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A Comparison Between Quantum Transport
and Band Structure Unfolding in Defected
Graphene Nanoribbons

I. Deretzis and A. La Magna

Abstract This article considers a graphene-based quasi-one-dimensional system
and explores the impact of structural perturbations on the electronic and transport
properties of the material. Two phenomenologically different quantum mechanical
approaches are used to describe the perturbation, namely the spectral weight of the
unfolded band structure and the transmission coefficient of the propagated electrons.
We show that these two descriptions present strong qualitative similarities and yield
complementary information for the understanding of the induced electronic alter-
ations.

Introduction

During the last decade, the isolation of a stable and truly two-dimensional (2D)
system like graphene [1] has given the possibility to experimentally probe for the
quantummechanical nature of electronic transport in strongly confined systems, even
at elevated temperatures. Characteristic examples are the measurement of ballistic
transport for graphene systems on various substrates [2–5] and the manifestation of
a half-integer quantum hall effect [6–10]. Moreover, when a 2D graphene sheet is
further confined in a quasi one-dimensional (1D) structure through patterning and
nanolithography (usually referred to as a graphene nanoribbon), integer plateaus
on the conductance appear, corresponding to the presence of 1D sub-bands in the
electronic structure [11]. Finally, the signature of single defects or adatoms can be
resolved through scanning tunneling microscopy measurements [12].

Such fully quantum mechanical picture necessitates for an adequate theoretical
description of charge transport with an atomic accuracy, as alterations of the struc-
tural symmetry even in single lattice sites can induce significant modifications in
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the calculated conductance spectra [13]. A widespread paradigm of such methodol-
ogy is the non-equilibrium Green’s function formalism [14], used for the calculation
of transport in both ideal and defected/disordered graphene systems [13, 15–17].
Such formalism naturally incorporates the concept of electronic scattering either by
structural defects or by the metallic contacts. It is by now well-consolidated that
the presence of structural imperfections and the perturbations that these induce in
the otherwise ideal electronic structure is one of the main origins for conductance
degradation in graphene-based systems [15]. Hence, perturbation potentials can be
considered as the cause for such scatteringmechanisms, whereas conductance degra-
dation (with respect to the ideal value) their immediate consequence. Within this
picture, a key quantity for the determination of the current-carrying capacity of a
single quantum channel is the transmission coefficient T (ε) [14], which can obtain
values between zero and one, corresponding to complete reflection and perfect trans-
mission of the propagated electrons, respectively. The latter can be only retrieved for
ideal systems, whereas a lower value is usually calculated for strongly disordered
structures.

In the last years, a group of methodologies have been developed that are partic-
ularly suited for the calculation of the electronic structure in systems with defects.
They consist in using big supercells that contain the defects, calculating the electronic
properties for such supercells and consequently unfolding the supercell band struc-
ture [18–26]. The resulting unfolded band structure contains information not only
of the original unit-cell bands, but also on the impact of the induced perturbation
on the robustness of the total band structure. The key quantity here is the spectral
weight w(ε,k) of each unfolded band, whose value ranges form zero to one, and
indicates the degree of maintenance of the original bands in the defected supercell
[26]. The 0 < w(ε,k) < 1 range of the spectral weight with respect to the pertur-
bation potential, unavoidably brings to mind the respective 0 < T (ε) < 1 range of
the transmission coefficient in quantum transport calculations of defected systems.
In this article we attempt to explore the relationship between quantum transport and
band structure unfolding using a graphene nanoribbon with a single-vacancy defect
as a model system. We will show that strong qualitative similarities exist for the two
methods, making them complementary for the study of the electronic and transport
properties of systems with defects.

The article is organized as follows: In Sect.Methodology we will introduce the
theoretical methodology for both quantum transport and band structure unfolding
calculations. In Sect.Results we will confront the results obtained by the two for-
malisms. Finally, in Sect.Discussion we will discuss our results.

Methodology

The basis for the calculation of both electronic structure and quantum transport is
an appropriate definition of the electronic Hamiltonian. For the case of graphene,
the nearest-neighbor tight-binding (TB) model is sufficient for the description of
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the low-energy spectrum of the material, accounting only for the π atomic orbitals
(as σ states are too far away from the Fermi level). Hence, the TB Hamiltonian can
be written as

H = −t
∑

〈i, j〉,s
c†i,sc j,s + H.c., (13.1)

where ci (c
†
i ) is the annihilation (creation) operator for an electron with spin s at site

i , and t is the hopping integral with a typical value t = 2.7 eV. We point out that the
nearest-neighbor model gives a symmetric description of the valence and conduction
bands of ideal graphene that can be only lifted with higher accuracy Hamiltonians,
(e.g., by considering a second neighbor in the tight-binding scheme). Considering
that graphene has two atoms per unit cell, the eigenstates can be approximated by
a linear combination of the two atomic wavefunctions multiplied by a single phase
factor, which denotes translation of the entire supercell in space [27]:

�(k, r) =cA(k)�A(k, r) + cB(k)�B(k, r) =
= 1√

N

∑

j

eik·R j
[
cA(K )φ(r − RA

j ) + cB(k)φ(r − RB
j )

]

(13.2)

Here cA and cB are expansion coefficients of the φ(r) wave function of atomic
orbitals A and B, respectively, andN is the number of elementary cells. The R j =
na1 + ma2 vectors specify the position of the graphene unit-cell, with a1 and a2
being the lattice vectors. Equation (13.2) derives directly from Bloch’s theorem [27].

For the calculation of quantum transport, two-terminal graphene devices are con-
sidered, where a single graphene nanoribbon is contacted by two semi-infinite leads.
As the objective of the study is to comprehend the internal scattering mechanisms
due to the presence of defects, here we consider ideal contacts, i.e., contacts made of
graphene with the same lateral width as the channel material. According to the non-
equilibrium Green’s function formalism [14], the single-particle retarded Green’s
function matrix can be written as

G r (ε) = [εS − H − ΣL − ΣR]−1, (13.3)

where ε is the energy, H the real-space Hamiltonian, and S the overlap matrix, which
is identicalwith the unitarymatrix I in the case of an orthonormal basis set.Moreover,
ΣL ,R are self-energies that account for the effect of the contacts, calculated from the
expression:

ΣL(R) = τ
†
L(R)gL(R)τL(R). (13.4)

Here τL ,R are interaction Hamiltonians that describe the coupling between the con-
tacts and the device, while gL ,R are the contact surface Green functions. The trans-
mission coefficient of an incident Bloch state with energy ε can be thereon computed
as the trace of the matrix product:
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T (ε) = Tr{ΓLG
rΓR[G r ]†}, (13.5)

where
ΓL(R) = i{ΣL(R) − [ΣL(R)]†} (13.6)

are the spectral functions of the two contacts. According to the Landauer–Buttiker
theory [14], conductance can be calculated as:

G = 2e2

h
T, (13.7)

where G0 = 2e2/h ≈ 77.5µS is the conductance quantum.
For the calculation of the unfolded band structure, we consider the same graphene

nanorribon used in the quantum transport scheme. Such ribbon can be viewed as an
integer multiple of the ribbon’s unit cell along the transport direction. Based on the
TB Hamiltonian described above, the spectral weight of the unfolded bands on the
unit-cell Brillouin zone can be defined as [26]:

w(ε,k) = 1

N

∑

a∈PC

⎛

⎝
N∑

j

{(ca+ j (k))∗ · e−ik·R j }
⎞

⎠ ×
⎛

⎝
N∑

j

{ca+ j (k) · e−ik·R j }
⎞

⎠ ,

(13.8)
where a are the atoms that belong to the primitive cell. The important aspect of this
formula is that the sum of the expansion coefficients c should involve only equivalent
atoms within the elementary cells that comprise the supercell.

We consider single carbon vacancies as the origin of the structural/electronic
perturbation for our graphene system. Vacancies can be modeled within the nearest-
neighbor TB scheme by removing a π electron, either by switching to infinite the
related on-site energy term εi in the Hamiltonian, or equivalently, by switching to
zero the hopping ti j terms between the vacancy and the neighboring sites. However, a
more accurate treatment of the states introduced by such defect within the electronic
spectrum has to take into account the structural reconstruction around the vacancy.
This can be achieved through a multiscale approach, where first principles calcula-
tions are performed initially and the TB Hamiltonian is parameterized consequently,
on the basis of the ab initio results. In our implementation, we calibrate the TB para-
meters from density functional theory computations of defected graphene quantum
dots [28]. The optimized values for the on-site energy of the vacancy and the hop-
ping integral between this and its neighboring sites are εi = 10eV and ti j = 1.9eV,
respectively.
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Results

We consider a graphene nanoribbon with an armchair-type lateral confinement, hav-
ing a width of Na = 38 carbon dimer lines (≈4.5nm) and a length of Nz = 64 zigzag
chains (l ≈ 6.7nm), as seen in Fig. 13.1. By attaching two ideal semi-infinite con-
tacts along the zigzag confinement (i.e., by considering the ribbon infinite along its
length) we can calculate the quantum transport properties of this system using the
non-equilibrium Green’s function formalism. According to the TB scheme (where
ribbons with Na = 3p + 2 dimer lines are semi-metallic ∀p ∈ N and the rest are
semiconducting), the Na = 38 ribbon presents a semi-metallic character with a sec-
ondary band-gap of few meV. Figure13.2 shows the ideal transmission coefficient
and the respective density of states as a function of the energy (black lines). The con-
ductance is characterized by the presence of integer plateaus that correspond to the
number of available conduction channels (i.e., the number of 1D subbands) at a given
energy. Conductance steps take place at energieswhere vanHove singularities appear
in the density of states spectrum (see Fig. 13.2). If we now consider a single vacancy
defect, there are two plausible configurations that give rise to different conduction
characteristics. In the first case, if the vacancy is introduced at a Na = 3q position
(∀q ∈ N, q ≤ p), the defect states do not perturb the first conductance plateau around
the Fermi level [13] and the transmission coefficient is equal with the ideal value
(see results for V1 in Fig. 13.2c). When the vacancy is introduced at a Na 
= 3q site
(as V2), the defect perturbation influences the first conductance plateau (Fig. 13.2b)
and a dip in the transmission coefficient appears at the resonance of the defect state,

Fig. 13.1 Scheme of the armchair graphene nanoribbon with a width of 38 dimer lines and a
length of 64 zigzag chains, used for the quantum transport and band structure calculations. A single
vacancy is introduced in either the 27th (V1) or the 29th (V2) dimer line
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Fig. 13.2 a Density of states for the graphene nanoribbon with vacancy V1. b Density of states for
the graphene nanoribbon with vacancy V2. c Transmission coefficient for the graphene nanoribbon
with vacancy V1. d Transmission coefficient for the graphene nanoribbon with vacancy V2. Grey
lines show the ideal values for the non-defected nanoribbon

which is ∼ 0.4 eV below the Fermi level (Fig. 13.2d). It is important to point out
that in both configurations the ∼ −0.4 eV defect state is present, but perturbs the
ideal ribbon wave function only in the second case [13]. Above the first plateau, both
vacancy configurations show similar characteristics, with a small reduction of the
transmission probability mainly for the valence band, due to the presence of a higher
number of defect states bellow the Fermi level (in accordance with the acceptor-type
character of reconstructed single vacancies in graphene [28]).

Wenow turn into the band structure calculations for the samegraphene nanoribbon
as above. Considering the armchair-type lateral confinement and periodicity along
its length (i.e., considering that the ribbon has no zig-zag confinement, in accordance
with the quantum transport calculations), such ribbon can be described as a supercell
with 16 repetitions of the unit cell (see Fig. 13.1). If we unfold the calculated band
structure to the primitive Brillouin zone, we obtain the results shown in Fig. 13.3.
For the non-defected ribbon, unfolding ideally recovers the unit-cell band structure,
assigning a spectral weight value w = 1 for the original unit-cell bands, whereas
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Fig. 13.3 a Unfolded band
structure in the primitive
Brillouin zone for the
non-defected graphene
nanorribon of Fig. 13.1.
b Unfolded band structure
for the ribbon with V1.
c Unfolded band structure
for the ribbon with V2

w = 0 for the extra bands that are present due to the additional supercell atoms.
When performing the same calculation for the defected structures, the spectral weight
values range between zero and one also for the original bands, in proportion to the
perturbation of the wave functions induced by the defects. We note that for the V1

vacancy (Fig. 13.2b), the bands around the Fermi level (−0.45eV < EF < 0.45eV)
maintain the ideal w ≈ 1 value. On the contrary, the V2 vacancy (Fig. 13.3c) shows
w ≤ 1 also for the low-energy spectrum, with aminimumw ≈ 0 around−0.4 eV that
corresponds to the resonant energy of the defect state. Similarly as in the transport
calculations, for energies above and below the −0.45 eV < EF < 0.45 eV range,
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both defects give rise to a reduction of the spectral weight value that depends both on
the energy as well as on the wavenumber. Also here we note a bigger reduction trend
for the valence than for the conduction band. However such reduction is stronger
for the spectral weight with respect to the respective lowering of the transmission
coefficient.

Based on the previous results, a critical analysis of the two computational method-
ologies shows strong similarities as well as some subtle differences. Band structure
unfolding is a measure of the robustness of the intrinsic bands in the presence of
structural/electronic perturbations. The spectral weight measures the resemblance
between the unit-cell and the supercell wave functions. In this sense, each perturba-
tive event automatically signals a reduction in the value of the spectral weight. On
the other hand, the same perturbative events also give rise to the backscattering of the
propagated electrons when calculating the quantum transport. The direct relationship
between the cause (structural/electronic perturbation) and the result (diminishment
of both the spectral weight and the transmission coefficient) is at the origin of the sim-
ilarities for the two quantum mechanical methodologies. However, as noted above,
a general trend shows that the reduction of the spectral weight in the unfolded band
structure is stronger than the respective lowering of the transmission coefficient in
quantum transport calculations. The most probable explanation of such quantitative
misalignment reflects the fact that disordered states can still contribute in the propa-
gation of electrons through hopping interactions between the perturbed states. This
aspect should lower the negative impact of the perturbation even in the presence of
moderate disorder. On the other hand, the spectral weight is a direct measure of the
same disorder but does not account for tunneling or wave-function overlapping phe-
nomena as the transport formalism does. Notwithstanding such difference, the two
methodologies appear complementary, with band structure unfolding giving a robust
interpretation of the motivations for electron back-scattering in quantum transport
calculations.

Discussion

In this article we have compared the results obtained from two different computa-
tional methodologies that account for the effects of defects on the electronic and
transport properties of graphene nanoribbons. The first one calculates the quantum
transport properties within the non-equilibriumGreen’s function formalism, whereas
the second one computes the spectral weight of the ribbon’s unfolded band structure.
Our analysis has evidenced clear qualitative similarities between the transmission
coefficient of the propagated electrons and the spectral weight of the unfolded bands,
as well as some quantitative divergences due to the intrinsic differences between the
purely electronic and the quantum transport-related features. On the other hand,
a strong complementary character has emerged, with the spectral weight giving a
robust theoretical explanation for the origin of conductance degradation in the quan-
tum transport calculations of defected/disordered systems.
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