
Chapter 20
Simple Approaches to Calculate Correlation
Energy in Polyatomic Molecular Systems

A. Grassi, G.M. Lombardo and G. Forte

Abstract Ab initio calculation including electron correlation are still extremely
costly, except for the smallest atoms and molecules. In this paper we present some
simple semi-empiricalmethods to obtain correlation energy. Thesemethods are based
on the relation between energy and the off-diagonal density matrix elements, which
represent the bonding between atoms in the molecule. The results of our previous
studies are reported here and compared with the results obtained by using more
accurate techniques.

Introduction

The terms ‘electron correlation’ and correlation energy was first used by Wigner [1]
indicating an energy difference between the “exact” nonrelativistic molecular energy
and energy obtained from a Hartree–Fock calculation, i.e.: Ec = Eexact, nonrel − EHF.
Independent particle models, such as Hartree and Hartree–Fock methods, neglect
this correlation at various level of approximation. In the Hartree model, there is an
unphysical finite probability to find two electron in the same place, whereas the
Hartree–Fock model electrons with parallel spin are prevented from overlapping but
not those with antiparallel spin. Indeed, in the previous definition Ec includes also
the “basis set error” which is present in a simple HF calculation. For this reason
some authors define the correlation energy Ec as Ec = Eexact, nonrel − EHF, limit, i.e.,
the energy difference with respect to a HF calculation with an “infinite” basis set.
The value of EHF, limit can be obtained as limit value of various HF calculations on
increasing the basis set.

A. Grassi (B) · G.M. Lombardo · G. Forte
Dipartimento di Scienze del Farmaco, Università di Catania,
Viale A. Doria 6, I-95125 Catania, Italy
e-mail: agrassi@unict.it

G.M. Lombardo
e-mail: glombardo@dipchi.unict.it

G. Forte
e-mail: gforte@unict.it

© Springer International Publishing AG 2017
G.G.N. Angilella and A. La Magna (eds.), Correlations in Condensed Matter
under Extreme Conditions, DOI 10.1007/978-3-319-53664-4_20

279



280 A. Grassi et al.

Now, to account for electron correlation, several post-HF analytical techniques
have been proposed, such as the Møller–Plesset perturbation theory (MP) [2],
Configuration Interaction (CI) [3] or the Multi-configurational self-consistent field
(MCSCF) [4] techniques, where the correlation is included at various levels within
theHF calculation. Unfortunately, thesemethods are computationally very expensive
even for small molecular systems.

Therefore, in the last 20 years alternative approaches to calculate the correlation
energy have been developed. In these methods the electron correlation energy Ec is
related to somemolecular properties, such as single- or two-particle electron density,
bond order, bond distances, overlap populations, and so on. Some of these techniques
are ‘semi-analytical’ methods, because they need an a priori empirical estimation
of some parameters [5]. In general, the parameters are related to some atomic and
atom–atom pair properties. It is worth to note how these methods are quite accurate,
giving comparable results with respect to the analytical ones, and furthermore, they
require lightweight computational efforts. The detailed exposition of these analytical
or semi-analytical methods are beyond the scope of this paper. Therefore, in the
following, we will expose in detail the methods that we have developed to calculate
the correlation energy for simple or polyatomic molecules.

Methods

Correlation Energy versus Electron Number

Starting from a study of March and Wind [6], where the functional density theory
(DFT) was used to explain the approximately linear variation in neutral atom correla-
tion energy with atomic number Z , we have extended the model to treat some neutral
diatomic molecules. As in Ref. [7], the starting point was to rewrite the correlation
energy as:

Ec =
∫

εc(r)ρ(r)dr, (20.1)

where εc(r) is the correlation energy per electron (CEPE) at r and ρ(r) is the electron
density. Following the classical LCAO (Linear Combination of Atomic Orbitals)
procedure, we expand the molecular wavefunction in an atomic basis set φμ(r). So
that we rewrite Eq. (20.1) as:

Ec =
A∑
μ

Pμμ

∫
εc(r)φ2

μ(r)dr +
B∑
μ

Pμμ

∫
εc(r)φ2

μ(r)dr

+
∑
μ �=ν

Pμν

∫
εc(r)φμ(r)φν(r)dr,

(20.2)
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where Pμν are density matrix elements partitioned into atomic (A e B) and overlap
terms. Assuming that the function εc(r) varies in r-space slowly with respect to
φ2

μ(r), we can rewrite Eq. (20.2) as a sum of atomic and overlap contribution, i.e.:

Ec = Eatomic
c + Eoverlap

c = εA

A∑
μ

Pμμ + εB

B∑
μ

Pμμ + ε0
∑
μ �=ν

PμνSμν. (20.3)

The first two terms refer to the atomic contribution, whereas the last refers to the
interatomic one. In particular, εA, εB and ε0 are the CEPE for atom A and B (taken
from experimental tabulated values [8]) and for the overlap terms represented by Sμν ,
the overlap matrix obtained from ab initio calculations. The assumption of Eq. (20.3)
is to treat the overlap term at same level as for atoms, i.e., that correlation energy
per electron for the overlap part is constant. This assumption is partially supported
by the work of Gombas [9], who shows that εc is not to strongly varying function of
ρ(r) which, in the overlap region, is a smoothly varying function of r. Recalling the
orthonormality of the atomic basis set, the term

∑
μ �=ν PμνSμν represents the total

overlap population (n0(AB)), and the term
∑A

μ Pμμ effective electron charge on the
atom (neff(A)). Then, we can rewrite Eq. (20.3) as:

Ec = εAn
eff(A) + εBn

eff(B) + ε0n
0(AB). (20.4)

Now, three different approaches have been taken in order to estimate the value
of ε0:

(i) ε0 � k(i)N , where N is the total number of electrons in the molecules. This
assumption is based on the work of March and Wind [6], which shows that
for atoms with small atomic number Z , the CEPE is nearly proportional to
the total number of electrons; k(i) is a constant, calculated by the least square
minimization procedure.

(ii) ε0 � (εAZA + εBZB)/2. In this approach the overlap term of the CEPE is
obtained as a mean value between total atomic correlation energy EA and EB.

(iii) ε0 � k(iii)n0(AB). At variance of (i) the overlap CEPE is proportional to the
total overlap population, i.e., to the bond electron density. A detailed test of
his assumption is showed in [10]. The constant k(iii) was also calculated by the
least square minimization procedure.

In Table20.1 we have reported the experimental and calculated ones of the corre-
lation energies for some diatomic molecules. Note that for method (i) the value of the
constant k(i) was found to be equal to 12.5mhartree/electron2, whereas for method
(iii) the value of the constant k(iii) is equal to 136.8mhartree/electron2.

In Fig. 20.1 we report the difference (in mhartree) between the experimental Ec

values with respect to the various theoretical methods.
In particular, the top figure shows that for the hydride molecular systems better

results are obtained with the more sophisticated methods as HS [5] or GCP. Whereas
in homonuclear systems X2 our methods appear to be more accurate.
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Table 20.1 Experimental and calculated correlation energies for some diatomic molecules. In
columns the experimental values, taken from [8], the calculated values with our methods (columns
(i), (ii) and (iii)), Hollister and Sinanoglu (HS) [5], Savin et al. (SPP) [8], Langreth et al. (GCL) [8]
and Perdew et al. (GCP) [8]

System Exp (i) (ii) (iii) HS SPP GCL GCP

LiH 83 72 52 136 79 113 98 93

BH 153 155 148 187 154 181 165 163

NH 243 254 251 278 239 249 251 255

FH 387 356 366 362 380 364 381 380

Li2 122 140 115 191 112 171 139 134

C2 514 471 479 456 422 398 405 399

N2 546 566 584 518 522 489 511 506

F2 746 691 714 670 713 674 684 697

Fig. 20.1 Correlation
energy difference between
the experimental Ec and the
calculated values for the
various theoretical methods.
Top figure the hydride
systems (XH). Bottom figure
the homonuclear systems
(X2). All values are in
mhartree
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It is noteworthy that in our method there is a direct relation between bond cor-
relation energy and electron number of the molecular system. On the basis of this
hypothesis and according to the work of Kais et al. [11], which expands the atomic
Ec in term of Z , we have shown [12] that this relation holds also for homonuclear
diatomic systems.

Finally, we can infer that, despite the simplicity of the methods, our results reflect
qualitatively the correct general trends of the correlation energy in diatomic mole-
cules, and, for some systems, the difference found with respect to the experimental
Ec is smaller than those obtained by using more sophisticated methods reported in
Table20.1.

Correlation Energy and Bond Order

In order to treat molecular systems containing more than two atoms, following
Cremer’s work [13], we define the correlation energy Ec as:

Ec = ES − EHF, (20.5)

where EHF is the molecular Hartree–Fock energy and ES is the so called Schrödinger
energy, which is obtained by the exact solution of the Schrödinger equation when
vibrational, rotational and relativistic effects are excluded. This definition, as for-
merly stated, includes also than the “basis set error” which is present in a simple HF
calculation.

Now, taking into account the formation reaction of a generic molecule,

A + B = C + binding energy, (20.6)

the molecular energy can be partitioned as follows:

E(C) = E(A) + E(B) − binding energy = E(A) + E(B) + E(AB). (20.7)

The first step is to consider this Schrödinger molecular energy ES partitioned as
follows:

ES =
N∑

A=1

ES(A) +
∑
all AB

ES(AB), (20.8)

where N is the number of atoms in the molecule, ES(A) is the Schrödinger energy of
the atom A and ES(AB) is the Schrödinger binding energy of the two bonded atoms
A and B. Likewise, the total HF molecular energy can be written as:

EHF =
N∑

A=1

EHF(A) +
∑
all AB

EHF(AB). (20.9)
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Molecular correlation energy is obtained subtracting Eq. (20.9) from Eq. (20.8), i.e.:

Ec = ES − EHF =
N∑

A=1

Ec(A) +
∑
all AB

Ec(AB). (20.10)

The Bond Order

In the framework of LCAO-MO theory (linear combination of atomic orbitals–
molecular orbital), the definition of bond order in a polyatomic molecule was given
first by Coulson [14] in the context of the Hückel MO approximation [15]. These
bond orders are the off-diagonal elements Tμν of the first-order density matrix T .
More explicitly:

Tμν =
occ∑
i=1

niciμc
∗
iν, (20.11)

where ni is the occupation number of the ith MO, and ciμ is the coefficient of the
ith atomic orbital in the μth MO. This definition of bond order is applicable when
the AOs (atomic orbitals) are mutually orthogonal and only one AO is considered
for each atom. Various definitions for bond order have been proposed, e.g. Löwdin
definition [16], which gives an orthogonal first-order density matrix Q by using the
transformation:

Q = S1/2TS1/2, (20.12)

where S is the overlap matrix. In this framework the bond order PAB between the
atoms A and B in a closed shell molecule is defined as:

PAB =
A∑
μ

B∑
ν

QμνQνμ. (20.13)

More detailed treatments of the bond order for both closed shell and open shell
systems is reviewed by Sannigrahi [17].

Bond Order Correlation Energy (BOCE)

The starting point is to relate the bond order population to the correlation energy,
assuming that Ec(AB) can be developed as series function of the bond order PAB, we
have:

Ec(AB) =
∑
m

am,AB(PAB)
m. (20.14)
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Table 20.2 a1,AB
(mhartree/electron) as defined
by Eq. (20.14)

A—B a1,AB A—B a1,AB

C—H 35.12 F—F 167.50

C—C 31.70 Cl—Cl 131.44

O—H 60.54 F—H 113.77

C—O 49.11 Cl—H 77.00

O—O 72.04 F—Si 127.33

H—H 39.55 Cl—Si 102.46

Si—H 62.38 Cl—F 158.62

The coefficient am,AB are determined for a bond between two equal or different atom
types (C−C,C−O,O−O, etc.), selecting a set ofmolecules containing the bond types
reported in Table20.2.Without loss of generality, we have retained only the first term
of the expansion. Detailed procedure followed to obtain the bond parameters am,AB,
and the selected molecular systems used in the best fit are reported in Refs. [18–20].
In Table20.2 are reported the parameters a1,AB derived for the 6-31G** basis set.

In the first paper, Ref. [18], the BOCE methods were applied to calculate the
correlation energies of 20 molecules containing C, O, and H atoms. In the next work,
Ref. [19], the method was applied to calculate the molecular dissociation energies
(D0) and heats of formation (ΔH). Finally in Ref. [20], the procedure was extended
to calculate correlation energies in polyatomic molecules containing Si, F, and Cl
atoms.

In Table20.3we have reported the Schrödinger and theBOCEmolecular energies,
EBOCE = EHF + EBOCE

c , for some molecules containing the atoms of Table20.2.

Table 20.3 Schrödinger and BOCE molecular energies (hartree) for some polyatomic molecules

ES EBOCE ES EBOCE

C6H6 −232.24219 −232.24129 SiH3F −391.14909 −391.13615

C2H4 −78.58567 −78.58084 SiH2F2 −490.47468 −490.46072

C2H2 −77.33430 −77.31958 SiHF3 −589.79953 −589.79277

H2CO −114.50344 −114.50278 SiH3Cl −751.37713 −751.37455

CH3OH −115.72137 −115.72340 SiH2Cl2 −1210.93407 −1210.92994

H2C=CO −152.60000 −152.59566 SiHCl3 −1670.49132 −1670.48676

CO2 −188.58504 −188.60229 SiH2FCl −850.697705 −850.69489

(CH3)CHO −153.82924 −153.82682 SiHF2Cl −950.024261 −950.02430

(CH2)CHOH −153.81314 −153.80838 SiHFCl2 −1310.25583 −1310.25538

HCOOH −189.76370 −189.77838 SiF2Cl2 −1409.57885 −1409.58379

CO −113.31751 −113.32008 SiF3Cl −1049.35506 −1049.35384

Cyclopropane −117.89065 −117.88280 SiFCl3 −1769.81401 −1769.81308

Furane −230.01980 −230.00899 SiH2 −290.56195 −290.53928

t-Butene −157.21942 −157.21007 SiF2 −489.21821 −489.20621

c-Butene −157.21848 −157.20760 SiCl2 −1209.69956 −1209.67880
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Fig. 20.2 Absolute relative energy difference between the Schrödinger and the calculated (BOCE)
energy values for various molecular systems. In the top figure, molecular systems containing C, O
and H atoms. In the bottom figure, molecular systems containing Si, F, Cl and H atoms

The very good agreement of the calculated energies using the BOCE techniques
with respect to the Schrödinger ones, appears clearly form the values in Table20.3.
The highly accurate values of the correlation energy obtained using BOCE approach,
for all molecules of the series, are confirmed from the calculated relative errors with
respect to the Schrödinger energies, reported in Fig. 20.2.

However, it is important to add a comment: some calculated BOCE energies
are lower than experimental (Schrödinger) energies. This is explained by taking
into account that these values are obtained from various experimental data and any
experimental measurement is subject to an error that, in general, is about ±5%.
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The BOCE results, for the molecular systems in the series, obtain values which are
in the range of ±0.007% of the Schrödinger energy, which are much lower than the
experimental error.

Finally, the good results obtained from BOCE technique in the molecular energy
calculation is confirmed in the calculation of the molecular dissociation energy (D0)
as well as in the estimation of the molecular heat formation. Both molecular quan-
tities were compared with experimental values and with the values calculated by
using a very accurate, but computationally expensive, method (G2) [21], as shown
in Ref. [20].

In conclusion, despite the simplicity of the BOCE approach, the results obtained
byusing this approach in themolecular energy calculation andother relatedmolecular
quantities are well comparable with the results obtained by using more accurate and
very computationally expensive techniques.
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