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Before the year 2000, gastroenteropancreatic neuroendocrine tumors (GEP NETs) 
were not well characterized [3]. The GEP NET incidence has increased worldwide 
over the last decades [2, 4]. Considering the constantly evolving imaging technol-
ogy, small asymptomatic lesions in the gut can be identified [5]. NETs are a hetero-
geneous group found in different locations of the body, e.g., pancreas, foregut, 
midgut, hindgut, and lung [5, 6]. The regional distribution of NETs over the entire 
body is schematically displayed in Fig. 7.1. Gastroenteropancreatic (GEP) NETs 
are with two thirds the most common primary NETs [4, 7]. With one quarter of 
NETs, they occur in the lung as the second most location [2].

NETs arise from neuroendocrine-programmed cells, which are found throughout 
the body and are known to excessively produce and secrete molecules like neuro-
peptides and biologically active neuramines, such as insulin, serotonin, and 
somatostatin [7–9]. An overview of neuroendocrine-programmed cells is displayed 
in Fig. 7.2.
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Fig. 7.1 Overview of NET occurrence in the human body (Adapted of Yao) [4]. NETs are found 
all over the body; the gastropancreatic system is with 58% the most frequent region, followed by 
27% NETs in the lung
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Fig. 7.2 Schematic overview of neuroendocrine-programmed cells (Adapted from Tischler and 
DeLellis) [10]
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The classification of neuroendocrine tumors is based on size, tissue invasion, Ki67 
index, and mitotic activity, according to the current WHO classification [5]. KI-67 is 
a proliferation marker and helps to determine tumor grade and prognosis [11].

There is still no balanced therapy for NETs [5]. Total resection in early stages is 
unchallenged in curative treatment compared to therapies, such as those with soma-
tostatin analogues, radiotherapy, and chemotherapy, because they are still insufficient 
[4, 7, 12]. Knowledge on how to suppress hypersecretion or neoplastic growth could 
lead to a new therapeutic and palliative approach [13]. Due to the lack of mechanistic 
insights regarding this disease, many whole-genome sequencing approaches on NET 
patient tissues were initiated in order to identify mutations, which correlate with the 
development, prediction, or diagnosis of NETs [14]. The most frequent gene  alterations 
in NET patients were found in the following genes: MEN-1 (encodes menin), DAXX 
(death domain-associated protein), ATRX (alpha thalassemia/mental retardation syn-
drome X linked), and mTOR (mammalian target of rapamycin) with the related path-
way members [14–17].

7.1  MEN-1

NETs occur either sporadically or as manifestation of a syndrome, like the multiple 
endocrine neoplasia type 1 (MEN-1) syndrome [16]. A germline mutation in the 
MEN-1 tumor suppressor gene, located on the chromosome 11q13, causes this auto-
somal dominantly inherited condition [15, 16]. This gene encodes the 610 amino 
acid nuclear protein menin, which is associated with regulation of transcription, 
genomic stability, cell division, and cell cycle control [10, 18–20]. Over 450 differ-
ent germline mutations have been identified to date. About two thirds of these muta-
tions are predicted to lead to truncations on the protein [18]. Either truncations or 
missense in Men-1 leads to lower protein levels because of proteolytic degradation 
via the ubiquitin pathway [16, 21]. Mutations in MEN-1 are associated with a pro-
longed survival compared to patients without MEN-1 mutation [14].

7.2  DAXX/ATRX

Likewise, NET patients with mutations in DAXX/ATRX have a better survival rate 
[17, 22]. These mutations affect incorporation of the histone H3.3 complex into 
telomeres by inducing alternative lengthening of telomeres and chromosomal insta-
bility [17, 22].

7.3  mTOR Signaling

Some NET patients were reported to have mutations in the PTEN, PI3K, and TSC2, 
genes of the mTOR pathway [14]. It seems that these mutations are relevant only for 
few NET patients because alterations in expression of mTOR pathway members are 
found in most patients [14, 23, 24]. Therefore, whole-genome sequencing of NETs can 
help to identify patients which would benefit from therapy with mTOR inhibitors [14].
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Chromosomal instability in NET patients is associated with tumor progression. 
As the extent of genomic changes seems to correlate with disease stage, indicating 
alterations accumulate during tumor progression [10, 19].

7.4  Biomarkers of Neuroendocrine Neoplasms

At the beginning of their formation, NETs usually do not show specific symptoms 
over a long time period. The low proliferation rate of most NETs might be an 
explanation for this phenomenon [25]. Due to their origin, NETs secrete different 
molecules. This might be a way to look for a tumor marker. Four biomarkers for 
NETs have been established: chromogranin A (CgA), synaptophysin (SYP), 
neuron- specific enolase (NSE), and urinary 5-hydroxyindole-3-acetic acid 
(5-HIAA) [26].

Neuroendocrine cells secrete their products via large dense-core or small 
synaptic- like vesicles. Those vesicles store proteins like CgA and synaptophysin 
and therefore serve as markers for neuroendocrine cells [11]. CgA is a member of 
the chromogranin family and is often observed to be elevated in serum of patients 
[27]. Immunohistochemistry for CgA can confirm the origin in the tissue [11]. It 
also seems that CgA is a prognostic marker because it positively correlates with 
disease progression, liver metastases, and treatment efficiency [8, 11].

For the histopathological diagnosis of NETs, CgA and synaptophysin have to be 
present [28]. SYP is a calcium-binding integral membrane glycoprotein [11]. It is 
present in epithelial and neuronal types [10]. SYP is expressed independently from 
other NET biomarkers [28].

Neuron-specific enolase (NSE) plays a role in glucose metabolism. This enzyme 
was shown to be present in thyroid and prostatic carcinoma, neuroblastoma, small 
cell lung carcinoma, carcinoid, gastropancreatic tumor, and neoplasms with a neu-
roendocrine differentiation [26, 29]. Based on its lacking sensitivity and specificity 
as biomarker, it is mostly used to confirm the diagnosis or to control the treatment 
efficacy during follow-up [29].

Serotonin is one of the most hypersecreted hormones in NETs. 
5-Hydroxyindoleacetic acid (5-HIAA) has serotonin as substrate and is excreted via 
the urine, where high levels of 5-HIAA are detected in patients with NETs [30, 31]. 
Although tryptophan- or serotonin-rich food can elevate 5-HIAA levels, the speci-
ficity of this marker is about 88% in NETs [31].
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