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Abstract

Melanocytes are derived from the neural crest and enter the eye during embryogen-
esis. Uveal melanoma of the eye is a rare but deadly disease. About 50% of patients 
will eventually develop metastatic disease with an inevitable fatal end. Predisposing 
factors are race, skin and hair color, and familial tumor predisposition syndromes.

Although clinically uveal melanoma phenotype gives the impression of one 
disease, genetically uveal melanoma can be classified into at least two subgroups 
which can be distinguished by DNA-based and mRNA-based technologies. 
While patients with disomy 3 and gene expression profile class 1 have only a low 
risk of developing metastatic disease, patients with monosomy 3 and/or class 2 
gene expression profile are likely to die from metastases. In addition to prognos-
tic information, genetic testing also provides new insights into molecular patho-
biology of uveal melanoma. Mutations in GNAQ, GNA11, and BAP1 have been 
found to be the crucial steps in tumor development.

Those insights raise the hope for targeted therapies and improved prognoses 
for uveal melanoma patients in the near future.

9.1	 �Background

Melanocytes are found ubiquitously in the eye and periocular region. It is our cur-
rent understanding that during embryogenesis pigment cells derived from the neural 
crest migrate along the nerve sheaths of the trigeminal branch V1 and reach the eye 
via the branches of the ciliary nerves. Still being melanoblasts, those cells enter the 
eye close to the optic disc to be distributed throughout the uvea—the choroid, the 
ciliary body, and the iris—where they mature and become melanocytes [1]. 
Disturbance of this process of maturation may lead to proliferation of melanocytic 
cells. They appear benign, round, or oval in shape if the proliferation started after 
the cells had reached their final destination. The lesion may affect a large sector of 
the iris and choroid or even the periocular skin if proliferation began early in pos-
teroanterior migration, at a central branch of the trigeminal nerve (e.g., nevus of 
Ota) [2, 3]. Additional genetic alterations acquired later in life may cause further 
growth and increased proliferation rate and finally result in the development of a 
malignant uveal melanoma. Over the past decade, our understanding of the molecu-
lar and genetic mechanisms which deregulate the cell cycle of melanocytes and 
eventually turn nevi into melanomas has increased significantly. Many researchers 
and research groups contribute to elucidation of the pathogenesis of uveal mela-
noma, with the ultimate goal of finding a cure for or even prevent this disease.

In the following chapter, we present the current status of research in the molecu-
lar carcinogenesis of uveal melanoma, show how the clinical appearance results 
from molecular and genetic mechanisms, and demonstrate the clinical impact which 
might result from those. For readers who are not experts in ophthalmic oncology, 
we will give a brief general overview of the disease, as far as this is necessary for 
the understanding.
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9.2	 �Epidemiology of Uveal Melanoma

The incidence of uveal melanoma varies among different races and ethnicities over 
the world. An analysis of the SEER (Surveillance, Epidemiology, and End Results) 
program database in the United States covering 36 years, from 1973 to 2008, revealed 
a mean age-adjusted incidence of 5.1 cases per million per year [4]. However, the 
majority of cases (97.8%) were observed in the white population. The ratio of black 
population-Asian population-Hispanic population-non-Hispanic white population is 
1:1.2:5:19 (SEER program data, 1992–2000) [5]. Whereas the incidence rate was not 
significantly different between the registries in the United States, an analysis of the 
data from the European Cancer Registry-based (EUROCARE) study, which 
combined the data from 67 individual European cancer registries over the years 
1983–1994, showed a dependency on latitude. The incidence decreased from north 
to south, with eight cases per million per year in Scandinavia and only two cases in 
the south of Europe (Spain and Southern Italy) [6, 7]. In comparison to cutaneous 
melanoma, with an incidence of 21.8 cases per 100,000 men and women per year, 
uveal melanoma appears rare (data from SEER Stat Fact Sheets 2016). Only 5% of 
all melanomas arise from the eye [8]. However, uveal melanoma is still the most 
common primary intraocular malignancy in adults [9].

9.3	 �Predisposing Factors

Predisposing factors can help elucidate the genetic mechanisms underlying carcino-
genesis. Epidemiological, familial, clinical, and occupational factors contribute to 
tumor development. The incidence of uveal melanoma increases up to an age of 
70 years, and the incidence peaks at 24.5 cases per million males and 17.8 cases per 
million females per year in the United States, resulting in a mean age at diagnosis 
of 60 years [6]. Overall, sex does not seem to be a predisposing factor. Data from 
the EUROCARE study and from the United States demonstrate that race (see the 
above), skin and eye color, and the ability to tan are the main predisposing factors 
[4, 7, 10]. This suggests a possible role of UV radiation in the carcinogenesis of 
uveal melanoma [11–13]. Though this hypothesis is still under discussion and there 
is no good evidence available, the preferred occurrence of iris melanoma in the 
inferior half of the iris and the higher incidence of choroidal melanomas at the pos-
terior pole of the eye could be explained by a higher exposure to UV light in those 
locations. A cohort effect found in the data from the EUROCARE study, with a 
higher incidence of uveal melanoma in the birth cohorts from 1910 to 1935, might 
be interpreted that way, as changes in the profiles of work and occupational UV 
light exposure and the use of sunglasses could explain the decrease in incidence in 
the younger cohorts [7].

Familial uveal melanoma: Occurrence of uveal melanoma in more than one fam-
ily member is a rare event, accounting for only 0.6% of patients [14]. However, 
several cases have been reported, dating back until 1905 [15]. In the published 
cases, no pattern of inheritance could be found, and only few individuals were 
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affected in each family [14–16]. Other features of a genetic predisposition, such as 
early age at diagnosis, bilateral involvement, or phenotypic associations were not 
present [17]. Therefore, it might be possible that two individual family members 
might be affected by chance alone, though the likelihood of such an occurrence is 
small [18]. On the other hand, uveal melanoma has been reported to occur more 
frequently in patients showing oculodermal melanocytosis, familial atypical mole 
and melanoma syndrome, neurofibromatosis, Li-Fraumeni syndrome, or germline 
BAP1 mutations, which all have a hereditary and therefore familial background.

Oculodermal melanocytosis: Patients with oculodermal melanocytosis present 
with congenital increased pigmentation within the distribution of the first and/or 
second branch of the trigeminal nerve. The affected organs include not only the 
periocular skin/eyelid, episclera/sclera, uvea, and orbit but also the meninges and 
tympanic membrane. Patients with oculodermal melanocytosis have a significantly 
increased risk for uveal melanoma, with an estimated lifetime risk of 1:400 for 
developing uveal melanoma [19]. It remained unclear whether the increased risk for 
uveal melanoma results simply from the increased number of melanocytes in the 
uvea or from an underlying predisposing condition. The large affected sector of the 
trigeminal nerve points toward an early event in melanogenesis, altering melano-
blasts before final maturation [3]. The frequent occurrence of mutations in GNAQ 
found in intradermal melanocytic proliferations/blue nevi and uveal melanomas 
appears to drive melanocytic proliferation and might explain the increased risk of 
malignant transformation [20].

Familial atypical mole and melanoma syndrome (FAM-M): According to the 
NIH consensus conference, the FAM-M syndrome is diagnosed in individuals with 
multiple atypical cutaneous nevi, showing distinct histological features and with 
cutaneous melanoma in one or more first- or second-degree relatives [21]. Dysplastic 
or atypical nevi of the skin may also occur isolated and are associated with an 
increased risk of cutaneous melanoma [22]. However, the FAM-M syndrome is a 
hereditary syndrome, caused by a mutation of the CDKN2A gene, coding for the 
INK4a and ARF proteins, which regulate the cell cycle and act as tumor suppres-
sors. Germline mutations in CDKN2A are associated with an increased risk of  
cutaneous melanoma, glioblastoma, and pancreatic cancer [23, 24]. Several case 
series suggested a role for CDKN2A and the FAM-M syndrome in the development 
of uveal nevi and melanoma. Uveal nevi and uveal melanomas seem to occur more 
frequently in patients with FAM-M syndrome. And the FAM-M syndrome has been 
observed more frequently in patients with uveal melanoma [25–32]. Despite this 
clinical evidence, the connection between FAM-M is still not fully understood and 
unproven, as CDKN2A mutations do not seem to play a role in uveal melanoma 
development and/or progression [33–36].

Neurofibromatosis-1 is a frequent autosomal dominant inherited genetic disor-
der affecting about 1 in 3000 individuals [37]. Because of the high prevalence, 
repeated cases of uveal melanoma in NF 1 patients may be coincidental. A connec-
tion has been suggested because half of uveal melanomas show reduced expression 
of NF1 tumor suppressor gene causing an increased activity of Ras and of MAPK 
activation [38].
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Li-Fraumeni syndrome is an autosomal dominant inherited cancer predisposition 
syndrome caused by a germline p53 mutation [39].

BAP1 mutation: Germline mutations of BAP1 cause a hereditary tumor predis-
position syndrome, and affected individuals frequently develop uveal melanoma, 
lung adenocarcinoma, mesothelioma, and meningioma [40–42]. The spectrum and 
number of tumors vary between individuals and the affected kindreds, and several 
cases of familial uveal melanoma have been associated with BAP1 mutations [43, 
44]. The reduced penetrance of the germline mutation, however, can impede the 
identification of those patients as familial cases. Somatic mutations of BAP1 have 
been identified in metastasizing uveal melanoma and are thought to be a critical step 
for development of an aggressive tumor phenotype [45]. In case of a germline BAP1 
mutation, loss of the wild-type allele of BAP1 on the remaining allele on chromo-
some 3 will promote melanoma development. The role of BAP1 mutations and the 
presumed genetic mechanisms are described later in this chapter.

9.4	 �Prognosis

Uveal melanoma is generally reported to have an overall chance of 50% for spread-
ing to the liver and cause metastatic disease, which is usually fatal within a few 
months. However, for counselling patients, this information is not very helpful. It 
has been shown that for most patients, the prognosis is actually much better or much 
worse and that we need to obtain an individualized risk, by combining clinical, his-
tological, and genetic risk factors [46].

Clinical factors: Older age and male gender have been associated with reduced 
survival. However, there remains the possibility that those results are biased by a 
delay in diagnosis in older patients, a higher general mortality rate in older patients 
(competing risks), and prolonged survival of younger patients with metastatic dis-
ease compared to older ones [47–50].

Histopathological factors: Uveal melanoma is commonly classified on cytomor-
phology according to a classification scheme proposed by Callender in 1931 and 
modified by McLean in 1983 [51]. Cells are divided into fusiform spindle cells and 
the larger polygonal and pleomorphic epithelioid cells. Both cell types may be pres-
ent in the same tumor, which is then classified as “mixed cell type.” Epithelioid cell 
type has been associated with a higher metastasis rate [52]. Problems with the clas-
sification lie in the significant inter- and intraobserver variability and the missing 
consensus on how many epithelioid cells must be present for a melanoma to be clas-
sified as “mixed” or “epithelioid” [53]. Cytological tumor heterogeneity here indi-
cates an underlying genetic heterogeneity. It has been shown by several authors that 
epithelioid cell type and cytogenetic risk factors (monosomy 3) are correlated [54, 
55]. As the presence of even a low number of cells with monosomy 3 already causes 
deterioration of prognosis, agreement of a cutoff level for a histopathological classi-
fication appears critical. Recently, after the mutations in the gene encoding BRCA1-
associated protein 1 (BAP1) on chromosome 3p21.1 have been identified as critical 
factor for the development of metastatic tumor phenotype, it was shown that 

9  Molecular Carcinogenesis of Uveal Melanoma



156

depletion of BAP1 resulted in less differentiated spindle morphology, again drawing 
a connection between molecular changes and histopathological findings [56]. In 
addition to epithelioid cell type, the presence of specific extracellular matrix patterns 
(closed loops; networks) has been found to be associated with poor prognosis [57–
59]. Those patterns are best depicted on PAS-stained sections and were initially 
thought to represent blood vessels but then identified as fluid-conducting channels 
lacking endothelial cells (vasculogenic mimicry). As cell type, they also correlate 
with other risk factors for metastasis, reflecting putative molecular changes in the 
melanoma cells [60]. In addition, increased microvascular density and the presence 
of tumor infiltrating macrophages and lymphocytes worsen prognosis [61–63]. 
Today, histopathological risk factors have lost much of their importance for counsel-
ling patients about their likely prognosis, as the identification of genetic risk factors 
has been proven to be superior predictors. However, they are still in use in multivari-
ate mathematical models for prognostication as the inclusion of numerous predictors 
enables the model to correct for errors in even genetic results to some extent [46, 60].

Tumor parameters: Tumor dimensions, especially the largest tumor basal diameter 
(LBD), are strongly correlated with patient survival. While less than 5% of melano-
mas with a LBD less than 10 mm will be fatal within 5 years from diagnosis, 5-year 
mortality rises to over 50% in melanomas with a LBD over 15 mm [64, 65]. LBD 
remains an independent risk factor adding prognostic information even in addition to 
gene expression profiling (GEP) [66]. However, we do not know whether metastasis 
happens because the tumor has grown large and has had more opportunity to spread 
because it has been there for a longer time or whether large tumor size is simply an 
indicator of a greater growth rate [46]. Tumor height appears to be a less important 
parameter for patient survival. Tumor location, on the other hand, has long been rec-
ognized as an important predictor of metastasis. Ciliary body involvement is associ-
ated with reduced survival; however, it correlates with larger tumor size and it did not 
remain an independent risk factor for metastatic disease when information from GEP 
was available [53, 66, 67]. Melanomas of the iris, in contrast, have a favorable prog-
nosis and a much lower mortality rate [68, 69]. At the time of diagnosis, iris melano-
mas are usually smaller than choroidal or ciliary body melanomas, and they show less 
aggressive histological features [53]. Cytogenetic changes with known unfavorable 
impact could be demonstrated in iris melanoma as well. Due to the small number of 
cases, however, the impact on survival has not been analyzed in detail [70].

9.5	 �Cytogenetics

Since the first report on cytogenetic changes in uveal melanoma more than 30 years 
ago, cytogenetic testing has gradually evolved from a research tool to a routine 
clinical test in the management of uveal melanoma [71]. Twenty years ago, Prescher 
et al. demonstrated the prognostic significance of cytogenetic abnormalities (i.e., 
monosomy 3), which was shown to be far superior to any clinical or histopathologi-
cal marker [72]. Since then, the techniques to identify chromosomal anomalies have 
evolved and replaced chromosome G-banding. Today, fluorescence in situ 
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hybridization (FISH), spectral karyotyping (SKY), (array) comparative genomic 
hybridization (a-CGH), and multiplex ligation-dependent probe amplification 
(MLPA) are in routine use for predictive testing and have been evaluated in large 
patient series [73, 74]. Microsatellite analysis (MSA) and single-nucleotide poly-
morphism (SNP) arrays offer the additional opportunity to identify loss of heteroge-
neity (LOH) and detect isodisomy of chromosomes which might be missed by the 
other techniques. Using SNP data, an attempt at creating an evolutionary tree for 
uveal melanoma has been published [75].

9.5.1	 �Chromosome 3

The loss of one copy of chromosome 3 (monosomy 3) is the most frequent and prog-
nostically most important chromosomal aberration in uveal melanoma and can be 
found in 50–61% of tumors [72, 76–81]. In 1996, a dramatic reduction in the 3-year 
survival probability from approximately 100% to less than 50% was reported for the 
first time in patients with monosomy 3 melanoma [72]. Since then, this finding has 
been confirmed by other authors several times [46, 55, 60, 82]. Only about 5–20% of 
patients with disomy 3 melanoma are expected to eventually develop metastatic dis-
ease [83]. Several possible explanations why metastasis occurs in a disomy 3 tumor 
have been discussed. First, intratumoral heterogeneity may lead to sampling errors if 
only a single small biopsy is used for analysis. The risk for misclassification with fine 
needle aspiration biopsy (FNAB) has been estimated to be less than 1% and however 
has to be considered [78, 84]. Second, e.g., FISH, CGH, and MLPA cannot detect 
loss of heterozygosity (LOH) caused by isodisomy and give the impression of metas-
tasis occurring without monosomy 3. Partial deletions of chromosome 3 might also 
be missed by FISH. However, the prognostic significance of partial deletions is still 
unclear. Identified deletions affected regions of the short arm (3p11–3p14, 
3p25–3p26, 3p25.1–3p25.2), as well as smaller regions on 3q (3q13–3q21 and 
3q24–3q26) [85–88]. A critical region of deletion causing metastatic disease has not 
been identified, until Harbour et al. identified mutations of BAP1 gene located on 
chromosome 3p21.1  in the majority of metastasizing uveal melanomas by exome 
sequencing [45]. Loss of chromosome 3 seems to be an early event in development 
of uveal melanoma and can be found in combination with other chromosomal aber-
rations [89, 90]. Unmasking of the second allele with mutated BAP1 induces tumor 
progression and also determines an aggressive tumor phenotype [56]. It is therefore 
not surprising that the loss of chromosome 3 is associated with other predictors of a 
poor prognosis, such as increased tumor diameter, ciliary body involvement, epithe-
lioid cell type, and extravascular matrix patterns [55, 72, 91, 92].

9.5.2	 �Chromosome 8

Aberrations of chromosome 8 may affect both the short and the long arm. Depending 
on the technique used, gains of 8q can be found in 35–75% and loss of 8p in 15–30% 
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[76, 93]. Gains of 8q and losses of 8p may occur together by formation of an iso-
chromosome [90, 94, 95].

As for chromosome 3 changes of chromosome 8 are also associated with poor 
prognosis. Combining information on chromosome 3 and on chromosome 8 status 
improves the accuracy of prediction of metastatic disease compared to monosomy 3 
or chromosome 8 status alone [46, 60]. Monosomy 3 and 8q gains occur together in 
about 45% of tumors and are associated with large tumor size, ciliary body involve-
ment, and aggressive histology [80, 82]. In addition, chromosome 8 abnormalities are 
found in virtually all metastases from uveal melanoma, either to the liver or the brain 
[71, 94, 96]. Because of this and the variable copy number of 8q in one tumor, gains 
of chromosome 8 are thought to be a secondary event in uveal melanoma develop-
ment. Improved analysis technique showed 8q amplification to be far more common 
than previously thought and high-resolution CGH identified frequent partial deletions 
on chromosome 8 [93]. Gains could be localized to 8q23–8q24 in many cases, and 
several oncogenes in that region have been evaluated for the potential significance. 
MYC, located on chromosome 8q24 and coding for a transcription factor, DDEF1 
(development and differentiation factor 1), enhancing the motility of uveal melanoma 
cells, and NBS1 (Nijmegen breakage syndrome 1) were all analyzed for their possible 
role in promoting metastasis [97–100]. Though frequently overexpressed in uveal 
melanoma, an association to prognosis could not be established. ENPP2, also located 
on 8q24 and coding for autotaxin or ectonucleotide pyrophosphatase/phosphodiester-
ase family member 2 (ENPP2), has been identified by gene expression profiling as a 
predictor of survival [101]. Autotaxin is an enzyme producing lysophosphatidic acid 
(LPA), a small motility-enhancing and angiogenic lipid molecule [102]. Its role for 
tumor progression and prognosis in uveal melanoma still needs to be established.

Losses of chromosome 8p have also been analyzed in detail to identify possible 
tumor suppressor genes. Deletions could be localized on 8p12–8p22 by array CGH, 
and silencing of LZTS1 on the retained hemizygous allele was found [103]. This 
tumor suppressor genes code for the leucine zipper tumor suppressor-1 and inhibit 
motility and invasion of uveal melanoma in cell cultures. Interestingly, loss of 8p 
correlates with the prognostically unfavorable class 2B on gene expression profil-
ing, further emphasizing the importance of 8p loss [89, 104].

9.5.3	 �Chromosome 6

Gains of chromosome 6p are observed in 28–54% of uveal melanomas and losses 
of 6q in 35–37% [76, 105]. Gains of 6p seem to be associated with a good progno-
sis. Possible explanations are that 6p gains are preferably found in spindle cell mela-
nomas and rarely occur together with monosomy 3 [90, 106, 107]. Gains of 6p also 
correlate with gene expression profile subclass 1b, which is associated with a good 
prognosis. The protective effect of 6p gain might result from an alternative molecu-
lar pathway in tumor development dividing UM in two separate subgroups with 
good (6p gain) or worse (monosomy 3) prognosis. Loss of 6q, on the other hand, has 
been associated with a metastasizing phenotype. The effect of simultaneous 6p gain 
and 6q loss caused by chromosome rearrangements is unknown [77, 80].
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Some authors have tried to identify tumor suppressor genes and oncogenes on 
chromosome 6; however, the genetic mechanism underlying chromosome 6 abnor-
malities remains unclear [108–110].

9.5.4	 �Chromosome 1

About a quarter of uveal melanomas show deletion on the short arm of chromosome 1, 
indicating a poorer prognosis. Because deletions of 1p are frequently found in larger 
tumors and in association with monosomy 3 and changes of chromosome 8, they are 
thought to develop later in tumor progression [78, 80, 84, 94, 111, 112]. However, 1p 
loss adds prognostic information independent of chromosome 3 status [112].

Several genetic mechanisms could be affected by 1p deletion, e.g., the NOTCH 
pathway and TP73 [113].

9.6	 �Molecular Genetics

9.6.1	 �MYC

The MYC gene is located on chromosome 8q24, a region frequently amplified in 
uveal melanoma, and therefore has been supposed to play a role in tumor progres-
sion [76, 90, 94, 95]. It codes for a transcription factor regulating the expression of 
numerous genes, controlling the cell cycle and apoptosis, and modifies the chroma-
tin structure via histone acetyltransferases (HATs) [114, 115]. Many tumors show 
constitutive overexpression of MYC, which has also been identified in uveal mela-
noma and proposed as a potential prognostic marker [100, 116]. In cutaneous mela-
noma, overexpression of MYC seems to be associated with poor prognosis in 
cutaneous melanoma [117]. In uveal myeloma MYC is also frequently overex-
pressed but surprisingly associated with improved prognosis [97, 100]. Hence, the 
role of MYC overexpression in uveal melanoma remains unclear.

9.6.2	 �TGF-b

TGF-b1 is located on chromosome 19, a region without frequent structural abnor-
malities in uveal melanoma. It has become of interest, because intraocular melano-
mas are growing in an immune privileged location, and the immunosuppressive 
properties inside the eye are mediated by cytokines, such as TGF-b [118]. TGF-b 
has antiproliferative and anti-apoptotic effects on various cell types (epithelial, 
endothelial, neuronal, leukocytes) [119]. TGF-b is secreted into the extracellular 
matrix and stored until its activation by numerous often unspecific stimuli, like as 
irradiation, reactive oxygen, and proteases such as plasmin and metalloproteinases 
[120, 121]. Metalloproteinases (MMP) have been of interest as a marker for tumor 
progression as they are involved in tumor invasion, angiogenesis, and metastasis, 
and TGF-b enhance and modify these effects [122, 123]. Whereas MMP-9 is 
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predominantly expressed in epithelioid melanomas and associated with poorer 
prognosis, immunohistochemical staining showed TGF-b positivity in uveal mela-
noma regardless of cell type, tumor size, or location [118]. TGF might also play a 
direct role in hematogenous metastasis to the liver, by increasing adhesion of uveal 
melanoma to the hepatic endothelium [124]. For metastases to grow to detectable 
size, induction of angiogenesis is a crucial step in tumor progression [125]. By its 
angiogenic effects, TGF-b could further promote growth of uveal melanoma metas-
tases, and expression of TGF-b receptor endoglin has been found to correlate with 
metastatic death [126, 127]. A high number of tumor infiltrating leukocytes and 
macrophages as well as high HLA class I and II expression have also been linked 
with bad prognosis, as those are preferably found in monosomy 3 melanomas [128]. 
By downregulation of MHC class I antigen, on the other hand, TGF-b renders uveal 
melanoma cells more susceptible to cytolysis by natural killer cells [129, 130]. It 
has been suggested that uveal melanoma might prepare its own microenvironment 
for growth by secretion of local factors into the vitreous and aqueous humor [131].

9.6.3	 �Bcl-2

The Bcl family of proto-oncogenes comprises pro-apoptotic proteins, like Bax, 
Bad, and Bak, and anti-apoptotic proteins, like Bcl-2, Bcl-xL, and Bcl-w [132]. 
Blc-2 seems to be of specific importance in regulation of tumor cell survival and 
apoptosis. As the pro-apoptotic members, Bcl-2 resides on the outer membrane of 
the mitochondria, inhibiting the initiation of the apoptotic cascade by the intrinsic 
pathway [133, 134]. Bcl-2 is strongly expressed in uveal melanoma, as shown by 
immunohistochemistry [97, 135–137]. Uveal melanoma is known to be resistant 
against radiation, and high radiation dose has to be used for the treatment of primary 
tumor. It is also resistant to standard chemotherapy. This is explained by the anti-
apoptotic effects of Bcl-2. Therefore Bcl-2 has become a possible starting point in 
the search for a targeted therapy [138, 139]. Bcl-2 inhibitors could revert the inhibi-
tion of apoptosis and allow for the initiation of apoptosis by pro-apoptotic members 
of the Bcl family. Nemati et al. showed increased response of uveal melanoma to 
chemotherapy with fotemustine after the administration of a Bcl-2 inhibitor in ani-
mal xenografts [140]. Until recently no Bcl inhibitor with acceptable toxicity was 
available for use in humans [141, 142]. However, novel Bcl-2 inhibitors with low 
toxicity have been approved for use in chronic lymphocytic leukemia (CLL) with 
17p deletion (affecting p53), and clinical testing in uveal melanoma is expected.

9.6.4	 �P53

P53 plays an important role as a tumor suppressor, inactivated in more than 50% of 
all tumors. The gene for p53 is located on chromosome 17p13.1. It is a transcription 
factor controlling the expression of other downstream genes to regulate cell prolif-
eration and growth. Upregulation of p53 has been described in uveal melanoma 
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after irradiation [143, 144]. This appears plausible as p53 is a main factor in the 
cellular response to stress and DNA damage. Until DNA repair is completed, the 
cell is stopped in the G1 or G2 phase of the cell cycle [145]. If the damage is too 
severe to be repaired, the cell will undergo apoptosis. In contrast to other tumors, 
which frequently show altered expression or mutations of p53, the signaling path-
way upstream of p53 seems to be intact in uveal melanoma [146]. However, there 
seems to be a functional inhibition of p53 in uveal melanoma. P53 interacts with 
several downstream molecules in a negative-feedback loop [147]. First, the cyclin-
dependent kinase inhibitor CDKN2A stabilizes p53 by degrading Mdm2 through 
p14(ARF) [148, 149]. Second, it induces the expression of Hdm2/Mdm2 (human/
mouse double minute 2). Overexpressed Hdm2/Mdm2  in reverse represses p53 
transcriptional activity and also enhances its degradation [150–152]. This mecha-
nism seems to be important in uveal melanoma, and overexpression of Mdm2 has  
been shown to be of prognostic value [143, 153]. Some authors evaluated the pos-
sible therapeutic effect of inhibition of Mdm2 by a small synthetic peptide in animal 
models; however, this has never been evaluated in clinical trials [141, 154, 155].

9.6.5	 �Rb

The Rb pathway has been shown to be frequently altered and functionally inhibited 
in uveal melanoma [143, 156–158]. To arrest cells in the G1 or G1/S phase, the Rb 
protein has to be kept in a hypophosphorylated state. This is accomplished by the 
cyclin-dependent kinase inhibitor CDKN2A coding for p16(INK)4a, keeping Rb 
active. In this hypophosphorylated state, Rb binds E2Fs, thereby repressing their 
transcriptional activity. Phosphorylation of Rb by cyclin-dependent kinases (CDK) 
can occur at multiple phosphorylation sites in Rb throughout the cell cycle, which 
gradually inhibits Rb function and releases E2F [159, 160]. Loss or inactivation of 
Rb will result in deregulated cell cycle progression and cell proliferation. In uveal 
melanoma Rb protein is frequently hyperphosphorylated and inactivated because of 
cyclin D1 overexpression and CDKN2A promotor methylation [143]. Still, most 
tumors, including retinoblastoma, need additional mutations of other tumor sup-
pressor genes to develop [161].

9.6.6	 �Ras-Raf-MAPK Pathway (GNAQ, GNA11, CYSLTR2, PLCB4)

Mutations of proteins in the mitogen-activated protein kinase pathway (MAPK) 
have long been implicated in the development of conjunctival melanomas [162–
164]. BRAF mutations are found in more than 65% of cutaneous melanoma, result-
ing in a constitutively active protein leading to MAPK activation [165]. Such 
BRAF mutations are rarely observed, on the other hand, in uveal melanoma [166–
169]. Activation of the MAPK pathway has been demonstrated to be a frequent 
event in UM; however, this does not seem to occur through mutations of BRAF 
[170]. The mechanisms behind the activation remained obscure until the discovery 
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of mutations in GNAQ and GNA11  in uveal melanocytic lesions. A connection 
between mutations in GNAQ/GNA11 and proliferation of melanocytes was first 
established in 2004 during the analysis of determinants of skin color in mice [171]. 
Thereupon those mutations were found in almost 85% of uveal melanomas [20, 
172, 173]. GNAQ and GNA11 encode the alpha subunit of heterotrimeric g-pro-
teins (g-alpha-q and g-alpha-11). G-protein-coupled receptors (GPCR) are a large 
group of transmembrane receptors exerting multiple physiologic functions, such as 
in the sensory system, vision, olfaction, and taste [174]. Their function is transmit-
ted by g-proteins from the extracellular to intracellular space. In their basal and 
inactive state, the alpha, beta, and gamma subunits are bound together with 
GDP. Upon activation through ligand binding to the g-protein-coupled receptor, 
the heterotrimeric g-protein dissociates and exchanges GDP to GTP [175]. The 
GTPase activity of the alpha subunit hydrolysis GTP to GDP.  Mutations in the 
alpha subunit of GNAQ and GNA11 keep them in the activated state, leading to 
constitutive MAP-kinase pathway activation and cell proliferation without further 
extracellular stimuli. This raised the hope for targeted therapy with MEK inhibi-
tors. In fact, a randomized open-label phase II clinical trial comparing selumetinib 
versus chemotherapy showed for the first time prolonged progression-free survival 
in patients with uveal melanoma metastasis [176]. However, this has not been con-
firmed in later studies [177].

In patients without detectable mutations in GNAQ/GNA11 of the g-protein-
coupled receptor CYSLTR2 and PLCB4, the gene encoding for the 1-phosphatidyl
inositol-4,5-bisphosphate phosphodiesterase beta-4, a downstream target of GNAQ/
GNA11, could be identified, further emphasizing the importance of MAP-kinase 
pathway activation through this mechanism [178, 179].

9.6.7	 �BAP1

Enormous efforts have been made to identify the critical mutation on chromosome 
3 that promotes metastasis. Harbour et al. identified mutations of BAP1, located on  
chromosome 3p21.1, in 47% of metastasizing monosomy 3 uveal melanomas [45]. 
Interestingly, one of their patients had a germline mutation which was uncovered by 
loss of the second allele (monosomy 3). Soon after germline BAP1 mutations were 
found to cause a hereditary tumor predisposition syndrome, the spectrum of this is 
still evolving [40, 41, 180]. The BRCA1-associated protein-1 (BAP1) was first  
described by Jensen et al. as a potential tumor suppressor gene [181, 182]. BAP1 
encodes a deubiquitinating enzyme and acts on BRCA1, histone H2A, host cell 
factor-1, and O-linked N-acetylglucosamine transferase (OGT) [181]. RNAi-
mediated depletion of BAP1 in uveal melanoma cells resulted in loss of differentia-
tion and gain of stemlike properties, similar to GEP class 2 tumors [56]. Though the 
molecular mechanisms of BAP1 are still not fully understood, a targeted therapy 
seems possible. Histone deacetylase (HDAC) inhibitors might restore histone H2A 
function which has been shown to be accompanied by increased melanocytic dif-
ferentiation [183, 184].
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9.6.8	 �SF3B1 and EIF1AX

Recently, additional somatic mutations have been identified in UM by exon sequencing, 
specifically occurring in patients with disomy 3 and partial monosomy 3 [185, 186]. 
SF3B1 is found in about 15–20% of uveal melanomas and associated with a favorable 
prognosis and prolonged metastasis-free interval compared to uveal melanomas with 
BAP1 mutations [186–189]. Mutations were mutually exclusive with BAP1 mutations 
and seem to support the bifurcated model of tumor progression in uveal melanoma [108, 
190]. However, within the disomy 3 and partial monosomy 3 tumors, uveal melanomas 
with SF3B1 mutations had a worse prognosis than those without this mutation [189]. 
Interestingly, the mutational spectrum in SF3B1 of tumors with and without metastasis 
was different, and a further subgrouping of tumors according to mutation type might 
help to identify patients at risk of metastatic disease [186]. Tumors harboring EIF1AX 
mutations also are associated with a longer disease-free survival and rarely demonstrate 
metastasis [189]. Both mutations EIF1AX and SF3B1 are associated with good prog-
nostic features, such as disomy 3; spindle cell type, positive BAP1 immunohistochem-
istry staining; and the absence of closed vascular loops [191].

9.6.9	 �Gene Expression Profiling (GEP)

While over the past decades methods for detection of cytogenetic changes and muta-
tions have evolved and allowed for more detailed analyses, some other groups chose 
another approach offering a different view of the tumor and its microenvironment. 
Gene expression profiling (GEP), based on mRNA signature, has been described as a 
functional snapshot of the tumor microenvironment, which is perhaps less variable 
across the tumor and therefore less affected by intratumoral heterogeneity [192]. GEP 
was studied first in uveal melanoma cell lines, comparing those to normal melanocytes 
[193]. Then, Tschentscher et al. developed oligonucleotide microarrays to describe and 
compare the expression profile of monosomy and disomy 3 melanomas [194]. They 
also classified uveal melanomas according to their gene expression profile.

Soon afterwards, Onken et  al. improved this technique and, leaving chromo-
somal status behind, classified uveal melanomas based on results from GEP, using 
unsupervised clustering methods to divide uveal melanomas in class 1 melanomas 
with low risk and class 2 tumors with a high risk of metastasis. Since then, numer-
ous other investigators have compared the accuracy of GEP versus cytogenetic 
prognostic indicators. Unfortunately, as DNA-based techniques continuously 
evolved (MLPA, a-CGH, and SNP array), no direct comparison of GEP classifica-
tion versus latest DNA-based techniques has been made. Onken et al. reduced the 
number of genes necessary for classification and developed a PCR-based microflu-
idics platform for routine clinical testing [192, 195].

Gene expression profiling closely correlates with cytogenetic findings in 
most cases [196, 197]. Class 1 tumors usually show disomy 3 and spindle cell 
type melanoma, whereas class 2 profile is associated with epithelioid cell type, 
monosomy 3. A further subclassification is possible into four groups (1A, 1B, 
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and 2A, 2B). Class 1A predicts the best prognosis, and class 1B is slightly 
worse, corresponding to disomy 3 melanomas with 6p gain. For class 2 melano-
mas, additional loss of chromosome 8p corresponds to the subclass 2B with the 
worst prognosis [89]. Based on this, a modified bifurcated tumor progression 
model has been proposed which is shown in Fig. 9.1. Some problems, however, 
remain. First, the significance and predictive value of GEP after radiation has 
not been evaluated so far and, as in contrast, has been done for DNA-based tests 
[198–201]. Also biopsy of non-melanoma tissue will reveal class 1 profile. For 
DNA-based tests, identification of GNAQ/GNA11 mutations can easily be done 
which will be positive in 85% of cases and ensure that melanocytic tissue has 
been biopsied.

9.7	 �Conclusion and Future Prospective

New genetic techniques have provided new and sometimes unsuspected insights into 
the pathobiology and the molecular carcinogenesis of uveal melanoma. Extended use 
of next-generation sequencing and proteomics will provide further insights, and tar-
geted therapies will hopefully lead to an improved prognosis for patients with meta-
static disease. Still, one should not forget to consider and reconsider again basic facts 
of melanogenesis in the light of latest findings as explained in the introduction of this 
chapter. It is still unknown whether choroidal nevi are congenital and slowly grow to 
clinically detectable size during life or whether they arise from normal melanocytes, 
which acquire their first transforming event (mutation of GNAQ/GNA11) later in life. 

Melanocyte

Nevus

Non Metastatic 
Melanoma

Metastatic 
Melanoma

GNAQ/11

SF3B1

E1F1AX

BAP1

Micrometastases

Macrometastases

Chr 3 loss

Immune  

MEK/ PKC/
AKT Inhibitors 

Epigenetic 
HDAC-Inhibitors
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Fig. 9.1  Proposed bifurcated tumor progression model. GNAQ/GNA11 mutations induce 
growth of uveal nevi, which subsequently evolve into melanoma by acquiring (a) mutations in 
SF3B1 and/or EIF1AX, associated with a rather good prognosis, or (b) mutations in BAP1 and 
loss of the second allele by monosomy 3, which is associated with a high risk for metastasis. A 
more advanced model of an evolutionary tree for uveal melanoma was published by Nakul Singh 
et al. [75]
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Findings from clinical syndromes like the oculodermal melanocytosis still pose many 
questions to be answered. Unifying concepts of pigment cell distribution and ocular 
melanogenesis may answer some questions but even more arise.
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