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Abstract
Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) belongs 
to one of the best described and most intensively studied transcription factors in 
biochemistry in the last 30 years. The NF-κB signaling cascade exists in two 
variants, the canonical and noncanonical pathway, and its transcription factors 
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are key regulators of several biochemical processes like immune responses, 
inflammation, survival, and cellular development and growth.

Examination of various transgenic mouse models targeting NF-κB itself or 
signaling members discovered the implication of NF-κB in chronic inflamma-
tory diseases and cancer development in different organs as in the skin, intestine, 
and liver.

In this review the focus lies on the central organ of metabolic and inflamma-
tory processes: the liver. It seems that NF-κB is pivotal for the homeostasis in the 
different hepatic cell types concerning hepatic failure, fibrosis, and HCC pro-
gression. NF-κB has the ability to be a potential target in the attempt to circum-
vent or medicate liver fibrosis and HCC.

6.1  Introduction

Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) is one of 
the best and most intensive studied transcription factors in the field of biomedicine. 
It was discovered and first described 30 years ago by David Baltimore and col-
leagues [1]. Since that time many studies revealed the outstanding meaning of 
NF-κB in the development of inflammatory diseases such as arthritis and psoriasis, 
inflammatory bowel diseases, asthma, and neurodegenerative heart diseases and its 
contribution to cancer development [2–4]. It is expressed in most mammalian cell 
types and tissues and controls the transcription of genes involved in immune 
responses, cell survival, proliferation, and differentiation [5].

Next to in vitro approaches, examination of several transgenic mouse models 
with different NF-κB targets gave the opportunity to raise our understanding of the 
complex mechanisms behind inflammation-driven diseases in vivo. Moreover, 
the work with conditional murine knockout models in different organs uncovered 
the central role of NF-κB in mediating innate immune responses and cytokine 
expression in order to react on pathological outcomes of inflammation like chroni-
cal skin inflammation (e.g. psoriasis) and hepatocarcinogenesis [6–10]. The severe 
affection of organs or tissues during disbalanced NF-κB activation gains importance 
and constitutes a therapeutic challenge. Further investigations will support the devel-
opment of clinical trials targeting certain molecules of the NF-κB signaling cascade.

6.2  Members of the NF-κB/Rel Family

The NF-κB signaling pathway is evolutionarily highly conserved and is, besides 
mammalians, also found in the fruit fly Drosophila melanogaster, cnidarians, porif-
era, viruses, and mollusks [11–14]. Caenorhabditis elegans and yeast are the main 
exceptions [15, 16].

Mammalian NF-κB itself is composed of different types of dimers, appearing 
as homo- or heterodimers. The single compounds of these dimers are p50 
(NFKB1), p52 (NFKB2), c-Rel (REL), p65/RelA (RELA), and RelB (RELB). All 
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five transcription factors are characterized by an N-terminal Rel homology 
domain (RHD-NTD) which is needed to mediate DNA binding, homo- and het-
erodimerization, and nuclear translocation. In the nucleus NF-κB dimers bind at 
κB sites inside enhancer/promoter regions of target genes where they control 
transcription by recruiting coactivators and corepressors [17–19]. Furthermore, 
only p65, RelB, and c-Rel comprise a C-terminal transactivation domain (TAD) 
which is required for gene transcription. The other two members, p50 and p52, 
lacking TAD and are processed from the precursor proteins p105 (p50) and p100 
(p52) (Fig. 6.1). Both are not directly involved in gene transcription except in 
combination with p65, RelB, c-Rel, or other proteins which are able to recruit 
coactivators. After successfully entering into the nucleus, it binds at the 
 following consensus sequence 5′-GGGRNYYYCC-3′ (R, purine; Y, pyrimi-
dine; N, any nucleotide) of DNA κB sites [19]. The TAD and RHD act in each 
case autonomously and underlay posttranscriptional modifications which might 
have an influence on NF-κB activation at the level of transcription and/or DNA 
binding [20].

The most abundant combination of NF-κB dimers are p50/p65 and p50/50, 
whereas, in contrast, the homodimer p50/p50 can act as a transcriptional repressor 
[21, 22].

6.3  The Negative Controllers of NF-κB: IκBs

NF-κB dimers are located in the cytoplasm, and translocation from the cytoplasm 
through the nucleus is regulated by another group of proteins named nuclear factor 
of kappa light polypeptide gene enhancer in B-cells inhibitor (IκBs) [15]. These 
proteins are tightly associated with the NF-κB dimers, preventing NF-κB activation 
by hindering NF-κB translocation through the nuclear membrane. The IκB family 
includes six members: IκBα (NFKBIA), IκBβ (NFKBIB), IκBε (NFKBIE), IκBγ 
(NFKB1), IκBζ (NFKBIZ), and Bcl-3 (BCL3) and the NF-κB precursors p100 and 
p105. All of them share several ankyrin repeat domains (ARD), which are necessary 
to interact with the RHD of NF-κB [23]. Crystal structure analysis of the IκBα/
NF-κB (p50/p65) heterodimer and IκBβ/NF-κB (p50/p50) homodimer allowed a 
closer look through the binding conditions of each complex and revealed a binding 
ratio of 1:1. Inside the IκBα/NF-κB complex, the ankyrin repeat six and the 
C-terminal PEST sequence of IκBα are associated with the p65 RHD-NTD, imped-
ing binding to the DNA κB site (Fig. 6.1). Additionally, p65 undergoes such a con-
formational change, which strongly supports the linkage to IκBα, holding NF-κB in 
its inactive state [24–26].

Every IκB member has its own favorite NF-κB dimer. IκBα/β/ε binds to NF-κB 
dimers, which contain a minimum of one p65 or c-Rel subunit. p100 and p102 are 
connected to all NF-κB subunits. IκBζ and Bcl-3 have a preference for p50 and p52 
homodimers [27, 28].

Here, IκBα is investigated at best and is a central regulatory factor in the  canonical 
NF-κB signaling pathway as described in the next chapter.
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Fig. 6.1 Schematic diagram of the domain structures of each individual NF-κB, IκB, and IKK 
complex protein family members. All three family groups have a typical domain structure as the 
Rel homology domain (RHD) for the NF-κB family members, the ankyrin repeat domains (ARD) 
for the IκB family members, and the leucine-zipper (LZ) motif for the IKK complex members. On 
the basis of their function, p100 and p105 are also associated with the NF-κB and IκB family. CC 
coiled coil, DD death domain, GRR glycine-rich region, HLH helix-loop-helix, NBD NEMO- 
binding domain, PEST proline-, glutamic acid-, serine-, and threonine-rich region, TAD transacti-
vation domain. Adapted from Oeckinghaus et al.: The NF-κB Family of Transcription Factors and 
its Regulation, Cold Spring Harb Perspect Biol. 2009, 1(4): 1–14
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6.4  The Canonical NF-κB Pathway

Various cellular stress stimuli and certain endogenous and exogenous ligands lead 
to NF-κB activation. The stimulus decides if the canonical or noncanonical NF-κB 
pathway is activated. Both cascades lead to NF-κB nuclear translocation but are 
regulated by different checkpoints within the cascade. In the last few years, exten-
sive studies have been performed to characterize both variants of NF-κB activation 
and to identify important key players. It was shown that the canonical pathway is 
primarily activated during physiological stress conditions like inflammation, expo-
sure to bacterial products like lipopolysaccharide (LPS), and oxidative stress [29, 30]. 
The canonical NF-κB signaling cascade is generally activated by the following 
receptors: tumor necrosis factor receptor (TNFR), interleukin 1 receptor (IL-1R), 
Toll-like receptor (TLR), B-cell receptor (BCR), and T-cell receptor (TCR) [31]. 
Receptor ligation leads to the recruitment of certain adapter proteins to TNF 
receptor- associated factor (TRAF) and receptor-interacting protein kinase 1 
(RIPK1). RIPK1 is connected to the TGFβ-activated kinase 1 (TAK1)-binding pro-
tein (TAB2-TAB3-TAK1) complex and the NF-κB essential modulator (NEMO) 
via ubiquitin chains, bringing TAK1 into close vicinity to NEMO (IKKγ), the regu-
latory subunit of the IκB kinase (IKK) complex. This complex is composed of two 
more members, the catalytic subunits IKKα (IKK1) and IKKβ (IKK2), and repre-
sents the crucial step in NF-κB nuclear translocation by controlling proteasomal 
degradation of IκBα. More precisely, phosphorylation of TAK1 at Thr178 and 
Thr184 permits a direct phosphorylation of IKKβ inside its activation loop at Ser177 
and Ser181 leading straightly to IκBα phosphorylation at Ser32 and Ser36. 
Phosphorylation of IκBα follows activation of the IKK complex, the second essen-
tial regulatory step in NF-κB activation, because IκBα undergoes K48-linked polyu-
biquitination by the SCFβTrCP ubiquitin ligase complex, which induces its fast 
degradation by the 26S proteasome. Finally, IκBα degradation exposes the nuclear 
localization site (NLS) of NF-κB, which is needed for nuclear access, DNA binding, 
and transcription of target genes (Fig. 6.2) [32–37].

6.5  The Noncanonical or Alternative NF-κB Pathway

Next to the extensively studied canonical pathway, an alternative NF-κB activation 
exists. The so-called noncanonical NF-κB pathway activates NF-κB not by degrada-
tion of IκBα/β/ε and p105, but via processing the inactive p100/RelB NF-κB het-
erodimer through the active p52/RelB heterodimer [38, 39]. This pathway seems to 
be crucial in lymphoid organogenesis, B-cell maturation and survival, dendritic cell 
activation, and osteoclastogenesis. The major ligands which initiate these variants 
of NF-κB activation are the lymphotoxin β receptor (LTβR), B-cell-activating factor 
belonging to the TNF family receptor (BAFF-R), CD40, and receptor activator of 

6 NF-κB and Its Implication in Liver Health and Cancer Development



92

NF-κB (RANK). Moreover, uncontrolled stimulation of the noncanonical NF-κB 
signaling cascade leads to severe diseases such as B-cell lymphomas, ulcerative 
colitis, and rheumatoid arthritis [40].

Processing of p100 depends on the NF-κB-inducing kinase (NIK), IKKα 
homodimers, and βTrCP, a subunit of the SCFβTrCP ubiquitin ligase. NIK mediates 
phosphorylation of p100 at Ser866 and Ser870 in its NIK-responsive domain (NRD) 
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Fig. 6.2 The canonical and noncanonical NF-κB signaling cascade. After activation of the respec-
tive receptors, which are able to induce the canonical NF-κB pathway, the TAB-TAK1 complex 
and NEMO, the regulatory subunit of the IKK complex, get ubiquitinated by RIPK1. These ubiq-
uitin chains bring both complexes into closer vicinity to each other, whereby TAK1 phosphorylates 
IKKβ, one of the catalytic subunits of the IKK complex. The activated IKK complex phosphory-
lates two serine residues of the NF-κB inhibitor IκBα, thereby initiating its proteasomal degrada-
tion. After IκBα degradation, NF-κB translocates through the nucleus to induce gene expression. 
The noncanonical NF-κB signaling cascade is controlled at the upper part by NIK. NIK mediates 
phosphorylation leading to the activation of the homodimer IKKα, another catalytic subunit of the 
IKK complex. IKKα cleaves the inactive precursor p100 into the active NF-κB subunit p52. In 
combination with RelB, it forms a heterodimeric NF-κB molecule which enters the nucleus to 
induce target gene expression. BCR B-cell receptor, BAFF-R B-cell-activating factor receptor, 
FADD Fas-associated death domain, IκBα inhibitor of NF-κB, IKKα/β IκB kinase α/β, LT-βR 
lymphotoxin-β receptor, NEMO NF-κB essential modulator, NIK NF-κB-inducing kinase, RANK 
receptor activator of NF-κB, RIPK1 receptor-interacting protein 1, TAB2/3 TGFβ-activated kinase 
1 (TAK1)-binding protein, TAK1 TGFβ-activated kinase 1, TCR T-cell receptor, TLR Toll-like 
receptor, TRADD TNF receptor-associated death domain, TRAF2/3 TNF receptor-associated fac-
tor 2/3, TNFR tumor necrosis factor receptor. Adapted from Luedde et al.: The role of NF-κB in 
hepatic disease models, Translational Research in Chronic Liver Disease, Falk Workshop, Shaker 
Verlag Aachen 2009: 57–89
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and IKKα activation. Activated IKKα phosphorylates p100 at Ser99, Ser108, 
Ser115, Ser123, and Ser872 which is needed for the recruitment of βTrCP. The 
SCFβTrCP ubiquitin ligase complex facilitates ubiquitination of p100 and thereby its 
26S proteasomal degradation to p52. Interestingly, canonical and noncanonical 
pathways exhibit some similarities regarding regulatory mechanisms as shown by 
equivalent phosphorylation sites of p100 and IκBα or ubiquitin-mediated 26S pro-
teasomal degradation of NF-κB inhibitors (Fig. 6.2) [41–43]. In contrast to the 
canonical pathway, the noncanonical cascade is characterized by a slow and persis-
tent signaling and protein synthesis [44, 45].

Next to ubiquitin, SUMOylation is another regulatory mechanism to shape 
NF-κB signaling in both pathways. SUMOylation induces posttranslational modifi-
cations like ubiquitination and phosphorylation and influences protein-protein inter-
action and gene transcription [46]. It was shown in different studies that the interplay 
of SUMO, SUMO proteases, and NF-κB signaling members like NEMO, IκBα, or 
p100 represent another important level of signal transduction [47, 48].

6.6  NF-κB-Associated Human Diseases and  
Genetic Mouse Models

Due to the immense effort taken in examining NF-κB and its biological function, 
the crucial role of NF-κB in cellular homeostasis was uncovered. Several human 
diseases like psoriasis, colitis ulcerosa, Crohn’s disease, rheumatoid arthritis, or 
cancer development are a result of dysregulated NF-κB activation [2–4].

For a better understanding of the mechanisms behind NF-κB dysregulation 
in vivo, numerous mouse models were developed and examined. These comprise 
constitutive, tissue-specific conditional knockouts using the cre/loxP technology, 
gene knock-ins, and reporter mice of single or more IKK subunits or in combination 
with other members of the NF-κB signaling cascade [6–8, 49–53].

Caused by the tremendous information on the different genetic mouse models 
and their implication in broadening our understanding of NF-κB-associated human 
diseases, the next paragraph will focus particularly on one organ which has been 
extensively studied over the last few years and is a prime example for the impor-
tance of NF-κB homeostasis: the liver.

6.7  NF-κB and Its Critical Role for Liver Homeostasis

The liver is the biggest organ in the human body with a weight of 1.2–1.8 kg and 
makes approximately 2–3% of the whole body weight. The liver is of great impor-
tance because it is responsible for different metabolic processes like synthesis of 
vitally essential proteins (e.g. albumin, blood coagulation factors, hormones), utili-
zation of food residues (e.g. conversion of glucose to amylum), detoxification of 
intermediate catabolic metabolites (e.g. from medicine), and bile production. 
Additionally, it is a storage organ for important macromolecules such as hormones 
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or amylum. Besides the wide metabolic functions, the liver has the capability of 
reacting immunologically as well [54]. During all these biochemical and immuno-
logical processes, the different cell types forming the liver are faced with degrada-
tion products which might be harmful, such as oxygen radicals, or are attacked by 
bacterial components like lipopolysaccharides (LPS) or viruses, such as hepatitis 
viruses. NF-κB activation protects the cells against apoptosis and supports pro- 
inflammatory responses. Hepatocytes are the dominant hepatic cell type and stress 
factors, such as cytokines like TNFα or IL-1, and initiate the NF-κB signaling cas-
cade to protect them against cell death [31].

Despite the bad reputation of inflammatory processes, it plays in the liver a cen-
tral role for wound healing induced by injury processes, such as alcohol abuse or 
medication intake, which bear a high risk for liver fibrosis and cirrhosis progression 
and, finally, hepatocellular carcinoma (HCC) development. However, also viral 
infections such as hepatitis B virus (HBV) and HCV are potent inducers of liver 
fibrosis and HCC development. During fibrosis, the liver tissue undergoes a peren-
nial process of inflammation, apoptotic and necroptotic events, and compensatory 
renewal. These chronical processes cause severe side effects, such as the production 
of highly reactive molecules like reactive oxygen species (ROS), chromosomal 
aberrations, and possibly malignant alterations of proliferating hepatocytes. Other 
diseases and reasons which can also trigger HCC formation are nonalcoholic steato-
hepatitis (NASH), obesity, diabetes, aflatoxin-contaminated nutrients, exposure to 
toxic compounds like vinyl chloride, and genetic predisposition such as hemochro-
matosis [55, 56].

6.8  A Deeper View on TNF and NF-κB

Only two possibilities remain if a cell is faced with strong stress: survival or death. 
TNFα and IL-1 are classical stress inducers and belong to the TNF superfamily. 
Next to these prominent members, Fas (Apo-1) and TRAIL are also well known and 
are currently intensively studied proteins. These signaling cascades simultaneously 
induce expression of pro-survival and proapoptotic proteins and, according to the 
stimulation strength, determine if the cell dies or survives [57–59].

The balance between life and death is absolutely essential to keep the liver in a 
healthy status. Apoptosis and necroptosis are different ways of cellular death but are 
strictly coordinated processes with common molecular characteristics, but with dif-
ferent cellular fragmentation processes into several small pieces [60].

TNFα acts on different biological processes facilitated by TNF-R1 and TNF-R2. 
Soluble TNFα initiates TNF-R1 signaling, whereas activation of TNF-R2 signaling 
needs binding of membrane-bound TNFα [61]. Activation of the TNF-R1 by TNFα 
leads to its trimerization and initiates recruitment of different adaptor proteins build-
ing the membrane-bound TNFR-complex I. The complex I comprises TRADD, 
RIPK1, cIAP1/2, and TRAF2/5. All seven TRAF family members have a C-terminal 
coiled coil domain which supports protein-protein interaction. Only TRAF2-7 exhib-
its an N-terminal RING domain which transfers K63-linked ubiquitin to target 
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proteins, acting as E3 ligases. Nevertheless, it is not clarified till now if TRAF  proteins 
mainly act as E3 ligases or as adaptors [20, 62]. It was shown that TRAFs are involved 
in both, canonical and noncanonical NF-κB pathway, and those TRAFs are also 
needed for activation of other signaling cascades, therefore acting as a distributor 
platform for several pathways. RIPK1 is, differently to the TRAFs, exclusively 
engaged in the canonical NF-κB pathway. RIPK1 and TRAF2/5 seem to interact with 
each other by TRAF2/5-mediated K63-linked polyubiquitination of RIPK1 (Lys377) 
[63]. Alternatively, it is also discussed that cIAP1/2 is responsible for RIPK1 polyu-
biquitination and that TRAF2 only recruits them to the receptor complex. Despite 
intensive research the exact function of TRAF2/5 and cIAP1/2 concerning RIPK1 
ubiquitination could not have been solved satisfactorily to date [64]. Besides K63-
linked ubiquitination, RIPK1 undergoes a second, linear Met1-linked ubiquitination 
simultaneously. This is mediated by the linear ubiquitin chain assembly complex 
(LUBAC), another E3 ligase complex [65, 66]. RIPK1 is linked with the linear chain 
to NEMO and with the K63-linked chain to the TAB2/3-TAK1 complex and brings 
the IKK complex and TAK1 in closer vicinity to each other, leading to the phosphory-
lation of IKKβ and finally NF-κB activation as described above.

6.9  NF-κB and Its Function in Hepatogenesis

A deeper understanding of NF-κB importance and its components was achieved by 
using genetically modified mouse models. These models include a setup of diverse 
genetic approaches such as constitutive knockout models, dominant- negative 
expression or overexpression of single or double IKK subunits or IκB proteins, tis-
sue-specific conditional knockouts by using cre/loxP recombination, reporter sys-
tems, and gene knock-ins [50].

Knockout mice deficient in Rela (p65) die in the uterus between embryonic days 
15 (E15) and E16 because of hepatocyte apoptosis. The primary cause of this event 
is the failure of a TNFα-mediated IκBα induction and granulocyte/macrophage 
colony-stimulating factor (GM-CSF) as shown in murine embryonic fibroblasts 
(MEFs), revealing that RelA has a protective function against TNFα [67, 68]. These 
findings were approved by generating a double knockout of Tnf and Rela, which led 
to a normal embryonic development and a full rescue from lethality [69]. However, 
another study reported similar results, but these double knockout mice died 10 days 
after birth from acute hepatitis and neutrophil infiltration [70]. Both studies indicate 
that RelA and TNF-R1 are not essential for liver development in mice, but seem to 
sensitize these animals to infections leading to death within a very short time frame. 
Further investigations of other NF-κB subunits showed that the genetic loss of both 
c-Rel (Rel) and Rela causes liver failure as well [71]. Moreover, genetic ablation of 
both transcription factors triggers impaired maturation of B cells, T cells, and mac-
rophages, denoting important roles in controlling genes relevant for immune 
responses. Genetic manipulation of murine livers by using adenoviral technique 
allowed transcription of an IκB superrepressor (Ad5IkappaB) which abolished 
NF-κB linkage to the respective DNA binding sites. After partial hepatectomy the 
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adenoviral infected livers displayed increased apoptosis rates of hepatocytes, prov-
ing the importance of NF-κB [72]. For the remaining NF-κB subunits RelB, NF-κB1, 
and NF-κB2, they were shown to play important roles in the differentiation and 
proper function of hemopoietic cells [73].

Next to the studies on NF-κB subunits, some studies carried out to define the 
functional impact of the single IKK members. Constitutive deletion of Ikkβ (Ikk2−/−) 
in mice leads to embryonic lethality at day E12.5 as a cause of enhanced liver dam-
age. Cell culture experiments of primarily isolated MEFs from these animals 
revealed impaired NF-κB activation in response to TNFα and IL-1. These results 
revealed a central function for IKKβ in controlling liver development and NF-κB 
activity, whereas loss of IKKβ cannot be fully compensated by IKKα (IKK1) [74–
76]. Ablation of the catalytic subunit Nemo (Ikkγ−/−) has a similar phenotypical 
effect as the embryos die between day E12.5 and E13.0 from massive apoptotic liver 
failure, and experiments with isolated Ikkγ−/− MEFs also showed disturbed NF-κB 
activity after treatment with TNFα, IL-1, LPS, and Poly(I:C), leading to high sus-
ceptibility to apoptosis [77]. As stated above, IKKα does not seem to have an impact 
on liver development and NF-κB induction triggered by pro-inflammatory sub-
stances. Ikkα−/− mice die perinatally and develop severe skeletal and skin-related 
defects during embryogenesis [78, 79].

6.10  NF-κB and Its Pivotal Role for Liver Integrity

Generation of tissue-specific knockouts by using the cre/loxP recombination system 
gives the opportunity of a much more detailed view on NF-κB in particular with 
regard to protection against cytokine-induced hepatitis. Another great advantage of 
the cre/loxP technology is the time-dependent loss of target genes determined by 
activation of the respective promoter during later embryonic developmental stages 
or postnatally, circumventing embryonic lethality effects. This was demonstrated by 
a conditional cre-driven hepatocyte knockout of Rela/p65. These mice are viable, 
and isolated primary hepatocytes treated with TNFα were highly sensitive to apop-
tosis with concurrently enhanced c-Jun N-terminal kinase (JNK) expression and 
degradation of the anti-apoptotic protein cellular FLICE inhibitory protein long 
(c-FLIPL) [80]. Investigation of hepatocyte-specific Ikkβ deletion in adult mice 
revealed an unexpected slight sensitivity in response to TNFα or LPS administration 
contrary to the murine embryonical state [52, 80, 81]. However, treatment with 
concanavalin A (ConA) promotes severe liver failure in adult Ikkβ-deficient ani-
mals, which is mainly supported by increased activation of JNK, a key mediator of 
ConA- induced liver failure. Next to JNK activation, ConA is also a potent activator 
of T cells, indicating that the anti-apoptotic function of IKKβ is the prevention of T 
cell- mediated cell death associated with decreased JNK activity [81].

Metabolic diseases represent another potential risk factor in mediating inflam-
matory processes like type 2 diabetes and obesity. Liver-specific Ikkβ ablation abol-
ished insulin sensitivity, while these animals showed insulin resistance in muscle 
and fat induced by a high-fat diet and upon aging [82].
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Double knockout of Ikkα and Ikkβ (IKKα/βLPC-KO) in liver parenchymal cells 
(hepatocytes and cholangiocytes) supported increased susceptibility of hepato-
cytes to LPS in vivo, which was not detected in the single knockout conditions, 
claiming for a more redundant function for both IKKs in canonical NF-κB activa-
tion. Of note, simultaneous deficiency of IKKα and IKKβ or the combined ablation 
of Ikkα and Nemo, but not Nemo alone, led to spontaneous development of cholan-
gitis with disturbed portal bile ducts accompanied by severe jaundice, revealing the 
importance of both catalytic NF-κB subunits in controlling liver immunology and 
bile duct integrity [83]. Additional pivotal discoveries concerning the physiologi-
cal impact of the IKK complex were achieved by examining adult mouse livers 
lacking the regulatory subunit NEMO. These livers are highly sensitive against 
TNF- and LPS-mediated inflammation and subsequently cell death in vivo and 
in vitro [8, 52].

Further studies regarding genetic ablation of other NF-κB signaling members 
alone or in combination with different IKKs revealed a great impact on cellular 
homeostasis as well. Hepatocyte-specific deletion of the mitogen-activated kinase 
kinase kinase (MAP3K) TGF-β-activated kinase 1 (TAK1LPC-KO; TAK1Δhep) leads 
to a comparable phenotype as seen for IKKα/βLPC-KO with considerable cholangi-
tis, early HCC development, and lethal jaundice at younger age [6, 51]. Deletion 
of death receptor-associated adaptor proteins like Fas-associated protein with 
death domain (Fadd) or Tnfr1 in combination with Nemo (NEMO/FADDLPC-KO) or 
Tak1 (TAK1/TNFR1∆hep) showed strongly reduced signs of inflammation, fibrosis, 
and cell death, raising evidence for a pro-apoptotic trigger driving these pheno-
types [8, 51]. A look more downstream of the death receptor pathways, regarding 
casapse-8, highlighted a rescue of Caspase8/NEMO∆hep mice from steatosis and 
HCC development, but these animals developed a severe spontaneous phenotype 
of liver necrosis, cholestasis, and biliary lesions, most likely caused by a FasR-
induced RIPK1- RIPK3- mediated necroptosis [84]. As stated above, the hepato-
protective function of NF-κB is also influenced by a sustained reduced expression 
level of JNK upon TNFα administration [85–87]. JNK belongs to the MAPK fam-
ily and is activated via TRAF2, RIPK1, and MKK4/7. JNK is a major mediator of 
cell death, triggered not only by pro-inflammatory cytokines such as TNFα and 
IL-1β but also by cellular stressors such as UV radiation, osmotic, oxidative, 
hypoxic, and genotoxic events [88, 89]. The connective bridge between NF-κB 
and JNK is TAK1, which is able to phosphorylate IKKβ and MKK4/7, depending 
on stimulus strength. Next to JNK, TAK1 is also able to phosphorylate MKK3/6, 
which are activators of p38, another MAPK involved in cell proliferation, differ-
entiation, and cell death [90, 91]. Studies with p38α/IKK2LPC-KO mice showed 
increased hepatocyte sensitivity against TNFα and LPS administration in vivo, 
which was not the case for the single knockout conditions. Moreover, significantly 
increased JNK expression levels could be detected, but were not strong enough to 
induce liver failure [92]. The results revealed impressively that the NF-κB signal-
ing cascade is not an isolated pathway and is embedded in a broad network of 
stress-related signaling pathways which are tightly regulated in protecting the 
liver against harmful events.
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6.11  NF-κB and Its Implication for HCC Development

Chronic inflammatory liver diseases belong to the main preconditions for genera-
tion and progression of liver cirrhosis and subsequently HCC development, affect-
ing 80–90% of patients with liver cirrhosis [55]. The formation of cancer is 
generally characterized by a disbalance between cell death and survival/prolifera-
tion [93]. In most HCCs, NF-κB is constantly active, which drives a continuous 
burst of pro-inflammatory and anti-apoptotic signals [94, 95]. In the last two 
decades, murine genetic studies had a great impact on the understanding of molec-
ular mechanisms driving HCC development [6–9, 96]. It has been shown that 
tumor formation is a process in which different liver cell types are involved and 
where NF-κB activation is time-dependent altered, particularly at early and late 
stages of cancer development.

One of the first studies in this direction was done on Multidrug resistance protein 
2 (Mdr2−/−) mice (human homologue MDR3), lacking a permeability (P)-glycoprotein 
which is located in the bile canalicular membrane of hepatocytes with a function as 
a phospholipid export pump. Disruption of the functionality of the pump causes a 
spontaneous phenotype described by cholangitis with a dysfunctional biliary deliv-
ery, ending in HCC development at 4–6 months of age [96]. In this phenotype, 
enhanced NF-κB activity leads to a higher TNFα expression, and impairment of 
NF-κB activity with a hepatocyte-specific inducible IκB superrepressor transgene 
negatively affected tumor progression and hepatocyte cell death at later stages of 
tumor development, whereas NF-κB blockage at the initial stage of tumor formation 
has no inhibitory effect [97]. Besides this tumor-promoting effect of NF-κB, other 
studies argue for a tumor-suppressive function. Hepatocyte-specific knockout of 
Nemo promotes hepatitis in these animals at 2 months of age and spontaneous HCC 
development 12 months after birth, triggered by cytokines and a constant low intrin-
sic dosage of LPS coming from the commensal gut bacteria [8]. Further studies with 
different combined hepatocyte-specific knockouts of Nemo and Tnfr1, Trail-r, or 
Fas or quadruple knockout showed no rescue or improvement of this phenotype. 
Still the combination of NEMO/FADDLPC-KO caused a much milder progress of liver 
failure and inflammation and abolished HCC development. Examination of liver 
sections from 1-year-old NEMOLPC-KO/Tnf−/− mice with developed liver tumors 
revealed that TNF is not important for the development of spontaneous cell death, 
hepatitis, and HCC in NEMOLPC-KO livers. Neither depletion of natural killer cells 
nor an intercrossing with Rag-1 ablated mice (NEMOLPC-KO/Rag1−/−) prevented liver 
damage [49]. All these results demonstrated that the spontaneously developed 
hepatocyte- specific NEMO phenotype is neither the result of death receptor- 
mediated signaling cascades nor an immune response triggered once, and additional 
studies are needed to identify the mechanism behind. Interestingly, double knockout 
of Nemo and Tak1 in hepatocytes rescued the massive phenotype detected in the 
Tak1 single knockout condition (as stated above), claiming for a NF-κB-independent 
tumor formation in the TAK1LPC-KO livers [6, 8]. Generation of knock-in mice 
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endogenously expressing catalytically inactive RIPK1 D138N (Ripk1D138N/D138N) 
are alive after birth unlike mice conditionally lacking Ripk1. Moreover, these mice 
are protected against TNFα treatment and poly (I:C)-induced necroptosis in vitro 
and TNFα administration in vivo, indicating that the kinase activity of RIPK1 is not 
a prerequisite for cell survival but is crucial for TNFα-induced necroptosis [53]. 
Moreover, this result is supported by the finding that hepatocyte death and HCC 
development in NEMOLPC-KO mice is triggered by RIPK1’s kinase activity, indepen-
dent of NF-κB activity and RIPK1’s scaffolding function. A complete NF-κB block-
age induced by hepatocyte-specific single or combined knockout of Rela, c-rel, or 
Relb did not affect the liver, whereas constitutively active IKKβ prevented hepato-
carcinogenesis in NEMOLPC-KO animals. These results revealed a NEMO protective 
function against HCC development. Hepatocyte-specific ablation of RIPK1 acti-
vated a TRADD-related apoptosis and HCC development, showing two different 
functions of RIPK1 [98].

Hepatocarcinogenesis chemically induced by a single injection of diethylnitrosa-
mine (DEN) in 15-day-old IKKβΔhep mice causes in 2-month-old mice massive liver 
tumor development which is not seen in untreated IKKβΔhep livers [9, 81]. Compared 
to the untreated mice, DEN treatment supports enhanced ROS production correlat-
ing with increased JNK expression levels, hepatocyte death, and compensatory 
hepatocyte proliferation, which is similar to the results of the ConA-treated IKKβΔhep 
mice [81]. Moreover, experiments with IKKβ−/− fibroblasts showed that antioxi-
dants like manganese superoxide dismutase (MnSOD) or MAPK phosphatases are 
needed to avoid ROS-mediated sustained JNK activity [99]. Besides ROS, nitric 
oxide (NO•) is another kind of agent radically synthesized by inducible nitric oxide 
synthase (iNOS), which is able to induce chronic inflammation and might influence 
tumor formation by controlling cell proliferation, angiogenesis, survival, medical 
resistance, and DNA repair [100–102]. Examination of iNos knockout mice showed 
significantly reduced NF-κB activities, and a higher concentration of iNOS is related 
to tumor proliferation, genomic instability microvascularization, and worse diagno-
sis for HCC patients. Treatment with iNOS inhibitors, like aminoguanidine, has a 
negative effect on HCC progression and NF-κB activity and a positive influence on 
apoptosis in vivo and in vitro. Moreover, interruption of the NF-κB cascade with 
sulfasalazine or siRNA led to decreased iNOS expression in different HCC cell 
lines [103].

Next to the components of the canonical NF-κB pathway, HCC development 
could also be triggered via the LTβR, one of the activators of the noncanonical 
NF-κB pathway. Enhanced levels of LTα, LTβ, and LTβR were detected in human 
HBV-/HCV-infected livers and in HCC. Examination of the transgenic mouse mod-
els of LTα and LTβ showed that hepatocyte-specific overexpression promotes fibro-
sis and HCC development. Ablation of IKKβ, specifically in hepatocytes, rescued 
mice from HCC development [7].

These results indicate a carcinogenesis promoting function of NF-κB, which is 
strongly supported by pro-inflammatory mediators.
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6.12  NF-κBs Contribution on Liver Fibrosis and Cirrhosis

Liver fibrosis is a disease that develops as a consequence of recurrent “out-of- control” 
wound healing processes. Persistent removal of damaged and/or inflamed tissue with 
compensatory renewal leads over time to composition of fibrillar collagen in the 
affected areas, ending up in scarring liver tissue and loss of metabolic functional 
areas. Hepatic stellate cells (HSCs) are mainly involved in this process, whereas after 
certain stimuli this cell population is activated and undergoes a transformation to 
hepatic myofibroblasts which are built by decomposition of extracellular matrix pro-
teins the collagen scars in the tissue. HBV and HCV infections, autoimmune hepati-
tis, alcohol abuse, NASH, and cholestasis trigger liver fibrosis and finally cirrhosis. 
For a long period, it was assumed that activated HSCs/hepatic myofibroblasts are the 
main source of liver fibrosis, but it seems to be a multifaceted process in which dif-
ferent signaling pathways and other liver cell types such as hepatocytes and Kupffer 
cells might be of importance [104]. Examination of intercrossed mice with a consti-
tutively active human IKKβ (CAIKK2) allele in postnatal livers, controlled by a tet-
racycline promoter system, revealed modest liver injury, infiltration of immune cells, 
enhanced hepatocyte proliferation, and spontaneous liver fibrosis progression. 
Deeper analysis detected significantly enhanced levels of chemokines and certain 
chemokine receptors, while interruption of CAIKK2 expression led to declined 
expression levels in hepatocytes. Moreover, disruption of CAIKK2 expression for 
few weeks also reduced HSC activation but without significant improvement of 
fibrosis reduction. Only macrophage removal with liposomal clodronate positively 
affected liver fibrosis development caused by a reduced NF-κB activation. This indi-
cates that next to transformed HSCs, recruitment of pro- inflammatory immune cells 
such as macrophages, mediated by prolonged hepatocellular NF-κB activation, are 
involved in promoting liver fibrosis [105]. Previous studies detected in activated 
HSCs enhanced levels of NF-κB, correlating not only with increased expression of 
pro-inflammatory and adhesion molecules, but also with upregulation of anti- 
apoptotic proteins like TRAF1/2, cIAP1/2, Bcl-XL, and GADD45β [106]. Moreover, 
it seems that the CD95/Fas pathway is responsible for HSC death, whereas TGF-β 
and TNFα induce pro-survival signaling. Disruption of NF-κB activity by overex-
pression of an IκB superrepressor led to decreased expression levels of anti-apoptotic 
proteins like Bcl-XL and enhanced proapoptotic proteins as caspase-3 during TGF-β 
and TNFα stimulation [107, 108]. Another study revealed a constitutive phosphory-
lation of p65 at Ser536 mediated by IKKβ and the autocrine renin-angiotensin sys-
tem in human hepatic myofibroblasts. IKKβ- mediated phosphorylation of p65 allows 
nuclear translocation, whereas angiotensin II promotes myofibroblast survival in an 
autocrine and paracrine way [109]. Besides increased NF-κB activation, enhanced 
p-JNK levels could be detected in human- and murine-activated HSCs, indicating 
that JNK has an important function in liver fibrosis progression [110].

In addition to the death receptor family, two members of the Toll-like receptor 
(TLR) family, TLR4 and TLR9, were uncovered to be involved in mediating NF-κB 
activation during liver fibrosis progression as their activation could be a conse-
quence of gut bacterial components [111, 112].
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6.13  NF-κB in HVB/HCV Infections

Approximately 3% of the total world population have been infected with HCV, 
whereas more than 170 million people are suffering from chronic hepatitis, cir-
rhosis, and HCC. The annual rate of HCC development is strongly increased in 
cirrhotic livers [113]. The HCV core, the envelop protein E2, and HCV subge-
nomic replicons have been shown to enhance p38 and extracellular signal-regu-
lated kinase (ERK) phosphorylation and initiate NF-κB [114, 115]. Moreover, it 
seems that oxidative stress (ROS) and TGF-β1 are important mediators of fibro-
genesis in HCV infection. Silencing of p38, JNK, ERK1/2, and NF-κB (p65) in 
hepatocytes in vitro revealed their implication in enhanced TGF-β1 expression 
[116]. Experiments using different inhibitors for ROS (diphenyliodonium 
[DPI]), JNK (SP600125), IRE1 (Irestatin 9389), and NF-κB (6-amino-4-(4-
phenoxyphenylethylamino [AQ]), have blocked significantly HCV-induced 
NF-κB and TGF-β1-mediated SMAD signaling. Silencing of JNK and IRE1 
using siRNA inhibited efficiently ER stress, ROS, NF-κB, and TGF-β1 activity 
[117]. Moreover, it was shown in vitro that the hepatitis B virus X (HBx) pro-
tein, in addition to HCV infection, maintains enhanced NF-κB and AP-1 activa-
tion which might indicate a supportive role of HBx in HCC development [118]. 
Patients suffering from HBV have a much higher potential to develop HCC 
confirmed by studies which detected in nearly all examined HCCs of HBV 
patients chromosomally integrated viral DNA. Next to the HBx protein, the 
HBV surface antigen PreS2 is able to activate NF-κB and AP-1 via PKC-
mediated induction of the c-Raf-1/MAPK signaling pathway, which further 
leads to increased hepatocyte proliferation, indicating a tumor-promoting func-
tion for PreS2 [119].

Stimulation of HCV core protein infected HeLa and HuH-7 cells with TNFα or 
LTα1/β2 mediates increased or sustained IκBβ degradation, whereas degradation 
of IκBα was only detected in LTα1/β2-stimulated HeLa cells. Besides cytokine 
treatment, higher levels of NF-κB activity were also detected in untreated HeLa 
and HuH-7 cells only harboring the HCV core protein. This finding shows that the 
HCV core protein is able to positively alter NF-κB initiation and, in combination 
with cytokine treatment, markedly increased this effect, which might have a direct 
influence on a stable and continuous NF-κB activation in HCV-infected cells 
[120].

After viral infection, the immune system reacts with the production of different 
NF-κB-related cytokines, especially IFNs to defend the infection [121–123]. NF-κB 
and IFN regulatory factor-3 (IRF-3) initiate alone or together the antiviral Janus 
kinases/signal transducer and activator (JAK-STAT) signaling cascade [124]. 
Despite the protective host defense response to eliminate viral infection accompa-
nied by removing and restoring damaged tissue, continuous NF-κB activation also 
has negative side effects, such as activation of quiescent HSCs or proliferation of 
hepatocytes with oncogenic mutations, leading to liver fibrogenesis and HCC devel-
opment. Therefore, therapeutics are needed which keep virus-induced oxidative 
stress or mediators of fibrosis at a minimum [125, 126].
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6.14  NF-κB and Its Meaning for Obesity

Overweight and metabolic diseases have strongly increased all over the world, rang-
ing from childhood to adult stage. The WHO estimated for 2015 that around 2.3 
billion adults would be overweighted and approximately 700 million people would 
be obese [127]. Obesity is a gate opener not only for several diseases, such as insu-
lin resistance, type 2 diabetes, cardiovascular disease, and atherosclerosis, but also 
for dementia, airway disease, and cancer [128, 129]. Genetic examination of murine 
and human adipose tissue, as well as murine hepatic tissue, uncovered strongly 
increased activation of an inflammatory and immune response gene network trig-
gered by a multifaceted genetic loci and environmental issues [130–132]. However, 
the molecular mechanism of how obesity influences macrophage response is not yet 
fully understood. Currently, different theories are trying to explain how macro-
phages and obesity are connected to each other, e.g. by TLR4 induction through a 
high content of saturated fats, by inflammation of the central nervous system, or by 
the commensal gut microbiota [133–136].

Adipocytes are the cellular components of the adipose tissue and next to lipid 
storage they are also able to generate and release pro-inflammatory cytokines and 
adipokines which attract monocytes and T cells to infiltrate the adipose tissue, 
where monocytes differentiate to M1 macrophages. It is discussed that one major 
source triggering this process is metabolic stress caused by overnutrition, which 
leads to high levels of non-metabolized free fatty acids and ER stress inducing 
inflammatory responses. However, also removal of apoptotic adipocytes is another 
potent inducer of macrophage recruitment [128]. Besides macrophage recruitment, 
activation of TLRs is considered to initiate NF-κB-mediated generation of pro-
inflammatory molecules. The NF-κB target IKKε was detected to be needed for 
high-fat diet (HFD)-induced obesity. Depletion of IKKε revealed a positive influ-
ence on high-fat diet fed mice, because these animals were protected from insulin 
resistance and hepatic steatosis, and they did not show any sign of chronic inflam-
mation in liver or adipose tissue or induction of inflammatory pathways [137]. 
Similar results were obtained by HFD-treated mice with IKKβ deficiency in hepa-
tocytes (IkbkbΔhep) or in myeloid (IkbkbΔmye) cells. These animals showed liver-
specific insulin sensitivity, but revealed insulin resistance in muscle and adipose 
tissue, which was also examined in obese or aged mice. The IkbkbΔmye mice had 
preserved total insulin sensitivity with protection against insulin resistance [82]. 
Constitutively expressed IKKβ in hepatocytes caused increased NF-κB activity 
comparable to values detected in HFD-treated or obese mice. These animals also 
developed type 2 diabetes (T2D) with characteristic features such as hyperglyce-
mia, severe hepatic insulin resistance and mild systemic insulin resistance, also 
affecting muscle tissue. Liver- specific expression of the IκBα superrepressor res-
cued this phenotype [138]. These results indicate a potential NF-κB function in 
obesity-related inflammation and T2D locally in the liver and myeloid cells, which 
seem to be crucial for improving systemic insulin resistance. Sustained excessive 
food intake also leads to NF-κB initiation via different pro-inflammatory pathways 
as in adipocytes and macrophages; TLR4 was discovered to be activated by free 
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fatty acids. Ablation of TLR4 protected these mice from insulin resistance in muscle 
tissue, disturbed glucose metabolism, and inflammatory signaling in liver and adi-
pose tissue [139]. Additional studies showed that loss of function mutation in TLR4 
also hindered the development of insulin resistance in adipocytes and in diet-initi-
ated obesity [135, 140, 141]. Next to TLR4, TLR2 seems to have a comparable role 
in mediating NF-κB activation during HFD-induced obesity and the formation of 
insulin resistance [142, 143]. Metabolic stress signals attract monocytes to remove 
apoptotic pancreatic β-cells, thereby secreting TNFα, IL-6, and IL-1 to support 
β-cell dying. Increased TNFα levels in blood and peripheral tissues were detected in 
insulin-resistant rodents as well, and HFD promotes enhanced secretion of TNFα, 
IL-6, and IL-1 in hepatocytes and adipocytes. Inactivation of TNFα in different 
genetic rodent models mediated a significant peripheral glucose uptake during insu-
lin secretion. Moreover, hepatocyte deficiency of IL-6 receptor (IL-6RαL-KO) 
impaired obesity-related insulin resistance and glucose tolerance. Depletion of 
IL-6Rα induced a massive inflammatory response indicated by enhanced levels of 
TNFα, IL-6, and IL-10 and IκBα phosphorylation. Glucose tolerance in these ani-
mals was reinstated by TNFα neutralization or Kupffer cell deficiency [144–146]. 
All these results imply a critical role for NF-κB in obesity-mediated insulin resis-
tance and T2D progression and that a controlled release of inflammatory inducers is 
necessary for a healthy hepatic metabolism.

6.15  NF-κB and Its Function in Hepatic Ischemia/ 
Reperfusion (I/R) Injury

During and after liver transplantation or hepatic resection, ischemia/reperfusion 
(I/R) is a main reason for liver failure caused by hypoxia or anoxia if oxygen supply 
and tissue pH are reinstated after clamping of the hepatic blood flow. The 
 pathobiochemical mechanisms behind I/R are versatile and affect all liver cell types 
[147, 148].

Several studies were done to clarify if I/R induces apoptosis or necroptosis [149–
154]. During I/R, hepatocytes express damage-associated molecular patterns 
(DAMPs)/pathogen-associated molecular patterns (PAMPs) on their surface, and 
macrophages, Kupffer cells, and dendritic cells bind these DAMPs/PAMPS by 
TLRs, thereby initiating the immune system. Adaptive and innate immune cells are 
recruited to the affected tissue sections where they secrete additional inflammatory 
mediators as TNFα, IL-1, IL-12, and INFγ which fuel these processes [148, 155]. 
Hepatic adenoviral overexpression of an IκB superrepressor in rats impeded NF-κB 
activation by decreased TNFα expression, preventing negative effects of hepatic I/R 
[156]. Furthermore, it was shown that heat shock preconditioning of rat livers sig-
nificantly impaired I/R-induced NF-κB activation and expression of several inflam-
matory mediators [157]. Conditional ablation of Ikkβ in murine hepatocytes led to 
impaired liver necrosis and inflammation during I/R compared to the wild- type con-
dition. Also administration of the chemical IKKβ inhibitor AS602868 failed to 
induce I/R-mediated liver failure without induction of pro-apoptotic side effects, 
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making this inhibitor potentially useful for therapy [52]. A20 is another critical 
NF-κB target gene activated during inflammatory processes in hepatocytes and is 
involved in blocking apoptosis, but is also part of a negative feedback loop to con-
trol NF-κB activation [158–160]. Murine hepatic recombinant adenoviral overex-
pression of A20 revealed a significantly increased survival rate after I/R in these 
animals, indicated by considerably reduced bilirubin and transaminase levels, 
reduced hemorrhagic necrosis and steatosis, and enhanced hepatocyte proliferation. 
Moreover, A20 induced the release of peroxisome proliferator-activated receptor 
alpha (PPARα), an important controller of lipid homeostasis and oxidative damage, 
which prevented oxidative induced necrosis [161].

These results revealed that interference of IKKβ activation by pharmacological 
treatment is a putative instrument to protect livers from I/R injury. A20, another 
crucial NF-κB target, seems to be an additional promising candidate which might 
have the capacity as a therapeutic target which efficiently blocks I/R [86, 161]. In 
contrast, mice given recombinant receptor activator of NF-κB ligand (RANKL) 
before or during hepatic I/R showed enhanced NF-κB activation accompanied by 
less liver damage [162].

6.16  NF-κB as Therapeutic Target

Liver diseases are characterized by multifaceted biochemical processes, whereas 
the balance between apoptotic and survival signaling pathways is of great impor-
tance for liver homeostasis. Impaired homeostasis leads to chronic inflammation 
and compensatory proliferation ending up in liver cirrhosis and HCC development. 
Tremendous work was done in these fields, and particularly the use of genetic modi-
fied mouse models showed that NF-κB is one of the most important key players in 
preserving liver integrity. However, the function of NF-κB in the development of 
liver diseases is not black and white nor is it equal for all liver cell types. This makes 
it extremely challenging to design cell type and disease-specific drugs which only 
affect the cells of interest and not interfering with NF-κB activity or other signaling 
cascades in healthy cells.

Several biological and chemical compounds have been tested to modify NF-κB 
activity as steroids, selective estrogen receptor modulators, antioxidants, protea-
some inhibitors, and IKK inhibitors [126].

The administration of hormones is critical to assess because of the increased risk 
of negative side effect induction in the liver or other organs or their prospective 
impact on the respective gender [126, 163]. Phytochemicals from tea or other plants 
have a great antioxidant potential which seems to have a significant positive influ-
ence on liver health, but further investigations are needed for refining substance 
purification and antioxidant composition [164–167]. The development of chemical 
compounds, such as proteasome inhibitors like Bortezomib, mediates reduced 
NF-κB activation. Treatment of human hepatoma cells with MG132, another prote-
ase inhibitor, resulted in apoptosis induction but affected the β-catenin pathway. 
Currently, the use of proteasome inhibitors as a therapeutic target needs more 
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scientific research because of the diversity of bad side effects induced next to 
decreased NF-κB activation [168–171]. Regarding specific NF-κB blockage, the 
IKK complex member IKKβ seems to be a putative target. It has been shown that 
aspirin and sulfasalazine are able to impair the catalytic activity of the IKK com-
plex. Furthermore, the development of a new class of chemical compounds, referred 
to as “small molecules,” is able to impede NF-κB activation by binding to the ATP-
binding pocket of IKKβ, thereby inducing conformational changes. Despite the 
higher binding specificity of small molecules for their targets and effectiveness 
compared to other compounds, a potential risk remains for the development of side 
effects, such as induction of inflammatory responses [126, 172, 173].

In addition to biological and chemical compounds, therapeutics on the DNA/
RNA level have also been developed. Different studies were done with small inter-
fering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligodeoxynucleo-
tides (ODNs), placing emphasis on liver fibrosis. Several studies have obtained 
promising results, but more genetic and clinical trial studies are needed to gain a 
better mechanistic understanding and to improve application effectiveness of small 
RNA and DNA products to enhance therapeutic success in the treatment of liver 
diseases [174].

In summary, further scientific and clinical studies are needed to develop effective 
therapeutics that are fine-tuned for the control of hepatic NF-κB activation to pre-
vent progression of liver diseases, but without inducing harmful side effects.
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