge synchronization the microscopic level of individual
oscillators and macroscopic transitions between different neural activity patterns
induced by winnerless competition.
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Chapter 9
Intrinsic Stability, Time Delays
and Transformations of Dynamical Networks

Leonid Bunimovich and Benjamin Webb

9.1 Introduction

The great majority of real-world networks, i.e. multicomponent systems, are time
delayed. Time delays are caused by the finite transmission speed of some quantity
such a signal, energy, etc. moving from one network element to another as well as
the time it takes to process this quantity once it arrives. These time delays make
analyzing the dynamics of a network much more complicated, which is the reason
why the theory of time-delayed systems is much less developed than the theory of
undelayed systems. An important fact that demonstrates the difference between the
dynamics of delayed and undelayed systems is that it is possible to destabilize an
undelayed system by introducing delays into its dynamics. This suggests that if we
are to understand the dynamics of a time-delayed system this cannot be done by
analyzing the system without its time-delays. However, we show that this is not
always the case.

Here we introduce the notion of intrinsic stability (see Sect. 9.2), which is a type
of stability that can be exhibited by dynamical networks and other multidimensional
systems. This notion of intrinsic stability is stronger than the standard notion of
global stability of dynamical systems and networks. An intrinsically stable system
has the remarkable property it remains stable even if time-delays are added or
removed from the system provided that these delays are nondistributed, i.e. the
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variable xi depends on at most one of the previous states of the variable xj (see
Theorems 2.3 and 2.4). In general, xi can depend on any number of the previous
states of xj.

The condition of intrinsic stability is fairly easy to verify. Therefore, by making
use of this notion it is possible to determine whether a time-delayed network is
globally stable by performing a much simpler calculation on the corresponding
undelayed network. In fact, this procedure can be simplified even further by
removing delays that are not formally time delays but are what we refer to as implicit
time-delays (see Sect. 9.3). That is, even in a system in which there are no explicit
time-delays it still takes time to propagate through the network as it must pass
from one network element to another. By removing these implicit delays we both
reduce the network in size making it easier to analyze and preserve certain spectral
properties of the network. Because a reduced network is a collapsed version of the
original network it can be used to determine whether the original network is stable
when other methods fail. That is, a network is stable if any one of its reductions is
intrinsically stable (see Theorem 3.1).

Not only can a network be reduced in size but it can also be expanded while
certain spectral and structural properties of the network are preserved (see Sect. 9.4).
This is important since networks are not only dynamic in terms of the behavior of
their elements but also in terms of the structure of their interactions. In this regard
expansions can be used as a tool for modeling network growth. Moreover, similar
to time delays network growth can have a destabilizing effect on the network. We
show that if a network is intrinsically stable then it will remain intrinsically stable
as it is expanded (see Theorem 4.2). Hence, an intrinsically stable network will
remain stable as its structure evolves via any sequence of expansions. These results
are illustrated using examples of Cohen–Grossberg neural networks. Section 9.5
contains some concluding remarks.

9.2 Stability of Dynamical Networks

A network is composed of a set of elements, which are the individual units that
make up the network, and a collection of interactions between these elements. An
interaction between two network elements can be thought of as an element’s ability
to directly influence the state, function, or behavior of the other network element.
More generally, there is a directed interaction between the ith and jth elements
of a network if the ith network element can influence the state of the jth network
element (where there may be no influence of the jth network element on the ith).
The dynamics of a network can be defined as follows.

Definition 2.1 (Dynamical Network) Let F W X ! X be a continuous map on the
product space X D ˚n

iD1Xi where each .Xi; d/ is a complete metric space. For each
i D 1; : : : ; n the ith component function is defined as

Fi W
M
j2Ii

Xj ! Xi; for some Ii � f1; : : : ; ng:
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The dynamical system .F;X/ generated by iterating the function F is called a
dynamical network.

The component function Fi W ˚j2Ii Xj ! Xi describes the dynamics of the ith
network element, where the set Ii � f1; : : : ; ng indexes those elements that directly
interact with the ith network element. Thus, we refer to the function F W X ! X as
the network’s set of interactions, or simply its interaction.

To give a concrete example of a network and also to illustrate the results found
in this and other sections we will use Cohen–Grossberg neural (CGN) networks.

Example 2.1 (Cohen–Grossberg Neural Networks) For W 2 R
n�n, ' W R ! R,

and ci; � 2 R let .C;Rn/ be the dynamical network with components

Ci.x/ D .1 � �/xi C

nX
jD1

Wij'.xj/C ci; 1 � j � n; (9.1)

which is a special case of a Cohen–Grossberg neural network in discrete-time [9].
The function ' is assumed to be a bounded, have a bounded derivative, and be
monotonically increasing.

In a CGN network the variable xi represents the activation of the ith neuron.
The function ' is a bounded monotonically increasing function, which describes
the ith neuron’s response to inputs. The matrix W gives the interaction strengths
between each pair of neurons and describes how the neurons are connected within
the network. The constants ci indicate constant inputs from outside the network.

One standard question regarding the dynamics of a CGN network is whether the
network is stable. In a stable network .F;X/ the state of the network tends towards
an equilibrium irrespective of its present state. That is, there is a globally attracting
fixed point y 2 X such that for any x 2 X, Fk.x/ ! y as k ! 1.

Global stability is observed in a number of important systems including neural
networks [6–9, 11], in epidemic models [12], and is also important in the study
of congestion in computer networks [1]. In such systems the globally attracting
equilibrium is typically a state in which the network can carry out a specific
task. Whether or not this equilibrium stays stable depends on a number of factors
including external influences but also internal processes such as the network’s own
growth both of which can destabilize a network.

To determine whether a given network .F;X/ is stable we associate it with the
following matrix.

Definition 2.2 (Stability Matrix) For F W X ! X suppose there are constants
.MF/ij 	 0 such that

dmax.Fi.x/;Fi.y// �
X
j2Ii

.MF/ijd.xj; yj/ for all x; y 2 X;

where dmax.x; y/ D maxi d.xi; yi/. Then MF 2 R
n�n is called a stability matrix of

.F;X/.
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For a matrix A 2 R
n�n we let �.A/ denote the eigenvalues of A including

multiplicities and let �.A/ D maxifj�j W � 2 �.A/g denote the spectral radius
of A. This allows us to state the following result regarding the stability of a general
dynamical network .F;X/ (see [2, 4]).

Theorem 2.1 (Network Stability) If �.MF/ < 1, then the dynamical network
.F;X/ is stable.

It is worth noting that if the function F W X ! X is differentiable and each Xi � R

then the matrix MF 2 R
n�n is given by

.MF/ij D sup
x2X

ˇ̌
ˇ̌@Fi

@xj
.x/

ˇ̌
ˇ̌ : (9.2)

From a computational point of view, the stability matrix MF of .F;X/ can be quite
straightforward to find by use of (9.2). For example, one can quickly compute that
the stability matrix MC of the CGN network given by (9.1) is MC D j1� �jI C LjWj

where jWj is the matrix with entries jWjij D jWijj, which implies the following.

Theorem 2.2 (Stability of Cohen–Grossberg Neural Networks) Let .C;Rn/ be
the Cohen–Grossberg network given by (9.1) where ' has Lipschitz constant L. If
j1 � �j C L�.jWj/ < 1, then .C;Rn/ is stable.

As mentioned in the introduction, the dynamics of most real networks are time
delayed. That is, an interaction between two network elements will typically not
happen instantaneously but will be delayed due to either the physical separation of
these elements, their finite processing speeds, or be delayed due to other factors.
Thus, if we represent the state of the network at time k 	 0 by xk 2 X, not only does
xkC1 depend on xk but also on some collection of the previous states of the network
xk; xk�1; : : : ; xk���1 2 X.

Definition 2.3 (Time-Delayed Dynamical Network) For a fixed � 	 1 let X� D

˚
��1
iD0X. Suppose NH W X� ! X is a continuous function given by xkC1 D

NH.xk; xk�1; : : : ; xk��C1/. Let H W X� ! X� be the function given by

H.xk; : : : ; xk��C1/ D
�
xkC1; xk; : : : ; xk��C2

�
:

where xkC1 D NH.xk; : : : ; xk��C1/. The dynamical system .H;X�/ generated by
iterating the function H is called a time-delayed dynamical network.

If .H;X�/ is a time-delayed dynamical network, then NH W X� ! X represents the
time-delayed interactions of the network. Specifically, the component

NHi W
M
.j;�/2Ii

X�i ! Xi for some Ii � f1; : : : ng � f0; : : : ; � � 1g
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describes the dynamics of the ith network element, where .j; �/ 2 Ii � f1; : : : ; ng �

f0; : : : ; ��1g if the jth network element interacts with the ith network element with
a delay time of � .

An example of a time-delayed dynamical network are the time-delayed CGN
networks.

Example 2.2 (Time-Delayed Cohen–Grossberg Neural Networks) For � 	 1 let
.C;Rn/ be the time-delayed CGN network with components

NCi.x/ D .1 � �/xi C

nX
jD1

��1X
�D0

.W� /ij'.x
�
j /C ci; 1 � j � n; (9.3)

where each W� 2 R
n�n, �; ci 2 R, and x�j 2 X�j .

Clearly, time-delayed dynamical networks can be much more complicated than
their undelayed versions. Despite this, a time-delayed dynamical network .H;X�/ is
a dynamical network in the sense of Definition 2.1 since H is a continuous function
on a product space X�. Hence, the following corollary of Theorem 2.1 holds (see
[3, 4]).

Corollary 2.1 (Stability of Time-Delayed Networks) The time-delayed dynami-
cal network .H;X�/ is stable if �.MH/ < 1.

The main question we wish to address is not whether or not we can determine
whether a network is stable but rather, under what conditions do time delays
destabilize the dynamics of a network. To understand when this happens we need to
compare a network’s dynamics when it has delays and when it does not.

Definition 2.4 (Undelayed Network) For the time-delayed network .H;X�/ let
U.H/ W X ! X be the map

U.H/.x/ D H.x; : : : ; x/;

which generates the undelayed dynamical network .U.H/;X/.

A natural question is, if .H;X�/ is stable is .UH;X/ stable? Conversely, if
.UH;X/ is stable is .H;X�/ stable? This is considered in the following example.

Example 2.3 (Lose, Gain, and Preservation of Stability) Consider the linear time-
delayed dynamical network .H;X�/ and the undelayed version of this network
.U.H/;X/ given by

H.xk; xk�1/ D

�
˛xk�1

1 C ˇxk
2

˛xk
1

�
and U.H/.x/ D

�
˛x1 C ˇx2
˛x1

�
;
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Fig. 9.1 The set˝H D f.˛; �/ 2 R
2 W H is stableg and˝U D f.˛; �/ 2 R

2 W U.H/ is stableg are
shown (left) where .H;X�/ is the time-delayed network in Example 2.3. The sets ˝I D f.˛; �/ 2
R
2 W H is intrinsically stableg, ˝H , and ˝U are shown (right)

respectively, where ˛; ˇ 2 R, X D R
2, and � D 2. In Fig. 9.1 (left) the regions

˝H D f.˛; ˇ/ 2 R
2 W H is stableg and ˝U D f.˛; ˇ/ 2 R

2 W U.H/ is stableg are
shown in red and, blue respectively.

Note that neither ˝H is contained in ˝U nor ˝U contained in ˝H . Therefore,
there are parameter values .˛; ˇ/ 2 R

2 such that when we remove the delays from
.H;X�/ we destabilize (stabilize) the network. Similarly, there are parameter values
.˛; ˇ/ 2 R

2 such that when we add the delays back into .U.H/;X/ we destabilize
(stabilize) the network. This is a simple example of a well-known fact that changing
a network’s structure of delays can qualitatively change the network’s stability.

Another important observation is that the parameter set ˝H � f.a; b/ 2 R
2 W

�.MF/ < 1g and the parameter set˝U � f.a; b/ 2 R
2 W �.MU.H// < 1g. That is, the

network .H;X�/ can be stable even if �.MH/ > 1 and .U.H/;X/ can be stable even
if �.MU.H// > 1.

What is perhaps even more important an unexpected is that the parameter set

f.a; b/ 2 R
2 W �.MH/ < 1g D f.a; b/ 2 R

2 W �.MU.H// < 1g: (9.4)

That is, although .H;X�/ and .U.H/;X/ are stable for different parameters, the set
of parameters for which �.MH/ < 1 and �.MU.H// < 1 are the same. We let this
parameter set given by (9.4) be the set ˝I 
 ˝H; ˝U shown in Fig. 9.1 (right).
Our goal is to describe the importance of this parameter region for the time-delayed
network .H;X�/.

Based on Theorem 2.1, if the spectral radius �.MF/ < 1 then the network .F;X/
is stable. However, the converse does not always hold. Hence, the property �.FM/ <

1 is a stronger form of stability than the standard notion of stability. To distinguish
between these two forms of stability we give the following definition.
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Definition 2.5 (Intrinsic Stability) The dynamical network .F;X/ is called intrin-
sically stable if �.MF/ < 1.

This raises the general question as to what it means for a network to be
intrinsically stable and specifically to what extent time-delays effect a network’s
stability if the network is intrinsically stable. To answer this question we need to
consider the types of delays that can occur in a network.

Definition 2.6 (Types of Time-Delays) Suppose the time-delayed dynamical net-
work .H;X�/ has the component functions

NHi W
M
.j;�/2Ii

X�i ! Xi for some Ii � f1; : : : ; ng � f0; : : : ; � � 1g:

Then .H;X�/ has single-type time-delays if for each i D 1; : : : ; n and j D 1; : : : ; n
there is at most one � such that .j; �/ 2 Ii. Otherwise, .H;X�/ has distributed time-
delays.

The difference between these two types of delays is illustrated in the following
example.

Example 2.4 (Single and Distributed Time-Delays) Consider the two time-delayed
CGN networks .A;R8/ and .B; .R4/ given by

A.xk�1; xk�3/ D

�
.1 � �/xk�1

1 C a tanh.xk�3
2 /C c1

.1 � �/xk�1
2 C a tanh.xk�3

1 /C c2

�
;

B.xk; xk�1/ D

�
.1 � �/xk

1 C a tanh.xk
2/ � a tanh.xk�1

2 /

.1 � �/xk
2 C a tanh.xk

1/ � a tanh.xk�1
1 /

�
;

respectively. The network .A;R8/ has single-type time delays whereas the network
.B;R4/ has distributed time-delays. The reason .B;R8/ has distributed time-delays
is that the component B1 D B1.xk

1; x
k
2; x

k�1
2 / depends on the variable x2 over two

different time-scales. Similarly, B2 D B2.xk
2; x

k
1; x

k�1
1 / depends on x1 over two

different time scales. Hence, the dynamics of both B1 and B2 incorporate distributed
time-delays.

The undelayed versions of .A;R8/ and .B;R4/ are given by

U.A/.x/ D

"
.1 � �/x1 C a tanh.x2/C c1
.1 � �/x2 C a tanh.x1/C c2

#
and UB.x/ D

"
.1 � �/x1
.1 � �/x2

#
; respectively:

Using Eq. (9.2) one can quickly calculate that

�.MA/ D

s
j1 � �j C

p
j1 � �j2 C 4jaj

2
and �.MU.A// D j1 � �j C jaj:
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Although the spectral radius of the delayed dynamical network has a much more
complicated expression than its undelayed version, one can show that �.MA/ < 1 if
and only if �.MU.A// < 1. That is, .A;R8/ is intrinsically stable if and only if the
undelayed network .U.A/;R2/ is intrinsically stable. In contrast,

�.MB/ D
j1 � �j C jaj C

p
.j1 � �j C jaj/2 C 4jaj

2
and �.MU.B// D j1 � �j:

Here, �.MB/ < 1 implies that �.MU.B// < 1 but the reverse implication does not
hold. That is, the intrinsic stability of the delayed network .B;R4/ is not equivalent
to the intrinsic stability of the undelayed version of the network. For instance, if
a D 1 and � D 1=2, then .B;R4/ is not stable while .U.B/;R2/ is intrinsically
stable.

The question raised by this example is, what is the difference between the
networks .A;R8/ and .B;R4/ since in the first removing delays does not change
whether the network is intrinsically stable but does in the second. This is answered
by the following theorem (see [3, 4]).

Theorem 2.3 (Preservation of Intrinsic Stability) If the time-delayed network
.H;X�/ has single-type time delays, then .H;X�/ is intrinsically stable if and only
if .U.H/;X/ is intrinsically stable.

Adding or removing single-type time-delays does not destabilize a network,
if the network is intrinsically stable. This is why .A;R8/ and .U.A/;R2/ are
intrinsically stable for the same parameter values. However, since .B;R4/ has
distributed time-delays there is no guarantee that this network will be intrinsically
stable if .U.B/;R2/ is intrinsically stable. As it turns out though, we can say what
happens if .B;R4/ is intrinsically stable (see [3, 4]).

Theorem 2.4 (Removal of General Time-Delays) If the time-delayed network
.H;X�/ is intrinsically stable, then so is its undelayed version .UH;X/.

Combining the results of Theorems 2.3 and 2.4 the single-type and distributed
time-delays of a network .H;X�/ can be shortened or lengthened by any finite
amount and the resulting network will be stable if the original network is in-
trinsically stable. That is, suppose the delayed network .H;X�/ has components
xkC1

i D NHi.x
k�k1
j1

; : : : ; xk�km
jm

/: If the network .H ;X�/ has components

xkC1
i D NH .x/ D NHi.x

k��1
j1

; : : : ; xk��m
jm

/ where each �j is a nonnegative integer;

i.e. .H ;X�/ is the network .H;X�/ in which the length of the time delays has been
modified, then .H ;X�/ will be intrinsically stable if the original network .H;X�/
is intrinsically stable. In this sense intrinsically stable networks are much more
resilient to changes in a network’s environment that effect time-delays than networks
that are simply stable.
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In addition, to determine whether a time-delayed network is stable one can check
to see whether the much simple undelayed version of this network is intrinsically
stable. If it is and the original delayed network has single-type time-delays, then
this delayed network must also be stable. This observation is not only important in
terms of simplifying the process of computing network stability but will be used in
the following section to improve our estimate of a network’s stability.

9.3 Network Reductions and Improved Stability Estimates

A network’s stability matrix is not only useful for determining whether a network
has a globally attracting equilibrium state but can also be used to characterize a
network’s structure of interactions.

The graph �F of a network .F;X/ gives a much more visual representation of the
network’s structure (topology). In fact, the majority of the analysis done on networks
has been focused on determining properties of their underlying graph structure [10].
Here, we investigate how time delays effect a network’s structure and in turn its
stability.

The dynamical network .F;X/ does not formally have time-delays but elements
that do not directly influence one another can have an influence through other
network elements. For instance, if the ith network element effects the jth which
influences the kth, then there is an implicit delayed interaction from the ith to the
kth element of the network. Here we investigate how it is possible to improve the
stability estimates of the previous section by accounting for these implicit delays.

To do this we need to look at the graph-theoretic representation of a network’s
set of interactions.

Definition 3.1 (Graph of Interactions) The graph of interactions of the dynami-
cal network .F;X/ is the graph �F D .V;E; !/ where

(i) the vertex set V D fv1; : : : ; vng;
(ii) the edge eij from vi to vj is in the edge set E if i 2 Ij; and

(iii) the edge eij is given the weight !.eij/ D .MF/ij.

The vertex set V represents the elements of the network while the edges E
represent the various interactions between these elements. The weights given to the
edges by the function ! W E ! R represent the strengths of these interactions.

Example 3.1 (Implicit Time-Delays) Let .F;R4/ be the CGN network given by

C.x/ D

2
664

tanh.x2/C tanh.x4/C c
tanh.x1/C c
tanh.x2/C tanh.x4/C c
tanh.x3/C c

3
775 ; where c 2 R;
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Fig. 9.2 The graphs of interactions �C and �RS.C/ of the CGN network .C;R2/ and its reduction
.RS.C/;R2/ over the set S D fv1; v3g are shown left and right, respectively

which has the graph of interactions �C shown in Fig. 9.2. Note that the dependencies
of the network’s components are given by xkC1

1 D C1.xk
2; x

k
4/, xkC1

2 D C2.xk
1/,

xkC1
3 D C3.xk

2; x
k
4/, and xkC1

4 D C4.x3/.
By replacing the variables of the component functions C1.xk

2; x
k
4/ and C3.xk

2; x
k
4/

by their corresponding functions, i.e. by xk
2 D C2.xk�1

1 / and xk
2 D C2.xk�1

1 /, the
result is the time-delayed dynamical network given by

xkC1 D

"
xkC1
1

xkC1
3

#
D

"
C1.C2.xk�1

1 /;C4.xk�1
3 //

C3.C2.xk�1
1 /;C4.xk�1

3 //

#
D

"P
jD1;3 tanhŒtanh.xj/C c�C cP
jD1;3 tanhŒtanh.xj/C c�C c

#
:

By removing the delays from this network we have the reduced version .RS.C/;R2/
of the dynamical network .C;R4/ over the index set S D f1; 3g where

RS.C/.x/ D

�
tanhŒtanh.x1/C c�C tanhŒtanh.x3/C c�C c
tanhŒtanh.x1/C c�C tanhŒtanh.x3/C c�C c

�
:

To create a reduced version of a dynamical network we need a set of network
elements S over which the network is reduced (see [4]).

Definition 3.2 (Complete Structural Set) Let �F D .V;E; !/. A subset S � V is
a complete structural set of �F if

(i) �FjNS has no cycles; and
(ii) for all vi; vj 2 S there is at most one path from vi to vj in �F, that contains no

other vertices of S.

Note that the set S D fv1; v3g is a complete structural set of the graph of
interactions �C corresponding to the dynamical network .C;R4/ considered in
Example 3.1 (see Fig. 9.2). A dynamical network is reduced over a complete
structural set as follows.

Definition 3.3 (Dynamical Network Reduction) Suppose S is a complete struc-
tural set of �F. If vi 2 S and vj … S, replace the variable xj of Fi.x/ by the function
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Fj.x/ for each i and j. Repeat this process until only variables index by S remain.
The resulting dynamical network is the reduction .RS.F/;XjS/ of .F;X/ induced by
the set S.

The dynamical network .RS.C/;R2/ given in Example 3.1 is the reduction of
the higher-dimensional network .C;R4/ over the set S D fv1; v3g. When a network
is reduced the implicit delays between elements indexed by the set S are removed.
Since these are assumed to be single-type time-delays by part (ii) of Definition 3.2,
if the resulting reduction is intrinsically stable then the original unreduced network
must also be stable.

Theorem 3.1 (Reductions and Stability) If at least one reduction of .F;X/ is
intrinsically stable, then .F;X/ is stable.

A reduction of a dynamical network may be intrinsically stable even if the
network itself is not. It is therefore possible to determine whether a network is stable
by reducing it. This demonstrated in the following example.

Example 3.2 (Improved Stability Estimates) We again consider the CGN network
.C;R4/ from Example 3.1. For this network one can compute the spectral radius
�.MC/ D .1 C

p
5/=2 > 1. Since the network’s spectral radius is greater than

one we cannot directly conclude whether or not it is stable. However, its reduction
.RS.C/;R2/ has the spectral radius �.MRS.C// < sech2.jcj � 1/. Since this is less
than 1 when jcj > 1:881 then the original unreduced network is stable for these
values of c 2 R.

The reason reductions allow for improved estimates of a network’s stability is
that when a network is reduced the information that is spread throughout the network
is consolidated, which allows for better estimates. It is worth emphasizing that
reductions are easy to compute since they are local modifications of the original
network. Moreover, reductions result in a lower-dimensional networks although the
components of these network have a more complicated expression.

9.4 Evolution of Network Structure

In previous sections the focus has been on the dynamics of a network with a fixed
structure of interactions (topology). However, real networks are not only dynamic in
terms of the behavior of their individual elements but also in terms of the underlying
graph structure. For example, a biological neural network will evolve over time by
adding new neurons and connections to process and store increasing amounts of
information. Similarly, the Internet has an ever changing structure of connections
between the servers and other physical connections that link the world’s computers.

One of the central questions in network science is how a network can maintain a
specific function as its structure evolves. The issue is that network growth, although
important in carrying out the network’s function, can have a destabilizing effect
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on the network’s dynamics, which can lead to poor performance. In this section we
describe a flexible method for modeling the growth of a network that maintains both
the network’s local and spectral structure. This in turn will allow us to describe a
general mechanism that ensures the network remains stable as it grows.

Specifically, the goal of this section is to describe how intrinsic stability is also a
natural notion for stability of a network with an evolving structure. This is done in
two parts. In the first we show that we can also expand a network over any set S of
its elements. We begin by describing how an expansion preserves the eigenvalues of
a graph and then use this to show how an expanded network maintains its stability
under expansion if it is intrinsically stable.

Similar to the interaction graphs described in Sect. 9.3, we let G D .V;E; !/
be the graph with vertices V , edges E, and edge weights given by the function !.
The graph G is strongly connected if there is a path from each vertex vi 2 V to
any other vertex vj 2 V . The strongly connected components of G are the maximal
subgraphs of G that are strongly connected. Using this we can define a path of
strongly connected components.

Definition 4.1 (Component Branches) For a graph G D .V;E; !/ and vertex set
S � V let C1; : : : ;Cm be strongly connected components of GjNS. If there are edges
e0; e1; : : : ; em 2 E and two vertices vi; vj 2 S such that

(i) ek is an edge from a vertex in Ck to a vertex in CkC1 for k D 1; : : : ;m � 1;
(ii) e0 is an edge from vi to a vertex in C1; and

(iii) em is an edge from a vertex in Cm to vj, then we call the sequence

ˇ D vi; e1;C1; e2;C2; : : : ;Cm; em; vj

a path of components of G with respect to S. In the case that vi D vj then ˇ is
a cycle of components. We call the collection BS.G/ of these paths and cycles
the component branches of G with respect to S.

The first step in expanding a graph G D .V;E; !/ is to choose a subset S over
which the graph is to be expanded. Once a set S has been chosen, then its component
branches BS.G/ are defined. It is from these branches that we build the expanded
graph.

Definition 4.2 (Graph Expansion) Suppose G D .V;E; !/ and S � V . Let
XS.G/ D .V ;E ; �/ be the evolved graph which consists of the component branches
BS.G/ D fˇ1; : : : ; ˇ`g in which we merge, i.e. identify, each vertex v 2 S in any
branch ˇi with the same vertex v in any other branch ˇj.

Example 4.1 (Expansion of a Graph) Let G D .V;E; !/ be the graph shown in
Fig. 9.3a where each edge is given unit weight. For the set S D fv1; v4g 
 V the
graph GjNS has the two components C1 and C2 shown in (b). The four component
branches of BS.G/ are shown in (c), which are merged into the expanded graph
XS.G/ in (d) by merging each of the vertices v1 and v4 into a single vertex,
respectively.
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Fig. 9.3 An expansion of the graph G shown in (a) over the set S D fv1; v3g is illustrated. The
strongly connected components C1 and C2 of the restricted graph GjNS are shown in (b). The four
branches of BS.G/ are shown in (c). By merging the vertices v1 and v4, respectively, into single
vertices the result is the expanded graph XS.G/ in (d)

By construction the expanded graph has the same local structure, i.e. strongly
connected components, as the original graph. A natural question is to what extent
the spectrum of the graph has also been preserved under expansion.

Theorem 4.1 (Spectra of Expanded Graphs) Let G D .V;E; !/. If S � V,
then let C1; : : : ;Cm be the strongly connected components of GjNS where NS is the
complement of S. Then

�.XS.G// D �.G/ [ �.C1/
n1�1 [ �.C2/

n2�1 [ � � � [ �.Cm/
nm�1

where ni is the number of components Ci in the evolved graph XS.G/ and �.Ci/
ni�1

denotes ni � 1 copies of the eigenvalues of Ci.

The spectrum of an expanded graph mirrors the actual structure of the expansion
in that the eigenvalues of XS.G/ are the eigenvalues of the original graph G plus
the eigenvalues of the new components C1; : : : ;Cm in the expansion including
multiplicities [5]. Our goal is to use this result to show that not only can we expand
graphs but also certain dynamical networks can be expanded in a way that preserve
their stability.

Towards this goal we observe that there is a one-to-one correspondence between
the matrices A 2 R

n�n and the graphs G D .V;E; !/ where A corresponds to G if
!.eij/ D Aij for all 1 � i; j � n. If A corresponds to G and S � V , we let AS be the
matrix that corresponds with the expansion XS.G/.
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Definition 4.3 (Expanded Dynamical Networks) Let .F;X/ be the dynamical
network with components

Fi.x/ D

nX
jD1

Aijfij.xj/; i D 1; : : : ; n (9.5)

where A 2 f0; 1gn�n and each fij W Xj ! R is a continuous function. For the subset
S � V of �F D .V;E; !/, let .XS.F/;XS/ be the expanded dynamical network with
components

XS.F/i.x/ D

mX
jD1

.AS/ijfS.ij/.xj/; i D 1; : : : ;m

where XS D R
m for AS 2 R

m�m. The index S.ij/ D pq where the entry .AS/ij
corresponds to the entry Apq.

Example 4.2 (Cohen–Grossberg Neural Network Expansion) Consider the CGN
network .C;R4/ given by

C.x/ D

2
664

.1 � �/x1 C ˇŒtanh.x2/�C c

.1 � �/x2 C ˇŒtanh.x1/C tanh.x3/�C c

.1 � �/x3 C ˇŒtanh.x4/�C c

.1 � �/x4 C ˇŒtanh.x1/C tanh.x3/�C c

3
775

where �; ˇ; c 2 R. For �C D .V;E; !/ we let S 
 V be all elements of the network
that influence the dynamics of at least two other network elements. These are the
vertices highlight red in the graph �C in Fig. 9.4a.
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Fig. 9.4 The graphs of interactions �C, �CS , and �CS;T corresponding to the sequence of
expansions .C;R4/, .CS;R

6/ D .XS.C/;R6/, and .CS;T ;R
10/ D .XT .CS/;R

10/ are shown. Here
the parameter � D 1� �. The vertices over which the networks are expanded are highlighted red



9 Intrinsic Stability, Time Delays and Transformations of Dynamical Networks 141

The expanded dynamical network .CS;R
6/ where we let CS D XS.C/ is given by

CS.x/ D

2
66666664

.1 � �/x1 C ˇŒtanh.x4/C tanh.x5/�C c

.1 � �/x2 C ˇŒtanh.x3/C tanh.x6/�C c

.1 � �/x3 C ˇŒtanh.x1/�C c

.1 � �/x4 C ˇŒtanh.x2/�C c

.1 � �/x5 C ˇŒtanh.x1/�C c

.1 � �/x6 C ˇŒtanh.x2/�C c

3
77777775
:

The graph of interactions �CS is shown in Fig. 9.4b. One can continue this process of
expansion by selecting those elements T of .CS;R

6/ that influence the dynamics of
at least two other network elements. The result of expanding the dynamical network
.CS;R

6/ over T is the dynamical network .CS;T ;R
10/ D .XT.CS/;R

10/ whose graph
of interactions is shown in Fig. 9.4c. That is, a network can be repeatedly expanded
over any subset of network elements.

A network’s growth can have a destabilizing effect on a network. For instance,
cancer is the uncontrolled growth of cells, which can lead to the failure of certain
types of biological networks. The following result gives a partial answer to the
general question of how a dynamical network can remain stable as its structure
evolves.

Theorem 4.2 (Stability of Expanded Dynamical Networks) Let .F;X/ be a
dynamical network and S a subset of the vertices of �F. The evolved dynamical
network .XS.F/;XS/ is intrinsically stable if and only if .F;X/ is intrinsically stable.

If a network evolves in a way that can be modeled by an expansion or sequence
of expansions, then it will remain stable if it is intrinsically stable. On the other
hand, it is possible for a network to destabilize itself as it grows if the network is
stable but not intrinsically stable.

Example 4.3 (Loss of Stability) Consider the stable linear network .L;R3/ and its
expansion .XS.L/;R4/ given by

L.x/ D

2
64

0 �1 3=4

0 0 1=2

�1=2 0 3=2

3
75

2
64

x1
x2
x3

3
75 and XS.L/.x/ D

2
6664

0 �1 0 3=4

0 0 1=2 0

�1=2 0 �3=2 0

�1=2 0 0 �3=2

3
7775

2
6664

x1
x2
x3
x4

3
7775 ;

respectively, where S D fv1; v2g. The dynamical network .L;R3/ is stable but not
intrinsically stable. When it is expanded into the network .XS.L/;R4/ it loses its
stability becoming unstable.
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9.5 Concluding Remarks

We have described a number of network transformations that allow us to simplify the
analysis of a network’s dynamics. For a time-delayed dynamical network we have
described how one can remove the network’s single-type time-delays. The resulting
undelayed network inherits the stability of the more complicated delayed system if
this network is intrinsically stable, which is not the case, in general, if the network
is only stable. Hence, in place of the much more difficult analysis of the delayed
network we can analyze the stability of the smaller simplified undelayed network.

This analysis can be further simplified if we reduce the network by removing
some set of the network’s implicit delays. Once these implicit delays are removed,
one can determine whether this smaller reduced network is intrinsically stable. If
it is, then the original network is stable. If not, then one can repeat this process
by further reducing the network. If after some number of reductions the network
becomes intrinsically stable, then the original network is stable. In this way, network
reductions can be used to prove a network is stable when a direct approach to
proving that the network is stable fails.

Similarly, if a network is intrinsically stable, then any expansion of the network
inherits this property. Since network expansions are a way of modeling the growth
of a network with an evolving structure of interactions, this demonstrates how a
network can grow while preserving its stability. Thus, a network that is intrinsically
stable is more robust with respect to changes in its interactions due to time delays
and network growth. Since time delays and growth are typically unavoidable in
real networks the implication is that it is preferable to design an intrinsically stable
network, e.g. an intrinsically stable computer, electrical, or transportation network,
rather than one that is simply stable.

Overall, the theory of transformations of multidimensional dynamical systems
and dynamical networks allows us to improve and often simplify the analy-
sis of these objects. Moreover, it provides a new and powerful tool for data analysis
and visualization of multidimensional systems and in particular of dynamical
networks [4].

Acknowledgements The work of Leonid Bunimovich is partially supported by the NSF grant
DMS-1600568.
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Chapter 10
Discovering, Constructing, and Analyzing
Synchronous Clusters of Oscillators in a
Complex Network Using Symmetries

Louis M. Pecora, Francesco Sorrentino, Aaron M. Hagerstrom,
Thomas E. Murphy, and Rajarshi Roy

10.1 Introduction

In 1986 an article appeared in the journal Izvestiya-Vysshikh-Uchebnykh-
Zavedenii,-Radiofizika called “Stochastic synchronization of oscillations in
dissipative systems” [1]. Along with a few other papers around that time and a
little later [2–5] it sets the stage for studying what has now become a well-defined
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dynamical situation, exact (or near exact) synchronization of chaotic oscillators in a
network. The topic remains of great interest to the nonlinear dynamics community
and it is a good example of the many contributions that Misha Rabinovich has made
to the study of dynamics. The synchronization of two coupled chaotic systems
has been extended to the synchronization of all (identical) oscillators in various
networks. The latter is often referred to as global synchronization (GS). The
conditions for global synchronization are often related to the network structure
through the master stability function [6]. Perhaps more commonplace is partial or
cluster synchronization (CS), in which patterns or sets of synchronized subgroups
of nodes (oscillators) occur. In cluster synchronization nodes in the same cluster
synchronize with each other, but not with nodes in other clusters. This more complex
patterning phenomenon has been established in several models of networks [7–15].

With only a few exceptions most of the studies of cluster synchronization have
focused on particular clusters or cluster types, especially those which are engineered
to guarantee clusters form. However, it is possible to find general approaches that
expose many types of CS in networks of oscillators, even for those so large or
complex that it would be beyond human ability to analyze for CS in a lifetime.
We present a comprehensive treatment of cluster synchronization in systems that
are coupled using various versions of the network (graph) adjacency matrix (A),
which represents the network by setting Aij D 0 in the position where nodes i
and j are not connected and Aij D 1 when they are. Our method uses the tools
of computational group theory to reveal the symmetries of networks and predict
the patterns of synchronization that can arise as well as analyze the stability of
the clusters [16]. We also show that these clusters can undergo bifurcations to less
synchronized clusters without causing the whole network to desynchronize. We
called this isolated desynchronization, but it is the equivalent of a transition to a
chimera state [17]. Of equal importance is that we established the above behavior in
an electro-optical experiment [16, 18], which shows that such cluster behavior can
appear in real systems (a rough version of structural stability) and be analyzed by
the group theory approach.

We also show that this approach can be extended to networks that are coupled

using the network (graph) Laplacian L, where Lij D Aij � ıij

NP
jD1

Aij and ıij is the

Kronecker delta. This is important because not only do Laplacian coupled systems
show the same symmetries as their adjacency matrix counterparts, but they also may
show additional CS patterns that are not the result of symmetries, but are possible
because the clusters in these cases still have nodes whose equations of motion
yield invariant flows for the dynamics of nodes in the same cluster. We will show
that these cases can still be aided by computational group theory and the stability
analysis mentioned above can be extended to the Laplacian coupled case.

We note that some other papers and books have been written on general analysis
of CS using applications of group theory and symmetries to network dynamics,
including types of cluster synchronization [19–23] as well as using balanced input
approaches [20, 24]. These are important and interesting studies of the relation of
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symmetries and input sets to the phenomenon of CS, however, they did not attempt
to move the calculations into the realm of larger and/or more complex networks
using computation and very little attention was paid to stability calculations, which
we show here.

10.2 Theory

10.2.1 Symmetries of Networks

In Fig. 10.1 we show a network of five oscillators, which we consider to be identical
along with eight edges (couplings between oscillators), which we also consider to
be identical. Two symmetries or permutations are displayed in the figure and there
are eight symmetries in all (four rotations including the identity and four mirror
planes). There are permutation symmetries that map any of the outer nodes into
each other, but no permutation maps the center into any of the others. Since the
edges (the couplings) are identical this implies the equations of motion for the
network are the same for the outer nodes, but different for the central node. This
means that if the outer nodes are started in exactly the same state, i.e. same initial
conditions, they will all follow the same trajectory forever. This situation is called
flow invariant dynamics. The resulting dynamics will have the outer nodes in the
same synchronization cluster and the inner node in a separate cluster by itself. The
dynamical trajectories of the outer node and the inner nodes will be different in
general. An exception is when the coupling is through a Laplacian coupling, which
we will talk about later.

Fig. 10.1 An example of a
simple network with
symmetries along with
dynamical consequences. (a)
Shows a 5-node network that
has a rotation symmetry
(fourfold). (b) Is an example
of a mirror or out of plane
symmetry. (c) Shows the
expected cluster configuration
of the oscillators at the nodes
that results from the
symmetries

(a)

(b)

(c)
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Generally, we want to do for more complex networks what we did above for the
5-node network. In terms of the system’s state space we have found a subspace (flat
submanifold, actually) in which the motion will be confined and one component
of the submanifold will contain the motion of the four outer nodes and another
component will contain the motion of the center node (strictly speaking the outer
node manifold is 4m and the center node manifold is m dimensional, where m
is the dimension of the node’s dynamical variables). The subspace containing the
synchronization motion is often referred to as the synchronization manifold and it
contains the trajectories of the synchronization clusters. We put these statements
into more precise mathematical form below.

10.2.2 The Dynamical Equations

The following set of general dynamical equations describe a network of N coupled
identical oscillators

Pxi.t/ D F.xi.t//C �
X

j

AijH.xj/; i D 1; : : : ;N; (10.1)

where xi is the n-dimensional state vector of the ith oscillator, F describes the
dynamics of each oscillator, A is a coupling matrix that describes the connectivity
of the network, � is the overall coupling strength, and H is the output function
of each oscillator. Equation (10.1) or its equivalent forms provide the dynamics for
many networks of oscillators including all those in [6–8, 10–12, 15, 21–23, 25]. This
includes some cases of time delays in the coupling functions. In [25] it is pointed out
that it is only necessary for the form of the equations of motion or, more importantly,
the variational equations to have the form of Eq. (10.1) near the synchronization
manifolds. The form of Eq. (10.1) also applies to discrete time systems or more
general coupling schemes [26]. And the same form emerges in the more general
case for the variational equations where the vector field and the coupling combine
into one function, for example F.xi.t/; fxj.t/g/, where fxj.t/g is the input of all
nodes connected to node i, so long as the nodes are treated as having the same basic
dynamics [26]. Further extensions of Eq. (10.1) have been studied [9, 13, 14, 27].
Existing systems which can be modeled by equations of the same form as Eq. (10.1)
is large [28, 29]. These include genetic networks, circadian networks, ecology,
neuronal networks, cortical networks, consensus problems, opinion formation,
power grids, and concentration of metabolites in a cell, for example.

For simplicity, we take all nodes to have identical dynamics and be bidirection-
ally coupled to other nodes in the network by couplings of the same weight, i.e.
Aij is taken to be the (symmetric) adjacency matrix of 1’s and 0’s with the factor
of � controlling the weight of the couplings. Generalizations are possible for the
coupling. We take the vector field F to be identical for all nodes.
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The cases of symmetries in the Laplacian coupling schemes are encompassed
by our analysis as shown here. This is because the row sums are not affected by
the symmetry operations. Laplacian coupling schemes are usually used to allow for
global synchronization. We consider the Laplacian case below when other clusters
show up beyond the symmetry-related ones. We think the adjacency matrix coupling
may be more representative of networks that form naturally (e.g., neurons) where
row sums will not necessarily appear in feedback.

The symmetries of the network form a (mathematical) group G. Each symmetry
g of the group can be described by a permutation matrix Rg that re-orders the
nodes in a way that leaves the dynamical equations unchanged as we noted in
Sect. 10.2.1. This implies that applying a symmetry permutation Rg to the equations
of motion Eq. (10.1) demands that we must have that each Rg commute with A.
This property is crucial and we will see that it leads to possible simplifications
of variational equations for the stability of the synchronous clusters. The set of
symmetries (or automorphisms) [19, 30] of a network can be quite large, even for
small networks, but they can be calculated from A using widely available discrete
algebra routines [31, 32]. Figure 10.2a shows two graphs generated by randomly
removing six edges from an otherwise fully connected 12-node network. Although
the graphs appear similar and exhibit no obvious symmetries, the first instance
has no symmetries (other than the identity permutation), while the other has 384
symmetries. So for even a moderate number of nodes (12) finding the symmetries
can become impossible by inspection.

Thus, the computational group theory software (e.g., Sage [31]) can quickly find
the symmetries of sizable networks and display the clusters of synchronization
(in group theory, the orbits of the group—those nodes that will be permuted
only among themselves by the Rg permutations). These are displayed in colors
in Fig. 10.2a. We note that there are two clusters in Fig. 10.2a which are always
permuted together (red and green), that is, when one is permuted the other must be
permuted, too, to keep the adjacency matrix invariant. This will have repercussions
mentioned below. The software can also show the decomposition of the symmetry
group into subgroups allowing a path of potential bifurcations as parameters are
varied and the stability of a cluster is lost. This leads directly to the question of
finding the stability of the clusters and it turns out group theory and the software
provide help with that calculation, too.

10.2.3 Stability and the Variational Equations

The stability can be found as follows. We first form the variational equation shown
in Eq. (10.2) below:

ı Px.t/ D

"
MX

mD1

E.m/ ˝ DF.sm.t//C �A
MX

mD1

E.m/ ˝ DH.sm.t//

#
ıx.t/; (10.2)
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0 symmetries 
(12 trivial Clusters)

A=

B= B=

A=

384 symmetries
(4 Clusters)

(b)

(c)

synchronization 
manifold

transverse 
manifold

Fig. 10.2 Two randomly generated networks with varying amounts of symmetry and associated
coupling matrices. (a) Nodes of the same color are in the same synchronization cluster. The
colors show the maximal symmetry the network dynamics can have given the graph structure. (b)
A graphic showing the structure of the adjacency matrices of each network (black squares are 1,
white squares are 0). (c) Block diagonalization B of the coupling matrices A for each network.
Colors denote the cluster, as in (a). Black squares are numerically nonzero, white spaces are zeros

where the Nn-dimensional vector ıx.t/ D Œıx1.t/T ; ıx2.t/T ; : : : ; ıxN.t/T �T and E.m/

is an N-dimensional diagonal matrix such that

E.m/ii D

�
1; if i 2 Cm;

0; otherwise,
(10.3)

i D 1; : : : ;N and Cm is the set of the mth cluster’s indices. One might think that
we now just solve for the Lyapunov exponents or Floquet multipliers of the system
from Eq. (10.2) and that would reveal stability, but there is a fundamental problem
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with that approach. We want to understand the stability of perturbations away from
the synchronous state, but there are perturbations in which the perturbation on
each node in a cluster is the same, meaning that the perturbation does not move
the system away from the synchronous state. These perturbations keep the system
in the synchronization manifold. We only want perturbations that move us away
from the synchronization manifold. These are called transverse perturbations. This
is where the theory of group representations will help.

Note that Fig. 10.2a is in node coordinates, that is the permutations Rg are the
usual matrices with 1’s and 0’s that move the node vectors around. The coupling
matrix is also in the node coordinates. Figure 10.2b shows the structure of the
perturbation coupling matrix in Eq. (10.2). The Rg’s form a representation of the
group and from the theory of group representations there is one transformation T
that will cause all the Rg’s to be simultaneously block diagonalized so that each
block only operates on a subspace that carries an irreducible representation (IRR)
of the group [33]. There are corollaries of Schur’s lemma [19, 30, 33] which state
that since all Rg’s commute with A, if we use T to transform to a set of IRR
coordinates A will be block diagonalized to align with the blocks of the transformed
Rg’s. This block diagonalization of A is exactly what is needed to simplify the
variational equations and separate the synchronization manifold perturbations from
the transverse perturbations. The calculation of T can be done by using projection
matrices [16, 34].

Applying T to Eq. (10.2) we get the variational matrix equation shown in
Eq. (10.4), where �.t/ D T ˝ In ıx.t/, J.m/ is the transformed E.m/, and B is the
block diagonalization of the coupling matrix A,

P�.t/ D

"
MX

mD1

J.m/ ˝ DF.sm.t//C �B ˝ In

MX
mD1

J.m/ ˝ DH.sm.t//

#
�.t/; (10.4)

In Eq. (10.4) we have linearized about synchronized cluster states fs1; : : : ; sMg, �.t/
is the vector of variations of all nodes transformed to the IRR coordinates and
DF and DH are the Jacobians of the nodes’ vector field and coupling function,
respectively. We note that this analysis holds for any node dynamics, steady state,
periodic, chaotic, etc.

Figure 10.2c shows the structure of the coupling matrices B after A is transformed
by the block diagonalizing matrix T . When there are no symmetries T is merely the
identity matrix as shown in (c). However, the T matrix is nontrivial when there
are symmetries and this leads to a true block diagonalization and simplification
of the coupling matrix as shown for the 384-symmetry network in (c). The 4 � 4

block in the upper-left-hand part of B is block related to the synchronization
manifold. It can be used to calculate the Lyapunov exponents of the synchronized
motion. The remaining blocks, several of which are trivial (1-dimensional) are
related to the perturbations of the transverse manifold and govern the stability of
the synchronization clusters. Each block is related to a cluster or a few clusters and
determines the stability of that (those) clusters. The 2�2 block exists because the red
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and green marked clusters are intertwined [16], that is any permutation of one must
permit a similar permutation of the other to keep the adjacency matrix invariant.
This means that when one of the clusters becomes unstable so does the other one.
Let’s see how all this applies to an experimental situation and a particular network.

10.3 An Electro-Optic Experiment

We tested these theoretical results on an experimental system. This is an important
first step to determining whether phenomena from a pristine theoretical system
would possibly be seen in a more realistic situation. Figure 10.3 shows the setup
of the electro-optic experiment. A simple explanation of the system’s functioning
is that light from a light-emitting diode passes through a polarizing beam splitter.
One part becomes circularly polarized and is reflected back from a spatial light
modulator (SLM). The SLM reflection surface phase shifts the light by an amount
that can be controlled voltages on different cells of a rectangular array behind the
SLM. This light then recombines with the other half of the beam and interferes with
it constructively or destructively. The camera sees bright and dark square patches
from the SLM. The voltages on the patches of the SLM and, hence, the phases
can be changed at any time. This change can be made dependent on the input
from the camera and controlled by a computer. In this way, the feedback and
voltage changes make a dynamical system that changes with each time step. This is
modeled by an iterated map and creates an experimental system in which, through
the computer, each patch can represent a node (oscillator) and we can control which
nodes influence each other. The map is written as

Fig. 10.3 The electro-optical
experiment. QWP
quarter-wave polarizer, PBS
polarized beam splitter, LED
Light-emitting diode
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xtC1
i D

2
4ˇI.xt

i/C �
X

j

AijI.xt
j/C ı

3
5 mod 2� (10.5)

where xt
i is the phase of the ith node or patch on the SLM at the time t, ˇ is the

self feedback strength, and the offset ı is introduced to suppress the trivial solution
xi D 0. Equation (10.5) is a discrete time equivalent of Eq. (10.1). Depending on the
values of ˇ, � , and ı, Eq. (10.5) can show constant, periodic, or chaotic dynamics.
There are no experimentally imposed constraints on the adjacency matrix Aij,
which makes this system an ideal platform to explore synchronization in complex
networks. For more details see [16].

We constructed a network as shown in Fig. 10.4a. This had 32 symmetries
and 5 clusters with one being a trivial (single node) cluster. Two of the clusters
are intertwined (the red and blue nodes). We ran the experiment and calculated the
average synchronization error. This was determined by examining the time-average
total variance of each cluster about the instantaneous mean of the cluster. We also
block diagonalized the coupling matrix as detailed above. This leads to Fig. 10.4b.
The synchronization manifold is the upper-left-hand corner block (5 � 5). We used
this to calculate the maximum Lyapunov exponent for each cluster to compare with
the synchronization error from the experiment as we varied the feedback parameter
ˇ in Eq. (10.5). Note that there is a 2 � 2 block in the transverse variational part
for the red and blue intertwined nodes. Those nodes’ clusters will both become

(a) (b)

32 symmetries, 5 clusters 

Fig. 10.4 Experimental network. (a) The network constructed for the spatial light modulator
experiment. Nodes in the same cluster are colored the same. (b) The block diagonalization of the
coupling matrix for (a). Note the synchronization manifold block in the upper-left-hand corner and
the intertwined clusters block for the red and blue nodes just diagonally below the synchronization
block
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Fig. 10.5 Experimental results and Lyapunov exponents for the clusters in the experiment. (a) is
the synchronization error (mismatch) for each cluster. (b) is the maximum Lyapunov exponent for
each cluster or cluster group (red and blue in this case)

unstable when the maximum Lyapunov exponent for that block goes above 0.0. For
more information on these measurements and calculation see [16].

Figure 10.5a shows the average synchronization error for each cluster or cluster
group (the red and blue clusters). In the experiment all clusters are well synchro-
nized between ˇ D 0:3� and 1:1� . The Lyapunov exponents calculations agree
with this for the most part. The differences in range come in at the extremes where
a cluster is about to desynchronize and, most likely, this leads to more attractor
bubbling in the experiment where the clusters are not perfectly matched, which
shows up in the synchronization error at the extremes.

From the experiment we see that as ˇ is decreased from 0.3 the violet cluster
loses stability first. It splits into two synchronized clusters with two nodes in each.
This is a symmetry breaking bifurcation. Further decrease in ˇ leads to the red-blue
clusters becoming unstable. The green cluster remains synchronized almost all the
way to ˇ D 2� . As beta is increased from � the violet cluster loses stability and
breaks into two synchronized clusters in a symmetry-breaking bifurcation as before.
Further increase of ˇ causes the red-blue cluster to destabilize and then the green.
The approximate values of ˇ at which these bifurcations take place and the same
order is seen in the transitions of the clusters’ Lyapunov exponents predicted from
theory.
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10.4 Laplacian Coupling and Synchronization
Beyond Symmetries

Above we considered only synchronization clusters which are formed because of
symmetries of the adjacency matrix. In the case of Laplacian coupling if we remain
with undirected (two-way, equal) coupling, we still can get synchronization clusters,
but they are not the result of symmetries. Instead they result from the combination
or merging of symmetry-based clusters. Below we outline this phenomenon. For a
more detailed explanation, we refer to [35].

We consider the case of Laplacian coupling where the diagonal of the coupling
matrix contains minus the row sums of the original adjacency matrix (we actually
use the negative of the Laplacian as usually defined in graph theory). It is well
known that it is possible to have global synchronization in this case, where all nodes
are synchronized to all other nodes. This comes about because the diagonal of the
coupling matrix cancels the sum of the off-diagonal leaving the remaining vector
field without the coupling terms for each node. This leads naturally to the question,
“are there synchronous clusters that can be formed in the Laplacian system beyond
the global synchronization case?” The answer is yes. Below we outline how this is
possible.

Just as in the global synchronization case what matters is that the equations of
motion are the same for all nodes in a cluster. This can happen if the inputs to
each node in the cluster are the same. The diagonal term in the Laplacian coupling
is a self-coupling that cancels any inputs that are in sync with the node under
consideration. If the other inputs from other nodes in other clusters to all nodes in
the considered cluster are the same, then the cluster can achieve synchronization. Or
to put it in dynamics terms, when set to the same initial conditions the nodes in the
cluster are flow invariant because they all have the same equations of motion in the
synchronized state. We will show how these clusters can be found or constructed
from the symmetry-based clusters using a 5-node network with symmetries. The
Laplacian matrix for this 5-node system is

L D

0
BBBBB@

�3 1 0 1 1

1 �3 1 0 1

0 1 �3 1 1

1 0 1 �3 1

1 1 1 1 �4

1
CCCCCA

(10.6)

Figure 10.6 shows symmetry-based clusters and their merged Laplacian partners.
Row 1 shows the most symmetric case where only the center node is dynamically
different. As mentioned above we can merge the center node and the outer nodes
to form a cluster that will have flow invariant dynamics in the fully (globally)
synchronous cases. This can be seen from the structure of Eq. (10.1). All the nodes
will have equations of motion in which the coupling term will not be present in
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Fig. 10.6 Symmetry clusters
for adjacency matrix and
allowed merged clusters for
Laplacian matrix cases. The
left column contains the
clusters predicted from the
symmetries of the 5-node
network. The right column
shows which merged clusters
from the left column are
allowed. In rows 3 and 4 we
have left out other merged
clusters that are related to the
ones shown by a symmetry
analysis of the original
network, which makes their
analysis equivalent

Adjacency
Symmetry 
Clusters

Laplacian
Merged Symmetry 
Clusters

None

1

2

3

4

5 None

the synchronous state because of the negative self-coupling from the Laplacian
diagonal. So all will have the isolated vector field F.x/. This makes the synchronous
state flow invariant.

A more interesting case is from row 3 in Fig. 10.5. Here there are two outer
clusters and the central node is a (trivial) cluster. We can merge the central node
with either synchronized outer pair. Then each node in the diagonal triple of merged
nodes has two inputs from the green node. The outer nodes have one input from a
red node and the center node has two. But the center has a Laplacian self-coupling
term that is one larger. The red node contributions all cancel and we are left with the
following equation of motion for each red cluster node,

Pxi.t/ D F.xi.t//C �Œ2H.sg/ � 2H.sr/�; (10.7)

where sg and sr are the synchronized dynamical variables of the green and red
clusters, respectively. In row 4 of Fig. 10.5 a similar process can merge the center
node with the outer synchronized red nodes. As in the row 3 case this yields
equations of motion similar to Eq. (10.7) except with a green and dark blue node
replacing the two greens in Eq. (10.5).

We can ask the question, in row 2 of Fig. 10.5 can we merge the central node
with one of the other clusters? We can see that will not work since the central node
has two green inputs and the outer nodes have one (recall the red inputs all cancel
properly). This case cannot be flow invariant and the mergers of clusters in row 3
either lead to non-flow invariant cases or symmetric cases already discovered.

Although the above analysis works for simple cases, is there a way to analyze
possible mergers so that more complicated cases can be analyzed easily and even
by the group theory software? The answer is, yes. We show how this can be done.
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We use the example of merging in row 3 of Fig. 10.5. We note the general result
in Laplacian coupled systems that inputs which are synchronous with a node cancel
with the nodes self-coupling. This means that the synchronized dynamics are the
same as though nodes within the same cluster are not coupled. We can model this
with a Laplacian in which those nodes are not coupled and the diagonal components
are adjusted accordingly,

L D

0
BBBBB@

�2 1 0 1 0

1 �3 1 0 1

0 1 �2 1 0

1 0 1 �3 1

1 0 1 0 �2

1
CCCCCA
; (10.8)

where we start indexing the nodes in the lower-right-hand corner and proceed
counter-clockwise with the center node being number 5. We call the matrix in
Eq. (10.8) the dynamically equivalent coupling matrix since the dynamics for
Eqs. (10.8) and (10.6) are the same. However, if we draw the equivalent network for
the dynamically equivalent Laplacian (10.8) we get the network shown in Fig. 10.7.
It is easy to see that the central node can now be permuted to either outside
node and so the symmetries of Eq. (10.8) give the correct merged cluster. This
generalizes to the algorithm of testing symmetry cluster merging: (1) Construct the
dynamically equivalent Laplacian. (2) Analyze this using the Sage [31] software. (3)
If the merged cluster is one of the symmetry clusters of the dynamically equivalent
Laplacian, then the merged cluster is allowed. If not, it is not allowed. This test also
correctly yields a negative outcome for the attempted merging of the center node in
row 2 as described above.

We only briefly note here that we can also develop the variational equations
that describe the merged cluster network. We start with the block diagonalized
variational matrix from the original Laplacian symmetries and reduce them further
by a vector space analysis that models the decrease in the number of synchronized
clusters and the subsequent increase in the transverse perturbations which model the
breakup of this merged cluster. Details for this analysis are in [35].

Fig. 10.7 Symmetry-based
clusters and their merged
Laplacian partners 3

original symmetry 
clusters & network 

merged clusters & 
dynamically equivalent 

network 
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10.5 Conclusions and Remarks

As we mentioned in our original paper on this work [16] the existence of symmetry-
based synchronous clusters subsumes several types of phenomena seen in special
cases. One is what is called remote synchronization, where nodes not directly
connected have identical synchronous trajectories [22]. Another is the existence of
chimera states in symmetric networks in which the coherent population is identically
synchronized, as in the recent experiments on globally coupled networks in [36]. In
these chimera states, the full symmetry of the network is broken in a phenomenon
we originally called isolated desynchronization [16]. Here, the full symmetry is the
globally synchronized state; through isolated desynchronization, a subgroup cluster
desynchronizes from the globally synchronized state, resulting in a chimera state.
These chimera states are permitted according to the symmetry analysis; whether
they actually occur, of course, depends on the particular system and bifurcations
present. We note that we have not explored the symmetry-breaking bifurcations
in these systems. This will be a rich area of research much as it was in the
simpler networks studied in the comprehensive book of Golubitsky, Stewart, and
Schaeffer [19].

We only cover a small part of our work on Laplacian coupling and cluster
construction. The interested reader should examine our paper on that topic [35].
Basically, we show how we can form new, merged clusters from the symmetry
clusters that will also support synchronization. We develop an analysis (as above)
that will indicate whether possible cluster mergings will yield allowed new merged
clusters that synchronize. We also develop in detail there how to derive the stability
variational equation for the new system with merged clusters from the original
block-diagonalized equation from the pure symmetry case.

Not all possible clusters will be found using only symmetry, especially for
directed networks where inputs to each node is really what matters. In this case
the better test is to group nodes into clusters that include only those nodes that have
the same inputs, thereby guaranteeing that they will have the same dynamics and
the synchronized state will be flow invariant. However, note that finding common
inputs is not trivial since we start not knowing which nodes are in which clusters.
In a sense the solution to the problem requires the answer beforehand. However,
there is a nice algorithm (scaling linearly with the size of the network) for finding
the smallest number of clusters given by Belykh and Hasler [37]. But finding a
bifurcation route to subclusters is not trivial and remains an unsolved problem. In
addition, a simplification of the variational matrix as above remains to be developed
and is another nontrivial situation. For more information, the reader should consult
[24, 37–40].

Finally, the experiments detailed above suggest that there is robustness in
this analysis, i.e. small variations in coupling strengths, parameters, etc. do not
necessarily destroy the clusters. That is, the symmetries and clusters have some
structural stability and we can consider the network to have approximate symme-
tries. Recently, we have studied this in order to quantify it and describe it more
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rigorously. The result is that structural stability will, in many cases, exist in general,
although the ranges of parameters for which the cluster and symmetry results hold
will vary with the dynamics of the nodes and the makeup of the network. This work
will appear in [41].
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Chapter 11
When Repulsive Inhibition Promotes Synchrony
of Bursting Neurons: Help from the Enemy

Reimbay Reimbayev, Kun Zhao, and Igor Belykh

Dedicated to Mikhail I. Rabinovich on the occasion of his 75th
birthday

11.1 Introduction

Neurons can generate complex patterns of bursting activity. Over the last 30 years,
much work has been dedicated to the classification of bursting rhythms and the
bifurcation transitions between them (see [1–13] and the references therein).

When coupled in a network, bursting neurons can attain different forms of syn-
chrony: burst synchronization when only the envelopes of the spikes synchronize,
complete synchrony, anti-phase bursting, and other forms of phase-locking [14–17].
Synchrony has been broadly observed in pathological brain states, especially during
epilepsy and Parkinson’s tremors [18, 19]. Epilepsy is characterized by two
behaviors, short bursts of synchronized neuronal activity and long events called
seizures [19]. The emergence of a specific cooperative rhythm depends on the
intrinsic properties of coupled neurons, a type and strength of synaptic coupling,
and network circuitry (see, for example, [20–44]).

Fast excitatory synapses are known to facilitate bursting synchrony (see
[15, 17, 35]). However, fast non-delayed inhibition is known to promote pairwise
anti-phase synchronization in purely inhibitory networks [20] whereas fast
excitation induces synchrony as long as the coupling strength exceeds a threshold
value [15–17, 44]. Slow or time-delayed inhibitory and excitatory synapses reverse
their roles such that slow or delayed inhibitory connections favor neural synchrony
[21, 23, 28, 33, 34]. At the same time, synchronization in a pair of reciprocally
coupled neurons with fast non-delayed inhibitory neurons is typically unstable.
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More specifically, it has been shown that fast non-delayed inhibition is always
repulsive in the two-coupled network of spiking (non-bursting) cells [34], unless
each cell has at least two slow intrinsic variables [33]. Recently, it was shown
that fast non-delayed reciprocal inhibition can promote synchrony in some bursting
cells such as the leech heart interneuron model and Purkinje neuron model, provided
that the inhibitory connections are weak and the initial conditions are chosen close
enough, within the spiking phase of bursting [38]. However, this fragile synchronous
rhythm has a small basin of attraction and is largely dominated by much stronger
co-existing anti-phase bursting.

The network architecture also plays an important role in synchronization of an
inhibitory network. For example, it was shown that even weak common inhibition
of a bursting network with strong repulsive inhibitory connections by an external
pacemaker neuron can induce synchronization within the network. This common in-
hibition can win out over the much (e.g., 100 times) stronger repulsive connections,
provided that the pacemaker’s duty cycle, the fraction of the period during which
the neuron bursts, is sufficiently long [36]. Inhibitory connections also play various
roles in the emergence of synchronous and asynchronous rhythms in neuronal motifs
[32, 37, 40, 45, 46]. For example, the presence of a single reciprocally connected
pair provides dynamical relaying in neuronal motifs that yields zero-lag synchrony
despite long conduction delays [45, 46].

In this chapter, we review our recent results [47, 48] that report a counterintuitive
find that fast non-delayed repulsive inhibitory connections can robustly promote
synchronization, when added to an excitatory network of square-wave bursting
neurons. This synergistic effect is caused by the ability of inhibition to effectively
switch the type of network behavior from square-wave [1] to plateau bursting [6].
Square-wave bursting [1] was named after its shape during a burst which resembles
a square wave. Plateau bursting is characterized by spikes of decreasing size that
turn into a plateau towards the end of the active phase of bursting [6]. Square-wave
bursters are difficult to synchronize [15] and their spike synchronization requires
strong excitatory coupling, whereas plateau bursters with smaller spikes are more
prone to synchrony. The added inhibition causes plateau bursting so that weaker
excitatory coupling is sufficient to induce synchrony in the excitatory–inhibitory
network. This effect is generic and observed in different models of bursting neurons.
In this study, we choose the Hindmarsh–Rose neuron model and Sherman ˇ-
cell model as individual units of networks. Both models are known to generate
different types of complex bursting behavior [3, 30, 49, 50]. The emergence of
bursting rhythms in isolated and coupled Hindmarsh–Rose neurons has received
a particularly great deal of attention in the literature [3, 13, 17, 44]. This includes
major contributions made by M.I. Rabinovich (see a review [11]) who introduced
the senior author of this chapter (I.B.), a graduate student at that time, to the exciting
field of neural modeling and its implications in central pattern generators and brain
networks.

While many studies use reduced neuronal models such as phase or relaxation
oscillators where the spikes are ignored, our results promote the use of the detailed
biophysical models, taking into account neuronal spikes and bursts. The discovered
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synergistic effect is due to nonlinear interactions of spikes; as a result, it is not
observed in networks of the reduced models. Yet, there is experimental evidence
that the onset and self-termination of seizures is accompanied by the transition
between different types of network bursting activities [12, 51] where the spikes play
an important role. Remarkably, the transition to abnormal synchrony corresponds to
switching to plateau-like bursting [12].

We use the stability analysis to reveal the general mechanism of the induced
synchronization and demonstrate that there is an optimal balance between the
excitatory and inhibitory couplings that trigger synchronized bursting. These results
are applicable to synchronization in a pair of connected neurons as well as to
large networks with mixed excitatory–inhibitory connections. We discover universal
scaling laws for the onset and loss of stable synchronization where the synchro-
nization conditions are fully controlled by the number of excitatory and inhibitory
inputs each neuron receives, regardless of the network size and topology. The
independence of the synchronization conditions in purely excitatory networks of
bursting neurons from the details of network architecture, except for the in-degree of
each neuron, was reported in [17]. In this work, we show that the inhibition-induced
synchrony is also controlled by the number of inhibition inputs to each neuron;
however, the scaling law for the synchrony loss is different and involves a ratio of
excitatory and inhibitory inputs. These general laws are drastically different from
those in linearly coupled networks with positive (attractive) and negative (repulsive)
coupling where the synchronization conditions are controlled by the structure of
negative connections via the eigenvalues of the corresponding Laplacian matrix [52–
54].

The layout of this chapter is as follows. First, in Sect. 11.2.1, we introduce a
two-cell network model and the Hindmarsh–Rose model as its individual unit. We
show that the uncoupled cell model exhibits square-wave bursting and discuss the
generation mechanism. Then, we introduce the self-coupled system that governs
the type of synchronous bursting. We show that the self-coupled system switches
from square-wave to plateau bursting with an increase in the excitatory and/or
inhibitory couplings. We then demonstrate that this transition between different
types of bursting induces stable synchronization in the two-cell coupled networks. In
Sect. 11.2.2, we present the variational equations for the stability of the synchronous
solution and explain the main synchronization mechanism. In Sect. 11.2.3, we
provide additional support for explaining synchrony loss, caused by overly strong
inhibition. In Sect. 11.2.4, we present the universal scaling laws for the stability of
synchronization in large networks. In Sect. 11.3, we study a two-cell network of
Sherman model to demonstrate that the synergistic effect is generic and observed
in different bursting models capable of switching from square-wave to plateau
bursting. In Sect. 11.4, a brief discussion of the obtained results is given.
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11.2 Networks of Hindmarsh–Rose Models

We begin with the Hindmarsh–Rose neuron model [55] which represents a class
of phenomenological models of spiking and bursting neurons. Without direct
relation to specific biophysical mechanisms, these models aim at reproducing the
characteristic features of the bursting behavior.

11.2.1 Two-Cell Network

The simplest network of two bursting Hindmarsh-Rose neuron models with excita-
tory and inhibitory connections reads:

Pxi D ax2i � x3i � yi � zi C gexc.Vexc � xi/� .xj/C ginh.Vinh � xi/� .xj/;

Pyi D .a C ˛/x2i � yi; Pzi D �.bxi C c � zi/; i; j D 1; 2: (11.1)

Here, xi represents the membrane potential of neuron i, and variables yi and zi

take into account the transport of ions across the membrane through fast and slow
ion channels, respectively. The cells are identical and the symmetrical synaptic
connections are fast and instantaneous. The parameters gexc and ginh are the
excitatory and inhibitory coupling strengths, respectively. The reversal potentials
Vexc D 2 > xi.t/ and Vinh D �2 < xi.t/ for all values of xi.t/ and any t; i.e. the
synapses are excitatory and inhibitory, respectively. The fast synaptic coupling is
modeled by the sigmoidal function � .xj/ D 1=Œ1 C expf��.xj � �s/g� [29]. The
synaptic threshold �s D �0:25 is set to ensure that every spike in the single cell
burst can reach the threshold [17]. As a result, a spike arriving from a presynaptic
cell j activates the synapse current (through � .xj/ switching from 0 to 1) entering
the postsynaptic cell i: Hereafter, the parameters are chosen and fixed as follows:
a D 2:8; ˛ D 1:6; � D 10; c D 5; b D 9; � D 0:001 [17, 44].

From a neuroscientist’s perspective, such a network can be viewed as the
interaction between two excitatory neurons with direct excitatory and tertiary
synapses [56] where the latter excites the presynaptic terminal of an inhibitory
interneuron, allowing inhibition of the other excitatory cell (see Fig. 11.1) [57].
From a physicist’s perspective, this is a network of two pulse-coupled oscillators
with attractive (excitatory) and repulsive (inhibitory) connections.

We use this two-cell network to demonstrate the synergistic effect and clearly
describe its stability mechanism. We will then show that the same results carry over
to larger networks whose architecture always supports Dale’s law [58] such that
synaptic (outgoing) connections from a neuron to other cells are either all excitatory
or inhibitory.

Each cell in the network (11.1) receives one inhibitory and one excitatory input
from the other cell, therefore the network system (11.1) has an invariant manifold
D D fx1 D x2 D x.t/; y1 D y2 D y.t/; z1 D z2 D z.t/g; that defines complete
synchronization between the cells.
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Fig. 11.1 (Left). Possible interactions between two excitatory neurons 1 and 2 with direct excita-
tory and tertiary synapses. The tertiary synapses mediate inhibition by exciting the presynaptic
terminals of inhibitory interneurons at their somas. This network can be viewed as a pair of
neurons effectively coupled through both excitatory and inhibitory connections (right). Excitatory
(inhibitory) connections are depicted by arrows (circles). The dynamics of the two-cell network is
studied in Fig. 11.3

Note that the synchronous dynamics differs from that of the uncoupled cell as
the former is governed by the self-coupled system with extra coupling terms:

Px D ax2 � x3 � y � z C kexc gexc.Vexc � x/� .x/C kinh ginh.Vinh � x/� .x/;

Py D .a C ˛/x2 � y; Pz D �.bx C c � z/: (11.2)

As a result, the synchronous dynamics and the type of bursting depend on the
coupling strengths gexc and ginh: This property is a key ingredient of the synergistic
effect reported in this chapter. There are critical coupling strengths gexc and ginh at
which square-wave bursting in the self-coupled system (11.2) turns into plateau-type
bursting, depicted in Fig. 11.2. This happens via the disappearance of a homoclinic
bifurcation (HB) in the 2-D fast subsystem (� D 0) of system (11.2) that governs the
type of synchronized bursting. Figure 11.2 illustrates the bifurcation mechanism of
this transition from square-wave to plateau bursting. According to the Izhikevich
classification [6], square-wave bursting corresponds to fold/homoclinic bursting
where the burst termination is determined by a homoclinic loop to a saddle in
the fast subsystem. Increasing synaptic coupling in the self-coupled system (11.2),
whether excitatory or inhibitory, eventually leads to the disappearance of this
homoclinic bifurcation and induces plateau bursting (fold/fold bursting in the
Izhikevich classification). This can be achieved by strong excitation (see Fig. 11.3b)
or by weaker inhibition (see Fig. 11.3c). The fast .x; y/-subsystem of the self-
coupled system (11.2) has the nullcline z D h.x/  �˛x2 � x3 C gexc.Vexc �

x/� .x/Cginh.Vinh�x/� .x/: The excitatory (inhibitory) coupling moves the nullcline
z D h.x/ to the right (left) (see Fig. 11.2). Remarkably, a small shift of the right
branch of z D h.x/ towards the synaptic threshold x D �s (to the left) caused by
weaker inhibition effectively decreases the divergence inside the limit cycle of the
fast system, forming the spiking manifold. This causes the limit cycle to shrink in
size and makes the homoclinic orbit disappear. At the same time, a much larger
amount of excitation is necessary to shift the right branch of z D h.x/ to a far right
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Fig. 11.2 Transition from square-wave to plateau bursting in the self-coupled system (11.2),
controlling the type of synchronous bursting. (Top). Square-wave burster in the uncoupled
network (11.1). The right branch of the fast nullcline z D h.x/ contains two points AH1 and
AH2 corresponding to supercritical Andronov–Hopf bifurcations. A limit cycle of the fast system
(� D 0) is born from the Andronov–Hopf bifurcation AH2 and grows in size as z increases.
This family of limit cycles constitutes the spiking manifold which terminates at the homoclinic
bifurcation HB of the saddle point of the fast system, located on the middle branch of z D h.x/:
The red (dotted) curve schematically indicates the route for bursting trajectories. The plane x D �s

displays the synaptic threshold. (Bottom) Plateau bursting induced by the combination of excitatory
and inhibitory coupling (gexc D 0:6 and ginh D 0:25), corresponding to point (c) in Fig. 11.3. The
added inhibition leads to the disappearance of the homoclinic bifurcation such that the spiking
manifold extends further up and disappears as the limit cycle shrinks to zero amplitude and
disappears via the reverse Andronov–Hopf bifurcation AH1
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region where the divergence is small enough for a similar switch from square-wave
to plateau bursting via the disappearance of the homoclinic orbit (see the HB curve
in Fig. 11.3(top)); the curve is calculated using the bifurcation analysis software
CONTENT [59].

Figure 11.3 presents the synergistic effect in the two-cell network of HR
neurons (11.1) and reveals that there is a broad interval of inhibitory strengths
over which the repulsive inhibition complements attractive excitation in promoting
neural synchrony. Notice that the onset of spike (complete) synchronization through
boundary E1 is accompanied by or close to the transition from square-wave to
plateau bursting, indicated by the curve HB. The two curves practically coincide up
to the values of gexc � 0:8 such that a significant reduction of the synchronization
threshold for gexc as much as ten times, observed at the lower values of gexc

is governed by this transition between the two types of bursting. This transition
occurs in both the purely excitatory (Fig. 11.3b) and mixed excitatory–inhibitory
connections (Fig. 11.3c). The addition of inhibition to the purely excitatory network,
whose synchrony requires a much stronger coupling, makes the cells switch to
plateau bursting with smaller spikes which can be synchronized by the weaker
excitatory coupling. The blue (dark) synchronization region, bounded by curves E1
and E2, corresponds to synchronized bursting and indicates a synergistic balance
between the excitation and inhibition. Overly strong inhibition destroys synchrony
(through boundary E2) and leads to anti-phase bursting, as expected (Fig. 11.3d).

It is worth noticing that switching to synchronized plateau bursting also shifts
the plateau part of the burst to the right from the synaptic threshold (see Fig. 11.2).
Due to the choice of the synaptic sigmoidal function � .xj/ in (11.1), the coupling
between the cells remains continuous during this part of the burst while being
pulsatile in the first half of the burst where the spikes cross the synaptic threshold
�s: This might not be the case in cortical networks where the coupling is always
pulsatile. Figure 11.3e indicates the region between the stability boundary E1;
corresponding to the onset of induced synchrony, and the HB curve, indicating the
transition to synchronized plateau bursting. This region corresponds to synchronized
square-wave bursting where all the spikes cross the synaptic threshold �s; making
the coupling pulsatile for all times. We have also performed numerical simulations
of the network (11.1) with the sigmoidal function � .xj/; replaced by the Heaviside
function H.xj/; representing realistic fast pulse-coupling. The obtained stability dia-
grams are similar to the ones of Fig. 11.3 with a slight expansion of the left stability
zone bounded by E1 along the x and y axes, up to the synchronization coupling
threshold gexc D 1:35 in the purely excitatory network (cf. the synchronization
threshold gexc D 1:28 in the network with the sigmoidal function � .xj/). This
increase in the coupling comes from the fact that the Heaviside-type pulse-coupling
has a weaker impact, compared to the sigmoidal-type coupling. As a result, larger
values of gexc and ginh are required to achieve the same effect.

Why is plateau bursting easier to synchronize? Why does inhibition not desyn-
chronize plateau oscillations as it seems to have an apparent destabilizing effect?
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The following subsection offers answers to these questions and reveals the
stability mechanism associated with the transition from square-wave to plateau
bursting in the system (11.1).

11.2.2 Stability Mechanism

To explain the synchronization mechanism, we use the stability equations for the
infinitesimal transverse perturbations 
12 D x1�x2; �12 D y1�y2; �12 D z1�z2 [17]:

P
12 D .2ax � 3x2/
12 � �12 � �12 �˝.x/ 
12;

P�12 D 2.a C ˛/x
12 � �12;

P�12 D �.b
12 � �12/; (11.3)

where ˝.x/ D S1 C S2 with

S1 D .gexc C ginh/ � .x/;

S2 D .gexc.Vexc � x/C ginh.Vinh � x// �x.x/: (11.4)

In (11.3), x.t/ is the synchronous solution defined via the self-coupled system (11.2).
The stability of the zero equilibrium f
12 D 0; �12 D 0; �12 D 0g of the
linearized system (11.3) corresponds to the stability of the synchronous solution
in the original network. The function ˝.x/ represents the contribution of the
excitatory and inhibitory coupling; it favors the stability of synchronization when
it becomes positive and has a destabilizing impact when it is negative [17]. More
specifically, the coupling term �˝.x/ 
12 aims at stabilizing the zero equilibrium of
system (11.3) when it is positive and tends to destabilize the zero equilibrium when
it is negative. The two terms S1 and S2, composing˝.x/; heavily depend on whether
the voltage x.t/ exceeds the synaptic threshold �s. The first term S1 contains the
sigmoidal synaptic function � .x/ and becomes significant for x.t/ 	 �s. Once
turned on, the term S1 > 0 makes ˝.x/ > 0 for x.t/ 	 �s (see Fig. 11.4) and favors
the stability for both excitatory and inhibitory coupling as gexc C ginh > 0:

J
Fig. 11.3 Synchronization in the two-cell network (11.1) as a function of excitation (gexc) and
inhibition (ginh). (Top panel). The color bar indicates the voltage difference jx1�x2j; averaged over
the last three bursting periods. The blue (dark) zone (c) corresponds to the zero voltage difference
(complete synchronization), appearing from random initial conditions. Observe the effect when a
small increase of inhibition from 0 dramatically lowers the synchronization threshold from 1:28

to 0:11: Note that the inhibition desynchronizes the cells in the absence of excitation (gexc D
0), independent from the coupling strength and initial conditions. Bifurcation curve HB (white
dotted line) corresponds to the transition to synchronized plateau bursting. (Bottom panel). Burst
synchronization. The color bar indicates the phase difference between the bursts, � D 1 � 2;

averaged over the last three bursting periods. The normalized phase 0 � i � 1 of the ith bursting
cell (i D 1; 2) is initiated and reset every cycle at the beginning of the burst. The normalized phase
difference � ranges from 0 (burst synchrony, blue (dark) color) to 0:5 (anti-phase bursting, red
(lighter) color). Notice a similar effect of burst synchronization, induced by repulsive inhibition
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Fig. 11.4 Stability function ˝.x/ for synchronized bursting. Panels (a), (b), (c), and (d) cor-
respond to the points (a), (b), (c), and (d) in Fig. 11.3. (a). gexc D 0:6; ginh D 0: Unstable
square-wave synchronous bursting (light brown) and the fast nullcline h.x/ of the self-coupled
system, together with ˝.x/ superimposed on its own scale. The impact of ˝.x/ is not sufficient
to stabilize the subthreshold part of the spikes where the coupling is insignificant (to the left from
the threshold �s). (b). gexc D 1:28; ginh D 0: The increased excitation makes the impact of
˝.x/ stronger; more importantly it changes the type of synchronous bursting. Notice that the
spikes have shifted to the right and moved to the region where the strong coupling is present.
(c) gexc D 0:6; ginh D 0:25: The red curve represents the contribution of the excitatory coupling
˝exc D gexc� .x/C gexc.Vexc � x/�x.x/; the light green curve corresponds to that of the inhibitory
coupling ˝inh D ginh� .x/C ginh.Vinh � x/�x.x/; and the thick black line indicates the combined
curve ˝.x/ D ˝exc C ˝inh: Adding the inhibition decreases the impact of ˝.x/ (cf. with (a)
where ˝.x/ equals ˝exc in (c)). At the same time, it induces plateau bursting, with the spikes in
the region above the threshold, where the coupling is sufficiently strong to synchronize them. (d).
gexc D 0:6; ginh D 0:9: Strong inhibition destabilizes synchronous plateau bursting. ˝.x/ has a
negative drop in the region, covering the upper knee of the nullcline. As a result, the cells diverge
when slowly crawling up this part of the nullcline. Note that synchronous plateau bursting of the
self-coupled system is unstable and does not represent the dynamics observed in the network; the
cells get locked into anti-phase square-wave bursting (cf. Fig. 11.3d)
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The second term, S2; can change sign; the term due to the excitatory coupling
gexc.Vexc � x/ is positive and therefore attractive, whereas the inhibitory one
ginh.Vinh � x/ is negative and repulsive. It contains the derivative �x.x/ which has
a peak around �s and rapidly decaying tails (in the case of the Heaviside function
H.xi/; �x.x/ turns into the delta function). Therefore, the term S2 switches and
remains on for the values of x; close to the threshold �s when the spikes cross the
threshold. It becomes decisive for the overall sign of ˝.x/ in a region around the
threshold �s; giving a distinct bell shape to ˝.x/ (see Fig. 11.4).

When x.t/ drops below the threshold�s; the cells are practically uncoupled. Our
Lyapunov function based analysis of synchronization in excitatory networks [17, 44]
suggests that the spikes are the most unstable part of the synchronous solution such
that their stabilization via the synaptic coupling yields complete synchronization.
The above-threshold part of the synchronous solution lies in the stability zone as
the coupling function ˝.x/ > 0; for any combination of gexc and ginh: Therefore,
this part of the solution can be stabilized by making the coupling stronger. At the
same time, the subthreshold part of the synchronous spikes is difficult to stabilize
as the contribution of the term S2 rapidly decays to zero below from the threshold.
Moreover, only excitatory coupling can stabilize the synchronous trajectory in the
subthreshold region as it yields the positive peak of the bell-shaped curve˝.x/ (see
Fig. 11.4a). The addition of inhibition lowers this peak and can make it negative (see
Fig. 11.4d), making the region around the threshold less stable. Figure 11.4a and b
show that increasing ˝.x/ (via increasing gexc/ induces synchrony in the purely
excitatory network. However, it requires fairly strong excitation to stabilize the
synchronous solution, especially its subthreshold part. Figure 11.4c demonstrates
that adding the inhibition has a two-fold effect. It lowers the stabilizing impact of
˝.x/ around and below the synaptic threshold; however, it helps switching the type
of synchronous bursting via (11.2), making the spikes shorter and moving them
towards the stability region, controlled by the synchronizing term S1: Increasing
inhibition typically switches synchronous square-wave bursting to plateau bursting
which places the spikes of synchronous bursting into the stability (above-threshold)
region that can be in turn effectively stabilized by the excitatory coupling via
S1: Therefore, the combination of gexc C ginh synergistically induces synchronized
bursting within a wide region of parameters gexc and ginh. Its right stability boundary
E2 (cf. Fig. 11.3) corresponds to synchrony loss and is defined by the mutual
arrangements between the graphs of ˝.x/ and the nullcline h.x/ (Fig. 11.4d). This
happens when the upper knee of h.x/ falls inside the instability zone where ˝.x/ is
negative (cf. Fig. 11.4d). The following subsection contains an additional argument
for predicting the slope of boundary E2: This estimate gexc D 0:78 ginh (see
Sect. 11.2.3) coincides remarkably well with the numerically calculated boundary
E2 in Fig. 11.3.

It is important to restate that the dynamics and type of synchronous bursting x.t/
are controlled by the self-coupled system (11.2) and depend on both gexc and ginh:

This property allows the inhibition to induce plateau bursting in the self-coupled
system (11.2). The synchronous bursting observed in the self-coupled system (11.2)
does not necessarily represent the emergent network dynamics. This synchronous
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solution can be unstable, especially when ginh is overly strong as in Fig. 11.4d.
Therefore, the network generates a different stable rhythm; this is typically anti-
phase square-wave bursting as in Fig. 11.3d (cf. the two insets for the consistency).

While the onset of inhibition-induced synchronization is typically governed by
the transition from square-wave to plateau bursting, the addition of inhibition can
also induce synchronized square-wave bursting in a smaller region of parameters
(Fig. 11.3e). However, the synchronization mechanism is essentially the same; the
inhibition decreases the subthreshold part of the spikes, without changing the type
of bursting, and thus facilitates synchronization. Although, fairly strong excitation
is required, making the synergistic effect less pronounced.

11.2.3 Slope of Synchrony Loss Boundary E2

This subsection provides additional support for explaining synchrony loss, caused
by overly strong inhibition via the stability boundary E2 (see Fig. 11.3). In addition
to the stability argument based on the variational equations (see Sect. 11.2.2), we
use a more straightforward approach to predict the slope of the boundary E2 in the
two-cell network.

Note that the combined action of two excitatory and inhibitory synapses in the
network (11.1) essentially amounts to that of one synaptic connection with strength
gsyn and synaptic reversal potential Esyn: The corresponding system reads:

Pxi D ax2i � x3i � yi � zi C gsyn.Esyn � xi/� .xj/;

Pyi D .a C ˛/x2i � yi;

Pzi D �.bxi C c � zi/; i; j D 1; 2: (11.5)

The synaptic reversal potential Esyn changes in the range Œ�2; 2�, allowing us to
vary the type of the connection from purely inhibitory when Esyn D �2 < xi

for all xi.t/, to purely excitatory when Esyn D 2 > xi.t/. In this setting, changing
the coupling strengths gexc and ginh in the network (11.1) with fixed Vexc D 2 and
Vinh D �2 is equivalent to changing the values of gsyn and Esyn in the network (11.5).
Figure 11.5 shows robust synchronization in an interval of gsyn and Esyn: Here, the
left stability boundary, indicating the drop of the synchronization threshold from
1:28 with decreasing Esyn from 2; corresponds to the boundary E1 in Fig. 11.3.
The vertical stability boundary for synchrony loss at Esyn D �0:25 corresponds to
the boundary E2 in Fig. 11.3. The origin of this almost vertically rising boundary,
starting roughly at Esyn D �0:25 is of no mystery if one realizes that this is also
the synaptic threshold �s D �0:25: It is not a coincidence that these two values
appear equal. Note that the synaptic connection becomes purely inhibitory when
xi.t/ exceeds the reversal potential Esyn: Therefore, the part of the synchronous
solution lying above Esyn (mainly, the above-threshold part of the spikes) cannot
be robustly stabilized. At the same time, when xi.t/ is below Esyn; the synapse is
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Fig. 11.5 Role of Esyn in
synchronization of the
two-cell network (11.5.) The
stability diagram and color
coding are similar to those of
Fig. 11.3. Decreasing the
reversal potential Esyn from 2

first dramatically lowers the
synchronization threshold.
Dropping Esyn below �0:25
makes the connection
essentially inhibitory such
that synchronization cannot
be achieved for any value of
gsyn: note the vertically rising
stability boundary around
Esyn D �0:25

excitatory. As Fig. 11.5 suggests, when Esyn is chosen as low as �s; the excitatory
action of the synapse is non-existent as the synapse is practically off below the
synaptic threshold �s:

This is the key observation for predicting the slope of the stability boundary
E2 in the original network (11.1). We return to the network (11.1) and notice that
for the overall impact of the excitatory and inhibitory connections to be robustly
synchronizing, the overall input to the ith cell, gexc.Vexc � xi/� .xj/ � ginh.Vinh �

xi/� .xj/ must remain positive. Rewriting this condition yields gexcVexcCginhVinh
gexcCginh

� xj >

0; as � .xj/ 	 0: Notice that the first term plays a role of the reversal potential
Esyn in the network (11.5). Therefore, according to Fig. 11.5, gexcVexcCginhVinh

gexcCginh
cannot

exceed Esyn � �s D �0:25 for synchronization to remain stable. This yields
the following condition on the stability boundary gexc D �s�Vinh

Vexc��s
ginh; written in

terms of the parameters of the original network (11.1). Plugging in the values of the
parameters Vinh D �2; Vexc D 2; and �s D �0:25; one gets gexc D 0:78ginh. This
condition predicts the slope of the boundary line E2 remarkably well. This argument
also carries over to larger networks and supports the scaling law for synchrony loss:
gexc D ˛ kinh

kexc
ginh; reported in the following subsection.

11.2.4 Larger Networks: The Scaling Laws

The discovered inhibition-induced synchronization phenomenon is also present in
larger networks of square-wave bursters. We demonstrate that the structure of the
added inhibitory connections is not important and only the number of inhibitory
inputs controls the onset of synchronization, independent from all other details
of their network topology. In the context of complex dynamical networks, this
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unexpected result indicates the drastically different roles of network topology
in synchronization of linearly [53, 54] and synaptically coupled networks with
attractive and repulsive connections.

Towards this goal, we consider a network of n bursting Hindmarsh–Rose neuron
models with excitatory and inhibitory connections:

Pxi D ax2i � x3i � yi � zi C gexc.Vexc � xi/

nX
jD1

cij� .xj/C ginh.Vinh � xi/

nX
jD1

dij� .xj/;

Pyi D .a C ˛/x2i � yi; Pzi D �.bxi C c � zi/; i; j D 1; : : : ; n: (11.6)

The connectivity matrices C D .cij/ and D D .dij/ define the structure of excitatory
and inhibitory connections, respectively; both mutual and unidirectional coupling
are allowed. It is required that all row-sums of C and D are equal to kexc and kinh,
the property that implies a network where each cell has kexc inputs from excitatory
neurons and kinh from inhibitory ones. This constraint is chosen to ensure the
existence of complete synchrony and to allow the use of the stability conditions to
reveal the synchronization mechanism. Other notations and parameters are identical
to those of the two-cell system (11.1).

Figure 11.6 demonstrates a synergistic effect in the n-cell network (11.6). It
shows that the size of the left desynchronization zone, bounded by the gexc axis
and boundary E1 (cf. Fig. 11.3), scales down vertically and horizontally by kexc

and kinh times, respectively. As a result, the stability boundaries E1 for the onset
of synchrony are nearly identical for networks of different sizes and topologies,
provided that kexc and kinh are uniform for each cell. In support of this claim,
we have analyzed a series of different regular and random networks (11.1) with
uniform numbers of excitatory (kexc) and inhibitory (kinh) synapses per neuron.
For all simulated networks, numerical results are consistent with the scaling law
above. Figure 11.6 demonstrates two representative pairs of networks yielding the
largest and smallest regions of inhibition-induced synchronization for all possible
network topologies (11.1) with the given number of excitatory and inhibitory
inputs. Figure 11.7 summarizes the numerical simulations of different networks with
different topologies and shows how the synchronization effect of added inhibition
scales with the size of the network.

I
Fig. 11.6 Stability diagrams for network synchronization, similar to that of Fig. 11.3. The color

bar indicates the mean voltage difference
n�1P
iD1

nP
j>i

2
n.n�1/

.xi � xj/; calculated and averaged over the

last three bursting periods. Notice the nearly identical diagrams for pairs of ten-cell irregular and
five-cell regular networks with kexc D 4 and kinh D 4 (two top rows) and kexc D 2 and kinh D 4

(two bottom rows). Excitatory (inhibitory) connections are depicted by arrows (circles). Excitatory
(inhibitory) neurons in the ten-cell irregular networks [with only outgoing excitatory (inhibitory)
connections] are denoted by light (dark) circles. The height and width of the left instability zone,
adjacent to the gexc-axis and corresponding to desynchronized square-wave bursting are inversely
proportional to kexc and kinh; respectively (also compare with Fig. 11.3)
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Fig. 11.7 Ratio of the synchronization threshold in an excitatory network without inhibition and
the minimum synchronization threshold achieved by adding inhibition, as a function of the network
size n; for different values of kexc and kinh. The ratio of the synchronization threshold reduction,
induced by added inhibition is as large as 12 for the two-cell network (compare with Fig. 11.3.)
The four curves represent four types of network topology: rings of cells with local excitatory and
inhibitory connections (kexc D 2 and kinh D 2); all-to-all networks with both global excitatory
and inhibitory connections (kexc D n � 1 and kinh D n � 1); networks with global excitatory and
local inhibitory connections (kexc D n � 1 and kinh D 2); and rings of cells with local excitatory
and all-to-all inhibitory connections (kexc D 2 and kinh D n � 1). Notice that the addition of
global inhibition to a locally coupled excitatory network (local excitation/global inhibition) yields
the smallest reduction in the synchronization threshold for n > 3 (lowest line), and therefore has
the worst synchronization properties. At the same time, the addition of local inhibition to the same
locally coupled excitatory network yields the highest reduction ratio for n > 3 (top line) and
indicates a non-trivial synergistic effect of the combined inhibitory and excitatory topologies. Also
observe that global inhibition promotes synchronization more significantly than local inhibition
when added to a globally coupled excitatory network, as the global excitation/global inhibition
configuration has a higher synchronization threshold reduction ratio (second line from the top),
compared to that of the global excitation/local inhibition configuration (third line from the top)

To show that the scaling laws carry over to larger networks with random coupling
matrices, we have simulated a 100-cell random network where each cell receives
four excitatory kexc D 4 and four inhibitory kinh D 4 connections (Fig. 11.8). The
network consists of 80 excitatory and 20 inhibitory cells such that the excitatory
(inhibitory) cells only have excitatory (inhibitory) outgoing connections, thereby
abiding by Dale’s law. Both excitatory and inhibitory coupling strengths are
mismatched by adding �gij � q to gexc and ginh for each existing connection .i; j/:
The mismatch parameter �gij is expressed as a percentage of gexc and ginh and
kept equal to 5%; the values of the parameter q are chosen randomly from the
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Fig. 11.8 (Top) Induced synchronization in a 100-cell randomly generated network with uniform
kexcD4 and kinhD4: (Bottom) The network has 80 excitatory (red/light) and 20 inhibitory (blue/dark)
cells. The excitatory connections are marked by red arrowed lines; the inhibitory coupling is
indicated by blue arrows. Both excitatory and inhibitory coupling strengths are heterogeneous,
with randomly distributed mismatch up to 10%: The color bar indicates the mean voltage
difference as in Fig. 11.6. The stability diagram is similar to those of the two left diagrams in
Fig. 11.6, corresponding to the 5- and 10-cell networks with kexc D 4 and kinh D 4: Complete
spike synchronization is impossible in this mismatched network; however, an approximate
synchronization with small voltage differences (offsets between the spikes) is robustly present.
Various shades of blue and the non-homogeneous structure of the synchronization stability zone
correspond to slight voltage offsets due to the parameter mismatch

interval .�1; 1/ for each excitatory and inhibitory connection .i; j/; yielding a 10%
maximum mismatch. The stability diagram supports the scaling law and has a
structure similar to the two left diagrams in Fig. 11.6, all corresponding to different
network topologies with the uniform number of connections kexc D 4 and kinh D 4:

To target realistic biological networks with non-uniform numbers of excitatory
and inhibitory inputs per neuron, we have simulated a 100-cell network, similar to
that of Fig. 11.8, but with an average number of inputs kexc D 4 and kinh D 4:

This heterogeneous network has been generated from the network topology of
Fig. 11.8 with kexc D 4; kinh D 4; and non-mismatched gexc and ginh by randomly
choosing a pair of cells and changing their in-degrees of the excitatory and inhibitory
inputs by subtracting one incoming connection of each type from one cell and
adding these connections to the other cell. As a result, one half of the cells have
kexc D 3 and kinh D 3; while the other half have kexc D 5 and kinh D 5;

yielding the average kexc D 4 and kinh D 4: This effective mismatch between the
overall strength of the incoming connections to each neuron is larger than the 10%
maximum mismatch used in the previous example (Fig. 11.8); however, the stability
diagram for approximate synchronization is quite similar to Fig. 11.8, except for
the appearance of a more irregular structure of the synchronization stability zone
due to the increased coupling mismatch. Increasing the heterogeneity mismatch
between the connections even further shall eventually make approximate spike
synchronization impossible; however, we expect induced burst synchronization to
persist.
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To explain the scaling law, we shall return to the transversal variational
Eqs. (11.3) written for n � 1 difference variables 
ij D xj � xi; �ij D yj � yi; �ij D

zj � zi; i; j D 1; : : : ; n: The equations for the purely excitatory networks were
given in [17] where an analog of the Master Stability Function [52] for synaptically
coupled networks (11.1) was used to analyze the stability of the most unstable
transverse mode. Unfortunately, the Master Stability Function cannot be applied
to mixed excitatory–inhibitory networks in general as it requires simultaneous
diagonalization of both the excitatory (C) and inhibitory (D) connectivity matrices.
This is impossible in general unless the two matrices commute [60]. In the latter
case, the stability equation for the most unstable transverse synchronous mode is
the Eq. (11.3) with a new stability function ˝new.x/ D .kexcgexc C kinhginh/ � .x/ �

gexc.Vexc � x/�x.x/.kexc C � exc
2 / � ginh.Vinh � x/�x.x/.kinh C � inh

2 /; where � exc
2 and

� inh
2 are the second largest eigenvalues of the (commuting) Laplacian connectivity

matrices for the excitatory and inhibitory networks, CL D C � kexcI and
DL D D � kinhI, respectively. The first term in ˝new.x/ accounts for the number
and strength of excitatory and inhibitory inputs. The last two terms, containing
the partial derivative �x and the networks structure via � exc

2 and � inh
2 , only matter

for the stability/instability of synchronization in the region of x.t/; close to the
synaptic threshold �s; similar to the two-cell network case. The shift of the
nullcline h.x/ and switching from square-wave to synchronous plateau bursting
are governed by kexcgexc and kinhginh via the self-coupled system (11.2). As a
result, the spikes of the synchronous bursting solution leave the bell-shaped zone
(similar to Fig. 11.4c) such that the contribution of the last two terms in ˝new.x/
becomes insignificant for synchronization. This yields the scaling law when the
minimum strength of added inhibition g�

inh; sufficient to induce plateau bursting
synchrony is inversely proportional to kinh; regardless of the network size and
structure (compare, for example, g�

inh � 0:14 in the two-cell network of Fig. 11.3
and g�

inh � 0:035 D 0:14=4 in the networks of Fig. 11.6 with kinh D 4; all
calculated at the level gexc D 0:2). Notice that the 5-cell networks of Fig. 11.6
correspond to the commuting excitatory and inhibitory connectivity matrices:
global excitation/global inhibition and local excitation/global inhibition. In the case
where the connectivity matrices do not commute (the 10-cell networks of Fig. 11.6
and the 100-node network of Fig. 11.8), the eigenvalues of the connectivity matrices
cannot be used and the stability function˝new.x/ cannot be derived. A modification
of the Connection Graph method [61] that uses graph theoretical reasoning instead
of the spectrum of the connectivity matrices can be used to write down a set of
similar stability functions. However, the stability argument is essentially the same,
the induced synchronization is governed by the transition to plateau bursting that is
in turn controlled by the self-coupled system. Consequently, the same scaling law
for the inverse dependence of the induced synchronization threshold on gexc and kinh

also holds for realistic non-commuting coupling configurations. Our results also
indicate that the loss of stable synchrony via the right (inclined) boundary (similar
to boundary E2 in Fig. 11.3) is governed by a simple condition gexc D ˛ kinh

kexc
ginh;

where ˛ is a scaling factor, uniform for different topologies with the same ratio
kinh=kexc: As in the two-cell network yielding the slope gexc D 0:78 ginh; this
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condition is determined by the shift of the nullcline h.x/ such that the upper knee of
h.x/ moves close to the synaptic threshold �s and falls into the instability zone (as
in Fig. 11.4c).

11.3 Coupled Sherman Models

In this section, we demonstrate that a similar synergistic effect is observed in
a network of physiologically based Hodgkin–Huxley-type models such as the
pancreatic ˇ-cell Sherman model [30], exhibiting square-wave and plateau-type
bursting. Similarly to system (11.1), we consider the simplest network of two
coupled Sherman models with both excitatory and inhibitory connections:

�
dVi

dt
D F.Vi; ni; Si/C gexc.Eexc � Vi/� .Vj/C ginh.Einh � Vi/� .Vj/;

�
dni

dt
D G.Vi; ni/  n1.Vi/ � ni;

�s
dSi

dt
D H.Vi; Si/  S1.Vi/ � Si; i; j D 1; 2: (11.7)

Here, Vi represents the membrane potential of the ith cell. Function F.Vi; ni; Si/ D

�ŒICa.Vi/C IK.Vi; ni/C IS.Vi; Si/� defines three intrinsic currents: fast calcium, ICa,
potassium, IK ; and slow potassium, IS; currents:

ICa D NgCa m1.Vi/ .Vi � ECa/; IK D NgK ni .Vi � EK/; IS D NgS S1 .Vi � EK/:

The gating variables for ni and Si are the opening probabilities of the fast and slow
potassium currents, respectively, and

m1.Vi/ D Œ1C exp..�20 � Vi/=12/�
�1

n1.Vi/ D Œ1C exp..�16 � Vi/=5:6/�
�1

S1.Vi/ D Œ1C exp..�35:245 � Vi/=10/�
�1:

Other intrinsic parameters are � D 20; �S D 10;000; NgCa D 3:6; ECa D 25mV,
NgK D 10; EK D �75mV; NgS D 4: The reversal potentials Eexc D 10mV and
Einh D �75mV make the synapses excitatory and inhibitory, respectively, as Eexc >

Vi (Einh < Vi) for all values of Vi.t/: The synaptic coupling function is modeled by
the sigmoidal function � .Vj/ D 1=Œ1Cexpf�10.Vj ��s/g�. The synaptic threshold
is chosen as follows: �syn D �40mV. Other notations are similar to those of the
network of Hindmarsh–Rose neurons (11.1).

The presence of the large parameter �S D 10;000 on the left-hand side of the S-
equation makes the system (11.7) slow-fast such that the .Vi; ni/-equations represent
the 2-D fast “spiking” subsystem for the ith cell; the Si-equation corresponds to the
slow 1-D “bursting” system. Therefore, we use the standard decomposition into
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Fig. 11.9 Square-wave burster of the uncoupled Sherman models (11.7). The fast system displays
a supercritical Andronov–Hopf bifurcation at S D SAH1 and a homoclinic bifurcation (loop) at
S D SHB. The spiking manifold is composed of limit cycles in the fast system and terminates at
the homoclinic bifurcation HB. The intersection of the fast (h.V/) and slow (S

1

.V/) nullclines
indicates a unique saddle point O of the full system. The red dotted curve shows the route for
bursting in the full system. The plane V D �s displays the synaptic threshold above which the
presynaptic cell can influence the postsynaptic one

fast and slow subsystems; the types of bursting that can exist in the uncoupled cell
systems (11.1) with gexc D 0 and ginh D 0 are defined by the S-parameter sequences
of phase portraits of the 2-D fast system. This analysis has been performed for a
similar pancreatic cell [49] and revealed different types of bursting such as square-
wave, plateau, and pseudo-plateau bursting [50]. Figure 11.9 illustrates the standard
sequence of phase portraits in the uncoupled systems (11.7) with gexc D 0 and
ginh D 0; giving rise to square-wave bursting.

The equilibrium point on the upper branch of the nullcline h.V/ in the 2-D fast
subsystem undergoes a supercritical Andronov–Hopf bifurcation for S D SAH1;

softly giving rise to a stable limit cycle that encircles the unstable point and
forms the spiking manifold for SAH1 < S < SHB: Its upper edge is defined
by a homoclinic bifurcation at S D SHB. Here, the stable limit merges into a
stable homoclinic loop and disappears. For the given location of the slow nullcline
S1.V/; the trajectories jump down to the lower branch of the fast nullcline, creating
square-wave (fold/homoclinic) bursting. It is worth noticing the similarities of the
phase portraits’ sequences and bifurcations leading to square-wave bursting in the
networks (11.1) and (11.7).

Similarly to the network of Hindmarsh–Rose neurons (11.1), the network (11.7)
has an invariant manifold D D fV1 D V2 D V.t/; n1 D n2 D n.t/; S1 D
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Fig. 11.10 Plateau-type burster of the self-coupled model (11.8), governing the synchronous
network dynamics. Note the disappearance of a homoclinic bifurcation in the fast system due
to the synaptic coupling. The stable limit cycle of the fast system disappears through a reverse
Andronov-Hopf bifurcation at S D SAH2; ending the spiking manifold. The red dotted curve shows
the route for plateau-type bursting. The non-smooth part of the fast nullcline at V D �s is due
to the synaptic coupling, turning on when the trajectory jumps up to the spiking manifold and
crosses the threshold �s. The coupling strengths gexc D 0:14 and ginh D 0:06 correspond to the
point b in the 2-D diagram of Fig. 11.11

S2 D S.t/g; that defines complete synchronization between the cells. Synchronous
dynamics on the manifold D is defined by the self-coupled system:

�
dV

dt
D F.V; n; S/C gexc.Eexc � V/� .V/C ginh.Einh � V/� .V/

�
dn

dt
D G.V; n/

�s
dS

dt
D H.V; S/; (11.8)

where changing coupling strengths gexc and ginh can induce transitions from square-
wave bursting into plateau-type bursting, depicted in Figs. 11.9 and 11.10. This also
happens through the disappearance of the homoclinic bifurcation in the self-coupled
system (11.2) due to increased coupling strengths. While excitation alone is able
to transform square-wave into plateau-type bursting at some high values of gexc;

inhibition does so more effectively and its addition lowers the combined coupling
strength gexc C ginh:

Figure 11.11a proves that the synergistic effect observed in the network of
Hindmarsh–Rose models is generic and indicates that the addition of inhibition to an



182 R. Reimbayev et al.

Fig. 11.11 (a) The stability diagram for synchronization in the two-cell network (11.7). The color
bar indicates the maximum voltage difference V1 � V2; calculated over the last two bursts in
the established rhythm. Blue (dark) zone corresponds the zero voltage difference and shows the
synchronization region. Note the unexpected effect when an increase of the inhibitory coupling
from 0 to 0:07 significantly lowers the synchronization threshold from about 0:18 to 0:07. Notice
that the inhibition desynchronizes the cells in the absence of excitation (gexc D 0). The red dashed
curve indicates the disappearance of the homoclinic bifurcation (HBD) in the 2-D fast subsystem;
it corresponds to the transition from square-wave to plateau bursting and practically coincides with
the stability boundary between desynchronized and synchronized bursting. (b) Top: Typical out-
of-phase voltage traces, corresponding to the red (“out-of-phase”) zone. Bottom: synchronization
of plateau bursting in the blue (“sync”) parameter region

excitatory network induces synchronization in a fairly wide range of the inhibitory
strength ginh: Note that increasing ginh first lowers the synchronization threshold
and weaker excitation synchronizes the cells (e.g., from gexc D 0:18 in the absence
of inhibition to gexc D 0:07 for ginh D 0:07). At the same time, the inhibition
cannot induce robust synchronization by itself (see the x-axis in Fig. 11.11a, which
corresponds to the desynchronizing role of inhibition in the absence of excitation).

11.4 Conclusions

Different types of bursting have significantly different synchronization properties.
While square-wave bursters are known for their high resistance to spike synchro-
nization, elliptic and plateau-like bursters are much easier to synchronize and
require a weaker coupling strength. Typically, fast non-delayed excitation promotes
synchronization of bursters while fast non-delayed inhibition desynchronizes them.
Although, counterexamples of synchronizing fast non-delayed inhibition in the
weak coupling case have been reported [38, 39].

In this chapter, we have discussed the synergistic effect of combined attractive
excitation and repulsive inhibition in promoting bursting synchrony. Remarkably,
the addition of the inhibitory coupling lowers the synchronization threshold much
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more significantly than strengthening the present excitatory connections. The effect
is generic and observed in several other Hodgkin-Huxley-type models of square-
wave bursting cells. The effect is also independent from the choice of the synaptic
interaction model, ranging from the instantaneous pulsatile coupling to a fast
dynamical synapse [23]. Our preliminary results show that inhibition also promotes
burst synchrony in realistic networks with a highly heterogeneous structure of
connections, where spike or approximate synchrony is impossible. Our study has
potential implications for understanding the emergence of abnormal synchrony in
epileptic brain networks. An epileptic patient is normally (i.e., except for during a
seizure) in a desynchronized state which might correspond to the instability region
to the left of the E1-border in Fig. 11.3. Our results suggest that promoting pre-
sumably desynchronizing inhibition in an attempt to prevent the patient’s seizures
can have a counterproductive effect and induce abnormal synchronous firing in
the excitatory–inhibitory brain network. Brain networks have been also shown to
evolve their functional topology during epileptic seizures [19]. In light of this, our
results on the role of network connectivity, identifying network topologies with the
highest and lowest resilience of abnormal synchronized bursting can give insights
into how seizures self-terminate and into how to control epileptic networks. Outside
of Neuroscience, negative pairwise repulsive interactions were previously shown
to have a positive effect on synchronization in linearly coupled networks, where
negative interactions by themselves tend to destabilize synchronous states, but can
compensate for other instabilities [54]. However, this intriguing phenomenon, where
the structure of negative connections heavily affects the synchronization, is concep-
tually different from the one reported in this study. Apart from synchronization,
a counterintuitive role of inhibition was reported in [62], demonstrating that the
addition of inhibitory nodes to an excitatory network of 1-D discrete-time oscillators
causes self-sustaining dynamics.
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Part III
Brain



Chapter 12
The Variational Principles of Cognition

Karl Friston

12.1 Introduction

This chapter offers a teleological explanation of dynamics; namely, what do they do
in the context of adaptive behavior, perception, and cognition. The premise here is
that the brain is trying to optimize something (specifically variational free-energy)
and uses a generalized gradient descent to perform this optimization. In other
words, one can understand neuronal dynamics as optimizing a quantity through
the method of steepest ascent—described with a (complicated) set of ordinary
differential equations. It is these equations that give rise to the itinerant (wandering)
dynamics that have been the focus of several groundbreaking contributions from
Mikhail Rabinovich [2, 7, 48–50, 58].

In what follows, we will see how the optimization of free-energy leads naturally
to optimal action and perception. Crucially, the nature of this optimization rests on
the brain’s internal or generative model of the world that it navigates. This model
includes prior beliefs about the causal structure and dynamics in this world, which
constrain both perception and action. This adds a second level of dynamics that
reflect our prior expectations about the trajectories of states and their attractors in
our environment. It is at this point we call on itinerant dynamics and winnerless
competition [2] to furnish prior beliefs about sensorimotor trajectories. In particular,
we will look at action-observation in the context of handwriting and how it rests on
stable heteroclinic channels [49].

This chapter comprises two parts. In the first, we provide a heuristic overview
of the free-energy principle, motivating it from basic principles. We will consider
the underlying imperative that applies to all biological systems; namely, to conserve
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themselves by minimizing surprise; and how this calls upon the minimization of
free-energy. We then unpack the free-energy principle in terms of its implications
for action and perception. This leads to active inference and perceptual inference, of
the sort considered by the Bayesian brain hypothesis. We illustrate the key aspects
of this treatment with a few selected examples and conclude by thinking about the
timescales over which the dynamics of free-energy minimization may be manifest.
The second part of this chapter presents a particular example in greater detail. This
example considers handwriting in terms of itinerant expectations about sequences of
movements. Not only does it provide a plausible account of sensorimotor execution
but touches upon the cognitive neuroscience of action-observation and how we
represent ourselves and others.

12.2 The Free-Energy Principle

In recent years, there has been growing interest in free-energy formulations of brain
function [15, 22], not just from the neuroscience community, where has caused some
puzzlement [56] but from fields as far apart as psychotherapy [10] and social politics
[30]. The free-energy principle has been described as a unified brain theory [36] and
may have broader implications for how we interact with our environment [11, 12, 34,
35]. This section describes the origin of the free-energy formulation, its underlying
premises, and the implications for how we represent and interact with the world.
Table 12.1 (see below) provides a glossary of the quantities that we will be dealing
with.

The free-energy principle is a simple postulate that has complicated ramifi-
cations. It says that all agents or biological systems (like us) must minimize
free-energy. This postulate is as simple and fundamental as Hamilton’s law
of Least Action and the celebrated H-theorems in statistical physics [42]. The
principle was originally formulated as a computational account of perception [22]
that borrows heavily from statistical physics and machine learning [20, 33, 43].
However, its explanatory scope includes action and behavior [25] and may be
linked, at a fundamental level, to our very existence [24]: In brief, the free-
energy principle takes well-known statistical ideas and applies them to problems in
population (ensemble) dynamics and self-organization [3, 31, 37, 46]. In applying
these ideas, many aspects of our brains, how we perceive and the way we act become
understandable as necessary and self-evident (possibly self evidencing) attributes of
biological systems [24, 35]. To see this consider the following problem:

How, in a changing and unpredictable world, do biological agents resist a
natural tendency to disorder and thermodynamic equilibrium? All the physics that
we know, such as the fluctuation theorem (which generalizes the second law of
thermodynamics; [18]), suggests that random fluctuations in our environment will
ultimately change our physical states to the point we cease to exist (i.e., we should
gently decompose, dissipate, or evaporate). And yet, biological systems seem to vio-
late these laws, maintaining precise physiological states for long periods of time [6].
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Table 12.1 Generic variables and quantities in the free-energy formation of active inference,
under the Laplace assumption (i.e., generalized predictive coding)

Variable Description

m 2M Generative model or agent: In the free-energy formulation,
each agent or system is taken to be a model of the
environment in which it is immersed. This model is used to
predict sensory signals

a � # Action: These variables are states of the world that
correspond to the movement or configuration of an agent
(i.e., its effectors)

Qs.t/ D s ˚ s0 ˚ s00 ˚ : : : 2 S Sensory signals: These generalized sensory signals or
samples comprise the sensory states, their velocity,
acceleration, and temporal derivatives to high order. In other
words, they correspond to the trajectory of an agent’s
sensations

L.Qsjm/ D � ln p.Qsjm/ Surprise: This is a scalar function of sensory samples and
reports the improbability of sampling some signals, under a
generative model of how those signals were caused. It is
sometimes called (sensory) surprisal or self-information. In
statistics it is known as the negative log-evidence for the
model

H.Sjm/ /
R

dtL.Qs.t/jm/ Entropy: Sensory entropy is, under ergodic assumptions,
proportional to the long-term time average of surprise

G.Qs; #/ D � ln p.Qs; #jm/ Gibbs energy: This is the negative log of the density
specified by the generative model; namely, surprise about the
joint occurrence of sensory samples and their causes

F .Qs; Q�/ D G.Qs; Q�/C 1
2

ln jG
Q� Q�j

� L.Qsjm/

Free-energy: This is a scalar function of sensory samples
and a recognition density, which upper bounds surprise. It is
called free-energy because it is the expected Gibbs energy
minus the entropy of the variational density. Under a
Gaussian (Laplace) assumption about the form of the
variational density, free-energy reduces to the simple function
of Gibbs energy shown

S.Qs; Q�/ D

Z
dtF .Qs; Q�/

� H.Sjm/

Free-action: This is a scalar functional of sensory samples
and a variational density, which upper bounds the entropy of
sensory signals. It is the time or path integral of free-energy

q.#/ D N. Q�;C/

Q� D �˚ �0 ˚ �00 ˚ : : :

C D G�1
Q� Q�

Variational density: This is also known as a variational
ensemble or recognition density and becomes (approximates)
the conditional density over hidden causes of sensory
samples, when free-energy is minimized. Under the Laplace
assumption, it is specified by its conditional expectation and
covariance

(continued)
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Table 12.1 (continued)

Variable Description

# D fu;'; ag

# D fu; 'g

u D fx; vg

' D f�; �g

True (bold) and hidden (italics) causes: These quantities
cause sensory signals. The true quantities exist in the
environment and the hidden homologues are those assumed
by the generative model of that environment. Both are
partitioned into time-dependent variables and time-invariant
parameters

� � ' � # Hidden parameters: These are the parameters of the
mappings (e.g., equations of motion) that constitute the
deterministic part of a generative model

� � ' � # Log-precisions: These parameters control the precision
(inverse variance) of fluctuations that constitute the random
part of a generative model

x.t/ D x.1/ ˚ x.2/ ˚ x.3/ : : :

� u � #
Hidden states: These hidden variables encode the
hierarchical states in a generative model of dynamics in the
world

v.t/ D v.1/ ˚ v.2/ ˚ v.3/ : : :

� u � #
Hidden causes: These hidden variables link different levels
of a hierarchical generative model

g.x.i/; v.i/; �/

f .x.i/; v.i/; �/
Deterministic mappings: These are equations at the i-th
level of a hierarchical generative model that map from states
at one level to another and map hidden states to their motion
within each level. They specify the deterministic part of a
generative model

!.i;v/

!.i;x/
Random fluctuations: These are random fluctuations on
hidden causes and the motion of hidden states. Gaussian
assumptions about these fluctuations furnish the probabilistic
part of a generative model

Q̆ .i;v/ D R.i;v/ ˝˘.�.i;v//

Q̆ .i;x/ D R.i;x/ ˝˘.�.i;x//
Precision matrices: These are the inverse covariances
among (generalized) random fluctuations on the hidden cases
and motion of hidden states

R.i;v/

R.i;x/
Roughness matrices: These are the inverse of a matrix
encoding serial correlations among (generalized) random
fluctuations on the hidden cases and motion of hidden states

Q".i;v/ D Qv.i�1/ � Qg.i/

Q".i;x/ D DQx.i/ � Qf .i/
Prediction errors: These are the prediction errors on the
hidden causes and motion of hidden states evaluated at their
current conditional expectation


.i;v/ D Q̆ .i;v/Q".i;v/


.i;x/ D Q̆ .i;x/Q".i;x/
Precision-weighted prediction errors: These are the
prediction errors weighted by their respective precisions
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In other words, they occupy a small number of states with a high probability and
avoid a large number of other states. In short, they appear to resist thermodynamic
imperatives. Mathematically, we can summarize this remarkable capacity by saying
biological agents maintain a low entropy distribution on the states that they could
occupy. Entropy is just the average surprise or negative log probability of an agent
being in a particular state (see Table 12.1). In short, the question we need to
address is how biological systems minimize their average surprise (or more exactly
surprisal or self information). Surprise here just means something unexpected, like
reaching into one’s pocket and discovering your wallet is not there. One might think
that exotic phenomena from theories of pattern-formation and self-organization
may provide a sufficient explanation for the emergence of orderly (unsurprising)
state-transitions. However, they do not. These patterns certainly have beautiful and
intrinsic structures that unfold over short periods of time; but self-organization per
se cannot explain the ability of biological agents to avoid surprise indefinitely.
However, there is a solution that is almost tautological in its simplicity:

The solution lies in noting that surprise in ensemble dynamics is exactly the
same as the (negative log) evidence for a model in statistics: L D � ln p.Qsjm/
(see Table 12.1). The conceptual link between surprise and log-evidence rests on
assuming that every agent or person is a model of their environment or, more
specifically, the sensory data to which they are exposed. This means that to minimize
average surprise (entropy), each agent should maximize the evidence for its model
of sensory exchanges with the world. Model optimization of this sort is a solved
problem in statistics and machine learning (e.g., [41, 43]). In fact, most forms
of statistical inference rest on comparing the evidence for one model relative to
another, given some data. So what does this mean for our brains?

It suggests that we are obliged to optimize our model of the world through
evolution, neurodevelopment, and learning. In other words, we are statistical
engines that make inferences about the world, given the (sensory) data available
to us. The idea that we are inference machines is very old and was most clearly
articulated by the renowned physicist Helmholtz [32]. Indeed, perception has been
explicitly equated with hypothesis testing [29] and the brain has been referred
to as a Helmholtz machine [15]. More recent incarnations of this idea appear as
the Bayesian brain hypothesis [38, 40] as instantiated in schemes like predictive
coding [44, 51]. All these explanations borrow from Helmholtz’s idea that the
brain makes inferences about its sensations. A large body of work in theoretical
neuroscience provides a plausible and compelling account of perception and the
architecture of the wet-ware (brain) required to make these inferences [1, 4]. The
ensuing perspective on biological systems says something quite profound: It says
that all biological organisms can be regarded as a model of the environmental niches
(econiches) they inhabit [13]. In this sense, each species represents the product
of evolutionary model optimization and each phenotype (including our brain) is
a physical model or transcription of causal structure in its econiche. However, we
have overlooked one small problem: Optimizing models is not easy and, in most
situations, evaluating surprise or model evidence is an intractable problem. This is
where the free-energy comes in.
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Free-energy was introduced (in the context of quantum physics) by Richard
Feynman [20] to solve the sort of difficult integration problems inherent in
computing model evidence. It has been exploited in statistics and machine learning
(e.g., [45]) as a very efficient way of measuring and maximizing model-evidence
(i.e., minimizing surprise). The idea is quite simple, instead of trying to minimize
something that cannot be measured, one simply creates a bound that can be
measured, which is always bigger than the unknown quantity. One then minimizes
the unknown quantity by minimizing the bound. So, what is this bound?

In physics and statistics it is free-energy (recent statistical treatments of evo-
lution consider a related quantity called free-fitness; [54]). Its construction is
simple (see Fig. 12.1): The free-energy bound is constructed by adding a non-
negative (Kullback–Leibler divergence) quantity to surprise. The clever thing is
that adding this term renders the free-energy easily computable. This Kullback-
Leibler divergence measures the difference between two probability distributions;
the first is called a variational density and is an arbitrary probability distribution
used to create the bound. The second is the posterior or conditional density on
the causes of our sensations (for example, the presence of an object in our field
of view). The posterior density is the probability of causes after seeing their
consequences. Minimizing the bound reduces the difference between the variational
and the posterior density. When they are identical, free-energy becomes surprise or
negative log-evidence. This means to evaluate surprise, we have to make (Bayesian)
inferences about what caused our sensations. This is the Bayesian brain hypothesis,
where minimizing free-energy entails Bayes-optimal perception. In short, free-
energy converts an intractable mathematical problem into a simple optimization
problem. This statistical device furnishes another important perspective on how
we, as organisms, work. It suggests that we minimize surprise by optimizing an
upper bound on surprise. In other words, everything we do can be cast in terms
of optimization. This is self-evidently true in many contexts, certainly in fields like
reinforcement learning and economics [9, 14, 52, 55] but also fields like evolutionary
biology, where adaptive fitness is optimized.

12.2.1 The Bayesian Brain

The Bayesian brain hypothesis makes complete sense in this context. If our
imperative is to reduce surprise, then we need to some reference or expectations
against which to measure surprise.These expectations depend upon some model
of the world and its current state. The probabilistic state of the world we infer is
the variational density above (Fig. 12.1) and, when things are working properly,
corresponds to the true but unknown posterior density. In the brain, this variational
density (or more precisely, its sufficient statistics like its mean or average) may
be encoded by neuronal activity or connection strengths among different parts of
the brain. This leads to an understanding of perceptual inference and learning as
changing synaptic activity and connectivity, respectively, to minimize free-energy.
There are many schemes that have been proposed to implement this optimization.
Among the more popular is predictive coding. Under some simplifying assumptions
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Fig. 12.1 This schematic shows the dependencies among the quantities that define the free-energy
of an agent or brain, denoted by m. These include, its generalized internal states and sensory
signals (generalized states include their generalized motion; i.e., velocity, acceleration, etc.). The
environment is described by equations, which specify the motion of its states, when depend on
action. Both internal brain states and action minimize free-energy, which is a function of sensory
input and the internal states. Internal states encode a variational density on the causes of sensory
input. These comprise states of the world and the amplitude of random fluctuations. The lower
panels provide the key equations behind the free-energy formulation. The right equality shows
that optimizing brain states, with respect to the internal states, makes the variational density
an approximate conditional density on the causes of sensory input. Furthermore, it shows that
free-energy is an upper bound on surprise. This is because the first term of the equality is a
divergence between the variational density and the true conditional or posterior density. Because
this divergence can never be less than zero, minimizing free-energy renders it a proxy for surprise.
At the same time, the variational density becomes the posterior density. The left equality shows that
action can only reduce free-energy by selectively sampling sensory data that are predicted under
the variational density

about the shape of the probability densities involved, the free-energy reduces to
the sum of squared prediction error (see Fig. 12.2). In short, minimizing free-
energy corresponds to reducing prediction errors. The hierarchical scheme depicted
in Fig. 12.3 represents a fairly plausible architecture that the brain might use to
suppress prediction errors and thereby reduce free-energy. Crucially, this scheme
is based upon a gradient ascent of free-energy (squared prediction error) and, as
such, can be cast as a set of ordinary differential equations. It is these equations of
motion that we suppose provide a model for neuronal dynamics that will be used in
the second part of this chapter.
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Fig. 12.2 This schematic illustrates the bilateral role of free-energy (i.e., prediction error) in
driving action and perception: Action: Acting on the environment by minimizing free-energy
enforces a sampling of sensory data that is consistent with the current representation (i.e., changing
sensations to minimize prediction error). This is because free-energy is a mixture of complexity
and accuracy (the first expression for free-energy in Fig. 12.1). Crucially, action can only affect
accuracy. This means the brain will reconfigure its sensory epithelia to sample inputs that are
predicted by its representations; in other words, to minimize prediction errors. The equation
above action simply states that action performs a gradient decent on (i.e., minimizes) free-energy.
Perception: Optimizing free-energy by changing the internal states that encode the variational
density makes it an approximate posterior or conditional density on the causes of sensations. This
follows because free-energy is surprise plus a Kullback–Leibler divergence between the variational
and conditional densities (the second expression for free-energy in Fig. 12.1). Because this
difference is non-negative, minimizing free-energy makes the variational density an approximate
posterior probability. This means the agent implicitly infers or represents the causes of its sensory
samples in a Bayes-optimal fashion. At the same time, the free-energy becomes a tight bound
on surprise that is minimized through action. The equation above perception simply states that
internal states perform a gradient decent on (i.e., minimize) free-energy. This gradient decent is
in a moving frame of reference for generalized states and accumulates gradients over time for
the parameters. Prediction error: The equations show that the free-energy comprises a (Gibb’s)
energy, which is effectively the (precision weighted) sum of squared prediction error. This error
contains the sensory prediction error and other differences that mediate empirical priors on the
motion of hidden states. The predictions rest on a generative model of how sensations are caused.
These models have to explain complicated dynamics on continuous states with hierarchical or deep
causal structure. An example of one such generic model is shown on the right. Generative model:
Here the model comprises continuous nonlinear functions of (hidden) causes and states, at the i-
th level of a hierarchical dynamic model. The random fluctuations play the role of observation
noise at the sensory level and state-noise at higher levels. In this model, hidden causes link
hierarchical levels, where the output of one level provides input to the next. Conversely, hidden
states link dynamics over time and lend the model memory. Gaussian assumptions about the
random fluctuations specify the likelihood of the model and furnish empirical priors in terms
of predicted motion. These assumptions are encoded by the precision or inverse variance of the
random fluctuations on hidden causes and the motion of hidden states that depend on precision
parameters. The associated message-passing scheme implementing perception is shown in the next
figure. Please see Table 12.1 for a glossary of the variables in this figure
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Fig. 12.3 The schematic details a neuronal architecture that optimizes the conditional expectations
of causes in hierarchical models of sensory input of the sort illustrated in the previous figure. It
shows the putative cells of origin of forward driving connections that convey prediction-error from
a lower area to a higher area (red arrows) and nonlinear backward connections (black arrows)
that construct predictions [22, 44]. These predictions try to explain away (inhibit) prediction-error
in lower levels. In this scheme, the sources of forward and backward connections are superficial
and deep pyramidal cells (triangles), respectively, where state-units are black and error-units are
red. The equations represent a generalized gradient descent on free-energy using the generative
model of the previous figure. Predictions and prediction-error: If we assume that synaptic
activity encodes the conditional expectation of states, then recognition can be formulated as a
gradient descent on free-energy. Under Gaussian assumptions, these recognition dynamics can
be expressed compactly in terms of precision weighted prediction-errors on the causal states and
motion of hidden states (at level i of the hierarchy). The ensuing equations suggest two neuronal
populations that exchange messages; causal or hidden state-units encoding expected states and
error-units encoding prediction-error. Under hierarchical models, error-units receive messages
from the state-units in the same level and the level above whereas state-units are driven by
error-units in the same level and the level below. These provide bottom-up messages that drive
conditional expectations towards better predictions to explain away prediction-error. This scheme
suggests the only connections that link levels are forward connections conveying prediction-error to
state-units and reciprocal backward connections that mediate predictions. Note that the prediction
errors that are passed forward are weighted by their precision. This tells us that precision may be
encoded by the postsynaptic gain or sensitivity or error units, which also has to be optimized: see
[23] for further details

In summary, surprise cannot be measured directly but we can induce a bound
on surprise called free-energy and reduce this bound by optimizing the activity
and connectivity in our brains. This renders free-energy approximately the same
as surprise and obliges us to make Bayesian inferences about the state of our
world. The implementation of this optimization may rest upon the minimization
of prediction errors of the sort considered by predictive coding. In this context, the
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gradient ascent on free-energy (prediction errors) provides a plausible account of
the dynamics that underlie synaptic activity (perceptual inference) and synaptic
efficacy (perceptual learning). An important aspect of this optimization is the
proper estimation of the precision (inverse variance or uncertainty) associated with
prediction errors. In the generalized predictive coding scheme of Fig. 12.3, we
consider this precision to be encoded by synaptic gain, which has to be optimized
in exactly the same way as synaptic activity (encoding expected states of the
world) and synaptic efficacy (encoding the coupling among these states). The role
of precision or synaptic gain will become important later when we consider the
difference between action and action-observation later. The scheme described in
Fig. 12.3 has been used to explain many different aspects of perceptual learning
and inference in psychophysics and psychology. However, perceptual inference and
learning does not itself reduce surprise; it just reduces the difference between free-
energy and surprise. To understand how surprise per se is reduced, we have to
consider action and the active sampling of sensory data:

12.2.2 Active Inference

So far, we have seen that perception can be understood as furnishing a proxy for
surprise, in the sense that perception reduces the divergence between the variational
density and the true conditional density over hidden states causing sensations. In
doing this, it makes free-energy a tighter bound or better approximation to surprise.
Next, we consider how action can actually reduce surprise. In brief, we can minimize
prediction error in one of two ways: We can either change our expectations or
predictions (perception) or we can change the things that are predicted (action).
This perspective suggests that we should selectively sample data (or place ourselves
in relation to the world) so that we experience what we expect to experience. In
other words, we will act upon the world to ensure that our predictions come true
[23]. This is exactly the sort of behavior that we were trying to explain at the
beginning; namely, how do biological systems avoid surprising exchanges with the
environment?

It is fairly easy to show that the only part of free-energy that can be changed by
action is sensory prediction error. This simple fact provides a nice explanation for
how we interact with the world at a number of levels. First, in biological terms, it
suggests that our muscles are wired to cancel sensory prediction errors. We are all
familiar with this as a reflex: If I stretched the muscles in your leg by tapping the
tendons below your knee, then they respond by contracting to cancel the unpredicted
stretch-receptor signals. This reflects a basic functional architecture in movement
(motor) control whereby movements are elicited by prediction errors about the
position of limbs: at its simplest, this is the classical motor reflex. If we generalize
this view of how the brain controls our bodies, then peripheral motor or muscle
systems are enslaved to fulfill predictions. This means we only have to expect or
predict an action and it will be executed automatically. The resulting perspective
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implies a curious and ambivalent relationship between action and perception: On
the one hand, perception optimizes predictions so that action can minimize surprise,
while, on the other hand, our motor behavior is prescribed entirely by perceptual
predictions. If action and perception work in synergy, we will navigate our econiche,
never straying from well trodden paths, eluding surprise (and potential danger).

12.2.3 Summary

In conclusion, we have reviewed the motivation for the free-energy principle in
terms of explaining how self-organizing adaptive and biological systems manage
to resist a tendency to disorder. When we unpack this principle, we see that it
accommodates both perception and action, while embedding the action-perception
cycle in an evolutionary context. We have seen that the underlying imperative
of all biological systems is to minimize (a free-energy bound) on surprise; and
that surprise, self-evidently, depends upon predictions. These predictions can be
constrained by prior expectations, which allow our behavior to be optimized by
evolution and neurodevelopment (learning). In the next section, we will apply these
ideas to understand how agents emit sequences of movements or action. We will
focus on handwriting, noting that the basic principles should apply to any structured
and sequential pattern of behavior. This example has been chosen to highlight the
central role of itinerant dynamics in furnishing prior expectations about action and
concomitant perception.

12.3 Action and Its Observation

In this section, we describe a generative model of handwriting and then apply the
fee-energy scheme of the previous section to simulate emergent neuronal dynamics
and behavior. To create these simulations, all we have to do is specify a generative
model. This model and (generalized) sensations define the free-energy, which
determines the dynamics of action and neuronal states encoding the conditional
expectations of hidden states in the world. Action and perception are prescribed
by the equations in Fig. 12.2, which simulate neuronal and behavioral responses,
respectively.

PQ� D D Q� � @ Q�F .Qs.a/; �/
Pa D �@aF .Qs.a/; �/

(12.1)

The first equation represents a generalized or instantaneous gradient descent on free-
energy for the conditional expectations of hidden states causing sensory input (i.e.,
neuronal activity). The first term represents their expected generalized motion,
while the second is simply the gradient of the free-energy with respect to the
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expectations. The reason that this is a generalized descent is that it is formulated in
generalized coordinates of motion, such that the first term augments and anticipates
the descent so that it becomes effectively instantaneous. The second equality is
the equivalent gradient descent for action. Both of these equations rest upon the
free-energy, which is a function of sensory information and current expectations.
This function depends upon a generative model, which is specified completely by
equations of motion of the hidden states and a function mapping hidden states to
sensory signals (see Fig. 12.2). This means all we have to do to simulate action and
perception is to specify the equations of the generative model and then solve or
integrate Eq. (12.1) over time. In what follows, we describe the generative model
that will be used for the remainder of this chapter. We have chosen this model
because it embodies the sort of itinerant dynamics considered in previous chapters.
In particular, we focus on stable heteroclinic channels and how they prescribed
expectations about movements.

12.3.1 Itinerant Dynamics and Attractors

Our agent was equipped a simple hierarchical model of its sensorium based on
a Lotka–Volterra system. The particular form of this model has been discussed
previously as the basis of putative speech decoding [39]. Here, it is used to model
a stable heteroclinic channel [48] encoding successive locations to which the agent
expects its arm to move. The resulting trajectory was contrived to simulate synthetic
handwriting.

A stable heteroclinic channel is a particular form of (stable) itinerant trajectory
or orbit that revisits a sequence of (unstable) fixed points. In our model, there are
two sets of hidden states, which we will associate with two levels of a hierarchical
model. The first set x.2/ 2 R

6�1 corresponds to the state-space of a Lotka–Volterra
system. This is an abstract (attractor) state-space, in which a series of attracting
points are visited in succession. The second set x.1/ D fx1; x2; x0

1; x
0
2g corresponds

to the (angular) positions and velocities of two joints in (two dimensional) physical
space. The dynamics of hidden states at the first level embody the agent’s prior
expectation that the arm will be drawn to a particular location, v.1/ D g.x.2//
specified by the attractor states of the second level. This is implemented simply by
placing a (virtual) elastic band between the tip of the arm and the attracting location.
The hidden states basically draw the arm’s extremity (finger) to a succession of
locations to produce an orbit or trajectory, under classical Newtonian mechanics. We
chose the locations so that the resulting trajectory looked like handwriting. These
hidden states generate both proprioceptive and visual (exteroceptive) sensory data:
The proprioceptive data are the angular positions and velocities of the two joints
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Fig. 12.4 This schematic details a simulated (mirror neuron) system and the motor plant that it
controls (left and right, respectively). The right panel depicts the functional architecture of the
supposed neural circuits underlying active inference. The red ellipses represent prediction error-
units (neurons or populations), while the black ellipses denote state-units encoding conditional
expectations about hidden states of the world (for simplicity, we have omitted hidden causes).
The hidden states are split into two hierarchical levels: the higher abstract attractor states (that
sup-ports stable heteroclinic orbits) and lower physical states of the arm (angular positions and
velocities of the two joints). Red arrows are forward connections conveying prediction errors and
black arrows are backward connections mediating predictions. Motor commands are emitted by the
black units in the ventral horn of the spinal cord. Note that these just receive prediction errors about
proprioceptive states. These, in turn, are the difference between sensed proprioceptive input from
the two joints and descending predictions from optimized representations in the motor cortex. The
two jointed arm has a state space that is characterized by two angles, which control the position of
the finger that will be used for writing in subsequent figures

x.1/, while the visual information was the location of the arm in physical (Cartesian)
space f`1; `1C`2g, where `2.x.1// is the displacement of the finger from the location
of the second joint `1.x.1// (see Fig. 12.4 and Table 12.2).

Crucially, because this generative model generates two (proprioceptive and
visual) sensory modalities, the solutions to Eq. (12.1) implement Bayes-optimal
multisensory integration. However, because action is also trying to reduce prediction
errors, it will move the arm to reproduce the expected trajectory (under the
constraints of the motor plant). In other words, the arm will trace out a trajectory
prescribed by the itinerant priors (to cancel proprioceptive prediction errors). This
closes the loop, producing autonomous self-generated sequences of behavior of
the sort described below. Note that the real world does not contain any attracting
locations or elastic bands: The only causes of observed movement are the self-
fulfilling expectations encoded by the itinerant dynamics of the generative model. In
short, hidden attractor states essentially prescribe the intended movement trajectory,
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Table 12.2 Variables and quantities specific to the writing example of active inference (see main
text for details)

Variable Description

x.2/ 2 R
6�1 Hidden attractor states: A vector of hidden states that

specify the current location towards which the agent expects
its arm to be pulled

x.1/ 2 R
4�1 Hidden effector states: Hidden states that specify the

angular position and velocity of the i-th joint of a two-jointed
arm

`1.x.1// 2 R
2�1

`2.x.1// 2 R
2�1

Joint locations: Locations of the end of the two arm parts in
Cartesian space. These are functions of the angular positions
of the joints

v.1/ D g.x.2// 2 R
2�1 Attracting location: The location towards which the arm is

drawn. This is specified by the hidden attractor states

.x.1/; v.1// 2 R
2�1 Newtonian Force: This is the angular force on the joints

exerted by the attracting location

A 2 R
6�6 � � Attractor parameters: A matrix of parameters that govern

the (sequential Lotka–Volterra) dynamics of the hidden
attractor states

L 2 R
2�6 � � Cartesian parameters: A matrix of parameters that specify

the attracting locations associated with each hidden attractor
state

because they generate predictions that action fulfils. This means expected states
encode conditional percepts (concepts) about latent abstract states (that do not exist
in the absence of action), which play the role of intentions. We now describe the
model formally.

12.3.2 The Generative Model

The model used in this section concerns the movements of a two-joint arm. When
simulating active inference, it is important to distinguish between the agent’s
generative model and the actual dynamics generating sensory data. To make this
distinction clear, we will use bold for true equations and states, while those of the
generative model will be written in italics. Proprioceptive input corresponds to the
angular position and velocity of both joints, while the visual input corresponds to
the location of the extremities of both parts of the arm. This means the mapping
from hidden states to sensory consequences is:

g.1/ D g.1/ D

2
4

x.1/

`1.x.1//
`1.x.1//C `2.x.1//

3
5 (12.2)
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We will ignore the complexities of inference on retinotopically mapped visual input
and assume the agent has direct access to the locations of the arm in visual space.
The kinetics of the arm conforms to Newtonian laws, under which action forces the
angular position of each joint. Both joints have an equilibrium position at ninety
degrees; with inertia mi 2 .8; 4/ and viscosity �i 2 .4; 2/, giving the following
equations of motion for the hidden states

x.1/ D

2
664

x1
x2
x0
1

x0
2

3
775 f.1/ D

2
664

x0
1

x0
2

.a1 C v1 � 1
4
.x1 � �

2
/ � �1x0

1/
ı

m1

.a2 C v2 � 1
4
.x2 � �

2
/ � �2x0

2/
ı

m2

3
775 (12.3)

However, the agent’s empirical priors on this motion have a very different form. Its
generative model assumes the finger is pulled to a (goal) location v.1/ by a force
.t/, which implements the virtual elastic band above:

x.1/ D

2
664

x1
x2
x0
1

x0
2

3
775 f .1/ D

2
664

x0
1

x0
2

.T`2`
T
2O`1 � 1

16
.x1 � �

2
/ � �1x0

1/
ı

m1

.TO`2 � 1
16
.x2 � �

2
/ � �2x0

2/
ı

m2

3
775

`1 D

�
cos.x1/
sin.x1/

�
`2 D

�
� cos.�x2 � x1/

sin.�x2 � x1/

�
O D

�
0 �1

1 0

�

 D 1
2
.v.1/ � `1 � `2/

(12.4)

The (moving) target location is specified by the second level of the hierarchy as a
nonlinear (softmax) function of the hidden attractor states.

v.1/ D g.x.2// D Ls.x.2//

f .2/ D A�.x.2// � 1
8
x.2/ C

2
64
1
:::

1

3
75

�.xi/ D 1

1Ce2xi
s.xi/ D e2˛iP

j e2xj

(12.5)

Heuristically, these equations of motion mean that the agent thinks that changes in
its world are caused by the dynamics of attractor states on an abstract (conceptual)
space. The currently active state selects a location v.1/ in the agent’s physical
(Cartesian) space, which exerts a force .t/ on its finger. The equations of motion
in Eq. (12.4) pertain to the resulting motion of the arm in Cartesian space, while
Eq. (12.5) mediates the attractor dynamics driving these movements.
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The (Lotka–Volterra) form of the equations of motion for the hidden attractor
states ensures that only one has a high value at any one time and imposes a
particular sequence on the underlying states. Lotka–Volterra dynamics basically
induce competition among states that no state can win. The resulting winnerless
competition rests on the (logistic) function �.x.2//, while the sequence order is
determined by the elements of the matrix

A D

2
6666664

0 � 1
2

�1 �1 � � �

� 3
2
0 � 1

2
�1

�1 � 3
2
0 � 1

2

: : :

�1 �1 � 3
2
0

:::
: : :

: : :

3
7777775

(12.6)

Each attractor state has an associated location in Cartesian space, which draws the
arm towards it. The attracting location is specified by a mapping from attractor space
to Cartesian space, which weights different locations

L D

�
1 1:1 1:0 1 1:4 0:9

1 1:2 0:4 1 0:9 1:0

�
(12.7)

with a softmax function s.x.2// of the attractor states. The location parameters were
specified by hand but could, in principle, be learnt as described in [25, 26]. The
inertia and viscosity of the arm were chosen somewhat arbitrarily to reproduce
realistic writing movements over 256 time bins, each corresponding to roughly eight
milliseconds (i.e., a second). Unless stated otherwise, we used a log-precision of
four for sensory noise and eight for random fluctuations in the motion of hidden
states.

Figure 12.5 shows the results of integrating Eq. (12.1), using the generative
model above. The top right panel shows the hidden states embodying Lotka-
Volterra dynamics (the hidden joint states are smaller in amplitude). These generate
predictions about the position of the joints (upper left panel) and consequent
prediction errors that drive action. Action is shown on the lower right panel and
displays intermittent forces that move the joint to produce a motor trajectory. This
trajectory is shown on the lower left in visual space over time. This trajectory or
orbit is translated as a function of time to reproduce handwriting. Although this is a
pleasingly simple way of simulating an extremely complicated motor trajectory, it
should be noted that this agent has a very limited repertoire of behaviors; it can only
reproduce this sequence of graphemes, and will do so ad infinitum.

In summary, we have covered the functional architecture of a generative model
whose autonomous (itinerant) expectations prescribe complicated motor sequences
through active inference. This rests upon itinerant dynamics (stable heteroclinic
channels) that can be regarded as a formal prior on abstract causes in the world.
These are translated into physical movement through classical Newtonian me-
chanics, which correspond to the physical states of the model. Action tries to
fulfill predictions about proprioceptive inputs and is enslaved by autonomous
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Fig. 12.5 This figure shows the results of simulated action (writing), under active inference,
in terms of conditional expectations about hidden states of the world (upper right), consequent
predictions about sensory input (upper left) and the ensuing behavior (lower left) that is caused by
action (lower right). The autonomous dynamics that underlie this behavior rest upon the expected
hidden states that follow Lotka–Volterra dynamics. These are the thinner lines in the upper right
panel. The hidden physical states (thicker lines) have smaller amplitudes and map directly on to
the predicted proprioceptive and visual signals (shown on the left). The visual locations of the two
joints are shown above the predicted joint positions and angular velocities that fluctuate around
zero. The dotted lines correspond to prediction error, which shows small fluctuations about the
prediction. Action tries to suppress this error by “matching” expected changes in angular velocity
through exerting forces on the joints. These forces are shown on the lower right. The subsequent
movement of the arm is traced out on the lower left; this trajectory has been plotted in a moving
frame of reference so that it looks like synthetic handwriting (e.g., a succession of ‘j’ and ‘a’
letters). The straight lines on the lower left denote the final position of the two jointed arm and the
hand icon shows the final position of its finger

predictions, producing realistic behavior. These trajectories are both caused by
neuronal representations of abstract (attractor) states and cause those states in the
sense that they are conditional expectations. Closing the loop in this way ensures a
synchrony between internal expectations and external outcomes.
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In the next section, we will make a simple change which means that movements
are no longer caused by the agent. However, we will see that the conditional
expectations about attractor states are relatively unaffected, which means that they
still anticipate observed movements. We conclude with this example because it
illustrates nicely the potential role of itinerant dynamics in explaining some of
the higher cognitive aspects of brain function. Our focus here is on emulating the
electrophysiological phenomenology of the mirror neuron system; in particular, the
fact that certain neurons in the ventral premotor cortex and inferior parietal cortex
respond not only to the execution of particular movement primitives but also when
these movements are observed in other agents [16, 21, 27, 53].

12.3.3 Action-Observation

The simulations above were repeated but with one small but important change.
Basically, we reproduced the same movements but the proprioceptive consequences
of action were removed, so that the agent could see but not feel the arm moving.
From the agent’s perspective, this is like seeing an arm that looks like its own arm
but does not generate proprioceptive input (i.e., the arm of another agent). However,
the agent still expects the arm to move with a particular itinerant structure and
will try to predict the trajectory with its generative model. In this instance, the
hidden states still represent itinerant dynamics (intentions) that govern the motor
trajectory but these states do not produce any proprioceptive prediction errors and
therefore do not result in action. Crucially, the perceptual representation still retains
its anticipatory or prospective aspect and can therefore be taken as a perceptual
representation of intention, not of self, but of another. We will see below that this
representation is almost exactly the same under action-observation as it is during
action.

Practically speaking, to perform these simulations, we simply recorded the forces
produced by action in the previous simulation and replayed them as exogenous
forces (real causes in Eq. (12.2)) to move the arm. This change in context (agency)
was modeled by down-weighting the precision of proprioceptive signals. This is
exactly the same mechanism that we have used previously to model attention [19].
In this setting, reducing the precision of proprioceptive prediction errors prevents
them from having any influence on perceptual inference (i.e., the agent cannot
feel changes in its joints). Furthermore, action is not compelled to reduce these
prediction errors because they have no precision. In these simulations, we reduced
the log-precision of proprioceptive prediction errors from eight to minus eight. To
illustrate the key results of these simulations of action-observation, in relation to
simulated action, we recorded the activity of units encoding hidden attractor states
and examined and their relationship to observed movements:
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12.3.4 Place-Cells, Itinerancy, and Oscillations

It is interesting to think about the attractor states as representing trajectories
through abstract representational spaces (cf., the activity of place cells; [8, 47, 57].
Figure 12.5 illustrates the sensory or perceptual correlates of units representing
expected attractor states. The left hand panels show the activity of one (the fourth)
hidden state unit under action, while the right panels show exactly the same
unit under action-observation. The top rows show the trajectories in visual space,
in terms of horizontal and vertical displacements (grey lines). The black dots
correspond to the time bins in which the activity of the hidden state unit exceeded
an amplitude threshold of two arbitrary units. They key thing to take from these
results is that the activity of this unit is very specific to a limited part of Cartesian
space and, crucially, a particular trajectory through this space. The analogy here
is between directionally selective place–cells of the sort studied in hippocampal
recordings: In tasks involving goal-directed, stereotyped trajectories, the spatially
selective activity of hippocampal cells depends on the animal’s direction of motion
[5]. A further interesting connection with hippocampal dynamics is the prevalence
of theta rhythms during action: “Driven either by external landmarks or by internal
dynamics, hippocampal neurons form sequences of cell assemblies. The coordinated
firing of these active cells is organized by the prominent “theta” oscillations
in the local field potential (LFP): place cells discharge at progressively earlier
theta phases as the rat crosses the respective place field (phase precession)”
[28]. Quantitatively, the dynamics of the hidden state-units in Fig. 12.5 (upper
left panel) show quasiperiodic oscillations in the (low) theta range. The notion
that quasiperiodic oscillations may reflect stable heteroclinic channels is implicit
in many treatments of episodic memory and spatial navigation, which “require
temporal encoding of the relationships between events or locations” [17], and may
be usefully pursued in the context of active inference under itinerant priors.

Notice that the same “place” and “directional” selectivity is seen under action
and observation (Fig. 12.6 right and left columns). The direction selectivity can be
seen more clearly in the lower panels, in which the same data are displayed but
in a moving frame of reference (to simulate writing). They key thing to note here
is that this unit responds preferentially when, and only, when the motor trajectory
produces a down-stroke, but not an up-stroke. There is an interesting dissociation
in the firing of this unit under action and action-observation: during observation
the unit only starts responding to down-strokes after it has been observed once.
This reflects the finite amount of time required for visual information to entrain the
perceptual dynamics and establish veridical predictions.
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Fig. 12.6 These results illustrate the sensory or perceptual correlates of units encoding expected
hidden (attractor) states. The left hand panels show the activity of one (the fourth attractor) hidden
state-unit under action, while the right panels show exactly the same unit under action-observation.
The top rows show the trajectory in visual space in terms of horizontal and vertical position (grey
lines). The dots correspond to the time bins during which the activity of the state-unit exceeded
an amplitude threshold of two arbitrary units. The key thing to take from these results is that the
activity of this unit is very specific to a limited part of visual space and, crucially, a particular
trajectory through this space. Notice that the same selectivity is seen under action and observation.
The implicit direction selectivity can be seen more clearly in the lower panels, in which the same
data are displayed but in a moving frame of reference to simulate writing. The key thing to note
here is that this unit responds preferentially when, and only when, the motor trajectory produces a
down-stroke, but not an up-stroke

12.4 Conclusion

In this chapter, we have tried to show that some aspects of action, perception
and high-level (cognitive) inference are consistent with (Bayes-optimal) active
inference under the free-energy principle. Put simply, the brain does not represent
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intended motor acts or the perceptual consequences of those acts separately. The
constructs represented in the brain are both intentional and perceptual: They are
amodal inferences about the states of the world generating sensory data that have
both sensory and motor correlates, depending upon the context in which they
are made.The predictions generated by these representations are modality-specific,
prescribing both exteroceptive (e.g., visual) and interoceptive (e.g., proprioceptive)
predictions, which action fulfils. The functional segregation of motor and sensory
cortex could be regarded as a hierarchical decomposition, in the brain’s model of
its world, which provides predictions that are primarily sensory (e.g., visual cortex)
or proprioceptive (motor cortex). If true, this means that high level representations
can be used to furnish predictions in either visual or proprioceptive modalities,
depending upon the context in which those predictions are called upon.

In one sense, this conclusion takes us back to very early ideas concerning the
nature of movements and intentions. The notion of an ideomotor reflex or response
was introduced in the 1840s by the Victorian physiologist and psychologist William
Benjamin Carpenter. The ideomotor response (reflex) refers to the process whereby
a thought or mental image induces reflexive or automatic movements, often very
small and potentially outside awareness. Active inference formalizes this idea and
suggests that all movements are prescribed by mental images that correspond to
prior beliefs about what will happen next. These priors are inherently dynamic and
itinerant. This suggests that our exchanges with our environment are constrained to
an exquisite degree by local and global brain dynamics; and that these dynamics
have been carefully crafted by evolution, neurodevelopment, and experience to
optimize behavior.

Acknowledgements I am indebted to Mikhail Rabinovich for his guidance and insights into
winnerless competition and its formulation in terms of generalized Lotka–Volterra systems that
underly the work presented in this chapter. The Wellcome Trust funded this work.
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Chapter 13
Olfactory Computation in Insects

M. Komarov, M. Stopfer, and M. Bazhenov

13.1 Synchronized Oscillations in Antennal Lobe

Olfactory neurons respond to static stimuli with oscillatory and temporally
structured responses. The presence of odor-elicited oscillations in the olfactory sys-
tems of many animals including insects suggests oscillatory neural synchrony may
play a fundamental role in odor encoding. Indeed, when the 20 Hz oscillations were
specifically blocked by locally injecting picrotoxin into the antennal lobe (AL,
Fig. 13.1), locust olfactory neurons in a brain area called the beta lobe underwent a
breakdown in the specificity of odor responses [1], and honeybees, in a behavioral
test, lost the ability to discriminate similar odors [2]. These results demonstrate
oscillatory synchronization of AL neurons is needed for fine odor discrimination.

Computational models helped reveal mechanisms underlying synchronized net-
work oscillations. Spikes in excitatory cells trigger spikes in widely branching
postsynaptic inhibitory neurons, whose spikes, in turn, produce inhibitory potentials
in excitatory cells. This inhibition systematically delays and synchronizes the
generation of the next excitatory response, thereby creating widespread network
oscillatory synchrony [3]. A model of spike synchronization in the honeybee AL,
also dependent on local inhibition, has been proposed to explain the experimentally
observed impairment of sensory discrimination when inhibition is blocked [4].
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Fig. 13.1 Information flow in the insect olfactory system. Olfactory receptor (OR) neurons in
the antenna provide simply structured input to the antennal lobe (AL). There, projection neurons
(PNs) and local neurons (LNs) interact in part through feedback inhibition (f.b.i) to transiently
synchronize spiking, and to generate complex temporal firing patterns in PNs. PNs then provide
distributed and temporally structured output to the Mushroom body (MB) and lateral horn (LH).
In the MB, intrinsic neurons called Kenyon cells (KCs) interact through feedback inhibition with
the unique Giant GABAergic Neuron (GGN), resulting in very sparse and specific firing in KCs.
GGN also provides feedforward inhibitions (f.f.i) to the LH

13.2 The Role of Plasticity in Dynamics of AL

Interestingly, AL oscillations are generally not evoked by the first presentation
of an odorant. Oscillations, rather, emerge gradually over the course of multiple
encounters with a given odorant, provided the encounters occur close together in
time. Electrophysiological [5] and computational [6] evidence suggests the increase
in oscillatory synchronization results from activity-dependent plasticity within
the AL. In a computational test of this hypothesis, we prepared three versions of a
realistic model of the AL [6]: one with fixed synaptic weights, one in which only fast
GABAA receptors could facilitate given repeated stimulation, and one in which both
fast and slow inhibitory receptors could facilitate (see complete model description
in [6]). In facilitating models, the initial strengths of the inhibitory receptors were
set to be too weak to maintain synchronous PN oscillations. Figure 13.2 shows
the average network response (local field potential, LFP) and membrane potentials
for one PN and one LN from the network during the first five trials with an odor
stimulus. The model with fixed, strong synapses responded with relatively consistent
patterns in all five trials (Fig. 13.2a). The model with initially weak, facilitating fast
GABAA receptors displayed strong onset responses followed by reduced network
activity, caused by the increasing activation of slow inhibitory receptors. Although
oscillatory synchrony increased, as observed in vivo, the average number of PN
spikes changed very little (less than 30%) during subsequent trials with the same
odor, inconsistent with experimental results. Figure 13.2b illustrates the results
obtained from the model in which both fast and slow inhibition could facilitate. This
network started with intense PN responses only partially reduced by initially weak
slow inhibition. PN firing rates were high during the first few trials and decreased
over subsequent trials, a result of the facilitation of slow inhibition. Figure 13.2c
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Fig. 13.2 Evolution of the AL responses over repeated stimulus presentations. (a) No plasticity.
(b) Plasticity in both fast GABAA-type and slow GABAB-type synapses. Without facilitation of the
slow inhibitory receptors, PN firing rates changed very little during training. Application of odor
indicated by 500 ms line beneath responses in each panel. (c) Simultaneous recordings of LFP, PN,
and LN from the locust reveal a similar response evolution. Calibration: stimulus bar, 1 s; vertical
bar, 0.6 (LFP), 18 (PN), 5 (LN) mV

shows experimental results from locust illustrating both the increase in oscillatory
power and the decrease in spike count over the first few trials.

Thus, our models suggest that facilitation of both fast and slow inhibition during
repetitive trials is needed to account for our experimental results. The models
indicate that this plasticity, when engaged by repeating odor stimuli (as often occurs
in nature) achieves robust stability against noise.
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13.3 Transient Synchronization and Role of Inhibition
in Olfactory Computation

In the locust, GABAA-dependent synchronization of a given pair of PNs is generally
transient. Usually, after a few hundred milliseconds of firing spikes that are phase-
locked to the oscillations, the synchrony between action potentials in a given PN and
the field potential oscillations is lost; then, other subsets of PNs become transiently
synchronized. Computer models of the locust AL have suggested that the transient
nature of PN synchronization could be explained by variations in inhibitory drive
from inhibitory LNs over the duration of the odor-elicited response (Fig. 13.3) [7].
To test these ideas we first simulated a small network that had intact inhibitory
synapses between two LNs and from the LNs to PNs. The stimulus, delivered
to both LNs and to two of the PNs (PN1 and PN2 in Fig. 13.3a), elicited an
oscillatory response in the network. Both LNs started to fire synchronously, but
the LN–LN inhibition quickly organized the fast periodic synchrony into a slower
sequence of out-of-phase patterns (Fig. 13.3b): each LN produced periodic (20 Hz)
Ca2C spikes during 100–200 ms epochs, interrupted by epochs of subthreshold
oscillations. These interruptions were caused by inhibitory input from the other LN,
which displayed a complementary activity pattern. This slower patterning of LN
oscillations and antagonistic activity depended on the rate at which LN responses
adapted (see Fig. 13.3a) and also on the input from other neurons and external
stimulation. The oscillations in one of the LNs always started at a higher frequency,

Fig. 13.3 (a) Lateral inhibition between LNs led to alternations in the temporal structure of LN
oscillation. Variations in LN-evoked fast IPSPs changed the temporal patterns of PN activity. (b)
Blocking LN–LN reciprocal connections made these cells oscillate regularly, thus decreasing the
complexity of PN responses
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which dampened the activation of the other LN. After a few cycles, activation of
the Ca2C-dependent potassium current in LN1 reduced the frequency of its Ca2C

spikes, thus diminishing the inhibitory input to LN2. LN2 then “escaped” from its
“silent” state, producing periodic Ca2C spikes, which, in turn, damped oscillations
in LN1. The timescale of this slower temporal structure was determined by the rate
of LN spike adaptation (controlled mainly by the KC(Ca2C) current in LNs) and the
strength and time constant of LN–LN interactions. Blocking reciprocal inhibition
between LNs eliminated this slow patterning; both neurons then displayed sustained
synchronous periodic activity (Fig. 13.3b).

13.4 Computational Properties of Network of Inhibitory
Interneurons in AL

Recent theoretical work led to a new strategy based on graph coloring theory to
describe transient AL network dynamics [8]. In inhibitory neuronal networks, LNs
that are not interconnected are labeled with a particular “color”; LNs sharing this
color can be active at the same time and can collectively inhibit LNs associated
with a different color. In a model of the AL, these dynamics lead to alternating
patterns of firing among groups of LNs [9]. This model of inhibitory network
dynamics mediated by lateral inhibition between LNs can account for transient
synchronization patterns of olfactory neurons in the AL. The role LN–LN inhibition
may play in promoting competition among olfactory glomeruli has been also
explored [10, 11] and a model of olfactory memory based on altering lateral
inhibition in the honeybee’s AL has been proposed [12].

Another recent theoretical study [13] demonstrates that even a minimal inhibitory
network can generate a great diversity of spatio-temporal patterning including
complex regimes with non-trivial firing burst ratios. We show that the heterogeneity
of the input profile leads to rich spatiotemporal bursting dynamics, including
non-regular patterns and complex bursting regimes, when neurons are locked in
non-trivial activation ratios (2:3, 1:2, 1:3 etc.). Figure 13.4 shows several distinctly
different possible types of activity in small networks, which consist of two (panels
a, b) and 3 (panels c–f) mutually connected inhibitory neurons. The pair of mutually
inhibiting neurons demonstrated two types of dynamics: (1) the first type represents
a complete inhibition of one neuron by another one (Fig. 13.4a); (2) the second type
is an alternating bursting rhythm (Fig. 13.4b). The strength of internal adaptation
current IAHP (Ca2C-dependent KC afterhyperpolarization current) controlled the
type of behavior in the neural circuit. In the first case (Fig. 13.4a) the spike-
frequency adaptation was too weak (because of the small Iahp), such that the
presynaptic neuron oscillated at a high firing rate, sufficient to constantly suppress
the postsynaptic neuron. In contrast, when IAHP was large, the interplay between
intrinsic spike-frequency adaptation and mutual inhibition led to the alternating
bursting rhythm shown in Fig. 13.4b [14]. The strong adaptation current IAHP caused
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Fig. 13.4 Sequential bursting dynamics in a network of inhibitory neurons in a Hodgkin–Huxley-
type model. (a) One neuron is active and completely inhibits activity in the other neurons.
(b) Alternating bursting rhythm caused by an increase in the impact of adaptation current (IAHP).
(c) Simple bursting wave in the network of three mutually inhibiting neurons is shown. (d) Non-
regular behavior induced by strong heterogeneity of input profile in the network. (e), (f) Strong
difference in external inputs Iext

i induced complex bursting, characterized by non-trivial burst
activation ratios: 2:3 for panel (e) and 1:2 for panel (e). Stars denote bursts during initial transient
period, which reflected ranking of external inputs: Iext

3 > Iext
2 > Iext

1 for panel (c) and Iext
1 > Iext

2 >

Iext
3 for panels (d)–(f) (numeration from top to bottom). Vertical arrows indicate the stimuli onset.

The network had been in a resting state before inputs were applied. Baseline current I0 D 2:2

a significant decrease in the firing rate of the active presynaptic neuron (after a
period of activity), which resulted in the escape of the postsynaptic neuron from
inhibition. Hence, neither of the two neurons could suppress the activity of its
postsynaptic target for very long, giving rise to the anti-phase bursting rhythm [14]
shown in Fig. 13.4b.

Similarly, the intrinsic adaptation current determined the type of behavior
generated by all-to-all connected networks that contain N > 2 inhibitory neurons
with strong synaptic connections (Fig. 13.4c–f). As in the previous case, weak
adaptation (small IAHP) allowed one neuron to dominate with periodic spiking
activity (not shown), but when IAHP was strong, the interplay between intrinsic
spike-frequency adaptation and mutual inhibition resulted in sequential bursting
dynamics. However, in contrast to the relatively simple alternating bursting patterns
observed in pairs of neurons, networks with more than two elements exhibited
much more complex behavior [15], ranging from fairly simple bursting waves (for
relatively small j�Ij, Fig. 13.4c) to the more complex bursting patterns shown in
Fig. 13.4d–f for larger j�Ij. Here j�Ij represents a key parameter in our study,
which reflects the difference between external inputs Iext

i (index i denotes number of
the neuron), which were applied to inhibitory neurons in the network:
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Iext
1 D I0 C�I; Iext

2 D I0 C�I=2; Iext
3 D I0 (13.1)

Large parameters of j�Ij indicates large heterogeneity of the input profile. It is
worth noting that in the simulation shown in Fig. 13.4c, the detuning parameter was
negative (�I < 0), meaning that the stimuli were ranked as Iext

3 > Iext
2 > Iext

1 [see
Eq. (13.1)]. This stimulus regime resulted in a counter-clockwise oriented bursting
wave (3 ! 2 ! 1), with activity following the ranking of external stimuli
(we refer to this as the “correct” sequence of activations). Notably, the counter-
clockwise bursting wave was an attractor (for relatively small j�Ij), meaning that
the network will go on to generate the same sequence repeatedly. For larger values of
the heterogeneity parameter j�Ij the resulting dynamics can be fairly complicated,
as illustrated by several examples in Fig. 13.4c–f. Strongly heterogeneous input
profiles led to complex dynamics when highly stimulated elements got activated
more frequently (Fig. 13.4d–f). In some cases this stimulus regime led to the non-
regular intermittent dynamics shown in Fig. 13.4d. However, high heterogeneity
j�Ij typically induced oscillations with fixed non-trivial ratios of bursting activation.
Examples are given in Fig. 13.4e,f. For both cases �I was positive and sufficiently
large, so the third element received the smallest stimulus. As a result, the ratio of
activations of the third neuron to the first two neurons was 2:3 in panel h (�I D 1:3)
and 1:2 in panel i (�I D 1:75).

To expand our hypothesis regarding the link between external inputs amplitudes
Iext
i and spatio-temporal bursting dynamics of the network, below we analyze

sequences of bursts generated by the network of inhibitory N D 3 neurons given
a generic form of the input.

Figure 13.5a presents a division of the plane of external inputs into regions of
different activation sequences generated by an adaptive integrate-and-fire model
(description of the model in [13]). Here, sequences are the orders in which neurons
produced bursts during the initial period following stimuli onset (Fig. 13.5c–f). In
areas B1;2 and C1;2 the activation order was strictly determined by the ranking of
stimuli. In those regions of inputs we observe (a) high reliability of the network
responses: different sets of external stimuli Iext

i can elicit the same spatio-temporal
patterns; and (b) sensitivity to the form of the input: a change in the ranking of Iext

i
immediately causes a change in the elicited spatio-temporal pattern. In the areas B3
and C3 the overall difference of external currents was large enough to cause the first
two neurons to suppress the third one, at least during first two activation cycles.
Hence, our analysis predicts that the knowledge of the sequence of bursting in the
inhibitory network makes it possible to reconstruct the ranking of the amplitudes of
external stimuli driving the neurons. We tested this hypothesis using the elementary
network of N D 3 globally coupled inhibitory neurons. Below we will show that
these principles are generic and hold for the larger networks.

In many systems, activation of sensory receptor neurons can be described by
a sigmoidal function of the odor concentration (Fig. 13.6a) [16]. In the olfactory
system, for example, different types of odor receptors have different sensitivities
for a given odor that can be described as a relative shift in their activation curves
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Fig. 13.5 Sequences of bursts in the network of N D 3 neurons predict the pattern of external
inputs. (a) Different regions on plane of parameters (Iext

1 ; I
ext
1 ) are shown for the integrate-and-fire

model (see model description in [13]). Baseline current (which was the same for all three neurons)
I0 D 2:0. (b) The same as in the panel (a) but for the conductance-based model (see model
description in [13]). (c)–(f) The dynamics of neurons modeled in different regions on the plane
(Iext
1 ; I

ext
2 ) [panel (a)]

(Fig. 13.6a). In insects, the axons of olfactory receptor neurons project to the
antennal lobe (AL) where they make connections to populations of excitatory
projection neurons (PNs) and local neurons (LNs) that are, for the most part,
inhibitory. We showed previously that the inhibitory connections between LNs
determine the pattern of sequential LN activation, and also that this pattern underlies
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Fig. 13.6 Dynamics of the inhibitory network (N D 9) in the context of the information
processing in the olfactory system. (a) Responses of different olfactory receptor neurons (different
curves) to a given odor as a function of an odor concentration (x-axis). (b) Inputs Iext

i from
different olfactory receptor neurons to the inhibitory LNs of the AL network model are shown
as a function of the LN index in the network (x-axis). The plot illustrates three different stimuli
S1;2;3. S1 corresponds to the moderate odor concentrations and the large difference in the receptor
neurons firing rates. S2 and S3 correspond to the strong and weak odor concentrations, respectively.
(c), (d) Spatio-temporal network dynamics are plotted for the different stimuli S1 [panel (c)],
S2 [panel (d)]

the synchronization properties of postsynaptic excitatory PNs [8, 14]. This earlier
work, however, assumed all of the inhibitory neurons of the AL network received
identical input. Below, we consider a more realistic network of N D 9 inhibitory
AL neurons, each receiving different inputs from receptor neurons. Although this
model was not specifically designed to simulate the detailed dynamics of the AL, it
can nonetheless provide important insights about patterns of activity in the densely
connected population of olfactory neurons. We tested a stimulus at three different
concentrations, denoted S1;2;3 (Fig. 13.6b). For the sake of simplicity, we assumed
an equidistant profile of the inputs. For the stimulus (S1) with a “moderate”
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concentration, distinct olfactory receptor types responded with different and distinct
firing rates without saturating, thus providing a representation of the input with a
large dynamic range (differences in Iext

i ) to the inhibitory neurons (LNs of the AL)
(Fig. 13.6a, b, green line).

The dynamics of the network simulated by the conductance-based model (see full
description of the model in [13]) is shown in Fig. 13.6c. Relatively large differences
of Iext

i in the applied inputs resulted in a clear bursting pattern: the neurons were
activated according to the ranking of external stimuli Iext

i . Because of noise in
the system, this precise dynamical pattern degraded over time, with subsequent
sequences displaying less fidelity to the input ranking. Thus, in agreement with our
theoretical analysis, the initial (upon stimuli onset) sequence of bursts generated by
the network reflected the ranking of the inputs, and allowed reconstruction of the
relative magnitudes of the external inputs from observed patterns of activity. When
the odor intensity was high (S2), olfactory receptors responded at a high firing rate,
but within a narrow range of amplitudes across receptor types, providing a small
dynamical range of inputs to the LNs of the AL (Fig. 13.6a, b, blue line). In this case
the outputs of the receptors saturated (“upper” part of the sigmoid, see Fig. 13.6a,
b, blue line). In a network given inputs containing only a small difference in the
range of intensity, sequence generation is unstable against noise, so the network
dynamics did not well reflect input ranking (Fig. 13.6d). As expected, a low odor
concentration S3 (Fig. 13.5a) resulted in a small and narrow distribution of inputs
Iext
i to LNs (Fig. 13.6a, b, red line), which failed to evoke any significant response

from the LN network (data not shown).
We conclude that the relationship we propose between the dynamics of the

inhibitory network and the structure of the input can degrade in noisy networks
that are given only a narrow range of input amplitudes. However, the relationship
held firm in the networks when the input pattern contains enough dynamic range to
offset the effects of noise.

13.5 Conclusions

While the synchronization of PNs in the insects AL can be abolished by application
of the GABAA-blocker picrotoxin, experiments performed in vivo have shown that
the slower firing pattern structures (alternating depolarizing and hyperpolarizing
modes) are not affected by this treatment [1, 2]. In locusts, the origins of slow
temporal patterning have been explored with electrophysiological studies and
computational models. These patterns begin in olfactory receptor neurons, which
respond to odors with a variety of simple firing patterns. The heterogeneity of these
responses is an essential ingredient for the generation of more elaborate patterns
downstream in the AL [17]. There, in the AL, the slow inhibitory receptors between
LNs and PNs, which operate with a time constant of a few hundred milliseconds,
are essential for translating the simple but varying input received from the receptor
neurons into the stimulus-specific slow temporal patterning of PN responses [18].
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The sequences in which periods of excitation, inhibition, and quiescence appear are
different among PNs, and vary reliably with the stimulus. Relatively slow calcium
and calcium-dependent potassium channels of PNs may further contribute to slow
temporal patterning in the AL [19].

What is the functional significance of the temporal structure of olfactory neuron
responses? As shown in zebrafish [20], the slow temporal patterning in mitral
cells appears to play a major role in the decorrelation of odor representations. The
responses of a population of mitral cells to a series of chemically similar odorants
were highly correlated at the onset of the odor stimulation, but became progressively
less correlated over the duration of the odor response. Recent computer modeling of
the AL suggested that odor-specific evolution of PN activity can lead to an optimal
encoding of the odor representation that decreases the overlap between odor-elicited
PN spiking patterns [17, 21]. This increases the ability of downstream neurons to
discriminate among odors. A balance between inhibitory and excitatory connections
mediated by local AL interneurons enhances the decorrelation of similar odors while
keeping the representation robust in the presence of noise.

In insects, output from relatively small populations of olfactory neurons in the AL
fans out broadly to large interneuronal ensembles in the mushroom body (Fig. 13.1).
Fully half of all PNs synapse directly upon each KC in the mushroom body, a
connectivity scheme that maximizes the coding space available for odors [22].
Electrophysiological recordings indicate that KCs respond sparsely and specifically
to odors: a given odor induces only a brief response in only a small subpopulation
of KCs [23]. Mechanisms contributing to the specificity of this response include
intrinsic nonlinear conductances in the KCs that respond best to coincident input
from PNs, and inhibitory input from GGN [24] that regulates the amount of firing
in KCs (Fig. 13.1). Physiological and modeling results show the precise timing
established by AL circuitry is maintained not only within KCs, but also by their
neural followers in the beta lobe [25]. Interestingly, odor specific timing precision
is maintained in the beta lobe neurons, in part, by spike-timing dependent plasticity
(STDP).

Computational models of the insect olfactory system have explored the proposal
that AL circuitry reformats information about odors, distributing it into the identities
of PNs responding to the odor, and into the relative timing of spikes in those PNs.
Temporal features appear to become critical to the animal when discrimination tasks
are more challenging, such as discriminating among PN ensembles that substantially
overlap. Thus, AL actively sharpens information about the olfactory stimulus by
employing time and transient synchrony as coding dimensions. Understanding
and testing hypotheses about these complex biological processes has been greatly
facilitated by the use of computational models.
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Chapter 14
Respiratory Neural Network: Activity
and Connectivity

Laurence Mangin and Maurice Courbage

14.1 Introduction

The human respiratory system displays several levels of complexity: the bronchial
tree has a fractal structure with various degrees of self-similarity and the airflow
dynamics inside exhibits chaos during rhythmic breathing (Fig. 14.1).

Why rhythmic breathing generates chaos in human airflow?
Misha Rabinovich, whom we are happy to dedicate this article on the occasion

of his 75th anniversary, was the precursor to think this fundamental problem.
Rabinovich and Abarbanel [20] consider that the utility of chaos for nervous system
can come from the multitude of synchronization schemes forming regular and
organized behaviors in the connected networks of the brain. In neural activity
in general, synchronization is basic for maintaining organized mechanism. Its
deregulation may lead to decease for many reasons among them respiratory failure.

Breathing involves a complex interplay between the automatic brainstem net-
work and the voluntary cortical command [9, 22]. Both networks interact harmo-
niously to control respiratory muscles contraction, thereby ensuring normal blood
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Fig. 14.1 The chaotic behaviors of the airflow in one healthy subject and one COPD patient
are evidenced. The reconstructed attractors in the phase plane are shown on the left panel for
one healthy subject during inspiration (a) and for one COPD patient during expiration (b). The
corresponding time series are shown on the right panel

gas levels either during speech, volitional breathing, or ventilatory load increase.
However until now the communication within the network is unknown.

In the first section we present a study of the link between chaos in the time series
of successive amounts of airflow breath and the levels of activation of the neural
circuits that control the automatic respiration. We will see how the activity of these
circuits is affected by the disease of respiratory failure (COPD) and will study the
role of chaos as a marker of the disease. A mathematical model, inspired by recent
works on animals, was adapted to model these behaviors and compared with fMRI
data.

In the second section we will see that when breathing at rest and during
inspiratory loading, the motor cortex area in the patients had weaker connectivity,
compared with the controls (healthy subjects), and no connectivity with the brain-
stem. These findings are crucial for patients. Causality analysis showed a reversal
of the roles of the brainstem and motor cortex in the patients, as compared with
the controls. This connectivity analysis highlights that the neural driver role of the
network shifted in the patients from the medulla to the motor cortex. We shortly
discuss the physiological impacts of these findings.
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14.2 Chaos and Excitability in the Respiratory System

Breathing is maintained and controlled by a network of neurons in the brainstem
that generates respiratory rhythm while receiving regulatory inputs. Pace-maker like
neurons generating rhythmic breathing have been first identified in two brainstem
regions in rodents, one located in the rostral ventro-lateral (VL) medulla, called the
pre-Bötzinger complex [7], and the other close to this region, called the parafacial
respiratory group located in the pons [15, 18, 24]. The pre-Bötzinger complex is
in charge of inspiration and the parafacial group in charge of expiration. Recent
evidence suggests that both groups of neurons are coupled oscillators that work in
tandem to synchronize respiratory rhythm [15, 18, 25]. Moreover, these automatic
neuronal groups have two important properties: they are capable of different
synchronization regimes depending on the level of their excitabilities [25] and their
dynamics exhibit chaotic spike-bursting oscillations in some circumstances [4].
Indeed, neural population activity recorded locally in the pre-Bötzinger complex of
neonatal rat brainstem slices exhibits chaotic dynamics, when neuronal excitability
is progressively elevated [4]. This is a strong argument to hypothesize that the chaos-
like complexity of airflow in humans is also an intrinsic property of neural central
respiratory generators. It is known that breathing is also modulated by the state of
airways, by the chest wall, the lung, by chemical afferents sensitive to anomalies
like hypercapnia, hypoxia, or acidosis and by mechanical afferents from the airway,
lung, chest wall, respiratory muscles as well as by commands from the upper part
of the pons. A study has shown that the structural and mechanical properties of
the bronchial tree, lung, and chest wall in humans are not sufficient to generate
chaos in airflow in the absence of a central neural drive [17]. Nevertheless, it
was still unclear in humans to what extent the complex and chaotic dynamics of
the respiratory center contributes to airflow complexity. Therefore, we used both
experimental and theoretical approaches to decipher the brainstem neural substrates
of ventilatory complexity in healthy humans and patients with chronic obstructive
pulmonary disease (COPD).

COPD is the most frequent chronic lung disease in the general population and is
mainly due to tobacco smoke. Patients with COPD have an impaired lung function
with an increased respiratory load due to small airways obstruction by inflammation
and remodeling. Lung parenchyma destruction is often associated with small
airways obstruction and hyperinflation and respiratory muscles weakness. These are
key factors contributing to load-capacity imbalance and hence increased respiratory
drive [16]. At the end stage of the disease, the patients have respiratory insufficiency
with home oxygen therapy while the neural respiratory drive is extremely high. We
explored airflow data from a population of COPD patients and healthy subjects. We
found that patients with COPD breathe with a higher level of complexity in airflow
than healthy subjects (Fig. 14.2). These findings cast doubt on the traditional view
that complexity systematically degrades in disease state [11, 19]. Inspiratory and
expiratory complexity changes in parallel with the activity of the VL medulla and
VL pons as assessed through fMRI (Fig. 14.2).
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Fig. 14.3 Central neural correlates of airflow dynamics in the whole population using multiple
linear regression. Both the amplitude of the low frequency oscillations (ALFO) and the pulmonary
function index FEV1/FVC significantly predict expiratory flow complexity: the lower the pul-
monary function, the higher the value of the AlFO of ventro-lateral pons and the higher the
complexity of expiration

Moreover, we found in patients that chaos in the expiratory flow was higher
than the inspiratory flow, and this was correlated with the high parafacial activity,
the neural group responsible for expiration (Fig. 14.3). Remember that for healthy
subjects important activation of the pre-Bötzinger complex is linked to a high active
inspiration.

These results were reinforced by the mathematical model reproducing respiratory
rhythmogenesis in healthy subjects and patients [13].

14.3 Mathematical Model of Respiratory Rhythmogenesis

Two pacemaker-like neurons have been identified in mammals in the ventro-
lateral column of the brainstem, the pre-Bötzinger complex inspiratory group and
parafacial expiratory group, respectively [7, 15, 18, 24]. Previous works showed that
the parafacial group exhibits pre-inspiratory activity [8, 18] as well as a rebound
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bursting after inspiration [8] while the dynamics of both pacemakers display
chaotic spike-bursting oscillations [4]. We therefore chose to develop a map-based
model for respiratory rhythmogenesis for its relative simplicity compared with
Hodgkin–Huxley formalism, and for its ability to generate several regimes of
spontaneous bursting activity [1, 2]. The model is developed based on the discrete
version of FitzHugh–Nagumo model by adding Heaviside step function H.x/. Each
pacemaker is modeled by the two-dimensional original map which is further refined
to incorporate post-inhibitory rebound bursting behavior typical in the automatic
breathing involving the pre-Bötzinger complex inspiratory group and parafacial
expiratory group:

8̂
<̂
ˆ̂:

Nx D x C F.x/ � y � ˇH.x � d/

Ny D y C ".x1 � .J C IT C Isyn//
Nk D k C G.k/

(14.1)

where x qualitatively defines the dynamics of the membrane potential of the neuron
and y is the common variable specifying the dynamics of all outwards ionic currents
(recovery variable). ˇ and d control the threshold properties of the oscillation, � is
a positive parameter setting the time scale of the recovery variable y. J is associated
with excitability properties of the neuron; F.x/ is a piece-wise linear version of the
cubic function in the FitzHugh–Nagumo model and H.x/ as follows:

F.x/ D

8̂
<̂
ˆ̂:

�m0x; x < Jmin;

m1.x � a/; Jmin � x < Jmax;

m0.x � 1/; x 	 Jmax;

H.x/ D

(
1; x 	 0;

0; x < 0:
(14.2)

with

Jmin D
am1

m0 C m1

; Jmax D
m0 C am1

m0 C m1

; m0;m1 > 0:

IT is a low-threshold calcium Ca2C current [23] defined as:

IT D ıkH.x � xth/ (14.3)

where k in Eq. (14.2) is a slow variable representing the inactivation of the low-
threshold calcium conductance, which involves T-type Ca2C calcium channels and
produces a transmembrane current IT . ı represents the maximum conductance
associated with IT . G.k/ represents the dynamics of IT as follows:

G.k/ D

(
� k
�1

if x 	 xth

1�k
�2

if x < xth

(14.4)
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In this form the model is capable of post-inhibitory rebound bursting when xth is
below the resting values of x. In Eq. (14.4), �1 sets the duration of the burst and
�2 sets the duration of the hyperpolarization necessary to recruit a maximal post-
inhibitory rebound response.

In Eq. (14.1), Isyn is the chemical synaptic coupling between the pre-Bötzinger
complex and the parafacial group in the following form:

Isyn D ıK
X
ni<n

rect.ni; n�/ (14.5)

where K is the coupling strength whose value is positive for excitatory synapse and
negative for inhibitory synapse and rect is the rectangle function as described below:

rect.ni; n; �/ D

(
0 if jn � nij > �

1 if jn � nij � �
(14.6)

where ni is the step of the ith spike in the presynaptic neuron and � is the duration of
the postsynaptic current. A post-inspiratory inhibitory feedback is introduced from
the parafacial respiratory group with the same amplitude and duration of the rebound
bursts for “inspiratory off-switch” to prevent the pre-Bötzinger from reactivation.

The present model is the first attempt to reproduce respiratory rhythmogenesis
in healthy humans and COPD patients with experimental data. The model considers
two chaotic pacemakers, the inspiratory (Pre-Bötzinger) and expiratory (parafacial)
generators that work together via chemical synaptic connection, either activated or
inhibited, to synchronize the respiratory cycle. Different dynamics are evidenced
depending on the excitability level of the neurons. In the model, the parameters J1
and J2 represent the excitability level of the parafacial and pre-Bötzinger, respec-
tively. Experimental results show that healthy subjects display more complexity
during inspiration than expiration and that the low frequency oscillations of the
fMRI BOLD (“blood oxygen level dependent”) signal located in the rostral VL
medulla have higher amplitude than oscillations of the caudal VL pons (Fig. 14.2
bottom). From this, we postulate that the pre-Bötzinger complex is highly likely
more excitable than the parafacial group, and drives the respiratory rhythm (active
inspiration). Simulation of this network scheme is shown in Fig. 14.4 with two
possible regimes depending on the parameter values J1 and J2.

In the first regime (Fig. 14.4a), the parafacial has a very low excitability and is
entirely depressed with no action potential. This network scheme is similar to the
one described in adult rats, the “no-handshake process” [25]. The corresponding
attractor of this scheme entirely relies on the pre-Bötzinger dynamics (Fig. 14.5a).

In the second regime (Fig. 14.4b), while the pre-Bötzinger is the dominant
pacemaker still driving the respiratory cycle, the parafacial group is occasionally
activated by specific physiological conditions (exercise for instance). Experimental
results show in COPD patients that airflow complexity is higher during expiration
than inspiration and that the low frequency oscillations of the BOLD signal located
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Fig. 14.4 Simulations of different synchronization regimes in healthy subjects (a, b) and COPD
patients (c, d) are depending on the excitability level of the parafacial respiratory group (J1) and the
pre-Bötzinger complex (J2). Other fixed parameter values of the model are: � D 0:005, d D 0:4,
ˇ D 0:4, a D 0:2, m0 D 0:864, m1 D 0:65, ı D 0:2, xth D �0:02 (threshold for calcium
current), �1 D 10 and �2 D 2 for the parafacial while �1 D 5 and �2 D 10 for the pre-Bötzinger.
In COPD patients, the parafacial respiratory group of the brainstem has a higher excitability level
than healthy subjects and drives the pre-Bötzinger (active inspiration and expiration)

in the VL pons have higher amplitude than the oscillations of the VL pons of healthy
subjects. In patients, we therefore hypothesize that the expiratory neurons located
in the VL pons are more excitable than the pre-Bötzinger and drive the respiratory
cycle. In this network, the more excitable parafacial group triggers the pre-Bötzinger
which in turn inhibits the parafacial with a post-inhibitory rebound burst. Then, the
parafacial switches-off the inspiration (Fig. 14.4c). This network scheme is similar
to the “full-handshake process” described in neonatal rats [25]. The corresponding
attractor of this synchronization process mainly relies on the parafacial neurons
dynamics (Fig. 14.5c). Another synchronization regime may coexist in the disease
state, when the excitability level of the expiratory group is slightly lower: the “half-
handshake” process in which the parafacial still triggers the pre-Bötzinger which
in turn induces a delayed post-inhibitory rebound burst that triggers a new pre-
Bötzinger activation (Figs. 14.4d and 14.5d).

To conclude, the patients have an increased complexity of the airflow during
expiration that correlates with the high activity of the VL pons. COPD patients
reactivate the parafacial neuronal group, as shown with fMRI results and the
mathematical model, to sustain ventilation.
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Fig. 14.5 Chaotic attractor of the two synchronized pacemakers for respiratory rhythmogenesis in
healthy subjects (a, b) and COPD patients (c, d) after simulations. Each attractor is given according
to the different network regime presented in Fig. 14.4. The figure reveals that the coupling between
both neuronal pacemakers exhibits nonlinear deterministic chaos (b–d)

14.4 Connectivity and Causality of the Respiratory Neural
Network

Breathing involves a complex interplay between the automatic brainstem network
and the voluntary cortical command [9, 22]. Both networks interact harmoniously
to control respiratory muscles contraction, thereby ensuring normal blood gas levels
either during speech, volitional breathing or ventilatory load increase. However until
now the communication within the network is unknown. This issue is crucial for
many reasons in medicine, physiology and in physics: (1) increased respiratory
loading is a major feature of several respiratory diseases, (2) failure of the voluntary
motor and cortical sensory processing drives is among the mechanisms that precedes
acute respiratory failure [3, 21], and (3) some of the cerebral structures involved in
responding to inspiratory loading also participate in the perception of dyspnea, a
common and often distressing symptom in many diseases. (4) this neural network
vital for life would benefit from the building of a mathematical model able to
simulate and analyze its dynamics in disease conditions and may serve as a paradigm
of physiological and physical synchronization.
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Transcranial magnetic stimulation (TMS) showed that the motor cortex driving
the diaphragm had a low motor threshold, a high excitability level and a ceiling
effect [14].

We hypothesized that the functional architecture and information flow of the
brain network controlling the respiratory muscles exhibited specific impairments in
patients with COPD, and that these impairments correlated with illness severity. The
selected seed regions were identified during an inspiratory load design and involved
seven key areas of the network (Fig. 14.6): two bilaterally in the motor cortex, two

RSC seed

RMC seed

Insula seed

LSC seed

HM-LMC seed

LMC seed

Cerebellar seed

MP seed

LSC seed

Fig. 14.6 Location of the seed regions (red surface) for functional connectivity analyses: the seeds
were selected during an inspiratory loading block design paradigm by using a between groups
voxel-wise contrast, controls > COPD. Top panel: the LMC seed was located in the left premotor
cortex while the LSC seed belonged to the primary somatosensory cortex. The RMC (right motor
and premotor cortex) seed was in the right primary and premotor cortex and the RSC seed in the
right somatosensory cortex; the LMC-HM seed (left motor cortex related to hand movements) was
identified by block-design imaging during repeated wrist extension. Bottom panel: The Insula seed
was in the left anterior part of the Insula. The cerebellar seed was in the left cerebellar hemisphere.
The MP (medulla and pons) seed was in the rostral medulla and caudal pons at the level of the
Fissura Pontomedullaris. See [26] for details
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bilaterally in the somatosensory cortex, one in the brainstem region including the
medulla and pons, one in the cerebellum, and one in the insula. Correlations between
the seed regions and the brain were evaluated and a Granger’s predictability analysis
was performed during resting-state fMRI and inspiratory loading to investigate
full communication within the network. Let us first explain the Granger-causality
method.

In 1969, Granger introduced the idea of G-causality in terms of linear regression
modeling [12] that permits to determine the (fluctuating) variables of the system
that are causes and those that are causal sinks, so introducing a causality direction.
A variable X2 “Granger causes” a variable X1 if the inclusion of past observations
of X2 reduces the prediction error of X1 in a linear regression model of X1 and
X2, compared to a model including only previous observations of X1. To illustrate
G-causality, let us suppose that the temporal dynamics of two time series X1.t/ and
X2.t/ (both of length T) can be described by a bivariate autoregressive model:

X1.t/ D

pX
jD1

A11;jX1.t � j/C

pX
jD1

A12;jX2.t � j/C 
1.t/

X2.t/ D

pX
jD1

A21;jX1.t � j/C

pX
jD1

A22;jX2.t � j/C 
2.t/

where p is the maximum number of lagged observations included in the model
(the model order, p < T), A contains the coefficients of the model, and 
1, 
2
are the residuals (prediction errors) for each time series. If the variance of 
1 (or

2) is reduced by including the X2 (or X1) terms in the first (or second) equation,
then it is said that X2 (or X1) G-causes X1 (or X2). Assuming that X1 and X2 are
covariance stationary (i.e., have unchanging mean and variance), the magnitude of
this interaction can be measured by the log ratio of the prediction error variances for
the restricted .R/ and unrestricted .U/ models:

F2!1 D ln
var.
1R.12//

var.
1U/
(14.7)

where 
1R.12/ is derived from the model omitting the interaction coefficients A12;j
(for all j) in the first equation and 
1U is derived from the full model. Importantly,
it is possible to generalize to the multivariate (conditional) case in which the
G-causality of X2 on X1 is tested in the context of multiple additional variables
X3 : : :Xn [10]. Our functional connectivity analysis results, based on correlations
strength, showed that when breathing at rest and during inspiratory loading, the
motor cortex area in the patients had weaker connectivity with their contralat-
eral counterparts, compared to controls, and no connectivity with the brainstem
(Fig. 14.7). These findings are crucial while it may explain why some patients with
COPD are prone to acute respiratory failure, secondary to motor cortex failure [26].
Causality analyses confirmed this finding while the patients breathing at rest and
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Fig. 14.7 Voxel-wise functional connectivity analyses at rest for the LMC (Left motor cortex, a)
and RMC (right motor cortex, b) seeds. Sagittal, coronal, and axial slices are shown. Within (P <
0:01, FWE-corrected) and between-group (P < 0:05, FWE-corrected) differences are reported. A
decreased connectivity of the networks linked with the right and left motor cortex seed regions is
evident with contralateral motor area in the COPD group, as compared with controls. S superior, I
inferior, R right, L left, P posterior. See [26] for details

during inspiratory loading showed a reversal of the roles of the MP (medulla pons)
and motor cortex compared to controls (Fig. 14.8). As expected in the controls at
rest, the MP, responsible for respiratory rhythmogenesis, exerted a significant causal
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Fig. 14.8 Granger causality analysis at rest between six selected regions at rest. Control group
results are reported on the left, COPD group results on the right. See text for comments. LMC left
premotor cortex, LSC left primary somatosensory cortex, MP medulla and pons, RMC right motor
and premotor cortex, RSC right primary somatosensory cortex

influence on the entire network, whereas the sensory-motor cortex was causal sink.
Conversely in the patients, the motor cortex was a neural driver, whereas the MP
was a causal sink. Thus, the neural driver of the network shifted in the patients from
the medulla to the motor cortex.

The functional role of the motor cortex is disproportionate in patients during
breathing at rest. During inspiratory loading, the right and left motor cortex were
both neural drivers in the controls, and sinks in the patients (Fig. 14.9). The motor
network, already overburdened at rest is overwhelmed during inspiratory loading.
The results at rest and during inspiratory loading also illustrate the degeneracy of
respiratory-network directionality during lung disease [5]. Degeneracy, the ability
of structurally different elements to perform the same function or yield the same
output, is a well-known physiological characteristic of neural networks.

We postulate that lung disease forces the brain network to adapt, and that the
effects on the respiratory motor cortex are hyper-excitability, decreased functional
connectivity, and loss of its major role in driving the network during inspiratory
loading.
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Fig. 14.9 Granger causality analysis between six selected regions during inspiratory loading.
Control group results are reported on the top left, COPD group results on the top right, and controls
> COPD at the bottom. See text for comments. Same abbreviations as in Fig. 14.8

14.5 Concluding Remarks

In this study, we shed new lights on the brainstem neural control of respiratory
muscles in patients with COPD. These findings may be involved in the onset of
respiratory failure when the neural network becomes overwhelmed by respira-
tory overload. Moreover, we show that COPD patients having a severe dyspnea
unexplained by a worsening of their pulmonary function may exhibit an altered
neuronal excitability of the VL pons, thereby reinforcing the central determinism of
dyspnea. Identifying the activity of the respiratory pacemakers through both airflow
complexity and functional imaging techniques opens new strategies to refine COPD
patient phenotypes.

Our findings may open up new therapeutic avenues for COPD. Although brain
networks are constrained by an anatomical structure, the strength of functional
connectivity between network regions is a dynamic quantity measuring the degree
of interaction between various subnetworks.

The intrinsic activity (motor driving, thresholds, etc.) of the brain can be
modulated using TMS (transcranial magnetic stimulation) [6]. Future works should
determine how TMS of the brain, at different frequencies, affects the cortical
networks, and, more specifically, the connectivity of the sensorimotor and the
insular cortical areas. The results may indicate ways to increase motor cortex
functional connectivity and improve respiratory muscles performance in patients.
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Chapter 15
Dynamics of Odor-Evoked Activity Patterns
in the Olfactory System

Thomas Nowotny and Paul Szyszka

15.1 Introduction

Olfaction is being studied in a number of animal models, including a good number
of invertebrates, in particular insects. Studying insects that have much smaller
brains than typical mammalian models and less ethical encumbrances simplifies
invasive experimentation, large throughput studies, and modeling. At the same
time, olfactory systems have striking similarities across phyla [1] so that it is
viable to study insects even if the final motivation is understanding the human
system. In this chapter we will focus on the wealth of insect work accumulated
over the last 3 decades. Insects’ olfactory organs, the sensilla, are in direct contact
to airborne odors. In contrast to the metabotropic mammalian receptors, insect
olfactory receptors act as ligand-gated channels, with metabotropic auto-regulation
[2–6]. Insects generally have dozens of different types of olfactory receptor neurons,
each expressing a distinct receptor gene [7, 8]. Therefore, according to its type, each
receptor neuron responds in a specific way to any given odorant, which generates
a unique pattern of olfactory receptor neuron activity for every odorant [9]. These
activity patterns are projected to the antennal lobe (AL), the first brain area that
processes odor information in insects. The structure of the AL is similar to that
of the mammalian olfactory bulb: olfactory receptor neurons of the same type
converge onto the same glomerulus [7, 10]. As a consequence of this anatomical
structure, the pattern of olfactory receptor neuron activity translates directly into
an equivalent odor-specific pattern of activated glomeruli [11–14]. The simple
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one-to-one connectivity between olfactory receptor neurons of the same type and
corresponding glomeruli is complemented by a dense intra- and inter-glomerular
network of inhibitory and excitatory local neurons (LN) that modify odor-evoked
activity in the AL [15–23]. Projection neurons (PN) relay odor-evoked activity to
various areas in the brain. The most prominent one is the mushroom body (MB), a
brain region for odor learning and identification [24–27].

Natural stimulus dynamics and odor-driven behavior pose particular constraints
on neural processing mechanisms for odor information. Here we discuss what
aspects of odor-evoked receptor neuron activity patterns and what dynamical
systems mechanisms the olfactory system could use for efficient encoding of
chemical odorant identity, odorant concentration, and temporal stimulus structure.

15.2 Rate Coding

In a rate code, information is encoded in the average firing rate of neurons, or,
equivalently, in their inter-spike-intervals. In the insect AL, a rate code for odor
information would correspond to an odorant- and concentration-specific glomerular
pattern of spike rates. Indeed, olfactory receptor neurons exhibit odorant specific
spike rates, that increase with increasing concentration [28] and are sufficient for
recognizing odors [29]. These odor- and concentration-specific spike-rate differ-
ences are relayed to antennal lobe PNs.

In first order approximation this can be observed by calcium imaging [30–32]
assuming that the changes in calcium concentration can be mapped to the firing
rate of PNs [33]. Calcium imaging experiments with back-filled PNs have provided
first insights into the response profile of glomeruli, and hence indirectly of olfactory
receptor neurons, in particular in bees where direct observation of olfactory receptor
neuron activation is difficult. It has been found that glomerular rate patterns
(measured as intra cellular calcium signals) are sufficient to distinguish odors
[13, 32, 34] and assess their concentration [35].

In PNs the relative glomerular spike-rate differences remain stable over a
wide range of concentrations [36], allowing to encode chemical odor-identity and
concentration at the same time. Rate coding is further supported by the fact that
the similarity between odor-evoked glomerular activity patterns correlates with
the perceived similarity in the honeybee [37]. This suggests that glomerular rate
differences contain behaviorally relevant information about odor identity. However,
the mere fact that rate coding appears to be sufficient for recognizing the chemical
identity of odor stimuli should not be taken as proof that the insect brain is indeed
relying on a rate-coding scheme. Rate coding has its limitations, in particular with
respect to rapid processing of stimuli: In order to read out a rate code, downstream
areas from the AL would have to integrate over a considerable time span, at least
on the order of the inter-spike interval of the least excited yet still relevant PN.
This could easily reach 100s of milliseconds, in particular at low concentrations.
However, the observed odor-information processing in insects is fast. Moths and
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honeybees, for instance, can detect millisecond short onset asynchrony between
the arrivals of odorants [38, 39] and flies recognize odorants within less than
200 ms [40].

15.3 Temporal Coding Schemes

When stimulated with odor stimuli of long duration and constant concentration, PNs
in the locust AL exhibit complex spiking patterns [41, 42]. The observed dynamics
can be interpreted as fast, approximately 20 Hz oscillations super-imposed onto
slower spatio-temporal patterns of activation of PNs and LNs. Oscillations are a
familiar phenomenon observed in the olfactory system [43–46] but even though
there are some indications that they may play a functional role for discrimination
of similar odors [47, 48] (though see [18]), it is not clear yet whether they encode
behaviorally relevant odorant information. The fact that oscillatory synchronization
requires multiple odorant stimulations is not compatible with the proposed function
for encoding odorant identity, as insects can form equally odor-specific associative
memories during single- and multiple-trial conditioning [49]. The slower temporal
patterns are a less widely reported phenomenon and their origin and function also re-
main disputed. Inspired by the complex dynamics observed in predator–prey models
[50, 51] and the similarity of antagonistic (inhibitory) interactions between agents
(neurons), Laurent and Rabinovich proposed that slow patterning of odor responses
of PNs in the AL of insects might form a winnerless competition, mathematically
realized as a heteroclinic orbit [52, 53] and physiologically implemented by GABAB

transmission. In brief, the observed dynamics were described by generalized Lotka–
Volterra equations,
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where ai is the firing rate of the ith neuron (group), �ij are the strengths of inhibitory
interaction of neuron (group) j onto neuron (group) i, and N is the number of
relevant neurons (neuron groups). It was proven that if certain fairly mild conditions
hold on �ij, then a stable heteroclinic cycle exists and is structurally stable, lending
this mathematical description credibility as a viable model. There were a number
of strong arguments that supported the utility of heteroclinic dynamics. (1) The
stability of the heteroclinic orbit provides robustness against intrinsic noise. (2)
The interpretation of inputs modifying the synaptic inhibition between neurons,
and the structural robustness of the heteroclinic structure with respect to changes
in the strength of inhibition, make the model robust to noise in the odor input or the
olfactory receptors. (3) On the other hand, the input setting the heteroclinic sequence
made the responses sensitive to “meaningful differences” in the input signals.
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One aspect of the original winnerless competition dynamical motif was that the
patterning could continue essentially infinitely, only limited by the duration of the
stimulus. This hypothesis was tested in locusts [54]. Giving long constant stimuli,
the authors observed that the spatio-temporal dynamics in the AL appeared to stop
evolving after approximately a second and the activity of the AL appeared to reach
a stable odor-specific pattern of activation, equivalent to a fixed point. This led to
the development of the stable heteroclinic channel (SHC), which, in contrast to the
earlier models, can have a final fixed point [55].

The heteroclinic model was originally limited to the rate description described
above. Ideally one would want to be re-assured that the same underlying dynamics
could also arise in more detailed, e.g. Hodgkin–Huxley type, conductance based
models. Working towards this goal, Nowotny and Rabinovich [56] developed a con-
ductance based model that indeed displays the same phenomenology, in particular
an apparently unlimited slowing-down of the cyclic bursting dynamics during strong
constant input, which suggests the existence of a stable heteroclinic cycle. Later the
quantitative reduction of the spiking model to a rate model developed in the same
paper [56] was used to prove the structural robustness of the putative heteroclinic
structure in the model under a large class of perturbations [57]. In independent work,
the existence of heteroclinic structures in networks of phase oscillators was shown,
where the saddle points correspond to the transient synchronization of clusters of
neurons [58, 59]. This work can also be applied to intrinsically active Hodgkin–
Huxley neurons [57].

Inspired by their work on the macro-glomerular complex in moths, Buckley and
Nowotny [60] suggested an alternative dynamical systems model that was consistent
with the observed odor patterns in the AL in response to long, constant stimuli. They
proposed that spatio-patterning can arise from a dynamical system with a single,
barely stable fixed point. The model can be formulated at multiple scales from
detailed, Hodgkin–Huxley models to simplified mean field population descriptions.
On a level of firing rate descriptions, the governing equations are

Psi D �ˇsi C �
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where si are the activation variables of synapses, i.e. filtered versions of the
presynaptic firing rate and ˇ and � define rates of decay in si and changes in si

due to input, respectively. The input to neuron i is described by the conductance
gij of (inhibitory) synapses from j to i, a neuron-specific bias term �i and an input
current from ORNs, Ii. Note the similarity with the Lotka–Volterra equations (15.1)
except that here the input is not multiplied by the current rate (or activation) variable.
However, as it is this multiplicative interaction that generated the saddle points
in (15.1), the phase space structure in this model is nevertheless very different.
Parameters in the model, in particular the couplings gij, can be adjusted such that
in absence of input there is a single fixed point that is stable but close to losing this
stability if gij were further increased.
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Fig. 15.1 Two dynamical systems interpretations for patterned activity in the AL. (a) Illustration
of the AL depicting the densely inter-connected populations of LNs and PNs. (b) Interpretation of
the AL network as a network motif giving rise to winnerless competition or a stable heteroclinic
channel. The response of the AL is described as akin to a trajectory that approaches a stable
heteroclinic cycle between a number of saddle points. The input to the system creates this
heteroclinic structure by exciting LNs and PNs. (c) Interpretation of the AL network as a network
motif giving rise to a single barely stable fixed point. Here, the response of the AL is interpreted
as a trajectory that moves from the location of the baseline state to a barely stable fixed point. The
input to the system in this view moves the single fixed point of the system from its baseline location
to a new location by exciting LNs and PNs. (Modified from [60])

Odor input, i.e. a pattern of input currents Ii, in this model moves this fixed point
in phase space, and the state of the system will follow it on a complex trajectory
because of the weak stability. This gives rise to complex activity patterns, both
for “stimulus on” and “stimulus off” conditions. Figure 15.1 illustrates the two
competing views and their very similar phenomenology.

Unlike in Rabinovich’s WLC model, the patterning of odor responses in this
view arises more as a necessary evil than being a particular feature. The patterns
are caused by the desire to be very sensitive to inputs and to have a large dynamical
range of responses, which is achieved when the global fixed point is about to lose
stability [61].

A lot of thought has been put into whether one could confirm experimentally
which of the descriptions is more accurate. However, because the eventually
observed dynamics of the system are always transients and the actual fixed points
of the system dynamics are not visible under experimental stimulation, such an
experimental proof is hard to come by. The field has also since made a different turn
because of the observation that odor stimulation is of extremely transient nature in
itself. Even the purported constant stimuli in the earlier experiments may well have
been more dynamic than assumed [62].

In natural conditions odors occur in highly turbulent odor plumes (we will come
back to this in detail below), which implies that long, constant odor stimuli are
typically not encountered. Behavioral experiments in rats [63], mouse [64], bees



248 T. Nowotny and P. Szyszka

[65], and flies [40] also suggest that animals’ odor recognition times are much
faster than the time scales on which the spatio-temporal patterns discussed above
emerge (see, however, [66], where longer sampling times of durations compatible
with the use of spatio temporal dynamics appear to increase the accuracy in difficult
odor discrimination problems). Taken together, the structure of odor input and the
sufficiency of short sampling times, at least in a majority of conditions, seems to
indicate that the full sequence of a stable heteroclinic channel or approach to a
barely stable fixed point may not be necessary for odor recognition.

We also note that the marginally stable fixed point dynamics are advantageous
regardless of whether long transient sequences are utilized. This dynamical motif
offers high sensitivity and large dynamic range already for the very short stimuli
which are typical in a natural environment. For the heteroclinic model one could
argue that the position of the first saddle point on the SHC provides reproducible
responses even without the benefit of observing the full sequence of the SHC.
Coding capacity would be somewhat reduced when going from sequences to single
saddle points but with realistic numbers for the number of independent units,
typically glomeruli, even the number of individual saddles, with, e.g., k out of
n active glomeruli, is very large. In the case of the fruit fly, there are about 42
glomeruli. If 10 out of 42 were activated for any given odor, there would be�
42

10

�
� 1:5 billion patterns available to represent different odors. While this

estimate incorrectly assumes that all combinations of glomerular activations would
be available to represent existing odors, i.e. assumes some type of homogeneous
distribution of odors in the space of glomerular activation patterns, it still suggests
that coding capacity with a single glomerular activation pattern would not be a major
capacity issue.

15.4 Processing of Natural odorant Stimuli

In natural conditions the structure of odor plumes is dominated by turbulent
advection [67]. Turbulences disperse odor plumes into intermittent filaments which
intermingle with filaments from different odor sources [67–70]. As illustrated in
Fig. 15.2, this leads to a complex spatial pattern of high concentration filaments
from one or several odor sources, interspersed with areas of relatively clean air.
Wind and the movement of the animal itself transform the complex spatial pattern
of odorant filaments into temporal patterns of changing odorant concentration
and composition at the animals’ olfactory organ. These temporal odorant patterns
contain information about the distance of an odor source, as odorant intermittency
decreases with decreasing distance [67]. They also contain information about the
number of odor sources when different plumes mix, as odor compounds from
the same source exhibit more correlated fluctuations than odor compounds from
different sources [71]. Even at low wind speeds filaments in an odor plume have
widths on the order of millimeters to centimeters. At a flight speed of 0.5 m/s a
flying insect would encounter such filaments for only a few milliseconds at a time.
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Fig. 15.2 Illustration of the spatial structure of odor plumes. Top: Smoke plumes emanating from
two, sequentially imaged, close-by sources of TiCl4 smoke. Note how smoke distribution in the
plume is dominated by turbulence rather than diffusion so that the two different colored smoke
filaments do not fully mix. Bottom: Computed smoke concentration profile a flying insect would
encounter if it flew along the dotted arrow on the top. Note the small overlap of the two differently
colored smoke plumes and the detailed spatial structure of the plumes

Insects can use short temporal asynchronies between stimulus onsets to segregate
odorants from different sources. Moths and beetles can distinguish an attractive
pheromone from an antagonistic pheromone based on millisecond short differences
in the arrival of the pheromone components [38, 72, 73]. After learning that an
initially neutral odorant A is associated with a food reward, honeybees show an
increased probability to respond to an asynchronous mixture of A and a novel odor
B in which A and B arrive with a delay of just 6 ms between them, as compared to
the synchronous mixture AB [39]. Similarly, locusts can segregate a learned odorant
A from a background odorant B, when A starts with a delay of 250 ms after B [74].
How is this temporal stimulus information represented in the olfactory system?
In locusts, PN responses to synchronous mixtures cannot be predicted from the
responses to single components. PN responses to asynchronous mixtures, however,
partly match those evoked by the individual components [74, 75]. This sensitivity
for odor onset asynchrony may underlie locusts’ ability to determine whether two
odors were presented simultaneously or with a particular time delay [74].

Consistent with honeybees’ behavioral capability to use millisecond-short odor-
onset asynchrony for odor-segregation, bees’ PN responses are sensitive to mil-
lisecond stimulus asynchrony [76]. Stimulation with asynchronous mixtures results
in more suppressive interactions, and compared to synchronous mixtures, PN re-
sponses to asynchronous mixtures contain more information about the components:
the longer the delay between the components in an asynchronous mixture, the more
do PN responses resemble the component response, and the less they resemble the
mixture response [76].
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These studies gave first evidence that the same odors can both be processed as
a one-source mixture, or as a two-source mixture, on the basis of the temporal
relationship between the components. But what are the neuronal mechanisms of
odor segregation based on millisecond short stimulus onset asynchrony?

The few milliseconds of the minimal necessary odor onset delay for odor-object
segregation observed in behavior [38, 39, 72, 73, 77] and physiology [76] is similar
to the time scale of spikes, synaptic transmission, and minimal inter-spike intervals.
Therefore, it seems unlikely that a head start of a few milliseconds is enough for a
component to change the processing of the mixture such that it leads to a completely
different perception and behavioral output. Baker and colleagues [38] suggested
that the high-temporal resolution in the processing of pheromone mixtures relies on
ephaptic mixture interactions between pairs of differently tuned olfactory receptor
neurons within the same olfactory sensillum [78, 79]: the response of one receptor
neuron to one component could suppress the response of the other receptor neuron
to the other component. Indeed, in moths and beetles, olfactory receptor neurons,
which are tuned to antagonistic pheromone components often are co-localized
within the same sensilla [38, 73, 80]. Thus, on-site mixture processing in pairs of co-
localized receptor neurons could provide the temporal accuracy needed for assessing
synchronous versus asynchronous arrival of two odorants [38].

In addition or alternatively, the millisecond temporal resolution in the process-
ing of odor mixtures could be achieved due to integration in the AL network.
Nowotny et al. [81] offer a possible explanation for PNs’ sensitivity to millisecond
onset asynchrony between odorants using computational modeling. In their model
(Fig. 15.3), LNs in the AL form a winner-takes-all competitive inhibitory network.
Typically, the winning LN would be different for different odors, and hence different
depending on which odor arrives first. As the inhibitory conductances of LNs onto
PNs are likely not homogeneous [82], the resulting effect of the winner-take-all LN
network is that the response pattern in PNs to an asynchronous mixture is different
when different components arrive first and different from the response pattern to the
corresponding synchronous mixture. This difference is preserved for an extended
period of time beyond the initial odorant onset where the two mixture conditions
actually differ, lasting as long as the winning LN remains active. The prolonged
difference between response patterns to synchronous and asynchronous mixtures
could then facilitate odor segregation in downstream circuits of the olfactory
pathway. Thus, the dynamics of this network offer a possible explanation for the
ability of insects to distinguish synchronous from asynchronous mixtures.

In order to capture millisecond short differences in stimulus onsets, insects need a
fast and reliable odor transduction process, that is, the conversion of fluctuating odor
stimuli into neuronal activity. Insects have a striking advantage over the mammalian
olfactory system: they do not need to inhale in order to smell, which might delay
odor transduction and decrease temporal precision. The morphology of insects’
olfactory organs supports fast odor transduction, as olfactory sensilla have direct
contact to the environment, with olfactory receptor neurons being less than 1�m
separated from the atmosphere [83]. Besides the morphology, biochemistry also is
an important factor for the temporal resolution of odor transduction: perireceptor
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Fig. 15.3 Model of asynchronous mixture perception in the honeybee AL. (a) data driven network
model of the bee antenna and AL (ORN olfactory receptor neuron, PN projection neuron, LN local
interneuron). The dark grey glomeruli are routinely recorded and have been included in the model.
(b) Circuit diagram of the hypothesized onset detection circuit. The LNs (green) form a winner-
take-all circuit that helps preserving the memory of which odor was encountered first beyond
the short time of actual onset difference. (c) results of the numerical simulations of the model.
Correlations of the response to a delayed A-6 ms-B asynchronous stimulus is most similar to a B
response template (green) and less to an A template (red). The similarity of the synchronous AB
mixture response to the A response template (magenta) and to the B response template (cyan) is
between

events [84, 85] are thought to be the time limiting processes in the speed and
temporal resolution of odor transduction [86, 87]. They include the diffusion of
the odorants in the sensillum lymph, the binding of the odorants to odor binding
proteins [88], their release from odorant binding proteins and clearance of the
odorant molecule from the receptor and sensillum lymph. The binding of odorant
molecules to the receptors is followed by chemo-electric transduction processes at
the olfactory receptor proteins. In contrast to the metabotropic olfactory receptors
of mammals, insects have ionotropic receptors, that is, ligand-gated ion channels
that are directly activated by the odorant molecule [3, 6, 89]. Ionotropic receptors
generally have a shorter latency and a better temporal resolution than metabotropic
receptors in which the production and degradation of second messengers takes time.
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Indeed, measured transduction times in insect olfactory receptor neurons are fast
and range from 2 to 30 ms [3, 28, 86, 90, 91]. Thus, insects’ ionotropic olfactory
receptors could be an adaptation to insects’ need for a high-temporal olfactory
resolution.

A second aspect of natural odor stimuli besides stimulus dynamics is that
odors from natural sources are mixtures of numerous chemical compounds, whose
composition gives rise to distinct odor percepts. For example, the aroma of brewed
coffee contains in excess of 20 compounds well above odor detection threshold
[92]. Similarly the number of compounds emitted by flowers is typically quite large
[93] and each individual species may emit mixtures of easily dozens of compounds.
This has two implications. First, olfactory systems need to recognize mixtures of
chemical compounds, not necessarily any particular individual compound. Given
the combinatorial response patterns of receptor neurons in which each receptor
neuron responds to a number of compounds and each compound excites a number
of receptor neurons a defined mixture of chemical compounds is just another
combinatorial activation pattern. Gain control is in place in the AL [22, 36, 94–97]
that prevents an increase in active glomeruli with increasing odorant concentration
[98, 99]. Therefore, the responses to mixtures of many components is not necessarily
qualitatively different to responses to a single compound. Nevertheless, the question
of synthetic versus analytic odor processing remains open: When honeybees were
trained to an odorant mixture, they show less responses to the individual components
than to the trained mixture [100], demonstrating that in a mixture odorant informa-
tion is processed synthetically and information about the components is partly lost.
Further support for synthetic processing comes from biconditional discrimination
learning and negative patterning: in biconditional discrimination, bees can learn to
discriminate between two pairs of mixtures: one pair (AX and BY) is rewarded
and the other pair (AY and BX) is not [101]. In negative patterning, bees learn that
odors A and B are rewarded, while the mixture AB is not [102–104]. Because in
these experiments each odor component is equally often paired with and without the
reward, bees cannot discriminate between rewarded and non-rewarded odors based
on a purely analytic strategy, that is, by identifying a particular component. The
conclusion is that bees either learn the exact composition of the mixture or rely on
a synthetic mixture representation. Whether the single components of a mixture can
be perceived as individual odor objects can also be tested by blocking experiments
[105]. In the blocking paradigm, animals are first conditioned to one stimulus A
and then to a mixture of A and a novel odor B (AB). The learning of A typically
reduces (or blocks) the learning of B during the subsequent conditioning of AB, as
the reinforcement learning prediction error is reduced due to the previous learning
of A, which means that B acquires less predictive value [106]. Thus, blocking
requires analytic (elemental) processing of AB. Olfactory blocking experiments in
honeybees gave controversial results. Blocking was demonstrated in some studies
[107–109] but it could not be reproduced in two other studies [110, 111]. Taken
together, these studies suggest that in most cases odor mixtures are processed in a
synthetic rather than analytic manner. However, if we again refer back to a natural
environment, the mixtures of compounds that define a given odor would never truly
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occur on their own. They would always be masked by background odors, e.g. bacon
and eggs in case of coffee, and other flowers in the case of a flower in a field. This
raises the question how animals can disambiguate the mixture of two odors from the
mixture of all their constituent compounds?

In conjunction, the two aspects of complex plume structure and odorants being
composed of many compounds offer an intriguing hypothesis: Animals use the fine
temporal structure of odor plumes to distinguish the relevant odor sources in their
environment. The underlying idea is simple. Unless the molecular weights differ
too much, components of an odor should diffuse with comparable volatility and
hence the filaments emanating from one odor source should have an approximate
composition constancy across all filaments. Odors from other sources would form
their own filaments. The filaments from all odor sources mix in the environment, but
in a way such that they do not arrive at the same time at the receptors. Rather, there
will be intermittent exposures to one or a small number of odors. Therefore, the
correlated arrival of each odor signal allows distinguishing it from its background
odors.

15.5 Pattern Recognition in Higher Brain Centers

Beyond the AL, odor information is processed in the MBs and in the lateral horn.
Based on the extensive knowledge of the central role of MBs in learning and
memory [24–27, 112] the generally accepted working hypothesis is that the MBs
are involved in forming new associations between odor inputs and inputs from
other modalities with rewards or punishments, while the lateral horn is involved in
generating innate responses to odors, such as the natural attraction of flies to vinegar
[113, 114]. Models of olfactory processing in the MBs are slowly converging onto
a family of models with fundamentally similar features. The Kenyon cells (KCs)
in the MB are seen to form a large “screen” of encoders [115] that translate the
overlapping patterns of PN activity into a both temporally and spatially sparse
representation as observed in experiments [116–118]. Whether this transformation
is achieved by a purely random connectivity [115, 119, 120] or is refined by
plasticity [121, 122] is still debated. Sparse KC activity patterns are then associated
with output neurons in the MB lobes by plasticity in the KC to output neuron
connections, of Hebbian nature [115, 119, 120] or by three factor rules [123–126]
when actual rewards are considered. It is now also commonly assumed that ONs
inhibit each other to force a decision on the identity or valence of a KC activity
pattern [119, 125, 126].

The strong fan-out character of the PN to KC connectivity (100 to 5000 in fly,
800 to 50,000 in locust, 800 to 100,000 in bees) makes gain control mechanisms
indispensable [127] to avoid instabilities in the MB activity. From a theoretical
perspective this could take the form of feedforward gain control, e.g. mediated by
lateral horn interneurons [119, 128], but recent experimental work [127, 129] and
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subsequent modelling [130] indicate that feedback gain control by MB extrinsic
GABAergic neurons [127, 131] is the more likely scenario.

A series of recent works showed that within this general framework model,
previously not considered phenomena such as peak-shift can be recapitulated
[125, 132].

Based on the observation of sparse responses in the KC of the MB
[116–118, 133] and an observed strong periodic inhibition at 20 Hz frequency
[116], a common assumption has been that odor processing occurs in separate
50 ms time windows, so-called snapshot processing [119]. This view is appealing
because it reduces the complexity of processing spatio-temporal patterns in the PNs.
However, it is challenged by conceptual problems for both longer and very short
time scales.

The view that odor discrimination of similar odors improves over time along the
trajectory of odor responses in the AL networks is in conflict with strict snapshot
processing in downstream brain areas. While temporal integration in higher brain
areas could recover temporal sequences, it is not sensitive to the temporal order of
patterns, leading to a potential loss of information.

Nowotny and colleagues [134] suggest in a model of the insect MB how
sequences of PN activation patterns in the AL could be fully decoded in spite
of snapshot processing. The model assumes random connections between PNs
and KCs and slow excitatory connections between KC axons. It is these lateral
connections that transform the temporal sequence of activation of PN patterns into
a unique summed spatial pattern in the KCs. The mechanism is based on that lateral
excitation primes “adjacent” KCs to respond preferentially to a subsequent pattern,
which generates distinct summed KC activation patterns in response to pattern 1
followed by pattern 2, as opposed to pattern 2 followed by pattern 1.

On small time scales, snapshot processing is problematic as well. Here, one
could think that the minute temporal differences of odor onsets could be lost in
the relatively coarse 50 ms time window snapshot sampling. However, the model of
a local winner-take-all LN network [135] discussed above offers a possible solution
to this problem because the small temporal differences of stimulus arrival times are
transformed into longer lasting differences in PN activation patterns that may well
be read in snapshot sampling.

15.6 Conclusions

In this chapter we have given an overview over some aspects of olfactory in-
formation processing, focusing on the role of dynamics, both in the environment
and intrinsic to the brain. In the environment, the nature of turbulent odor plumes
suggests that sensing and encoding precise odor onsets is important to segregate
intermingled odor plumes in natural odor scenes. On the other hand, the work on
winnerless competition and barely stable fixed point dynamics suggests that within
the brain, temporal dynamics is an essential ingredient to signal processing. Both
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discussed dynamical mechanisms have their own merits. In winnerless competition,
the difficult balance between robustness to noise and sensitivity to informative
differences in stimuli is implemented. The barely stable fixed point dynamics offers
hypotheses how brains can balance extreme sensitivity to low concentration stimuli
with large dynamic range of odor perception.

There are many more interesting questions in olfaction that we were not able to
cover in this chapter, including the intriguing questions of how chemical structure
maps to odor perception, how higher order learning and cognitive processing is
achieved, what the principles behind the structure of odor receptors are, how odor
transduction at receptors is accomplished, how olfaction is achieved in other animals
outside the insect models discussed here and many more. While olfaction may not
be the most relevant sense to humans and remains one of the less studied senses,
it is a research area that keeps delivering interesting insights and holds the promise
of important applications, e.g. in chemical sensing for food industries, security, and
environmental monitoring.
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Chapter 16
Dynamics of Intermittent Synchronization
of Neural Activity

Leonid L. Rubchinsky, Choongseok Park, and Sungwoo Ahn

16.1 Synchronized Neural Activity

Electrical activity of neurons and neural populations in the brain frequently exhibits
some degree of synchrony (defined in some specific ways). Multiple experimental
studies indicate that neural synchronization is important for various functions of
the brain. For example, neural synchrony has been observed in relation to percep-
tion [11], memory [12], other cognitive functions [13], and motor functions [16, 31].
Different mechanisms underlying the involvement of oscillatory neural activity
in neural function have been considered [8]. Abnormally high (and sometimes
abnormally low) strength of neural synchrony has been implied to be critical for
the symptoms of several neurological and psychiatric disorders [32, 34], including
Parkinson’s disease (e.g., [29]) and schizophrenia (e.g., [35]).

Synchronization is a widely observed phenomenon and has been traditionally
studied with the methods of physics and nonlinear dynamics [23]. One of the
scholars, who early recognized the importance and relevance of physical studies
of synchronization to neuroscience was Misha (Mikhail Izrailevich, as one would
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politely call him in his native Russian) Rabinovich. He inspired his students and
engaged his collaborators [2], and authored many important and elegant studies of
the mechanisms and functions of neural synchrony (for example, [1, 7, 10, 17, 33]).
Misha pointed out that neural synchronization may have some peculiar properties,
which are not frequently observed in other synchronized systems in nature, because
of the very specific functions of neural systems [18].

Interestingly, Misha Rabinovich discussed the potential generality of transient
dynamics in neuroscience [24–26]. The transient (intermittent) synchrony appears to
be the norm in the synchronized dynamics of neural circuits of the brain. Even at the
rest state, without any transient stimuli, perfect synchrony in the brain has not been
reported. This is probably not very surprising. At the rest state these circuits should
be ready to respond to different stimuli. If they were in a completely synchronized
stable state, it would probably require more time and/or efforts to respond to stimuli.

16.2 Fine Temporal Structure of Intermittent
Synchronization

Neuroscience traditionally operates with observables. Usually, in the context of
neural synchrony, these are intra- or extracellularly recorded electric potentials as
a function of time. However, a consideration of the dynamics of synchronization
and desynchronization in terms of the phase space helps to understand the nature of
these phenomena.

16.2.1 Phase Space-Based View and Time-Series-Based View
of Synchronized and Desynchronized Episodes

Let’s think of coupled neurons or neural populations where each individual unit
exhibits oscillatory dynamics. Coupling is strong enough and dynamic is syn-
chronous so that there is a stable synchronization manifold in the phase space. As
we discussed above, this is a straightforward, but not an experimentally realistic
scenario. Experimentally relevant, but relatively weak intermittent synchrony may
correspond to the following dynamics: the system moves into vicinity of an unstable
synchronization manifold, but eventually leaves it because this manifold is unstable.
Since the synchrony is relatively weak, the system will spend substantial amount of
time away from the synchronization manifold. In this case a study of the properties
of synchronization manifold (e.g., its loss of stability and associated types of
intermittency) informs of what happens in the system of interest only for a small
fraction of time.

Unlike the stability of the synchronization manifold, however, the properties
of the periphery of the phase space are not universal in general. But it does not
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mean they are irrelevant to the dynamics of the neuronal networks. To connect these
ideas to experimental data we will look at these issues from the time-series analysis
perspective.

16.2.2 Dynamics of Desynchronization Episodes: Time-Series
Analysis

The phase can be extracted from a “good” oscillatory data (the data with relatively
narrow and prominent peak in the spectrum) in different ways, we will use Hilbert
phase [23]. Using Hilbert transform one obtains an analytic signal 
.t/ from a real
time series x.t/ as follows:


.t/ D x.t/C P{ Nx.t/ (16.1)

Nx.t/ D
1

�
PV

Z 1

�1

x.�/

t � �
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Let the phase of the analytic signal 
.t/; say '.t/, be the Hilbert phase of the time
series. Then it is given by

z.t/ D

.t/

k
.t/k
D eP{'.t/: (16.3)

If the phase difference between two oscillators tends to be close (in some specific
sense) to some constant value, then we can consider this as a synchronized
dynamics.

One can compute a fairly standard phase locking index for two phases '1.t/ and
'2.t/:

� D k
1

N

NX
jD1

eP{˚jk; (16.4)

where ˚j D '1.tj/ � '2.tj/ and N is the number of data points (for the case of
discrete time-series). This index varies between zero (no phase locking) and one
(perfect phase locking) [23].

For further analysis (originally developed in [3, 21]), we consider a first-return
map for the phase difference (see also [30]). In other words, we are considering
whether the phase difference is close to its preferred (locked) state or not once per
cycle of oscillations (we assume this preferred state exists and can be extracted
from the data, otherwise the described procedure does not make sense). How close
it should be depends on a particular problem under consideration. We will consider
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the case where we require the phase difference to be within �=2 of the preferred
phase difference.

Whenever the phase of one signal crosses a check point (which may be assumed
to be zero) from negative to positive values, the phase of the other signal is recorded,
resulting in a set of consecutive phase values fig

N
iD1: Since the phase of one signal

is zero, this is actually the phase difference between two oscillators measured
once per cycle of oscillations. Now consider .i; iC1/ space. The predominantly
synchronous dynamics will appear as a cluster of points on the diagonal iC1 D i

(note that this phase space is actually a torus). For the uniformity of analysis, all
values of the phases may be shifted in such a way that the center of the cluster
lies at the center of the first quadrant. The phase space is then partitioned into four
equally spaced regions. Figure 16.1 shows a diagram for this first-return map. The
first region is considered to be a synchronous state while other regions (II, III, and
IV) are considered to be desynchronized states. If the phase difference is required to
be not within �=2 of the preferred phase difference, but within different tolerance
limit, different partition will be required.

One can define the transition rates r1;2;3;4 for transitions between four regions
of the phase space as a ratio of the number of points leaving a region to the
total number of points in that region (see [3, 21, 30]). For example, r1 is the
number of points leaving the region I for the region II divided by the total number
of points in the region I. One can also define the duration of desynchronization
events to explore how long do the desynchronization events last. Here, the duration

Fig. 16.1 (a) Diagram of the phase space of .i; iC1/ first-return map. The arrows indicate all
possible transitions from one region to another and r1;2;3;4 indicate the corresponding transition
rates. The synchronized state is placed at the center of the region I and three other regions are
desynchronized states. (b) presents an example of dynamics with numerous short desynchroniza-
tions. (c) presents an example of dynamics with a very long desynchronization event
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of desynchronization events is defined as the number of steps that the system
spends away from the region I minus one. For example, the shortest duration of a
desynchronization event corresponds to the shortest path II ! IV ! I (Fig. 16.1b).
This corresponds to the length of one cycle of desynchronization events. Length
of two cycles corresponds to the path II ! III ! IV ! I and longer lengths of
desynchronization events will have many different paths.

16.2.3 An Analysis of a Simple Model System

To illustrate some of the ideas discussed above, following [3] we will consider an
example of a very simple coupled system: two coupled skewed tent maps. While this
example may be ill-suited to study phase synchronization [28], it helps to illustrate
the major ideas in a very simple setting. Consider a skew tent map

f .a; x/ D

(
x
a ; if 0 � x � a;
1�x
1�a ; if a < x � 1;

(16.5)

where 0 < a < 1: Two such maps, described by variables x and y; are coupled in
the following way:

x.t C 1/ D .1 � "/f .a; x.t//C "f .a; y.t//;

y.t C 1/ D "f .a; x.t//C .1 � "/f .a; y.t//;
(16.6)

where " is the coupling strength. The difference of the variables of two maps
.t/ D y.t/ � x.t/ may serve as a proxy for the phase difference. The synchronous
state is x D y: It becomes stable for " larger than a critical value "c: Two Lyapunov
exponents (�.a/ and �?.a; "/) can be computed analytically [23] and are not
changed if a is changed into .1 � a/; i.e. they are symmetrical about a D 1=2:

Therefore, two different pairs of maps with symmetrical values of a have the
same values of Lyapunov exponents (in particular, the same value of �?.a; "/;
which characterizes the stability of the synchronous state). Thus they have the same
expansive/contractive properties on the average. But the two systems are different.
In one case, the map is strongly expansive in a small area of the phase space, while
in the other case the map is less expansive, but the corresponding area is larger. The
properties of the desynchronized dynamics are different between the two systems in
the intermittently synchronous dynamics (the coupling value " is less than "c) [3].
The transition rates ri and the distributions of desynchronization events durations
are markedly different between the dynamics of a D 0:1 and a D 0:9 (Fig. 16.2).
This example shows that there may be different temporal patterns of synchronized
and desynchronized dynamics in the coupled systems, which have the same stability
properties of synchronized state.
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Fig. 16.2 (a) Two kinds of skew tent maps, with a D 0:1 (black) and a D 0:9 (gray). The coupled
black maps and gray maps have identical Lyapunov exponents but different expansive/contractive
properties in different areas of the phase space. (b) transition rates and (c) distribution of durations
of desynchronization events for both types of coupled maps [30]. Here, “>5” is a sum of the
relative frequencies of all desynchronizations longer than five

16.3 Applications to Experimental Neuroscience Data

In this section we will discuss the analysis of the temporal dynamics of synchro-
nization in several different neuroscience experiments. There are different species
involved (rodents and humans), different types of recorded data (spikes, local
field potentials (LFP), and electroencephalogram (EEG)), different brain areas, and
different brain states. What is general here is that in all these cases we are dealing
with the synchronized oscillations in the neural activity of mammalian brains.

16.3.1 EEG Recordings in Healthy Human Subjects

In a recent study [4], EEGs recorded in a group of a hundred of healthy subjects
were subjected to the analysis described above. EEGs were recorded from scalp
electrodes and beta-band oscillations were extracted from the recordings. The data
were acquired while subjects were at rest or executed a simple motor task (open



16 Dynamics of Intermittent Synchronization of Neural Activity 269

Duration (cycles)

Baseline distance ≥ 3

Task C3-C4
P

ro
ba

bi
lit

y

1
0

0.2

0.4

0.6

0.8

2 3 4 5 6 7 8 >8

Fig. 16.3 Distribution of desynchronization durations for “Baseline distance � 3” (black) and
“Task C3-C4” (gray). Here, “>8” is a sum of the relative frequencies of all desynchronizations
longer than eight. Mean ˙ SD is presented

and close fists). The resulting distribution of the durations of desynchronizations
is presented in Fig. 16.3. In the rest state the pairs of distant electrodes, “Baseline
distance 	 3”, were considered to minimize a cross-talk between nearby electrodes.
During a motor task, synchronization between a pair of electrodes over motor
cortices was analyzed,“Task C3-C4.”

The results do depend quantitatively on many factors, but qualitatively the
shortest possible desynchronization is always the most frequent: for different brain
rhythms, at rest and during a motor task execution, and for different arrangements
of considered electrodes.

16.3.2 Spikes and Local Field Potentials in the Basal Ganglia
of the Parkinson’s Disease Patients

A study by Park et al. [21] analyzed the fine temporal structure of the phase-locking
of neural oscillations in Parkinson’s disease in the subthalamic nucleus (STN, a
part of the basal ganglia, subcortical brain nuclei related to Parkinson’s disease).
Spiking units and LFPs were recorded with microelectrodes in a group of patients
during a neurosurgery to implant deep brain stimulator electrode. LFPs are usually
believed to be formed by synaptic currents and STN apparently lacks intranuclear
connections. Thus, unlike cortex, spikes and LFPs in STN are formed by different
processes. Episodes of beta-band activity were extracted from the data because
this activity is associated with hypokinetic motor symptoms of the disease. The
segments of data recordings with statistically significant synchrony strength were
further selected.
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Fig. 16.4 The distribution of the durations of desynchronization events in the data from patients
with Parkinson’s disease. The histograms of desynchronization event durations were computed in
two ways, unweighted (gray bars) and weighted (white bars) proportionally to the length of the
analyzed data segments. All durations that are greater than or equal to six cycles of oscillations are
pooled together in “>5” group

The distributions of the durations of desynchronization events in the resulting
data are presented in Fig. 16.4. The most frequent duration of desynchronization
events is the shortest one and the probability to observe a desynchronization event
of a duration decreases as the event duration increases. Two different ways of
computing the frequencies, unweighted and weighted proportionally to the length
of the analyzed data segments, yield qualitatively the same results.

Similar results were obtained after the analysis of the recordings from a different
brain nuclei, internal Globus Pallidus [27]. Modeling studies of the beta-band oscil-
lations in parkinsonian basal ganglia reproduce short desynchronization dynamics
even in very small networks [19, 20] and in more realistic, larger networks [22]
reach quantitative agreement with experiments.

16.3.3 Local Field Potentials in the Cortex and Hippocampus
in the Rodents Undergoing Behavioral Sensitization

Another application of the analysis of desynchronization durations to neurophysi-
ology was done at [5]. The data were recorded from hippocampus and prefrontal
cortex of rats undergoing the protocol of behavioral sensitization. This protocol
is used to study drug addiction in experimental animals and aforementioned brain
areas are known to be directly involved in the addiction phenomena. The animals
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received an injection of amphetamine every other days for several days. The dynam-
ics of theta-band oscillation were analyzed. In all animals (including the ones from
the control group) and at every stage of the protocol short desynchronizations were
observed most frequently. The distribution of the durations of desynchronization
events was different for different stages of the protocol, but short desynchronizations
always prevailed.

Interestingly, at the very beginning of the protocol, initial drug injection does
not alter average synchrony strength of theta-band oscillation. But the distribution
of desynchronization durations is changed in response to the action of the drug [5].
Eventually, after more injections, average synchrony started to exhibit differences
as well. There are two (not necessarily mutually exclusive) explanations for this.
The first one is that the distribution of desynchronization durations is altered
independently of average synchrony strength in an experiment. The second one is
that as desynchronization durations are reorganized, so the average synchrony is,
but it changes so weakly that the change of average synchrony has not been detected
statistically. Either way the distribution of desynchronization durations turns to be
more sensitive to the changes in a neuronal system, rather than average synchrony.

16.3.4 Cardiac and Respiratory Rhythms in Healthy Subjects
and Subjects with Coronary Artery Disease

Final experimental example considered here is the analysis of phase-locking
between respiration and heartbeat rhythms [6]. These rhythms are not usually
thought of as brain rhythms. However, respiratory rhythm is generated in the
brain and cardiac rhythm is generated by the electrically active cells in the heart’s
sinoatrial node, which bear some similarity to neurons (both cardiac cells and
neurons have active membrane channels and produce relaxational oscillations). It
is interesting to mention that cardiorespiratory phase-locking is almost never 1 W 1,
unlike the neurophysiological phenomena described above. In general, this is n W m
phase-locking, n and m are small integers, and respiration is a few times slower than
heartbeat. In the study [6] the methods described in the Sect. 16.2.2 were generalized
to 1 W m case. This generalization is relatively straightforward: the value of the phase
of the fast rhythm is recorded when the phase of the slow rhythm is going through
the checkpoint.

The results are qualitatively similar to the experiments with the neural signals
described above. The distributions of durations of desynchronization events do
depend on many factors such as age, coronary artery disease status, ratio of
frequencies of the oscillations. However, short desynchronizations are the most
prevalent (although their relative frequencies in cardiorespiratory synchronization
generally tend to be a bit lower than that in the neural systems described above).
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16.4 Discussion

Since neural synchronization is usually intermittent even in the rest states, the
analysis of distributions of synchronization and desynchronization intervals pro-
vides some interesting information about dynamics of neural systems. Properties
of the synchronization intervals in neural systems have been studied earlier in the
context of study of different types of intermittencies (e.g., [14, 15, 36]). But if neural
synchrony is weak (which is usually the case), substantial fraction of time is spent
in the desynchronized events. The studies reviewed in this paper indicate that quite
different neural systems share similar properties of desynchronization events, which
implies certain universality among these systems. We will discuss some potential
ramifications of these observations.

16.4.1 Measuring Fine Temporal Structure of Synchronized
Dynamics in Neuroscience

Measuring properties of desynchronization durations opens a way for two interest-
ing possibilities in neuroscience. The first one is the use of the desynchronization
durations as a diagnostic tool. The experiments with behavioral sensitization
discussed above indicate that the distribution of desynchronization durations may
be altered more easily than the synchrony strength and may serve as an early
predictor of less subtle changes in a neuronal circuit and its dynamics in response
to the drug injection. Perhaps properties of the distribution of desynchronization
durations may serve as a clinical tool to diagnose otherwise undetectable changes in
the neurophysiology.

The second one is the use of the desynchronization properties to match dynamical
models to the real systems. If a system spends a substantial fraction of time away
from synchronous state, then properties of the desynchronized states are important
in order to have an adequate model of this system. One possibility is to use the
transition rates, that describe the transitions between different parts of the phase
space, and to develop a model in such a way that these transition rates in the model
are matched to the ones derived from experimental data (like it was done in [9, 22]).
This kind of matching may be important in the modeling studies of the modulation
of synchrony in neuronal networks. If only the synchronized states in the model and
real phase space are similar, but peripheries of the phase spaces are organized in
different ways, then a modulation or stimulation during desynchronized episodes
may lead to different consequences in the model and real systems (see [9]).
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16.4.2 Potential Functional Significance of Observed Short
Desynchronizations Dynamics in Neural Data

An interesting similarity among several experimental results described in the
previous section is that in all these cases short desynchronizations dominate in the
time-series (the mode of distribution of desynchronization durations equals to 1).
For generic coupled oscillators, the mode of this distribution may have a higher
value. This distribution is defined by the properties of a phase space periphery away
from the synchronization state. Thus, for generic coupled oscillators, one may not
necessarily expect much of universality here. Unlike the loss of stability of synchro-
nization manifold, the reinjection mechanism is not necessarily universal. However,
neural desynchronizations in the brain under very much different conditions and
in different species appear to be universal: short desynchronizations prevail. There
may be something in the very common properties of neurons (perhaps properties of
kinetics of membrane channels), that universally facilitates short desynchronization
dynamics.

The observed prevalence of short desynchronizations naturally brings a question
of whether this property may have any significant functional advantage. We suppose
that short desynchronization dynamics may make neuronal circuits more amenable
to control by other brain parts or sensory inputs. Neural circuits need to be able to
transiently create some synchronized states in response to external inputs. Short
desynchronization dynamics means that although average synchrony is low, the
system moves into vicinity of a synchronized state fairly frequently. This also
implies that (for average synchrony been equal) synchronized state without inputs
should be relatively strongly unstable. This arrangement may be more conducive
to quick and efficient formation and break-up of transiently synchronized states in
response to the external inputs to the network.
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Chapter 17
Vortices Termination in the Cardiac Muscle

Valentin I. Krinsky, Vadim N. Biktashev, Niels F. Otani, and Stefan Luther

17.1 Background

Control of chaos in the cardiac muscle for a long time was in hands of cardiologists
only. They found a rotating wave in the heart, and called it “re-entry” since it enters
to the same place again and again.

A seminal publication in 1946 by Wiener and Rosenblueth [1] induced interest of
mathematicians and physicists to this problem. It became known to Soviet physicists
due to M.I. Gelfand’s seminars in Moscow and schools on Nonlinear Dynamics
in Nizhny Novgorod organized by A. Gaponov-Grekhov and M. Rabinovich.
The interest much increased when the rotating spiral waves were found in an
active chemical medium based on the Belousov oscillating chemical reaction.
The Belousov chemical reaction became known to scientists due to Simon Shnol
(Moscow University and Biological Research Center Puschino of the USSR
Academy of Science). Shnol found general Belousov whose attempts to publish
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his discovery of the oscillatory chemical reaction were rejected by referees as
contradicting to thermodynamics. Shnol convinced Belousov to publish his results
in the Collection of Abstracts on Radiation Medicine [2]. Shnol requested one
of his students, A. Zhabotinsky, to reproduce Belousov’s result. I (V.K.) met
A. Zhabotinsky in Puschino, he was analysing the chemical mechanism of the
Belousov reaction. I told him about results of the Gelfand’s seminar how to induce
a rotating spiral wave in any excitable medium, and proposed to induce a rotating
wave in the Belousov reaction together. A rotating wave did not arrive during weeks
of experiments. The main difficulty was that the measured wave length was larger
than the size of the Petri dish. This difficulty was overcome by chance, and the
spiral rotating waves were obtained.

Experiments with rotating waves in this reaction became a fashionable field of
research, and stimulated the theory. During long time of successful development, no
decent applications arrived from this field. We discussed it with Misha Rabinovich
during his visits to me in Nice, and with H. Abarbanel during my visits to Misha.

Then, after a meeting on excitable media and heart in the Kavli Institute of
theoretical physics, together with Robert Gilmour, E. Bodenschatz and S. Luther
we started cardiac experiments to implement the developed understanding [3–5] for
creating low energy methods for termination chaos in the heart. Results of these
experiments were published in [6, 7]. Physical mechanisms underlying termination
of free and pinned vortices are described in this short review.

Rotating electrical waves (vortices) and their instabilities underlie cardiac chaos
(fibrillation) [8–10]. Physics of the vortices is well understood, e.g. [11–15]. But
contemporary method of terminating the life-threatening cardiac fibrillation is still
aimed at termination of not vortices, but all waves in the heart.

Over a century ago, it was found that a single vortex (rotating wave or anatomical
reentry) in a heart can be terminated with an electric pulse [16]. An electrode was
placed close to the anatomical obstacle around which the wave rotates and a small
energy electric pulse was delivered within a certain time interval, called critical
window, or vulnerable window, VW (note that for a rotating wave, such intervals
repeat within each lap).

This approach alone cannot terminate fibrillation since there are multiple rotating
waves with unknown and changing geometric locations and phases [10]. That is,
we have two main problems: (1) the geometric positions of their cores and (2) the
positions of their critical time windows are not known during fibrillation.

An approach to overcome the problem (1) was developed [4, 17]. Due to the bi-
domain electric nature of cardiac muscle [18], every defect in it that can serve as
a pinning centre for a vortex is at the same time an electric inhomogeneity. This
allows an electric field pulse (E-pulse) to excite the cores of all pinned vortices
simultaneously, regardless of the geometric positions of their cores.

Approaches to resolve the problem (2) are being developed. They are aimed
to deliver a pulse into VWs of all vortices without knowing their relative phases
(“positions in time”). One of them is the phase scanning by E-pulses, with a
phase step that is shorter than the VW, for all vortices in parallel. It was tested
in experiment to terminate a vortex in a rabbit heart preparation [19]. Scanning with
periodic E-pulses was used to terminate fibrillation [6, 7]. Termination of one vortex
with periodic E-pulses was numerically investigated in [20–22].
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17.2 Termination of Multiple 2 Dim Vortices

With multiple vortices, difficulties arise due to their interaction. We investigate the
excitation dynamics in the vicinity of the cores of pinned vortices. This allows to
draw conclusions about the overall dynamics. When the VW of a vortex is hit by the
E-pulse, this vortex is displaced to a new position. If the vortex was situated close
to the tissue boundary, it is terminated. Our aim is to hit the VW of every vortex by
an E-pulse (“all vortices are terminated”).

Wave patterns were calculated using the Barkley model

ut D "�1u.1 � u/Œu � .v C b/=a�C r2u; vt D u � v (17.1)

in a rectangular domain with circular holes, with no-flux boundary conditions at the
outer boundaries.

Pulses of electric field E are implemented as in [23] using the boundary
conditions n �.ru�E/ D 0 at the boundaries of the holes. The numerical integration
used an explicit Euler scheme with a time step of 1:6�10�3 and central-difference
approximation of Laplacian with a space step of 1

6
. The Barkley model is formulated

in non-dimensional units; for presentation purposes, we postulate that the time unit
of the Barkley model is 20ms and the space unit of the Barkley model is 0:5mm;
this gives physiologically reasonable time and space scales.

Figure 17.1 shows termination of two pinned vortices by E-pacing. This can
be achieved generically, for any parameters of the vortices, without knowing their
geometric location and time positions of the VWs.

To hit the VW with an E-pulse, the phase scanning (Fig. 17.2b) should be
performed with steps 0 < s < VW. Thus, the VW length (at the chosen E, see
Fig. 17.4h) determines suitable values of s. Then, the number of pulses N to cover
the whole phase of a vortex is N > Tv=s, where Tv is the period of the vortex,
s D T � Tv is the scanning step, and T is the period of E-pacing. This gives the
E-pacing period T D s C Tv . Thus, all parameters of E-pacing (E, N, T) can be set
following equations

0 < s < VW.E/;N > Tv=s;T D s C Tv (17.2)

to guarantee that at least one E-pulse hits the VW.
What does interaction of vortices change here? In cardiac muscle, the fastest vor-

tex entrains (or “enslaves”) slower vortices if there is normal wave propagation be-
tween them. Then, only one frequency remains; this facilitates vortices termination.

But entrainment ceases if the fastest vortex is terminated before the slower
vortices, and then the frequency of the system changes (period increases). Here,
two wave scenarios are possible, which we describe for the case of just two vortices
with periods Tv1 and Tv2, such that Tv1 > Tv2:

1. If the periods of the two vortices are not much different, so that Tv2 < Tv1 <
T , then the pacing is still under-driving, and the slower vortex (Tv1) can be
terminated by E-pacing with same period T (see Figs. 17.1 and 17.2b), provided
that termination conditions (17.2) are met for the slower vortex.
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Fig. 17.1 Parallel termination of two pinned vortices with unknown both geometrical locations
and time positions of the critical (vulnerable) windows (VW). The slow vortex 1 (period Tv1 D
87ms, pinned to the 1:2mm defect 1) is entrained by the fast vortex 2 (period Tv2 D 83ms,
1:0mm defect 2). They are paced with electric field directed from top to bottom, jEj D 1:3V=cm,
pulses 2ms duration, period 100ms. This induces the phase scanning with the time step s D 17ms.
Colour code: red is a wave, green is the wave front. Time is measured from the start of pacing at
t D 0ms. 196 ms: a wave W emitted by vortex 2 enslaves vortex 1. 204 ms: an E-pulse delivered
at t D 200ms induces a wave S. 216 ms: the right wavebreak of wave S annihilates with the tip
of vortex 1 (they have opposite topological charges). 232 ms: vortex 1 is unpinned and terminated.
The left wavebreak of S created a free vortex F. 336 : : : 376 ms: F disappears on the boundary.
408 : : : 440 ms: Next E-pulse similarly terminates vortex 2. Barkley model, parameters a D 0:8,
b D 0:09, � D 0:02

2. If however the periods of the two vortices are so different that

Tv2 < T < Tv1 (17.3)

then the pacing with the same period is no longer under-driving, but over-driving.
And overdrive pacing will typically entrain the remaining vortex rather than
eliminate it.

For successful termination of fibrillation, the E-pacing period should be increased
to a higher value T2, such that Tv1 < T2. Thus, vortices can be terminated in
any case. Experiments [7] underestimated the potential of the method since this
mechanism was not known yet.

A similar mechanism can also terminate a free (not pinned) vortex when its
moving core passes not very far (at distance L < �, where � is the wave length)
from a defect in the medium, serving as a virtual electrode, Fig. 17.3. The success
rate is the higher, the smaller is the distance L.

A mechanism reliably terminating a free rotating wave was found in 1983 [25]:
waves with a frequency higher than the frequency of a rotating wave, induce its
drift and termination on the boundary. Cardiologists used a high frequency pacing
(anti-tachycardia pacing, ATP) well before the mechanism was understood. But ATP
cannot terminate high frequency rotating waves. The mechanism found here uses
electric field induced wave emission; electric field penetrates everywhere, there is
no frequency limitations that exist for waves propagating in the excitable cardiac
tissue.
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Fig. 17.2 Phase scanning. (a): u1.t/, v1.t/ are recordings from the point just above defect 1,
Fig. 17.1, and u2.t/, v2.t/ are same for defect 2. The bold black lines indicate timing of the
delivered E-pulses. Shaded areas are vulnerable windows, defined as time intervals where v 2
.0:0871; 0:18/, u < b=a. Seen that in spite of small phase disturbances produced by E-pulses,
the topological features of the scanning are not disturbed, scanning successfully terminates the
vortices. E-pulse 3 (t D 200ms) reaches VW of vortex 1 and terminates it, E-pulse 5 (t D 400ms)
reaches VW of vortex 2 and terminates it, compare with Fig. 17.1. (b, c): schematic. Superimposed
action potentials (AP) are shown. Red arrows indicate timing of the delivered E-pulses; “e” is an
excitable gap, s is the scanning step, s D T �Tv . (b) s > 0 for T > Tv , (“under-driving”), scanning
reaches the VW. (c) s < 0, (“over-driving”), for faster pacing T < Tv , the scanning moves in the
opposite direction. E-pulse reaches the excitable gap “e”, excites an AP thus resetting the rotation
phase, and all subsequent pulses get into the same phase [22, 24]. It does not reach the VW

147 307
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323B 368

Fig. 17.3 Termination of a free vortex by an E-pulse. 147 ms: A free vortex and a defect (white).
307 ms: A semi-circular wave (with wavebreaks A and B) emitted from the defect by an E-pulse,
electric field directed from right to left. 323 ms: Wavebreak A fused with the vortex tip. 368 ms:
After annihilation of wavebreak B with the border, only a wave without wavebreaks is left in the
medium. Barkley model, parameters a D 0:6, b D 0:075, � D 0:02
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An increased amplitude of electric field jEj results in defibrillation. The only
known mechanism was: the wave emission is induced from a larger number of
defects [17]. We describe here another mechanism: the duration of the VW increases
with the electric field, Fig. 17.4g.
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Fig. 17.4 Change of topological charge, creation of phase singularities, and vulnerable window
VW. (a–d) 1 dim mechanism. (a) Nullclines of FHN equations. M is the Maxwell point. The
topological charge of a wave pattern is changed by an E-pulse only when an image of a nucleated
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The mechanism of the VW is related to change of topological charge in 1D and
creation of new topological singularities in 2D. We illustrate it using time-separation
analysis for the FitzHugh–Nagumo (FHN) equations:

ut D f .u/ � v C Duxx; (17.4)

vt D ".u � kv/: (17.5)

Here f .u/ D Au.1 � u/.u � ˛/, and � � 1 is a small parameter permitting the time
scales separation (for details of relevant formalisms see review [27]). The wavefront
propagation velocity � can be estimated by assuming that the slow variable v is
approximately constant across the wavefront. The propagation of the front is then
described by Eq. (17.4) alone, where v is a constant parameter. Transforming the
independent variables such that 
 D x �� t makes Eq. (17.4) an ordinary differential
equation

��u
 D f .u/ � v C Du



which together with boundary conditions u.1/ D u1, u.�1/ D u3, where u1 D

u1.v/ and u3 D u3.v/ are, respectively, the lowest and highest roots of f .u/ D v,
define � as a function of v, see Fig. 17.4b. Here, velocity �.v/ is negative for v >
vM , where vM is the Maxwell point,

R u3.vM/

u1.vM/
.f .u/ � vM/ du D 0, �.vM/ D 0 [4].

Vulnerability is a cardiological term coined for initiation of fibrillation by an
electric pulse. In the physical language, vulnerability in 1 dim can be related to
a change of the topological charge, and in 2 and 3 dim to creation of new phase
singularites. In 1 dim, the topological charge changes when the current injection
nucleates a wave propagating in only one direction, Fig. 17.4d. This is in contrast
to the generic case, where the topological charge is conserved, when the new wave
propagates in two directions, Fig. 17.4c, or new wave is not nucleated at all (not
shown). For one-directional propagation to happen, the nucleated wave should cover
the points which have v D vM corresponding to the Maxwell point � D 0. Then,
a part of the nucleated wave has positive velocity (becoming the front of the wave)

J
Fig. 17.4 (continued) wave contains the Maxwell point. (b) Wave front velocity � vs the slow
variable v. The value of v corresponding to velocity � D 0 is the ordinate vM of the Maxwell
point on panel (a). (c) The topological charge conservation in 1 dim. Generic case: an electric
pulse 3ms duration is delivered far from the tail of an action potential (AP). t D 10ms after
pacing: a nucleated wave, very narrow, and the electrode (black square) below it. t D 75ms:
the nucleated wave developed into two counter propagating APs. Their total topological charge is
zero. (d) Violation of the topological charge conservation. t D 10ms: an electric pulse is delivered
closer to the tail of the AP, inside VW. t D 75ms: only one AP is induced. It propagates to the left
only. The topological charge is changed. Cardiac ionic model [26]. (e, f) 2 dim mechanism. (e) No
phase singularities are created. An electric pulse is delivered as in (c). (f) Creation of two phase
singularities, B1 and B2. An electric pulse is delivered as in (d). (g, h) VW increases with electric
field in 2 dim. (g) Mechanism: the larger E, the larger is the depolarized region. (h) Graph VW.E/
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and another part has a negative velocity (becoming the tail of the wave), as in
Fig. 17.4d, f. Otherwise, all parts of the nucleated wave have velocity of the same
sign. When velocity � < 0, the nucleated wave shrinks and decays. In the opposite
case, it enlarges in all directions, as in Fig. 17.4c, e.

17.3 3 Dim Vortices

Here we show that, in 3 dimensions, a mechanism exists that can terminate
a 3D vortex in the heart, using low-amplitude electric fields, which operates
independently of vortex wave phase, corresponding to a VW of the full 2� radians
in phase. This allows to hit the vulnerable window with every electric field pulse,
making the scanning of vortex phase unnecessary.

The mechanism is based on the ability of an electric field pulse to transform
the rectilinear filament of the scroll wave (i.e., the axis around which the scroll
wave rotates) into a curved shape filament in an excitable layer (such as a heart
wall), as illustrated in Fig. 17.5a. If a pulse of an electric field oriented parallel
to the “I-shaped” filament, Fig. 17.5a(i), is applied, it depolarizes the rear surface.
The filament becomes L-shaped, Fig. 17.5a(ii), since the filament is essentially the
dividing line between the wavefront and waveback. In a thin layer, there is not
enough room for rotation around the filament, and the scroll wave is terminated.
In a thick layer, L-shaped filament relaxes within one rotation into a C-shaped
filament (Fig. 17.5a(iii)). This C-shaped filament may be thought of as one-quarter
of a scroll ring, assuming no-flow boundary conditions for the membrane potential
on the system surfaces. Depending on system parameters, scroll rings, and therefore

E0

0.3
0.0
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0.3

0.8
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b

(a) (b)(i) (ii)

(iii)
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CS

1.3

Fig. 17.5 (a) Illustration of (i) I-shaped, (ii) L-shaped and (iii) C-shaped filaments, and the scroll
waves that rotate around them. (b) Location of our system parameters (red star) in Barkley
parameter space. “CS” and “ES” label the contracting and expanding scroll regimes, respectively
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C-shaped filaments, can shrink and disappear due to positive tension within the
filament, resulting in the termination of the rotating wave.

The phase independence of this mechanism arises from the symmetry of the
initial conditions with respect to the combination of a translation in time and a
rotation around the scroll wave. Specifically, since the electric field is initially
oriented along the scroll wave axis, application of the field at a time t D t0 is
identical to applying the field at a different time t D t1 if the coordinate system
is also rotated around the scroll wave axis through an angle of 2�.t1� t0/=Ts, where
Ts is the scroll wave rotational period. Thus, the result of applying the electric field
is independent of time, apart from any spatial features of the system that might break
the symmetry. In particular, if the outcome of applying the electric field at any given
time is termination of the scroll wave, we can also expect termination if the electric
field is applied at any other time.

To study this mechanism, we conducted computer simulations in a 3D rectangu-
lar system meant to represent a portion of one of the walls of the heart. We used
a simple forward Euler method on a rectangular grid to solve the monodomain
Barkley model Eq. (17.1) with parameters a D 0:8, b D 0:05, � D 0:02, D D 1:0.
The computational grid spacing and timestep were set to 0.167 and 1:6 � 10�3,
respectively. A scroll wave was initiated in the system with its filament oriented
perpendicular to the front and rear surfaces of the system (Fig. 17.6a). These two
surfaces may be thought of as portions of the endocardial and epicardial surfaces
of the heart. The scroll wave was allowed to settle down over the course of at least
three rotations prior to the delivery of a short-pulse, spatially uniform electric field.

Figure 17.6 shows the mechanism responsible for termination of a three-
dimensional scroll wave in a thin-wall system. The scroll wave just prior to the appli-
cation of the electric field pulse is displayed in Fig. 17.6a. When the pulse is applied
at t D 0, with the electric field direction parallel to the scroll wave filament, the pulse
immediately depolarizes the rear surface, as seen in Fig. 17.6b. The front surface is
simultaneously hyperpolarized. The electric field pulse strength and duration used
corresponded to 1.3 V/cm, 5 ms electric field pulse in a realistic heart. (This equiv-
alence is based on an assumed threshold for wave initiation in a realistic cardiac
setting of 0.2 V/cm for 5 ms, and the use in our system of a pulse field strength that
is 6.5 times the threshold field.) The depolarization wavefront (red) subsequently
propagates as a plane wave along the filament direction (black arrows) as shown in
Fig. 17.6b, c. In this thin-layer system, the plane wave quickly depolarizes the entire
space not occupied by the rotating wave or the region of hyperpolarization, leaving
no place for the scroll wave wavefront to propagate. While the scroll wave moves
away, in the direction indicated by black arrows in Fig. 17.6c, it loses the wavefront,
and only the wave tail left, Fig. 17.6d. After, the whole medium becomes quiescent.

We also find that applying an electric field pulse 1.1 V/cm for 5 ms at any of
the five time moments equally spaced in time by 0:2Ts resulted in termination
of the scroll wave, while applying a slightly weaker pulse, 0.9 V/cm, at any of
these five moments, fails to terminate the rotating wave. With termination occurring
independently of the electric field application time, the vulnerable window (VW)
for this thin-wall system is 2� radians.
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Fig. 17.6 A 3D mechanism for terminating a scroll wave in a thin-layer that results in a vulnerable
window (VW) of 2�. Wall thickness: 1.667; electric field strength: 1.3 V/cm for 5 ms. (a) Scroll
wave after four rotations. (b) Immediate effect of an electric field pulse applied at time t D 0.
The electric field E0 (long arrow) is oriented parallel to the scroll wave filament. (c) The leading
edge of the newly depolarized region (red) is a plane parallel to the x-y plane. It propagates as a
plane wave in the z-direction (black arrows) filling the region not occupied by the scroll wave.
(d) The scroll wave loses its wavefront, and therefore terminates shortly thereafter. We have
observed that the 3D scroll wave terminates irrespective of its phase (0 to 2�) when the electric
field is applied. For all panels: Regions occupied by action potential(s) (u > b=a) or its refractory
period (v > a=2 � b) are shown as opaque. Muted colours represent the value of the membrane
potential; see the colour bar

This important result, that the VW assumes the full range of available phases
when the electric field pulse is oriented along the filament direction, is not just a
property of thin layers. We illustrate this in Fig. 17.7 for a scroll wave in a system
with a wall thickness four times that of Fig. 17.6. The electric field pulse again
depolarizes the rear surface, which interferes with the portion of the rotating wave
close to that surface. However, in this case, the remainder of the scroll wave is
not immediately disturbed. Instead, the trailing (blue) surface of the rotating wave
recedes, as the new, induced wave attempts to fill the excitable gap. The result of
these two processes is the merging of the two waves into a single wave, which then
rotates around a filament that is now L-shaped, shown as a white dashed line in
panel (b) of Fig. 17.7, an effect previously demonstrated by Biktashev [28]. The
filament quickly relaxes to curved, “C” shape (Fig. 17.7d, e) which, based on the
theory of scroll ring dynamics [29, 30], is governed by the equation,

dR=dt D �˛=R (17.6)

where R is the local radius of a curved filament, and the constant ˛, sometimes
called filament tension, depends on the system parameters. In our case, with Barkley
parameters a D 0:8 and b D 0:05, the system resides in the Contracting Scroll
(CS) region in the parameter space, as shown in Fig. 17.5b [31]. In this regime,
˛ is positive, and the filament shrinks due to positive filament tension. Shrinking
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Fig. 17.7 Scroll wave termination in a thick layer also has VW D 2�. Wall thickness: 6.667;
electric field strength: 1.1 V/cm for 5 ms. (a) Scroll wave prior to application of the electric field
pulse. The white dashed line denotes the scroll wave filament. (b) The filament acquires an L-shape
after the electric field pulse. (c) The filament becomes C-shaped (hidden, but visible in (d) and (e))
as the waveback (in blue) recedes. (d)–(f): The curved filament shrinks, then disappears, due to the
filament tension. Again, this mechanism operates, as illustrated, irrespective of when the electric
field pulse is administered (i.e., a VW of 2�) for a pulse of sufficient strength

and self-annihilation of the filament is seen in Fig. 17.7b–f during the course of
continued rotation. The disappearance of the filament then results in termination of
the scroll wave.

We again find that the mechanism produces termination irrespective of the phase
of the vortex when the electric field pulse is administered. In this case, we find that
the termination of the scroll wave occurs when a field 2.2 V/cm is applied at any
of five moments equally spaced in time by 0:2Ts. The vulnerable window for scroll
wave termination thus consists of all 100% of possible locations of the rotating wave
in its rotation; thus, VW D 2� .

Finally, to contrast this method with conventional methods in 2D, we tried
applying electric fields ranging in strength from 2.2 to 8.8 V/cm in the ˙x and ˙y
directions. We also tried applying a field 2.2 V/cm in the �y direction at ten different
times, equally spaced within a spiral wave period. None of these trials produced
scroll wave termination.
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17.4 Experiment

Results of about 500 experiments with vortices termination in the isolated pig hearts
are presented in Fig. 17.8. Fibrillation was induced and terminated as in [6, 7].

Figure 17.8a shows that the optimal pacing frequency Of D 0:77 is below the
arrhythmia frequency . Of < 1/ as it should be for terminating pinned vortices.
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Fig. 17.8 Fibrillation termination in the isolated pig hearts. The success rate of defibrillation in
486 experiments by 5 biphasic E-pulses. (a) Success rate vs normalized frequency Of D f=fd
where fd is the dominant frequency of fibrillation. Error bars: the standard deviation. Dashed
lines: theoretical prediction for termination of one pinned vortex (blue), two pinned vortices (red),
when the slower vortex is enslaved by the faster one (red). In accordance with the mechanism
explained near Eq. (17.3), the theoretical termination rate for two vortices is threefold lower than
that for a single vortex. The experimental curve is between the theoretical curves for one and two
pinned vortices. The black dashed line is the theoretical prediction for a mixture (50:50) of two
identical vortices and two vortices with significantly different frequencies, as per Eq. (17.3). (b, c)
Success rate for defibrillation energies not exceeding Oe, for frequencies Of shown near each curve.
Normalized energy Oe D e=e1, where e1 is the threshold E50 energy of defibrillation by 1 shock.
Graphs (b, c) and the experimental curve in (a) are calculated from data in [32]. The optimal pacing
frequency Of D 0:77 is below the arrhythmia frequency . Of < 1/ as it should be for terminating
pinned vortices. An interpretation of the experimental results is that about half of VF episodes was
induced by pinned vortices of very close periods. These experiments evidence that pinned vortices,
hidden from direct observation, are significant in fibrillation
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Notice that elimination of a free, rather than pinned, vortex by inducing its drift
via the mechanism described in [25] requires the pacing frequency to be above the
arrhythmia frequency, Of > 1.

The theoretical estimation shown in dashed black line fits the experiment better
than curves for one or two different vortices. It indicates that in about a half
of fibrillation cases, the frequencies of the vortices were not much different, see
Eq. 17.3.

This estimation was obtained in an axiomatic model which assumed that the
strength of electric field is sufficient to ensure the normalized vulnerable window of
about 0:24 (see below for more detail of the axiomatic model). Minimum energy for
termination of a pinned vortex is achieved when the electric field strength is chosen
so that the normalized vulnerable window VW.E/ D 1=N, where N is the number
of pacing pulses.

Maximum of the success rate is achieved when the pacing frequency f D fbest,
where fbest is the frequency for which the normalized scanning step sn D 1=N.

When f < fbest, i.e. T > Tbest, the scanning step sn > VW, and the vulnerable
window may be missed while scanning, thereby decreasing the success rate. When
f > fbest, so T < Tbest, the scanning step sn < VW D 1=N, and not all phases are
scanned. This also decreases the success rate.

As an estimate of the fastest vortex frequency we use the dominant frequency.
Below is a formal description of the axiomatic model used. Let  j

n 2 Œ0; 1/, j D

1; 2, n D 1; : : : ;N, N D 5, describe the phase of jth vortex just after the delivery of
the nth E-pulse, Tj be the own periods of the vortices, T2 > T1, and correspondingly
snj D OT � OTj D .T � Tj/=Td are the scanning steps normalized by the measured
dominant period, Td. We postulate  j

nC1 D . j
n Cs/ mod 1, subject to the following

corrections: (1) if  j
nC1 2 Œ1 � EG; 1/, where EG is the normalized duration of the

excitable gap, then  j
nC1 is replaced with 0: this describes resetting the jth phase by

the E-pulse; (2) if  j
nC1 2 Œ1 � EG � VW; 1 � EG/, where VW is the normalized

duration of the vulnerable window, then the jth vortex is considered terminated;
(3) if neither vortex is terminated, then the slower vortice’s phase is enslaved by
the faster one’s, 2nC1 D .1nC1 � D/ mod 1, where D is a fixed phase delay;
(4) if both vortices are terminated, iterations stop and E-pacing is deemed suc-
cessful. Figure 17.8 shows results of Monte-Carlo simulations with random initial
phases of vortices and normal distributions of parameters OT1 D 1 ˙ 0:1 and OT2 D

1:6 ˙ 0:05 (mean˙standard deviation), with other parameters fixed at EG D 0:4,
VW D 0:2 D 1=N, D D 0:25. Note that the normalized vulnerable window VW
depends on the strength of the electric field in the pacing pulses.

The three curves correspond to simulations with two-vortex initial conditions
(red line), with initial conditions where only one vortex is present from the start
(blue line), and a 50:50 mixture of the two (the black dashed line).

We see that the axiomatic model predicts that for two vortices, the success rate
should be lower than for one vortex, for frequencies between the frequencies of the
leading vortex and the led vortex. This is due to the cases then the leading vortex is
terminated first, dominant frequency changes and the conditions for termination for
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the remaining, slower vortices are no longer optimal. As the figure shows, the actual
experimental data best correspond to a mixture of one- and two-vortex cases.

However in the experiments the arrhythmia in all cases was VF rather than VT,
so presumably involved more than one vortex. Note that in the axiomatic model, a
case of one vortex is similar to that of two or more vortices of identical periods.
Hence we conclude that the most likely interpretation of the available experimental
data is that about half of VF episodes was induced by vortices of very close periods.

These experiments evidence that pinned vortices, hidden from direct observation,
are significant in fibrillation.

17.5 Discussion

Here, we investigated two extreme cases: permanently pinned vortices and perma-
nently free vortices. There is no sharp transition between them. In cardiac muscle,
there are heterogeneities of all sizes, including those to which vortices pin weakly.
A weakly pinned vortex is pinned for some time only, then leaves the pinning
centre and moves as a free vortex, again for some time. When moving and meeting
a pinning centre, it may pin to it, or may reach the boundary of the tissue and
disappear. Such intermediate types of rotating waves can be more easily terminated
while they are pinned.

Vortices termination can be induced also by other mechanisms different from
vulnerability, e.g. pacing-induced drift of a free vortex [25], unpinning of weakly
pinned vortices [33, 34] and by 3 dim mechanisms [35].

3 dim models are widely used in investigation of wave patterns induced by
rotating waves, e.g. [14, 29]. Study of vortices termination in 2 dim models is
a necessary step for developing understanding mechanisms of 3 dim vortices
termination in the heart. A 3-dim mechanism of defibrillation was described in
[28, 35, 36]. Termination vortices underlying fibrillation is only a small part of
a problem preventing and curing the cardiac arrhythmias where combination of
molecular and dynamics approaches is prominent [37].

In conclusion, we have shown mechanisms of terminating pinned and free
vortices by electric field pulses when the geometric positions of their cores, and the
phases of rotation are not known. We have demonstrated a new, low-energy, scroll
wave termination mechanism that is an apparent solution to the problem of small
vulnerable windows that are characteristic of other low-energy methods. When an
electric field pulse is applied with field component oriented parallel to the scroll
wave filament, we obtain wave termination with a vulnerable window of the full
2� radians using field strengths much smaller (1.1 V/cm for thin layers; 2.2 V/cm
for wide layers) than those typically required by standard methods (5–6 V/cm for
standard defibrillation). This reduces pulse energy requirements by an order of
magnitude (since energy scales as E20), thus minimizing pain, tissue damage and
battery requirements. Since the VW is 2� , the new mechanism also eliminates the
need to apply multiple electric field pulses to scan phases of all rotating waves. We
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therefore expect that the new mechanism will play an important role, alongside other
mechanisms, in the future design of low-energy defibrillation stimulus protocols

These results form the physical basis for creation of new effective methods for
termination vortices underlying fibrillation.
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Chapter 18
KDV Soliton Gas: Interactions and Turbulence

Efim Pelinovsky and Ekaterina Shurgalina

18.1 Introduction

Mikhail Rabinovich is one of the founders of the theory of nonlinear wave
interaction. His main interest has been associated with the wave processes in
active media, leading to competition between various waves and stochastization of
dynamic processes, see e.g., [1–4]. Such processes are also possible in conservative
systems, when a large number of interacting waves propagate in different directions
and with different velocities. Their interference and interactions lead to a fast
changing of wave pattern, and the description of wave field should be carried
out within the framework of the statistical theory. Such theory called weak wave
turbulence is described in the books [5, 6]. The main idea is that the wave process is
described by the interaction of a large number of sinusoidal waves with independent
phases in the linear approximation, and a weak nonlinearity induces weak phase
correlation. Equations for the intensity are obtained by perturbation theory and
statistical averaging. However, integrable systems have their own specifics which
were formulated as the Fermi–Pasta–Ulam problem (see, for instance [1, 7]). Instead
of the initial perturbation energy being distributed over the spectrum, after a certain
time it is then concentrated in a small number of harmonics. This was discovered
by the example of a vibrating string (Boussinesq equations that for unidirectional
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waves lead to the Korteweg–de Vries equation). Thus it is clear that the wave
turbulence can be very specific in integrable systems, discussed in [8, 9].

Solitons are an important part of the modern nonlinear physics providing the
wave propagation over long distances. In integrable systems like Korteweg–de Vries
(KdV) and nonlinear Schrodinger (NLS) equations there are a lot of approaches
(inverse scattering method, Darboux and Backlund transforms, bilinear Hirota
method) allowing to obtain rigorous solutions for description of soliton interaction.
The soliton turbulence is a specific part of the wave turbulence theory, where
kinetic equations describe the parameters of the associated scattering problem,
not wave amplitudes or amplitudes of Fourier harmonics. Zakharov in 1971 first
showed the fundamental role of pairwise soliton collisions within the Korteweg–de
Vries equation framework. Later on, the kinetic theory for dense soliton gas was
developed by El with his coauthors [10–13]; the theory was capable to describe
various properties of soliton ensembles. Soliton turbulence in integrable systems
is degenerated to some extent, because solitons are conserved in the interacting
process which is why their characteristics (more precisely discrete eigenvalues
of the associated spectral problem) do not change. That is why the nonlinear
Fourier transform for KdV equation described sea waves on shallow water was
developed. This allows exploring the “structure” of observed random waves [14–
16]. These components of the wave field (analogues of cnoidal waves and solitons
if they exist independently) do not change in time, but their superposition leads
to random changes on the wave pattern. In practice it is not only important to
know the parameters of solitons and cnoidal waves, but also the distribution and
moments of the random wave field. Soliton ensembles have already been discussed
in the literature numerically within this model [17–22]. In the framework of
integrable Korteweg–de Vries equation soliton interaction is elastic, and therefore
the parameters of the soliton field do not change [8, 10–13]. Nevertheless, their
interaction with each other and with dispersion packages should lead to the change
in the wave field characteristics, its extrema and statistical moments.

18.2 Mathematical Model

In this article we consider the interaction of random soliton ensembles. Korteweg
de–Vries equation is selected as a mathematical model, which is the canonical
equation for weakly nonlinear and weakly dispersive waves in nonlinear physics:

@u

@t
C 6u

@u

@x
C
@3u

@x3
D 0 (18.1)

As is known, the KdV equation has an exact solution in the form of so-called solitary
wave or soliton:

u.x; t/ D Asech2 K �x � 4K2t � x0
��
; A D 2K2: (18.2)
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Solution is determined by two independent parameters: amplitude A and phase
(initial position of soliton) x0. Multi-soliton solutions can also be written analyti-
cally [23].

18.3 Two-Soliton Interaction

As a first step, we investigated features of two-soliton interaction which can be
considered as elementary act of soliton turbulence [24]. It was shown that the two-
soliton interaction in the framework of the KdV equation leads to the decrease of
the third and fourth moments of the nonlinear wave field (integrals from un over x)
while the first and the second moments remain unchanged due to the conservation of
the mass and momentum. The magnitudes of the relative variations of moments turn
out to be no monotone functions of the soliton amplitude ratio A2=A1 each having
a single maximum located at the point A2=A1 � 0:32, close to the boundary of
the transition region between the exchange and overtaking scenarios of two-soliton
interactions. The qualitative implication of this dynamical effect for the soliton
turbulence theory will be a decrease of the skewness and kurtosis of the turbulent
wave field and this will be shown below.

18.4 Numerical Modelling

The dynamics of irregular soliton trains is studied numerically using the pseudo-
spectral method for a periodic spatial domain (details in [22]). For simplicity the
explicit formula for initial condition is

u.x; t/ D

NX
iD1

ui D

NX
iD1

Aisech2 Ki
�
x � 4K2

i t � xi
��
; Ai D 2K2

i ; (18.3)

where N is a number of solitons in the computational domain. Phases xi are
chosen so that initially solitons are separated from each other (�x D 20/. In our
experiments a random set of soliton amplitudes is selected and realizations differ
from each other by the position of solitons in domain only. In the initial experiments
with 100 solitons their amplitudes in the computational domain vary from Amin D1
to Amax D3. Two realizations of such fields are shown in Fig. 18.1.

Solitons have different amplitudes and different velocities; hence, they will
interact over time. Figure 18.2 shows the evolution of the soliton field, represented
in Fig. 18.1a, in x–t domain. The zoom of the figure is shown on the right figure.
Different slopes and trajectories correspond to different soliton velocities. Soliton
trajectories do not lie only on straight lines after interacting, which demonstrates
the phase shift as a result of nonlinear soliton interaction. Similar conclusions about
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Fig. 18.1 Initial soliton ensembles, two realizations

Fig. 18.2 X–t diagram of soliton field (zoom is presented at the right panel)

the trajectories soliton ensembles are made in [17–20]. On average, each soliton is
involved in about 10–20 collisions during the simulation time. During this time, the
average characteristics of the soliton gas reach a steady value.

18.5 The Effect of a Negative Soliton Velocity

A distinctive feature of KdV equation is that solitons move in one direction.
However if there is an ensemble of solitons, interacting with each other, solitons
can move in any direction including backwards (more precisely, with velocities less
than the linear velocity of the long waves). An interest to this phenomenon has
arisen because of the problem of soliton turbulence (soliton gas). The trajectories of
solitons with random amplitudes from small to large within the KdV equation are
shown in Fig. 18.3.

Small soliton moving backwards (light blue band) is clearly observed. A problem
of defect propagation in the field of cnoidal waves within the KdV was considered
in [25], where the expression for the velocity of the “defect” is obtained through
the Weierstrass elliptic functions. It is mentioned that large-amplitude “defect”
(compared to the average) moves to the right, and small-amplitude “defect” moves
to the left. The same result is followed from kinetic equation [26]. Such results can
be easily obtained from the kinematics by comparing the distance which a small
soliton passes before the interaction with a large soliton with its phase shift during
the interaction. Let us rewrite the soliton solution (18.2) in terms of velocity:
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Fig. 18.3 Spatial-temporal diagram of soliton field which contains a soliton with negative velocity

u.x; t/ D
c

2
sech2

�p
c

2
.x � ct/

�
: (18.4)

In this case all further results will be also valid for the modified Korteweg–de Vries
equation. The phase shift during the soliton interaction (with velocities c1; c2/ for
both equations is:

�x1;2 D ˙
2

p
c1;2

ln

�p
c2 C

p
c1

p
c2 �

p
c1

�
; (18.5)

�x is positive for larger soliton and negative for smaller one. In the case of the
motion of a small soliton (defect) in the lattice consisting of large solitons moving
with velocity c2, and separated by a considerable distance (L/ from each other the
mean velocity of the trial soliton is

s1 D c1
1 � c2

c1
�x1

L

1 � �x1
L

: (18.6)

After substitution (18.5) to (18.6), assuming that the numerator is zero and defect is
really “small” (c1 � c2/, the condition of zero soliton velocity takes a simple form:

c1 D
4
p

c2
L

: (18.7)

In the case of soliton gas the amplitudes and phases of the solitons are random, and
there will be the interaction of many solitons between each other during the time. As
it was shown in Fig. 18.3 the smallest soliton in a soliton gas can move backwards.
For the explanation of this effect it is necessary to consider the large temporal
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interval, taking into account all possible soliton collisions, not only with defect but
also between large ones. However if soliton gas density is small enough than the
impact of “large” soliton interactions should be offset (some solitons accelerate and
some solitons brake), while the negative phase shift after the collision of defect with
large solitons accumulates. Therefore, if the phase shifts in large soliton interactions
are neglected we can derive the criterion of the small soliton’s negative velocity in
a soliton gas:

c1 D
4
D
1p

c

E

L
˝
1
c

˛ : (18.8)

Taking the above-mentioned into account it can be concluded that a small soliton
has a negative velocity in a lattice of regular solitons, when the criterion (18.7) is
fulfilled, and in a random soliton gas—when the criterion (18.8) is fulfilled for both
the Korteweg–de Vries and the modified Korteweg–de Vries equation.

18.6 Maxima of the Wave Field and Amplitude
Distribution Function

Some conclusions about the dynamics of the wave fields can be found by analyzing
the graph of field extreme (Fig. 18.4). As shown in [24], since pairs of soliton
interactions lead to a decrease in the amplitude of the resulting impulse, the
maximum value of the extremum does not exceed the amplitude of the largest soliton
in the realization (in our case Amax D 3). The extremum of the field decreases during
the interaction. This observation is fully in line with prediction, which follows from

Fig. 18.4 Temporal variability of the maxima of the wave field
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Fig. 18.5 Distribution function of soliton amplitudes at t D 100 (dots) and at the initial moment—
uniform distribution (line)

the analysis of a two-soliton collision [24]. Larger waves do not occur in ensembles
of unipolar solitons and it is also valid for unipolar mKdV soliton gas [22, 27].

These processes affect the distribution functions of the wave field and its
statistical moments. At the initial moment the soliton amplitudes are chosen close to
the uniform distribution (Fig. 18.5). The distribution function of the wave amplitude
(local maxima of the wave field) varies in each realization over time, and the
example of the distributions is shown in the same figure. Qualitative changes
manifest in the same way: as the number of small amplitude impulses increases
and the number of large waves decreases. As a result, the distribution function of the
wave amplitudes becomes steeper in comparison to the initial distribution. However,
in a field of purely solitons, this effect is weak, underlining the resilient nature of
the soliton interaction and their ability to retain their parameters.

18.7 Statistical Characteristics of Wave Field

Let us discuss the statistical characteristics of the soliton gas. We have a random
wave field, which depends on two variables: the coordinates x and time t, which are
not very convenient for the analysis. For simplicity, we will consider the statistical
characteristics averaged over the computational domain:

M.t/ D
1

L

LZ

0

f .x; t/dx (18.9)

(f —any characteristic of the wave field) which are functions of the current time.
This procedure corresponds to the ergodic hypothesis, when the averaging over
the ensemble of realizations is replaced by integration, in this case over the space.
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At the same time M.t/ is a random function of time due to the random nature of the
soliton interactions. Moments of a random function are the values averaged over the
ensemble of realizations

hMi D
1

n

nX
jD1

Mj.t/ (18.10)

This value for a large number of realizations, in the limit n ! 1 becomes
independent on time and determines the statistical moment of integral characteristics
of the wave field. We can again use the ergodic hypothesis and change the averaging
over ensemble to integration over time (which should be large enough). Below we
will often call the integral characteristics (18.9) the moments of the wave field, as
in (18.1), and we hope that in the text, the reader will not be confused between (18.9)
and (18.1).

The statistical moments of rarefied solitonic gas may be estimated when the
effect of soliton interaction is totally ignored (for instance, when solitons are well
isolated in the initial condition [21, 22]. The integration can be carried out over an
infinite limit and the last integral is trivial because of the narrowness of solitons in
comparison with the size of the computational domain. Then, the mean field is

hui D hM1i D
1

L

LZ

0

u.x; 0/dx �
1

L

C1Z

�1

u.x; 0/dx D
1

L

iDNX
iD1

C1Z

�1

ui.x; 0/dx D
4

L

iDNX
iD1

Ki

(18.11)

The sum can easily be expressed in terms of the average value of K:

hui D
4

L

iDNX
iD1

Ki D 4
N

L
hKi (18.12)

where hKi is a statistical average over the ensemble of random amplitude solitons.
hui does not depend on the realization of the soliton gas, thus its value will
not change in case of averaging over realizations. The coefficient N=L, included
in (18.12), has a clear physical meaning of the density of the soliton gas

� D
N

L
(18.13)

Finally, (18.12) can be transformed into

hui D 4�hKi D 2
p
2�hA1=2i (18.14)

As expected the mean grows with increasing of soliton gas density. Let us note also
that hA1=2i ¤ hAi1=2, thus the knowledge of the average soliton amplitude is not
sufficient for the calculation of the average characteristics of the soliton gas.
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Of course, the mean field, as well as any pedestal, in the framework of the
Korteweg–de Vries can be eliminated by appropriate scaling, but in this case
there is a number of difficulties in the transition to the water waves (definition of
the unperturbed depth and, accordingly, the soliton width), and this will not be
considered here.

The dispersion of the wave field is calculated similarly:

�2 D hŒu � hui�2i D
16

3
�hK3i � 16�2 ŒhKi�2 D

8

3
p
2
�hA3=2i � 8�2hAi: (18.15)

From the positivity of the wave field dispersion there is a limit on the density of a
soliton gas [13, 28]:

� < �cr D
hA3=2i

3
p
2hAi

(18.16)

The critical density is easily understood from the following considerations. Assum-
ing that all the amplitudes are the same, the critical density is �cr D K/3. If we
recall the definition of density as (18.13), the critical number of solitons is equal to
Ncr D KL/3. This condition corresponds to the situation when all solitons fill the
domain “being very close to each other” and there is no place for a new soliton. In
fact, the critical soliton density should be less because during the time solitons start
to interact with each other, and the approximation of noninteracting solitons is no
longer valid. It means that our formula works well only for a sufficiently rarefied
gas. In this case the formula (18.15) can be simplified

�2 �
16

3
�hK3i D

8

3
p
2
�hA3=2i: (18.17)

Asymptotic formulas of skewness and kurtosis valid for a rarified gas (� ! 0/ take
the following form

Sk �
2
p
3

5
p
�

hK5i

.hK3i/3=2
D

p
3

4
p
2hA5=2i

5
p
�.hA3=2i/3=2

(18.18)

Ku �
18

35�

hK7i

.hK3i/2
D

9
p
2hA7=2i

35�.hA3=2i/2
(18.19)

In (18.18) and (18.19) the soliton gas density is in denominator, thus skewness
and kurtosis are abnormally large for a very rarefied gas and it is not a Gaussian
process. Skewness is always positive because all solitons are positive. The large
value of kurtosis indicates a greater probability of large wave appearance [29] that
is clear in the framework of the linear theory, when the pulses can converge to a
single point, overlapping each other. However, this conclusion is not obvious in
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Fig. 18.6 The dependence of kurtosis versus skewness and temporal evolution of the skewness of
soliton gas

the nonlinear theory, since it is known that even in the interaction of two unipolar
solitons the resulting amplitude is always less than the amplitude of the maximum
soliton (solitons “repel” from each other).

Left panel in Fig. 18.6 shows the dependence of kurtosis versus skewness for one
realization of soliton gas consisted of 100 solitons during whole time. Almost linear
law is clearly observed which is approximated by u D 7:6x � 11. This confirms
the strong correlation between skewness and kurtosis. That is why we present
here the time evolution of the third moment of the soliton gas only (Fig. 18.6,
right panel). In one realization, the computed third and fourth moments have a
higher variability. Averaged values over 100 realizations become stable enough after
transitional period. The reason for this is the nature of the interaction of solitons,
because such interactions lead to a decrease of the third and fourth moments. A finite
sum of random variables is also a random variable, therefore by averaging over the
realizations, we get only an estimation of skewness and kurtosis.

The third and fourth moments are positive. The averaged value of skewness is
equal to 2.95 with standard deviation of 0.01. It is important to note that the average
value of this ratio is less than the initial value of 3, demonstrating the contribution of
the nonlinear interaction of solitons. The average value of kurtosis is equal to 11.6
with a standard deviation of 0.07, while the initial value is 11.9.

From the above it can be concluded that the interaction of solitons in the
framework of the Korteweg–de Vries equation leads to a change of the statistical
characteristics of the soliton gas (distribution function of the wave amplitudes,
skewness and kurtosis). In each realization the soliton interactions do not lead to
the formation of abnormally large waves, thus there are no freak waves.

However soliton gas can consist not only of solitons with the same polarity. For
example, in the framework of the modified Korteweg–de Vries equation bipolar
solitons can exist. In this case the dynamics of multi-soliton fields will be completely
different. In [22, 27] was shown that such bipolar interactions lead to the increase
of skewness and kurtosis of the whole soliton field; tails of amplitude distribution
functions can grow significantly and finally in such bipolar soliton fields abnormally
large waves can appear. It seems that the same results can be obtained in other
models which allow the existence of solitons of different polarities.
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18.8 Conclusions

Soliton turbulence (soliton gas) can play an important role in the whole wave
dynamics. In this study we presented several analytical results and numerical
experiments on solitonic gas turbulence in the framework of the integrable KdV
equation. We have shown that in the framework of the KdV equation nonlinear
soliton interactions lead to the decrease of the third and fourth moments (skewness
and kurtosis) of the nonlinear wave field. The distribution function of the wave
amplitudes becomes steeper in comparison to the initial distribution. The criterion
of “zero” soliton velocity is presented.
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Chapter 19
Multi-Lump Structures
in the Kadomtsev–Petviashvili Equation

Yury Stepanyants

В Непале есть столица Катманду.
Случайное, являясь неизбежным,
приносит пользу всякому труду.
Ведя ту жизнь, которую веду,
я благодарен бывшим белоснежным
листам бумаги, свернутым в дуду.

J. Brodsky,

“Twenty Sonnets to Mary Stewart”.

19.1 Introduction

The spectrum of interests of Mikhail Rabinovich (MIR) is very broad, he is
interested in many subjects and changed his fields of research many times. In his
student years he published his own first scientific article “Process automation on
the overhead thrust assembly line” in the prestigious Russian journal “Automa-
tion in Production”. Then he contributed to the theory of relaxing oscillations,
mode competition in nonlinear systems, development of the asymptotic theory of
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oscillations, chaotic behaviour of simple systems,1 strange attractors,2 theory of
turbulence,3 etc. Nowadays his scientific interest is in the development of the theory
of cognitive systems and consciousness. One of his former interests was in the
pattern formation in complex systems. In particular, he has demonstrated jointly
with his colleagues that nontrivial three-dimensional patterns can exist within the
framework of Ginzburg–Landau, Swift–Hohenberg and other equations; several
interesting examples of single patterns and their couplings were presented in journal
papers and reviews [7, 8, 12, 36].

In 2008 MIR visited Australia where he was an invited speaker of the Interna-
tional conference on cognitive systems. One day we undertook a trip to one of the
most picturesque places in Australia, Blue Mountains, near Sydney. MIR admired
looking at the rocks called “Three Sisters” (see Fig. 19.1) and as a follow-up of
our discussion on multi-dimensional patterns said: “Yurah, do you know any exact

Fig. 19.1 M.I. Rabinovich with the author against the background of the “Three Sisters” rock
(Blue Mountains, Australia, 14 June 2008)

1 At that time I was involved into one of the joint researches with him [11].
2MIR was actually the first to invent and realise jointly with S. V. Kiyashko and A. S. Pikovsky in
1980, the simplest example of a strange attractor [19], now known as the Chua attractor [10].
3MIR wrote a section about this in the classical book by L.D. Landau and E.M. Lifshitz,
Hydrodynamics [22].
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solution of nonlinear equations which resembles such beautiful patterns like this
“Three Sisters” rock?”. I answered: “Yes, such solutions and even more complex
ones do exist within the framework of Kadomtsev–Petviashvili equation”. I did not
have a computer at that moment to show the pictures and details of relevant solutions
and promised to demonstrate them some time later. But the days to follow were very
busy for both of us and we did not have time to come back to that issue. Now it is
a good time to fulfill my promise. This chapter is devoted to the exact solutions of
the Kadomtsev–Petviashvili equation in the form of lumps and their bound states.

19.2 The Kadomtsev–Petviashvili Equation

In 1970 B.B. Kadomtsev and V.I. Petviashvili published a seminal paper [17] in
which they derived a two-dimensional generalisation of the Korteweg–de Vries
equation now known as the KP equation:

@
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@y2
; (19.1)

where c is the speed of long linear waves, ˛ is the coefficient of nonlinearity, and ˇ
is the dispersion coefficient.

In that paper the authors investigated the stability of plane waves propagating
along the x-axis and showed that for negative ˇ plane waves with slightly modulated
fronts are unstable with respect to self-focusing, whereas in the case of positive ˇ
the waves are stable against this phenomenon. That finding was later confirmed by
Zakharov [42] who derived an exact formula for the growth rate of instability. Thus,
in those and subsequent papers by many authors it was discovered that the properties
of solutions of the KP equation essentially depend on the dispersive parameter ˇ,
therefore it is reasonable to distinguish two versions of this equation—KP1 equation
for negative ˇ and KP2 equation for positive ˇ. Both versions of the KP equation are
feasible in the physical context and can describe wave processes in different media.

Some time later Petviashvili discovered [33] numerically that the KP1 equation
has solutions in the form of two-dimensional solitons called lumps and suggested
an original numerical method for constructing stationary solutions of a certain class
of nonlinear equations.4 Then an analytical solution was found for the lumps [1, 26]
and it was shown that after the interaction with each other their initial parameters
completely restore even without a phase shift which usually appears when the plane
solitons interact (see, e.g., [2, 16]).

4A rigorous substantiation of the convergence of the Petviashvili method was published in [31].
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19.3 Lump Solutions of the Kadomtsev–Petviashvili
Equation

Consider stationary solutions of the KP equation (19.1) which describe wave
propagation at some angle with respect to the x-axis with velocity V D .Vx;Vy/.
Let us represent Eq. (19.1) in dimensionless form bearing in mind that ˇ < 0:
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@2$

@X@Y
D

@2

@X2

�
$2 C

@2$

@X2

�
; (19.2)

where $ D
˛u

2.Vx � c/
; 	 D Vy

s
2

c.c � Vx/
; (19.3)

X D

�
x � Vx t C

Vy

c
.y � Vy t/

�s
Vx � c

ˇ
; Y D .y � Vy t/.c � Vx/

s
2

�ˇc
:

(19.4)

In the simplest case of a lump propagating along the x-axis (Vy D 0, 	 D 0), it is
described by the formula derived for the first time in [26]:

u.X;Y/ D 12
3C Y2 � X2

.3C Y2 C X2/2
: (19.5)

Lump solutions play a fundamental role in the theory of KP1 equation. They
describe nonlinear patterns in plasma [2, 16, 18, 34], on the surface of shallow
water with dominating surface tension [4, 9, 18], in nonlinear optic media [32],
in the Bose–Einstein condensate [27], in solids with inner microstructure [39],
in thin elastic plates [35], etc. Due to the lump stability with respect to external
perturbations [21], they can play a role of elementary wave excitations, and their
ensembles with the nontrivial internal interaction between them (see below) may be
regarded as a model of a strong wave turbulence.

The solution (19.5) in dimensionless variables is shown in Fig. 19.2.
For the lump propagating at an angle to the x-axis the generalised formula

was actually derived in [26], but it was not analysed there in detail. Later the
obliquely propagating lumps were rediscovered independently in [24, 25, 40] and
were analysed in [37]. The solution is:

u.X;Y/ D 12.4 � 	2/
12C .4 � 	2/

h
.4 � 	2/Y2=4 � .X C 	Y=2/2

i

n
12C .4 � 	2/

h
.4 � 	2/Y2=4C .X C 	Y=2/2

io2 ;

(19.6)

where �2 < 	 < 2. An example of the lump solution for 	 D 1:5 is shown in
Fig. 19.3.
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Fig. 19.2 3D profile of conventional KP1 lump as per Eq. (19.5)
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Fig. 19.3 3D profile of a skew lump as per Eq. (19.5) with 	 D 1:5
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Fig. 19.4 The domain of possible velocity components (shaded) of a single lump as per Eq. (19.7)

The restriction for the parameter 	 (see above) imposes the restriction on possible
velocity components in dimensional variables:

Vx D c �
V2

y

2c
: (19.7)

The domain of possible velocity components of a single lump is shown in Fig. 19.4.
Obliquely propagating lumps have asymmetrical skew shapes; their structure

depends on the parameter 	. Figure 19.5 shows the contour plots of skew lumps
for a few values of 	.

19.4 Multi-Lump Solutions of the Kadomtsev–Petviashvili
Equation

The wave field of a lump is non-monotonic in space, it contains two minima.
Because of that two closely located lumps can form a bound state—a stationary
moving bi-lump. Such a solution was obtained for the first time numerically [3],
and then the analytical formulae were found for the bi-lumps propagating along
the x-axis [29] and at the angle to the x-axis [37, 40]. The analytical formula for a
bi-lump contains two free parameters, a and b, and can be written in the form:

$.X;Y/ D 6
@2f .X;Y/

@X2
; where (19.8)
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Fig. 19.5 Contour plots of lumps for different values of 	. (a) 	 D 0:5; (b) 	 D 1:0; (c) 	 D 1:5;
and (d) 	 D 1:9. Arrows show maximum values, zero isolines are also indicated
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Fig. 19.6 Bi-lump solutions as per Eqs. (19.8) and (19.9) with a D b D 0. Panel (a) 	 D 0, panel
(b) 	 D 1, panel (c) 	 D 1:9

Depending on the parameters a, b and 	, this solution can represent either a
bi-lump or even a triple-lump as shown in Figs. 19.6 and 19.7.

In general, when 	 approaches ˙2, the solution reduces to a very wide bi-lump of
a small amplitude (see Fig. 19.6c), which completely vanishes in the limit j	j D 2.

As was shown in [29], the KP1 equation possesses a countable number of
stationary multi-lump solutions which can be presented in terms of Eq. (19.8), where
f .X;Y/ is a polynomial on X and Y of degree p D m.m C 1/, where m is an integer.
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Fig. 19.7 Triple-lump solutions as per Eqs. (19.8) and (19.9) with a D 10, b D 0 and 	 D 0:99

For m D 1 (p D 2) we obtain a single lump solution; for m D 2 (p D 6)—
bi-lump solutions (19.9); for m D 3 (p D 12)—triple-lump solutions; etc. The
formulae become more and more complex when the degree of polynomial increases
(the general problem of rational nonsingular solutions of the KP1 equation was
considered in [20]). For simplicity we present only the next polynomial of degree
12 which describes a symmetrical triple-lump solution with 	 D 0:

f .X;Y/ D
�
X2 C Y2

�6
C 2

�
X2 C Y2

�3 �
49X4 C 198X2Y2 C 29Y4

�
C 5

�
147X8

C 3724X6Y2 C 7490X4Y4 C 7084X2Y6 C 867Y8
�

C
140

3

�
539X6

C 4725X4Y2 � 315X2Y4 C 5707Y6
�

C
1225

9

�
391314X2

� 12705X4 C 4158X2Y2 C 40143Y4 C 736890Y2 C 717409
�
: (19.10)

The 3D plot of this exact analytical solution shown in Fig. 19.8 resembles the
“Three Sisters” rock in Fig. 19.1.

The stationary multi-lump structures can be interpreted within the theory of
solitons as classical particles [13, 28]. According to that theory, solitons (and lumps,
as the particular case) can be thought of as point particles with anisotropic masses
OM and described by the Newton equation:

OM
d2r
dt2

D �rU.r/; where OM D

�
1 0

0 �1

�
; (19.11)

where r D Xi C Yj.
The effective potential U.r/ is determined by external fields. In particular, when

two lumps interact, the potential for one lump is determined by the field of the other
lump:
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Fig. 19.8 Triple-lump solution as per Eqs. (19.8) and (19.10) —“Three Sisters”

Fig. 19.9 The longitudinal (line 1) and transverse (line 2) cross-sections of a lump as per
Eq. (19.5)

U.r/ D
1

24�

ZZ
$2.r0/$.r0 C r/ dr0; (19.12)

where $ is determined by Eq. (19.5), and integrals are taken over the entire X;Y-
plane. The typical cross-sections of a lump are shown in Fig. 19.9.

The local extrema of solitons give rise to bound states which can be stable or
unstable with respect to small perturbations. The theory provides good qualitative
and even quantitative agreement with the exact solutions, which allows us to
interpret formal mathematical results in physical terms. Non-stationary dynamics
of lumps is briefly outlined in the next section.
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19.5 Normal and Anomalous Lump Scattering

Lump interactions were briefly studied in the papers [1, 26] (see also [2]) where
lump solutions were constructed for the first time. Investigation of the multisoliton
formulae describing the scattering of lumps obtained in those papers reveals a
striking property of such formation. Lumps not only retain their shapes and initial
parameters (amplitudes, velocities, sizes) on collisions, but even their phase shifts
also turn out to be equal to zero. This does not mean, however, that the interaction
of lumps is as trivial as the interaction of linear pulses in non-dispersive media.
Detailed studies [15] have shown that the interaction even between two lumps by
no means reduces to the superposition of their fields, and can lead to unexpected
effects which are characterised by an infinite rather than zero phase shift.

In the particular case when two lumps of different amplitudes move one after
another along the x-axis (the larger one initially moving behind the smaller one),
their interaction looks as follows. The smaller lump splits into two which move
at some angle to the x-axis absorbing energy from the larger lump. The latter one
decreases and eventually vanishes, transferring its energy into the two newly created
lumps. These new lumps separate first at a certain distance, but then draw together
and line up again along the x-axis such that the larger lump becomes leading and
the smaller one following behind it. Eventually the lumps completely restore their
shapes and all other parameters. This is normal scattering. Figure 19.10 illustrates
the variations of relative distances, �X and �Y , between the lump maxima. The
solid lines pertain to the exact analytical solution, and the dashed lines to the
asymptotic theory of lumps as point classical particles described by Eq. (19.11).
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Fig. 19.10 Relative distances between lump maxima as per exact solution (solid lines) and within
the framework of the asymptotic theory (dashed lines). Panel (a) shows two lumps with initial
relative velocity �V D .0:5; 0/ (only the lower part of the figure is shown, whereas the figure
is mirror symmetric with respect to the dashed horizontal line); panel (b) shows two lumps with
initial relative velocity �V D .0:5; 0:1/
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When two lumps moving along the x-axis have initially equal amplitudes and
speeds, they start attracting each other, because their effective potentials are negative
(see line 1 in Fig. 19.9). Then, as in the previous case, the first lump splits into
two moving at an angle with respect to the x-axis and absorbing energy from the
lump following behind. The latter decreases and eventually vanishes completely
transferring its energy into the two newly created lumps. These new lumps of equal
amplitudes continue separating and eventually move parallel to each other and the
x-axis. Parameters of these new lumps are the same as the parameters of the initial
lumps, whereas eventually they move side by side at the infinite distance between
them. To a certain extent the phase shift in this case is infinite because the lumps
never return to the initial x-axis; therefore, such interaction was called anomalous
scattering [15]. On the other hand, the anomalous scattering can be treated as a
particular case of normal scattering when the time of returning of the secondary
lumps to the x-axis goes to infinity.

A detailed study of normal lump interaction was undertaken in [24, 40]. It
was discovered that the process of interaction depends on the lump velocities
and amplitudes. Figure 19.11 shows an example of oblique interaction when
y-components of lump velocities have opposite signs.

According to the exact solution illustrated by Fig. 19.11, two lumps are moving
from opposite y-directions to the horizontal x-axis along their original paths without
noticing each other until they collide. This is true even when the two lumps have
different amplitudes and speeds. However, when they interact they are far from
being just a linear superposition of two independent lumps.

Another type of lump interaction occurs when two lumps initially located at the
same side of the x-axis travel to the other side of this axis with different velocities so
that their trajectories intersect at some point. The numerical results obtained in [24]
are shown in Fig. 19.12. One can see that, when the lumps approach each other from
the same side and have relatively small difference in their amplitudes, the larger one
gradually reduces its amplitude and velocity, while the smaller one increases its
amplitude and velocity. At some moment the lumps become of the same size at
a certain nonzero minimum distance apart. After that, the lumps interchange their
positions experiencing an abrupt phase change. Due to the nonlinear interaction, the
front lump becomes taller until it recovers its initial amplitude, while the rear lump
decreases and gradually recovers its original state. Before the collision the lumps
attract each other and after the collision they repel.

Lump interaction is different when their relative amplitude difference is large
enough. Two lumps can merge in this case and then separate and move along their
own original paths. Figure 19.13 from [24] illustrates such interaction on the basis
of the exact solution. Thus the interaction between two lumps strongly depends on
their relative amplitude difference similarly to the KdV solitons. Strongly nonlinear
overlapping interactions can occur when this difference becomes larger than a
critical value which is not determined thus far. For the KdV equation it is known
that the exchange-type interaction occurs when the soliton amplitude ratio A1=A2 <
2:62, and the overlapping-type interaction occurs when the soliton amplitude ratio
A1=A2 > 3:0, whereas in the intermediate range, 2:62 < A1=A2 < 3, a more
complex interaction occurs [23].
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Fig. 19.11 Contour-plots of two lumps in the oblique interaction (case 1). Left (from top to
bottom): t D 1; 2; : : : ; 5; right (from top to bottom): t D 6; 7; : : : ; 10

19.6 Conclusion

In this brief review we presented interesting features of two dimensional nonlinear
formations described by the Kadomtsev–Petviashvili equation. This remarkable
equation plays a specific role in the physics of nonlinear phenomena. It is com-
pletely integrable and possesses a reach class of solutions fully localised in space.
Moreover, this equation is not just a mathematical toy, it is applicable to description
of real physical phenomena in different media, as mentioned in the Introduction. It
is worth noting that similar and even more complex multi-lump formations can exist
not only within the framework of the integrable KP equation, but within many other
model equations (see, e.g., [4–6, 9, 14, 38, 41]).
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Fig. 19.12 Contour-plot of two lumps in the oblique interaction with relatively small amplitude
difference (case 2). Left (from top to bottom): t D 1; 2; 3, and 4; right (from top to bottom):
t D 5; 6; 7, and 8

The goal of this review was to attract the attention of young researchers to
the physics of multidimensional patterns and to remind mature researchers about
many unsolved problems in this area. Among such unsolved problems one can
mention the stability of multidimensional formations, their possible role in the
description of strong turbulence where lumps can represent elementary nonlinear
excitations and form a gas of quasi-particles. As has been shown in [30] (see also
[16] and the references therein), a chain of KP lumps can be formed in the course
of instability of plane waves but the chain of lumps, in its turn, is unstable with
respect to small modulations and can produce other chains of lumps, which are also
unstable with respect to small modulations and so on. Therefore one can expect
eventual stochastisation of lumps and formation of a random ensemble of nonlinear
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Fig. 19.13 Oblique interaction of two lumps with relatively big amplitude difference (case 2).
From top to bottom: t D 1; 3; 5; 7; 9. In the middle frame, at t D 5, one can see overlapping of
two lumps

interacting quasi-particles. Such phenomena were in the range of MIR’s former
interests (see, e.g., [7, 8, 12, 36]). I hope that someone of his numerous former or
current students will advert to this intriguing problem.

In the conclusion I am wishing MIR many years of fruitful and productive work,
as well as inexhaustible cheerfulness and health, which was always his distinctive
feature, as one can see in Fig. 19.14.



322 Y. Stepanyants

Fig. 19.14 The “Three
Brothers rock”: M.I.
Rabinovich (centre) with
Anatoly Fabrikant (left) and
the author (right). The photo
from the Workshop on
Plasma Turbulence, Sochi,
Russia, May, 1986

О чем мечтать в моих годах?
Чтоб бегать под дождем,
Носить подругу на руках.
Чего еще мы ждем?
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Ну дайте мне еще чуть-чуть,
Хотя бы вот полстолька.
Потом уж можно отдохнуть
На дружеской попойке.

M.I. Rabinovich

Acknowledgements The author is thankful to N.B. Krivatkina for her help with editing the paper.
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